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1 Introduction

Boundary correlation functions in anti-de Sitter (AdS) space provide an important laboratory
for studying quantum field theory and quantum gravity. The AdS background regulates
possible infrared (IR) divergences in perturbation theory [1–3], and the AdS/CFT corre-
spondence provides a computationally tractable example of holography [4–9]. This work
focuses on AdS boundary correlators, for which many different computational methods have
been developed [10–39]. A particularly fruitful approach to searching for new methods
has been generalizing established techniques for computing scattering amplitudes in flat
space. For example, the OPE inversion formula [40, 41] is the AdS generalization of the
Froissart-Gribov formula [42].

Motivated by this approach, a new representation of AdS boundary correlators, the
differential representation, has emerged. It is in a sense analogous to the momentum
representation of scattering amplitudes. Momentum vectors are replaced by non-commuting
conformal generators acting on a contact diagram.1 The differential representation of AdS
boundary correlators was first proposed in refs. [45, 46] using the infinite tension limit of
certain string theory expressions and further developed in refs. [47–49].

In this letter, we generalize the differential representation of scalar AdS correlators
beyond tree level by introducing the notion of operator-valued integration. We find that
operator-valued integrals of scalar Witten diagrams can be interpreted as integrals over

1A similar representation motivated by color-kinematics duality was pursued in refs. [43, 44].
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a non-commutative space. For example, operator-valued integrals obey a generalization
of integration-by-parts (IBP) [50–61], which is discussed in section 5. After evaluating
these operator-valued integrals, the higher loop correlators in AdS become functions of
conformal generators acting on contact diagrams. To illustrate the new methodoloy, we
compute three-point bubble and triangle Witten diagrams in d = 2 and d = 2, 3, 4 dimensions
respectively using the differential representation. We compare the former to a more traditional
computation performed in position space. To the author’s knowledge, closed form expressions
for the triangle Witten diagram in general dimension were previously unknown.2

2 The differential representation

We begin with a brief review of the differential representation. We work in embedding space,
Rd+1,1, where PA and XA denote boundary and bulk coordinates respectively [62–65]. The
boundary-to-bulk and bulk-to-bulk propagators of scalars are denoted as E∆(P,X) and
G∆(X,X ′) respectively where the ∆ subscripts are suppressed if ∆ = d. Unless stated
otherwise, the conformal dimension of all states, external and internal, is restricted to ∆ = d

for simplicity. For integrals over AdS boundary or bulk coordinates, we suppress the d or
d + 1 superscript in the differential. Conventions are reviewed in appendix A.

The differential representation of the n-point correlator takes the form

An = ÂnCn (2.1)

where Ân is the differential correlator, a collection of differential operators that act on a
scalar contact diagram,

Cn =
∫

AdS
dX

∏
i

E(Pi, X) . (2.2)

Scalar differential correlators, Ân, can be written solely using conformal generators, which are

DAB
i = 1√

2

(
PA

i

∂

∂PB,i
− PB

i

∂

∂PA,i

)
(2.3)

in the embedding space formalism. Isometry generators of bulk coordinates, denoted as DX ,
are the same as eq. (2.3) except with the replacement of the boundary coordinate P with bulk
coordinate X. While momentum space scattering amplitudes are functions on a commutative
kinematic space parameterized by pµ

i , differential correlators are operator-valued functions on
a non-commutative kinematic space parameterized by DAB

i . The AdS analog of momentum
conservation is the Conformal Ward Identity (CWI).

An explicit example is instructive. Consider the integrand of the four-point s-channel
Witten diagram

As-channel =
∫

AdS
dX1dX2E(P3, X1)E(P4, X1)G(X1, X2)E(P1, X2)E(P2, X2) . (2.4)

2In principle, the triangle Witten can be derived by direct integration for even d using 6j-symbols [20], but
actually evaluating this integral is troublesome.
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To derive the differential representation, we first use that

G(X1, X2) = −(□X1)−1δd+1(X1, X2) , (2.5)

where □X = −D2
X is the AdS Laplacian, to rewrite the position space Witten diagram as

As-channel =
∫

AdS
dX1dX2E(P3, X2)E(P4, X2)

× E(P1, X1)E(P2, X1)
1

D2
X1

δd+1(X1, X2) .
(2.6)

We can then use the identity,

(DAB
X +DAB

1 +DAB
2 )E(P1, X)E(P2, X) = 0 , (2.7)

to replace D2
X with

D2
12 = (D1,AB +D2,AB)(DAB

1 +DAB
2 ) . (2.8)

Ultimately, one finds the differential representation of the s-channel Witten diagram is

As-channel =
1
D2

12
C4 . (2.9)

The differential representation of higher point Witten diagrams is analogous to Feynman
diagrams under the replacement of propagators with the inverse differentials, 1/D2

I . For
example, the five-point Witten diagram is

5

4
3

2

1

= 1
D2

12D
2
34
C5 . (2.10)

Crucially, since D2
I and D2

I′ commute if I ⊆ I ′, I ′ ⊆ I or I ∩ I ′ = ∅, D2
I and D2

I′ always
commute if they belong to the same Witten diagram on the support of the CWI.3 Therefore,
there is never any ambiguity in the ordering of the D2

I at tree level.

3 The differential representation at one loop

We now turn to the generalization of the differential representation beyond tree level. We
motivate our construction using the triangle Witten diagram

A△
3 = 1

2

3

. (3.1)

3You can technically choose your D2
I such that they do not commute in the same Feynman diagram.

However, the commutator always vanishes on the support of the CWI. For example, we could write eq. (2.10)
using D2

345 and D2
123, which do not commute. However, the commutator of D2

345 and D2
123 is proportional to∑5

i=1 Di and therefore vanishes due to the CWI.
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Given the position space representation of A△
3 ,

A△
3 =

∫
AdS

dX1dX2dX3G(X1, X2)G(X2, X3)G(X1, X3)
3∏

i=1
E(Xi, Pi) (3.2)

we replace G(X2, X3) with its split-representation [9, 66–71],

G∆(X2, X3) =
∫ i∞

−i∞

dc

2πi(−2c2)
∫

∂AdS
dQdQ′

× δd(Q,Q′)
D2

Q −∆(d−∆)
E d

2 +c(X2, Q)E d
2−c(X3, Q

′) .
(3.3)

with ∆ = d. Upon making this replacement, the triangle Witten diagram simplifies to the form

A△
3 =

∫ i∞

−i∞

dc

2πi(−2c2)
∫

∂AdS
dQdQ′δ(Q,Q′) 1

D2
Q

A5(P1, P2, P3, Q,Q
′) (3.4)

where A5 is a 5-point tree-level Witten diagram. So far, we have simply rewritten the loop
diagram as a spectral integral over a tree diagram, as is standard [20]. We now write the
tree diagram in the differential representation

A5 = 1

2

Q′

Q

3

= 1
D2

Q3

1
D2

Q31
Cc

5(P1, P2, P3, Q,Q
′) .

(3.5)

where the c superscript indicates that the conformal dimensions associated with Q and Q′

external states in eq. (3.5) are ∆Q = d/2 + c and ∆Q′ = d/2 − c respectively. Combining
eqs. (3.4) and (3.5), we find

A△
3 =

∫ i∞

−i∞

dc

2πi(−2c2)
∫

∂AdS
dQdQ′δ(Q,Q′) 1

D2
Q

1
D2

Q3

1
D2

Q31
Cc

5(P1, P2, P3, Q,Q
′) . (3.6)

This is the differential representation of the triangle one-loop Witten diagram.
The above manipulations can be performed on any one-loop Witten diagram. One simply

uses the split representation, eq. (3.3), to convert the one-loop, n-point Witten diagram to
a tree-level (n+ 2)-point Witten diagram in the differential representation.4 For example,
repeating the above manipulations for bubble and box Witten diagrams, one finds

ABubble
3 =

1

2
3

=
∫ i∞

−i∞

dc

2πi(−2c2)
∫

∂AdS
dQdQ′δ(Q,Q′) 1

D2
Q

1
D2

Q3
Cc

5(Pi, Q,Q
′)

(3.7)

4Radu Roiban has pointed out that this representation of Witten diagrams is very reminiscent of the Q-cut
representation of Feynman diagrams [72].
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and

ABox
4 = 1

2

3

4

=
∫ i∞

−i∞

dc

2πi(−2c2)
∫

∂AdS
dQdQ′δ(Q,Q′) 1

D2
QD

2
Q1D

2
Q12D

2
Q123

Cc
6(Pi, Q,Q

′) .

(3.8)

Notably, the first part of eqs. (3.6)–(3.8) are universal. In contrast, the latter part of the
equations are unique to the Witten diagram and analogous to the corresponding Feynman
diagram under the replacement of the internal loop momentum with DAB

Q .
We interpret the universal integrals over c, Q and Q′ in the first lines of eqs. (3.6)–(3.8)

as the AdS analog of
∫
dlµ. We refer to such scalar integrals collectively as an operator-valued

integral and formally define the operator-valued integral of an operator-valued integrand,
Î(DQ, Di), as∫

[DDQ]Î(DQ, Di) ≡
∫

∂AdS
dQdQ′δd(Q,Q′)

×
∫ i∞

−i∞

dc

2πi(−2c2)Î(DQ, Di)Cc
n+2(Pi, Q,Q

′)
(3.9)

where Cc
n+2(Q,Q′, Pi) is an (n + 2)-point contact diagram,

Cc
n+2(Q,Q′, Pi) =

∫
AdS

dXE d
2 +c(Q,X)E d

2−c(Q
′, X)

n∏
i=1

E∆i
(Pi, X) . (3.10)

Again, the c superscript refers to how the conformal dimensions of the Q and Q′ states depend
on c. Our notation is meant to suggest that we should interpret eq. (3.9) as an integral over
DQ. Using this notation, the triangle Witten diagram is

A△
3 =

∫
[DDQ]

1
D2

Q

1
D2

Q3

1
D2

Q31
, (3.11)

and similiarly for the bubble and box differential representations. The operator-valued
integrals evaluate to functions of conformal generators of external states acting on contact
diagrams, Cn.

The operator-valued integral notation is interesting because it simplifies expressions and
provides a representation of Witten diagrams analogous to Feynman diagrams. However, the
utility of the operator-valued integral goes beyond aesthetics. We show in sections 4 and 5
that certain identities of scalar integrals generalize to operator-valued integrals and can be
leveraged to simplify the evaluation of specific Witten diagrams.

4 Explicit calculations at three-point

The differential representation is particularly useful for performing direct integration of one-
loop Witten diagrams. This is most apparent at three-point where a number of simplifications

– 5 –
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occur, specifically a form of tensor-reduction. For Feynman integrals, tensor reduction implies
that three-point, one-loop integrals obey the identity

0 =
∫
dd+1lf(l2)(l · pi)N (l · pj)M |p2

i =0 (4.1)

for any integers N, M such that M ≥ 0, N ≥ 0 and N +M > 0.5 For three-point Witten
diagrams, we conjecture an analogous identity holds if ∆ = d for all external states:

0 =
∫
[DDQ]f̂(D2

Q)(DQ ·Di)N (DQ ·Dj)M |n=3 (4.2)

with the same conditions on N and M , for all possible orderings of the differential operators
in the integrand. Eq. (4.2) is much more non-trivial than its flat-space analog. Even if one
assumes tensor reduction is applicable to operator-valued integrals, conformal generators
can in principle be contracted using the structure constants of the AdS isometry group as
well as dot products. Using formulas in appendix B, we explicitly checked eq. (4.2) holds for
N +M ≤ 10. In appendix C, we prove eq. (4.2) for the special case that N = 0.

Eq. (4.2) can be leveraged to dramatically simplify the calculation of certain three-point
Witten diagrams. As an illustrative example, consider the three-point bubble diagram in
eq. (3.7), except now with the conformal dimension of the state running in the loop, ∆l, left
unfixed. We restrict this computation to d = 2 as this Witten diagram diverges for d ≥ 3.
The differential representation of ABubble

3 is then∫
[DDQ]

1
(D2

Q −∆l(d−∆l))(D2
Q3 −∆l(d−∆l))

. (4.3)

Since ∆3 = d = 2, we find that D2
3 = 0. Performing a Taylor Series in DQ · D3, one

finds that all terms vanish due to eq. (4.2) except the leading term. Therefore, the bubble
Witten diagram simplifies to ∫

[DDQ]
1

(D2
Q −∆l(2−∆l))2 . (4.4)

Substituting the definition of the operator-valued integral and using [9, 73]

Γ(d/2)Γ(d/2 + c)Γ(d/2− c)
4πd/2Γ(d)Γ(1− c)Γ(1 + c)

=
∫

∂AdS
dQEd/2+c(Q,X)Ed/2−c(Q,X) , (4.5)

we reduce the integral to a single contour integral which can be evaluated using the residue
theorem. The final result for ABubble

3 is∫ i∞

−i∞

dc

(2π)2i

Γ(1 + c)Γ(1− c)C3
Γ(c)Γ(−c)(1− c2 −∆l(2−∆l))2 = 1

8π(∆l − 1)C3 . (4.6)

This result is cross-checked in appendix D, where we evaluate the bubble Witten diagram
in position space and find the answers agree.

5Tensor reduction implies that for the integral in eq. (4.1) to not vanish, it must be proportional to pi · pj .
However, pi · pj vanishes for massless external kinematics at three-point.
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We can use the differential representation to evaluate more complex Witten diagrams,
such as the triangle Witten diagram. We fix the conformal dimension of states running in
the loop to ∆l = d for simplicity. The relevant operator-valued integral is then eq. (3.11).
We again take a Taylor series of the operator-valued integrand, except now in DQ ·D1 and
DQ ·D2. All terms vanish except the leading term due to eq. (4.2). The final result can be
converted into a single scalar integral, which can again be evaluated using residue theorem.
Evaluating the integral, we found

A△
3 |d=2 = 1

32πC3, A△
3 |d=4 = 13

1536π2C3 ,

A△
3 |d=3 = 7π2 − 36ζ(3)− 6

1296π2 C3 ,

(4.7)

and that the integral is divergent for d ≥ 5, similar to flat space. Evaluating the c-integral
for odd d is slightly harder than even d because an infinite number of residues contribute
that need to be re-summed.

5 Generalized IBP relations

In flat space, IBP is an important tool for computing Feynman integrals [50–61]. We now
give a partial generalization of IBP for operator-valued integrals. We first note that the
operator valued integral should be invariant under arbitrary conformal transformations of
Q and Q′, which implies

I =
∫
[DDQ]ev·(DQ+DQ′ )Î , (5.1)

where v is a tensor, is independent of v. We now rewrite the above operator-valued integral as

I =
∫
[DDQ]Î ′e−v·(

∑n

i=1 Di) (5.2)

where Î ′ is Î with the replacement

DAB
a → ev·(DQ+DQ′ )DAB

a e−v·(DQ+DQ′ ) (5.3)

for all a ∈ {Q, 1, . . . , n}. If v is a constant tensor, then the above shift only acts non-trivially
on DQ and dependence on DQ′ disappears. Let us now take v to be an infinitesimal in
eq. (5.2). Since the result is independent of v, the component linear in v must vanish,
which imposes non-trivial linear relations among operator-valued integrals. The collection
of identities derivable from this procedure does not necessarily span the space of all linear
identities obeyed by operator-valued integrals, but is enough to illustrate that there are
non-trivial relations which mimic their flat-space counter-parts.

For example, we can apply the above procedure to the triangle Witten diagram. We
assume v is an infinitesimal constant, so the replacement rule simplifies to

DAB
Q → DAB

Q + fAB
CD,EFD

CD
Q vEF . (5.4)

– 7 –
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where fAB
CD,EF is a structure constant of the AdS isometry group. The above procedure

ultimately implies the operator-valued integrand

Î =
vABf

AB
CD,EF

D2
QD

2
Q1D

2
Q12

(
(DCD

Q DEF
1 ) 1

D2
Q1

+ (DCD
Q DEF

12 ) 1
D2

Q12

)

− 1
D2

QD
2
Q1D

2
Q12

(
v ·

3∑
i=1

Di

)
,

(5.5)

integrates to zero for external states with arbitrary conformal dimension. Unlike the operator-
valued integrands previously considered, the differential operators in each term do not
always commute and there are contractions of conformal generators with structure constants.
Furthermore, the constant tensor v explicitly breaks conformal symmetry, so the CWI must
be applied with care.6

6 Outlook

The differential representation is a powerful framework for evaluating Witten diagrams, as
illustrated by the direct evaluation of the triangle Witten diagram. Beyond three-point, the
differential representation implies linear relations among certain operator-valued integrands,
which are the AdS generalization of IBP relations. We restricted ourselves to one-loop examples
with ∆ = d, but the general formalism developed in this letter, in particular eq. (3.9), is
applicable beyond one-loop. For example, the results in section 5 should hold beyond one-loop.
However, the identity in eq. (4.2), which was crucial for the calculations in this letter, does
not seem to easily generalize beyond one-loop, similar to its flat space counterpart.

One nontrivial generalization would be applying this formalism to spinning states. For
spinning external states, we can often represent the spinning Witten diagram as a collection of
operators acting on Witten diagrams with scalar external states [74]. In the case of spinning
internal states, a formalism for computing the differential representation of such diagrams was
studied in ref. [75] and the same techniques should be applicable here. However, one difficulty
in generalizing to internal spinning states will be the appearance of non-trivial numerators.

In general, the similarities between Witten diagrams in the differential representation
and Feynman diagrams imply that many techniques for evaluating Feynman diagrams should
generalize to the differential representation. Beyond AdS, the differential representation can
also be used to evaluate Witten diagrams in de Sitter space [48, 76–80].7
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A Conventions

We now review the convention choices of this letter. Although the differential representation is
equally applicable in momentum and position space [48], we work in position space, specifically
the embedding representation, when comparing the differential representation to more familiar
expressions. Since we do not study the Witten diagrams of higher spin states in the main
text, only conventions relevant for evaluating scalar Witten diagrams are discussed.

Under Cartesian coordinates XA = (Xa, Xd, Xd+1) and setting the AdS lenth scale to
one, the AdSd+1 hypersurface corresponds to fixing X2 = −1. The Poincare coordinates
of the AdSd+1 hypersurface in Rd+1,1 are given by

Xa = 1
z
xa ,

Xd = 1
z

1− x2 − z2

2 ,

Xd+1 = 1
z

1 + x2 + z2

2 ,

(A.1)

such that

ds2
AdSd+1 = 1

z2

(
dz2 + dxadx

a
)
. (A.2)

The boundary is given by the projective null cone in Rd+1,1,

Pi =
(
xa

i ,
1− x2

i

2 ,
1 + x2

i

2

)
, (A.3)

such that P 2 = 0 and PA
i ∼ λPA

i . Conformal generators in the embedding space representation
are given in eq. (2.3) in the main text. In our chosen normalization, the commutator of
two conformal generators is

[DAB
i , DCD

j ] = δijf
AB,CD,EFDi,EF (A.4)

where fAB,CD,EF is the SO(d, 2) structure constant

fAB,CD,EF = 1√
2
[ηBCηAEηDE − (A↔ B)]

− (C ↔ D) .
(A.5)

Finally, we need to define a metric tensor that projects dynamics onto the embedding
hypersurface:

GAB = ηAB − XAXB

X2 = gµν ∂XA

∂xµ

∂XB

∂xν
. (A.6)

Crucially, GAB is defined such that

∇2
AdS = ∂A

(
GAB∂B

)
. (A.7)

We now turn to propagators. We choose to normalize the bulk-to-bulk propagators
such that [

−D2
X1 −∆(∆− d)

]
G∆(X1, X2) = −δd+1(X1, X2) (A.8)

– 9 –
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where one can show D2
X = ∂A(GAB∂B). In terms of hypergeometric functions, the bulk-

to-bulk propagator, G∆(X1, X2), is

C∆
(u)∆ 2F1

(
∆, 2∆− d+ 1

2 , 2∆− d+ 1, −4
u

)
, (A.9)

where C∆ is a normalization factor,

C∆ = Γ(∆)
2πd/2Γ(∆− d/2 + 1)

(A.10)

and u is the chordal distance,

u = (X1 −X2)2 . (A.11)

The bulk-to-boundary propagator is defined in terms of the asymptotic limit of the bulk-
to-bulk propagator,

E∆(X1, X2) = lim
X1→∂AdS

z−∆
1 G∆(X1, X2)

= C∆
(−2X1 ·X2)∆ .

(A.12)

Again, the normalization conventions of the propagators are fully fixed by eqs. (A.8)
and (A.12).

Finally, AdS propagators can be written as superpositions of AdS harmonic functions.
AdS harmonic functions are defined by the differential equation

(D2
X1 − (d2/4− c2))Ωc(X1, X2) = 0 , (A.13)

and normalized such that

δd+1(X1, X2) =
∫ i∞

−i∞

dc

2πiΩc(X1, X2) . (A.14)

Crucially, AdS harmonic functions satisfy an orthogonality condition∫
AdS

dX2Ωc(X1, X2)Ωc′(X2, X3)

= π[δ(c− c′) + δ(c+ c′)]Ωc(X1, X3) ,
(A.15)

which is very useful when integrating sequences of propagators. In terms of AdS harmonic
functions, the AdS bulk-to-bulk propagator is

G∆(X1, X2) =
∫ i∞

−i∞

dc

2πi
Ωc(X1, X2)

(∆− d/2)2 − c2 . (A.16)

We can invert eq. (A.16) to find a representation of Ωc(X1, X2) in terms of bulk-to-bulk
propagators,

Ωc(X1, X2) = c(Gd/2+c(X1, X2)−Gd/2−c(X1, X2)) . (A.17)

– 10 –
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A particularly useful representation of G∆(X1, X2) comes from substituting the split rep-
resentation of the harmonic function,

Ωc(X1, X2) = −2c2
∫
dQEd/2+c(Q,X1)Ed/2−c(Q,X2) , (A.18)

into eq. (A.16):

G∆(X2, X3) =
∫ i∞

−i∞

dc

2πi(−2c2)
∫

∂AdS
dQdQ′

× δd(Q,Q′)
D2

Q −∆(d−∆)
E d

2 +c(X2, Q)E d
2−c(X3, Q

′) .
(A.19)

Further identities are provided in the main text as needed.

B Useful integral identities

In this appendix, we discuss how we checked that eq. (4.2) holds. Crucially, first note
that f̂(D2

Q) becomes f̂(d2/4− c2) upon acting on C5(Pi, Q,Q
′) in eq. (3.9) and is therefore

independent of Q. However, non-trivial dependence on Q emerges upon acting (DQ ·Di)N (DQ ·
Dj)M on C5(Pi, Q,Q

′). We explicitly checked that the resulting expression vanishes upon
integrating over Q for N + M ≤ 10.

We review the computation strategy to integrate over Q. We find that the integrand
contains terms whose Q-dependence takes the generic form

Ia1,a2,... =
∫

∂AdS
dQ

∏
i(−2Q · Pi)ai

(−2Q ·X)d+
∑

i
ai
. (B.1)

We first consider the simplest specialization of eq. (B.1):

Ia =
∫

∂AdS
dQ

(−2Q · P1)a

(−2Q ·X)d+a
. (B.2)

Using the identity

Γ[a]
fa

=
∫ ∞

0

dv

v
vae−vf , (B.3)

we can rewrite eq. (B.2) as(
∂

∂α

)a ∫
∂AdS

dQ

∫ ∞

0

dv

v

vd+ae2Q·(vX−αP1)

Γ[d+ a] |α=0 . (B.4)

Finally, using the identity ∫
∂AdS

dQe2Q·T = πd/2

|T |d/2 e
−|T | (B.5)

the integral over Q in eq. (B.4) yields

(
∂

∂α

)a ∫ vd+a−1πd/2e−
√

vα(−2X·P1)−v2
dv

Γ[d+ a](vα(−2X · P1)− v2)d/4 |α=0 (B.6)

– 11 –
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which simplifies to

Ia = (−2P1 ·X)aπd/2
Γ
[

d
2 + a

]
Γ[d+ a] . (B.7)

This computation strategy generalizes to all integrals of the form eq. (B.1). Writing the
result in a tensor version of eq. (B.1), the integral yields

IA1,...,An =
∫
dQ

QA1 . . . QAn

(−2Q ·X)d+n
,

= πd/2Γ(d/2 + n)
Γ(d+ n) XA1 . . . XAn − Traces

(B.8)

where traces are subtracted using ηAB.
Eq. (B.8) was originally given in ref. [73] by taking derivatives of the integral

I(X) =
∫
dQ

1
(−2Q ·X)d

= πd/2Γ(d/2)
Γ(d)

1
(−X2)d/2 .

(B.9)

in the bulk coordinate XA. We have reproduced this formula here by direct integration to
avoid subtleties that are relevant when taking derivatives in bulk or boundary coordinates
in embedding space.8

C Proof of eq. (4.2) when N = 0

In this appendix, we prove that eq. (4.2) holds for general n-point integrands, not just
at three-point, when N = 0.9 We then sketch a possible proof strategy of eq. (4.2) for
general N and M .

We first note that when (DQ ·D1)N acts on D∆Q,∆1,..., the result takes the form

(DQ ·D1)ND∆Q,d... =
∑

an,k(Q · P1)kD∆Q+k,d+k,... (C.1)

where D∆Q+k,d+k,... is the D-function, defined as

D∆Q,∆1,... =
∫

AdS
dX(−2X · P1)−∆Q(−2X · Pn)−∆1 . . . . (C.2)

To solve for an,k, we use the relation

(DQ ·D1)[(Q · P1)kD∆Q+k,d+k,...] =
− 8(∆Q + k)(d+ k)(Q · P1)k+1D∆Q+k+1,d+k+1,...

− 4(∆Q + k)(d/2 + k)(Q · P1)kD∆Q+k,d+k,...

(C.3)

8For example, although the function P 2
1 f(Pi) is zero everywhere as boundary correlators are only defined

when P 2
i = 0, its derivative is non-zero. Ignoring this subtlety can lead to contradictions when using derivatives

to find identities among D-functions.
9We thank Fei Teng for suggesting this proof strategy.
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which provides a recursion relation for the an,k coefficients,

an,k = an−1,k−1fk−1 + an−1,kgk (C.4)

where

fk = −8(∆Q + k)(d+ k) ,
gk = −4(∆Q + k)(d/2 + k) ,
a0,0 = 1 ,
an,k = 0 if k > n or k < 0 .

(C.5)

We now take the expression in eq. (C.1) and integrate over Q using eq. (B.7). We find the result∫
AdS

dQ
n∑

k=0
an,k(Q·Pi)kD∆Q+k,d+k,... =πd/2D∆Q,d,...

n∑
k=0

(1
2

)−k

an,k
Γ(d/2+k)
Γ(d+k) . (C.6)

To show this expression is zero, substitute the identity in eq. (C.4) for all an,k. There are
now two sums over gk × (. . .) and fk−1 × (. . .) respectively. Substituting in the definitions of
gk and fk in eq. (C.5), these two sums cancel. Therefore, the expression in eq. (C.6) vanishes.

Unfortunately, proving eq. (4.2) for non-zero N and M is much more difficult than the
N = 0 case. We will sketch a proof strategy here. Similar to the N = 0 case, one would first
establish an ansatz for (DQ ·D1)N (DQ ·D2)MD∆Q,d,d,... as a sum of terms of the form

(Q · P1)k1(Q · P2)k2(P1 · P2)k3D∆Q+k1+k2,d+k1+k3,d+k2+k3,... . (C.7)

One would then establish a recursion relation among coefficients similar to eq. (C.3) and
perform an integral over Q using eq. (B.8). Unlike the N = 0 case, one would also need
to subsequently integrate over the bulk coordinate X using the closed form expression of
the 3-point D-function. After integrating over Q and X, the hope is that the recursion
relations between coefficients would be enough to show that the terms in the sum cancel
among themselves, similar to what happens in the N = 0 case.

D Explicit comparison for bubble diagram in AdS3

In this appendix, we evaluate the three-point bubble diagram in eq. (4.3) in position space
as a cross-check of our result in section 4. To simplify the computation, we consider the
more general case that PA

3 is in the bulk and then take the limit that PA
3 approaches the

boundary, writing

ABubble
3 = lim

P3→∂AdS
(z3)−2

∫
AdS

dX1dX2E(P1, X1)

× E(P2, X1)(G∆l
(X1, X2))2G(X2, P3) .

(D.1)

We consider the split-representation of the d = 2 bulk-to-bulk propagator, given in eq. (A.16),
and the bubble,

G∆l
(X1, X2)2 =

∫ i∞

−i∞

dc

2πiB
∆l
c Ωc(X1, X2) , (D.2)

– 13 –
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where B(c) was derived in ref. [24],

B∆l
c =

ψ
(
∆l − 1+c

2

)
− ψ

(
∆l − 1−c

2

)
8πc . (D.3)

Using orthogonality of AdS conformal partial waves, we find that∫
AdS

dX2(G∆l
(X1, X2))2G(X2, P3) =

∫ i∞

−i∞

dc

2πi
B∆l

c

1− c2Ωc(X1, P3) . (D.4)

Substituting eq. (D.4) into eq. (D.1) and rewriting the conformal partial wave as a sum of
Gd/2±c(X1, X2) as in eq. (A.17), the one-loop correlator simplifies to

lim
z−3→0

z−2
3

∫ i∞

−i∞

dc

2πi
cB∆l

c

1− c2

∫
dX1E(P1, X1)

E(P2, X1)(G1+c(X1, P3)−G1−c(X1, P3))
(D.5)

This integral can be evaluated using the residue theorem, but the contour is different for
each term due to distinct behavior at |z| → ∞. The G1±c(X1, P3) term corresponds to a
contour which includes the residue at c = ±1. The final result is

ABubble
3 = 1

8π(∆l − 1)C3 . (D.6)

As expected, we find that the operator-valued integration result in eq. (4.6) matches the
result derived from direct integration in position space in eq. (D.6). Given that ABubble

3 is a
one-loop diagram in AdS3, it was surprisingly straightforward to evaluate. The key to the
above computation was using the split representation of the bubble diagram in eqs. (D.2)
and (D.3). Unfortunately, this computation strategy does not generalize to more complicated
one-loop Witten diagrams, such as A△

3 .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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