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1 Introduction

In the framework of formal algebraic quantum field theory, it has long been recognized that the
vacuum state of a free quantum field can maximally violate Bell’s inequalities [1, 2], indicating
the presence of quantum entanglement between both timelike and spacelike separated regions
within the vacuum state. This entanglement suggests that the vacuum itself may serve as a
potential resource for quantum technologies. Building on the foundational work of Valentini [3]
and later developments by Reznik [4], the concept emerged that vacuum entanglement could
be extracted through local interactions of multiple detectors with the field. This led to
the formulation of what is now known as the entanglement harvesting protocol, wherein
two initially uncorrelated Unruh-DeWitt (UDW) detectors interact locally with a quantum
field (typically in the vacuum state) to extract entanglement [5, 6]. The phenomenon of
entanglement harvesting has since been explored across various settings [7–29]. Entanglement
harvesting has been shown to be highly sensitive to several aspects of spacetime, including
its topology [12, 23, 28] and curvature [11, 13–16], and those of the detectors, such as their
superpositions of temporal order [21], intrinsic motion [18, 20, 23, 24] and energy gaps [26–28].
It has been argued that this sensitivity to topology can serve as a tool to differentiate between
locally flat spacetimes that are distinct only in their topological structures [12]. Recent studies
have uncovered that the presence of a reflecting boundary in a flat spacetime, effectively
rendering the spacetime topologically nontrivial, plays a notable role in the dynamics of
entanglement harvesting. Specifically, it has been found to inhibit entanglement harvesting
close to the boundary while facilitating it further away [23, 28].

In addition to locally flat spacetime with a reflecting boundary, another fascinating
example of a locally flat yet topologically nontrivial spacetime is characterized by a conical
structure with a deficit angle. This structure is physically interesting as it describes the
spacetime around a cosmic string, a type of topological defect [30]. Cosmic strings may arise
from phase transitions in the early universe [31, 32] or within certain gauge extensions of the
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standard model of particle physics [33]. The conical structure surrounding a cosmic string
leads to a variety of intriguing cosmological, astrophysical, and gravitational phenomena [33–
35]. This unique structure also influences quantum fluctuations of fields, which results in
significant modifications to several quantum phenomena. Notable effects include alterations
to the Casimir-Polder effect [36, 37], atomic transitions [38–41], resonance interactions [42],
fluctuations of the lightcone [43], and the dynamics of entanglement [44]. Noteworthily, there
has been a proposal for the experimental detection of analogous spacetime metric fluctuations
through the observable variance in flight time near fabricated analog cosmic strings, as
detailed in ref. [45]. This approach underscores the potential for experimental investigations
into the effects of cosmic strings and similar topological features within controlled settings.

The simplest model of cosmic string spacetime features a deficit planar angle around a
static, straight, and infinitely thin string [30]. Previous studies have shown that the atomic
transition rate and resonance interactions of atoms in this cosmic string spacetime can
exhibit behaviors similar to those observed in a flat spacetime with a perfectly reflecting
boundary [40–42]. Inspired by these findings, a natural question arises regarding the role
of the cosmic string in the context of entanglement harvesting. Since both the effects of
a reflecting plane boundary and a cosmic string on the vacuum fields can be studied by
considering the contributions from the “images” due to the boundary and the conical structure
of the string in the Wightman functions of the fields, it is also quite interesting to compare
the phenomenon of entanglement harvesting in the cosmic string spacetime with that in a
flat spacetime with a reflecting boundary. Such a comparison may provide a useful method
to distinguish locally flat spacetimes that differ only in topology caused by cosmic strings
and reflecting boundaries. These are what we are planning to explore in the present paper.

This paper is organized as follows. In the following section, we review the entanglement
harvesting protocol, including the UDW detector model and the basic formula for the
detector-field coupling. In section 3, we derive the expressions for the detectors’ transition
probabilities and their nonlocal correlations in the cosmic string spacetime, and investigate
the entanglement harvesting phenomenon for two static detectors in three different alignments
with respect to the cosmic string in detail. Numerical evaluations are employed when necessary
to clearly exhibit the behaviors of entanglement harvesting and comparisons are made between
the entanglement harvesting phenomena in the cosmic string spacetime and flat spacetime
with a reflecting boundary. Finally, we end with summaries in section 4. For convenience,
the natural units ℏ = c = kB = 1 are adopted throughout this paper.

2 The basic formulas

In the standard entanglement harvesting protocol, one considers two UDW detectors A and
B which locally interact with a massless quantum scalar field ϕ[xD(τ)] (D ∈ {A, B}) along
their worldlines. The classical trajectory of the detector, xD(τ), is parameterized in terms of
its proper time τ . Suppose that the UDW detector has an energy gap ΩD between its ground
state |0⟩D and excited state |1⟩D. Then the interaction Hamiltonian for such a detector
locally coupling with the scalar field in the interaction picture is given by

HD(τ) = λχ(τ)
[
eiΩDτ σ+ + e−iΩDτ σ−]ϕ[xD(τ)

]
, (2.1)
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where constant λ ≪ 1 denotes the weak coupling strength, χ(τ) = exp
[
− τ2/(2σ2

D)
]

is the
Gaussian switching function that allows to control the interaction duration via the parameter
σD, and σ+ = |1⟩D⟨0|D and σ− = |0⟩D⟨1|D denote ladder operators acting on the Hilbert
space of the detectors.

The initial state of the detector-field system, assuming that both Unruh-DeWitt (UDW)
detectors A and B are prepared in their ground states and the scalar field is in its vacuum state
|0⟩, can be expressed as |Ψi⟩ = |0⟩A|0⟩B|0⟩. During the interaction between the detectors and
the field, the state evolves according to the dynamics dictated by the interaction Hamiltonian.
This interaction can cause the detectors to become entangled, even though they do not
interact directly with each other but only through the quantum field. The final state of the
system, after the interaction has taken place, can be shown to be given by

|Ψf ⟩ := T exp
[
−i

∫
dt

(
dτA

dt
HA(τA) + dτB

dt
HB(τB)

)]
|Ψi⟩ , (2.2)

where T denotes the time ordering operator and t is the coordinate time with respect to
which the vacuum state of the field is defined. For simplicity, we presume that the two
detectors have identical energy gaps Ω (ΩA = ΩB) and interaction duration parameters
parameter σ (σA = σB). Tracing out the field degrees of freedom, one can obtain, using
the perturbation theory, that the density matrix for the final state of the detectors in the
basis |0⟩A|0⟩B, |0⟩A|1⟩B, |1⟩A|0⟩B, |1⟩A|1⟩B is, to the leading order in the coupling strength,
given by [12, 14, 16]

ρAB : = trϕ

(
|Ψf ⟩⟨Ψf |

)

=


1 − PA − PB 0 0 X

0 PB C 0
0 C∗ PA 0

X∗ 0 0 0

+ O(λ4) , (2.3)

where

PD := λ2
∫∫

dτdτ ′χ(τ)χ(τ ′)e−iΩ(τ−τ ′)W
(
xD(t),xD(t′)

)
, D ∈{A,B} , (2.4)

X := −λ2
∫∫

dτdτ ′χ(τ)χ(τ ′)e−iΩ(τ+τ ′)
[
θ(t′−t)W

(
xA(t),xB(t′)

)
+θ(t−t′)W

(
xB(t′),xA(t)

)]
,

(2.5)
C := λ2

∫∫
dτdτ ′χ(τ)χ(τ ′)e−iΩ(τ−τ ′)W

(
xA(t),xB(t′)

)
, (2.6)

with W (x, x′) := ⟨0|ϕ(x)ϕ(x′)|0⟩ being the Wightman function of the scalar field in vacuum,
and θ(x) denoting the Heaviside step function. In particular, if the two detectors are at
rest, we have t = τ and t′ = τ ′. Here, the matrix element PD represents the detector’s
transition probability from the ground state to the excited state due to the interaction
between the detector and the field, and the quantities C and X represent the nonlocal
correlations between the two detectors.

To quantify the entanglement acquired by the two detectors, we employ concurrence
as a measure of entanglement [46]. For the density matrix (2.3), the concurrence can be
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evaluated straightforwardly [12, 14, 16],

C(ρAB) = 2 max
[
0, |X| −

√
PAPB

]
+ O(λ4) . (2.7)

This indicates that the concurrence C(ρAB) is determined by the competition between the
nonlocal correlation term X and the geometric mean of the transition probabilities PA and
PB, which both crucially depend on the Wightman function of the scalar field.

3 Harvesting entanglement in the cosmic string spacetime

We now begin to study the entanglement harvesting phenomena for two UDW detectors near
a long straight cosmic string which is situated along the z-axis in a flat spacetime. The line
element of the cosmic spacetime can be written in cylindrical coordinates as [30]

ds2 = dt2 − dρ2 − ρ2dθ2 − dz2 , (3.1)

where θ ∈ [0, 2π/ν] and ν := (1 − 4Gµ)−1 with G and µ being the Newton’s gravitational
constant and the cosmic string linear energy density, respectively. The dimensionless quantity
Gµ measures the strength of the gravitational effects of the string manifesting as a deficit angle
δθ := 2π(ν − 1)/ν = 8πGµ with respect to the trivial flat spacetime (Minkowski spacetime).
Notice that for the cosmic string spacetime one always has the deficit-angle parameter ν > 1.

After analytically solving the Klein-Gordon equation for a massless scalar field, the
Wightman function of the field in the cosmic string spacetime can be obtained [43]

W
(
x, x′) = 1

4π2
1
σ2

0
+ 1

2π2

[ν/2]∑
m=1

′ 1
σ2

m

− ν

8π3

∑
j=+,−

∫ ∞

0
dζ

sin(jν∆θ + νπ)
[cosh(νζ) − cos(jν∆θ + νπ)]

1
σ2

ζ

, (3.2)

where

σ2
0 = −∆t2 + ∆z2 + ρ2 + ρ′2 − 2ρρ′ cos ∆θ, (3.3)

σ2
m = −∆t2 + ∆z2 + ρ2 + ρ′2 − 2ρρ′ cos

(2πm

ν
− ∆θ

)
, (3.4)

σ2
ζ = −∆t2 + ∆z2 + ρ2 + ρ′2 + 2ρρ′ cosh ζ, (3.5)

with ∆t = t − t′ − iϵ, ∆z = z − z′, and ∆θ = θ − θ′. Here, [ν/2] denotes the integer part of
ν/2 and the prime in the summation means that when ν is an even integer the term with
m = ν/2 should be multiplied by an additional factor 1/2. Obviously, the summation has no
contribution when ν < 2, and the Wightman function (3.2) is generally discontinuous as a
function of ν due to the integer truncation operation [ν/2]. Furthermore, if ν is an integer
number, the third term in eq. (3.2) will vanish and the Wightman function takes a simple form

W
(
x, x′) = 1

4π2
1
σ2

0
+ 1

4π2

ν−1∑
m=1

1
σ2

m

. (3.6)
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Figure 1. The “images” for integer ν due to the conical topology with a deficit angle 2π(ν − 1)/ν.
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Figure 2. The cosmic string is assumed to be located along the z-axis. Plots (a) and (b) respectively
describe the interdetector separation d aligned parallel and orthogonally to the cosmic string on the
same side of the string. Plot (c) shows that the two detectors are orthogonally aligned to the string
on two opposite sides.

The first term in the above equation is just the Wightman function in a trivial flat spacetime
and the second term is a summation of the Wightman functions corresponding to ν − 1
“images” due to the conical topology with a planar deficit angle [see figure 1]. Obviously,
as the distance from the cosmic string increases, the spatial separation between the source
and its images also grows larger. Consequently, the contributions of these images to the
Wightman function become negligible in the regions far from the cosmic string.

Without loss of generality, we now assume that two static UDW detectors, separated
by a distance d, are positioned relative to the string in three different alignments: the line
connecting the detectors is parallel to the string, orthogonal to the string with two detectors
on the same side and two detectors respectively on two opposite sides, as illustrated in figure 2.

3.1 Alignments on the same side of the string

3.1.1 Parallel alignment

We start with the parallel alignment [see figure (2(a))]. The spacetime trajectories for the
two detectors in this case can be expressed as

xA := {t = τ, ρ = l, θ = 0, z = 0} , xB := {t = τ, ρ = l, θ = 0, z = d} . (3.7)
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In order to calculate the concurrence, we first need to calculate the transition probabilities
of the detectors. Substituting the trajectory (3.7) into eq. (3.2) yields

W
(
xD, x′

D

)
= − 1

4π2
1

(τ − τ ′ − iϵ)2 − 1
2π2

[ν/2]∑
m=1

′ 1
(τ − τ ′ − iϵ)2 − 4l2 sin2(mπ/ν)

+ ν

4π3

∫ ∞

0
dζ

sin(νπ)
[cosh(νζ) − cos(νπ)][(τ − τ ′ − iϵ)2 − 4l2 cosh2(ζ/2)]

. (3.8)

After some mathematical manipulations [see appendix A], the transition probability (2.4)
can be expressed as follows

PD = P0 + P1 + P2, D ∈ {A, B} (3.9)

with

P0 = λ2

4π

[
e−σ2Ω2 −

√
πσΩ Erfc(σΩ)

]
, (3.10)

P1 = λ2σ

4
√

π

[ν/2]∑
m=1

′ e−l2 sin2(mπ/ν)/σ2

l sin(mπ/ν)

{
Im
[
e2iΩl sin(mπ/ν) Erf

(
il

σ
sin mπ

ν
+ σΩ

)]

− sin
[
2Ωl sin

(
mπ/ν

)]}
, (3.11)

P2 = λ2σν sin(νπ)
8π3/2

∫ ∞

0
dζ

1
cosh(νζ) − cos(νπ)

e−l2 cosh2(ζ/2)/σ2

l cosh(ζ/2)

{
sin
[
2lΩ cosh(ζ/2)

]
− Im

[
e2ilΩ cosh(ζ/2) Erf

(
il

σ
cosh ζ

2 + σΩ
)]}

, (3.12)

where Erfc(x) := 1 − Erf(x) with the error function being Erf(x) :=
∫ x

0 2e−t2
dt/

√
π.

Note that the first term P0 is just the transition probability for a static detector in a
flat spacetime without a cosmic string, which approaches zero in the limit of Ωσ → ∞ as
expected [12]. Obviously, the transition probability PD reduces to P0 in the limit of l → ∞
or ν = 1, i.e., when the detectors are located infinitely far from the string, or when the deficit
angle vanishes. Moreover, for small l/σ, namely, when the detectors are very close to the
string, the transition probability PD can be further approximated as

PD ≈ νP0 = λ2ν

4π

[
e−σ2Ω2 −

√
πσΩ Erfc(σΩ)

]
. (3.13)

So, the transition probability of the detector in the presence of a cosmic string is ν times
that in a flat spacetime without a cosmic string, suggesting that the presence of the deficit
angle increases the detector’s transition probability. Especially, when the detector is located
on the string, the transition probability can be expressed in a particularly simple form

PD = P0 + 2
[ν/2]∑
m=1

′ P0 + ν

π

∫ ∞

0
dζ

sin(νπ)
cos(νπ) − cosh(νζ)P0

=


νP0, integer ν(

1 + 2 · [ν2 ] − 2
π

arctan cot νπ

2

)
P0, non-integer ν

= νP0 , (3.14)
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Figure 3. The transition probability is plotted as a function of l/σ in (a) and as a function of ν

in (b) with fixed parameter Ωσ = 0.10. Here, the black dashed line in the left plot represents the
corresponding results in a flat spacetime without a cosmic string (i.e., ν = 1). For convenience, all
relevant physical quantities are expressed in the unit of the interaction duration parameter σ.

where in the last step we have used the fact that for non-integer ν, the expression simplifies
as follows

− 2
π

arctan cot νπ

2 = i ln(−e−iπν)
π

= i

π
ln e−iπ(ν−1) = i

π
ln e−iπ(ν−1−2·[ν/2]) = ν − 1 − 2 ·

[ν
2
]

with
∣∣ν −1−2 · [ν/2]

∣∣ < 1 ensured by the requirement of the principal value of the logarithmic
function. From the l-dependence in P1 and P2, one can also infer that the transition probability
is a monotonically decreasing function of the detector-to-string distance l, with the maximum
value attained at l = 0 for a fixed ν.

In order to clearly show how the transition probability depends on the detector-to-string
distance and the deficit angle, we have resorted to numerical calculations. The results are
presented in figure 3. Obviously, the transition probability in the cosmic string spacetime
generally decreases as the detector-to-string distance grows, ultimately converging to the
result observed in a flat spacetime without a cosmic string when the detector-to-string
distance approaches infinity [see figure 3(a)]. Moreover, the transition probability indeed
reaches its maximum when the detector is positioned directly on the string, confirming our
earlier analytical analysis. It is also easy to see that the transition probability is an increasing
function of the deficit-angle parameter ν. This means that the deficit angle enhances the
transition probability [see figure 3(b)].

Let us now turn to calculate the correlation term X. For convenience, we denote it
by XP for the case of the parallel alignment. Substituting the trajectories (3.7) and the
Wightman function (3.2) into eq. (2.5), we have [see appendix B]

XP = X0 + XP 1 + XP 2 (3.15)

with

X0 = f

(
d

2σ

)
, (3.16)
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XP 1 = 2
[ν/2]∑
m=1

′f

√ d2

4σ2 + l2

σ2 sin2 mπ

ν

 , (3.17)

and

XP 2 =
∫ ∞

0
dζ

ν sin(νπ)
π[cos(νπ) − cosh(νζ)]f

√ d2

4σ2 + l2

2σ2 + l2 cosh ζ

2σ2

 , (3.18)

where the auxiliary function f is defined as

f(z) := − iλ2e−σ2Ω2−z2

8
√

π

Erfc(iz)
z

. (3.19)

From the above equations, one can see that the correlation term XP will be exponentially
suppressed when the detector energy gap Ω is increased. Thus, a large energy gap still plays
a strong inhibitory role in entanglement harvesting.

Notice that the first term of the correlation term XP ,

X0 = − iλ2σ

4
√

π

Erfc [id/(2σ)]
d

e−σ2Ω2− d2
4σ2 , (3.20)

is just the result for a flat spacetime without a cosmic string. It is worth noting that
the magnitude of |X0| diverges in the limit of d → 0. This divergence is due to the ill-
defined point-like approximation of the UDW detector model for d/σ ≪ λ, resulting in a
mathematically divergent concurrence. However, it has been shown that a finite-size detector
model with a spatial smearing function can resolve this divergence issue in the entanglement
harvesting protocol [6]. The second term XP 1 and the third term XP 2 are dependent on the
detector-to-string distance l, and both of them vanish in the limit of l → ∞, i.e., when the
detectors are very far away from the string. As a result, XP reduces to that in a flat spacetime
without a cosmic string, X0, and so does the concurrence. While, when the detectors are
very close to the string, i.e., when l/σ ≪ 1, the correlation term can be approximated as

XP ≈ νX0 − ν

(
l2

d2 + l2

2σ2

)
X0 −

e−σ2Ω2
l2λ2ν

4πd2 . (3.21)

Then using eqs. (2.7), (3.13) and (3.21), one finds, for the concurrence quantifying the
entanglement harvested by the detectors,

CP (ρAB) ≈ νC0(ρAB) (3.22)

with

C0(ρAB) = max
{

λ2e−σ2Ω2

2
√

π

[
σ

d
e−d2/(4σ2)

∣∣∣Erfc
(

id

2σ

) ∣∣∣+ eσ2Ω2
σΩ Erfc(σΩ) − 1√

π

]
, 0
}
(3.23)

representing the concurrence in the case of a flat spacetime without a cosmic string. In
particular, when the detectors are positioned on the string (l = 0), we have

XP = νX0, CP (ρAB) = νC0(ρAB) . (3.24)
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This means that the presence of the cosmic string amplifies the amount of entanglement
harvested by the detectors in its vicinity. Furthermore, the bigger the deficit-angle parameter
ν, the greater the concurrence CP (ρAB). However, the analytical approximations of XP and
CP (ρAB) are only obtainable in the asymptotic regions, i.e., when detectors are very close
or very far away from the string. For more general locations, numerical evaluations will be
needed and performed later, following an analytical analysis of the orthogonal alignment case.

3.1.2 Orthogonal alignment

In the case of the orthogonal alignment with both detectors on the same side of the string
[see figure (2(b))], the spacetime trajectories can be written as

xA := {t = τ, ρ = l, θ = 0, z = 0} , xB := {t = τ, ρ = l + d, θ = 0, z = 0} (3.25)

with l representing the distance to the string of the detector which is closer. It is easy to
see that the transition probability for detector A is just given by eq. (3.9), and PB can be
obtained from the same equation by replacing l with l + d. Similarly, the correlation term X,
denoted now by XV for the orthogonal alignment, can be written in the form:

XV = X0 + XV 1 + XV 2 (3.26)

with

XV 1 = 2
[ν/2]∑
m=1

′f

√ d2

4σ2 + l(l + d)
σ2 sin2 mπ

ν

 (3.27)

and

XV 2 =
∫ ∞

0
dζ

ν sin(νπ)
π[cos(νπ) − cosh(νζ)]f

√ d2

4σ2 + l(l + d)
2σ2 + l(l + d) cosh ζ

2σ2

 . (3.28)

Analogous to the correlation term in the parallel alignment, XV also approaches X0 in the
limit of l → ∞, and as a result, the concurrence becomes that in the case of a flat spacetime
without a cosmic string. Moreover, for small l/σ and d/σ, the correlation term XV aligns with
eq. (3.21), so that the concurrence can be approximately written as CV (ρAB) ≈ νC0(ρAB).

After presenting the analytical analysis for the asymptotic regions, we now begin our
numerical analyses for general locations of the detectors. Here, it is worth pointing out
that when the energy gap of the detectors is much larger than the Heisenberg energy
(Ωσ ≫ 1), both the transition probability and the correlation term are vanishingly small
so that entanglement can hardly be harvested. So, we will only consider a not-too-large
energy gap in the following numerical evaluations.

In figure (4), we demonstrate how the concurrence varies with interdetector separation for
fixed detector-to-string distance (i.e., fixed l/σ) and deficit angle (characterized by parameter
ν). Clearly, the concurrence decreases monotonically as the interdetector separation increases,
regardless of the detectors’ alignment relative to the cosmic string. Interestingly, at small
interdetector separations (d/σ ≪ 1), the two detectors aligned parallel to the string will
harvest more entanglement than those in orthogonal alignment for a fixed small l/σ, while at
not too small interdetector separations, the detectors aligned orthogonally to the string will
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Figure 4. The concurrence versus d/σ for ν = 2 in plot (a) and ν = 11 in plot (b) with Ωσ = 0.10
and l/σ = 0.10. Here, the black dashed curves in all plots correspond to the results in a flat spacetime
without a cosmic string.

instead harvest more entanglement. One may understand this property as follows. When
both the interdetector separation and detector-to-string distance are small (d/σ ≪ 1 and
l/σ ≪ 1), the transition probabilities of the detectors in these two alignments, given by
eq. (3.9), are almost the same. However, comparing eq. (3.15) with eq. (3.26), one can
easily infer that the correlation term |XP | is larger than |XV | because the auxiliary function
f(·) is an exponentially decreasing function of its argument. Therefore, one can see from
eq. (2.7) that CP (ρAB) is larger than CV (ρAB) for small d/σ. When interdetector separation
is not too small (d/σ > 1 and d ≫ l), the correlation term |XP | becomes approximately
equal to |XV |. However, the geometric mean of the detectors’ transition probabilities in the
case of the orthogonal alignment is much smaller than that in the parallel alignment. This
is because the transition probability is a decreasing function of detector-to-string distance
and the orthogonal alignment has a comparatively longer effective distance from the string
than the parallel alignment. As a result, CV (ρAB) is greater than CP (ρAB) for not too small
interdetector separations (d/σ > 1 and d ≫ l).

According to the aforementioned analysis, the harvested entanglement will approach the
result in a flat spacetime without a cosmic string as the detector-to-string distance grows to
infinity. This is analogous to the entanglement harvesting phenomenon for such detectors
far way from the boundary in a flat spacetime with a reflecting boundary. To gain a better
understanding of how entanglement harvesting depends upon the detector-to-string distance,
we plot the concurrence as a function of detector-to-string distance for various ν values in
figure 5. In addition, the dependence of concurrence on the detector-to-boundary distance in
a flat spacetime with a reflecting plane boundary is also depicted in these plots for comparison.
To facilitate this comparison, we refer to the results for the case with a reflecting boundary in

– 10 –



J
H
E
P
0
6
(
2
0
2
4
)
1
6
1

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

2.5 2.6 2.7 2.8 2.9 3.0 3.1
0.400

0.405

0.410

0.415

0.420

0.425

(a) ν = 2

0 1 2 3 4 5
0

1

2

3

4

5

4.5 4.6 4.7 4.8 4.9 5.0
0.348

0.349

0.350

0.351

0.352

1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.410
0.415
0.420
0.425
0.430
0.435
0.440
0.445

(b) ν = 11

Figure 5. The concurrence is plotted as a function of l/σ for ν = 2 in plot (a) and ν = 11 in plot (b)
with fixed Ωσ = 0.10 and d/σ = 0.50. The red dashed and green dashed lines respectively describe
the corresponding cases of parallel and orthogonal alignments in the presence of a reflecting boundary.
The black horizontal dashed lines indicate the corresponding results in a flat spacetime without any
cosmic strings and boundaries.

a flat spacetime, as detailed in references [23, 28]. The transition probability of the detector,
according to these studies, satisfies [see eq. (3.4) in ref. [23]]

P bd
D = P0 −

λ2σe−l2/σ2

8
√

πl

{
Im
[
e2ilΩ Erf

(
il

σ
+ σΩ

)]
− sin

(
2lΩ

)}
, D ∈ {A, B} , (3.29)

where l represents the distance between the detector and the boundary. Quite differently
from the transition probability (3.9) in the cosmic string spacetime, as described by eq. (3.29)
does not reach a maximum value but instead vanishes when the detector is positioned directly
at the boundary (l = 0). The correlation term X in the case of the parallel-to-boundary
alignment satisfies, for an interdetector separation d,

Xbd
P = X0 − f

√ d2

4σ2 + l2

σ2

 , (3.30)

while in the case of the orthogonal-to-boundary alignment it becomes

Xbd
V = X0 − f

(
d

2σ
+ l

σ

)
(3.31)

with l now being the distance to the boundary of the detector which is closer [see ref. [28]
for more details]. Accordingly, the concurrence in a flat spacetime with a boundary can be
straightforwardly obtained by substituting eqs. (3.29), (3.30) and (3.31) into eq. (2.7). In
comparing eqs. (3.30)–(3.31) with eqs. (3.15) and (3.26), one may find that the contributions
of the “images” to the correlation term in a flat spacetime with a boundary are subtracted
from X0 rather than added, as is the case in the cosmic string spacetime.
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Figure 6. The concurrence is plotted as a function of ν for l/σ = 0.10 in plot (a) and l/σ = 3.00
in plot (b) with fixed d/σ = 0.10 and Ωσ = 0.10. The black horizonal dashed line indicates the
corresponding result in a flat spacetime without cosmic strings and boundaries.

Now let us discuss what conclusions we can draw from figure 5. First, the presence of a
cosmic string may either assist or inhibit entanglement harvesting, depending on the detector-
to-string distance. For a small detector-to-string distance (l/σ ≪ 1), the presence of the
cosmic string will assist entanglement harvesting in both parallel and orthogonal alignments,
which is in sharp contrast to the inhibitory role played by the presence of a reflecting plane
boundary in entanglement harvesting in the vicinity of the boundary [23, 28]. However, for a
sufficiently large detector-to-string distance, given a fixed interdetector separation d and a fixed
deficit-angle parameter ν, the amount of harvested entanglement falls below the corresponding
result in a flat spacetime without a cosmic string. This indicates that the cosmic string acts
as an inhibitor of entanglement harvesting, which contrasts with the assisting role played by
a boundary in entanglement harvesting at sufficiently large detector-to-boundary distances.
Remarkably, the harvested entanglement with a cosmic string/boundary possesses a dip/peak
at a certain large detector-to-string/detector-to-boundary distance. Second, figure 5 also
shows that the detectors in the orthogonal-to-string/parallel-to-boundary alignment still have
the potential to harvest relatively more entanglement than the parallel-to-string/orthogonal-
to-boundary alignment, provided that the detector-to-string/detector-to-boundary distance
is sufficiently large, for a not-too-large interdetector separation d and a fixed ν.

In order to clearly reveal the influence of the deficit angle on entanglement harvesting, we
further plot the concurrence as a function of the deficit-angle parameter in figure 6. Obviously,
the dependence of the concurrence on the deficit-angle parameter is also significantly impacted
by the detector-to-string distance. When the detector-to-string distance is small with respect
to the duration time (l/σ ≪ 1), the concurrence is a monotonically increasing function of ν,
which is in accordance with our early analysis. However, when the detector-to-string distance
is not too small, the concurrence exhibits a dip at a special value of ν, meaning it initially
decreases as ν increases, and subsequently becomes a continuously increasing function of ν.
To understand this property clearly, we plotted the behaviors of PD and |X0| verses ν in the
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Figure 7. The correlation term |XP | and the transition probability PD are plotted as a function of
parameter ν for l/σ = 3.00, Ωσ = 0.10 and d/σ = 0.10. The dashed line (ν ≈ 9.220) indicates where
the minimum difference between |XP | and PD occurs.

case of the parallel alignment in figure 7. As we can see, both the transition probability PD

and the correlation term |X0| increase as ν grows, but their rates of increase differ. Initially,
PD grows more rapidly than |X0| as ν increases. However, when ν reaches a sufficiently high
value, the rate of increase in PD no longer surpasses that of |X0|. Given the formula for
concurrence expressed as (2.7), we can infer that the concurrence would initially decrease
and then begin to increase as ν continues to grow beyond a certain threshold. This behavior
indicates a nuanced interplay between PD and |X0| that directly affects the concurrence.

It is worth noting that all the numerical results mentioned above are based on relatively
short interdetector separations. Under these conditions, the detectors are causally connected,
and as a result, the entanglement harvested does not solely originate from the vacuum.
Instead, it is primarily generated through field-mediated communication between the two
detectors. As argued in ref. [25], entanglement harvesting includes two components: one
stemming from the genuine entanglement preexisting in the vacuum, and the other from field-
mediated communication between the detectors. When detectors are causally connected, the
entanglement they acquire is predominantly influenced by this communication. In contrast,
when the detectors remain spacelike separated, the harvested entanglement must necessarily
arise solely from the preexisting vacuum entanglement.

To briefly explore how the presence of a cosmic string affects the genuine harvesting
of preexisting entanglement in cosmic string spacetime, we have numerically estimated the
concurrence acquired by two detectors placed at a large interdetector separation in figure 8.
Here for a Gaussian switching function with a duration parameter σ, an interdetector
separation d = 4σ is approximately regarded as effectively spacelike. Thus, the contribution
from communication between the detectors is expected to have a negligible impact on
entanglement harvesting in this scenario, allowing the entanglement to be primarily harvested
from the vacuum. This setup provides a clearer picture of the impact of cosmic strings on
the genuine entanglement harvesting from the vacuum.
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Figure 8. The concurrence is plotted as a function of ν, for l/σ = 0.10 in plot (a) and l/σ = 3.00
in plot (b), with a relatively large interdetector separation of d/σ = 4.00 and Ωσ = 1.50 in the
cases of parallel-to-string alignment and orthogonal-to-string alignment, respectively. Here, the black
horizonal dashed line indicates the corresponding result in a flat spacetime without cosmic strings
and boundaries.

As observed from figure 8, the behavior of concurrence relative to the deficit-angle
parameter ν varies with the detector-to-string distance. Specifically, when the distance
between the detector and the string is small, the concurrence exhibits a monotonically
increasing function of ν. Conversely, if the detector-to-string distance is sufficiently large, the
concurrence tends to show a monotonically decreasing trend as ν increases.

From these observations, one might infer that the influence of a cosmic string on genuine
entanglement harvesting differs markedly depending on the proximity of the detectors to
the string. In the vicinity of the string (the near zone), the presence of the cosmic string
appears to enhance genuine entanglement harvesting, while at greater distances (the far zone),
the string seems to inhibit this phenomenon compared to what is observed in a trivial flat
spacetime. This distinction underscores the complex role that the topological defects like
cosmic strings play in modifying the quantum field and the entanglement properties therein.

Now we analyze how the presence of a cosmic string impacts the harvesting-achievable
range of interdetector separation. We introduce dmax to denote the maximum harvesting-
achievable separation, beyond which entanglement harvesting cannot occur any more, and
plot it as a function of detector-to-string distance in figure 9. As we can see from figure 9,
the presence of a cosmic string can either reduce or enlarge the harvesting-achievable range
compared to the case of a trivial flat spacetime, depending on the detectors’ alignment and
the detector-to-string distance. Specifically, when the two detectors are aligned parallel
to the string, the presence of the cosmic string always reduces the harvesting-achievable
range, sharply contrasting with the effect of a reflecting boundary, which always enlarges the
range [23]. However, when the detectors are aligned orthogonally to the string, the presence
of the cosmic string tends to enlarge the harvesting-achievable range in the vicinity of the
string. Yet, as the detector-to-string distance increases to become comparable to the duration
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Figure 9. The maximum harvesting-achievable separation between detectors, dmax/σ, is plotted as
a function of l/σ for the alignments with two detectors on the same side of the string with ν = 3.
Here, we have fixed Ωσ = 0.10 in (a) and Ωσ = 1.50 in (b). In all plots, the red dashed and green
dashed lines respectively describe the corresponding cases of parallel and orthogonal alignments in
the presence of a reflecting boundary. The black dashed line indicates the result in a flat spacetime
without any strings or boundaries (a trivial flat spacetime).

parameter (l > σ), it reduces the range. Thus, in terms of the harvesting-achievable range,
the cosmic string plays a dual role in entanglement harvesting.

3.2 Orthogonal alignment with two detectors on two different sides of the string

For this orthogonal alignment [see figure 2(c)], the trajectories of the detectors can be written as

xA := {t = τ, ρ = l, θ = 0, z = 0} , xB := {t = τ, ρ = d − l, θ = π, z = 0} , (3.32)

where l still represents the distance to the string of the detector which is closer and d

denotes the interdetector separation. Notice that now d ⩾ 2l > 0. The transition probability
PA is again eq. (3.9), and PB can now be obtained by replacing l with d − l in eq. (3.9).
Similarly, the nonlocal correlation term X, denoted here by XT for the orthogonal intersecting
alignment, reads

XT = X0 + XT 1 + XT 2 , (3.33)

with

XT 1 = 2
[ν/2]∑
m=1

′f

√ d2

4σ2 − l(d − l)
σ2 sin2 mπ

ν

 , (3.34)

XT 2 =
∫ ∞

0
dζ

ν sin(2νπ)
2π[cos(2νπ) − cosh(νζ)]f

√ d2

4σ2 + l(d − l) cosh ζ

2σ2 − l(d − l)
2σ2

 . (3.35)
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It is easy to find out that both XT 1 and XT 2 vanish in the limit of l → ∞, resulting in XT = X0.
For small l/σ (i.e., 1 ≫ l/σ and d ≫ 2l), the correlation term can then be approximated as

XT ≈


νX0, integer ν ,(

1 + 2 · [ν2 ] − 1
π

arctan cot(νπ)
)

X0, non-integer ν .
(3.36)

And, for small d/σ and integer ν, one may further have, by taking eqs. (2.7), (3.13) and (3.36)
into account, CT (ρAB) ≈ νC0(ρAB).

In particular, when the two detectors are in symmetric alignment with respect to the
cosmic string (i.e., d = 2l), we have

XT 1 = 2
[ν/2]∑
m=1

′f

(
l

σ
cos mπ

ν

)
, (3.37)

XT 2 =
∫ ∞

0
dζ

ν sin(2νπ)
2π[cos(2νπ) − cosh(νζ)]f

(
l

σ
cosh ζ

2

)
. (3.38)

When ν is an even integer, XT 2 vanishes, and the last term (m = ν/2) in the summation
in eq. (3.37) becomes

f(0) = lim
z→0

f(z) = lim
d→0

X0 → ∞ ,

which consequently leads to a divergence in XT and, accordingly, in the concurrence CT (ρAB)
as well. Physically, this divergence results from the presence of an “image” of detector B that
is angularly identical to detector A due to the conical topology of the cosmic string spacetime,
causing A and B’s “image” to spatially overlap. As mentioned previously, adopting a finite-size
detector model with a spatial smearing function could resolve this divergence issue, although
detailing such a model falls outside the main focus of this paper. To clearly demonstrate
the properties of entanglement harvesting, we will plot the concurrence as a function of the
detector-to-string distance and the deficit-angle parameter in figures 10 and 11, respectively.

As shown in figure 10, the concurrence is a monotonically decreasing function of the
detector-to-string distance. This trend occurs because, in the orthogonal alignment with
detectors on opposite sides of the string, the interdetector separation inherently increases
with the detector-to-string distance, and concurrence typically decreases as the interdetector
separation increases. Distinctly different from entanglement harvesting scenarios where
detectors are positioned on the same side of the string, detectors aligned on opposite sides
consistently harvest more entanglement compared to those in a flat spacetime without a
cosmic string.

In figure 11, we explore how the concurrence varies with the deficit-angle parameter ν.
Unlike scenarios with both detectors on the same side of the string, the concurrence is
no longer a continuous function at integer values of ν, and its dependence on ν does not
vary qualitatively with the specific value of l/σ. In particular, if the two detectors are
symmetrically aligned relative to the string (d = 2l), the concurrence becomes divergent at
even integer values of ν. This divergence arises from the correlation term XT , which becomes
infinite due to the spatial overlapping of the detector and its image. This overlap leads to
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Figure 10. The concurrence is plotted as a function of l/σ with Ωσ = 0.10 for different interdetector
separations d/l = {2.00, 2.50} in left-to-right order. The dashed lines represent the results in a flat
spacetime without a cosmic string (i.e., ν = 1).
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Figure 11. The concurrence is plotted as a function of ν for detectors in symmetrical alignment with
l/σ = 0.10 in plot (a) and l/σ = 2.00 in plot (b), and for detectors in non-symmetrical alignment with
d/l = 2.50, l/σ = 0.10 in plot (c) and d/l = 2.50, l/σ = 2.00 in plot (d). Here, we set Ωσ = 0.10
for all plots. The circle point exactly indicates the corresponding value of concurrence at a certain
integer ν.
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Figure 12. The maximum harvesting-achievable interdetector separation versus the detector-to-string
distance for the alignment with two detectors on two different sides of the string. Here, we set ν = 3
and Ωσ = 0.10. The black dashed line represents the corresponding result in a flat spacetime without a
cosmic string. There is a certain value of the detector-to-string distance, i.e., l = l0 ≈ 2.219σ, beyond
which the detectors cannot harvest entanglement any more due to the positive relation between the
interdetector separation and the detector-to-string distance (d ≥ 2l).

the breakdown of the point-like detector model [see plots 11(a) and 11(b)]. Interestingly,
there is a noticeable degradation in the harvested entanglement between every neighboring
pair of even integers ν [e.g., see plots 11(a) and 11(c)]. Moreover, if ν is an odd integer or
even integer in cases of asymmetrical alignment with small interdetector separations, the
greater the value of ν, the more the entanglement is harvested, indicating that the cosmic
string indeed enhances entanglement harvesting.

In addition, we plot dmax/σ as a function of l/σ in figure 12, demonstrating that for not
excessively large detector-to-string distances,1 the harvesting-achievable range of interdetector
separation with detectors on different sides of the string in cosmic string spacetime is
consistently larger than that in trivial flat spacetime. This observation suggests that, for this
alignment, the impact of the cosmic string on the harvesting-achievable range is analogous to
that of a reflecting boundary, facilitating enhanced entanglement harvesting under specific
configurations.

4 Conclusion

In the framework of the entanglement harvesting protocol, we have performed a detailed
study on the phenomenon of entanglement harvesting involving two Unruh-DeWitt (UDW)
detectors that interact locally with a massless scalar field in the vicinity of a cosmic string.
Specifically, we examined three different alignments of the detectors relative to the string:
parallel, orthogonal with both detectors on the same side, and orthogonal with each detector

1Note that there exists a certain large detector-to-string distance, beyond which the detectors cannot
harvest entanglement any more due to the positive relationship between the interdetector separation and the
detector-to-string distance (d ≥ 2l).
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on opposite sides. We find that the presence of the cosmic string in general enhances the
transition probability of the static detectors for a finite interaction duration.

For the alignments on the same side of the string, we find the amount of entanglement
harvested is always a monotonically decreasing function of the interdetector separation,
regardless of whether the detectors are aligned parallel or orthogonally to the string. Mean-
while, the harvested entanglement does not always decrease as the detector-to-string distance
increases; instead, it displays a dip that falls below the corresponding result in a flat space-
time without a cosmic string at a certain large detector-to-string distance. This behavior
contrasts markedly with the case involving the presence of a reflecting boundary, where the
harvested entanglement typically shows a peak as the detector-to-boundary distance grows
to be comparable to the duration time parameter. In other words, the presence of a cosmic
string may facilitate entanglement harvesting in its vicinity but tends to inhibit it in the
far zone, which is the opposite of the effect observed with a boundary, where entanglement
harvesting is inhibited near the boundary but assisted in the far zone.

Interestingly, when the detector-to-string distance is small relative to the interaction
duration parameter, the larger the deficit angle, the more the entanglement is harvested.
However, if the detector-to-string distance is not too small with a not-too-large interdetector
separation, the entanglement harvested may initially decrease slightly as the defect angle
increases but later becomes a monotonically increasing function as the deficit angle further
enlarges. Therefore, one may conclude that the amount of entanglement harvested is generally
amplified due to the deficit angle, regardless of whether the two detectors are aligned parallel
or orthogonally to the string, particularly when the deficit angle is sufficiently large. Notably,
in the vicinity of the string, the detectors in parallel alignment with a small interdetector
separation can harvest more entanglement than those in orthogonal alignment. However, the
detectors in orthogonal alignment can, in turn, harvest comparatively more entanglement
when the interdetector separation or the detector-to-string distance becomes sufficiently large.
Moreover, the numerical results reveal that the presence of the cosmic string generally assists
or inhibits genuine entanglement harvesting in the near or far zone of the cosmic string
spacetime, respectively, in comparison with results in a flat spacetime.

As far as the harvesting-achievable range of interdetector separation is concerned, when
the two detectors are aligned parallel to the cosmic string, the presence of the string always
reduces the harvesting-achievable range compared to the result in a trivial flat spacetime.
However, when the detectors are aligned orthogonally to the string, the harvesting-achievable
range is enlarged in the vicinity of the string but reduced in the far zone. Therefore, the
presence of the cosmic string can either assist or inhibit entanglement harvesting in terms
of the harvesting-achievable range, which markedly differs from the consistent enlargement
of the harvesting-achievable range seen with a reflecting boundary.

Regarding the orthogonal alignment with two detectors on opposite sides of the string,
the amount of entanglement harvested always decreases as the detector-to-string distance
increases, due to the positive relationship between the detector-to-string distance and the
interdetector separation. Remarkably, unlike the scenario where both detectors are on the
same side of the string, the detectors on opposite sides always harvest more entanglement
than those in a trivial flat spacetime, and the presence of the cosmic string enlarges the
harvesting-achievable range in the vicinity of the string. Another interesting feature is that
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the harvested entanglement is now a discontinuous function of the deficit-angle parameter
ν, marking a significant deviation from the case with the two detectors on the same side.
In particular, when the two detectors are symmetrically aligned with respect to the string
(d = 2l), the harvested entanglement diverges at even integer values of ν due to the spatial
overlapping of the detector and its image, a consequence of the conical topology of the
cosmic string spacetime.

It is worth noting that while the nontrivial topologies introduced by both the presence
of a cosmic string and a reflecting boundary in a locally flat spacetime significantly impact
the entanglement harvesting phenomenon, they exhibit distinctive influences. For instance,
the cosmic string typically assists, in terms of the amount of entanglement harvested, the
entanglement harvesting for two detectors on the same side in the vicinity and inhibits it in
the far zone. Conversely, a boundary inhibits the entanglement harvesting in the vicinity
and assists it in the far zone. However, in terms of the harvesting-achievable range, the
cosmic string in the case of orthogonal alignment of the detectors relative to it plays a dual
role, contrasting sharply with the consistent role of a reflecting boundary, which always
enlarges the harvesting-achievable range. These sharply contrasting properties may provide
a potential method to distinguish between locally flat spacetimes with different topologies
due to cosmic strings and reflecting boundaries.

Finally, we have only investigated the entanglement harvesting for two detectors in
three specific alignment cases, i.e., parallel, orthogonal on the same side, and orthogonal
on opposite sides of the cosmic string. However, one might be curious about scenarios
where the detectors are not strictly parallel or orthogonal to the cosmic string. In fact,
based on our analysis, when the detector system is positioned very far from the string, the
entanglement harvesting phenomenon in the cosmic string spacetime behaves similarly to that
in a trivial flat spacetime, which tends to be angle-independent. Thus, only in the vicinity
of the string does the general configuration significantly impact entanglement harvesting.
In scenarios where the angular difference between two detectors is close to 0 or 2π (i.e.,
cos(θA − θB) ∼ 1), we can qualitatively infer that detectors with a small or large angle
between the interdetector separation and the string axis may mimic the behavior of detectors
in parallel or orthogonal alignment on the same side of the string, respectively. The presence
of the string should enhance entanglement harvesting in terms of the amount of entanglement
harvested in these misaligned cases, influencing both communication-mediated and genuine
entanglement harvesting. Conversely, when the angular difference deviates significantly from
0 and 2π the harvesting behavior diverges. Detectors with a large included angle between
the interdetector separation and the string tend to harvest entanglement similarly to those
in orthogonal alignment with detectors on opposite sides of the string. In contrast, a small
included angle aligns more closely with parallel alignment harvesting characteristics. In these
configurations, the influence of the cosmic string on entanglement harvesting in terms of
the amount of entanglement harvested remains positive.
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A The derivation of PD

Let u = τ and s = τ − τ ′, and then the transition probability (2.4) can be rewritten as

PD = λ2
∫ ∞

−∞
duχD(u)

∫ ∞

−∞
dsχD(u − s)e−iΩsW (s)

= λ2√πσ

∫ ∞

−∞
dse−iΩse−s2/(4σ2)W (s) . (A.1)

Substituting the Wightman function (3.8) into eq. (A.1), the transition probability can be
recast into a sum of three terms

PD = P0 + P1 + P2 (A.2)

with

P0 := − λ2σ

4π3/2

∫ ∞

−∞
ds

e−iΩse−
s2

4σ2

(s − iϵ)2 , (A.3)

P1 := − λ2σ

2π3/2

[ν/2]∑
m=1

′
∫ ∞

−∞
ds

e−iΩse−
s2

4σ2

(s − iϵ)2 − 4l2 sin2 (mπ
ν

) , (A.4)

P2 := λ2σν

4π5/2

∫ ∞

0
dζ

sin(νπ)
[cosh(νζ) − cos(νπ)]

∫ ∞

−∞
ds

e−iΩse−
s2

4σ2

(s − iϵ)2 − 4l2 cosh2
(

ζ
2

) . (A.5)

All the integrals above can be calculated by using the technique of distribution functions.
Mathematically, the action of a distribution g on a test function f is defined by

⟨g, f⟩ :=
∫ ∞

−∞
g(x)f(x)dx . (A.6)

There are some important identities for a distribution [12, 47]

〈dg

dx
, f
〉

= −
〈
g,

df

dx

〉
, (A.7)

and 〈
δ(n)(x), f(x)

〉
= (−1)nf (n)(0) . (A.8)

Especially for the distributions 1/x and 1/x2, we have

〈1
x

, f(x)
〉

= P
∫ ∞

−∞

f(x)
x

dx , (A.9)

〈 1
x2 , f(x)

〉
=
∫ ∞

0
dx

f(x) + f(−x) − 2f(0)
x2 , (A.10)

where P denotes the principle value of an integral. The first integral for P0 can be evaluated by
using the following identity that arises from differentiation of the Sokhotski-Plemelj formula

1
(x ± iϵ)n

= 1
xn

± (−1)n

(n − 1)! iπδ(n−1)(x) . (A.11)
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So, with these identities it is easy to obtain that [12]

P0 = − λ2σ

4π3/2

∫ ∞

−∞
dse−iΩse−s2/(4σ2) 1

(s − iϵ)2

= − λ2σ

4π3/2

∫ ∞

−∞
ds

e−iΩse−s2/(4σ2)

s2 + iλ2σ

4
√

π

∫ ∞

−∞
dse−iΩse−s2/(4σ2)δ(1)(s)

= − λ2σ

4π3/2

∫ ∞

0
ds

e−iΩse−s2/(4σ2) + eiΩse−s2/(4σ2) − 2
s2 − λ2Ωσ

4
√

π

= λ2

4π

[
e−σ2Ω2 −

√
πσΩ Erfc(σΩ)

]
. (A.12)

With the help of the identity (A.11), the second term of the transition probability can
be written as

P1 = − iλ2σ

2
√

π

[ν/2]∑
m=1

′
∫ ∞

−∞
dse−iΩse−

s2
4σ2 sgn(s)δ

(
s2 − 4l2 sin2 mπ

ν

)

− λ2σ

2π3/2

[ν/2]∑
m=1

′ P
∫ ∞

−∞
dse−iΩse−

s2
4σ2

1
s2 − 4l2 sin2 mπ

ν

= − λ2σ

4l
√

π

[ν/2]∑
m=1

′ e−l2 sin2(mπ/ν)/σ2

sin(mπ/ν) sin
[
2lΩ sin

(
mπ/ν

)]

− λ2σ

2π3/2

[ν/2]∑
m=1

′ P
∫ ∞

−∞
dse−iΩs e−s2/(4σ2)

s2 − 4l2 sin2 mπ
ν

= λ2σ

4l
√

π

[ν/2]∑
m=1

′ e−l2 sin2(mπ/ν)/σ2

sin(mπ/ν)

{
Im
[
e2iΩl sin(mπ/ν) Erf

(
il

σ
sin mπ

ν
+ σΩ

)]

− sin
[
2lΩ sin

(
mπ/ν

)]}
, (A.13)

where we have performed the integration by using the convolution of two functions in the
Fourier transforms in the last step.

Similarly, the integration with respect to s in eq. (A.5) can also be straightforwardly
carried out firstly, and after some manipulations, one has

P2 = λ2σν sin(νπ)
8lπ3/2

∫ ∞

0
dζ

1
cosh(νζ) − cos(νπ)

e−l2 cosh2(ζ/2)/σ2

cosh(ζ/2)

{
sin
[
2lΩ cosh(ζ/2)

]
− Im

[
e2ilΩ cosh(ζ/2) Erf

(
il

σ
cosh ζ

2 + σΩ
)]}

. (A.14)

B The derivation of XP

Substituting the trajectories (3.7) into eq. (3.2), one finds

W
(
xA(τ),xB(τ ′)

)
= W

(
xB(τ),xA(τ ′)

)
=− 1

4π2
1

(τ−τ ′−iϵ)2−d2 −
1

2π2

[ν/2]∑
m=1

′ 1
(τ−τ ′−iϵ)2−d2−4l2 sin2 (mπ

ν

)
+ ν

4π3

∫ ∞

0
dζ

sin(νπ)[
cosh(νζ)−cos(νπ)

][
(τ−τ ′−iϵ)2−d2−2l2(1+coshζ)

] .

(B.1)
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From eq. (2.5), after assuming u := τ ′ − τ , u′ := τ ′ + τ , we have

XP = −λ2
∫ ∞

−∞
du′e−u′2/(4σ2)e−iΩu′

∫ ∞

0
due−u2/(4σ2)W

(
u)

= −2
√

πλ2σe−σ2Ω2
∫ ∞

0
due−u2/(4σ2)W

(
u)

= X0 + XP 1 + XP 2 (B.2)

with

X0 := λ2σ

2
√

π3
e−σ2Ω2

∫ ∞

0
du

e−u2/(4σ2)

(−u − iϵ)2 − d2 , (B.3)

XP 1 := λ2σ√
π3

e−σ2Ω2
[ν/2]∑
m=1

′
∫ ∞

0
du

e−u2/(4σ2)

(−u − iϵ)2 − d2 − 4l2 sin2(mπ/ν)
, (B.4)

XP 2 := − νλ2σ

2
√

π5
e−σ2Ω2

∫ ∞

0
dζ

sin(νπ)
cosh(νζ) − cos(νπ)

∫ ∞

0
du

e−u2/(4σ2)

(−u − iϵ)2 − d2 − 2l2(1 + cosh ζ) .

(B.5)

According to the identity. (A.11), X0 can be worked out directly [12]

X0 = λ2σ

2
√

π3
e−σ2Ω2P

∫ ∞

0
du

e−u2/(4σ2)

u2 − d2 − iλ2σ

4d
√

π
e−σ2Ω2−d2/(4σ2)

= − iλ2σ

4d
√

π
e−σ2Ω2−d2/(4σ2) Erfc

(
id

2σ

)
= f

(
d

2σ

)
, (B.6)

with the auxiliary function f(z) is defined by eq. (3.19). Similarly, after carrying out the
integration with respect to u in eqs. (B.4) and (B.5), we have

XP 1 = 2
[ν/2]∑
m=1

′f

√ d2

4σ2 + l2

σ2 sin2 mπ

ν

 , (B.7)

and

XP 2 =
∫ ∞

0
dζ

ν sin(νπ)
π[cos(νπ) − cosh(νζ)]f

√ d2

4σ2 + l2

2σ2 + l2 cosh ζ

2σ2

 . (B.8)
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