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1 Introduction

The idea that non-minimal coupling of a scalar to gravity might lead to successful Infla-

tion [1–5] has been reexamined recently with the very economical proposal of applying

it to the Standard Model (SM) Higgs boson (H) [6–8]. In this scenario, the addition of

the Higgs-gravity interaction, δL = −ξ(H†H)R, to the Einstein-Hilbert and Standard

Model Lagrangians is used to obtain an inflationary slow roll. The additional parameter

ξ ≃ 104 can be adjusted to align the spectrum of primordial perturbations with WMAP

constraints [9].

It is natural to wonder whether a coupling as large as ξ ≃ 104 could jeopardize the

validity of the classical approximation, on which the claim of inflationary behaviour is

based. In ref. [10] it was shown that standard power-counting techniques [11, 12] imply

that semiclassical perturbation theory must break down at energies at or below the scale

Λ ≃ Mp/ξ (where Mp = 2.44 × 1018 GeV is the reduced Planck mass), in agreement with

explicit calculations [13]. Semiclassical scattering amplitudes violate unitarity above this

energy. This scale can be regarded as an upper bound on the energy domain over which

the theory can be regarded as a weakly coupled effective field theory.

Above this scale something new must intervene (such as new degrees of freedom, or

perhaps strong coupling [14]), but whatever it is it must successfully compete with classi-

cal effects derived in the low-energy theory in order to solve the basic unitarity problem.

Unfortunately, the Hubble scale during the putative inflationary regime is also of order

HI ≃ Λ [6], thus non-adiabatic effects due to the universal expansion can be competitive

with the effective theory’s cutoff, putting into question the validity of semi-classical calcula-

tions within the effective theory (on which the inference of inflationary behaviour is based).

Of course it might be that whatever the new high-energy physics is, it fixes the unitarity
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problem without ruining the inflationary conclusions. But whether this is possible remains

to be shown.

Ref. [15] raised a related objection to Higgs inflation proposals by performing the

explicit field redefinitions required to canonically normalize the metric and scalar degrees

of freedom, identifying how the scale Λ explicitly appears in the resulting scalar potential.

In particular they argued that Λ controls the expansion of the potential in powers of the

physical fields, in addition to controlling the low-energy (derivative) expansion itself. Since

inflation occurs at field values that are large compared with Λ, this led to the conclusion

that the shape of the potential is inadequately known in the required regime to ensure a

slow roll occurs without fine tuning.

This argument that the scale Λ controls the small-field expansion of the scalar potential

is closely related to our unitarity argument, which argues that Λ controls the low-energy

approximation. In general the small-field expansion need not be controlled by the same

scale as is the low-energy, derivative, expansion. Supersymmetric theories with flat di-

rections provide the simplest examples where these scales differ, and when they do it is

usually because the scalar potential is very shallow; large field values do not cost much

energy. However, it is precisely because the Higgs potential is not particularly shallow

these two scales are usually fairly close to one another in Higgs physics [16].

Recently ref. [17] has challenged these claims, arguing that there are no unitarity

problems at energies E ≃ Λ in the Einstein frame.1 They rightly point out that the explicit

scattering calculations of ref. [13] were performed in the Jordan frame, and argued that

because physical observables cannot depend on how we define our fields, the appearance of

unitarity violations must be present (or absent) in all frames. They argue that the absence

of a problem in the Einstein frame means that there might be more to unitarity violation

in the Jordan frame than meets the eye.

In this note we briefly revisit these issues, motivated by the attention that ref. [17] has

received. Although our analysis in [10] was performed generally enough to apply to either

frame, we here explicitly identify the leading contributions to scalar scattering amplitudes

in the Einstein frame, to see if these reproduce the energy dependence found by the Jordan-

frame calculation of [13]. Contrary to the claims of [17], we find that they do, although

their origin is somewhat subtle. In particular, they would be missed by a naive analysis

of the Higgs potential in terms of the single, real field that describes the physical Higgs,

ignoring the existence of the remaining degrees of freedom of the Higgs doublet.

2 Unitarity calculations

Recall that the theory of interest is defined by the action

LH inf√
−ĝ

= LSM −
[

M2
p

2
+ ξ (H†H)

]

R̂ , (2.1)

1The Jordan frame is the defining frame of the theory with a non-canonical graviton, while the

Einstein frame is defined by performing a Weyl rescaling of the metric so that the graviton field is

canonically normalized.
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Figure 1. Scalar scattering at high energies that leads to unitarity violation at the scale ∼ Λ in

the Jordan frame.

where ξ is a dimensionless coupling, H is the usual Standard Model Higgs doublet and ĝµν

is the Jordan-frame metric.2

Only the Higgs sector is required of the Standard Model lagrangian, including the

quartic Higgs potential,

LSM = −ĝµ ν (DµH)† (DνH) − λH

(

H†H− v2
H

2

)2

, (2.2)

where Dµ denotes the usual covariant derivative and λH is related to the Higgs boson

mass by m2
H

≃ 2λHv2
H
. In the Higgs inflationary literature it is standard to specialize

immediately to unitary gauge, for which the Higgs doublet is given by
√

2H = (0, h)T with

〈h〉 = vH , but when working in the Einstein frame we find it instructive not to do so until

later in the calculation.

2.1 Jordan frame

We first sketch the form of the Jordan-frame result, for which it is useful to choose unitary

gauge. At large energies the dominant tree-level contribution comes from the graph of

figure 1, with the external lines denoting physical Higgs particles and the internal line

representing a graviton propagator. The vertex is obtained by directly expanding the

ξ(H†H)R̂ term about Minkowski space, using ĝµ ν = ηµν + κhµ ν with κ ∝ 1/Mp, to get

δL = −
√

−ĝ ξ(H†H) R̂,

=
ξ

Mp
h2 ηµν ∂2 hµν + · · · , (2.3)

showing its dependence on Λ = Mp/ξ. Evaluation of this graph reproduces the high-energy

part of the result of [13], giving a scattering amplitude of the form

A(E) ≃ (E2/Λ)2(1/E2) ≃ (E/Λ)2 , (2.4)

which gives a cross section σ(E) ≃ E2/Λ4. This remains below the unitarity bound pro-

vided E <∼ Λ, in agreement with [13] and the power-counting analysis of [10].3

2Our signature is mostly plus, and we use Weinberg’s curvature conventions.
3A potential loophole to this argument would be cancelation of the most singular energy growth amongst

different graphs. Although such cancelations arise for hh → hh scattering at tree level for a single scalar

field, h, [22] it does not occur for all of the components of the Higgs doublet. See the addendum below for

more discussion of this issue.
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2.2 Einstein frame

We now repeat the analysis in the Einstein frame, which is obtained by using the Weyl

transformation ĝµν → gµν , where

ĝµν = f gµν , (2.5)

with

f =
[

1 + 2 ξ(H†H)/M2
p

]−1

. (2.6)

A short calculation shows that after such a transformation the Lagrangian becomes (after

dropping total derivatives)

LH inf√−g
= −1

2
M2

p R − λHf2

(

H†H− v2
H

2

)2

, (2.7)

−gµν

[

f(DµH)† (DνH) +
3 ξ2f2

2M2
p

∂µ(H†H) ∂ν(H†H)

]

.

Expanding the last line of this expression in the small field limit, ξ (H†H)/M2
p ≪ 1, gives

the following dimension-six interactions that are of later interest

∆LH inf√−g
=

2 ξ

M2
p

gµν (DµH)† (DνH) (H†H) (2.8)

− 3 ξ2

2M2
p

gµν ∂µ(H†H) ∂ν(H†H).

2.2.1 Covariant gauge

If we follow the literature [6–8, 15] and specialize to unitary gauge at this point, HT =

(0, h)/
√

2, the kinetic terms involve only a single scalar and so one can define a new field,

h = h(χ), such that χ has a canonical kinetic term, 1
2

∂χ∂χ. The same cannot be done in

a general gauge because in this case the scalar target-space metric is not flat. To see this,

we write the doublet in terms of four real fields, with
√

2HT/Mp = (φ1, φ2, φ3, φ4). Then

the kinetic sector becomes 1
2
M2

p gµνGij(φ) ∂µφi ∂νφ
j , and so the target-space metric is read

off as

Gij(φ) = f δij + 6 ξ2 f2φi φj , (2.9)

where f−1 = (1 + ξ ~φ2), with ~φ2 =
∑

i φ
2
i . It is straightforward to compute the Riemann

tensor, Ri
jkl, for this metric, which does not vanish. Since the target-space metric is not

flat, there does not exist a field redefinition which everywhere sets Gij = δij . At best one

can do so only at a specific point in field space, φi = φi
0 (or along a geodesic).

The significance of this observation is that the matrix element of the derivative inter-

action appearing in the second line of eq. (2.8) survives field redefinitions to give a direct

contribution to HH → HH scattering. The large-E limit of the resulting amplitude is

given by

A(E) ≃ (E/Λ)2, (2.10)

which agrees with the Jordan-frame result.
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2.2.2 Unitary gauge

What happens if one insists on using unitary gauge, so that the kinetic sector can be

canonically normalized? In this case the required redefinition of the Higgs field is h →
χ where

dχ

dh
=

[

1 + (ξ + 6 ξ2) (h/Mp)
2
]1/2

1 + ξ (h/Mp)2
. (2.11)

As was shown in [15] in the small-field limit this implies h and χ are related by

h = χ
[

1 − χ2/Λ2
]

+ · · · , (2.12)

and so 〈χ〉 = vH(1 + v2
H
/Λ2) +O(v5

H
/Λ4). This introduces Λ into the scalar potential, such

as by converting

λHh4 = λHχ4 − 4λH

Λ2
χ6 + · · · , (2.13)

and so on. Of course such terms do not change particle physics applications, where generally

one stops at quartic order in χ because χ ∼ vH ≪ Λ. Ref. [15]’s point is that such

terms become important for large-field applications — such as inflation — and they in

particular raise the issue of what justifies keeping only a quartic potential in H (or quadratic

function pre-multiplying R) in the first place — as is crucially required to obtain a flat

inflationary potential.

If the non-minimal kinetic terms are not present in unitary gauge, where does the

large-E behaviour of the HH → HH scattering amplitude come from? The key point is

that the transformation to unitary gauge moves the three would-be Goldstone modes into

the longitudinal components of the gauge bosons, suggesting we should seek the large-E

unitarity problems from graphs involving these eaten degrees of freedom.

For instance, consider the contribution to χ scattering from longitudinal Z bosons

coming from the O(1/Λ2) corrections to the SM Higgs/gauge-boson interactions (where

h̃ = h − 〈h〉 and χ̃ = χ − 〈χ〉),

− M2
Z

2
ZµZµ

(

2h̃

vH

+
h̃2

v2
H

)

= − M2
Z

2 v2
H

ZµZµχ̃2

[

1 − 12 v2
H

Λ2

]

−M2
Z

vH

ZµZµχ̃

[

1 − 3 v2
H

Λ2

]

+ · · · , (2.14)

The amplitude for χZL → χZL receives a 1/Λ2 correction of order

A(E) ≃ M2
Z

Λ2
ǫL µ ǫL

µ,

≃ (E/Λ)2 , (2.15)

which uses the fact that the longitudinal polarization vectors behave as ǫL

µ ∼ pµ/MZ in

the large-momentum limit, and that this unitarity violation famously cancels [18, 19] for

the Standard Model in the Λ → ∞ limit.
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Similar results hold for other scattering amplitudes involving these degrees of free-

dom. For example in WL WL → WL WL scattering the unitarity violation comes about

from the O(1/Λ2) correction due to the non-minimal coupling in the higgs exchange

graphs in WL WL → WL WL while the other graphs involving the operators with cou-

plings to the Z, γ and the four point WL WLWL WL operator are unaffected by the non-

minimal coupling. This interferes with the cancelation of the corresponding contributions

to WL WL → WL WL scattering in the SM [18, 19], inducing the same energy dependence

of the amplitude A(E) ≃ (E/Λ)2.

3 Conclusions

All roads lead to Rome: Higgs scattering amplitudes computed in the Einstein frame and

in different gauges have the same unitarity problems at energies of order Λ = Mp/ξ as

do explicit Jordan frame calculations [13, 20]. This is consistent with the general power-

counting arguments given in ref. [10], but contrary to the recent claims of [17]. Unitarity

problems like these indicate a failure of the semiclassical approximation, such as those

underlying an inflationary analysis. Inflation could nonetheless occur, but to the extent

that it does so at scales at or above Λ its justification is better made using whatever physics

intervenes at this scale to resolve the unitarity problem.

4 Addendum

Shortly after this paper was posted ref. [21] appeared, as did an addendum to ref. [17],

both commenting on our previous work, [10], as well as this paper. With this Addendum

we briefly offer final comments on each of these subsequent developments.

Both [21], and now [17], agree that unitarity issues arise at the scale Λ if the inflaton

is part of a Higgs doublet, confirming that the earlier power counting results [10] correctly

identified the scale where the low-energy approximation fails. ref. [21] also confirms part

of the story told in this paper as to how unitarity problems arise in detail in the Einstein

frame: through non-minimal kinetic interactions amongst the scalars in a covariant gauge.

However ref. [21] points out, correctly, that these same graphs do not pose a tree-level

unitarity problem for φφ → φφ scattering4 in the simpler model where the scalar is a real

singlet, involving no would-be Goldstone modes (a similar point is made in v2 of ref. [17]).

This is clearest in the Einstein frame, since in this case there is no obstacle to canonically

normalizing the fields. Then the only Λ-dependence in the quartic interactions of the scalar

potential are: δV ≃ m2
φ χ4/Λ2, leading to a 4-point tree-level φ-scattering amplitude that

does not grow like a power of energy. As always, it should be possible to arrive at this

same conclusion in all frames, and for the Jordan frame ref. [21] makes the point that this

does not contradict power-counting arguments (or the calculations of [13], who compute

only partial-wave amplitudes), because although each individual graph (or partial wave)

grows quadratically with energy, the leading behaviour when summed over all channels is

4We use φ rather than h to denote the non-canonical Einstein frame scalar to emphasize that it is a

singlet field, and not the Higgs boson.
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proportional to (s + t + u)/Λ2 ∝ m2
φ/Λ2 [22]. The same absence of growing contributions

can also be seen in the Einstein frame without canonically normalizing the scalar since the

dangerous kinetic interaction, L ≃ φ2∂µφ∂µφ/Λ2 can be rewritten as a total derivative

plus a term L ≃ φ3
�φ/Λ2, that becomes L ≃ m2

φ φ4/Λ2 using the lowest-order equations

of motion (for a detailed justification of this last step, see for example [11, 12]).

Based on these results ref. [21] goes on to argue that unitarity problems are unlikely

to arise at scale Λ for singlet scalar models, and also for the R2 inflation model, which can

be rewritten as a singlet-scalar model and was criticized on these grounds in ref. [10].

Although we agree with the discussion of tree-level φφ → φφ scattering, we disagree

with the conclusion that this suffices to establish unitarity (for singlet scalars or for R2

inflation) at the scale Λ. In particular, power counting also indicates that processes like

φφ → φφφφ have tree-level cross sections that behave as σ ≃ E2/Λ4, such as would arise

in Einstein frame with canonically normalized fields from scalar potential interactions of

the form δV ≃ λχ6/Λ2. Again, for these processes unitarity implies E < Λ. The same is

true for scattering involving more φ particles, and/or involving higher loops (although if

higher loops are at work the scale of unitarity violation is slightly raised to ∼ 4πΛ because

the accompanying loop factors of 1/16π2).

It is logically possible that cancelations amongst graphs conspire to suppress con-

tributions to scattering relative to power-counting estimates, order by order in the loop

expansion. This is what would be required to allow the theory to make sense at energies

above the scale Λ (despite power-counting indications to the contrary). The only known

theories where this happens are those where the cancelations are enforced by a (possibly

approximate) symmetry, and the great interest of these scalar inflation models makes it

worthwhile to explore this possibility in more detail.

In the absence of any evidence of this form we stand by the conclusions of ref. [10].

If anything, the evidence is that the cancelation in φφ → φφ at tree level is an accident

of the simplicity of this process, since the same arguments that indicate that interactions

like φ2(∂µφ∂µφ) are not problematic, do not apply to more general Einstein-frame inter-

actions, like φ2(∂µφ∂µφ)2 or f(φ) ∂µφ∂µφ. Even if not present at the classical level, such

interactions are inevitably generated by loops. Of course, the burden of proof lies on any

proponent of a particular inflationary model to demonstrate control over the approxima-

tions made, but we are encouraged that attempts along these lines are now starting to

be done.

4.1 Note added on background dependence

Although somewhat tangential to this paper’s main line of development, we comment here

on the sensitivity of the power-counting arguments used in this paper (and [10]), to the

various background fields present.

There are two kinds of background fields to discuss for Higgs inflation models, the

curvature of the background metric and the value of the Higgs field itself. Zero curvature

and 〈h〉 ≪ Mp is the regime for connecting to potential Higgs physics at the LHC, while R ≃
H2 and

√
ξ 〈h〉 ≫ Mp is the putative domain of inflation. Both are clearly required to relate

quantities determined in colliders to quantities measured from CMB data, as advocated

– 7 –
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in [7, 8], when using RG methods to run the effective theories from one scale to another.

One might worry (as does footnote 1 in v3 of [23]) whether the constraints described above

(or in [10, 15]) are restricted only to the first regime of negligible background fields.

The inflationary background fields do not provide a loophole for our arguments for the

following reasons. First, it is a misconception that the power-counting arguments of [10] are

limited to an expansion about flat space with vanishing Higgs field. Even though they are

often derived (as in [11, 12]) in momentum space, these arguments are based on dimensional

analysis. As such, all they require is that the low-energy physics be characterized by a single

scale, say H, in order to properly keep track of the dependence of observables on powers

like H/Λ. They therefore apply equally well if computed in position space using the full

de Sitter propagators.

A full treatment of the implications of limit
√

ξ 〈h〉 ≫ Mp is necessarily more thorny,

largely due to the lack of control (emphasized in [15]) over the form of the lagrangian in

this limit. Assuming the potential and Einstein terms to be precisely quartic and quadratic

polynomials in this limit in the Jordan frame, (the potential is more complicated in the

Einstein frame, and the necessity to choose a frame when specifying the functional form

is unlikely to be ensured by a physical condition such as a symmetry), one might wonder

if having
√

ξ 〈h〉 ≫ Mp in front of R might change the Jordan-frame power-counting in

this limit. As discussed in [23, 24] this condition can lead to the potentially confusing

conclusion that the cut off scale in the Jordan frame is different than the cut off scale in

the Einstein frame when a large Higgs vev is present. This would appear to contradict the

general result that ratios of physical mass scales (like Λ/Mp) must be frame independent.

However, an explicit check in [24] shows that one still finds H ∝ Λ up to the same

factors of the Higgs self-coupling λ found in [10]. Note that the apparent cut off scale

difference is despite the fact that the arguments of [10] apply equally well in either frame,

since they do not require the fluctuations fields to have been canonically normalized. This

apparent contradiction is resolved with the use a physical definition of Mp when comparing

the Einstein and Jordan frame results when ξ〈h2〉 ≫ M2
p . Using a physical definition of Mp

(such as the strength of gravity between two test masses) reveals that Mp also changes in

going between frames, and in terms of a physical Mphys
p the same cut off scale is obtained

irrespective of the Higgs vev, ie Λ ≃ Mphys
p /ξ
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