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1 Introduction

The Rényi entropy is a one-parameter generalization of the entanglement entropy, quantifying
the degree of entanglement between two subsystems of a quantum system A ∪ B:

Sn = 1
1− n

logTr[ρn
A], (1.1)

where ρA = TrBρAB is the reduced density operator of A. The Rényi entropy can be computed
by the replica method with the path integral on an n-fold cover of the original Euclidean
geometry branched around the entanglement surface ∂A [1, 2]. The supersymmetric extension
of the Rényi entropy was introduced in [3] and studied in various dimensions [4–17]. The
supersymmetric Rényi entropy is defined as

Ssusy
n = 1

1− n
log
∣∣∣∣ Zsusy

n

(Zsusy
1 )n

∣∣∣∣ , (1.2)

where Zsusy
n is the supersymmetric partition function on an n-branched manifold by turning

on an R-symmetry background field to preserve supersymmetries. An advantage of the
supersymmetric Rényi entropy is that it can be calculated using the localization technique [18–
22]. By taking the strong coupling and large N limit, it is matched to the holographic
calculations by gravity.

The AdS/CFT correspondence offers a convenient way to calculate the Rényi entropy
for CFTs in the ground state with a spherical entangling surface [23, 24]. The ordinary
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Rényi entropy can be mapped to the thermal entropy in the S1 ×Hd−1 with the temperature
T = 1/(2πLn), where L is the radius of the hyperbolic space Hd−1. In terms of thermal
partition functions,

Z[Sd] = Z[S1 ×Hd−1]. (1.3)

Similarly, the supersymmetric Rényi entropy can be mapped to a twisted thermal partition
function. The holographic dual to S1×Hd−1 is a hyperbolic black hole (up to a Wick rotation).
The supersymmetric Rényi entropy can be calculated in terms of charged hyperbolic black
holes under the Bogomol’nyi-Prasad-Sommerfield (BPS) condition. The charged Rényi
entropy is a generalization of the Rényi entropy, and it takes into account the distribution of
a conserved charge across the entangled states [25]. While the holographic charged Rényi
entropy can be calculated by means of charged hyperbolic black holes, the BPS condition
imposes a constraint between the temperature and the chemical potential of the black hole.

In this paper, we compute holographic supersymmetric Rényi entropy by means of
charged hyperbolic black holes in an Einstein-Maxwell-dilaton (EMD) system that interpolates
truncations of the following top-down models under the BPS condition.

• AdS5/CFT4: U(1)3 truncations of D = 5 gauged supergravity embeddable to AdS5×S5,
near-horizon limit of rotating D3-brane in 10D type IIB supergravity. The CFT dual
is N = 4 supersymmetric Yang–Mills (SYM) theory [26]. Three special cases can be
reduced to an EMD system (including when the dilaton vanishes).

• AdS4/CFT3: U(1)4 truncations of D = 4 gauged supergravity embeddable to AdS4×S7,
near-horizon limit of rotating M2-brane in 11D supergravity. The CFT dual is the
ABJM model [27]. Four special cases can be reduced to an EMD system (including
when the dilaton vanishes).

• AdS7/CFT6: U(1)2 truncations of D = 7 gauged supergravity embeddable to AdS7×S4,
near-horizon limit of rotating M5-brane in 11D supergravity. The CFT dual is 6D (2, 0)
superconformal field theory. Two special cases can be reduced to an EMD system.

• AdS6/CFT5: Romans F(4) gauged supergravity [28] coupled to matter embeddable to a
warped AdS6 × S4 background of massive IIA supergravity [29, 30] or IIB supergravity
[31]. Two special cases can be reduced to an EMD system.

The metrics of these D = 4, 5, 6, 7 supergravity theories are summarized in appendix A.
Among these solutions, there are 11 cases of EMD truncations. Interestingly, they can be
interpolated by a single EMD system. When the interpolating parameter α takes special
values for AdSd+1, the EMD system coincides with top-down models. When α does not take
these special values, the EMD system in AdS4 still belongs to supergravity. Then we can
treat the EMD system in AdS4 as a bottom-up model, since the supersymmetry is gauged
in the bulk and global in the boundary.

We find a remarkably simple formula of the supersymmetric Rényi entropy that unifies
(interpolates) the above 11 special cases; see (2.27) below. Among these 11 cases of the
supersymmetric Rényi entropy, many have appeared in the literature in SCFT and gravity
calculations, and some have not appeared in the literature and have new features.
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We also calculate the capacity of entanglement [32] and the entanglement spectrum [33],
which are entanglement data expressed in different ways than the Rényi entropy. The capacity
of entanglement as a quantum information measure different from entanglement entropy has
been studied broadly [34–37]. In this paper, we generalize the capacity of entanglement to
the supersymmetric capacity of entanglement and show that it cannot be mapped to the
standard heat capacity of the thermal CFT on hyperbolic space, due to the dependence of
the temperature and the chemical potential by the BPS condition. This is different from the
previous results of the non-supersymmetric capacity of entanglement. We also calculate the
entanglement spectrum, which are eigenvalues of ρA. We write the entanglement spectrum
as convolutions of generalized hypergeometric functions.

At first glance, the dilaton potential in our model looks a little cumbersome. However,
we demonstrate that this is the most natural way to add a cosmological constant to the
Horowitz-Strominger solution [38] found in 1991. We derive the potential of the EMD system
starting with the V = 0 solution under reasonable assumptions. As a byproduct, we obtain
two nontrivial neutral limits as hyperbolic black holes with scalar hair.

The paper is organized as follows. In section 2, we take advantage of an EMD system to
calculate the supersymmetric Rényi entropy, and obtain a simple result that interpolates 11
special cases from top-down truncations. In section 3, we study the capacity of entanglement
and the entanglement spectrum. In section 4, we derive the potential of the scalar field.
In section 5, we conclude with some open questions. In appendix A, we review consistent
truncations of D = 10 and D = 11 solutions in supergravity. In appendix B, we review the
FI-gauged supergravity. In appendix C, we give a special IR geometry.

2 Supersymmetric Rényi entropy from EMD systems

We start with an EMD system that has large intersections with supergravities. In fact, this
system in AdS4 or in general dimensions was rediscovered many times [39–45]. We will give
an elegant explanation in section 4.1 that the dilaton potential V (ϕ) is naturally generated
from a V = 0 solution. The (d + 1)-dimensional action is

S =
∫

dd+1x
√
−g

(
R − 1

4e−αϕF 2 − 1
2(∂ϕ)2 − V (ϕ)

)
, (2.1)

where d ≥ 3, F = dA, and α is a parameter. We have set 16πG = 1. The potential of
the dilaton field is

V (ϕ) = v1e
− 2(d−2)

(d−1)α
ϕ + v2e

(d−1)α2−2(d−2)
2(d−1)α

ϕ + v3eαϕ , (2.2)

where

v1 = −(d − 1)2[d(d − 1)α2 − 2(d − 2)2]α2

[2(d − 2) + (d − 1)α2]2L2 ,

v2 = − 8(d − 1)3(d − 2)α2

[2(d − 2) + (d − 1)α2]2L2 ,

v3 = −2(d − 1)(d − 2)2[2d − (d − 1)α2]
[2(d − 2) + (d − 1)α2]2L2 .

(2.3)
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As a justification of this potential, table 1 below shows that it reproduces 11 EMD systems
of especial physical significance. The potential can be written in terms of a superpotential
W (ϕ) [46]:

V (ϕ) = W ′(ϕ)2 − d

2(d − 1)W 2, (2.4)

W (ϕ) = 2
√
2 (d − 1)(d − 2)

[2(d − 2) + (d − 1)α2]L

(
e

α
2 ϕ + (d − 1)α2

2(d − 2) e
− d−2

(d−1)α
ϕ
)

. (2.5)

The ϕ → 0 behavior of V (ϕ) is

V (ϕ) = −d(d − 1)
L2 − d − 2

L2 ϕ2 +O(ϕ3) , (2.6)

where the first term is the cosmological constant, and the second term shows that the mass
of the scalar field satisfies m2L2 = −2(d − 2). The scaling dimension of the scalar operator
dual to the scalar field ϕ satisfies ∆(∆− d) = m2L2, which has two solutions ∆± = 2, d − 2.
Recall that the alternative quantization exists when −d2/4 ≤ m2 ≤ −d2/4+1; the alternative
quantization exists only in d = 3. The mass is above the BF bound for all d except that
the mass saturates the BF bound in d = 4.

The above EMD system admits an analytic solution [39–41]:

ds2 = −f(r)dt2 + 1
g(r) dr2 + U(r)dΣ2

d−1,k , (2.7)

A = 2
√

(d − 1)bc

2(d − 2) + (d − 1)α2

( 1
rd−2

h

− 1
rd−2

)
dt , (2.8)

eαϕ =
(
1− b

rd−2

) 2(d−1)α2

2(d−2)+(d−1)α2
, (2.9)

where dΣ2
d−1,k is a (d − 1)-dimensional hyperbolic space Hd−1 (k = −1), plane Rd−1 (k = 0),

or sphere Sd−1 (k = 1) of unit radius. The functions in the metric are

f =
(

k − c

rd−2

)(
1− b

rd−2

) 2(d−2)−(d−1)α2

2(d−2)+(d−1)α2
+ r2

L2

(
1− b

rd−2

) 2(d−1)α2

(d−2)[2(d−2)+(d−1)α2]
,

g = f(r)
(
1− b

rd−2

) 2(d−3)(d−1)α2

(d−2)[2(d−2)+(d−1)α2]
, (2.10)

U = r2
(
1− b

rd−2

) 2(d−1)α2

(d−2)[2(d−2)+(d−1)α2]
.

The system is invariant under α → −α and ϕ → −ϕ; we assume α ≥ 0. When α = 0,
we obtain the Reissner-Nördstrom-AdS (RN-AdS) black hole. Later we take k = −1 for
hyperbolic black holes. We set L = 1 in the following.

The mass, temperature, entropy, chemical potential, and charge are given by [47, 48]1

M = (d−1)VΣ
16πG

(
c+k

2(d−2)−(d−1)α2

2(d−2)+(d−1)α2 b

)
, (2.11)

1For a derivation of the mass by holographic renormalization in AdS4, see appendix A of [49].
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T =
√

f ′g′

4π

∣∣∣∣
r=rh

, S = VΣ
4G

U(rh)(d−1)/2 , (2.12)

µ=2
√

(d−1)bc

2(d−2)+(d−1)α2
1

rd−2
h

, Q=2(d−2)VΣ

√
(d−1)bc

2(d−2)+(d−1)α2 , (2.13)

where VΣ is the volume of Hd−1, regulated by integrating out to a maximum radius R of
this hyperbolic space [24]:

VΣ ≃ Ωd−2
d − 2

[
Rd−2

δd−2 − (d − 2)(d − 3)
2(d − 4)

Rd−4

δd−4 + · · ·
]
, (2.14)

where Ωd−2 = 2π(d−1)/2/Γ((d − 2)/2) is the area of Sd−2. The cutoff δ is related to the UV
cutoff in the dual CFT, consistent with the area law of the entanglement entropy. We have
checked that the first law of thermodynamics dM = TdS + µdQ is satisfied by (2.11)–(2.13).
In the grand canonical ensemble, we use the grand potential Ω = M − TS − µQ, by which
the first law of thermodynamics is

dΩ = −SdT − Qdµ . (2.15)

The heat capacity at fixed chemical potential is

Cµ = T

(
∂S

∂T

)
µ
= −T

∂2Ω(T, µ)
∂T 2

∣∣∣∣
µ

. (2.16)

In the following, we focus on the hyperbolic black holes under the “BPS condition”

c = −b . (2.17)

Recall that the BPS condition for a solution in supergravity is the condition that the Killing
spinor equation has nontrivial solutions.2 When it is satisfied, the black hole and the
corresponding state in the dual CFT preserve a fraction of supersymmetry. This EMD system
is related to consistent truncations of supergravity in the following way.

• When the parameters α and d take the values in table 1, we have checked that (2.17) is
exactly the BPS condition for all 11 cases according to previous studies on D = 4, 5,
6, 7 supergravity solutions [6, 14, 17] as consistent truncations of D = 10 and D = 11
supergravities. In these cases, the EMD system is a top-down model.

• For AdS4, the system belongs to supergravity for all α. The EMD system is obtained by
turning off one of two U(1) gauge fields in an FI-gauged supergravity; see appendix B.
Here (2.17) is the BPS condition according to [51]. The system is a bottom-up model
that interpolates four top-down models.

• For AdS5 and higher dimensions, the system may belong to the so-called fake super-
gravity [52, 53], in which we treat (2.17) as a BPS-like condition.

2The technical details to solve the Killing spinor equation can be found in [50], for example.
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We need to distinguish the extremal limit and the BPS limit for hyperbolic black holes
in AdS. For the (asymptotically flat) RN black hole, these two limits coincide. However,
in the AdS case, they are not the same.

• The extremal limit of a black hole is reached when (i) two horizons merge to a degenerate
horizon, or (ii) the horizon moves towards the spacetime singularity. In case (i) we obtain
an AdS2 factor in the extremal limit. In case (ii) we may obtain hyperscaling-violating
geometries.

• The BPS limit is different from the extremal limit for hyperbolic black holes in AdS.
By taking the BPS limit, we can still vary the temperature. For a certain range of α,
the extremal limit can be taken, and the temperature reaches zero.

For the solution (2.7)–(2.10), the gauge field is imaginary under the BPS condition
c = −b. Nevertheless, all thermodynamic quantities are well defined, and the gauge field is
real in the Euclidean signature, the same as for the hyperbolic RN-AdS black hole [25]. The
curvature singularity is at r = 0 and rd−2 = b, and the parameter b can be either positive
or negative. The horizon of the black hole is determined by f(rh) = 0, from which the
parameter b is expressed in terms of rh:

b = rd−2
h − r

(d−2)2[2d−(d−1)α2]
2(d−2)2−d(d−1)α2

h . (2.18)

The temperature is given by

T = 2(d − 1)(d − 2)rp
h − 2(d − 2)2 + (d − 1)α2

2π[2(d − 2) + (d − 1)α2] , (2.19)

where we have used (2.18) to replace b with rh, and

p = (d − 2)[2(d − 2) + (d − 1)α2]
2(d − 2)2 − (d − 1)α2 . (2.20)

From (2.19), we conclude that the temperature can reach zero only if 0 ≤ α ≤ α∗, where

α∗ = (d − 2)
√

2
d − 1 . (2.21)

There are three distinctive classes as follows:

• 0 ≤ α < α∗. The temperature reaches zero when

rh =
(

d − 2
d − 1 − α2

2(d − 2)

) 1
2p

. (2.22)

At zero temperature, the IR geometry is AdS2 ×Hd−1. Notice that the α = 0 case is
the RN-AdSd+1 black hole.

• α = α∗. The horizon size is rh = L. The temperature is T =
√
2(1− b)/4π. The

temperature reaches zero when b = 1. At zero temperature, the IR geometry has a
curvature singularity. See appendix C for the IR geometry.

• α > α∗. The temperature cannot reach zero. There is a minimal temperature at rh = 0.
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After a conformal mapping, the Rényi entropy with the entangling surface being a sphere
can be calculated from the thermodynamics of the CFT living on S×Hd−1 [23, 24]. By the
AdS/CFT correspondence, the supersymmetric Rényi entropy can be calculated in terms of
the hyperbolic black holes under the BPS condition. We have

Tr[ρn
A] =

Z(T0/n)
Z(T0)n

, (2.23)

where Z(T ) = Tr[eH/T ] is the thermal partition function of the hyperbolic black hole at
temperature T . For the entangling surface with radius L, we have T0 = 1/(2πL) and
T = T0/n. With the grand potential Ω = β−1I = −T logZ of black holes, where I is the
Euclidean on-shell action and β = 1/T , the supersymmetric Rényi entropy is given by

Sn = n

1− n

1
T0

[
Ω(T0, µ0)− Ω(T0/n, µ)

]
. (2.24)

The integral representation of Sn is [4]

Sn = n

n − 1

∫ 1

n
∂n′

( logZ(T0/n′, µ)
n′

)
dn′ = n

n − 1
1
T0

∫ T0

T0/n

(
S + Q

dµ

dT

)
dT. (2.25)

Note that T and µ are not independent due to BPS condition.
For our hyperbolic black holes, the grand potential under the condition c = −b is

Ω = M − TS − µQ = − VΣ
16πG

r
2(d−1)(d−2)2

2(d−2)2−(d−1)α2

h . (2.26)

The supersymmetric Rényi entropies are given by

Sn = VΣ
4G

n

n − 1

[
1−

(
(d − 2)n + 1
(d − 1)n − (n − 1)α2

2(d − 2)n

) 2(d−1)(d−2)
2(d−2)+(d−1)α2

]
. (2.27)

The entanglement entropy is

S1 = lim
n→1

Sn = VΣ
4G

(= 4πVΣ ) , (2.28)

which is the same for all α. To have a well-defined Sn for all n, we need α ≤ α∗. For
d = 3, 4, 5, 6, the values of α∗ are as follows.

AdS4 AdS5 AdS6 AdS7

α∗ 1 4/
√
6 3/

√
2 8/

√
10

(2.29)

As we will see in the next subsection, an inequality of the Rényi entropy is always violated
when α > α∗.

For 11 special cases belonging to top-down models, we list them with their supersymmetric
Rényi entropies in table 1. For AdS4 and AdS5, α = 0 gives the RN-AdS black hole. We
observe distinctive features as follows. The Rényi entropies reproduce known results (A)
and (B) while giving new features (C) and (D).

(A) RN-AdS4, 2-charge black hole in AdS5, 2-charge black hole in AdS6: The SCFT
calculations of Sn have been performed by the localization technique and they match
the holographic result [3–6, 8, 9, 17].
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AdSd+1 α Name Metric Supersymmetric Rényi entropy Cases

AdS4

(d = 3)

α = 0 RN-AdS4 H1,2,3,4 = H Sn = 3n + 1
4n

S1 A [3–5]

α = 1/
√

3 3-charge H1,2,3 = H, H4 = 1 Sn = n

n − 1

[
1 −

(
n + 2

3n

)3/2]
S1 C

α = 1 2-charge H1,2 = H, H3,4 = 1 Sn = S1 C

α =
√

3 1-charge H1 = H, H2,3,4 = 1 Sn = n

n − 1

[
1 −

(
2 − n

n

)1/2]
S1 C, D

AdS5

(d = 4)

α = 0 RN-AdS5 H1,2,3 = H Sn = 19n2 + 7n + 1
27n2 S1 B [6, 10]

α = 2/
√

6 2-charge H1,2 = H, H3 = 1 Sn = 3n + 1
4n

S1 A, B [6]

α = 4/
√

6 1-charge H1 = H, H2,3 = 1 Sn = S1 B [6]

AdS6

(d = 5)

α = 1/
√

2 2-charge H1 = H2 = H Sn = 19n2 + 7n + 1
27n2 S1 A [8, 9, 17]

α = 5/
√

10 1-charge H1 = H, H2 = 1 Sn = n

n − 1

[
1 −

(
n + 2

3n

)3/2]
S1 C

AdS7

(d = 6)

α = 2/
√

10 2-charge H1 = H2 = H Sn = 175n3 + 67n2 + 13n + 1
256n

S1 B [14]

α = 6/
√

15 1-charge H1 = H, H2 = 1 Sn = 3n + 1
4n

S1 B [14]

Table 1. “Periodic table” of top-down supergravity models and special cases of the supersymmetric
Rényi entropy. The naming convention and the metrics are in appendix A. (A) The Sn was calculated
by the localization method in the SCFT and matches the holographic result. (B) The Sn was calculated
for free fields, and matches the holographic result. (C) To our knowledge, no SCFT calculation is
known. (D) It violates Rényi entropic inequalities.

(B) All cases in AdS5 and AdS7: The Sn was calculated by the heat kernel method for free
fields, and they match the holographic result [6, 10, 14].

(C) 1-, 2-, and 3-charge black holes in AdS4 and 1-charge black hole in AdS6: These
cases have not been compared with SCFT calculations. The holographic result can be
obtained by special cases of [17].3

(D) 1-charge black hole in AdS4 is peculiar. When d = 3, α =
√
3, we have rh =

√
n/(2− n),

which is real only when 0 < n < 2. This is the only case in which α > α∗ among the
11 cases.

3In a private communication, we learned that Yang Zhou has obtained the Sn for the 1-, 2-, and 3-charge
black holes in AdS4, though these findings were not published.
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As a remark, the BPS condition (2.17) significantly simplifies the thermodynamic quan-
tities. If the parameters b and c are arbitrary, no explicit solution is available for the Rényi
entropy Sn. Another condition in which Sn is explicitly solvable is c = 0, which was studied
in detail in [49], based on a nontrivial neutral limit of these black holes [45].

3 Exporing the entanglement data

3.1 Modular entropy and capacity of entanglement

The Rényi entropy as an information-theoretic quantity is related to the thermal entropy
on S1 × Hd−1. The inequalities for the Rényi entropy have been proposed in quantum
information [54] and studied holographically [24]:

∂

∂n

(
n − 1

n
Sn

)
≥ 0, (3.1)

∂2

∂n2 ((n − 1)Sn) ≤ 0. (3.2)

The first one corresponds to the positivity of the modular entropy, and the second one
corresponds to the positivity of the specific heat. The modular entropy has a geometric
interpretation [55]. The capacity of entanglement as an important measure of quantum
information was originally introduced in [32], and then studied in holography [35]. For the
supersymmetric Rényi entropy calculated by hyperbolic holes, we find that these inequalities
are not satisfied when α > α∗.

In terms of the supersymmetric Rényi entropy, we define the supersymmetric modular
entropy as

S̃susy
n = n2∂n

(
n − 1

n
Ssusy

n

)
, (3.3)

and the supersymmetric capacity of entanglement as

Csusy
E (n) = n2∂2

n[(1− n)Ssusy
n ]. (3.4)

When n → 1, Csusy
E (1) = ⟨(−logρA)2⟩−⟨−logρA⟩2 gives the quantum fluctuation with respect

to the original state ρA.
We find that the modular entropy S̃susy

n no longer equals the thermal entropy of the
hyperbolic black hole due to the fact that the BPS condition puts a constraint on the
temperature and the chemical potential. Similarly, the capacity of entanglement Csusy

E (n)
cannot map to the heat capacity Cµ of the thermal CFT on hyperbolic space, unlike the
non-supersymmetric capacity of entanglement. More precisely,

S̃susy
n = S + Q

dµ

dT
(3.5)

Csusy
E (n) = Cµ + 3T

dQ

dT

dµ

dT
+ TQ

d2µ

dT 2 . (3.6)

The latter was obtained as follows. From (2.24) and (3.4), by T = T0/n, we obtain

Csusy
E (n) = − d

dT

[
T 2 d

dT

( 1
T
Ω(T, µ)

)]
= −T

d2

dT 2Ω(T, µ)

= Cµ − 2T
∂2Ω(T, µ)

∂T∂µ

dµ

dT
− T

∂2Ω(T, µ)
∂µ2

(
dµ

dT

)2
− T

∂Ω(T, µ)
∂µ

d2µ

dT 2 ,

(3.7)
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where the chemical potential µ and the charge Q depend on the temperature T for super-
symmetric states.

From (2.27) and (3.4), we obtain the capacity of entanglement

CE(n) =
1
n

(
(d − 2)n + 1
(d − 1)n − (n − 1)α2

2(d − 2)n

) 2(d−1)(d−2)
2(d−2)+(d−1)α2 −2

CE(1), (3.8)

where
CE(1) =

(
d − 2
d − 1 − α2

2(d − 2)

)
S1. (3.9)

For 11 special cases belonging to top-down models, we list their supersymmetric capacity
of entanglement in table 2. The ratio CE(1)/S1 of the capacity of entanglement yields
universal information characterizing the dual CFTs [36]. From above result, we can see
that the ratio CE(1)/S1 of the supersymmetric capacity of entanglement is different from
the ratio CE(1)/S1 = 1 of the non-supersymmetric capacity of entanglement for neutral
black holes [36, 37].

We can define a heat capacity for black holes under the BPS condition

CBPS = T
dS

dT
= 1

n

(
(d − 2)n + 1
(d − 1)n − (n − 1)α2

2(d − 2)n

) 2(d−1)(d−2)
2(d−2)+(d−1)α2 −1

S1 . (3.10)

It can be verified that the above result equals (1/n)S̃n, where S̃n is calculated by (3.3).

3.2 Entanglement spectrum

The Rényi entropy Sn for all n determines the entanglement spectrum, which is the eigenvalue
distribution of the reduced density matrix ρA. The holographic result of Sn obtained in the
last section is analytic at n = ∞. Assuming this analyticity, the entanglement spectrum must
include both discrete and continuous parts, with one discrete eigenvalue λ1 being the largest
eigenvalue of the continuous spectrum [24]. Thus, the Rényi entropy can be written as

Sn = 1
1− n

logTr[ρn] = 1
1− n

log
[
d1λn

1 +
∫ λ1

0
ρ̄(λ)λndλ

]
, (3.11)

where ρ̄(λ) is the continuous part of the entanglement spectrum ρ(λ). By writing the discrete
part into ρ(λ) via a Dirac delta function, the Rényi entropy satisfies

e(1−n)Sn =
∫ +∞

t1
e−(n+1)tρ(e−t)dt, (3.12)

where λ is reparameterized as λ = e−t, and λ1 = e−t1 . This is essentially a Laplace transform
with n being the parameter. Thus, the spectrum can be obtained from an inverse Laplace
transform,

ρ(λ) = 1
λ
L−1[e(1−n)Sn , n, t

]∣∣
t=− log λ

= 1
λ

1
2πi

lim
T→∞

∫ γ+iT

γ−iT
e(1−n)Snentdn, (3.13)

where the integral is taken over a vertical line with Re(s) = γ, and γ is a real number ensuring
no singularity on the right side of this line.
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AdSd+1 α Name Sn CE(t) (t ≡ 1/n = 2πT )

AdS4

(d = 3)

α = 0 RN-AdS4
3n + 1

4n
S1 CE(t) = 1

2 tS1

α = 1/
√

3 3-charge Sn = n

n − 1

[
1 −

(
n + 2

3n

)3/2]
S1 CE(t) = t(3 + 6t)−1/2S1

α = 1 2-charge Sn = S1 CE(t) = 0

α =
√

3 1-charge Sn = n

n − 1

[
1 −

(
2 − n

n

)1/2]
S1 CE(t) = −t(−1 + 2t)−3/2S1

AdS5

(d = 4)

α = 0 RN-AdS5 Sn = 19n2 + 7n + 1
27n2 S1 CE(t) = 2

9 t(2 + t)S1

α = 2/
√

6 2-charge Sn = 3n + 1
4n

S1 CE(t) = 1
2 tS1

α = 4/
√

6 1-charge Sn = S1 CE(t) = 0

AdS6

(d = 5)

α = 1/
√

2 2-charge Sn = 19n2 + 7n + 1
27n2 S1 CE(t) = 2

9 t(2 + t)S1

α = 5/
√

10 1-charge Sn = n

n − 1

[
1 −

(
n + 2

3n

)3/2]
S1 CE(t) = t(3 + 6t)−1/2S1

AdS7

(d = 6)

α = 2/
√

10 2-charge Sn = 175n3 + 67n2 + 13n + 1
256n

S1 CE(t) = 3
64 t(3 + t)2S1

α = 6/
√

15 1-charge Sn = 3n + 1
4n

S1 CE(t) = 1
2 tS1

Table 2. Special cases of the supersymmetric entanglement of capacity.

Assuming that the Rényi entropy can be expanded near n = ∞ as

Sn =
∞∑

i=0
sin

−i = s0 +
s1
n

+ s2
n2 + · · · , (3.14)

where the constant term is related to the largest eigenvalue of the spectrum by λ1 = e−s0 .
For the Rényi entropy given by (2.27), the coefficients of the first two terms are

s0 = VΣ
4G

[
1−

(
d − 2
d − 1 − α2

2(d − 2)

) 2(d−1)(d−2)
2(d−2)+(d−1)α2

]
,

s1 = s0 −
VΣ
4G

2(d − 1)(d − 2)
2(d − 2) + (d − 1)α2

(
d − 2
d − 1 − α2

2(d − 2)

) 2(d−1)(d−2)
2(d−2)+(d−1)α2

.

(3.15)

From table 1, we can see that the series terminates at finite orders of n−1 in many cases.
In the following, we will give a way to express the entanglement spectrum, which is

the inverse Laplace transform of

e(1−n)Sn = es0−s1e−s0n exp
( ∞∑

i=1
uin

−i
)

, ui = si − si+1. (3.16)
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By the convolution theorem, we obtain

ρ(λ) = es0−s1

λ
L−1[e−s0n] ∗ L−1[eu1n−1 ] ∗ L−1[eu2n−2 ] ∗ · · · (3.17)

The convolution satisfies commutativity and associativity. The inverse Laplace transform
can be done term by term. The results are

1
λ
L−1[e−s0n] = 1

λ
δ(t − s0) = δ(λ − λ1), (3.18)

L−1[e−sin
−i ] = δ(t) + uit

i−1

(i − 1)! 0Fi

(
; 1 + 1

i
, 1 + 2

i
, · · · , 2; uit

i

ii

)
, (3.19)

where 0Fi is a generalized hypergeometric function. Generally, it is unlikely to write a closed
form for the above convolutions. If the large-n expansion of Sn terminates as Sn = s0 + s1/n,
which happens three times in table 1, a closed form expression can be obtained in the following.
The function 0F1 can be expressed in terms of the modified Bessel function of the first kind:

0F1(; 2; z) =
1√
z

I1(2
√

z) . (3.20)

As a consequence, the entanglement spectrum for Sn = s0 + s1/n is

ρ(λ) = es0−s1δ(λ1 − λ) + s1θ(λ1 − λ)
λ
√

s1 ln(λ1/λ)
I1

(
2
√

s1 ln(λ1/λ)
)

, (3.21)

where θ(x) is the Heaviside step function. When s0 = s1, this reproduces the well-known
result of the entanglement spectrum for 2D CFTs [56].

As a comparison, the entanglement spectrum is expressed in terms an infinite sum [49]
(by the approach in [57])

ρ(λ) = es0−s1

(
δ(λ1 − λ) + θ(λ1 − λ)

λ

∞∑
i=0

vi+1
i!
(
ln(λ1/λ)

)i)
, (3.22)

where the coefficients {vi} can be calculated order by order by expanding

exp
( ∞∑

i=1
uin

−i
)
= 1 +

∞∑
i=1

vin
−i. (3.23)

The sum (3.22) captures the low-lying part of the spectrum [49], where “low-lying” represents
the spectrum with lower energy, or with λ closer to the largest eigenvalue [33].

For λ → 0, the spectrum can be approximated by the saddle point method. The saddle
point n0 is given by

∂

∂n

(
(n − 1)Sn

)∣∣∣∣
n0

+ ln λ = 0, (3.24)

and the integral (3.13) is approximated by

ρ(λ → 0) ∼ 1
λn+1 e(1−n)Sn

[
2π

∂2

∂n2
(
(1− n)Sn

)]−1/2 ∣∣∣∣
n0

= 1
λn+1 e(1−n)Sn

[
2π

CE(n)
n2

]−1/2 ∣∣∣∣
n0

.

(3.25)
This shows a relation between the capacity of entanglement and the entanglement spectrum
at the vicinity of the saddle point.
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4 Generating the potential and a byproduct

4.1 Generating V (ϕ) from the V = 0 solution

We will give a way to obtain the potential (2.2) and the solution (2.7)–(2.10) without any
manual input of unknown functions. As a consequence, the potential (2.2) can be generated
from the V = 0 solution that was found in [38].

It was known that the potential can be generated from a given function in the metric or
the scalar field, and this method was used to construct many scalar potentials [42, 43, 58–60].
Generally, all parameters in the metric will enter the potential by this procedure. On the
one hand, the parameters in the potential are model parameters, i.e., parameters in the
Lagrangian. On the other hand, the solution parameters have integration constants such
as mass and chemical potential that are not expected in the potential [43]. Therefore, it is
nontrivial for these solution parameters to not be in the potential. In other words, requiring
a parameter in the solution to not be in the potential gives a constraint on the potential.
An observation in [45] is that if we choose this parameter to be the spatial curvature k with
reasonable assumptions, the potential will be completely determined. We generalize the
appendix A of [45] to arbitrary dimensions in the following.

We consider the neutral solution for simplicity. The action is

S =
∫

dd+1x
√
−g

(
R − 1

2(∂ϕ)2 − V (ϕ)
)

, (4.1)

where V (ϕ) is the potential of the scalar field ϕ. We consider the following metric ansatz:

ds2 = e2A(r̄)(−h(r̄)dt2 + dΣ2
d−1,k) +

e2B(r̄)

h(r̄) dr̄2 , (4.2)

where r̄ is the AdS radial coordinate, and the metric for the (d − 1)-dimensional sphere,
plane, and hyperbolic space can be written as

dΣ2
d−1,k = dx2

1− kx2 + x2dΩ2
d−2 , (4.3)

where dΩ2
d−2 is a (d − 2)-dimensional sphere of unit radius. There is one gauge degree of

freedom in the unknown functions A(r̄), B(r̄), h(r̄), and ϕ(r̄), and it will be fixed by ϕ = r̄.
Equations of motion are obtained by the action (4.1) with the metric ansatz (4.2). The

Einstein’s equation gives

A′B′ = 1
2(d − 2)ϕ′2 +A′′ , (4.4)

(edA−Bh′)′ + 2(d − 2)e(d−2)A+Bk = 0 . (4.5)

The first equation comes from Gtt and Gr̄r̄, and the second equation comes from Gr̄r̄ and
Gxx. Solving the potential from Gr̄r̄ gives

V =
[1
2ϕ′2h − d(d − 1)A′2h − (d − 1)A′h′

]
e−2B + (d − 1)(d − 2)e−2Ak . (4.6)
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Other equations can be derived from (4.4), (4.5), and (4.6). Starting with a given A(r̄),
we can obtain V (r̄) in the following way:

A (4.4)−−−→ B (4.5)−−−→ h
(4.6)−−−→ V . (4.7)

The function A(r̄) plays the role of a generating function. Finally, replacing the function
V (r̄) with V (ϕ) gives the potential. A caveat is that only careful choices of A can we obtain
a relatively simple V (ϕ).

The potential V solved by (4.7) generally depends on k. We require that the potential
V is independent of k, to have fewer parameters than the solution. The terms dependent
on k must cancel:

V = V (0) + V (k), V (k) = 0 . (4.8)

We need an additional constraint: the function h depends on k, and other functions are
independent of k. In other words, for a given potential V , the only difference between the
k = 0 solution and the k ̸= 0 solution is some terms h(k) in h. The motivation for this
constraint is that if it is satisfied, the equation (4.5) for h is a linear equation, which we can
take advantage of. The following will be based on the above constraints.

We decompose h into a k-independent part and a k-dependent part: h(r̄) = h(0) + h(k),
where h(0) is the solution of h at k = 0. Similarly, we decompose the equation of motion into
a part at k = 0 and a part dependent on k. The part at k = 0 requires that A, B, and h(0)

satisfy the equations of motion with V = V (0), and the part dependent on k requires that h(k)

satisfy the equations of motion with V = 0. As a consequence, the V = V (0), k = 0 solution
and the V = 0, k = 1 solution share the same generating function A (as well as B and ϕ).
Start with a solution with V = 0 and k = 1 as a seed, and we can use the procedure (4.7)
with h = 1 and k = 0 to obtain the potential V (ϕ).

The solution of h from (4.5) is given by

h =
∫

e−dA+B
(
−2(d − 2)k

∫
e(d−2)A+Bdr̄ + C2

)
dr̄ + C1 , (4.9)

where C1 = C2 = 0 gives the solution for the system with V = 0. The general V (ϕ) solution
will contain the two integration constants coming from the second-order linear equation for
h. If we take C1 = 1 and C2 ∝ k, we can obtain the potential V (ϕ) as (2.2).

Now it boils down to solving the system with V = 0. This is nontrivial, but has been
achieved in [38]. (The AdS4 case was in [61] earlier.) We shall not repeat the details. However,
we use a more convenient coordinate system to show that the equations of motion are solvable
when V = 0. The metric ansätz is

ds2 = −e2Ahdt2 + e2B
(

dr2

h
+ r2dΣ2

d−1,k

)
, (4.10)

with the gauge [62]

A + (d − 2)B = 0 . (4.11)

– 14 –



J
H
E
P
0
6
(
2
0
2
4
)
0
8
0

The independent equations are

ϕ′2+2(d−1)
(

B′′+(d−2)B′2+ d−1
r

B′
)
=0 , (4.12)

h′′−
(
2(d−1)− d−3

r

)
h′−2

(
(d−1)B′′+ (d−1)2

r
B′+ (d−2)

r2

)
h+2(d−2)k

r2 =0 , (4.13)

V =−e−2B
(

h′′+3d−5
r

h′+2(d−2)2

r2 h− 2(d−2)2

r2 k

)
. (4.14)

The last equation shows that the function h is easily solvable when V = 0. Then B can be
solved by the second equation, and A by the first equation.

Once we obtained the metric, converting from the metric (4.10) to (4.2), we obtain
the generating function

eA = b

(
e

d−2
(d−1)α

r̄ − e−
α
2 r̄
)− 1

d−2
. (4.15)

Alternatively, we can also use the solution of ϕ(r) as the generating function. Let Vα(ϕ) be
the potential (2.2) with parameter α, a more general potential than (2.2) is

V (ϕ) = Vα(ϕ) + Vextra, (4.16)

where Vextra comes from a nonzero C2 in (4.9) at k = 0. This potential has already been
obtained in [43] by treating the solution of ϕ(r) as an ansätz. Here, we treat the V = 0
solution as a seed to generate the general potential, and emphasize its naturalness. The extra
terms in (4.16) involve hypergeometric functions and look cumbersome. However, in the AdS4
case, a six-exponential potential with a simple structure can be obtained as (4.18) below.

4.2 Two neutral solutions with scalar hair in AdS4

It was observed in [45] that there are two neutral limits of the hyperbolic black holes (2.7)–
(2.10): a trivial neutral limit b = 0 where we obtain the hyperbolic Schwarzschild-AdS
black hole, and a nontrivial neutral limit c = 0 where we obtain a hairy black hole. As a
consequence, the hyperbolic black hole spontaneously develops a scalar hair below a critical
temperature. This was used to analytically study phase transitions of the Rényi entropy
[49]. In the following, we obtain a different neutral hyperbolic black hole with scalar hair
for the same system (2.1) with (2.2).

Start with a more general action

S =
∫

d4x
√
−g

(
R − 1

4e−αϕ(F 1)2 − 1
4eϕ/α(F 2)2 − 1

2(∂ϕ)2 − V (ϕ)
)

. (4.17)

Let Vα(ϕ) be the three-exponential potential (2.2), and we consider the following six-
exponential potential [45]4

V (ϕ) = (1 + β)Vα(ϕ)− βV−α(ϕ) . (4.18)
4Earlier works on deriving a six-exponential potential were [42, 43], and various properties were studied in

[63–65], for example.
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The solution of the metric gµν , gauge fields A1,2
µ , and dilaton field ϕ is

ds2 = −f(r)dt2 + 1
f(r) dr2 + U(r)dΣ2

2,k , (4.19)

A1 = 2γ

√
bc

1 + α2

( 1
rh

− 1
r

)
dt , (4.20)

A2 = 2α

√
(γ2 − 1)bc

1 + α2

( 1
rh − b

− 1
r − b

)
dt , (4.21)

eαϕ =
(
1− b

r

) 2α2
1+α2

, (4.22)

with

f =
(

k − c

r

)(
1− b

r

) 1−α2
1+α2

+ (1 + β) r2

L2

(
1− b

r

) 2α2
1+α2

+ (γ2 − 1) bc

r2

(
1− b

r

)− 2α2
1+α2

− β
r2

L2

(
1 + 1− 3α2

1 + α2
b

r
+ (1− α2)(1− 3α2)

(1 + α2)2
b2

r2

)(
1− b

r

) 1−α2
1+α2

, (4.23)

U = r2
(
1− b

r

) 2α2
1+α2

. (4.24)

The solution has parameters b, c and γ in addition to α and β. By taking γ = 1, we obtain
an EMD system with a six-exponential potential of the dilaton. The curvature singularity
is at r = 0 and r = b. The mass is given by

M = VΣ
8πG

(
c + k

1− α2

1 + α2 b − β
(1− α2)(1− 3α2)(3− α2)

2(1 + α2)3L2 b3
)

. (4.25)

The trivial neutral limit of this solution is b = 0, where the scalar field ϕ vanishes, and the
potential becomes the cosmological constant. We are interested in the nontrivial neutral
limit c = 0 later.

In [42, 43] and [44], it was found that there are two analytic solutions to the same system
with potential Vα(ϕ), and this was explained in [51] (see also [64]). Here we give a simple
explanation as follows. The six-exponential potential has an additional parameter β. By
taking β = 0, we obtain a solution for the three-exponential potential Vα(ϕ); by taking
β = −1, α → −α and ϕ → −ϕ, we obtain a different solution for the same potential. Thus,
the nontrivial neutral limit c = 0 gives two different hyperbolic black holes with scalar hair.
One neutral solution was studied in [45, 49], and the other one is given by

f(r) =
[
−1 + r2

L2

(
1 + 1− 3α2

1 + α2
b

r
+ (1− α2)(1− 3α2)

(1 + α2)2
b2

r2

)](
1− b

r

) 1−α2
1+α2

, (4.26)

ϕ = − 2α

1 + α2 ln
(
1− b

r

)
. (4.27)

The boundary condition for the scalar field corresponds to a multi-trace deformation in the
dual CFT [66]. The boundary conditions corresponding to the triple-trace deformation are
different for the two solutions, while boundary conditions corresponding to double-trace
deformation are the same for the two solutions.
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5 Summary and discussion

In this paper, we have calculated the supersymmetric Rényi entropies (with a spherical
entangling surface) from a class of hyperbolic black holes with scalar hair. Our findings
are summarized as follows:

• By employing a class of hyperbolic black holes with scalar hair, we have explicitly
obtained the holographic supersymmetric Rényi entropies. Our results not only corrob-
orate many established outcomes, but also introduce additional findings with distinctive
properties.

• We have calculated the supersymmetric capacity of entanglement and showed that it
cannot be mapped to the heat capacity of hyperbolic black holes due to the fact that the
BPS condition gives a constraint between the temperature and the chemical potential.

• From the Rényi entropies that are analytic at n = ∞, we have calculated the entangle-
ment spectrum as convolutions of generalized hypergeometric functions.

• We have shown that the potential of the EMD system can be generated from a
V (ϕ) = 0 solution.

• There are two nontrivial neutral limits of the EMD system, giving hyperbolic black
holes with scalar hair. Scalar condensation may happen at sufficiently low temperatures.

The following topics need further investigation: (i) The CFT calculations for the models
in table 1. (ii) Violation of inequalities when α > α∗, especially the 1-charge black hole in
AdS4 as a top-down special case. (iii) The geometric interpretation of the supersymmetric
Rényi entropy. (iv) Whether there are phase transitions for this class of hyperbolic black
hole solutions.

Acknowledgments

J.R. thanks Xiaoxuan Bai, Antonio Gallerati, Song He, Masato Nozawa, Yi Pang, Chiara
Toldo, and Yang Zhou for helpful communications. This work was supported in part by the
NSF of China under Grant No. 11905298, and Fundamental Research Funds for the Central
Universities, Sun Yat-sen University under Grant No. 23qnpy61.

A Special cases of D = 4, 5, 6, 7 supergravities

In STU supergravities, there are U(1)4 gauge fields in AdS4, U(1)3 gauge fields in AdS5,
and U(1)2 gauge fields in AdS7 [67]. Special cases of them can be reduced to EMD systems.
They are 1-charge, 2-charge, and 3-charge black holes in AdS4; 1-charge and 2-charge black
holes in AdS5; and 1-charge black hole in AdS7.

The AdS4 Lagrangian is

L = R − 1
2(∂ϕ⃗)2 + 8g2(coshϕ1 + coshϕ2 + coshϕ3)−

1
4

4∑
i=1

ea⃗i·ϕ⃗(F i
(2))2 , (A.1)
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where ϕ⃗ = (ϕ1, ϕ2, ϕ3), a⃗1 = (1, 1, 1), a⃗2 = (1,−1,−1), a⃗3 = (−1, 1,−1), and a⃗4 = (−1,−1, 1).
More details can be found in [67]. The solution is given by [68, 69]

ds2 = −(H1H2H3H4)−1/2fdt2 + (H1H2H3H4)1/2(f−1dr2 + r2dΣ2
2,k) , (A.2)

Xi = H−1
i (H1H2H3H4)1/4 , (A.3)

Ai
(1) =

√
k(1− H−1

i ) coth βi dt , (A.4)

with Xi = e−
1
2 a⃗i·ϕ⃗, and

f = k − µ

r
+ 4g2r2(H1H2H3H4) , Hi = 1 + µ sinh2 βi

kr
. (A.5)

We call this general solution (1+1+1+1)-charge black hole, or 4-charge black hole in
AdS4 if there is no confusion. For special cases, the following naming convention is used
in the literature.

Hi (i = 1, 2, 3, 4) Name
H1 = H2 = H3, H4 ( ̸= 1) (3+1)-charge black hole in AdS4

H1 = H2, H3 = H4 ( ̸= 1) (2+2)-charge black hole in AdS4

H1 = H2 = H3 = H, H4 = 1 3-charge black hole in AdS4

H1 = H2 = H, H3 = H4 = 1 2-charge black hole in AdS4

H1 = H, H2 = H3 = H4 = 1 1-charge black hole in AdS4

H1 = H2 = H3 = H4 = H RN-AdS4 black hole

The AdS5 Lagrangian is

L = R − 1
2(∂φ⃗)2 + 4g2∑

i

X−1
i − 1

4

4∑
i=1

X−2
i (F i

(2))2 . (A.6)

The solution is [70]

ds2 = −(H1H2H3)−2/3fdt2 + (H1H2H3)1/3(f−1dr2 + r2dΣ2
3,k) , (A.7)

Xi = H−1
i (H1H2H3)1/3 , (A.8)

Ai
(1) =

√
k(1− H−1

i ) coth βidt , (A.9)

with
f = k − µ

r2 + g2r2(H1H2H3) , Hi = 1 + µ sinh2 βi

kr2 . (A.10)

We call this general solution (1+1+1)-charge black hole, or 3-charge black hole in AdS5 if
there is no confusion. For special cases, we have (2+1)-charge black hole, 2-charge black hole,
1-charge black hole in AdS5. When H1 = H2 = H3, we have the RN-AdS5 black hole.

The static AdS6 black hole metric is [17, 71]

ds2 = −9
2(H1H2)−3/4fdt2 + (H1H2)1/4(f−1dr2 + r2dΣ2

4,k), , (A.11)

Xi = H−1
i (H1H2)3/8 , (A.12)

Ai
(1) =

√
k coth βi(1− H−1

i )dt , (A.13)
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with
f(r) = k − µ

r3 + 2
9r2H1H2 , Hi = 1 + µ sinh2 βi

kr3 . (A.14)

Here, i = 1, 2. We call this solution (1+1)-charge black hole in AdS6. Special cases are
2-charge black hole and 1-charge black hole in AdS6. Note that the 2-charge case (H1 = H2)
is not the RN-AdS6 black hole.

The AdS7 Lagrangian is

e−1L = R − 1
2(∂φ⃗)2 − g2V − 1

4

2∑
i=1

ea⃗i·φ⃗(F i
(2))2 . (A.15)

The solution is [67]

uds2
7 = −(H1H2)−4/5fdt2 + (H1H2)1/5(f−1dr2 + r2dΩ2

5,k) , (A.16)
Xi = H−1

i (H1H2)2/5 , (A.17)
Ai

(1) =
√

k coth βi(1− H−1
i )dt , (A.18)

with
f = k − µ

r4 + 1
4g2r2H1H2 , Hi = 1 + µ sinh2 βi

kr4 . (A.19)

We call this solution (1+1)-charge black hole in AdS7. Special cases are 2-charge black
hole and 1-charge black hole in AdS7. Note that the 2-charge case (H1 = H2) is not the
RN-AdS7 black hole.

For EMD truncations of these solutions, we need to shift the radial coordinate r → r −
µ sinh2 β to obtain the solutions (2.7)–(2.10).

B Fayet-Iliopoulos gauged supergravity

We briefly review the N = 2, D = 4 supergravity with Abelian Fayet-Iliopoulos (FI) gaugings
that can be reduced to EMD systems. See [51] for more details and references. For nV number
of abelian vector multiplets [72], the model describes nV +1 vector fields AI

µ(I = 0, 1, . . . , nV )
and ns = nV complex scalars fields zα(α = 1, . . . , ns). These scalars parametrize an nV -
dimensional Hodge-Kähler manifold, which is the base of a symplectic bundle with covariantly
holomorphic section

V =
(

XI

FI

)
, DᾱV = ∂ᾱV − 1

2(∂ᾱK)V = 0 , (B.1)

where V obeys the symplectic constraint ⟨V , V̄⟩ ≡ XI F̄I − FIX̄I = i and ⟨V , ∂αV⟩ = 0; K =
K(zα, z̄α) is the Kähler potential, and Dα denotes the Kähler covariant derivative. Writing

V = eK/2v, v =
(

ZI

∂
∂ZI F (Z)

)
, (B.2)

where v is the holomorphic symplectic vector. In appropriate symplectic frame, we assume
the existence of prepotential F that is a homogeneous function of degree two.
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The bosonic gauged Lagrangian is

L = 1
2(R − 2V ) ⋆ 1− gαβ̄dzα ∧ ⋆dz̄β̄ + 1

2IIJF I ∧ ⋆F J + 1
2RIJF I ∧ F J . (B.3)

where the nV + 1 vector field strengths are F I = dAI ; IIJ = ImNIJ , RIJ = ReNIJ , where
NIJ is defined by the relations FI = NIJXJ and DᾱF̄I = NIJDᾱX̄J . The scalar potential is

V = −2gIgJ

(
IIJ + 8X̄IXJ

)
, (B.4)

where IIJ is the inverse of IIJ , and gI is the FI coupling constants.
We consider the following prepotential of N = 2 supergravity with one complex scalar

(nV = 1):

F (X) = − i

4(X
0)n(X1)2−n . (B.5)

The values of the parameter n = 1, 1/2, and 3/2 correspond to special cases of STU
supergravity. This is a truncation of the STU model with the prepotential

FSTU(X) = − i

4
√

X0X1X2X3 . (B.6)

Setting Z0 = 1 and Z1 = z, the symplectic vector is v = (1, z,− i
4nz2−n,− i

4(2 − n)z1−n)T .
The system (4.17) is obtained by further truncating the theory to a single real scalar z = z̄

and the purely electrically charged case F I ∧ F J = 0.

C The IR geometry for α = α∗

In the special case α = α∗ := (d − 2)
√

2
d−1 , the black hole under the BPS condition has a

distinctive IR geometry at zero temperature: it has a curvature singularity. For comparison,
when 0 ≤ α < α∗, the IR geometry at zero temperature is AdS2 × Hd−1, i.e., it has a
degenerate horizon.

When α = α∗, the IR limit of the geometry at zero temperature is

ds2 = (r − 1)
2

d−1

(
−(r − 1)dt2 + dr3

(r − 1)3 + dΣ2
d−1

)
. (C.1)

By the change of variables

r̃ = (r − 1)−1/2, (C.2)

the IR geometry is written as

ds2 = r̃
2θ

d−1

(
−dt2

r̃2z +
dr̃2 + dΣ2

d−1
r̃2

)
, (C.3)

which is a hyperscaling-violating geometry with the spatial part being Hd−1. The Lifshitz
scaling exponent z and the hyperscaling violation exponent θ are

z = 2, θ = d − 3. (C.4)

In particular, when d = 3, it is a Lifshitz geometry with the spatial part being Hd−1.
It is interesting to make a comparison to the planar black hole solutions of the same

EMD system (2.1). The IR geometries of extremal planar black holes are [45]:
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• 0 < α < (d − 2)
√

2
d(d−1) . The IR geometry is AdS2 × Rd−1.

• α = (d − 2)
√

2
d(d−1) . The IR geometry is conformal to AdS2 × Rd−1 [73, 74].

• α > (d − 2)
√

2
d(d−1) . The extremal limit of the EMD system (2.1) is the same as an

Einstein-scalar system. The IR geometry is a hyperscaling-violating geometry.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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