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Álvaro Dueñas-Vidal, and Miguel A. Vázquez-Mozo

Departamento de F́ısica Fundamental, Universidad de Salamanca,
Plaza de la Merced s/n, E-37008 Salamanca, Spain
Instituto Universitario de F́ısica Fundamental y Matemáticas (IUFFyM),
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1 Introduction

The applications of AdS/CFT duality to the description of heavy ion collisions has attracted
quite a lot of attention in recent years, in the hope of describing the phenomenology
observed in RHIC and expected in the LHC (see [1–5] for reviews). The detection in RHIC
of a large elliptic flow and jet quenching are interpreted as indications that the quark-gluon
plasma produced in the collision is strongly coupled, thus making AdS/CFT a very useful
tool to capture some of the relevant physics involved. In spite of the difference between real
QCD and N = 4 SYM, the calculations of some relevant observables using gravitational
duals [6–11] show a reasonable good agreement with the experimental results.

A possible way to model the collision of two heavy ions in a strongly coupled gauge
theory is to consider the scattering of two energy lumps in a N = 4 SYM theory at strong
coupling [12, 13]. The gravitational dual of such a system is a space-time representing the
collision of two shock gravitational waves propagating in AdS5. Nonetheless, the picture
of the heavy ions proposed in [13] is not free of problems [14]. For example, it produces
an energy density profile for the lumps in the gauge theory that falls off as a power of
the transverse distance from its center, quite unlike the exponential fall off expected from
phenomenological nuclear potentials. However, in spite of these caveats, these systems are
a good test bench to analyze collective properties of strongly coupled plasmas that might
be of relevance in understanding the phenomenology of heavy ion collisions [15–21].

In this paper we study various aspects of the collision of shock gravitational waves in
AdS space-time in various dimensions. The metric in the region before the collision takes
place (i.e., where at least one of the two null coordinates u or v is negative as shown in
figure 1) is given by

ds2 =
L2

z2

[
dz2 − dudv + d~x 2 +

z

L
Φ+(z, ~x)δ(u)du2 +

z

L
Φ−(z, ~x)δ(v)dv2

]
, (1.1)
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where Φ±(z, ~x) are the wave profiles and L is the AdSD radius. A full description of the
final fate of the wave collision (and its holographic interpretation) would require knowing
in detail the solution to the Einstein equations in the interaction region u > 0, v > 0,
something that up to date has not been fully achieved (for some important progress in
this direction see [22]). Based on the intuition in flat space, however, one expects that
the collision of two shock waves would produce some kind of dressed singularity. The
holographic interpretation of such a process would be the thermalization of the N = 4
SYM plasma produced as the result of the collision of the two incoming lumps whose
energy distribution is given by a CFT energy momentum tensor with components [23]

〈Tuu〉CFT =
2D−2µ+

Vol(SD−3)
zD−1
+

[(~x−~b+)2 + z2
+]D−2

δ(u),

〈Tvv〉CFT =
2D−2µ−

Vol(SD−3)
zD−1
−

[(~x−~b−)2 + z2
−]D−2

δ(v), (1.2)

with (z±,~b±) the holographic and transverse coordinates of the sources of the waves (1.1).
A way to avoid solving for the geometry in the u > 0, v > 0 wedge is to look for

the formation of an apparent horizon before actually getting into the region of space-time
where the interaction takes place [27–32]. In AdS for the case of zero impact parameter
it was found in [13] that such a trapped surface is always formed for any energy of the
incoming waves. The case of collisions with a nonvanishing impact parameter along the
field theory coordinates has been studied in AdS5 [26], where there is an energy-dependent
critical value of the impact parameter above which no marginally trapped surface of the
type sought is formed. The results found in [13] and [26] are qualitatively similar to the
corresponding situations in flat spacetime [33, 34].

In the dual N = 4 SYM theory the interpretation of the results of [26] would be the
existence of a critical impact parameter for the thermalization of the plasma following the
collision of two energy lumps of the same size. This can be understood if we think that for
large enough impact parameter the two energy distributions do not have enough overlap
to induce a thermalization of the whole plasma once the collision takes places. Once again,
to see what happens as the result of the collision would require solving the field equations
into the interaction region.1

Another interesting physical situation is that of the collision of two shock waves whose
sources have different values of the holographic coordinates. A look at eq. (1.2) shows that
in the holographic theory this describes the collision of two energy lumps of different size,
with or without impact parameter. This problem has been addressed in [23], where the
trapped surface equation is solved analytically in the limit in which the impact parameter
is much smaller than the critical value. It would be interesting, nevertheless, to study the
collision of waves with “large” holographic impact parameter in various dimensions.

In ref. [35] the formation of trapped surfaces in the head-on collision of two shock
waves was studied for incoming waves characterized by a finite size in transverse space, in

1We should not forget that the non-existence of the trapped surface of Penrose’s type [27–32] does not

exclude that other trapped surfaces are formed in the interaction region.
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contrast with the case studied in [13] where the energy density along the wave-front follows
a delta-function distribution in transverse coordinates. For D = 4 and D = 5 it was found
that the marginally closed trapped surface only forms if the transverse size of the wave is
smaller than certain critical value. If we interpret the formation of the trapped surface as
a signal of eventual black hole formation as a result of the collision, this could imply at
face value the existence of a threshold for thermalization in the holographic gauge theory
as a function of the spread of the wave in the gravitational dual. It is not clear, however,
what meaning the spread of the gravitational sources introduced in [35] might have in the
holographic conformal field theory. For example, a calculation of the holographic energy-
momentum tensor shows that the size of the energy distribution in the boundary theory is
independent of the value of the deformation parameter. Indeed, applying the holographic
prescription [24, 25] to the solution found in [35] for the wave profile Φ(z, ~x), the associated
holographic energy-momentum tensor is

〈Tuu〉CFT =
2D−2µ

Vol (SD−3)
LD−1

(~x 2 + L2)D−2
δ(u), (1.3)

and similarly for 〈Tvv〉CFT by replacing u → v. Thus no trace of the smearing of the
gravitational source is left in the energy distribution in the boundary theory, its transverse
size being determined solely by the value of the holographic coordinate of the source, z = L.

In this note our aim is twofold: first to study numerically the formation of marginally
closed trapped surfaces in the collision of two shock waves in AdSD space-time with a
nonvanishing impact parameter in the field theory coordinates, thus extending the analysis
of [26] to D 6= 5. Second, to apply the results obtained to the analysis of collisions of two
AdSD shock waves with “purely holographic” impact parameter, i.e. when the sources of
the two incoming waves are located at points in transverse space that only differ in the
value of the holographic coordinate. The strategy used consists in exploiting the underlying
O(2,D − 1) isometries of AdSD to map this problem to a problem of the scattering of two
waves with “spatial” impact parameter (cf. [23, 26]). As explained above, in the spirit of
the AdS/CFT correspondence, collisions with pure holographic impact parameter provide
the gravitational dual of the high-energy head-on collision of two energy distributions of
unequal size in the strongly coupled CFT.

In section 2 we review the series of isometries of AdSD that allow to rotate a general
collision with purely holographic impact parameter into a symmetric collision with an
impact parameter along the field theory coordinates. The numerical analysis of the trapped
surface equations is done in section 3. Finally, our results together with their holographic
interpretation are discussed in section 4. To make the presentation self-contained some
technical details have been deferred to the appendix.

2 Gravitational shock wave collisions with holographic impact parameter

We study the collision of two shock waves propagating on AdSD whose delta-function
sources are located in the hyperbolic transverse space HD−2 at the points (z±,~b±). This
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Figure 1. The four regions in the space-time describing the interaction of two shock waves in
AdSD. The blue (right) and red (left) thick lines represent the location of the incoming waves,
supported respectively at u = 0, v < 0 and u < 0, v = 0.

space can be seen as a two-sheeted hyperboloid

(Y 0)2 − Y (D−2) −
D−3∑
i=1

(Y i)2 = L2 (2.1)

in (D − 1)-dimensional Minkowski space. Poincaré coordinates (z, ~x) can be introduced

Y 0 =
z

2

(
1 +

L2 + ~x 2

z2

)
,

Y a =
L

z
xa, a = 1, . . . , D − 3, (2.2)

Y D−2 =
z

2

(
−1 +

L2 − ~x 2

z2

)
,

in which the metric reads

ds2HD−2
=
L2

z2

(
dz2 + d~x 2

)
. (2.3)

The metric of the full space-time previous to the collision is of the form shown in
eq. (1.1) and is characterized by the profile functions Φ±(z, ~x). The Einstein equations
reduce, outside the interaction region in figure 1, to the Poisson-like equation in trans-
verse space(

�HD−2
− D − 2

L2

)
Φ±(z, ~x) = −16πGNµ±

(
z±
L

)D−1

δ(z − z±)δ(D−3)(~x−~b±). (2.4)

Here �HD−2
is the Laplacian in HD−2

�HD−2
=
zD−2

L2
∂z

(
z4−D∂z

)
+
z2

L2
~∇2 (2.5)
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and µ± is the energy of the incoming waves, as read from the energy-momentum tensor

Tuu = µ+

(z+
L

)D−2
δ(u)δ(z − z+)δ(D−3)(~x−~b+),

Tvv = µ−

(z−
L

)D−2
δ(v)δ(z − z−)δ(D−3)(~x−~b−). (2.6)

In what follows we focus on the family of incoming trajectories considered in [13] where
the sources are located at the points (z±, b±, 0, . . . , 0) with

z±(a) =
L√

1 + β2 ± β cos a
,

b±(a) = ± Lβ sin a√
1 + β2 ± β cos a

, (2.7)

with 0 ≤ a < 2π.
The space HD−2 has an O(1,D − 2) group of isometries. This can be seen as the part

of the full O(2,D − 1) isometry of AdSD that preserves the null coordinates u, v. The
group O(1,D− 2) is generated by the O(D− 2) rotations of the ambient space coordinates
(Y 1, . . . , Y D−2) among themselves, plus boost along each of these “spatial” coordinates.
In the following we describe a series of isometries of AdSD (and therefore of HD−2) that
connect a general collision of two waves with sources at ( L√

1+β2±β
, 0, 0, . . .) to a symmetric

collision where the sources are located at (L,±Lβ, 0, . . .).

O(2) rotations. To begin with we are going to focus on the O(2) subgroup of O(D− 2)
that rotates the embedding coordinates Y 1, Y D−2

Y ′1 = Y 1 cos θ + Y D−2 sin θ,

Y ′D−2 = −Y 1 sin θ + Y D−2 cos θ. (2.8)

In terms of the Poincaré coordinates (z, ~x) = (z, x, ~xT ) the O(2) rotations take the form

z′ =
2L2z

L2 + z2 + x2 + ~x 2
T + (L2 − z2 − x2 − ~x 2

T ) cos θ − 2Lx sin θ
,

x′ =
2L2x cos θ + L(L2 − z2 − ~x 2

⊥) sin θ
L2 + z2 + x2 + ~x 2

T + (L2 − z2 − x2 − ~x 2
T ) cos θ − 2Lx sin θ

, (2.9)

~xT
′ =

2L2~xT
L2 + z2 + x2 + ~x 2

T + (L2 − z2 − x2 − ~x 2
T ) cos θ − 2Lx sin θ

.

In spite of the nonlinear action on the coordinates it can be checked without much effort
that the previous transformations form an abelian group. Actually, the O(2) rotations of
the coordinates of HD−2 can be written as the one-parameter group of transformations

U(θ) = exp
[
i
θ

2

(
1
L
Kx + LPx

)]
, (2.10)

where

Pj = −i∂j
Kj = i

(
z2 + x2 + ~x 2

T

)
∂j − 2ixj

(
z∂z + x∂x + ~xT · ~∇T

)
(2.11)
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are respectively the generators of translations and “special conformal transformations” on
the field theory coordinates (x, ~xT ). This transformation can be lifted to the corresponding
isometry of the full AdSD space-time.

Acting on the family of points shown in eq. (2.7) the O(2) rotations amount to a
translation in the parameter a

z′±(θ) = z±(a+ θ), b′±(θ) = b±(a+ θ). (2.12)

Hence, by performing an isometry of the background HD−2 we can transform the points

z± =
L√

1 + β2 ± β
, b± = 0, (2.13)

separated in the holographic direction z, into

z′±(θ) =
L√

1 + β2 ± β cos θ
,

b′±(θ) = ± Lβ sin θ√
1 + β2 ± β cos θ

. (2.14)

This O(2) transformation maps a collision of two shock waves with holographic impact
parameter into a problem in which the two waves collide generically with both spatial and
holographic impact parameter.

In our original problem (2.4) the group of isommetries O(1,D−2), and therefore its O(2)
subgroup (2.9), is broken only by the presence of the sources. Because of this one can use
this underlying symmetry as a solution generating technique, since the transformation of
a solution to the Einstein equations by an isometry is again a solution where the position
of the sources is also tranformed. To see this we first compute the Jacobian associated
with (2.9)∣∣∣∣∂(z′, x′, ~xT ′)

∂(z, x, ~xT )

∣∣∣∣ =
[

2L2

L2 + z2 + x2 + ~x 2
T + (L2 − z2 − ~x 2

⊥) cos θ − 2Lx1 sin θ

]D−2

=
(
z′

z

)D−2

. (2.15)

Now we apply (2.9) to the equations (2.4) with sources located at (2.13). The Laplacian is
invariant, �HD−2

= �′HD−2
, since we are dealing with an isometry of HD−2. On the other

hand, the transformation of the delta functions can be computed using the expression of
the Jacobian, leading to the result(

�′HD−2
− D − 2

L2

)
Φ±(z′, ~x ′) = (2.16)

−16πGNµ′±(θ)
[
z′±(θ)
L

]D−1

δ
(
z′ − z′±(θ)

)
δ
(
x′ − b′±(θ)

)
δ(D−4)(~xT′).

This describes the collision of two AdSD waves with sources at (2.14) and energies

µ′±(θ) = µ±

(√
1 + β2 ± β cos θ√

1 + β2 ± β

)
. (2.17)
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Figure 2. Schematic representation of the action of the O(2) rotation on the sources of the two
colliding waves.

This transformation of the energies µ± as the result of this rotation can be understood
on physical grounds remembering that they correspond to the energy of the incoming
field theory energy lumps at the boundary. The O(2) transformation on the transverse
hyperbolic space HD−2 brings one of the sources closer to the AdS boundary whereas the
other “moves” deeper into the bulk (see figure 2). From the point of view of the CFT
on the boundary this means that the energy of the configuration associated with the first
source increases whereas the energy of the lump associated with the second source gets
smaller. This is a simple consequence of the IR/UV connection in AdS/CFT.

We now particularize eq. (2.16) to the case θ = π
2 , where the z coordinate of the two

sources are equal. We find that the Einstein equations read in this case(
�′HD−2

− D − 2
L2

)
Φ±(z′, ~x ′) =

−16πGNµ′±

(
z′±
L

)D−1

δ
(
z′ − z′±

)
δ
(
x′ − b′±

)
δ(D−4)(~xT′) (2.18)

and describes now the problem of the collision of two waves with energies

µ′± = µ±

√
1 + β2√

1 + β2 ± β
, (2.19)

whose sources are located at

z′± =
L√

1 + β2
, b′± = ± Lβ√

1 + β2
. (2.20)

This means that we have transformed our problem into the collision of two waves with
spatial impact parameter.
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Longitudinal boosts. This is however not the whole story. We have started with a
collision where the two waves had different energy and, in general, this is also the case
after the O(2) rotation has been performed. For practical purposes, however, it is simpler
to study symmetric collisions where the two waves approach each other at the same energy.
To achieve this we can use another isometry of AdSD consisting in longitudinal boosts on
the u, v coordinates. To see how this affects the shock wave we apply the boost

u = λu, v = λ−1v, λ > 0 (2.21)

to the shock wave metric (1.1). The metric preserves the same form now with the profile

Φ±(z′, ~x ′) = λ∓1Φ±(z′, ~x ′). (2.22)

Applying now the boost to the components of the energy-momentum tensor (2.6) we find
that the energy µ± associated with the transformed wave is

µ′± = λ∓1µ′±. (2.23)

Thus, by applying to eq. (2.18) a longitudinal boost with parameter

λ =
µ+

µ−

(√
1 + β2 − β√
1 + β2 + β

)
(2.24)

we end up with a symmetric collision with energy √µ+µ−(
�′HD−2

− D − 2
L2

)
Φ±(z′, ~x ′) =

−16πGN
√
µ+µ−

(
z′±
L

)D−1

δ
(
z′ − z′±

)
δ
(
x′ − b′±

)
δ(D−4)(~xT′). (2.25)

Coordinate rescalings. There is however something unpleasant about the expressions
of z′± and b′± shown in eq. (2.20). Since our only free parameter is β, we notice that it is
not possible to change the spatial impact parameter b′± without at the same time moving
the sources in the holographic direction z±. To consider collisions where the spatial impact
parameter is decoupled from the value of the holographic coordinate of the sources we
apply the following rescaling to the coordinates

z′′ =
√

1 + β2z′, x′′ =
√

1 + β2x′, ~xT
′′ =

√
1 + β2~xT

′. (2.26)

In the full AdSD space this coordinate transformation is accompanied by similar rescaling
of the two null coordinates. In the new coordinates the sources (2.20) are located in the
points

z′′± = L, b′′± = ∓Lβ, (2.27)

thus decoupling the value of the holographic coordinate from that of the impact parameter.
We have to keep in mind that this rescaling is an isometry of HD−2. Implementing it in

– 8 –
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eq. (2.25) we arrive at(
�′′HD−2

− D − 2
L2

)
Φ±(z′′, ~x ′′) =

−16πGN
√
µ+µ−
1 + β2

δ
(
z′′ − L

)
δ
(
x′′ ± Lβ

)
δ(D−4)(~xT′′). (2.28)

Now the two shock waves have spatial impact parameter b ≡ |b′′+ − b′′−| = 2Lβ while both
sources lie at z′′ = L.

To summarize, we started with the collision of two shock waves with energies µ± whose
sources were located at the points (z±, x±) given in eq. (2.20). Taking advantage of the
isometries of AdSD (and of its transverse section HD−2) this problem has been mapped
into the collision described by eq. (2.28) where the two sources are located at z = L with
an impact parameter b given by

b ≡ |b′′+ − b′′−| = 2Lβ = |z+ − z−| ≡ ∆z, (2.29)

with ∆z the holographic impact parameter of the original collision. The change of coordi-
nates connecting eqs. (2.18) and (2.28) is given by

z′′ =
2L2

√
1 + β2z

L2 + z2 + x2 + ~x 2
T + (L2 − z2 − x2 − ~x 2

T ) cos θ − 2Lx sin θ
,

x′′ =
2L2

√
1 + β2x cos θ + L

√
1 + β2(L2 − z2 − ~x 2

⊥) sin θ
L2 + z2 + x2 + ~x 2

T + (L2 − z2 − x2 − ~x 2
T ) cos θ − 2Lx sin θ

, (2.30)

~xT
′′ =

2L2
√

1 + β2~xT
L2 + z2 + x2 + ~x 2

T + (L2 − z2 − x2 − ~x 2
T ) cos θ − 2Lx sin θ

.

To find the relation between the wave profiles we recall that these functions are only
transformed by the longitudinal boost.2 Using the value (2.24) for the parameter of this
boost we find that the solution Φ±(z, ~x) for the collision with holographic impact parameter
can be written in terms of the solution Φ±(z′′, ~x ′′) to eq. (2.28) as

Φ±(z, ~x) =
µ−
µ+

(√
1 + β2 + β√
1 + β2 − β

)±1

Φ±
(
z′′(z, ~x), ~x ′′(z, ~x)

)
, (2.31)

where the coordinate transformations z′′(z, ~x) and ~x ′′(z, ~x) are given by (2.30).
The bottom line of this whole discussion is that the solution to the problem of finding a

closed trapped surface in the collision of two shock waves with an impact parameter aligned
along the holographic direction is reduced to the one of finding this trapped surface in the
collision of two shock waves with an impact parameter that is purely spatial. This latter
problem is easier to tackle numerically. Once the trapped surface is found in this case
the original one is obtained by applying the transformation (2.30). Because of the family
of incoming trajectories (2.7) used our discussion applies to any collision problem where
the position of the sources in the holographic coordinate z± satisfies z+z− = L2. Notice,
however, that for any other value of the product z+z− a rescaling of all the coordinates in
AdS can be performed to map it into the problem at hand.

2We have to keep in mind that in AdSD the rescaling (2.26) also affects the null coordinates.
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3 Numerical analysis of the formation of marginally closed trapped sur-

faces

We have seen how the isometries of AdSD can be exploited to rotate a collision of two
shock waves with holographic impact parameter into a collision of two waves sourced at
z = L and with spatial impact parameter. In D = 5 this latter problem has been solved
numerically in [26]. In this section we extend the numerical solution to other values of the
dimension and study the emergence of thresholds for the formation of the closed trapped
surface as a function of the impact parameter.

Before embarking on the search for closed trapped surfaces we have to switch to a
new system of coordinates (U, V, Z, ~X) in which the null geodesics are continuous across
the location of the waves [13, 26] (see the appendix for the technical details). Once this is
done, we look for marginally closed trapped surfaces S that lie along the position of the
colliding shock waves {U = 0, V ≤ 0} ∪ {U ≤ 0, V = 0} [13, 27–32]. This surface can be
written as the union of two branches S = S+ ∪ S− parametrized as

S+ =

{
U = −ψ+(Z, ~X )
V = 0

, S− =

{
U = 0
V = −ψ−(Z, ~X )

. (3.1)

Although most of this surface lies outside of the region U > 0, V > 0 where the two
waves interact, it “feels” the interaction taking place through the matching conditions at
the (D − 3)-dimensional intersection of the two branches C = S+ ∩ S− ⊂ HD−2. Imposing
that the congruence of outer null geodesics normal to S has zero divergence leads to the
equation (see [13] for the details)(

�HD−2
− D − 2

L2

)(
Φ± −Ψ±

)
= 0, (3.2)

where Φ±(Z, ~X⊥) are the profiles of the incoming waves and

Ψ±(Z, ~X) =
z

L
ψ±(Z, ~X). (3.3)

In addition, from the very form (3.1) of the sought marginally closed trapped surface and
the requirement that the congruence of null geodesics is continuous across the intersection
C we find the conditions

Ψ±(Z, ~X )

∣∣∣∣∣
C

= 0, gab∂aΨ±(Z, ~X )∂bΨ±(Z, ~X )

∣∣∣∣∣
C

= 4, (3.4)

with gab the metric of HD−2.
In order to solve the problem (3.2), (3.4) we solve the differential equation numerically

using the technique employed in ref. [33] for the collision of shock waves in flat space-time.
To implement the procedure we switch to radial coordinates in HD−2 defined in terms of
the hyperboloid coordinates by

Y 0 = r2 + L2, Y 1 = rϑ1, . . . Y D−2 = rϑD−2 (3.5)
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where (ϑ1, . . . , ϑD−2) parametrize the unit sphere SD−3, i.e., (ϑ1)+ . . .+(ϑD−2)2 = 1. Now
the metric takes the form

ds2HD−2
=

dr2

1 + r2

L2

+ r2dθ2 + r2 sin2 θdΩ2
D−4. (3.6)

Here we have singled out a polar angle θ ∈ [0, π] on the sphere SD−3 of constant r. In these
new coordinates3 (r, θ, ϑi), with i = 1, . . . , D − 3, the sources of the incoming waves are
located respectively at the points ( b2 , 0, 0, . . . , 0) and ( b2 , π, 0, . . . , 0). Hence, the residual
O(D − 3) symmetry is generated by the isometries of the sphere SD−4 at constant r and
constant θ. As a consequence of this symmetry, both the profiles of the incoming waves
Φ±(r, θ) and the functions defining the two branches of the trapped surface Ψ±(r, θ) only
depend on r and θ. In addition, the surface C is generated by the action of O(D − 3) on
a curve that we parametrize as r = LG(θ) for 0 ≤ θ ≤ π. We have introduced the AdS
radius L in order to make the function G(θ) dimensionless.

Introducing the function H±(r, θ) ≡ Φ±(r, θ) − Ψ±(r, θ), eq. (3.2) reads in
these coordinates[(

1 +
r2

L2

)
∂2
r +

(D − 3)L2 + (D − 2)r2

rL2
∂r +

1
r2
∂2
θ +

D − 4
r2 tan θ

∂θ −
D − 2
L2

]
H± = 0(3.7)

with the boundary condition

H±(r, θ)

∣∣∣∣∣
r=LG(θ)

= Φ±
(
LG(θ), θ

)
. (3.8)

This problem has to be solved in the region 0 ≤ r ≤ LG(θ), 0 ≤ θ ≤ π, i.e. those points
in the upper half-plane limited by the curve r = LG(θ). Because the sources of the waves
are located symmetrically around r = 0 the function G(θ) has the symmetry

G(θ) = G(π − θ), (3.9)

whereas Ψ±(r, θ) and Φ±(r, θ) satisfy

Ψ±(r, θ) = Ψ±(r, π − θ), Φ±(r, θ) = Φ∓(r, π − θ). (3.10)

The boundary G(θ) is determined by imposing that the solution to the boundary problem
satisfies the addition constraint[(

1 +
r2

L2

)
(∂rΨ+)(∂rΨ−) +

1
r2

(∂θΨ+)(∂θΨ−)
] ∣∣∣∣∣

r=LG(θ)

= 4. (3.11)

In the symmetric collision that we are going to consider in the following Φ+(z, ~x) =
Φ−(z, ~x) and as a consequence the trapped surface has to be symmetric under a parity

3We have to keep in mind that only D − 4 of the D − 3 coordinates ϑi parametrizing the sphere SD−4

are independent, since (ϑ1) + . . . + (ϑD−3)2 = 1.
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transformation in the longitudinal coordinate. This means that H+(r, θ) = H−(r, θ) ≡
H(r, θ), and we have that the symmetry conditions (3.10) imply that

∂θH(r, 0) = ∂θH(r, π) = 0. (3.12)

The numerical solution of the problem at hand is complicated by the fact that the
function G(θ) to be determined appears in the boundary conditions of the differential
equation. Because of this we would like to make a change of coordinates that transforms
the complicated integration region into a simpler one. Following [33], we define the new
dimensionless radial coordinate ρ by

r = LG(θ)ρ. (3.13)

Now, in terms of this new variable eq. (3.7) reads{[
1+G2ρ2+

(
G′

G

)2 ]
∂2
ρ+

1
ρ2
∂2
θ−

2
ρ

G′

G
∂ρ∂θ+

1
ρ

[
2
(
G′

G

)2

− G′′

G
− D − 4

tan θ

(
G′

G

)
+(D − 3) + (D − 2)G2ρ2

]
∂ρ +

D − 4
ρ2 tan θ

∂θ − (D − 2)G2

}
H(ρ, θ) = 0.

(3.14)

With this we are left with a boundary problem in the half-circle ρ = 1 with 0 ≤ θ ≤ π,
whereas the function G(θ) defining the boundary in the original coordinates (r, θ) appears
now in the equation. The boundary conditions on the lower and upper boundaries of the
upper half-circle are respectively

∂θH(ρ, 0) = ∂θH(ρ, π) = 0, ∂θH(ρ = 1, θ) =
d

dθ
Φ
(
r = LG(θ), θ

)
. (3.15)

This means that we have von Neumann boundary conditions on the lower boundary and
Dirichlet condition on the upper one. To derive the last equation in (3.15) we have used
that the function defining the trapped surface vanishes on C, Ψ(ρ = 1, θ) = 0, and as a
consequence ∂θΨ(ρ = 1, θ) = 0. This equation actually simplifies the additional condi-
tion (3.11) [

1 +
G′(θ)2

G(θ)2
+G(θ)2

] [
∂ρΨ̃(1, θ)

]2
= 4G(θ)2. (3.16)

In order to implement the numerical algorithm it is convenient to introduce the dimension-
less functions Ψ̃(ρ, θ) ≡ 1

LΨ(ρ, θ), Φ̃(ρ, θ) ≡ 1
LΦ(ρ, θ) and H̃(ρ, θ) ≡ 1

LH(ρ, θ).
We can now attack the numerical solution of the boundary problem (3.14), (3.15)

subjected to the additional condition (3.16). We follow the procedure used by the authors
of [33] and choose a trial function G1(θ) to solve the boundary problem (3.14), (3.15) using
a method of finite differences. This gives a solution H̃1(ρ, θ) in terms of which we compute
Ψ̃1(ρ, θ) = Φ̃(ρ, θ) − H̃1(ρ, θ). In the extremely unlikely case in which G1(θ) were the
solution of the problem the function

T1(θ) ≡

[
1 +

(
G′

G

)2

+G2

] [
∂ρΨ̃1(1, θ)

]2
− 4G2 (3.17)
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Figure 3. Numerical solutions for the shape of the section of the surface C on the plane Y 1-Y D−2

in hyperbolic coordinates for D = 4, 5, 6, 7 and 8 for various values of the impact parameter b and
µ = LD−3

GN
. From the outer inwards the curves correspond to b

L = 0 (•), b
L = 0.2 (�), b

L = 0.4 (�),
b
L = 0.5 (N) and the critical value bc

L (H). The symbols indicate the position of the incoming sources.

would vanish. However, since this is not going to be the case we introduce a new
trial function

G2(θ) = G1(θ) + ε T1(θ), (3.18)

with ε > 0 a small number, and solve again the boundary problem (3.14), (3.15) obtaining a
second function H̃2(ρ, θ) and Ψ̃2(ρ, θ). Computing now T2(θ) as in eq. (3.17) and iterating
the algorithm a sufficient number of times a numerical solution to the problem can be
found with the required precision.

We have used the procedure described above to find the solutions to the trapped surface
equation in AdSD with D = 4, 5, 6, 7 and 8. We have solved the boundary problem using
a finite difference method with a grid of 50 points in the angular coordinate and 100 points
in the radial one. With ε = 10−4 we find good convergence to the solution. In order to
handle the coordinate singularity at r = 0 we have imposed the von Neumann boundary
condition ∂nH = 0 at this point.

Our numerical analysis shows the existence in all cases of a critical value of the impact
parameter above which no solution to the marginally closed trapped surface equation is
found. This is qualitatively similar to the corresponding situation in flat space [33] as well
as in AdS5 [26]. In figure 3 we plot the section of the trapped surface on the Y 1-Y D−2 plane
for a symmetric collision in D = 4, 5, 6, 7 and 8 with energy µ = G−1

N LD−3. For AdS5 our
numerical solutions are in perfect agreement with the results found by the authors of [26]
using a different numerical method.
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On the left panel of figure 4, on the other hand, the values of the critical impact
parameter as a function of the energy are shown for different dimensions. As can be seen
in the right panel of figure 4, the results are very well fitted by the following scaling of the
critical impact parameter with the energy of the incoming waves

bc
L
∼
(
GNµ

LD−3

) 1
D−2

, (3.19)

where the proportionality constant is of order one. One consequence of this scaling is that
the dependence of the critical impact parameter with the energy, measured in units of the
AdSD energy LD−3G−1

N , flattens as the dimension increases. In the limit D → ∞ (with
LD−3G−1

N fixed) this seems to implicate that the critical impact parameter is constant with
the energy.

In all our previous analysis we have focused our attention on physical situations where
the energy of the incoming waves are larger or of the order of the AdS energy scale. This
means that the physics is sensitive to the large-scale geometry of AdS. Flat space is retrieved
by taking L→∞ with the energy and impact parameter of the collision fixed. Since in this
limit the energy is very small compared with the AdS natural energy scale, the flat space
behavior of the critical impact parameter with the energy has to be recovered in the plots
of figure 4 in the region around the origin. On dimensional grounds, the scaling between
the critical impact parameter and the energy for gravitational shock waves collision in flat
space has to be of the form bc ∼ (GNµ)

1
D−3 . A crossover between (3.19) and this scaling

should take place as the energy of the collision is much smaller than the AdS energy scale.
To compare our results with the analytical study of the formation of trapped surfaces

in the collision of shock waves in AdS5 with nonvanishing impact parameter carried out
in [23], we notice that the authors of this reference work in the limit where the energy of
the collision satisfies (

GNµ

LD−3

) 1
D−2

� 1, (3.20)

while keeping fixed the size of the impact parameter. Because of the scaling (3.19) the
results of [23] are in the regime where the impact parameter is always much smaller than
the critical value and, as a consequence, a marginally closed trapped surface always forms.

4 Discussion

Having obtained the numerical solution for the collision of two shock waves with “spatial”
impact parameter we can apply the transformations described in the previous section to
get solutions of the closed trapped surface equation for the collision of two waves with
“holographic” impact parameter. On the left panel of figure 5 we have plotted, for various
values of the spatial impact parameter, the section of the marginally trapped surface for
a symmetric collision in AdS5 of two waves with energies µ± = GNL

−2. Unlike the plots
shown in figure 3 here we have used the Poincaré coordinates (x′, z′) defined in eq. (2.20).
Hence, in this plot the boundary of AdS5 is located along the horizontal axis. On the right
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Figure 4. In the left panel we plot the critical impact parameter bc

L ≡
b+−b−
L as a function of

GNµ
LD−3 for the symmetric collision of two shock waves with sources located at z = L. The curves
correspond, from top to bottom, to D = 4, 5, 6, 7 and 8. On the right panel the same points are
shown together with a fit to a function with the scaling of eq. (3.19).
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Figure 5. In the left panel we plot the section of the closed trapped surfaces in Poincaré coordinates
(x′, z′) shown in eqs. (2.9) and (2.26). The curves, from outer inwards, correspond to the following
values of the impact parameter: b

L = 0 (•), b
L = 0.3 (�), b

L = 0.6 (�), b
L = 0.8 (N) and the critical

value bc

L (H). On the right panel we see the sections of the closed trapped surfaces after inverting
the rotations (2.9) back to the coordinates (x, z). In both plots the horizontal axis representes the
boundary of H3.

panel of figure 5, on the other hand, we see the section of the trapped surfaces previous
to the O(2) rotation of angle π

2 described in section 2. Now the sources lie in the z axis
and therefore the contours show the section of the trapped surface formed as a result of a
collision of two waves with holographic impact parameter. The innermost curve represents
the surface corresponding to the critical value of the impact parameter, above which no
marginally closed trapped surface of the type studied here exits.

The conclusion is the existence of a maximum value of the holographic impact param-
eter for the formation of this class of trapped surfaces. Taking this fact at face value, one
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could be tempted to interpret it holographically as signaling a threshold for the formation
of a thermal CFT plasma. Thus, thermalization would not take place when the size differ-
ence between the two colliding energy lumps is larger than the critical value. This would
actually make sense on physical grounds: if one of the colliding lumps is much smaller
than the other it might not have enough degrees of freedom to induce a thermal state in
the whole system as a result of the collision. One should be reminded, however, that the
non existence of a closed trapped surface of the type studied above does not rule out the
possibility of other trapped surfaces being formed in the process. Therefore, in order to
decide whether a threshold for thermalization exists as a function of the difference in size
of the colliding objects one would need to solve for the geometry of the interaction region
of figure 1. This problem, together with other issues such as the thermalization time for
subcritical collisions, will be addressed elsewhere.

In the dual conformal field theory, the O(2) transformation that maps a collision of
two equal objects with impact parameter into the head-on collision of two lumps of differ-
ent size is a combination of a translation and a special conformal transformation in one of
the transverse coordinates, inherited from the AdSD bulk transformation (2.10). Interest-
ingly, this relates a physical process with nonvanishing angular momentum to another one
where the angular momentum is zero. In the gravitational dual, on the other hand, the
combination [see eqs. (2.14) and (2.17)]

Q± = µ′±(θ)L
[
1 +

z′±(θ)2 + b′±(θ) 2

L2

]
(4.1)

is independent of the angle θ and therefore invariant under the O(2) rotation. Holographi-
cally, this relates the impact parameter, the size of the lumps and their energies. A second
invariant can be also constructed as

Q(θ) = µ′+(θ)µ′−(θ)z′+(θ)z′−(θ) (4.2)

that mixes the energies of the colliding objects with their sizes.
In D = 5 the collision of two gauge theory energy lumps with large size difference

could be used as a model for hadron-nucleus collisions at strong coupling. Here we have
considered the case of head-on scattering. Collisions of unequal objects with a nonvanishing
impact parameters can be studied as well by performing O(2) rotations on the numerical
solutions obtained in the previous section with an angle |θ| < π

2 . It would be interesting to
see if the invariants (4.1) and (4.2) have any relevance in the phenomenological description
of this type of collisions.
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A Change of coordinates

In this appendix we give some details on the change of coordinates that have to be used to
eliminate the delta-function terms in the metric of the shock wave and therefore to make
the congruence of null geodesics continuous across the wave fronts u = 0, v = 0. Let us
begin with the metric (1.1) now written in the form

ds2+ =
L2

z2

[
dz2 − dudv + d~x 2 + ϕ+(z, ~x)δ(u)du2

]
. (A.1)

and introduce the new coordinates (U, V, Z, ~X) defined by

u = U,

v = V + ϕ+(Z, ~X)θ(U) +
1
4
Uθ(U)

[
~∇ϕ+(Z, ~X)

]2
+

1
4
Uθ(U)

[
∂Zϕ+(Z, ~X)

]2
,

z = Z +
1
2
Uθ(U)∂Zϕ+(Z, ~X), (A.2)

~x = ~X +
1
2
Uθ(U)~∇ϕ+(Z, ~X).

The presence of the step function θ(U) in the change of coordinates is necessary in order
to eliminate the delta-function terms in the metric, responsible for the discontinuity of the
geodesics. After a long but simple calculation we find that the metric (A.1) for the first
wave takes the form

ds2+ =
−dUdV +H(+)

ab H
(+)
bc dX

adXc[
Z + 1

2Uθ(U)∂Zϕ+

]2 , (A.3)

with

H(+)
ab = δab +

1
2
Uθ(U)∂a∂bϕ+(Z, ~X). (A.4)

The indices a, b, c run over all the spatial coordinates (Z, ~X). The line element (A.3) is
the AdS analog of the so-called Rosen form of a plane wave in flat space-time, whereas the
metric (A.1) we started with is the Brinkmann form of the wave.

The analysis can be repeated for the second wave, whose metric can be obtained from
eq. (A.1) by changing u → v and ϕ+(z, ~x) → ϕ−(z, ~x). Implementing then the change of
coordinates (A.2) with the replacements U → V , u → v and ϕ+(Z, ~X) → ϕ−(Z, ~X) we
arrive at the metric

ds2− =
−dUdV +H(−)

ab H
(−)
bc dX

adXc[
Z + 1

2V θ(V )∂Zϕ2

]2 , (A.5)

where now the metric function H(−)
ab is given by

H(−)
ab = δab +

1
2
V θ(V )∂a∂bϕ2(Z, ~X). (A.6)
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It is important to notice that the metric elements (A.3) and (A.5) coincide in the lower
wedge U < 0, V < 0 where the line element of AdSD is recovered. Hence, the metric in
the whole region outside the interaction wedge U > 0, V > 0 can be written as

ds2 =
−dUdV +

[
H(+)
ab H

(+)
bc +H(−)

ab H
(−)
bc − δab

]
dXadXc[

Z + 1
2Uθ(U)∂Zϕ+ + 1

2V θ(V )∂Zϕ−
]2 . (A.7)

The next step is to write the Einstein equations in the new coordinates. This task,
however, is simplified by noticing that for the line element of the first wave (A.1) the only
nonvanishing component of both Gµν + Λgµν and Tµν is the u-u component. Since U = u

we find again that the equation for ϕ+(Z, ~X) is given by GUU + ΛgUU = 8πGNTUU and
after a bit of algebra eq. (2.4) is recovered in the new coordinates (the same argument
applies to the second wave with the replacement U → V )(

�HD−2
− D − 2

L2

)
Φ±(Z, ~X) = −16πGNµ±

(
Z±
L

)D−1

δ(Z − z±)δ(D−3)( ~X −~b±), (A.8)

where Φ±(Z, ~X) = L
Zϕ±(Z, ~X). In fact, the reason behind obtaining the same equations

in both coordinate systems is that the change (z, ~x) → (Z, ~X) is trivial in the transverse
space HD−2. This can seen inmediately by setting U = 0 in (A.2), and respectively V = 0
in the corresponding change of coordinates for the second wave.
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