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1 Introduction

The existence of small but non-zero neutrino masses, as implied by the neutrino oscillation
experiments, is clear evidence for physics beyond the Standard Model (SM). While it is
possible that neutrinos are Dirac particles with their masses arising from extremely small
Yukawa couplings involving right-handed neutrinos, a more natural scenario would be to
introduce their masses via the dimension-five Weinberg operator [1]. In this case lepton
number is not conserved and neutrinos are Majorana particles. The minimal UV complete
possibilities realizing this scheme at the tree-level are the type-I [2–6], type-II [7–10], and
type-III [11] seesaw models, that extend the SM respectively with right-handed neutrinos, a
complex scalar triplet, and fermionic triplets [12]. Alternatively, small Majorana neutrino
masses may be induced as quantum corrections arising through loop diagrams. In such models,
the scale of new physics can be naturally low, since the neutrino mass is suppressed by a loop
factor as well as by charged fermion masses. The Zee model is the simplest extension that falls
in this category, which generates neutrino masses radiatively at one-loop [13]. Other model
frameworks have been proposed to generate neutrino masses at one-loop [14], two-loops [15, 16],
and three-loops [17], see refs. [18, 19] for recent reviews, updates and references.

A Majorana mass term for the neutrino would explicitly break lepton number (L) by
two units (|∆L| = 2). Establishing the Majorana nature of the neutrino would have profound
impact in our understanding of the cosmos, since the same interactions can lead to baryon-
antibaryon asymmetry of the universe via leptogenesis [20]. The observation of neutrinoless
double decay (0νββ-decay) [21] of atomic nuclei would provide direct evidence for lepton
number violation (LNV) by two units, which is being explored experimentally with increased
sensitivity (for a recent review see ref. [22]). At high energy scales, the LHC provides another
interesting probe for LNV, which is the focus of this paper. Since lepton number (LN) is zero
in the initial state in pp collisions, it is possible to infer LNV at the LHC by observing final
states with non-zero LN. This requires signatures with an excess of leptons or anti-leptons in
the final state carrying non-zero lepton number. The classic LNV signature at colliders is the
final states with same-sign dilepton plus jets, pp → ℓ±ℓ′± + jets, first proposed by Keung
and Senjanovic [23] in the context of left-right symmetric models (LRSM) [6, 10, 24–26].
Here pp collision would produce a right-handed Majorana neutrino N and a charged lepton

– 1 –



J
H
E
P
0
6
(
2
0
2
4
)
1
3
2

ℓ± via s-channel exchange of a heavy W±
R gauge boson, with N decaying into ℓ′± + jets

by virtue of its Majorana nature. The resulting process, pp → ℓ±ℓ′± + jets, clearly shows
signs of L-violation by two units. Prospects for LNV signatures at the LHC in the LRSM
have been extensively explored [27–45].

Several authors have investigated LNV signatures within the general framework of type-I
seesaw mechanism [36, 39, 41, 42, 46–56]. Signals analogous to the Keung-Senjanovic process
can be realized here as well, with s-channel exchange of W± gauge boson producing N + ℓ±

pair. However, the production cross-section for this process is suppressed by the square of the
ν −N mixing angle θνN which is highly constrained by neutrino mass. In a one-generation
model, this mixing is given by θνN ≃

√
mν/MN ∼ 10−6 (for MN ∼ 100GeV), leading to

unobservable L-violation signals. With three families of active neutrinos mixing with three
right-handed neutrinos, the intricate connection between the active-sterile mixing and the
neutrino mass can be evaded by cancellation or by approximate symmetries. However, it
has been shown in refs. [50, 57] that in this case lepton number turns out to be nearly
conserved, suppressing L-violation signals at the LHC. Typically, the studies of L-violation
in the context of type-I seesaw model take a phenomenological approach and treat the ν −N

mixing to be independent of the neutrino masses.
The phenomenology of type-II seesaw model at colliders has been extensively studied

in refs. [58–62], which are crucial in testing several aspects of the neutrino mass generation
mechanism. To our knowledge, a lepton number violating signal has not been shown to be
observable at colliders in this framework.1

There have been studies of L-violation in a general Higgs triplet model in the decay of
top quark [66] and in effective field theory approach [67–70], which are however not directly
tied to the neutrino masses. The complementarity between 0νββ-decay and LNV searches
at the LHC in the same-sign dilepton plus jets channel has also been explored in simplified
model frameworks [69–75]. L-violation signals at the LHC in explicit neutrino mass models
arising from d = 7 operators has been studied in ref. [76], in a colored scalar extension in
ref. [77] and the Zee-Babu model [78]. L-violation in Higgs boson decay has been studied
in ref. [40] in the context of left-right symmetric models.

In the present study, we investigate LNV signatures at the LHC in two popular models
that generate Majorana masses for neutrinos at tree-level and one-loop level, respectively,
the type-II seesaw model [7–10] and the Zee model [13]. The masses of new particles in both
frameworks can be O(TeV), well within reach of the LHC. We study their sensitivity to LNV
through the same-sign dilepton plus jets signature, pp→ ℓ±ℓ′±+ jets, at the high-luminosity
LHC (HL-LHC), where ℓ = e, µ. Whereas new physics searches have been extensively explored
in the literature for the type-II seesaw model [58–61] and the Zee model [18, 19, 79–82], the
present paper derives, for the first time, the sensitivity to lepton number violation in these
two popular frameworks. We also draw some comparisons on the constraints between the
considered search channel and the standard ones with null lepton number in the final states.

1For instance, there are already stringent limits on doubly charged scalar masses from both ATLAS and
CMS, where the channel pp → δ±±δ∓∓ → ℓ±ℓ±ℓ∓ℓ∓ plays a leading role [63–65]. Whereas the observation of
this standard type-II seesaw signal would be a clear evidence of new physics, it does not warrant a sign for
LNV as this final state has null lepton number.
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Figure 1. Diagram illustrating the correspondence among Majorana mass generation for neutrinos
(top), 0νββ decay (bottom-left), and lepton number violating signatures at the LHC (bottom-right).
In the botom-right diagram ℓ−ℓ′− in the final state can be replaced by ℓ+ℓ′+ as well. All the diagrams
depicted violate lepton number by two units, |∆L| = 2.

Observation of ∆L = 2 signal at the LHC via the process pp → ℓ±ℓ′± + jets would
imply that neutrinos are Majorana particles. This inference is possible by virtue of a black
box theorem discussed in section 2 which was originally applied to neutrinoless double beta
decay [83], which we extend to collider signals. Unlike 0νββ signals which applies only to
electron flavor, at colliders any flavor of leptons with same sign would result in the conclusion
that neutrinos are Majorana particles.

The rest of this paper is organized as follows. We discuss the correspondence between
LNV at colliders and Majorana masses for neutrinos in section 2. In section 3, we study
the projected HL-LHC sensitivity for LNV with same-sign dilepton plus jets in the type-
II seesaw model. Section 4 provides an analogous interpretation for the Zee model. We
conclude in section 5.

2 Black box theorem at colliders

The black box theorem [83] establishes a direct correlation between the observation of 0νββ
decay and Majorana masses for the neutrinos. A cartoon representation of the 0νββ decay
contribution to the neutrino Majorana mass is illustrated in figure 1. This theorem ensures that
the LNV interactions, which imply non-zero rates for 0νββ decay, will also induce non-zero
Majorana mass for neutrinos, at least at four-loop, irrespective of the underlying new physics
model generating LNV. Although the contribution from 0νββ decay to the neutrino masses can
be extremely small and subject to model details [84], the black box theorem nonetheless implies
that neutrinos are Majorana in nature. The signal for 0νββ decay is yet to be observed. Recent
searches for 0νββ decay of 76Ge isotope constrains the half-life to T1/2(0νββ) ≳ 1.8× 1026

yr by GERDA [85], improving over previous measurements [86–88]. Future experiments are
expected to augment the sensitivity in lifetime by an order of magnitude or more [89].

It is possible to extend the black box theorem to same-sign dileptons plus jets signals,
pp→ ℓ±ℓ′±+ jets, at colliders. This process violates lepton number by two units and displays
a topology analogous to the 0νββ decay, as illustrated in figure 1. Hence, if we observe

– 3 –



J
H
E
P
0
6
(
2
0
2
4
)
1
3
2

a signature of LNV with ∆L = 2 at the LHC, this would imply Majorana nature for the
neutrinos. While the 0νββ decay signals only probe effective LNV interactions with two
electrons e−e−, the LHC can probe signals with electrons and muons in several combinations
(e±e±, µ±µ±, e±µ±), increasing the sensitivity to a wider array of effective LNV interactions.
The final state quarks could be of any flavor, CKM mixing would guarantee that neutrino
mass would be induced by closing the quark loops.

3 LNV signature in the type-II seesaw model

The type-II seesaw model is a theoretical realization for non-zero neutrino masses that requires
the existence of a SU(2)L triplet Higgs boson ∆ [7–10] with hypercharge Y = 1. The relevant
Lagrangian terms leading to neutrino mass in this framework are

L ⊃ −(Yν)αβl
T
LαCiσ2∆lLβ + µHT iσ2∆†H + h.c. (3.1)

where Yν is a 3 × 3 complex symmetric matrix, {α, β} are flavor indices, C is the charge
conjugation matrix, and lTL = (νT

L , e
T
L) stands for the three lepton doublets. After electroweak

symmetry breaking, the neutral component ∆0 acquires a vacuum expectation value (VEV)
v∆ = µv2

0/
√
2M2

∆, where M∆ is the mass of ∆0 and (v2
0 + 2v2

∆) ≃ (246 GeV)2. Here
v0 is the VEV of the neutral component of the Higgs doublet. This symmetry-breaking
pattern generates Majorana neutrino masses given by mν =

√
2Yνv∆. One of the most

distinguished phenomenological features of the type-II seesaw model is that the new triplet
scalar fields can directly couple to the SM gauge bosons (W±, Z, γ), leading to exciting
signatures at the LHC [58–61]. The doubly charged member of the triplet scalar can also
contribute to 0νββ decay [90], however the corresponding amplitude is suppressed by a factor
Yνv∆/M

2
∆ ∼ mν/M

2
∆, compared to the amplitude for light neutrino exchange which goes as

mν/⟨q2⟩ with ⟨q2⟩ ∼ (100 MeV)2, leading to null constraints for M∆ ∼ O(TeV) [90, 91].
In this section, we study the LHC signals of LNV in the type-II seesaw scenario. In

order to define LNV signals at the LHC, it is enough to observe final states with non-zero
lepton number. In practice, this results in the search for events with an excess of leptons
or anti-leptons, ensuring that we do not lose track of the lepton number with neutrinos in
the final state. We will study a striking type-II seesaw signature of this type, characterized
by the final state ℓ±ℓ′± + jets.

The leading production channels of doubly charged scalars at the LHC for the type-
II scenario are via the s-channel electroweak process, displaying the dominant associated
production of double and single charged Higgs bosons pp → δ±±δ∓, followed by double
charged Higgs pair production pp→ δ++δ−−. In addition, the type-II seesaw model can also
produce double charged scalars via the vector boson fusion (VBF) mode, pp → δ±±jj. In
figure 2 (left panel), we illustrate the production cross-section for these channels as a function
of mδ. We observe that the VBF mode increases in relevance for large values of mδ, however,
it still presents challenging event rates. In figure 2 (right panel), we display the cross-section
for the same channels as a function of the VEV of ∆, v∆. While the Drell-Yan production
channels do not result in any v∆ dependence, the VBF rate has a quadratic suppression,
σ(pp → δ±±jj) ∝ v2

∆. Electroweak precision observables, ρ/T -parameter, constrain the
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Figure 2. Cross-section for doubly charged Higgs boson pair production pp→ δ±±δ∓ (black solid),
pp → δ++δ−− (black dashed), and single production pp → δ±±jj (red) as a function of mδ (left
panel) and v∆ (right panel). We assume the LHC at

√
s = 13TeV, v∆ = 1GeV on the left panel, and

mδ = 500GeV on the right panel. Minimal selections pT j > 20GeV and |ηj | < 5 are applied for the
δ±±jj process.

model parameters to the region with v∆ ≲ O(1)GeV [92], limiting the phenomenological
relevance of the VBF channel.

The LNV signatures pp→ ℓ±ℓ′± + jets arise from all three leading production channels
for doubly charged scalar(s)

pp→ δ±±δ∓ → ℓ±ℓ′±tb, ℓ±ℓ′±W∓Z/H , (3.2)
pp→ δ±±δ∓∓ → ℓ±ℓ′±W∓W∓ , (3.3)
pp→ δ±±jj → ℓ±ℓ′±jj , (3.4)

where the associated SM resonances W , Z, t, and H decay hadronically. We display a
representative set of Feynman diagrams for these processes in figure 3. This signature
presents augmented event rates for values of v∆ ∼ 10−4 GeV. This parameter region benefits
simultaneously from singly and doubly charged scalars decays that are proportional to
the neutrino Yukawa couplings Yν (δ±± → ℓ±ℓ′± and δ± → ℓ±ν) and proportional to v∆
(δ±± → W±W± and δ± → tb, W±Z, W±H).

We perform the Monte Carlo generation of the signal channels shown in eqs. (3.2)–(3.4)
with MadGraph5aMC@NLO using the type-II FeynRules model file [93, 94]. Parton
shower and hadronization effects are accounted for with Pythia8 [95]. Detector effects are
simulated with Delphes3 [96], using the default HL-LHC detector card [97]. The same-sign
dilepton searches suffer from large backgrounds from nonprompt leptons. Nonprompt leptons
refer to leptons arising from decays of heavy flavor hadrons and jets misidentified as leptons.
Since these background components are challenging to simulate, we compare the signal
cross-sections for our model with the cross-section limits from same-sign dilepton plus jets
search from CMS scaled to the HL-LHC integrated luminosity to ensure robust numerical
comparison [98]. We assume that the uncertainties are statistics-dominated. This CMS
study originally focused on new physics interpretations in terms of supersymmetric models
conserving or violating R-parity.
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Figure 3. Representative set of Feynman diagrams contributing to the LNV signature pp→ ℓ±ℓ′± +
jets in the type-II seesaw model.

We start our analysis demanding exactly two same-sign leptons with transverse momenta
pT ℓ > 25GeV and rapidity |ηℓ| < 2.5 for electrons (|ηℓ| < 2.4 for muons). We reject events with
same (different) flavor leptons with invariant mass mℓℓ < 12GeV (8 GeV), and /ET < 50GeV.
We note that the signal process typically exhibits small /ET due to a lack of invisible particles
in the partonic final state. Nonetheless, some /ET may arise from hadronization, such as from
a b jet. Jets are defined with the anti-kt jet algorithm with radius R = 0.4, pT j > 40GeV,
and |ηj | < 2.4. We require two or more jets in the event and the scalar pT sum of all
jets HT > 1125GeV.

In figure 4, we present the LHC prediction for pp → ℓ±ℓ′± + jets (red-solid) in the
normal mass hierarchy scenario. The results satisfy the neutrino global fit presented in
ref. [100]. We have taken the central values of the global fits presented in ref. [100] in our
analysis, along with mν1 = 0.05 eV, and vanishing Majorana phases. We also assume that the
triplet scalars have a common mass and denote it as mδ. The CMS limit on the cross-section
was scaled to the HL-LHC integrated luminosity L = 3 ab−1 (red-dashed line) [98]. We
observe that our type-II signal displays relevant rates for moderate v∆, probing the parameter
region 3 × 10−5 GeV ≲ v∆ ≲ 2 × 10−4 GeV at 95% CL for mδ = 500GeV. For a choice
of v∆ = 10−4 GeV, we can probe this signal of LNV at the HL-LHC up to mδ = 700GeV.
The dominant contributions for the signal are given by the channels in eqs. (3.2) and (3.3).
The VBF channel presented in eq. (3.4) displays subleading effects, being suppressed by
v∆, as shown in figure 2 (right panel).

To illustrate the relevance of our LNV ℓ±ℓ′± + jets search for the type-II seesaw, we
present the ATLAS analyses on ℓ+ℓ+ℓ−ℓ− (blue-dashed) and W+W+W−W− (black-dashed),
rescaling the limits to the HL-LHC luminosity [63, 99]. While a possible observation of an
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Figure 4. Cross-section for pp→ δ++δ−− → ℓ+ℓ+ℓ′−ℓ′− with ℓ = e, µ (blue solid), pp→ δ++δ−− →
W+W+W−W− (black solid), and pp → δ±±δ∓∓ + δ±±δ∓ + δ±jj → ℓ±ℓ±+ jets (red solid) in the
Type II seesaw as a function of v∆ (left panel) and mδ (right panel). The 95% confidence level limits
for the high-luminosity LHC with 3 ab−1 (dashed) are shown for all considered channels. They are
obtained from refs. [63, 98, 99], scaling the limits to the HL-LHC integrated luminosity. We assume
that the uncertainties are dominated by statistics. The results satisfy the neutrino global fit, in the
normal mass hierarchy scenario (NH), presented in ref. [100]. We assume the central values for the fit
parameters along with mν1 = 0.05 eV, Majorana phases Φ1 = Φ2 = 0, mδ++ = mδ+ = mδ = 500GeV
(left panel), v∆ = 10−4 GeV (right panel), and the LHC at

√
s = 13TeV. For more details on the

analytical branching ratio dependencies of δ±± and δ±, see, for instance, ref. [59].

excess of events in one of these two standard channels represents a clear sign of new physics,
it does not phenomenologically translate into evidence of LNV as both channels display null
lepton number in the final state. The correspondent signal generation was performed with
the same Monte Carlo setup as for our ℓ±ℓ′± + jets study. The signal cross-sections for
pp → δ±±δ∓∓ → ℓ+ℓ+ℓ−ℓ− and pp → δ±±δ∓∓ → W+W+W−W− are shown in blue-solid
and black-solid lines, respectively. Whereas the 4ℓ signature thrives in the small v∆ region
and the 4W benefits from large v∆, the ℓ±ℓ′± + jets can probe intermediate values of v∆
being complementary to both channels. Hence, the pp → ℓ±ℓ′± + jets search, in addition
to providing a striking LNV signal, results in a competitive signature for intermediate v∆
regimes for the type-II seesaw model.

4 LNV signature in the Zee model

In this section, we study the projected sensitivity of LNV signals at the HL-LHC within
the framework of the Zee model of neutrino masses [13]. The Zee model is perhaps the
simplest extension of the SM that can generate non-zero neutrino masses radiatively at
the one-loop level. The new physics responsible for inducing neutrino mass can be at the
TeV-scale, since neutrino masses suffer from a loop suppression as well as a chiral suppression
proportional to the charged lepton masses.

The model extends the SM by introducing a second SU(2)L Higgs doublet Φ2 and a
charged scalar singlet η+. The SM-like Higgs doublet is denoted as Φ1. The two Higgs doublets
{Φ1,Φ2} can be redefined to a new basis {H1, H2}, where the neutral component of H1 solely
acquires a VEV v, in the so-called Higgs basis. The charged scalar doublet H+

2 and singlet
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η+ are composed of physical mass eigenstates {h+, H+}, with h+ = cosφ H+
2 − sinφ η+ and

H+ = sinφ H+
2 + cosφ η+. The mixing angle φ is given by sin 2φ = −

√
2vµ/(m2

H+ −m2
h+).

Here, µ is the coefficient for the scalar cubic coupling term in the Higgs potential

V ⊃ µHT
1 iσ2H2η

− + h.c. (4.1)

The leptonic and quark Yukawa Lagrangian for the BSM Higgs fields in the Higgs basis
can be expressed as

LY ⊃ −fαβl
T
LαCiσ2lLβη

+ − Yαβ l̄LαH2lRβ − YdαβQ̄LαH2dRβ − YuαβQ̄LαH̃2uRβ + h.c., (4.2)

where {α, β} are the generation indices, fαβ = −fβα is an antisymmetric matrix in flavor
space, QL denotes the left-handed quark doublet, while lR, dR and uR are the right-handed
charged lepton, down-type and up-type quark singlets, respectively. (Y, Yu, Yd) are the
Yukawa coupling matrices for the second Higgs doublet and H̃2 ≡ iσ2H

⋆
2 . The charged lepton

mass matrix Mℓ = Ŷ v/
√
2 can be chosen to be diagonal such that Mℓ = (me,mµ,mτ ) after

electroweak symmetry breaking. This diagonalization is achieved by transforming Y to a
diagonal basis Ŷ , Y → Ŷ , through bi-unitary transformations, without any loss of generality.
Note that we have allowed the most general set of Yukawa couplings in eq. (4.2), including
couplings of quarks with H2. The Yukawa coupling matrices of H1 to the up-type and
down-type quarks, which generate their masses are denoted as Ỹu and Ỹd, respectively.

The leptonic Yukawa interactions terms in eq. (4.2), together with the cubic coupling
terms in eq. (4.1) induce explicit lepton number violation by two units. This leads to
non-zero neutrino masses induced at the one-loop level, with the mass matrix expressed
as mν = κ(fMℓY + Y TMℓf

T ), where κ = (1/16π2) sin 2φ log(m2
h+/m2

H+) is the one-loop
suppression factor. Consistency with neutrino oscillation data requires the product of f and Y
to be small, which can be realized by adopting O(1) values for Y and very small f couplings,
f ≪ 1, or vice versa. Since our goal is to study the LHC signals of lepton number violation,
we consider the latter scenario, f ∼ O(1) and Y ≪ 1, as the LNV interactions exclusively
arise from the f -dependent couplings of η+ in conjunction with the cubic scalar coupling µ.

As discussed previously in section 3, the lepton number violating signature is characterized
by two same-sign charged leptons plus jets, pp → ℓ±ℓ′± + jets. In the Zee model, such
a final state can arise from LNV decays of the charged scalar h+ on account of its η+

admixture thanks to the cubic scalar coupling µ of eq. (4.1). Expanding the first term
of the Lagrangian in eq. (4.2), and using eq. (4.1), the LNV interaction terms for the h+

can be expressed as follows:

−LY ⊃ 2 sinφ h+[feµ(ν̄c
µeL − ν̄c

eµL) + feτ (ν̄c
τeL − ν̄c

eτL) + fµτ (ν̄c
µτL − ν̄c

τµL)] + h.c. (4.3)

We focus on the region of parameter space where feµ ∼ O(1) > feτ , fµτ , ignoring the
implications from the latter two couplings for our collider study. This is preferable since
feτ and fµτ would lead to signatures with τ leptons in the final state. Both leptonic and
hadronic decay modes of the τ result in neutrinos which can carry away an unknown lepton
number, impeding the reconstruction of the total lepton number for the final state. On the
other hand, feµ would allow LNV decays of h± into the same-sign electron-muon pair plus
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Figure 5. Feynman diagrams at the Born-level illustrating the leading s-channel (left panel) and
sub-leading t-channel (right panel) production modes for singly charged Higgs h± in the Zee model,
leading to LNV signatures pp→ ℓ±ℓ′± + jets.

jets, h± → e±µ±(W∓ → jj), which can be fully reconstructed. It should be noted that from
the expression for the neutrino mass matrix mν given above, for any given value of feµ one
can find a choice of other parameters of the model where neutrino oscillation data can be
fitted [19]. We also note that within our scenario (Y ≪ 1), feµ is most stringently constrained
by the lepton-hadron universality tests [101, 102], which imposes the updated upper limit
|feµ sinφ|2 ≤ 0.02 (mh+/TeV)2. We shall impose this constraint in our analysis.

We next focus on the production of h± at the LHC. By virtue of its mixing with the
charged doublet Higgs H+

2 which has Yukawa couplings to quarks, h+ can be resonantly
produced in the quark fusion channel. The h± field would decay predominantly into ℓ±ν,
which is however not useful for L-violation studies owing to the presence of neutrinos.
However, h± has a subleading decay into e±µ±W∓, which gives significant event rates. For
example, at mh± = 1 TeV, the branching ratios for the h± → ℓ±ν and e±µ±W∓ decay modes
are roughly 24% and 1.2%, respectively, considering |feµ sinφ| ∼ 0.1 and |(Yu/d)11 cosφ| =
|(Yu/d)33 cosφ| ∼ 0.1. Observable LNV signature can thus arise, even with the small branching
ratio of order 1%, in the resonant h± production channel pp → h± → e±µ±W∓ with the
W∓ boson decaying hadronically. Sub-leading contributions emerge from h± mediation in
the t-channel. Representative Feynman diagrams at the Born-level for s- and t-channel h±

exchange are shown in figure 5. It is worth pointing out that the topology of the right
panel diagram of figure 5 is the so-called vector-scalar exchange contribution for neutrinoless
double beta decay [103], if the final state leptons are two electrons. We consider both
production modes in the present analysis. In order to avoid the stringent flavor constraints
from meson decays [104–106], all entries for Yu/d are set to zero, except for first (Yu/d)11)and
third (Yu/d)33 generation diagonal entries.2 Thus, in the present scenario, the charged Higgs
h± contributes to leptonic decay, credits to feµ = −fµe, and hadronic decay into first and
third-generation quarks. Typically, this implies constraints from pion decay and nuclear β
decay. However, h± couples with charged and neutral leptons from different flavors due to
the antisymmetric structure of f , leading to no interference with the W boson-mediated
nuclear β decay. The constraints from beta decay are therefore very weak for h± masses of

2To be somewhat more general, we chose |(Yq)33 cos φ| to be 0.1 instead of zero.

– 9 –



J
H
E
P
0
6
(
2
0
2
4
)
1
3
2

100 200 500 1000 2000 4000
mh± [GeV]

0.04

0.1

0.2

0.5

1.0

|(Y
q)

11
co

s
|

s = 13 TeV, 3.6 - 37.0 fb 1
95% CL upper limits

|y | < 0.3
|y | < 0.6

Boosted dijet + ISR [36.1 fb 1]
Resolved dijet + ISR( ) [15.5 fb 1]
Resolved dijet + ISR(j) [15.5 fb 1]
Dijet TLA [3.6 & 29.7 fb 1]

Dijet 8 TeV [20.3 fb 1]
Dijet [37.0 fb 1]
Dijet angular [37 fb 1]

Figure 6. Upper limits at 95% CL from dijet searches on |(Yq)11 cosφ| as a function of charged Higgs
mass mh± for the Zee model.

order TeV. Furthermore, pseudoscalar interactions are necessary to induce contributions to
charged pion decay, which would be highly constraining. A pseudoscalar coupling of h± of the
form yp cosϕ (uγ5d)h+ would lead a constraint of |yp feµ cosϕ sinϕ| ≤ 5× 10−4 (mh±/TeV)2

from Γ(π → eνµ)/Γ(π → µνµ) measurement [107]. This constraint can be evaded by taking
(Yd)11 = (Yu)11 ≡ (Yq)11, in which case the interaction of h± with the quarks are purely
scalar with yp = 0. Therefore, constraints from pion decay and β decay can be safely ignored.
Under the previously discussed assumptions, the only constraints on the ud̄h+ couplings
(∝ |(Yq)11 cosφ|) that govern h± production at the LHC arise from resonant dijet searches at
the LHC. We also note that the heavier charged Higgs boson H± is expected to be almost
degenerate to the heavier neutral scalar Higgs H0, and considering the stringent limits on the
mass of H0, we choose heavier H± such that they don’t significantly impact the signal process.

Dijet searches at the LHC have been recast to a simplified scenario featuring an axial
vector mediator [108]. The search results are presented there as upper limits on the axial
vector coupling to quarks and the mediator’s mass. We translate them to the limits on
the {mh+ , (Yq)11 cosφ} plane for the Zee model by comparing the production cross-sections
for pp → jj at the leading order with those in the simplified axial vector model. In
figure 6, we show the limits from dijet searches performed using LHC

√
s = 8 TeV data at

L = 20.3 fb−1 [109] (brown) and
√
s = 13 TeV data at L = 37 fb−1 [110] (orange). The

green and red (purple) contours show the limits from boosted dijet + ISR searches [111]
and resolved dijet + γ (j)-ISR searches [112]. The aforesaid search analyses consider
a sliding window-fit of the dijet invariant mass distribution to estimate the background,
thus, making them sensitive below a certain width-to-mass ratio Γh+/mh+ . The dijet
limits are valid up to Γh+/mh+ ≤ 15%, while the dijet + ISR search limits are valid only
up to Γh+/mh+ ≤ 10% [108]. We also show the limits from trigger-object-level (TLA)
dijet [113] (blue) and dijet angular analysis [110] (black). The TLA dijet analysis focuses
on two distinct selection criteria, |y∗| < 0.3 and |y∗| < 0.6, where y∗ = (y1 − y2)/2 with y1
and y2 being the pseudorapidity of the highest and second-highest pT jets at the trigger-level.
The TLA dijet analysis with |y∗| < 0.3 is sensitive up to Γh+/mh+ ≤ 10%, while the TLA
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mh± |feµ sinφ| |(Yq)11 cosφ|
Γh± σ(pp→ e+µ+jj)

[GeV] [GeV] [fb]

160 0.02 0.23 0.53 0.40
200 0.03 0.19 0.46 1.4
400 0.06 0.21 1.3 10.3
600 0.08 0.11 0.91 13.6
800 0.11 0.05 0.86 3.1
1030 0.15 0.11 1.7 7.2
1500 0.21 0.10 2.3 3.0
1900 0.27 0.12 3.5 2.1
3000 0.42 0.33 22 0.73
4000 0.57 0.55 77 0.16

Table 1. Highest allowed values for |feµ sinφ| from lepton-hadron universality constraints [101] and
|(Yq)11 cosφ| from dijet searches at the LHC [108–113] for several charged Higgs masses mh± in the
Zee model, with feµ ∼ O(1) > feτ , fµτ , Yℓℓ ≪ 1, (Yq)11/33 ∼ O(1), and (Yq)22, (Yq)ij(i ̸= j) = 0. We
also restrict to |feµ sinφ| < 0.1 and |(Yq)11 cosφ| < 1 in order to avoid perturbativity issues. The
total decay width for the charged scalar is also shown along with the tree-level production rates for
the LNV signal, pp→ e±µ±jj, at

√
s = 13 TeV.

dijet analysis assuming |y⋆| < 0.6 is sensitive only up to Γh+/mh+ ≤ 7% [108]. The angular
dijet analysis is sensitive for wider resonances and is valid up to Γh+/mh+ ≤ 50%.

In table 1, we show the highest allowed values for |feµ sinφ| and |(Yq)11 cosφ| from
lepton-hadron universality constraints (using the previously discussed inequality |feµ sinφ| ≤
0.02(m±

h /TeV)2) and dijet bounds (see figure 6), respectively, for various charged Higgs
masses. We note that the respective couplings have been restricted to |feµ sinφ| < 0.1
and |(Yq)11 cosφ| < 1 in order to avoid endangering perturbativity, thus making our re-
sults conservative estimates. The total decay width for h± and the truth-level leading
order cross-section for the LNV signal pp → e±µ±jj at

√
s = 13 TeV, computed using

MadGraph5aMC@NLO [93], are also shown.
The pp→ e±µ± + jets signal events in the Zee model are simulated using the analysis

setup described in section 3. Similar event selection criteria are also adopted, except that we
consider two signal regions, one with HT ⊂ [300, 1125] GeV and another with HT > 1125 GeV,
motivated by the CMS analysis for same-sign leptons plus jets [98]. We refer to the two signal
regions as SRA and SRB, respectively. It is worth mentioning again that the requirement
of low missing energy ( /ET < 50 GeV) is crucial to avoid neutrinos, which could carry away
the lepton number.

In figure 7, we present the cross-sections for the LNV signal pp→ e±µ± + jets (black-
solid) at the

√
s = 13 TeV LHC. The signal cross-section involves a product of the production

rate of h±, which is primarily influenced by |(Yq)11 cosφ| and mh± , the partial decay width
of h± → ℓ±ν, which is determined by |feµ sinφ|, |(Yq)11 cosφ|, (Yq)33,3 and mh± , and the
signal efficiencies in the signal regions SRA and SRB. While performing the collider analysis,

3Adopting a conservative approach, we set |(Yq)33 cos φ| = 0.1 while performing the analysis.
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Figure 7. Cross-section for same-sign dilepton plus jets production pp → e±µ± + jets (black-
solid) as a function of the charged Higgs mass mh± at the

√
s = 13TeV LHC. The 95% confidence

level limits for the high-luminosity LHC with 3 ab−1 (dashed) are shown for signal regions SRA
[HT ⊂ [300, 1125] GeV] (red) and SRB [HT > 1125 GeV] (blue).

we consider the highest values of |(Yq)11 cosφ| consistent with the dijet bounds, as shown
in table 1. Likewise, we consider the highest values of |feµ sinφ| from the lepton-hadron
universality constraints, listed in table 1, for m±

h ≲ 800 GeV. In the heavy h± regime,
mh± ≳ 800 GeV, |feµ sinϕ| ≥ 0.1 is consistent with these constraints. However, as mentioned
previously, adopting a conservative approach, we restrict |feµ sinϕ| ≲ 0.1 in order to avoid
any perturbativity issues. Therefore, we fix |feµ sinϕ| = 0.1 in the m±

h ≳ 800 GeV region
while performing the collider analysis, whose results are shown in figure 7. The characteristics
observed in the lower mh± region in figure 7 can be attributed to the features in the upper
limits |(Yq)11 cosφ| from dijet searches, as shown in figure 6. We reiterate that the leading
contribution to the LNV signal arises from resonant h± production in the s-channel. Note that
the resonant charged Higgs production cross-section is found to be roughly consistent with
that given in ref. [114] for the case of two Higgs doublet model. The projected sensitivities
at the HL-LHC in SRA (red-dashed) and SRB (blue-dashed), is computed by extrapolating
the CMS limits [98] for the respective signal regions through luminosity scaling. Signal
regions SRA and SRB play a complementary role, with the former being optimal at lower
charged Higgs mass, mh± ≲ 800 GeV.

We observe that the LNV signature pp → e±µ± + jets in the Zee model can be
probed at the HL-LHC in signal region SRA for mh± ⊂ [300, 1550] GeV, and in SRB
for mh± ⊂ [500, 4800] GeV, at 95% CL. It is important to note that the LNV signal
features a relatively small missing transverse energy /ET irrespective of mh± , resulting from
hadronization of the b and light flavored quarks. As discussed previously, smaller /ET values
are a characteristic feature of the LNV signature, since the same-sign dilepton plus jets
signal will be typically accompanied by neutrinos in the absence of lepton number violating
couplings leading to relatively higher /ET distributions. It is also worth noting that h± can
be probed at the LHC in DY production, pp→ γ∗/Z → h±h∓ → ℓ±ℓ′∓ + /ET . However, this
channel is weakly constrained at the LHC [19] by stau (τ̃) pair production searches [115].
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Figure 8. Projected exclusion regions in the plane of |feµ sinφ| and |(Yq)11 cosφ| in the Zee model
from searches in the lepton number violating pp → e±µ±+jets final state in signal region SRA
(blue-shaded) and SRB (red-shaded) at the HL-LHC at 95% CL. Three different charged Higgs masses
are considered, mh± = (0.5, 1, 1.5)TeV. Current upper limits on |feµ sinφ| from lepton-hadron
universality (LHU) constraints, |feµ sinφ|2 ≤ 0.02 × (mh±/TeV)2 [101], and on |(Yq)11 cosφ| from
dijet searches at the LHC (see figure 6) are shown (grey-shaded).

We cast the results into the plane of |feµ sinφ| and |(Yq)11 cosφ| in figure 8 to evaluate the
projected reach at the HL-LHC for three different charged Higgs masses, mh± = 0.5, 1, 1.5 TeV.
The grey-shaded region represents the parameter space excluded by current constraints. The
blue and red-shaded areas fall within the projected reach of LNV searches in the pp→ e±µ±

+ jets channel at the HL-LHC at 95% CL for signal regions SRA and SRB, respectively.
We observe that the HL-LHC will be able to extend the reach further beyond the current
sensitivity. Besides, as discussed previously, at lower charged Higgs masses, mh± ∼ 500 GeV,
SRA is comparatively more sensitive than the SRB. Their relative impact is reversed in
the case of mh± ∼ 1 and 1.5 TeV.

5 Summary

Whether lepton number is a broken symmetry of nature or not is one of the profound questions
in the SM. It strongly correlates with the question regarding the nature of neutrinos, credits
to the black box theorem. Various SM extensions have attempted to address these issues.
The type-II seesaw model and the Zee model are compelling minimal extensions that generate
small Majorana masses for the neutrinos implying LNV by two units. In a favorable range
of parameters, the new scalar particles predicted by these models can be accessed at the
LHC while being consistent with neutrino oscillation data.

In this paper we analyzed the HL-LHC prospects for lepton number violation signature,
pp→ ℓ±ℓ′± + jets, arising in the type-II seesaw model and the Zee model through detailed
collider studies. In the type-II seesaw model, we considered three leading production channels
for δ±± that result in final states with L-violation, namely Drell-Yan production of double
and single-charged scalars, pp→ δ±±δ∓, pair production of double charged scalars pp→ δ±±,
and VBF production pp → δ±±jj. We performed a collider study using the signal regions
from the current CMS analysis [98] for the same-sign dilepton plus jets. The upper limits on
the signal cross-sections at the HL-LHC are obtained from the CMS measurements through
luminosity rescaling. Searches in the pp→ ℓ±ℓ′± + jets results in a compelling signature for
lepton number violation at the HL-LHC at 95% CL, at intermediate v∆ ∼ 10−4 GeV. The
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search potential of the LNV signal is also shown to be complementary to the sensitivity of
the standard δ±± searches in the 4ℓ and 4W final states.

An analogous search strategy is adopted to analyze the HL-LHC sensitivity for the lepton
number violating signal, pp → e±µ± + jets, in the Zee model of neutrino mass. The LNV
signal originates from decays of h±, with the leading production process being resonant h±

production via quark fusion. Here again, we observe that the HL-LHC will be able to probe
the LNV signal at 95% CL through searches in the pp → e±µ± + jets channel, for a wide
range of charged Higgs masses, mh± ⊂ [0.3, 4.8] TeV. Notably, our results clearly demonstrate
that the L-violating signature, pp→ ℓ±ℓ′± + jets, in the type-II seesaw and the Zee Model,
has the potential to be discovered at the HL-LHC.
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