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1 Introduction

The fundamental symmetries of the universe are not always easy to discern. For instance,
our immediate surroundings often obscure the underlying principle that there is no preferred
location.1 Even when a symmetry is hidden by circumstances, i.e. it is spontaneously broken,
it still constrains the dynamics of a system and it leads to observable consequences. One
robust implication of spontaneous symmetry breaking (SSB), encapsulated in Goldstone’s

1Despite the claims of many New Yorkers.
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celebrated theorem, is the existence of gapless modes which often dominate the behavior
of the system at large enough length scales.

Spontaneously broken symmetries act non-linearly on the Goldstone fields, and for this
reason it is often non-trivial to identify all possible invariant operators that should be included
in the low-energy effective action. Fortunately, there exists a systematic procedure to achieve
this, which goes under the name of coset construction [1–4]. In the simplest scenarios, this
method takes as its only input the symmetry breaking pattern G → H, where G is the
fundamental symmetry group, and H is the subgroup of symmetries that remain manifest and
are realized linearly. The output of this construction is a series of building blocks that can
be easily combined to write down the most general local effective action SEFT[π⃗] describing
the Goldstone modes π⃗. Zero-temperature, time-ordered correlators and the corresponding
S-matrix elements can then be calculated using the standard path-integral representation
of the generating functional:

Z[J ] ≡
∫

Dπ⃗ eiSEFT[π⃗]+i
∫

dd+1x J⃗(x)·π⃗(x). (1.1)

Generating functionals of the form (1.1) are appropriate for so-called in-out calculations,
in which the state of the system is specified both at early and late times [5]. Scattering
events are the prototypical example of this scenario. There are however many other physical
quantities which require instead in-in calculations, in which the (pure or mixed) state of a
system is only specified at some initial time, and afterwards the system evolves according
to its own dynamics. The observables relevant for cosmology, hydrodynamics, and generic
dissipative systems, for example, are most naturally phrased within this latter framework, and
finite-temperature effects can be included in a natural manner. In this setting, calculations
are instead often performed using the Schwinger-Keldysh generating functional, whose path-
integral representation requires a doubling of fields, the analogue of (1.1) being

Z[J1, J2] ≡
∫

Dπ⃗1Dπ⃗2 e
iSEFT[π⃗1,π⃗2]+i

∫
dd+1x J⃗1(x)·π⃗1(x)−J⃗2(x)·π⃗2(x) . (1.2)

In this paper, we investigate to what extent the traditional coset construction can be
used to write down the doubled-field effective action SEFT[π⃗1, π⃗2] that defines the Schwinger-
Keldysh generating functional (1.2). In the case of Goldstone fields, doubling the field content
would naively appear to be in tension with non-linear realization of the spontaneously broken
symmetries. We will explicitly address this by providing a systematic prescription for writing
down all possible operators that involve two copies of the Goldstone fields and are compatible
with all the symmetries. Our results provide a complementary perspective on the modern
field-theoretic description of non-equilibrium systems, reviewed recently in, e.g., [6], as the
ingredients in both constructions are intimately related. In particular, we study the additional
constraints that a finite temperature places on top of the traditional coset-construction rules,
as encapsulated by the discrete dynamical Kubo-Martin-Schwinger (DKMS) symmetry argued
for in [7]. Previous studies of the coset construction within the Schwinger-Keldysh formalism
can be found in [8, 9], for instance. See also [10–12] for interesting discussions of Goldstone
modes in out-of-equilibrium systems.

The rest of this paper is organized as follows. In order to make our discussion as
self-contained as possible, we will start by reviewing the basics of the Schwinger-Keldysh
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formalism in section 2. We will focus in particular on those subtle aspects that will be relevant
for the remainder of the paper. Readers that are already familiar with the Schwinger-Keldysh
formalism can skip most of this section, but might still benefit from reading subsections in 2.
We will then turn our attention to the coset construction in section 3. We will first review the
basics of this method and then, in section 4, show how it can be applied to Schwinger-Keldysh
effective actions, focusing specifically on internal symmetries. This section introduces all the
rules of the game that one should follow to write down operators that are compatible with
all the symmetries. We will also discuss how turning on a finite temperature impacts the
symmetries of the system, and introduces new expansion parameters in the effective theory.
Finally, in section 5 we illustrate our main points with a variety of explicit examples. Some
supplementary material is provided in the appendices.

Conventions: unless otherwise specified, we work in units such that ℏ = kB = 1. The
vast majority of our results are independent of the Minkowski metric, but wherever it
matters we adopt a mostly plus signature. We define Fourier transforms as f(ω, k⃗) =∫
dtd3x eiωt−ik⃗·x⃗f(t, x⃗). Path integrals over spatial slices versus those over all of spacetime

are notationally distinguished via their respective measures: Dφ ≡
∏

x⃗ dφ(t, x⃗) versus Dφ ≡∏
t,x⃗ dφ(t, x⃗). States at fixed asymptotic time slices are denoted as in |φ,±∞⟩.

2 The Schwinger-Keldysh Formalism from an EFT perspective

In this section, we review the Schwinger-Keldysh (or in-in) formalism from an EFT per-
spective. We will discuss the main features of this formalism (doubling of the field content,
implementation of symmetries, power counting, etc.) and define the notation that we will
use throughout the paper. We will strive to keep our remarks as general as possible, so that
they equally apply to systems with or without SSB.

2.1 Field content

Consider a closed quantum system described by some fields collectively denoted by φ and
corresponding action S[φ], and that is in a state specified by the density matrix ρ.2 The most
general observables of the system are phrased in terms of correlation functions of the form

⟨O(n)(xn) . . .O(1)(x1)⟩ ≡ Tr ρO(n)(xn) . . .O(1)(x1) , (2.1)

where the O(i)’s are local operators built out of the fields φ and their derivatives evaluated
at points xi that are not in any particular order. In many applications, one is interested
in (linear combinations of) the restricted set of observables where the operator product is
of the following factorized form:

⟨T̄
[
O(n)(xn) . . .O(m+1)(xm+1)

]
T
[
O(m)(xm) . . .O(1)(x1)

]
⟩ , (2.2)

where T and T̄ denote time-ordered and anti-time-ordered products, respectively. Specializing
further to the case of a single operator O(x) for clarity of presentation, correlators of this

2We are working in the Heisenberg picture, where operators and their eigenstates evolve in time, while the
state of the system does not.
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form can be obtained systematically by differentiating a generating functional that depends
on two external currents:

Z[J1, J2] ≡ Tr
[
ρ T̄ e−i

∫
J2O Tei

∫
J1O

]
. (2.3)

Generators for correlators of more than one operator or with more general time-orderings
can be similarly constructed, but the one in eq. (2.3) will be sufficient for our purposes.

Inserting resolutions of the identity 1 =
∫
Dφ |φ,±∞⟩⟨φ,±∞| between the various

factors inside the trace, we can rewrite the generating functional as

Z[J1, J2] =
∫
DφaDφbDφc ⟨φa,−∞|ρ|φc,−∞⟩⟨φc,−∞|T̄ e−i

∫
J2O|φb,+∞⟩ (2.4)

× ⟨φb,+∞|Tei
∫

J1O|φa,−∞⟩,

where the last factor admits a path integral representation of the form

⟨φb,+∞|Tei
∫

J1O|φa,−∞⟩ =
∫ φ(+∞)=φb

φ(−∞)=φa

DφeiS[φ]+i
∫

dd+1x J1O , (2.5)

and a similar, conjugated expression holds for the second factor.
It is customary for the preceding construction to be summarized in the compact form

Z[J1, J2] =
∫

ρ
Dφ1Dφ2 exp

[
iS[φ1]− iS[φ2] + i

∫
dd+1xJ1O(φ1)− J2O(φ2)

]
. (2.6)

We see therefore that calculating correlation functions of the form (2.2) requires a doubling of
the field content: this is a direct consequence of the fact that expectation values, as opposed
to transition amplitudes, require time-evolving both the corresponding bras and kets, with
one set of fields performing each such evolution — see [5] for a related discussion.

2.2 Effective action

The expression in eq. (2.6) leaves the dependence on the density matrix ρ and boundary
conditions at t = +∞ highly implicit. These are nonetheless important features of the path
integral formulation that will play an important role in what follows.

The generator (2.6) corresponds to a path integral over a contour C which extends from
t = −∞ to t = +∞ and back, with appropriate boundary conditions placed in the asymptotic
regions; see for instance figure 1 in appendix A for a depiction of this contour in the case
where ρ is thermal. Consequently, Z[J1, J2] generates correlators which are path-ordered
along C, for the usual reasons, with operators labeled with a 2 always coming after those
labeled with a 1. For example, when O(φ) = φ, the various permutations of the two-point
function are explicitly given by

⟨Pφi(x)φj(x′)⟩ =



⟨Tφ(x)φ(x′)⟩ i = j = 1
⟨T̄φ(x)φ(x′)⟩ i = j = 2
⟨φ(x)φ(x′)⟩ i = 2, j = 1
⟨φ(x′)φ(x)⟩ i = 1, j = 2

, (2.7)
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where P denotes path-ordering. For brevity, we will omit explicit P ’s in subsequent expressions
and path-ordering is always implied unless noted otherwise.

The shorthand expression (2.6) is cryptic, at best. A particular shortcoming is that the
correlator (2.7) does not arise from simply inverting the kinetic term of S[φ1]− S[φ2], as the
notation might suggest. Were this true, all mixed correlators such as ⟨φ1(x)φ2(x′)⟩ would
necessarily be vanishing. Instead, the boundary conditions implicit in (2.6) generate the
necessary, non-trivial cross-couplings — see appendix A for an explicit example.

Nuisances such as this one motivate the use of an alternative description based on an
effective action SEFT[φ1, φ2] in which the boundary conditions implicit in (2.6) are made
explicit and encoded into SEFT itself. These effective actions are of the functional form

SEFT[φ1, φ2] = S[φ1]− S[φ2] + ∆S[φ1, φ2] , (2.8)

where the information about the state ρ of the closed system as well as the boundary
conditions are encoded in the cross terms ∆S[φ1, φ2] [6, 13].3 We elaborate upon this point
later in this section and will also discuss the circumstances under which we expect SEFT to
be local. Correlators are computed using SEFT as in

⟨O(n)(xn) . . .O(1)(x1)⟩ =
∫

Dφ1Dφ2 e
iSEFT[φ1,φ2]O(n)(xn) . . .O(1)(x1) , (2.9)

where perturbative computations now proceed in the naive manner in which free propagators
are determined by the quadratic terms in SEFT and non-linearities are handled order by order.

A term of the form ∆S[φ1, φ2] arises also in open systems, albeit in a different way [14–17].
To see this, imagine decomposing our closed system in a subsystem of interest, with degrees
of freedom ϕ, and an environment, with degrees of freedom Φ. If we are only interested in
correlation functions of the subsystem, we can work with a generating functional of the form

Z[J1, J2] =
∫

ρ
Dϕ1Dϕ2DΦ1DΦ2 e

iS[ϕ1,Φ1]−iS[ϕ2,Φ2]+i
∫

dd+1x J1O(ϕ1)−J2O(ϕ2) , (2.10)

where S[ϕ,Φ] = S[ϕ] + Sint[ϕ,Φ], and Sint[ϕ,Φ] captures the dynamics of the environment
as well as its interactions with the subsystem. Assuming for simplicity that the state of
the full system is factorized, i.e. ρ = ρϕ ⊗ ρΦ, we can integrate out the fields Φ to obtain
a correction to the action for the subsystem given by

ei∆S[ϕ1,ϕ2] =
∫

ρΦ
DΦ1DΦ2 e

iSint[ϕ1,Φ1]−iSint[ϕ2,Φ2]. (2.11)

The term ∆S[ϕ1, ϕ2] that arises by integrating out the environment is known as the influence
functional, and it generically includes interactions between ϕ1 and ϕ2. The origin of these
interactions can be traced back to the “off-diagonal” correlation functions of the environment
degrees of freedom, e.g. ⟨ΦiΦj⟩ with i ̸= j. Alternatively, one could also derive the influence

3Note that the fields φ that appear in the effective action (2.8) generically do not coincide with the fields φ

in eq. (2.6)—a standard observation in more traditional in-out effective field theories. Similarly, the functional
S[φi] in eq. (2.8) will generally differ from the functional S[φi] in eq. (2.6); we use the same symbol in both
contexts to avoid unnecessary additional notation.
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functional using the fact that, for open systems, the evolution between subsequent time slices
is not unitary and is performed by the Lindblad operator — see e.g. [16].

Eq. (2.11) shows explicitly that, in the case of an open system, the term ∆S[ϕ1, ϕ2]
contains information about the state of the environment ρΦ and its interactions with the
subsystem. This is conceptually different from the effective action of a closed system in (2.8),
which instead depends on the state of the system under consideration. Of course, one could
amend the influence functional so that it also captures the state ρϕ of the subsystem, following
the same strategy we outlined for a closed system. By doing so, ∆S[ϕ1, ϕ2] would now encode
once again the state of a closed system, ρ = ρϕ ⊗ ρΦ. This procedure would be equivalent
to first introducing the effective action for the total closed system, and then integrating
out the environment in the naive manner:∫

ρ
Dϕ1Dϕ2DΦ1DΦ2e

iS[ϕ1,Φ1]−iS[ϕ2,Φ2] =
∫

Dϕ1Dϕ2DΦ1DΦ2e
iS[ϕ1,Φ1]−iS[ϕ2,Φ2]+i∆S[ϕ1,ϕ2,Φ1,Φ2]

=
∫

Dϕ1Dϕ2 e
iS[ϕ1]−iS[ϕ2]+i∆S[ϕ1,ϕ2]. (2.12)

From this perspective, the difference between an open and a closed system is whether the
degrees of freedom appearing in the path integral define a basis for the Hilbert space on
which the state ρ is defined.

2.3 Locality and expansion parameters

Let’s consider an EFT described by an “in-out” effective action SEFT[φ] with energy cutoff
Λ.4 This means that any operator in the in-out effective action can be assigned a definite
scaling in the ratio E/Λ, with E the typical scale of interest [18, 19]. Any state ρ that is not
the vacuum of the EFT will generically introduce additional scales into the problem. We will
collectively denote these scales with M ; some examples are: the temperature T of a thermal
state, the chemical potential µ of a finite density state, the characteristic length scale ℓ of a
semi-classical field profile (converted to an energy scale using some characteristic speed), etc.
Only states such that M ≪ Λ can be reliably described within the in-out EFT.

In the approach described in section 2.2, these additional scales M appear explicitly in
the Schwinger-Keldysh effective action SEFT[φ1, φ2]. While it is perhaps plausible that such
an action might be able to reproduce all correlators of the form (2.2), there is certainly no
expectation that this EFT should be local for all scales E ≪ Λ — and indeed, it generically
won’t be. In order to work with a local Schwinger-Keldysh effective action, we need to restrict
ourselves to the regime E ≪M ≪ Λ, which will be the focus of this paper. Below the scales
M , all information about the state ρ is encoded in the effective action by an infinite tower of
irrelevant local operators — the usual way in which UV physics manifests itself at low energies.
Thus, the Schwinger-Keldysh effective action now contains a new expansion parameter, E/M .

This point is potentially confusing for thermal states: because EFTs at zero temperature
are usually described using a local action, one might expect that the T ≪ E regime should
also admit a local description by continuity. However, thermality is generically encoded

4In non-relativistic EFTs one should distinguish between the cutoffs for energy and momentum — as we
will see in the examples discussed in section 5. In this section we focus our attention on the energy cutoff to
simplify the discussion.
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by ∼ e−E/T factors [20–22] which only admit an expansion in powers of E for T ≫ E, the
regime in which being at finite temperature appears as a UV effect.5

At scales E ≪ M , the relevant degrees of freedom are often the Goldstone modes
associated with symmetries that are spontaneously broken by the state ρ. In the following
sections, we will uncover the principles that one should follow to write down the most general
Schwinger-Keldysh effective action for such Goldstone modes.

Irrespective of the state ρ of the system, Schwinger-Keldysh effective actions are also
naturally endowed with another expansion parameter, namely ℏ, that controls the semi-
classical expansion. In the absence of Goldstone modes, fields usually transform linearly under
all the symmetries, and a systematic ℏ expansion of the effective action is straightforward to
implement [6] (see also section 2.6 for more details). In the presence of Goldstone bosons,
however, an expansion of the effective action in powers of ℏ requires some extra care, since
a naive implementation would break some of the symmetries that are realized non-linearly,
as will become clear in subsequent sections. For this reason, we will not be implementing
this expansion in what follows.

2.4 Symmetries

EFTs are specified not only by their field content and expansion parameter(s), but also
by their symmetries. It is therefore important to discuss which symmetries one should
impose when writing down the most general Schwinger-Keldysh effective action SEFT[φ1, φ2].
The symmetry considerations that must inform the construction of the effective action for
closed systems are:

• Gauge symmetries: when the single field action S[φ] enjoys a gauge symmetry, the
action S[φ1, φ2] = S[φ1] − S[φ2] in eq. (2.6) is invariant under independent gauge
transformations of the φi’s that coincide at t = ±∞ [6]. As a result, the Schwinger-
Keldysh effective action SEFT[φ1, φ2] must be invariant under two copies of the gauge
group. This is consistent with the statement in the previous section that one should
double all the degrees of freedom — including gauge fields.

• Continuous global symmetries: the fact that the two gauge transformations must coincide
at t = ±∞ implies that, in the global limit, the action S[φ1, φ2] = S[φ1]− S[φ2] can
only be invariant under the diagonal symmetry group G which transforms the φi’s
simultaneously. This fact is not manifest at the level of the action, since φ1 and φ2
would appear to be decoupled; it follows instead from the boundary conditions, and
in this sense it can be viewed as a non-local constraint on the symmetries of the
system. These boundary conditions, together with the state of the system, are built
directly into the Schwinger-Keldysh effective action SEFT[φ1, φ2]. Furthermore, gauge
symmetries must become physically indistinguishable from global symmetries in the

5We are being schematic here. More precisely, the scale M is proportional to T but does not necessarily
coincide with it. For weakly coupled UV completions, M is more accurately of order g4T ln g−2, a scale
associated with large-angle scattering events. It is below this scale that the relevant degrees of freedom become
the hydrodynamic modes [23]. This situation is a manifestation of the usual fact that, for weakly coupled UV
completions, the cutoff of the low-energy EFT can be parametrically smaller than the strong coupling scale
(in our case, T ).
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limit of vanishingly small gauge coupling.6 In the regime where the Schwinger-Keldysh
effective action is local, this can only be achieved if SEFT[φ1, φ2] is invariant under two
copies of all global symmetries, G1 ×G2.7 This enhancement of global symmetries is a
direct consequence of the requirement that the Schwinger-Keldysh effective action be
local and leads to the existence of two separate Ward identities, which are required to
reproduce the same information of a single Ward identity defined on the two segments of
the Schwinger-Keldysh contour (see figure 1 in appendix A). The symmetry properties
of the matrix elements of ρ in the past infinity determine to what extent G1 ×G2 is
spontaneously broken down to a subgroup — we will discuss this more in depth in
section 4.

• Discrete symmetries: the difference between past and future boundary conditions
breaks explicitly time reversal, which therefore is not a symmetry of the effective action
SEFT[φ1, φ2] even when it is a symmetry of the single-field action S[φ]. All other
discrete symmetries of the single-field action are realized twice in the Schwinger-Keldysh
effective action, as is the case for continuous global symmetries. This is required for
consistency, since discrete subgroups of continuous symmetries are always realized twice.

• Emergent symmetries: the state ρ not only determines whether some of the symmetries
are spontaneously broken, but can also give rise to additional “emergent” symmetries
in the EFT. For instance, the homogeneity and isotropy of a state would be encoded by
an emergent internal ISO(d) symmetry [25, 26]. A more generic example is provided
by the thermal state, which endows the effective theory with an additional discrete
symmetry — the dynamical KMS symmetry (DKMS) [6, 27, 28]—that, in the simplest
case,8 can be implemented on the two copies of the fields as follows:

φ ′
1(t, x⃗) = φ1(−t+ iβ/2, x⃗) = φ1(−t, x⃗)−

iβ

2 ∂tφ1(−t, x⃗) +O(β2), (2.13a)

φ ′
2(t, x⃗) = φ2(−t− iβ/2, x⃗) = φ2(−t, x⃗) +

iβ

2 ∂tφ2(−t, x⃗) +O(β2), (2.13b)

where β = 1/T (In this paper we are aiming for an effective action up to leading order
in an expansion in E/T , which is why we expanded the DKMS symmetry in powers

6See e.g. discussion in section 21.4 of [24].
7In the ground state, G1 × G2 is explicitly broken down to its diagonal subgroup by terms of O(ε) when

the “iε” prescription is implemented at the level of the action [13]. This is another manifestation of the fact
that the state at t = −∞ is only invariant under the diagonal symmetry group. The factors of iε are crucial to
reproduce the correct n-point functions, but should not be taken into account when discussing the symmetries
of the Schwinger-Keldysh effective action. This is standard EFT practice: for example, the in-out effective
action for a U(1) Goldstone is considered to be shift-invariant even though implementing the “iε” prescription
in the action would break the shift symmetry explicitly.

8The existence of the symmetry (2.13) relies on the invariance of the underlying dynamics under time
reversal. More in general, the DKMS symmetry can be implemented by combining the transformations (2.13)
with additional discrete symmetries, e.g. parity and charge conjugation [6]. The important point is that the
ground state of the system must be invariant under the combined action of these discrete symmetries and time
reversal. As we will see in section 5.3, this requirement plays an important role for ferromagnets.
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of ∂t/T ).9 This symmetry ensures that correlation functions of the system satisfy the
KMS condition [29, 30], which e.g. for the 2-point correlator of any operator O reads

⟨O(t, x⃗)O(t′, x⃗ ′)⟩ = ⟨O(t′ − iβ/2, x⃗ ′)O(t+ iβ/2, x⃗)⟩. (2.14)

Furthermore, when combined with the unitarity conditions discussed below in section 2.5,
the DKMS symmetry leads to the existence of an entropy current with non-negative
divergence [31]. It is worth mentioning that eq. (2.13) is not the only possible way
of implementing the KMS condition as a symmetry of the effective action — see for
instance [32, 33], and [34] for a detailed comparison with the approach put forward
in [6] and adopted in this paper.

2.5 Unitarity

In the standard in-out path integral, unitarity implies that the single field effective action
SEFT[φ] must be real. Similarly, unitarity also restricts the form of the Schwinger-Keldysh
effective action SEFT[φ1, φ2], and requires that the following conditions be satisfied [6]:

1. The action must vanish when φ1 = φ2: SEFT[φ,φ] = 0.

2. Unlike in the usual in-out path integral, the effective action that appears in the
Schwinger-Keldysh generating functional is allowed to be complex. However, under
conjugation we must have SEFT[φ1, φ2]∗ = −SEFT[φ2, φ1].

3. Furthermore, the imaginary part of the action must be non-negative: ImSEFT[φ1,φ2]≥ 0.

In terms of the decomposition (2.8) SEFT[φ1, φ2] = S[φ1] − S[φ2] + ∆S[φ1, φ2], the first
unitarity constraint implies that ∆S[φ,φ] = 0; the second condition requires S[φ] to be
purely real and the mixing term to obey ∆S[φ1, φ2]∗ = −∆S[φ2, φ1]; and the third unitarity
condition further imposes Im∆S[φ1, φ2] ≥ 0.

2.6 A convenient field redefinition: Keldysh rotation

In order to simplify calculations and make the causality properties of various quantities
manifest, it is convenient to perform a field redefinition and switch to the so-called Keldysh
basis. Assuming for now that all symmetries are linearly realized on our fields, this is done by
performing a Keldysh rotation to introduce the following new degrees of freedom:10

φa(x) ≡ φ1(x)− φ2(x) , φr(x) ≡ 1
2 [φ1(x) + φ2(x)] . (2.15)

The Keldysh basis has several advantages. First, even though the 2-point functions of
φ1 and φ2 are all generically non-zero, as shown in eq. (2.7), they are actually not all
independent of each other. Writing out the time-orderings, one can easily show that the
following identity holds [13]:

⟨φ1(x)φ1(x′)⟩+ ⟨φ2(x)φ2(x′)⟩ − ⟨φ1(x)φ2(x′)⟩ − ⟨φ2(x)φ1(x′)⟩ = 0 . (2.16)
9We are assuming here that all continuous global symmetries act linearly on the φi fields, i.e. that there is

no spontaneous symmetry breaking. Furthermore, we have made an additional imaginary time-translation to
bring (2.13) to a convenient form — see e.g. [6] for a more general form of these transformation rules.

10See [35] for a detailed discussion of subtleties associated with the Keldysh basis.
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In the Keldysh basis, this redundancy is made explicit through the fact that ⟨φa(x)φa(x′)⟩
vanishes:11,12

⟨φi(x)φj(x′)⟩ =



1
2⟨{φ(x), φ(x′)}⟩ i = j = r

0 i = j = a

θ(t− t′)⟨[φ(x), φ(x′)]⟩ i = r, j = a

θ(t′ − t)⟨[φ(x′), φ(x)]⟩ i = a, j = r

. (2.17)

Another technical advantage to the Keldysh basis also becomes apparent in eq. (2.17): mixed
a-r two-point correlators have manifest causal properties. The retarded Green’s function is
proportional to ⟨φr(x)φa(x′)⟩, while the advanced one is proportional to ⟨φa(x)φr(x′)⟩. One
can think of the mixed correlators as containing information about the system’s fundamental
dynamics, while r-r correlators encode information about the state of the system.13

The effective action SEFT[φa, φr] is generally organized as an expansion in φa fields
which, due to the form of the action in (2.8), can be written as

SEFT[φa,φr] =
∞∑

n∈{1,3,5,...}

(
n∏

i=1

∫
dd+1xi

)
δnS[φr]

δφr(x1) . . . δφr(xn)
1

2n−1n!φa(x1) . . .φa(xn)+∆S[φa,φr] , (2.18)

where only odd powers of φa can arise from the expansion of S[φ1]−S[φ2]. In these variables,
the unitarity constraints previously discussed in section 2.5 now imply the conditions

1. ∆S[φa = 0, φr] = 0,

2. ∆S[φa, φr]∗ = −∆S[−φa, φr],

3. Im∆S[φa, φr] ≥ 0.

The first condition further implies that φa = 0 is always a consistent solution of the equations
of motion that follow from varying the effective action with respect to φr. Variation with
respect to φa yields instead, at lowest order in φa, the classical equations of motion for φr. As
a result, the a- and r-fields have also the conceptual advantage of admitting a natural physical
interpretation. The φr operator can be identified with a classical field in the ℏ → 0 limit,
whereas φa is responsible for quantum and stochastic effects [13]. In the absence of spontaneous
symmetry breaking, this can be made explicit by rescaling φa → ℏφa, so that the effective
action admits a straightforward expansion in powers of ℏ. This procedure is consistent with
semi-classical expansion of in-out effective actions in terms of some dimensionless combination
of coupling constants and ℏ [37] in the limit of high occupation number [38]. In the presence

11This pattern generalizes quite widely: any correlator involving a string of a- and r-operators ∼ ⟨φm
r φn

a⟩
vanishes if among all operators, the one with the largest temporal argument is an a-operator. This non-
perturbative result is known as the largest-time equation [36] and it implies, in particular, that ⟨φn

a⟩ is vanishing
for all n.

12Our notation for various correlation functions and some of their properties are summarized in appendix B.
13For instance, ⟨φr(ω, k⃗)φr(−ω,−k⃗)⟩ ∝ 1

2 +nBE(βω) in a thermal state, where nBE(βω) is the Bose-Einstein
distribution (assuming O is bosonic)—see appendix A for more details.
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of spontaneous symmetry breaking, however, an expansion in powers of a-fields becomes more
subtle because it obscures (i.e. break explicitly) some of the symmetries realized non-linearly.
Understanding how this relates to the semi-classical expansion of in-out effective theories
with Goldstones [39] is an open problem that we leave for future study. In the present paper
we will not truncate our results at a finite order in a-fields.

For future use, we also report here the action of the DKMS symmetry on the fields
in the Keldysh basis. Working at lowest order in E/T , we immediately find from the
transformation rules (2.13):

φ ′
r(t, x⃗) ≃ φr(−t, x⃗)− i

4β∂tφa(−t, x⃗), (2.19a)
φ ′

a(t, x⃗) ≃ φa(−t, x⃗)− iβ∂tφr(−t, x⃗). (2.19b)

Note that, for linearly realized symmetries, the change in φr in eq. (2.19a) is of O(ℏ), and is
therefore often neglected — see e.g. [6].14 We are keeping this correction here since for our
purposes it will be important to distinguish between expansions in powers of E/T and ℏ.

In the body of the paper, we focus on constructing low-energy Schwinger-Keldysh
effective actions for systems in which one or more symmetries are spontaneously broken.
As we will see, working in terms of r- and a-fields becomes especially natural under these
circumstances. This is because the Goldstone fields in the Keldysh basis have non-linear
transformation properties that resemble those in a more traditional in-out effective theory.
This will allow us, in particular, to implement the DKMS symmetry on the Goldstone fields
in a way that is consistent with all the non-linearly realized symmetries. Because of the
relations (2.15), instead, the Goldstone fields in the (1, 2) basis would satisfy much more
complicated transformation rules.

3 The coset construction

One of the tenets of modern EFTs is the principle that all the terms compatible with the
symmetries of a physical system should appear in its corresponding effective action. In
the presence of spontaneous symmetry breaking the identification of all such operators can
be technically challenging, as the symmetries are non-linearly realized on the Goldstone
modes of the system, and the standard framework for organizing the classification is the
coset construction [2–4]. Essential elements of the technique are reviewed below in the
particular case of spontaneously broken internal symmetries; a more detailed discussion
can be found for instance in [19].

3.1 The Maurer-Cartan form

The first step is to distinguish those symmetries that are spontaneously broken from those
that are not. Letting the breaking pattern be G → H and denoting the generators of
spontaneously broken symmetries by Xi, the coset construction analysis starts by forming
the coset parametrization Ω ∈ G/H which can be canonically written as

Ω = eiπj(x)Xj . (3.1)
14Note that, when restoring all factors of ℏ, one should replace β → ℏβ in order for the temperature to have

units of energy.
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Every broken generator15 appears with an associated Goldstone field πi(x). The transforma-
tion properties of the Goldstone fields under the action of a generic symmetry transformation
g are defined by the relation

gΩ(π⃗) = Ω(π⃗ ′)h(g, π⃗), (3.2)

where h is some element of the unbroken subgroup which could in principle depend on g

and the fields πi(x).
The transformation laws for πi encapsulated by (3.2) are in general non-linear and contain

infinitely many terms when expanding in fields. Therefore, the operators which respect the
requisite symmetries are severely constrained. The central building block for constructing
such operators is the Maurer-Cartan 1-form, ω = Ω−1dΩ, which is a Lie-algebra valued
1-form that can be conveniently written as

ω = Ω−1∂µΩdxµ ≡ i
(
Dµπ

iXi +AB
µ TB

)
dxµ , (3.3)

where we have denoted unbroken generators with TB.
The Maurer-Cartan form is useful because the above coefficients enjoy relatively simple

transformation properties under the relevant G-symmetries [4]:

• The Dµπ
i factors are non-linear combinations of the Goldstone fields of the form

Dµπ
i = ∂µπ

i +O(π2) which transform linearly under (3.2):

Dµπ
i −→ h(g, π⃗)i

jDµπ
j , (3.4)

where h(g, π⃗)i
j is a (possibly reducible) representation of the unbroken transformation

h(g, π⃗). Because of Dµπ
i’s linear transformation property (3.4), it is conventional

to refer to this building block as a “covariant derivative”, but we wish to emphasize
that this terminology is somewhat misleading: because of πi(x)’s highly non-linear
transformation laws (3.2) one cannot interpret Dµπ

i(x) as a combination of a partial
derivative and a connection acting on π⃗(x) in any standard manner.

• The AB
µ coefficients transform like connections under h(g, π⃗) and can be used to define

the following covariant derivative:

∇µ = (∂µ + iAB
µ TB) . (3.5)

We use the ∇µ to symbol to represent proper covariant derivatives, which distinguish
them from the Dµ notation used for Goldstone “covariant derivative” defined above.
This derivative can act on any operator OI in a linear representation of h(g, π⃗) — be
that a Goldstone covariant derivative, some matter field, or a combination thereof —
and it yields a quantity that once again transforms linearly:

∇µOI −→ h(g, π⃗)J
I∇µOI . (3.6)

15The broken generators are of course only specified up to the addition of unbroken generators — and in
fact this ambiguity can often be leveraged to simplify explicit calculations. One should include in the coset
parametrization only those broken generators that are not equivalent up to an unbroken transformation.
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The most general G-symmetric in-out effective action describing Goldstone modes and their
interactions with matter fields ΨI is then of the functional form

S =
∫

dd+1xL(Dµπ
i,ΨI ,∇µ), (3.7)

where all indices are contracted using the appropriate invariant tensors associated with
the unbroken group H.

3.2 Gauge symmetries

One can also extend the previous construction to the case in which some or all the symmetries
are gauged. This requires the introduction of a gauge field Aµ = A⃗µ · Q⃗, where the generators
Q⃗ stand for some or all the TA’s and Xi’s. The gauged Maurer-Cartan form then reads:

ω = Ω−1 (∂µ + iAµ) Ωdxµ , (3.8)

where Aµ −→ g(x) (Aµ − i∂µ) g−1(x) under a gauge transformation, as usual. The various
components of ω defined in eq. (3.3) transform as before, except that now the building blocks
Dαπ

i and AB
µ also depend on the gauge field Aµ.

The gauged coset construction is, of course, natural to consider in the context of
spontaneously broken gauge theories, in which case Aµ is a dynamical field. Even in theories
with spontaneously broken global symmetries, though, it can be fruitful to introduce non-
dynamical gauge fields to aid in the path-integral description of such systems. More precisely,
treating the Aµ as an external field, one can define a generating functional for correlators of
the conserved currents J µ associated with the symmetries that have been gauged, as in:

Z[A] =
∫

Dπ⃗ eiSgauged , in
δnZ[A]

δAµ1(x1) . . . δAµn(xn)
∣∣∣
A=0

≡ ⟨TJ µ1(x1) . . .J µn(xn)⟩. (3.9)

It is straightforward to show that Z[A] is gauge-invariant (in the absence of anomalies),
from which the conservation of the corresponding currents J µ (and Ward-identities, more
generally) follows. See e.g. [40–42] for reviews of this construction.

4 Schwinger-Keldysh effective actions from a coset construction

We will now discuss how the coset construction reviewed in the previous section can also be
used to construct Schwinger-Keldysh effective actions. In section 2.4 we argued that, if the
single-field effective action is invariant under the global symmetry group G, the corresponding
Schwinger-Keldysh effective action for a closed system must enjoy twice as many symmetries

— i.e. be invariant under the group G1 ×G2 — in a regime where the action is local. How
many of these symmetries are realized linearly will depend on the state of the system ρ.
Inspired by the form of the generating functional in eq. (2.4), we will postulate that the
symmetry breaking pattern should be determined by acting with a G1 ×G2 transformation
on the state ρ as follows:16

ρ→ U1ρU
−1
2 , (4.1)

16We should stress that eq. (4.1) is not in contradiction with the familiar statement that symmetry
transformations must act on density matrices as ρ → Uρ U−1 in order to preserve the trace. When the state
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where U1 (U2) is an element of G1 (G2). Symmetry transformations of this form that do
not leave ρ invariant are spontaneously broken. As we will see, this rule of thumb implies
different symmetry breaking patterns depending on whether the state ρ is pure or thermal.

4.1 Closed systems in a pure state

Let us start by considering the case of pure states: ρ = |ψ⟩⟨ψ|. Spontaneous symmetry
breaking occurs if there exists a local operator O whose expectation value on |ψ⟩ is not
invariant under some symmetry transformations. More precisely, the symmetry generator
X is spontaneously broken if

Tr(ρ[X,O]) = ⟨ψ|[X,O]|ψ⟩ ̸= 0. (4.2)

This condition can be satisfied only if the state |ψ⟩ is an eigenstate of some but not all
of the generators of the symmetry group G — say, those spanning a subgroup H. As a
result, the state ρ remains invariant under a transformation (4.1) only when U1 ∈ H1 and
U2 ∈ H2. In other words, the pure state ρ effectively gives rise to a symmetry breaking
pattern G1 ×G2 → H1 ×H2. Denoting with Xi

1 (Xi
2) the broken generators of G1 (G2), we

introduce for later convenience the linear combinations of generators

Xi
r = Xi

1 +Xi
2, X i

a = Xi
1 −Xi

2. (4.3)

Then, the coset parametrization in the case of pure states can be chosen to be of the form

Ω = eiπr·Xreiπa·Xa (closed system in a pure state). (4.4)

For the purposes of calculating the corresponding Maurer-Cartan form, it is important to
keep in mind that, while [Xi

1, X
j
2 ] = 0, the Xr’s and Xa’s do not commute with each other.

Let us now turn our attention to thermal states.

4.2 Closed systems in a thermal state

It would appear at first sight that the matrix elements of a thermal state ρ ∼ e−H/T should
always be invariant under the diagonal subgroup of G1 ×G2 based on the very definition of
symmetry, i.e. UHU−1 = H. This conclusion however would be too hasty [16, 43, 44]. In order
to formulate more precisely the criterion for SSB around a thermal state, we can follow [45] and
deform the Hamiltonian by adding an operator ∆H that explicitly breaks the global symmetry
under consideration: H → H+∆H. We will denote the resulting canonical ensemble with
ρ∆H. Then, SSB occurs whenever there is an order parameter O whose expectation value is
not invariant even in the limit ∆H → 0. Denoting a symmetry transformation as U = eiαX

with X a symmetry generator, this is equivalent to the statement that

lim
∆H→0

tr (ρ∆H[X,O]) ̸= 0. (4.5)

of the system is encoded using a local Schwinger-Keldysh effective action, one may wonder what part of
G1 × G2 is preserved by the ground state in the Hilbert space of this effective theory. Eq. (4.1) provides a
way of answering this question. We will support the validity of this criterion in the hydrodynamic regime by
discussing a series of non-trivial examples in section 5. Note however that this criterion does not apply to free
fields in their ground state — see appendix A—for which a hydrodynamic regime does not exist.
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We can now diagonalize the maximum number of generators of G that commute si-
multaneously with each other and with the modified Hamiltonian H+∆H, and write the
thermal state more explicitly as17

ρ ∼
∑

E,Q⃗,α

e−E/T |E, Q⃗, α⟩⟨E, Q⃗, α|, (4.6)

where E is the eigenvalue of H + ∆H, Q⃗ are the charges associated with the commuting
generators, and α is an additional collective index that accounts for all possible degeneracies.
The states |E, Q⃗, α⟩ form all possible representations of the unbroken group H, and when
we act on the thermal state with an H1 ×H2 transformation as in (4.1), only the elements
of the diagonal subgroup Hdiag will leave ρ invariant.

It might be helpful to illustrate this point with a simple example. Consider a system
where an internal SO(4) is spontaneously broken down to SO(3). Then, the deformation ∆H
breaks SO(4) explicitly down to SO(3). We can diagonalize at most one generator of SO(3)
together with H +∆H, and as a result the thermal state takes the form

ρ ∼
∑

E,m,j

e−E/T |E,m, j⟩⟨E,m, j|, (4.7)

with m and j the usual SO(3) quantum numbers, playing respectively the role of charge
Q and degeneracy parameter α. Let us now act with a SO(3)1 × SO(3)2 transformation
on eq. (4.7), and we obtain

ρ→
∑

E,m,j

∑
m′,m′′

e−E/TD
(j)
m′,m(U1)|E,m′, j⟩⟨E,m′′, j|D(j) ∗

m′′,m(U2)

=
∑

E,m′,m′′,j

e−E/TD
(j)
m′,m′′(U1U

−1
2 )|E,m′, j⟩⟨E,m′′, j|, (4.8)

where we obtained the second line by using standard properties of the D(j)
m′,m matrices, namely

D
(j)
m′,m(U−1) = D

(j) ∗
m,m′(U) and ∑

mD
(j)
m′,m(U1)D(j)

m,m′′(U2) = D
(j)
m′,m′′(U1U2) [46]. Eq. (4.8)

shows that ρ is only invariant under the diagonal subgroup of SO(3)1 × SO(3)2, i.e. when
U1 = U2, while the off-diagonal combination of generators is spontaneously broken.

We conclude therefore that a thermal state realizes the symmetry breaking pattern
G1 ×G2 → Hdiag, which differs from the pattern of a pure state. Denoting with TA

1 (TA
2 ) the

generators of H1 (H2), we introduce the linear combinations of generators

TA
r = TA

1 + TA
2 , TA

a = TA
1 − TA

2 , (4.9)

with TA
r the generators of Hdiag. We are therefore led to the conclusion that the appropriate

coset parametrization for a thermal state should be

Ω = eiπr·Xreiπa·Xaeiφa·Ta , (closed system in a thermal state), (4.10)

17Working only with eigenstates of those generators that commute with H + ∆H rather than H alone is
formally equivalent to modifying e−H/T by adding a projection operator [45].
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where the specific ordering of the various factors has been chosen for later convenience.
However, the field content in eq. (4.10) is by itself incompatible with the principle that
Schwinger-Keldysh effective actions should contain twice the number of degrees of freedom
as regular in-out effective actions — see discussion in section 2.1. In other words, the fields
φa are missing their “r” partners which, among other things, are necessary to implement
the DKMS symmetry.

To remedy this situation, we will add to our field content a set of “matter fields” ρA
r in the

adjoint representation of the unbroken group Hdiag. In accordance with the standard rules of
the coset construction [24], these matter fields will transform under a generic transformation
g ∈ G1 × G2 as

ρA
r → h(g, πr, πa, φa, x)A

B ρ
B
r , (4.11)

with h some element of Hdiag. As we will see, these fields admit a simple physical interpretation:
in the classical limit, they are related to the densities of unbroken charges.

4.3 Implementing the dynamical KMS symmetry

When a system is in a thermal state, correlators must satisfy the KMS condition. This, in
turn, imposes some restrictions on the form of the Schwinger-Keldysh effective action. When
all the symmetries are linearly realized, these restrictions are enforced by invariance under a
DKMS symmetry transformation of the form (2.19). We will now discuss how this symmetry
should be implemented on the Goldstone fields and the matter fields ρr.

To this end, it is helpful to discuss how the KMS condition would affect, say, the 2-point
correlation functions of the conserved Noether currents in the effective theory:

⟨Jµ(t, x⃗)Jν(t′, x⃗ ′)⟩ = ⟨Jν(t′ − iβ/2, x⃗ ′)Jµ(t+ iβ/2, x⃗)⟩, (4.12)

where we have suppressed the index labeling the corresponding symmetry generators to
streamline the notation. We can introduce a generating functional similar to the one in
eq. (2.3) that allows us to systematically calculate such correlators. In this case, the external
sources for the Jµ’s are gauge fields A1,µ and A2,µ, and the KMS condition (4.12) implies
that the generating functional must satisfy the following property:18

Z[A1(t), A2(t)] = Z[A1(−t+ iβ/2), A2(−t− iβ/2)] . (4.13)

Switching to the (a, r) basis of fields, and expanding in powers of E/T , this means that
Z should be invariant under the following transformation of sources:

Ar(t) → Ar(−t)−
iβ

4 ∂tAa(−t) +O(E2/T 2) , (4.14a)

Aa(t) → Aa(−t)− iβ∂tAr(−t) +O(E2/T 2). (4.14b)

18We are implicitly assuming here that DKMS transformations are implemented without resorting to
additional discrete symmetries — see comment in footnote 8. Eq. (4.13) could be generalized by allowing such
discrete symmetries to act on the gauge fields on the right-hand side. It is easy to work out how the following
results would need to be modified.
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Within the context of the coset construction, external gauge fields can be introduced by
gauging the Maurer-Cartan form as discussed in section 3.2:

Ω−1
(
∂µ + iAr

µ ·Xr + iAa
µ ·Xa + iAa

µ · Ta + iAr
µ · Tr

)
Ω (4.15)

≡ i (Dµπr ·Xr +Dµπa ·Xa +Dµφa · Ta +Aµ · Tr) ,

where we have denoted with a dot the contraction of indices labeling the various generators.
The coset covariant derivatives and connection now depend both on the Goldstone fields
and the external gauge fields.

Our goal is to derive how the DKMS symmetry should be implemented on the Goldstone
fields and the matter fields ρr to ensure that the generating functional is invariant under (4.14).
To this end, we will start by considering a situation where all the generators are spontaneously
broken. This is not the physical symmetry breaking pattern we are actually interested in:
it is just a convenient trick we will use to figure out how our Goldstone and matter fields
should transform. If all the symmetries were spontaneously broken, the coset parametrization
would read

Ω̃ = eiπr·Xreiπa·Xaeiφa·Taeiφr·Tr , (4.16)

and the components of the associated Maurer-Cartan form would be

Ω̃−1
(
∂µ+iAr

µ ·Xr+iAa
µ ·Xa+iAa

µ ·Ta+iAr
µ ·Tr

)
Ω̃

≡ i(D̃µπr ·Xr+D̃µπa ·Xa+D̃µφa ·Ta+D̃µφr ·Tr) (4.17)

= ie−iφr·Tr

[
Dµπr ·Xr+Dµπa ·Xa+Dµφa ·Ta+

(
ieiφr·Tr∂µe

−iφr·Tr +Aµ

)
·Tr

]
eiφr·Tr .

In the second line, we are showing explicitly how the building blocks of our new coset are
related to the “physical” ones defined in eq. (4.15).

The advantage of considering an auxiliary symmetry breaking pattern where all the
symmetries are spontaneously broken is twofold: first, all symmetries are now treated on
equal footing and, in particular, all components of our external gauge fields can be obtained
from a covariant derivative by turning off the Goldstone fields:

D̃µπ
i
r → Ari

µ , D̃µπ
i
a → Aai

µ , D̃µφ
B
a → AaB

µ , D̃µφ
B
r → ArB

µ . (4.18)

Therefore, if this was the symmetry breaking pattern that we were interested in, we could
ensure that the generating functional is invariant under the transformations (4.14) by de-
manding that the effective action be symmetric under19

D̃µπa(t) → D̃µπa(−t)− iβ∂tD̃µπr(−t) +O(E2/T 2) , (4.19a)

D̃µπr(t) → D̃µπr(−t)−
iβ

4 ∂tD̃µπa(−t) +O(E2/T 2) , (4.19b)

D̃µφa(t) → D̃µφa(−t)− iβ∂tD̃µφr(−t) +O(E2/T 2) , (4.19c)

D̃µφr(t) → D̃µφr(−t)−
iβ

4 ∂tD̃µφa(−t) +O(E2/T 2) . (4.19d)

19An important comment on our notation: when µ = t, equations (4.19) reduce to D̃tπr(t) → D̃tπr(−t) +
. . . = −D̃−tπr(−t) + . . ., and so on. The same goes for eqs. (4.21).
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The second advantage is that the coset connection is now trivial, and therefore higher covariant
derivatives of the Goldstone fields can be obtained by acting with regular partial derivatives
on the Maurer-Cartan components; hence, the symmetry transformations (4.19) are covariant
under all the non-linearly realized symmetries.

Based on the second line of (4.17), they can be expressed equivalently in terms of the
physical covariant derivatives Dµπr,Dµπa,Dµφa,∇µ and the combination

Dµφr ≡ i eiφr·Tr∂µe
−iφr·Tr +Aµ (4.20)

as follows:20

Dµπa(t)→Dµπa(−t)−iβ∇tDµπr(−t)−β [Dtφr(−t),Dµπr(−t)]+O(E2/T 2) , (4.21a)

Dµπr(t)→Dµπr(−t)−
iβ

4 ∇tDµπa(−t)−
β

4 [Dtφr(−t),Dµπa(−t)]+O(E2/T 2) , (4.21b)

Dµφa(t)→Dµφa(−t)−iβ∇tDµφr(−t)−β [Dtφr(−t),Dµφr(−t)]+O(E2/T 2) , (4.21c)

Dµφr(t)→Dµφr(−t)−
iβ

4 ∇tDµφa(−t)−
β

4 [Dtφr(−t),Dµφa(−t)]+O(E2/T 2) . (4.21d)

where, on the right hand side of these equations, ∇t = ∂t + iAB
t (−t)TB, and we have

streamlined our notation by defining commutators between covariant derivatives, e.g.

[Dtφr(−t), Dµπa(−t)]k ≡ ifAjkDtφ
A
r (−t)Dµπ

j
a(−t) , (4.22)

and similarly for the other commutators.21 Once again, the transformations (4.21) are
manifestly covariant under all the non-linearly realized symmetries.

At this point, we notice that the quantity Dtφr has exactly the same transformation
properties as our matter fields ρr (we are focusing on internal symmetries, and therefore
boosts are irrelevant — i.e. explicitly broken — as far as we are concerned). Therefore, if
eqs. (4.21) involved only Dtφr and its derivatives, we could simply replace Dtφr(t) → ρr(t)
everywhere and obtain DKMS symmetry transformations involving the Goldstones πr, πa, φa

and the matter fields ρr. Unfortunately, eq. (4.21c) depends on all components of Dµφr,
but this can be remedied by “commuting” the covariant derivatives of ∇tDµφr(−t): tedious
but straightforward manipulations show that

∇tDµφr(−t)− i[Dtφr(−t), Dµφr(−t)] = Ftµ(−t) +∇µDtφr(−t) , (4.23)

where Fµν is the usual field strength tensor associated with Aµ. Using this identity, and
replacing Dtφr(t) → ρr(t) everywhere,22 we finally obtain the desired form of the DKMS
transformation rules for our Goldstone and matter fields (we only need to consider the µ = t

20To derive these expressions, we assumed that the structure constants are totally antisymmetric, which is
ensured whenever the symmetry group is compact [24].

21Note that all four components Xr, Xa, Ta and Tr are in independent representations of Tr and therefore
do not mix. This is due to the structure of commutation relations, e.g.the term e−iφr·Tr Dµπr · Xreiφr·Tr is a
linear combination of Xr generators due to [Xr, Tr] ∼ Xr. For this reason, (4.19) is related to (4.21) through
conjugation with e−iφr·Tr .

22This also means replacing Dtφr(−t) = −D−tφr(−t) → −ρr(−t).
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component of eq. (4.21d)):

Dµπa(t)→Dµπa(−t)−iβ∇tDµπr(−t)+β [ρr(−t),Dµπr(−t)]+O(E2/T 2) , (4.24a)

Dµπr(t)→Dµπr(−t)−
iβ

4 ∇tDµπa(−t)+
β

4 [ρr(−t),Dµπa(−t)]+O(E2/T 2) , (4.24b)

Dµφa(t)→Dµφa(−t)+iβ∇µρr(−t)−iβFtµ(−t)+O(E2/T 2) , (4.24c)

ρr(t)→−ρr(−t)−
iβ

4 ∇tDtφa(−t)+
β

4 [ρr(−t),Dtφa(−t)]+O(E2/T 2) . (4.24d)

These transformation rules are the main result of this subsection. They act non-locally at
the level of the fields, but to the best of our knowledge there is no fundamental obstruction
to having non-local discrete symmetries. Furthermore, because the Goldstone fields enter the
effective action only through their covariant derivatives, and these transform locally, it is not
hard to impose the DKMS symmetry in practice. In this paper, we will be concerned with
the implementation of DKMS relations up to first order in E/T ; the systematics of higher
order corrections are still an open question that we hope to explore in the near future. We
will derive the lowest-order invariant combinations in section (4.5).

4.4 Relation to other approaches in the literature

We should briefly comment on the relation between our approach and previous results in
the literature on out-of-equilibrium effective actions. It was previously proposed that, in the
hydrodynamic limit, the Schwinger-Keldysh effective action should contain one Goldstone
field for each continuous symmetry, regardless of whether it is spontaneously broken or not
(see e.g. [6, 9, 42]). The effective action then must be invariant under an additional local
symmetry, which only depends on the spatial coordinates and acts on the fields associated
with unbroken generators as follows:

eiφr(t,x⃗)·Tr → eiφr(t,x⃗)·Trhr(x⃗) , hr(x⃗) ≡ eic(x⃗)·Tr . (4.25)

In the simplest, abelian case, this symmetry reduces to a local shift, φr(t, x⃗) → φr(t, x⃗)+ c(x⃗).
The symmetry (4.25) is equivalent to the transformation Ω̃ → Ω̃hr(x⃗), which in turn implies
the following transformation rules for the coefficients of the Maurer-Cartan form:

D̃µπa ·Xa → D̃µπa · h−1
r (x⃗)Xahr(x⃗) , (4.26a)

D̃µπr ·Xr → D̃µπr · h−1
r (x⃗)Xrhr(x⃗) , (4.26b)

D̃µφa · Ta → D̃µφa · h−1
r (x⃗)Tahr(x⃗) , (4.26c)

D̃µφr · Tr → D̃µφr · h−1
r (x⃗)Trhr(x⃗)− iδj

µh
−1
r (x⃗)∂jhr(x⃗) . (4.26d)

This symmetry plays two important roles: (1) it effectively forces us to contract all the
indices in a way that is invariant under Hdiag, even though Hdiag is formally broken; and
(2) it ensures that the fields φr appear in the effective action only through D̃tφr and its
covariant derivatives — the spatial components D̃iφr’s are not allowed building blocks. This,
in turn, gives rise to a diffusive behavior for the unbroken currents, and for this reason we’ll
also refer to invariance under (4.26) as diffusive symmetry. This additional symmetry is to
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be regarded as emergent at low energies, and its physical origin is not particularly clear.23

Furthermore, its implications have so far been explored mostly in the classical limit, i.e. by
working only up to quadratic order in the a-type fields. This approach has the advantage
that the DKMS symmetry becomes easier to implement [28]—which is why we started this
section by considering a similar symmetry breaking pattern. However, in practice one is
actually more interested in the properties of the charge density ρr rather than the field φr,
and some authors even resort to an explicit change of variable from the latter to the former —
see e.g. [49], which performs precise numerical tests of the EFT approach to diffusion.

This alternative approach yields exactly the same correlation functions for conserved
currents as the one developed in this paper. However, given the different number of time
derivatives at play, we don’t expect these two approaches to be fully equivalent, and ultimately
expect the number of propagating degrees of freedom to be different — at least based on
our experience with more conventional EFTs. We plan to further investigate this question in
the near future, but in the meantime we find the conceptual simplicity of our approach —
which relies on the standard rules of the coset construction and doesn’t require additional
symmetries — particularly compelling.

4.5 Lowest order DKMS-invariant combinations

Now that we understand how the DKMS symmetry acts on our Goldstone and matter fields
up to first order in E/T , we can try to build combinations that are invariant under these
symmetries at this order. To this end, it is once again convenient to work at first with our
“fictitious” covariant derivatives D̃µπr, . . . because the DKMS transformation rules (4.19)
are simpler than the ones for the physical fields given in (4.24). We will eventually rewrite
the combinations we derive purely in terms of the physical fields, but to do so we’ll need to
impose the additional diffusive symmetry introduced in the previous section.

It is easy to see that the following combination changes by a total derivative up to
first order in E/T ,

D̃tπa ·D̃tπr → D̃tπa ·D̃tπr−
iβ

2 ∂t

[
D̃tπr ·D̃tπr−

1
4D̃tπa ·D̃tπa

]
+O(E2/T 2), (4.27)

and thus provides an invariant contribution to the effective action. The dot in this equation
stands for the most general symmetric contraction that is invariant under the diffusive
symmetry. An analogous statement can be made about D̃iπa · D̃iπr and D̃tφa · D̃tφr. Using
eq. (4.17), it is easy to see that these combinations are respectively equal to Dtπa · Dtπr,
Diπa ·Diπr, and Dtφa ·Dtφr → Dtφa · ρr, which are therefore invariant under the DKMS
symmetry up to a total derivative.

The last combination that would be natural to consider, D̃iφa · D̃iφr, would also be
invariant under DKMS but, alas, not under the diffusive symmetry. This suggests that we
should act with at least one time derivative on D̃iφr, but the contraction D̃iφa · ∂tD̃

iφr,
albeit now invariant under the diffusive symmetry, would now no longer be invariant under
DKMS. However, this can be easily remedied by adding a term quadratic in D̃iφa to form

23See however [47, 48] for a holographic interpretation of this symmetry.
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the combination

D̃jφa ·
(
∂tD̃jφr −

i

β
D̃jφa

)
, (4.28)

which is exactly invariant under a DKMS transformation up to O(E2/T 2). Performing
manipulations analogous to those that took us from eqs. (4.19) to eqs. (4.24), we can rewrite
this combination in terms of our “physical” fields as follows:

Djφa ·
(
∇jρr + Ftj −

i

β
Djφa

)
. (4.29)

The combinations we have identified above provide the leading kinetic terms for our fields. Of
course, the DKMS symmetry can also be imposed at higher orders. Examples of such higher
order terms that will play a role in our discussion of antiferromagnets (see section 5.2) are

Djπa ·
(
−∇tDjπr + i [ρr, Djπr] +

i

β
Djπa

)
, (4.30)

or an equivalent expression with spatial derivatives replaced by time derivatives.

4.6 Power counting rules

As we discussed in section 2.3, in order for our EFT to be well defined we must be able
to assign to each term in the effective action a definite scaling in terms of our expansion
parameters. This, in turn, requires us to specify how covariant derivatives and matter fields
scale with energy and momentum. The scaling of covariant derivatives is the conventional one

— time derivatives scale like energy, spatial derivatives like momentum. The scaling of matter
fields, instead, is determined by the requirement that the DKMS transformations (4.24) are
organized in an expansion of E/T . As a result, we have that

ρr, Dtπr, Dtπa, Dtφa, ∇t ∼ E, Diπr, Diπa, Diφa, ∇i ∼ k. (4.31)

In the next section we will discuss a few concrete examples, and show how these power
counting rules can be used to estimate the size of various operators in the effective action.

5 Examples: paramagnets, antiferromagnets, and ferromagnets

Non-relativistic magnetic systems at finite temperature are endowed with an internal SO(3)
symmetry that corresponds to global rotations of all the spins, and thus provide a non-trivial
testing ground for our formalism. In the case of paramagnets this SO(3) symmetry remains
unbroken, while in (anti-)ferromagnets it is spontaneously broken down to an SO(2) subgroup.
The feature that sets ferromagnets apart is that they have a non-zero density of unbroken
SO(2) charge — i.e., a non-zero magnetization density. In this section, we will discuss
separately these three possibilities, restricting our attention to the internal SO(3) symmetry
and neglect the space-time symmetries that would also be broken by a finite temperature
state.24 These examples will illustrate how to power count terms in the effective action and
how to calculate correlation functions of Noether currents.25

24This amounts to neglecting phonon excitations by working in the incompressible limit and, in particular,
treating boosts as if they were explicitly broken. An EFT treatment of the Goldstone modes arising at zero
temperature from the simultaneous breaking of SO(3) and spacetime symmetries was recently discussed in [50].

25Classic studies of the high-T Noether current correlator for these systems include for instance [45, 51].
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5.1 Paramagnets

Paramagnets are systems where the internal SO(3) symmetry remains unbroken.26 As a
result, the fields πr and πa are absent, the only fields that enter the low energy EFT are the
triplet of Goldstone fields φ⃗a corresponding to the breaking of SO(3)1 × SO(3)2 down to the
diagonal subgroup SO(3)diag, and the three associated matter fields ρ⃗r. Using the invariant
building blocks we have identified in section 4.5, we can write the following leading-order
effective action for a paramagnet:

Spara =
∫
dt d3x

[
k3
∗
E∗

ρr ·Dtφa − k∗D
jφa ·

(
∇jρr + Fr

tj −
i

β
Djφa

)]
, (5.1)

where the dot stands for a contraction of the internal indices with a 3-dimensional Kronecker
delta. Note that this action is not invariant under time reversal since this is never a symmetry
of Schwinger-Keldysh effective actions, as we have discussed alread in section 2.4. Physically,
this makes it possible to reproduce a diffusive behavior, as we will see below.

We have chosen to parametrize the two free coefficients in the effective action (5.1) in
terms of some microscopic momentum and energy scales, denoted respectively with k∗ and
E∗, so that our effective action will be organized in powers of k/k∗, E/E∗, and E/T . In
fact, there are only two independent expansion parameters, because the first two ratios
are related to each other by the free equations of motion for ρr, which can be obtained by
varying the action with respect to φa:27

δSpara
δφa

∣∣∣∣
φa=Aa=Ar=0

= − k3
∗
E∗
∂tρr + k∗∂j∂

jρr = 0 , → E

E∗
∼ k2

k2
∗
. (5.2)

Combining this relation with the scaling rules (4.31) and the fact that d4x ∼ E−1k−3, we
see that the effective action (5.1) contains all the terms of O(k∗/k), with the term quadratic
in φa further enhanced by a factor of T/E. In other words, our action is accurate up to
leading order in k/k∗, and up to the first subleading order in E/T . Notice also that our
expression in (5.1) does not rely on a classical approximation: the covariant derivative Dtφa

is generically a non-linear combination of the fields φa, and as such contains terms of all
orders in ℏ (see discussion in section 2.6).

Varying instead our action with respect to the gauge fields Aa
µ and Ar

µ yields respectively
the conserved currents J µ

r and J µ
a expressed in terms of the external gauge fields, ρr, φa,

and their derivatives. In particular, setting Aa
µ = φa = 0, the current J µ

r reduces to the
classical conserved current in the presence of external gauge fields Ar

µ:

J µ
r |φa=Aa=0 =

(
k3
∗
E∗

ρr ,−k∗∇jρr + k∗F
tj
r

)
. (5.3)

From this, we see that the fields ρr are equal to the conserved charge densities up to an overall
normalization. In the absence of external gauge fields, we recover the standard constitutive
relation J i

r = −D∂iJ 0
r with a diffusion coefficient D ≡ E∗/k

2
∗. In fact, the equations of

26See [42] for a more general study of non-Abelian hydrodynamics in the absence of SSB and in the
classical limit.

27In the simplest case where E∗ = T , then there is just one independent expansion parameter.
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motion (5.2) are just a set of diffusion equations for the charge densities J 0
r . When ρr = 0,

instead, the second term in the classical current densities reproduces Ohm’s law, J i
r = σEi

r,
with Ei

r the electric component of the field strength and σ ≡ k∗ the conductivity.
More in general, we can calculate correlation functions of the currents J µ

r and J µ
a by

taking functional derivatives with respect to Aa
µ and Ar

µ of the generating functional

Z[Aa
µ, A

r
µ] =

∫
DρrDφae

iSpara . (5.4)

A single derivative with respect to Aa
µ yields the expectation value of (5.3), which coincides

with the expectation value of the physical Noether current, ⟨J µ⟩. The requirement that
paramagnets preserve the SO(3) symmetry in the absence of external fields implies that
⟨ρr⟩ = 0.

Similarly, by taking two functional derivatives we can calculate two point functions:

⟨J µ
rA(p)J

ν
rB(k)⟩ = − δ2Z

δAA
µa(−p)δAB

νa(−k)
, ⟨J µ

rA(p)J
ν
aB(k)⟩ = − δ2Z

δAA
µa(−p)δAB

νr(−k)
.

(5.5)
These current correlators can be inferred from the correlators of ρr and φa, and correspond
to different Green’s functions of the physical Noether current J µ, along the lines of what
we discussed in section 2.6). For example,

⟨J µ
r (x)J ν

r (x′)⟩ = 1
2⟨{J

µ(x),J ν(x′)}⟩ , ⟨J µ
r (x)J ν

a (x′)⟩ = θ(t− t′)⟨[J µ(x),J ν(x′)]⟩ .
(5.6)

For simplicity we will calculate these correlators with vanishing external sources, i.e. setting
Ar

µ = Aa
µ = 0 after taking the appropriate functional derivatives.

At leading order in k/k∗ the current correlators can be calculated by approximating the
currents J µ

r and J µ
a up to linear order in the fields ρr and φa; thus, we only need to know

the 2-point functions of these fields, which can be obtained simply by inverting the quadratic
term in (5.1)—this is in fact one of the main advantages of working with the effective action:

⟨ρA
r (ω, k⃗)ρB

r (−ω,−k⃗)⟩′ =
2
β

D
σ

Dk2δAB

ω2 +D2k4 (5.7a)

⟨ρA
r (ω, k⃗)φB

a (−ω,−k⃗)⟩′ =
D
σ

δAB

ω + iDk2 , (5.7b)

⟨φA
a (ω, k⃗)ρB

r (−ω,−k⃗)⟩′ =
D
σ

δAB

−ω + iDk2 , (5.7c)

where the primes on the left-hand side denote the fact that we have dropped the delta
functions imposing energy and momentum conservation. Combining these 2-point functions
we can easily calculate all the components of the r-r correlator,

⟨J tA
r (ω, k⃗)J tB

r (−ω,−k⃗)⟩′ = 2σ
β

k2δAB

ω2 +D2k4 , (5.8a)

⟨J tA
r (ω, k⃗)J jB

r (−ω,−k⃗)⟩′ = 2σ
β

ωkjδAB

ω2 +D2k4 , (5.8b)

⟨J iA
r (ω, k⃗)J jB

r (−ω,−k⃗)⟩′ = 2σ
β

(
δij − D2k2kikj

ω2 +D2k4

)
δAB , (5.8c)

which are precisely of the form needed to ensure current conservation, kµ⟨JA
rµJ

B
rν⟩′ = 0.
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The retarded r-a correlator is computed in a similar way, and we have verified that it
is also conserved. For completeness, we list here its components:

⟨J tA
r (ω, k⃗)J tB

a (−ω,−k⃗)⟩′ = σk2δAB

ω + iDk2 , (5.9a)

⟨J tA
r (ω, k⃗)J jB

a (−ω,−k⃗)⟩′ = ⟨J jA
r (ω, k⃗)J tB

a (−ω,−k⃗)⟩′ = σωkjδAB

ω + iDk2 , (5.9b)

⟨J iA
r (ω, k⃗)J jB

a (−ω,−k⃗)⟩′ = σω

(
δij − iDkikj

ω + iDk2

)
δAB , (5.9c)

displaying the usual diffusive pole. All of the above correlators agree with previous well-known
results in the literature, see e.g. [45, 51]. Note that the correlators above receive contributions
from contact terms — i.e. terms in the effective action (5.1) that are quadratic in the external
gauge fields — and these are crucial to ensure current conservation.

5.2 Antiferromagnets

Antiferromagnets are systems where the internal SO(3) symmetry is spontaneously broken
down to SO(2) by a non-trivial staggered-magnetization order parameter which, without
loss of generality, we take to be along the 3-direction. Consequently, the relevant degrees of
freedom at low energies are the two doublets of Goldstones πr and πa, a single Goldstone
φa and its associated matter field ρr.

The antiferromagnetic ground state differs from the ferromagnetic one in that the
magnetization density vanishes. This distinction is often captured by the statement that
ferromagnets break time reversal whereas antiferromagnets do not — see e.g. [19, 52]. This is
actually only part of the story, because otherwise the Schwinger-Keldysh effective actions
for these two systems would be identical given that time reversal is always broken. The
staggered magnetization of the antiferromagnetic ground state picks a preferred direction in
spin space but not an orientation. Therefore, it breaks rotations by generic angles around
the 1- and 2-directions, but is still invariant under a residual discrete subgroup that consist
of 180°-rotations around these same axes. These discrete symmetries act on our fields as

ρr → −ρr, φa → −φa, π1
a,r → −π1

a,r, π2
a,r → π2

a,r, (5.10)

in the case of rotations around the 2-axis; for rotations around the 1-axis, it would be the
fields π1

a,r that are left invariant.28 The Schwinger-Keldysh effective action for antiferromag-
nets is invariant under these discrete transformations, whereas the one for ferromagnets is
not. This statement applies equally to zero-temperature effective actions. In that context,
antiferromagnets are also separately invariant under time reversal, whereas ferromagnets
are only invariant under a combination of discrete rotations and time reversal. This state
of affairs is summarized in table 1.

28Rotations around the 2-direction flip the sign of the generators of rotations around the 1- and 3- directions.
In our notation, this means that X1

a,r → −X1
a,r and Ta,r → −Ta,r. The transformation properties of the

Goldstone modes are determined as usual by demanding that coset parametrization Ω remains invariant when
the generators are transformed this way. The transformation rule for ρr should be the same as that of its
partner field, φa. This is also consistent with that fact that, as we will see, ρr ir related to the density of spin
along the 3-direction.
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AF T = 0 AF T ̸= 0 F T = 0 F T ̸= 0
T ✓ ✗ ✗ ✗

D ✓ ✓ ✗ ✗

T +D ✓ ✗ ✓ ✗

Table 1. Discrete symmetries ferromagnets (F) and antiferromagnets (AF) in ordinary (T = 0)
and Schwinger-Keldysh (T ̸= 0) effective actions. We have denoted with D the residual discrete
transformations of the form (5.10). The symbol ✓(✗) indicates unbroken (broken) symmetries.

Our Goldstone covariant derivatives transform in a simple way under the discrete
symmetry (5.10):

Dµφa → −Dµφa, Dµπ
1
a,r → −Dµπ

1
a,r, Dµπ

2
a,r → Dµπ

2
a,r . (5.11)

Keeping also in mind the requirement of DKMS invariance, the low energy effective action
for antiferromagnets up to first subleading order in E/T turns out to be:

Santi =
∫
dt d3x

[Λ2

c3
s

(
Dtπa ·Dtπr − c2

sDiπa ·Diπr

)
+ Λ
c3

s

σµνDµπa ·
(
−∇tDνπr + i [ρr, Dνπr] +

i

β
Dνπa

)
(5.12)

+ σ

D
ρrDtφa − σDiφa

(
∂iρr + Fr

ti −
i

β
Diφa

)]
,

where the dot now stands for a contraction of the internal indices with a 2-dimensional
Kronecker delta, σµν = diag(Σπ, c

2
sσπ, c

2
sσπ, c

2
sσπ) with Σπ, σπ both non-negative and dimen-

sionless, and Λ is the energy scale at which spontaneous symmetry breaking occurs. In light
of what we learned in the context of paramagnets, we have already parametrized the diffusive
sector in terms of the conductivity and the diffusion coefficient. Our action doesn’t contain
a tadpole for the external field Aa

0, which is consistent with the fact that the expectation
value of the SO(3) Noether current must vanish for antiferromagnets. A discussion of the
diffusive sector would be very similar to the analysis we carried out for paramagnets, and for
this reason we’ll mostly focus our attention to the π-sector in what follows.

Based on our power counting rules, the second line of the action (5.12) is suppressed
by one power of E/Λ compared to the first line.29 However, we have included it because
thermal effects enter first at subleading order in E/Λ. More precisely, the first two lines of
our action contain terms that schematically scale as follows:

Santi,π ∼ Λ2

E2 + Λ
E

(
T

E
+ 1

)
. (5.13)

This should be contrasted with the scaling of the terms in the leading Lagrangian for
paramagnets (or the diffusive sector of antiferromagnets), where thermal effects appear
already at leading order in k/k∗:

Spara ∼ k∗
k

(
T

E
+ 1

)
. (5.14)

29We are relying on the free equation for πr that follows from the first line of (5.12) to set E ∼ csk.
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In both cases we see that at any given order in the temperature-independent expansion
parameter E/Λ or k/k∗ there is an additional expansion in powers of E/T , which we are
carrying out only up to first subleading order.

Once again, varying the generating functional with respect to the external gauge fields
we can calculate correlators of the currents J µ

r and J µ
a . For instance, the 2-point function

of J t
r along the broken directions are

⟨J tI
r (ω, k⃗)J tJ

r (−ω,−k⃗)⟩′ = 2Λ
βcs

k2(σπω
2 +Σπc

2
sk

2)
(ω2 − c2

sk
2)2 δIJ (5.15)

where I, J = 1, 2 are here the SO(2) subgroup indices, not to be confused with spatial indices.
Note that, in deriving eq. (5.15) we have neglected corrections of O(E2/Λ2) that cannot
be trusted at the order we are working.

The retarded density-density correlator along the broken directions takes instead the form

⟨J tI
r (ω, k⃗)J tJ

a (−ω,−k⃗)⟩′ = Λ2

cs

k2 [1 + i(Σπ − σπ)ω/Λ]
ω2 − c2

sk
2 + i (Σπω2 + σπc2

sk
2)ω/Λ δIJ . (5.16)

The poles of this propagator are at

ω ≈ ±csk −
ic2

sk
2

2Λ (Σπ + σπ) , (5.17)

showing that sound modes decay at a rate Γ ∼ k2. The correlators above are in agreement
with classic results in the literature up to the order in E/Λ we are considering [45, 51, 53].

Our treatment of the antiferromagnet is notably different from the standard analyses,
which start from the derivative expansion of the equations of motion for the total magnetization
M⃗ and the staggered-magnetization N⃗ (see e.g. [45]). The effective theory (5.12) was
constructed to compute correlators of the conserved currents associated with M⃗ alone, and
the presence of a non-trivial N⃗ expectation value is encoded in the assumption that SO(3)
is spontaneously broken down to SO(2) even though the magnetization density vanishes.
This last property is what distinguishes antiferromagnets from ferromagnets, which we will
now turn our attention to.

5.3 Ferromagnets

Ferromagnets spontaneously break SO(3) → SO(2) because the temporal component of the
Noether current acquires a non-zero expectation value, which we again assume to be along
the 3-direction. As we discussed at the beginning of the previous section, what distinguishes
ferromagnets from antiferromagnets is the lack of separate invariance under time reversal
and discrete transformations of the form (5.10). Only a combination of these symmetries
leaves the ground state invariant, and therefore our DKMS transformations must be amended
by acting also with (5.10) on the right-hand side, thus obtaining

Dµπ
1
a(t)→−Dµπ

1
a(−t)+iβ∇tDµπ

1
r (−t)+β

[
ρr(−t),Dµπ

1
r (−t)

]
+O(E2/T 2) , (5.18a)

Dµπ
2
a(t)→Dµπ

2
a(−t)−iβ∇tDµπ

2
r (−t)−β

[
ρr(−t),Dµπ

2
r (−t)

]
+O(E2/T 2) , (5.18b)

Dµπ
1
r (t)→−Dµπ

1
r (−t)+

iβ

4 ∇tDµπ
1
a(−t)+

β

4
[
ρr(−t),Dµπ

1
a(−t)

]
+O(E2/T 2) , (5.18c)
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Dµπ
2
r (t)→Dµπ

2
r (−t)−

iβ

4 ∇tDµπ
2
a(−t)−

β

4
[
ρr(−t),Dµπ

2
a(−t)

]
+O(E2/T 2) , (5.18d)

Dµφa(t)→−Dµφa(−t)−iβ∇µρr(−t)−iβFtµ(−t)+O(E2/T 2) , (5.18e)

ρr(t)→ρr(−t)+
iβ

4 ∇tDtφa(−t)+
β

4 [ρr(−t),Dtφa(−t)]+O(E2/T 2) . (5.18f)

As a result, the part of the action that describes diffusion of the unbroken SO(2) current
now admits one additional invariant, i.e. Dtφa:

Sdiff =
∫
dt d3x

[
k3

⋆ Dtφa + σ

D
ρrDtφa − σDiφa

(
∂iρr + Fr

ti −
i

β
Diφa

)]
. (5.19)

This additional term gives rise to a tadpole term for Aa
0, so that the expectation value of

the SO(3) Noether current is now no longer zero:

⟨J 0
A(x)⟩ = k3

⋆ δ
3
A . (5.20)

This new term also gives rise to a kinetic term for the π’s with a single time derivative,
since up to quadratic order in the Goldstones we have Dtφa = ∂tφa + ϵIJπ

I
a∂tπ

J
r + . . . . This

changes the dispersion relation of the Goldstone modes, and therefore the power counting
scheme. As a result, the effective action for ferromagnets is now Sferro = Sdiff + Sπ with30

Sπ =
∫
dt d3x

[
− E⋆k⋆Diπa ·Diπr + k⋆ σπD

jπa ·
(
−∇tDjπr + i [ρr, Djπr] +

i

β
Djπa

)
+O(k⋆/k)

]
. (5.21)

This part of the action introduces a characteristic energy scale, E⋆, and a dimensionless
coupling σπ. The leading equations of motion for πr now imply a quadratic dispersion
relation of the form

E

E⋆
∼ k2

k2
⋆

, (5.22)

and therefore the size of the terms shown in (5.21) can be estimated to be

Sπ ∼ k3
⋆

k3 + k⋆

k

(
1 + T

E

k2
⋆

k2

)
+O(k⋆/k) . (5.23)

This scaling should be contrasted with the one for the Goldstone sector of antiferromagnets
given in eq. (5.13). In that case, terms that appear in DKMS invariant combinations where
of the same order in E/Λ, but thermal effects only appeared a subleading order in this
expansion. The power counting for ferromagnets is instead more subtle, with DKMS invariant
combinations containing terms of different order in k/k⋆, but with thermal effects now
appearing at leading order. The terms of O(k⋆/k) that we didn’t write out explicitly (e.g.
Dtπr ·Dtπa) have been omitted to simplify our analysis, and because they would only give a
subleading correction to the real part of the magnon dispersion relation. On the contrary, the

30A term of the form ϵIJ Diπ
I
aDiπJ

r is not allowed even in ferromagnets because it is not DKMS-invariant.
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terms that we included at this order because they were forced upon us by DKMS invariance
provide the leading contribution to the imaginary part of the dispersion relation.

Varying the action with respect to the external gauge fields we can first derive the Noether
currents in terms of our fields, and then calculate their correlators. For brevity we are going
to report here only the correlation functions of the time components of our currents:

⟨J t3
r (ω, k⃗)J t3

a (−ω,−k⃗)⟩′ = σk2

ω + iDk2 , (5.24a)

⟨J t3
r (ω, k⃗)J t3

r (−ω,−k⃗)⟩ = k6
⋆ + 2σ

β

k2

ω2 +D2k4 , (5.24b)

⟨J tI
r (ω, k⃗)J tJ

a (−ω,−k⃗)⟩′ = ik2k5
⋆(E⋆ − iσπω)δIJ − k7

⋆ωϵ
IJ

ω2k4
⋆ − E2

⋆k
4 + 2iσπE⋆ωk4 , (5.24c)

⟨J tI
r (ω, k⃗)J tJ

r (−ω,−k⃗)⟩′ = 2σπ

β

k2k5
⋆

[
δIJ

(
E2

⋆k
4 + ω2k4

⋆

)
+ 2iE⋆ωk

2
⋆k

2ϵIJ
]

(ω2k4
⋆ − E2

⋆k
4)2 . (5.24d)

In the above expressions, we have only kept the terms in the numerators and denominators
that can be trusted given the order in k/k⋆ we are working at. Note also that the eqs. (5.24a)
and (5.24b) are consistent with the results we found in the paramagnet section once we take
into account that our Noether current now has an expectation value (5.20). The poles in the
retarded correlator (5.24c) yield once again the dispersion relations for magnon excitations,
which now display a quadratic dispersion relation with a decay rate Γ ∼ k4:

ω ≃ E⋆

(
±k

2

k2
⋆

− iσπ
k4

k4
⋆

)
. (5.25)

6 Conclusions

The coset construction is heralded for its general applicability, ranging from its origins in
nuclear physics [2] to more recent applications to systems at finite density [25, 54], conformal
field theories [55, 56] and gravity [57, 58], just to name a few. However, so far this technique
has largely been applied to the limited case of regular effective actions for the purposes
of computing scattering amplitudes or time-ordered correlators around pure states. In the
present paper, we have extended the construction to Schwinger-Keldysh effective actions,
which can more naturally incorporate the effects of non-trivial density matrices and facilitate
the computation of a more diverse set of correlators. We focused on spontaneously broken
internal symmetries, with particular emphasis on thermal states. We also took great care in
making our power counting parameters explicit, and distinguish in particular between the
classical (ℏ) and high temperature (E/T ) expansions. Our main conclusion is that, once the
correct symmetry breaking pattern has been properly identified, the standard rules of the coset
construction can be brought to bear to write down Schwinger-Keldysh effective actions. We
would like to highlight in particular the advantages of the framework developed in this paper:

• We retain the full non-linear structure inherent to the coset construction, thus preserving
all the symmetries realized non-linearly. This should be contrasted with the common
practice of linearizing Schwinger-Keldysh actions in the a-fields, focusing on the classical
regime. Our methodology in principle allows for a systematic computation in powers
of ℏ.
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• In previous work on the effective Schwinger-Keldysh field theory of thermal systems,
a mysterious, diffusive symmetry was needed to differentiate the normal phase from
a spontaneously broken one [6]. In our approach, no such symmetry is needed: the
symmetry breaking pattern together with basic principles such as unitarity dictate
the relevant degrees of freedom and their transformation properties under all the
symmetries.

In order to illustrate our framework we calculated 2-point functions of conserved spin currents
for paramagnets, anti-ferromagnets, and ferromagnets in section 5. Our analysis generalizes
the classic work in [45, 51], reproducing their results in the appropriate limits.

There are various avenues along which to extend the present work. First, it would
be interesting to generalize our framework to include spontaneously broken space-time
symmetries. This could be used to extend the coset-based approach to condensed matter
systems put forward in [25, 59], and would provide a different viewpoint on recent developments
surrounding EFTs for dissipative hydrodynamics [6, 33]. Second, by eschewing the classical
limit, our approach could also shed a new light on the quantum properties of perfect
fluids [60, 61]. Third, it would be interesting to further explore how to systematically build
DKMS-invariants at higher order in E/T . And, finally, we would like to investigate the
symmetry breaking pattern associated with finite density non-thermal density matrices, and
understand how the properties of such states can be encoded in a Schwinger-Keldysh effective
action. We leave all of this for future work.
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A Schwinger-Keldysh path integral for a free system at finite temperature

In this appendix, we calculate explicitly the Schwinger-Keldysh generating functional for a
free, massive, relativistic SO(N) scalar described by an in-out action.

S = −1
2

∫
d4x

(
∂µΦA∂µΦA +m2ΦAΦA

)
, A = 1, . . . , N . (A.1)

The goal of this appendix is twofold. First, we show explicitly how the boundary conditions
give rise to off-diagonal correlation functions shown e.g. in eq. (2.7). Second, we show how
the E ≪ T limit of the 2-point functions can be reproduced using an effective action. This is
by now textbook material [13], but we discuss it here for completeness.
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Re t

Im t

t = +∞t = −∞

ϕ2,O2, J2

ϕ1,O1, J1

−iβ

Figure 1. The contour C used for the Schwinger-Keldysh generator (2.4) when ρ ∝ e−βH . The dotted
line represents the completion of the trace; there is no evolution along this segment. Other contours
for finite-T systems can be found in the literature; see [64] for a review.

Our starting point is the generating functional in eq. (2.4) with φ = O = Φ⃗:

Z[J1, J2] =
∫
DΦ⃗aDΦ⃗bDΦ⃗c ⟨Φ⃗a,−∞|ρ|Φ⃗c,−∞⟩⟨Φ⃗c,−∞|T̄ e−i

∫
J⃗2·Φ⃗|Φ⃗b,+∞⟩ (A.2)

× ⟨Φ⃗b,+∞|Tei
∫

J⃗1·Φ⃗|Φ⃗a,−∞⟩,

When the density matrix is thermal, ρ ∝ e−βH , this functional can be computed from the
knowledge of the amplitude

⟨Φ⃗f (x),+t⋆|Tei
∫

d4x J⃗ ·Φ⃗|Φ⃗i(x),−t⋆⟩ ≡
∫ Φ⃗(+t⋆)=Φ⃗f (x)

Φ⃗(−t⋆)=Φ⃗i(x)
DΦ eiS[Φ⃗]+i

∫
d4x J⃗ ·Φ⃗

≡ ⟨Φ⃗f ,+t⋆|Φ⃗i,−t⋆⟩J⃗ , (A.3)

since each factor on the right-hand side of (A.2) is a special case of the quantity above.
In particular, the thermal density matrix factor comes from setting the source J⃗ to zero
and properly Wick rotating. Combining all three factors together, we obtain a single path
integral expression for the generating functional, with fields defined along a time-contour
C in the complex plane shown in figure 1.

Due to the free nature of (A.1), the amplitude in (A.3) can be computed exactly by
substituting the classical solution obeying the appropriate boundary conditions in the presence
of the source J⃗ into the action. The explicit form of such a classical solution is31

Φ⃗cl(t,k)=K(t,k, t⋆)·Φ⃗b(k)+K(−t,k, t⋆)·Φ⃗a(k)+
∫ t⋆

−t⋆

dt′G(t, t′,k, t⋆)·J⃗(t′,k) , (A.4a)

KAB(t,k, t⋆)≡ δAB sin(ωk(t+t⋆))
sin(2ωkt⋆)

, (A.4b)

GAB(t, t′,k, t⋆)≡ δAB×
[sin(ωk(t−t′))

2ωk
[θ(t−t′)−θ(t′−t)]

− 2cos(ωk(t+t′))−cos(ωk(2t⋆+t−t′))−cos(ωk(2t⋆+t′−t))
4ωk sin(2ωkt⋆)

]
, (A.4c)

31Note that in this appendix we are denoting spatial vectors in boldface to reserve the vector symbol for
objects in the fundamental representation of the internal SO(N) group.
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where ω2
k = k2 +m2 and where, for now, we are imposing boundary conditions at ±t⋆. The

GAB(t, t′,k, t⋆) propagator obeys (□x −m2)GAB(x, z, t⋆) = −δABδ4(x− z) in position-space
and is symmetric under t → t′ and vanishes at the boundaries where either t′ or t equals
±t⋆ while KAB(x, z, t⋆) solves the equation of motion identically, reduces to the identity at
the t = t⋆ boundary, and vanishes at t = −t⋆.

Plugging the expression above into the action, the amplitude (A.3) reduces to

⟨Φ⃗f ,+t⋆|Φ⃗i,−t⋆⟩J⃗ =exp
[
i

2

∫ d3k

(2π)3 ωk cot(2ωkt⋆)
(
Φ⃗i ·Φ⃗i+Φ⃗f ·Φ⃗f

)
−2ωk csc(2ωkt⋆)Φ⃗i ·Φ⃗f

+i
∫ t⋆

−t⋆

dt
∫ d3k

(2π)3 J⃗(t,k)·K(t,k, t⋆)·Φ⃗f +J⃗(t,k)·K(−t,k, t⋆)·Φ⃗i

+ i

2

∫ t⋆

−t⋆

dtdw
∫ d3k

(2π)3 J⃗(t,−k)·G(t,w,k)·J⃗(w,k)
]

(A.5)

where Φ⃗i = Φ⃗i(k) everywhere. Note that this result is manifestly invariant under SO(N).
The density matrix components come from setting t⋆ = iβ/2 and J⃗ → 0 in the above.

After calculating the three amplitude factors in (A.2), it is straightforward to stitch them
all together by computing the remaining Gaussian path integrals over Φ⃗a, Φ⃗b, and Φ⃗c. It is
this last step that gives rise to the cross terms ∼ J1 × J2. The ultimate expression is written
most compactly in terms of the J⃗a, J⃗r Keldysh basis sources:

lnZ[J⃗a, J⃗r]

= −1
2

∫ dωd3k

(2π)4

(
J⃗r(−k) J⃗a(−k)

)
·

 0 i
(ω+iϵ)2−ω2

k
i

(ω−iϵ)2−ω2
k

(
1
2 + 1

eβ|ω|−1

)
2πδ(ω2 − ω2

k)

 ·
(
J⃗r(k)
J⃗a(k)

)
.

(A.6)

In this paper we considered an alternative representation of the generating functional
that relies on effective fields32 and for which the usual, naive rules of Gaussian integration
can be used. Such a representation allows us to avoid the complicated, multi-step process
above. From this viewpoint, the generator (A.6) is instead constructed as

Z[Ja, Jr] =
∫

DΦ⃗aDΦ⃗r e
iSEFT[Φ⃗a,Φ⃗r]+i

∫
dd+1x J⃗r·Φ⃗a+J⃗a·Φ⃗r (A.7)

for some SEFT. Finding the appropriate effective action which reproduces (A.6) is a simple
exercise in reverse engineering via standard Gaussian integral formulas, and a convenient
form is33

SEFT[Φ⃗a, Φ⃗r] ≡
∫

d4x
(
−∂Φ⃗a · ∂Φ⃗r −m2Φ⃗a · Φ⃗r − 2εΦ⃗a(x) · ∂tΦ⃗r(x)

)
+ iε

∫ dωd3k

(2π)4 ω coth(βω/2)Φ⃗a(k) · Φ⃗a(−k) , (A.8)

where we take ε → 0+ at the end of any given computation, as usual.
32In what follows, we denote these effective fields with the same symbol, Φ⃗, to streamline the notation.
33Equivalence follows from the identity limε→0

ε
x2+ε2 = πδ(x). The fact that the imaginary terms are O(ε)

is an artifact of the free limit [13]; they are finite in realistic, interacting systems, see e.g. [65].
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For emphasis, in contrast to the path integral considered at the start of this section,
when using (A.8) there is no need to carefully consider boundary conditions on fields at
t→ ±∞ or the presence of a non-trivial density matrix. Such features are already encoded
in SEFT itself. In particular, the explicit factors of β in (A.8) reflect the thermal nature of
the system which is also a consequence of the dynamical KMS symmetry [6] of the effective
Φ⃗ fields. Explicitly, this acts linearly on the fields in frequency space as

Φ⃗a(ω) → cosh(βω/2)Φ⃗a(−ω)− 2 sinh(βω/2)Φ⃗r(−ω) (A.9a)

Φ⃗r(ω) → cosh(βω/2)Φ⃗r(−ω)−
1
2 sinh(βω/2)Φ⃗a(−ω) , (A.9b)

and it can be checked that (A.8) is precisely invariant under the above.
For general values of βω, the representation of the generating functional via an effective

action (A.8) is not obviously advantageous. Though this construction allows us to more easily
use familiar path-integral methods, its convenience is offset by the fact that the terms ∼ Φ⃗2

a

are non-local. However, SEFT becomes approximately local in the low-energy limit, βω ≪ 1:

SEFT ≃
∫

d4x

{
−∂Φ⃗a · ∂Φ⃗r −m2Φ⃗a · Φ⃗r + 2ε

(
−Φ⃗a · ∂tΦ⃗r +

i

β
Φ⃗a(x) · Φ⃗a(x)

)}
. (A.10)

The structure of the O(ε) terms is dictated by the β-expansion of the dynamical KMS
symmetry (A.9) in which the symmetry acts on the fields in momentum space as in

Φ⃗a(ω,k)→ Φ⃗a(−ω,k)−βωΦ⃗r(−ω,k) , Φ⃗r(ω,k)→ Φ⃗r(−ω,k)−
βω

4 Φ⃗a(−ω,k) , (A.11)

under which the O(ε) terms in (A.10) are strictly invariant.
Note that the effective action is invariant under two copies of the global SO(N) symmetries

provided we disregard the terms proportional to ε, as is customary when discussing the
symmetries of effective actions. However, it is easy to show that both copies of the symmetries
are realized linearly on our effective fields, meaning that the off-diagonal symmetry is not
spontaneously broken in this very simple case. This is an artifact of the free limit, which
prevents the existence of a hydrodynamic regime at low energies.

B Correlator cheat sheet

A wide variety of conventions and notations exist for the possible correlators in quantum
field theory. Ours are found below, along with various useful relations they satisfy. Given
a set of operators Oi with i some general indices, some of the correlators one might be
interested in calculating are

∆ij(x, x′) ≡ ⟨
[
Oi(x),Oj(x′)

]
⟩

Gij
W (x, x′) ≡ ⟨Oi(x)Oj(x′)⟩

Gij
R(x, x

′) ≡ iθ(t− t′)⟨
[
Oi(x),Oj(x′)

]
⟩ = i⟨Oi

r(x)Oj
a(x′)⟩

Gij
A(x, x

′) ≡ −iθ(t′ − t)⟨
[
Oi(x),Oj(x′)

]
⟩ = −i⟨Oi

a(x)Oj
r(x′)⟩

Gij
S (x, x

′) ≡ 1
2⟨{O

i(x),Oj(x′)}⟩ = ⟨Oi
r(x)Oj

r(x′)⟩ , (B.1)
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where for the last three correlators we have also provided an expression in terms of fields
in the Keldysh basis introduced in section 2.6. The momentum-space versions of the above
are defined in the usual way, with Gij

X(ω, k⃗) determined from a correlator of Oi(ω, k⃗) and
Oj(−ω,−k⃗).

The commutator ∆ij and the retarded correlator Gij
R are related in momentum space by

Gij
R(ω, k⃗) = lim

ε→0+

∫ dω′

2π
∆ij(ω′, k⃗)
ω′ − ω − iε

, (B.2)

as follows from the Fourier-representation of the Heaviside function. The zero-frequency limit
of this relation determines the static susceptibilities χij(k⃗),

χij(k⃗) ≡ lim
ω→0

Gij
R(ω, k⃗ ̸= 0) = lim

ε→0+

∫ dω′

2π
∆ij(ω′, k⃗)
ω′ − iε

. (B.3)

At finite temperature, the KMS conditions relate various correlators to each other. These
can be straightforwardly derived starting from inserting 1 = e−βHeβH judiciously into the
Wightman function Gij

W (also called the dynamical structure factor) and using the cyclicity
of the trace to get (highlighting only the temporal and frequency dependence)

Gij
W (t) = Gji

W (−iβ − t) = eiβ∂tGji
W (−t) =⇒ Gij

W (ω) = eβωGji
W (−ω) . (B.4)

In particular, in the limit βω ≪ 1 that is the focus of our paper, this implies a form of
the Fluctuation-Dissipation Theorem

Gij
S (ω) ≃ Gij

W (ω) ≈ ∆ij(ω)
βω

, (B.5)

up to corrections of higher order in βω. The first relation above implies that Oi and Oj

approximately commute, thereby motivating the “classical limit” terminology.
Using the effective actions discussed in this paper it is straightforward to calculate the

symmetric Gij
S viewed as an r-r correlator in the language of the Keldysh rotation of section 2.6.

The low energy expressions for Gij
R,∆ij , and Gij

W then follow from Gij
S using (B.2) and (B.5).

Open Access. This article is distributed under the terms of the Creative Commons
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