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1 Introduction

The past several years have witnessed tremendous progress in our understanding of the

mathematical structure of scattering amplitudes, particularly in maximally supersymmetric

theories. It is easy to argue that the seeds of this progress were sown over two decades ago

by the discovery [1, 2] of the stunningly simple formula1

AMHV(1, . . . , n) =
1

〈1 2〉〈2 3〉 · · · 〈n 1〉
(1.1)

for the maximally helicity violating (MHV) color-ordered subamplitude for n-gluon scat-

tering. The importance of this formula goes far beyond simply knowing the answer for

a certain scattering amplitude, which one may or may not be particularly interested in.

Rather, the mere existence of such a simple formula for something which would normally

require enormously tedious calculations using traditional Feynman diagram techniques sug-

gests firstly that the theory must possess some remarkable and deeply hidden mathematical

structure, and secondly that if one actually is interested in knowing the answer for a certain

amplitude it behooves one to discover and understand this structure. In other words, the

formula (1.1) is as important psychologically as it is physically, since it provides strong

motivation for digging more deeply into scattering amplitudes.

Much of the progress on gluon amplitudes can be easily recycled and applied to graviton

amplitudes due ultimately to the KLT relations [3] which roughly speaking state that

1Here and throughout the paper we use calligraphic letters A, M to denote superspace amplitudes with

the overall delta-function of supermomentum conservation suppressed.
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“gravity is Yang-Mills squared”. Slightly more precisely, the KLT relations express an n-

graviton amplitude as a sum over permutations of the square of the color-ordered n-gluon

subamplitude times some simple extra factors (see [4] for a review). There are several

indications that maximal supergravity may be an extraordinarily remarkable theory [5–14],

and possibly even ultraviolet finite [15–20], but our feeling is that even at tree level we are

still far from fully unlocking the structure of graviton amplitudes.

To illustrate this disparity we need look no further than the simplest graviton am-

plitudes. The original BGK (Berends, Giele and Kuijf) formula for the n-graviton MHV

amplitude [21] is now over 20 years old. For later convenience we review here a different

form due to Mason and Skinner [22], who proved the equivalence of the original BGK

formula to the expression

MMHV
n =

∑

P (1,...,n−3)

1

〈n n−2〉〈n−2n−1〉〈n−1n〉

1

〈1 2〉 · · · 〈n 1〉

n−3∏

k=1

[k|pk+1 +· · ·+ pn−2|n−1〉

〈k n−1〉
,

(1.2)

where the sum indicates a sum over all (n− 3)! permutations of the labels 1, . . . , n− 3 and

we use the convention

[a|pi + pj + · · · |b〉 = [a i]〈i b〉 + [a j]〈j b〉 + · · · . (1.3)

The fact that any closed form expression exists at all for this quantity, the calculation

of which would otherwise be vastly more complicated even than the corresponding one for

n gluons, is an amazing achievement. Nevertheless the formula has some features which

strongly suggest that it is not the end of the story.

First of all, the formula (1.2) does not manifest the requisite permutation symmetry

of an n-graviton superamplitude. Specifically, any superamplitude Mn must be fully sym-

metric under all n! permutations of the labels 1, . . . , n of the external particles, but only

an Sn−3 subgroup of this symmetry is manifest in (1.2) (several formulas which manifest a

slightly larger Sn−2 subgroup are known [23, 24]). Of course one can check, numerically if

necessary, that (1.2) does in fact have this symmetry, but it is far from obvious. Moreover,

even the Sn−3 symmetry arises in a somewhat contrived way, via an explicit sum over per-

mutations. Undoubtedly the summand in (1.2) contains redundant information which is

washed out by taking the sum. This situation should be contrasted with that of Yang-Mills

theory, where (1.1) is manifestly invariant under the appropriate dihedral symmetry group

(not the full permutation group, due to the color ordering of gluons).

Secondly, one slightly disappointing feature of all previously known MHV formulas

including (1.2) is the appearance of “· · · ”, which indicates that a particular cyclic ordering

of the particles must be chosen in order to write the formula, even though a graviton

amplitude ultimately cannot depend on any such ordering since gravitons do not carry any

color labels. This vestigial feature usually traces back to the use of the KLT relations to

calculate graviton amplitudes by recycling gluon amplitudes.

An important feature of graviton amplitudes is that they fall off like 1/z2 as the

supermomenta of any two particles are taking to infinity in a particular complex direction

(see [23, 25–30] and [10] for the most complete treatment), unlike in Yang-Mills theory

– 2 –
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where the falloff is only 1/z [31]. It has been argued [28] that this exceptionally soft

behavior of graviton tree amplitudes is of direct importance for the remarkable ultraviolet

cancellations in supergravity loop amplitudes [15, 32–35].

The 1/z2 falloff of (1.2) is manifest for each term separately inside the sum over

permutations. Two classes of previously known formulas for the n-graviton MHV amplitude

are: those like (1.2) which manifest the 1/z2 falloff but only Sn−3 symmetry, and others

(see for example [23, 24]) which have a larger Sn−2 symmetry but only manifest falloff

like 1/z. In the latter class of formulas the stronger 1/z2 behavior arises from delicate

and non-obvious cancellations between various terms in the sum. This is both a feature

and a bug. It is a feature because it implies the existence of linear identities (which

have been called bonus relations in [36]) between individual terms in the sum which have

proven useful, for example, in establishing the equality of various previously known but

not obviously equivalent formulas [36]. But it is a bug because it indicates that the Sn−2-

invariant formulas contain redundant information distributed amongst the various terms

in the sum. The bonus relations allow one to squeeze this redundant information out of

any Sn−2-invariant formula at the cost of reducing the manifest symmetry to Sn−3.

It is difficult to imagine that it might be possible to improve upon the Parke-Taylor

formula (1.1) for the n-gluon MHV amplitude. However, for the reasons just reviewed, we

feel that (1.2) cannot be the end of the story for gravity. Ideally one would like to have

a formula for n-graviton scattering that (1) is manifestly Sn symmetric without the need

for introducing an explicit sum over permutations to impose the symmetry vi et armis; (2)

makes no vestigial reference to any cyclic ordering of the n gravitons, and (3) manifests

1/z2 falloff term by term, making it unsqueezable by the bonus relations.

In this paper we present and prove the “tree formula” (2.1) for the MHV scattering

amplitude which addresses the second and third points but only manifests Sn−2 symmetry.

In section 2 we introduce the tree formula and discuss several special cases as well as the

general soft limit. In section 3 we work out the simple link representation of the ampli-

tude in twistor space, from which new physical space formula follows. Finally the proof is

in section 4.

Note Added. After this paper appeared we learned of an ansatz for the MHV graviton

amplitude presented in section 6 of [66] which upon inspection is immediately seen to

share the nice features of the tree formula. In fact, although terms in the two formulas

are arranged in different ways (labeled tree diagrams versus Young tableaux), it is not

difficult to check that their content is actually identical. Interestingly the formula of [66]

was constructed with the help of “half-soft factors” similar in idea to the “inverse soft

limits” which appeared much more recently in [38]. Our work establishes the validity of

the ansatz conjectured in [66] and demonstrates that it arises naturally in twistor space.

2 The MHV tree formula

2.1 Statement of the tree formula

Here we introduce a formula for the n-graviton MHV scattering amplitude which we call the

“tree formula” since it consists of a sum of terms, each of which is conveniently represented

– 3 –
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by a tree diagram. The tree formula manifests an Sn−2 subgroup of the full permutation

group. For the moment we choose to treat particles n − 1 and n as special. With this

arbitrary choice the formula is:

MMHV
n =

1

〈n − 1n〉2

∑

trees



∏

edges ab

[a b]

〈a b〉



(

∏

vertices a

(〈an − 1〉〈an〉)deg(a)−2

)
. (2.1)

To write down an expression for the n-point amplitude one draws all inequivalent connected

tree graphs with vertices labeled 1, 2, . . . , n − 2. (It was proven by Cayley that there are

precisely (n − 2)n−4 such diagrams.) For example, one of the 125 labeled tree graphs

contributing to the n = 7 graviton amplitude is

2

5

3 1 4

According to (2.1) the value of a diagram is then the product of three factors:

1. an overall factor of 1/〈n−1n〉2,

2. a factor of [a b]/〈a b〉 for each propagator connecting vertices a and b, and

3. a factor of (〈an−1〉〈an〉)deg(a)−2 for each vertex a, where deg(a) is the degree of the

vertex (the number of edges attached to it).

An alternate description of the formula may be given by noting that a vertex factor of

〈an − 1〉〈an〉 may be absorbed into each propagator connected to that vertex. This leads

to the equivalent formula

MMHV
n =

1

〈n−1n〉2

(
n−2∏

a=1

1

(〈an−1〉〈an〉)2

)
∑

trees

∏

edges ab

[a b]

〈a b〉
〈an−1〉〈b n−1〉〈an〉〈b n〉. (2.2)

2.2 Examples

We defer to section 4 a formal proof of the tree formula as the impatient reader may be

sufficiently convinced by seeing the formula in action here for small n and by noting that

it has the correct soft limits for all n, as we discuss shortly.

For each of the trivial cases n = 3, 4 there is only a single tree diagram,

MMHV
3 = 1 =

1

(〈1 2〉〈1 3〉〈2 3〉)2
(2.3)

and

MMHV
4 = 1 2 =

[1 2]

〈1 2〉〈1 3〉〈1 4〉〈2 3〉〈2 4〉〈3 4〉2
(2.4)

respectively, which immediately reproduce the correct expressions.
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For n = 5 there are three tree diagrams

1 2 3 =
[1 2][2 3]

〈1 2〉〈1 4〉〈1 5〉〈2 3〉〈3 4〉〈3 5〉〈4 5〉2

1 3 2 =
[1 3][2 3]

〈1 3〉〈1 4〉〈1 5〉〈2 3〉〈2 4〉〈2 5〉〈4 5〉2

2 1 3 =
[1 2][1 3]

〈1 2〉〈1 3〉〈2 4〉〈2 5〉〈3 4〉〈3 5〉〈4 5〉2

(2.5)

which can easily be verified by hand to sum to the correct expression. Agreement between

the tree formula and other known formulas such as (1.2) may be checked numerically for

slightly larger values of n by assigning random values to all of the spinor helicity variables.

A simple implementation of the tree formula in the Mathematica symbolic computation

language is presented in the appendix.

2.3 Relation to other known formulas

The MHV tree formula is evidently quite different in form from most other expressions

in the literature. In particular, no reference at all is made to any particular ordering of

the particles (there is no vestigial “· · · ”), and the manifest Sn−2 arises not because of any

explicit sum over P (1, . . . , n − 2) but rather from the simple fact that the collection of

labeled tree diagrams has a manifest Sn−2 symmetry. In our view these facts serve to

highlight the essential “gravitiness” of the formula, in contrast to expressions such as (1.2)

which are ultimately recycled from Yang-Mills theory.

One interesting feature of the MHV tree formula is that it is, in a sense, minimally

non-holomorphic. Graviton MHV amplitudes, unlike their Yang-Mills counterparts, do not

depend only the holomorphic spinor helicity variables λi. The tree formula packages all

of the non-holomorphicity into the [a b] factors associated with propagators in the tree

diagrams. Each diagram has a unique collection of propagators and a correspondingly

unique signature of [ ]’s, which only involve n − 2 of the n labels.

Like the MHV tree formula, the Mason-Skinner formula (1.2) (unlike most other formu-

las in the literature, including the original BGK formula) has non-holomorphic dependence

on only n − 2 variables. In our labeling of (1.2) we see that λ̃n−1 and λ̃n do not appear

at all. Of course we do not mean to say that M is “independent” of these two variables

since there is a suppressed overall delta function of momentum conservation δ4(
∑

i λiλ̃i)

which one could use to shuffle some λ̃’s into others. Rather we mean that the tree and

MS formulas have the property that all appearance of two of the λ̃’s has already been

completely shuffled out.

It is an illuminating exercise to attempt a direct term-by-term comparison of the MHV

tree formula with the MS formula (1.2). For the first non-trivial case n = 5 the MS formula

provides the two terms

[2 3][1|p2 + p3|4〉

〈1 2〉〈1 4〉〈1 5〉〈2 3〉〈2 4〉〈3 4〉〈3 5〉〈4 5〉2
−

[1 3][2|p1 + p3|4〉

〈1 2〉〈1 3〉〈1 4〉〈2 4〉〈2 5〉〈3 4〉〈3 5〉〈4 5〉2
. (2.6)

If we now expand out the bracket [a|pi+pj|b〉 = [a i]〈i b〉+[a j]〈j b〉 then we find four terms:

one of them is proportional to [1 2][2 3] and is identical to the first line in (2.5), another

– 5 –
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proportional to [1 2][1 3] is identical to the last line in (2.5). The remaining two terms are

both proportional to [1 3][2 3] and may be combined as

[1 3][2 3] (〈1 3〉〈2 5〉 − 〈1 5〉〈2 3〉)

〈1 2〉〈1 3〉〈1 4〉〈1 5〉〈2 3〉〈2 4〉〈2 5〉〈3 5〉〈4 5〉2
(2.7)

which with the help of a Schouten identity we recognize as precisely the second line in (2.5).

We beg the reader’s pardon for allowing us to indulge in one final example. Expanding

the MS formula for n = 6 into 〈 〉’s and [ ]’s yields a total of 36 terms. For example there

are 6 terms proportional to the antiholomorphic structure [1 4][2 4][3 4], totalling

[1 4][2 4][3 4]〈4 5〉

〈1 5〉〈2 5〉〈3 5〉〈4 6〉〈5 6〉2

[
1

〈1 2〉〈1 6〉〈2 3〉〈3 4〉
+

1

〈1 2〉〈1 4〉〈2 3〉〈3 6〉
−

1

〈1 3〉〈1 6〉〈2 3〉〈2 4〉

−
1

〈1 3〉〈1 4〉〈2 3〉〈2 6〉
−

1

〈1 2〉〈1 3〉〈2 6〉〈3 4〉
−

1

〈1 2〉〈1 3〉〈2 4〉〈3 6〉

]
. (2.8)

After repeated use of Schouten identities this amazingly collapses to the single term

[1 4][2 4][3 4]〈4 5〉〈4 6〉

〈1 4〉〈1 5〉〈1 6〉〈2 4〉〈2 5〉〈2 6〉〈3 4〉〈3 5〉〈3 6〉〈5 6〉2
=

1 2 3

4

(2.9)

We believe that these examples are representative of the general case. Expanding out

all of the brackets in the n-graviton MS formula generates a total of [(n − 3)!]2 terms,

but there are only (n − 2)n−4 possible distinct antiholomorphic signatures. Collecting

terms with the same signature and repeatedly applying Schouten identities should collapse

everything into the terms generated by the MHV tree formula. Note that this is a huge

simplification: (n − 2)n−4 is smaller than [(n − 3)!]2 by a factor that is asymptotically nn.

We certainly do not have an explicit proof of this cancellation; instead we are relying on

fact that the MS formula and the tree formula are separately proven to be correct in order

to infer how the story should go.

To conclude this discussion we should note that we are exploring here only the structure

of the various formulas, not making any claims about the computational complexity of

the MHV tree formula as compared to (1.2) or any other known formula. No practical

implementation of the MS formula would proceed by first splitting all of the brackets as

we have outlined. Indeed a naive counting of the number of terms, (n− 3)! in (1.2) versus

(n − 2)n−4 for the tree formula, suggests that for computational purposes the former is

almost certainly the clear winner despite the conceptual strengths of the latter.

2.4 Soft limit of the tree formula

Let us consider for a moment the component amplitude

M(1+, . . . , (n − 2)+, (n − 1)−, n−) = 〈n − 1n〉8MMHV
n (2.10)

– 6 –
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with particles n− 1 and n having negative helicity. The universal soft factor for gravitons

is [21, 37]

lim
p1→0

M(1+, . . . , (n − 2)+, (n − 1)−, n−)

M(2+, . . . , (n − 2)+, (n − 1)−, n−)
=

n−2∑

i=2

g(i+), g(i+)=
〈i n − 1〉

〈1n − 1〉

〈i n〉

〈1n〉

[1 i]

〈1 i〉
. (2.11)

It is simple to see that the MHV tree formula satisfies this property: the tree diagrams

which do not vanish in the limit p1 → 0 are those in which vertex 1 is connected by a

propagator to a single other vertex i. Such diagrams remain connected when vertex 1 is

chopped off, leaving a contribution to the n − 1-graviton amplitude times the indicated

factor g(i+).

Thinking about this process in reverse therefore suggests a simple interpretation

of (2.11) in terms of tree diagrams — it is a sum over all possible places i where the

vertex 1 may be attached to the n − 1-graviton amplitude. This structure is exactly that

of the “inverse soft factors” suggested recently in [38], and we have checked that the MHV

tree formula may be built up by recursively applying the rule proposed there.

3 The MHV tree formula in twistor space

Before turning to the formal proof of the tree formula in the next section, here we work

out the link representation of the MHV graviton amplitude in twistor space, which was

one of the steps which led to the discovery of the tree formula. Two papers [39, 40] have

recently constructed versions of the BCF on-shell recursion relation directly in twistor space

variables. We follow the standard notation where µ, µ̃ are respectively Fourier transform

conjugate to the spinor helicity variables λ, λ̃, and assemble these together with a four-

component Grassmann variable η and its conjugate η̃ into the 4|8-component supertwistor

variables

Z =




λ

µ

η


 , W =




µ̃

λ̃

η̃


 . (3.1)

In the approach of [40], in which variables of both chiralities Z and W are used simulta-

neously, an apparently important role is played by the link representation which expresses

an amplitude M in the form

M(Zi,WJ) =

∫
dc U(ciJ , λi, λ̃J) exp

[
i
∑

i,J

ciJZi · WJ

]
. (3.2)

Here one splits the n particles into two groups, one of which (labeled by i) one chooses

to represent in Z space and the other of which (labeled by J) one chooses to represent in

W space. The integral runs over all of the aptly-named link variables ciJ and we refer to

the integrand U(ciJ , λi, λ̃J) as the link representation of M. It was shown in [40] that the

BCF on-shell recursion in twistor space involves nothing more than a simple integral over

Z, W variables with a simple (and essentially unique) measure factor.

– 7 –
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The original motivation for our investigation was to explore the structure of link rep-

resentations for graviton amplitudes. We will always adopt the convenient convention of

expressing an NkMHV amplitude in terms of k + 2 Z variables and n− k − 2 W variables.

The three-particle MHV and MHV amplitudes

UMHV
3 =

|〈1 2〉|

c2
13c

2
23

, UMHV
3 =

|[1 2]|

c2
31c

2
32

(3.3)

seed the on-shell recursion, which is then sufficient (in principle) to determine the link

representation for any desired amplitude.

For example, the four-particle amplitude is the sum of two contributing BCF diagrams

UMHV
4 =

〈1 2〉[3 4]

c2
13c

2
24c12:34

+
〈1 2〉[3 4]

c2
13c

2
24c14c23

(3.4)

where we use the notation

ci1i2:J1J2
= ci1J1

ci2J2
− ci1J2

ci2J1
. (3.5)

Remarkably the two terms in (3.4) combine nicely into the simple result presented already

in [40]:

UMHV
4 =

〈1 2〉[3 4]

c13c14c23c24c12:34
. (3.6)

This simplification seems trivial at the moment but it is just the tip of an iceberg. For larger

n the enormous simplifications discussed in the previous section, which are apparently non-

trivial in physical space, occur automatically in the link representation.

For example the five particle MHV amplitude is the sum of three BCF diagrams,

UMHV
5 =

{
|〈1 2〉|[4 5](c24 [3 4] + c25[3 5])

c13c23c14c2
25c12:34c12:45

+ (3 ↔ 4)

}
+

|〈1 2〉|[3 4](c24 [4 5] + c23[3 5])

c13c14c15c23c24c2
25c12:34

(3.7)

which nicely simplifies to

1

|〈1 2〉|
UMHV

5 =
[3 4][4 5]

c13c15c23c25c12:34c12:45
+

[3 5][4 5]

c13c14c23c24c12:35c12:45
+

[3 4][3 5]

c14c15c24c25c12:34c12:35
.

(3.8)

This expression already exhibits the structure of the MHV tree formula (except that here

particles 1 and 2 are singled out, and the vertices of the trees are labeled by {3, 4, 5}).

Subsequent investigations for higher n reveal the general pattern which is as follows.

Returning to the convention where particles n − 1 and n are treated as special, the link

representation for any desired MHV amplitude may be written down by drawing all tree

diagrams with vertices labeled by {1, . . . , n − 2} and then assigning

1. an overall factor of 〈n − 1n〉sign(〈n − 1n〉)n,

2. for each propagator connecting nodes a and b, a factor of [a b]/cn−1,n:a,b,

3. for each vertex a, a factor of (cn−1,acn,a)
deg(a)−2, where deg(a) is the degree of the

vertex labeled a.

It is readily verified by direct integration over the link variables that these rules are precisely

the link-space representation of the physical space rules for the MHV tree formula given in

the previous section.

– 8 –
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4 Proof of the MHV tree formula

Here we present a proof of the MHV tree formula. One way one might attempt to prove

the formula would be to show directly that it satisfies the BCF on-shell recursion rela-

tion [31, 44] for gravity [23, 25, 27], but the structure of the formula is poorly suited for

this task. Instead we proceed by considering the usual BCF deformation of the formula

MMHV
n by a complex parameter z and demonstrating that MMHV

n (z) has the same residue

at every pole (and behavior at infinity) as the similarly deformed graviton amplitude,

thereby establishing equality of the two for all z.

In this section we return to singling out particles 1 and 2, letting the vertices in the

tree diagrams carry the labels {3, . . . , n}. Then the MHV tree formula (2.1) can be written

as

MMHV
n = 〈1 2〉6

∑

trees

[ ] · · · [ ]

〈 〉 · · · 〈 〉

n∏

a=3

(〈1 a〉〈2 a〉)deg(a)−2 (4.1)

(note that we continue to work with the component amplitude (2.10)) where the factors

[ ] · · · [ ]/〈 〉 · · · 〈 〉 associated with the propagators of a diagram are independent of 1 and 2.

Let us now make the familiar BCF shift [31]

λ1 → λ1(z) = λ1 − zλ2, λ̃2 → λ̃2(z) = λ̃2 + zλ̃1 (4.2)

which leads to the z-deformed MHV tree formula

MMHV
n (z) = 〈1 2〉6

∑

trees

[ ] · · · [ ]

〈 〉 · · · 〈 〉

n∏

a=3

[(〈1 a〉 − z〈2 a〉)〈2 a〉]deg(a)−2 . (4.3)

Here we are in a position to observe a nice fact: since each tree diagram is connected, the

degrees satisfy the sum rule
n∑

a=3

(deg(a) − 2) = −2, (4.4)

which guarantees that each individual term in (4.3) manifestly behaves like 1/z2 at large z.

This exceptionally soft behavior of graviton amplitudes is completely hidden in the usual

Feynman diagram expansion.

A complex function of a single variable which vanishes at infinity is uniquely determined

by the locations of its poles as well as its residues. Having noted that (4.3) has the correct

behavior at large z, we can conclude the proof of the MHV tree formula by demonstrating

that (4.3) has precisely the expected residues at all of its poles. In order to say what the

expected residues are we shall use induction on n. As discussed above the tree formula

is readily verified for sufficiently small n, so let us assume that it has been established

up through n − 1. We can then use BCF on-shell recursion (whose terms are displayed

graphically in figure 1) to determine what the residues in the deformed n-point amplitude

ought to be.

Without loss of generality let us consider just the pole at z = z3 ≡ 〈1 3〉/〈2 3〉. The

only tree diagrams which contribute to the residue at this pole are those with deg(3) = 1,

meaning that the vertex labeled 3 is connected to the rest of the diagram by a single

– 9 –
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3

1̂ 2̂

MHV MHV
... +

4

1̂ 2̂

MHV MHV
... + · · · +

n

1̂ 2̂

MHV MHV
...

Figure 1. All factorizations contributing to the on-shell recursion relation for the n-point MHV

amplitude. Only the first diagram contributes to the residue at z = 〈1 3〉/〈2 3〉.

propagator. Chopping off vertex 3 gives a subdiagram with vertices labeled {4, . . . , n}.

Clearly all diagrams which contribute to this residue can be generated by first considering

the collection of tree diagrams with vertices labeled {4, . . . , n} and then attaching vertex

3 in all possible ways to the n − 3 vertices of the subdiagram. We therefore have

MMHV
n (z) ∼ 〈1 2〉6

∑

subdiagrams

[ ]· · ·[ ]

〈 〉· · ·〈 〉

(
n∑

b=4

[3 b]

〈3 b〉
〈1̂ b〉〈2 b〉

)
1

〈1̂ 3〉〈2 3〉

n∏

a=4

(
〈1̂ a〉〈2 a〉

)deg(a)−2

(4.5)

where ∼ denotes that we have dropped terms which are nonsingular at z = z3, the sum

over b runs over all the places where vertex 3 can be attached to the subdiagram, and

[ ] · · · [ ]/〈 〉 · · · 〈 〉 indicates all edge factors associated the subdiagram, necessarily indepen-

dent of 3. Using the Schouten identity we find that 〈1̂ b〉 = 〈1 2〉〈b 3〉/〈2 3〉 so we have after

a couple of simple steps (and using (4.4))

MMHV
n (z) ∼ 〈1 2〉6

[1 3]

〈1 3〉 − z〈2 3〉

∑

subdiagrams

[ ] · · · [ ]

〈 〉 · · · 〈 〉

n∏

a=4

(〈2 a〉〈3 a〉)deg(a)−2 . (4.6)

On the other hand we know from the on-shell recursion for the n-point amplitude that

the residue at z = z3 comes entirely from the first BCFW diagram in Fig. 1, whose value

is

MMHV
3 (z3) ×

1

P 2(z)
× MMHV

n−1 (z3) (4.7)

where

P (z) = p1 + p3 − zλ2λ̃1. (4.8)

Assuming the validity of the MHV tree formula for the n− 1-point amplitude on the right,

the expression (4.7) evaluates to

[P̂ 3]6

[3 1]2[1 P̂ ]2
×

1

[1 3](〈1 3〉 − z〈2 3〉)
×〈P̂ 2〉6

∑

subdiagrams

[ ] · · · [ ]

〈 〉 · · · 〈 〉

n∏

a=4

(
〈P̂ a〉〈2 a〉

)deg(a)−2
(4.9)

where P̂ = P (z3). After simplifying this result with the help of (4.8) we find precise

agreement with (4.5), thereby completing the proof of the MHV tree formula.

– 10 –
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5 Discussion and open questions

The tree formula introduced in this paper has several conceptually satisfying features and

almost completely fulfills the wish-list outlined in the introduction. It appears to be a

genuinely gravitational formula, rather than a recycled Yang-Mills result. Is it, finally, the

end of the story for the the MHV amplitude, as the Parke-Taylor formula (1.1) surely is

for the n-gluon MHV amplitude?

Among the wish-list items the MHV tree formula fails only in manifesting the full Sn

symmetry. Of course it is possible that there simply does not exist any natural more prim-

itive formula which manifests the full symmetry. It is not obvious how one could go about

constructing such a formula, but we can draw some encouragement and inspiration from the

recent paper [45] which demonstrates how to write manifestly dihedral symmetric formulas

for NMHV amplitudes in Yang-Mills theory as certain volume integrals in twistor space.

Different ways of dividing the volume into tetrahedra give rise to apparently different but

equivalent formulas for NMHV amplitudes. The same goal can apparently also be achieved

by writing the amplitude as a certain contour integral where different choices of contour

produce different looking but actually equivalent formulas [46, 47]. Perhaps in gravity even

the MHV amplitude needs to be formulated in a way which is fundamentally symmetric

but which nevertheless requires choosing two of the n gravitons for special treatment.

In Yang-Mills theory the only formula we know of which manifests the full dihedral

symmetry for all superamplitudes is the connected prescription [48–52] which follows from

Witten’s formulation of Yang-Mills theory as a twistor string theory [53]. Perhaps find-

ing fully Sn symmetric formulas for graviton superamplitudes requires the construction of

an appropriate twistor string theory for supergravity, an important question in its own

right which has attracted some attention [22, 54–57]. An important motivation for Wit-

ten’s twistor string theory was provided by Nair’s observation [58] that the Parke-Taylor

formula (1.1) could be computed as a current algebra correlator in a WZW model. The

BGK formula (essentially (1.2)) can similarly be related to current correlators and vertex

operators in twistor space [59], but we hope that the new MHV tree formula might provide

a more appropriate starting point for this purpose and perhaps shed some more light on a

twistor-string-like description for supergravity.

Another obvious avenue for future research is to investigate whether any of the advances

made here can be usefully applied to non-MHV amplitudes. Unfortunately we have not yet

found any very nice structure in the link representation for non-MHV graviton amplitudes.

Recently in [61] it was demonstrated how to solve the on-shell recursion for all tree-level

supergraviton amplitudes, following steps very similar to those which were used to solve the

recursion for supersymmetric Yang-Mills [60]. In [61] a crucial role was played by what was

called the graviton subamplitude, which is the summand of an n-particle graviton amplitude

inside a sum over (n − 2)! permutations. The decomposition of every amplitude into its

subamplitudes allowed for a very efficient application of the on-shell recursion since the

same two legs could be singled out and shifted at each step in the recursion. Unfortunately

there is no natural notion of a subamplitude for the MHV tree formula, making it very

poorly suited as a starting point for attempting to solve the on-shell recursion. In our

– 11 –
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view the fact that the tree formula apparently can neither be easily derived from BCF, nor

usefully used as an input to BCF, suggests the possible existence of some kind of new rules

for the efficient calculation of more general gravity amplitudes.

The arrangement of supergravity amplitudes into ordered subamplitudes also proved

very useful in [62, 63] for the purpose of expressing the coefficients of one-loop supergravity

amplitudes in terms of one-loop Yang-Mills coefficients. It would certainly be very inter-

esting to see if any of aspects of the MHV tree formula could be useful for loop amplitudes

in supergravity, if at least as input for unitarity sums [64, 65].
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A The MHV tree formula in Mathematica

Here we present for the reader’s benefit a simple command implementing the MHV tree

formula in Mathematica:

Needs["Combinatorica‘"];

MHV[n_Integer]/;n>4 := 1/ket[n-1,n]^2 1/(Times @@ ((ket[n-1,#] ket[n,#])^2

& /@ Range[n-2])) ((Times @@ (Transpose[#]/.{a___,1,b___,1,c___} :>

prop[Length[{a}]+1,Length[{a,b}]+2])) & /@ IncidenceMatrix /@

CodeToLabeledTree /@ Flatten[Outer[List,Sequence @@

Table[Range[n-2],{n-4}]],n-5]) /. prop[a_,b_] ->

bra[a,b]/ket[a,b] ket[n-1,a] ket[n-1,b] ket[n,a] ket[n,b];

Here we use the notation ket[a, b] = 〈a b〉 and bra[a, b] = [a b]. The (trivial) cases n = 3, 4

must be handled separately.
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