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1 Introduction

The ε expansion appeared more than 50 years ago [1] in an attempt to access the physics
of critical models in d = 3 dimensions in a perturbative way. To this day it remains one of
the most powerful and versatile tools at our disposal for the study of the renormalisation
group (RG) and conformal field theories (CFTs). The most widely employed strategy has
been to impose different global symmetries and seek RG fixed points that may describe
critical points of corresponding physical systems. In this work we discuss the behaviour of
such fixed points when deformed by line defect operators.

In a d-dimensional bulk CFT the introduction of a straight line defect operator will
result in the breaking of the conformal group SO(d + 1, 1). If a fixed point of the system
with the insertion of the line defect operator exists, then the spacetime symmetry group
preserved at this fixed point of the combined bulk-defect system, i.e. at the defect CFT
(dCFT), is SL(2,R) × SO(d − 1). Any global symmetry of the bulk CFT will generically
also be broken to a subgroup in the dCFT.
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Concretely, the line defect deformations we consider in this work take the form

Sdefect(h, φ) = hi

∫ ∞
−∞

dτ φi(τ,0) , i = 1, . . . , N, (1.1)

where φi are scalar fields with dimension below 1 so that the deformation is relevant and hi
are defect couplings. One may think of hi as a background magnetic (pinning) field coupled
to the order parameter φi. These deformations are added to bulk CFTs with various global
symmetry groups G. We generically find that there are non-trivial critical values of hi for
which the defect RG flow terminates at a critical point in the infrared (IR), where the
associated beta functions, βi = µdhi/dµ, become zero. Such vectors h break G to a proper
subgroup K < G on the defect. The beta function is G-covariant, and so gh, g ∈ G, will
define a dCFT if h does.1 If g /∈ K, then the vectors h and gh will be different. Nevertheless,
dCFTs corresponding to vectors h related by an action of G are equivalent. There is a one-
to-one correspondence between such vectors and the cosets of K in G, and so the set of such
vectors is isomorphic to the quotient G/K. Defect CFTs in G/K evoke the situation of
degenerate vacua in the case of spontaneous symmetry breaking. In the case of continuous
G the broken currents of the bulk CFT give rise to marginal operators in the dCFT, whose
correlation functions can be used to describe the geometry of the manifold G/K [2].

The defect breaks translation invariance in the transverse directions, which implies that
one-point functions in the bulk can be non-zero. This turns out to be useful in numerical
simulations of critical theories [3, 4]. In statistical systems, one can find spontaneous
symmetry breaking by studying the behaviour of the relevant order parameter. Near
critical points, this usually necessitates the calculation of the local order parameter’s two-
point function, which is quadratically suppressed in cases where the order parameter is
small. This can cause difficulties, especially in numerical simulations of these systems
where high accuracy will be required to compensate. As a remedy to this problem, one
can consider introducing a defect into the system. Though the system’s original symmetry
will now be explicitly broken, far from the defect the bulk parameters will be unaffected,
thus acting as though the symmetry remained. The critical behaviour of the system can
then be investigated by simply looking at the one-point function of the order parameter.

Studies of line defects in the ε expansion have so far focused mostly on the scalar O(N)
model [5, 6]. Here the defect deformation is added to the bulk O(N)-symmetric theory
at its non-trivial RG fixed point. The deformation is relevant and thus a defect RG flow
ensues, which ends up terminating at a non-trivial dCFT in the IR, i.e. one in which the
associated defect coupling is non-zero. Throughout this defect RG flow the bulk theory
remains at its fixed point. Further studies in the same framework include line defects
in tensor models with O(N)3 symmetry [7], and the Gross-Neveu-Yukawa model, which
involves scalars and fermions [8]. On the contrary, [9, 10] considered a double-scaling limit
that renders the bulk theory classical and analysed defect deformations without imposing
that the bulk theory be critical.

1Eq. (1.1) can be used to define the action of G on the space of h vectors from its action on the space
of φ vectors.
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There exists a variety of bulk critical models one can obtain in the ε expansion; see [11–
14] for such models in d = 4 − ε with scalar fields only. Many of them possess only one
quadratic invariant, namely the φ2 operator, but there exist cases with more than one
such operator, commonly referred to as biconical or, more generally, multiconical. In this
work we discuss the O(N), hypercubic, hypertetrahedral and MN models, and also the
O(m) × O(n) biconical model. There are also a number of bulk theories one can obtain
by introducing fermions, and there has been some recent interest in exploring these mod-
els, especially those which give rise to emergent supersymmetry in three dimensions [15–
17]. Here, we consider the Gross-Neveu-Yukawa, Nambu-Jona-Lasinio-Yukawa and chiral
Heisenberg models. In all these models there exist N scalar fields φi with dimension below
1, and the deformation (1.1) triggers an RG flow that generically terminates at an IR fixed
point with real critical values for hi.

One might expect that among the possible IR dCFTs there will exist only one without
relevant operators, so that the RG flow from the UV will generically terminate there. In
the ε = 4−d expansion for scalar CFTs without defect deformations, there exists a theorem
that shows that if an RG stable CFT exists in the IR of a given set of relevant perturbations
of a UV CFT, then it is unique [18]. We find that this is not necessarily the case for scalar
dCFTs, by exhibiting specific examples of multiple stable IR dCFTs with hypertetrahedral
global symmetry in the bulk. These dCFTs have different global symmetries and disjoint
basins of attraction so that there are no RG flows connecting them.

Our discussion of dCFTs is divided in the following manner: in section 2 we derive the
beta function for the defect couplings hi in a theory involving a general scalar quartic inter-
action by examining the scalar one-point function. We then present the beta function when
one adds fermions to the bulk theory, postponing until the appendix a detailed derivation
of the additional defect counterterms, and then examine the dependence of a subset of
counterterms on bulk wavefunction renormalization. These calculations are performed to
next-to-leading order in the bulk couplings. In section 3 we use the general form of the
defect beta function to analyse a series of example scalar theories in the bulk, using results
for the fixed points of these theories to derive both the defect fixed points and examine
their stability properties. Section 4 then provides a similar discussion for a number of bulk
scalar-fermion theories. We conclude in section 5 with a discussion of one-point functions
of the order parameter in the Heisenberg and cubic models in the presence of a line defect.

2 Defect beta function

In this section we describe in detail the computation of the beta function of the line defect
coupling for theories with scalars and fermions in the bulk. Assuming a bulk CFT with
scalars φi of dimension below 1, we will consider the relevant line-defect deformation (1.1).
We work at next to leading order in the bulk couplings but non-perturbatively in the defect
coupling. Repeated indices are assumed to be summed over the values they can take, unless
otherwise indicated.
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Figure 1. Diagrams that contribute to 〈φi(x)〉 up to next-to-leading order in the bulk quartic cou-
pling. Squares and circles denote bulk and defect couplings, respectively. The defect is represented
by the solid horizontal line.

2.1 Only scalars in the bulk

Starting with only scalars in the bulk, the beta function has already been reported to next-
to-leading order in the bulk coupling in [5, 6] for the O(N) model, where it was obtained
by requiring a finite one-point function 〈φi(x)〉 in the presence of the defect. Here we will
use the same logic but will be more general and start with the bulk action

S =
∫
ddx

(1
2∂

µφi∂µφi + 1
24λijklφiφjφkφl

)
, i = 1, . . . , N , d = 4− ε , (2.1)

which describes a variety of critical bulk models; see e.g. [11–13]. To this we will add
the deformation (1.1). We will perform our computation of the beta function of hi in
the standard paradigm of renormalised perturbation theory.2 For the calculation, we will
group diagrams by the order of the bulk quartic couplings and compute divergences using
dimensional regularisation within the minimal subtraction (MS) renormalisation scheme.

The relevant diagrams up to quadratic order in the bulk quartic coupling are shown
in figure 1. For the calculation of these diagrams one uses the following rules:

x1 x2 =
Γ(1

2d− 1)
4πd/2

1
(x 2

12 )
1
2d−1

, x12 = x1 − x2 ,

i j

kl

x = −µελijkl
∫
ddx ,

i

τ

= −µε/2hi
∫ ∞
−∞

dτ .

(2.2)

Here we have introduced a scale µ (of mass dimension equal to 1) so that we work with
dimensionless couplings. Note that what we are computing below is µε/2〈φi(x)〉, which has
dimension 1 classically.

2We are always free to make an O(N) field rotation as long as we also rotate the couplings. Thus, we
have the freedom to fix the form of either λijkl or hi. We could choose to only look for solutions which
have a single non-zero defect coupling, say h1. However, without already knowing the defect fixed points
for a given bulk system, one would not know how this rotation would affect the quartic coupling λijkl. It
seems much simpler to instead work with a fixed λijkl and a general hi.
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For the first diagram of figure 1 we find the finite in the ε→ 0 limit result

x, i

τ ′

= −µεhi
∫
dτ ′

Γ(1
2d− 1)
4π

1
2d

1(
(τ − τ ′)2 + x2) 1

2 (d−2)

= −
Γ
(1

2(d− 3)
)

4π
1
2 (d−1)

µε

|x|d−3hi

= − 1
4π|x|hi

(
1 + 1

2(γ + log(4π|x|2µ2))ε+ O(ε2)
)
,

(2.3)

where γ ≈ 0.577216 is Euler’s constant. Notice that this result is τ -independent, where
x = (τ,x). Since we will be integrating over the defect insertions, we can always substitute
propagators that end on the defect with −Γ( 1

2 (d−3))

4π
1
2 (d−1)

1
|x|d−3hi, where x is the spatial part of

the location in the bulk from which the propagator originates.
For the second diagram of figure 1 we have

x,i

τ ′2

x1
j

τ ′1

l

τ ′3

k

= 1
6µ

3ελijklhjhkhl

(
Γ(1

2(d−3))
4π

1
2 (d−1)

)3 Γ(1
2d−1)

4π
1
2d−1

∫
ddx1

1
((x−x1)2)

1
2d−1

1
|x1|3(d−3)

= 1
6µ

3ελijklhjhkhl

(
Γ(1

2(d−3))
4π

1
2 (d−1)

)4∫
dd−1x1

1
|x1−x|d−3|x1|3(d−3) (2.4)

=−λijklhjhkhl
Γ(1

2(d−3))3

768π
3
2 (d−1)(d−4)(3d−11)

µ3ε

|x|3d−11

= 1
64π3|x|

( 1
12ε+1

8
(
2+γ+log(4π|x|2µ2)

)
+O(ε)

)
λijklhjhkhl.

As we have already mentioned, we will be working in the MS scheme, but MS can be also
used by sending µ2 → µ2e−γ/4π so that factors of γ or log 4π are removed. To remove
the ε → 0 divergence in (2.4) we introduce a counterterm by defining, for the bare defect
coupling hB,3

(hB)i = µε/2
(
hi +

∑
p

(Zh)p,i
)
, (Zh)p,i =

∞∑
n=1

f
(n)
p,i

εn
. (2.5)

The parameter p indicates the power of the coupling h; for example (Zh)3,i is cubic in h.
Taking just the f (1)

p,i contributions and using (2.3) we find

x, i

⊃ − 1
4π|x|

(1
ε

+ 1
2
(
γ + log(4π|x|2µ2)

)
+ O(ε)

)∑
p

f
(1)
p,i . (2.6)

3We typically do not write the subscript “B” to indicate bare couplings unless strictly necessary.
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Demanding now that

+ = finite in the limit ε→ 0 , (2.7)

shows that
f

(1)
3,i ⊃

1
16π2

1
12λijklhjhkhl . (2.8)

The contribution (2.8) to f (1)
3,i leads to a contribution to the beta function of the defect

coupling. This is as usual computed by requiring independence of the bare defect coupling
(hB)i from the renormalisation group scale µ:

µ
d(hB)i
dµ

= 0 ⇒
(1

2 ε+ βj
∂

∂hj
+ βjklm

∂

∂λjklm

)(
hi +

∑
p

(Zh)p,i
)

= 0 , (2.9)

with βijkl = −ελijkl + β̂ijkl the bulk beta function of the quartic coupling, where β̂ijkl does
not depend explicitly on ε. Eq. (2.9) requires, at order ε,

βi = −1
2εhi + β̂i , (2.10)

where β̂i does not depend explicitly on ε. At order ε0 we can determine β̂i from the residues
of the 1/ε poles of (Zh)p,i only:

β̂i = −
(1

2

(
1− hj

∂

∂hj

)
− λjklm

∂

∂λjklm

)∑
p

f
(1)
p,i , (2.11)

which, from the contribution (2.8), gives

β̂i ⊃
1

16π2
1
6λijklhjhkhl . (2.12)

Eq. (2.10) with (2.12) is the result for the defect beta function at leading order in the bulk
coupling.

At next-to-leading order in the bulk coupling we need to consider the last three dia-
grams of figure 1. Here we have to be mindful of bulk and lower order counterterms: the
first two diagrams have counterterms associated with bulk renormalisation, while the last
has the counterterm (2.6) with (2.8).

We have

+ = 1
1024π5|x|

1
24ελijklλjklmhm + O(ε0) , (2.13)
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where we used a standard bulk renormalisation result4 and (2.3) to obtain

= − 1
1024π5|x|

1
24ελijklλjklmhm + O(ε0) . (2.14)

The absence of 1/ε2 contributions to (2.13) is a reflection of the absence of subdivergences
in the two-loop bulk wavefunction renormalisation graph in (2.13). We must require

+ + = finite in the limit ε→ 0 , (2.15)

which leads to
f

(1)
1,i ⊃

1
(16π2)2

1
24λijklλjklmhm . (2.16)

One sees that, up to a factor of −4π|x| which is due to (2.3), (2.16) is predicted by the
bulk counterterm (2.14). This derives from the fact that the only divergent integrals in dia-
gram (2.13) appear strictly in the bulk, so that the bulk wavefunction renormalisation will
already contain all of the information about their divergences. As explored in section 2.3,
this is a general feature of graphs containing only a single defect coupling, which will allow
us to easily write down the terms in the beta function linear in hi.

We should also require

+ + = finite in the limit ε→ 0 , (2.17)

where for the associated bulk subdivergence we have included the well-known bulk coun-
terterm

i j

kl

= 1
16π2

1
ε

(λijmnλmnkl + λikmnλmnjl + λilmnλmnjk) . (2.18)

Eq. (2.17) requires

f
(1)
3,i ⊃ −

1
(16π2)2

1
12λijklλklmnhjhmhn , f

(2)
3,i ⊃

1
(16π2)2

1
12λijklλklmnhjhmhn . (2.19)

Finally, we must demand that

+ + = finite in the limit ε→ 0 , (2.20)

4With (φB)i = (Z1/2
φ )ij(φR)j we have (Zφ)ij = δij − 1

12ελiklmλjklm + . . . [19, 20].
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where in the middle diagram in the left-hand side we need to use the 1/ε part of the
counterterm (2.6) with the lower-order contribution (2.8). This gives

f
(1)
5,i ⊃ −

1
(16π2)2

1
48λijklλjmnphkhlhmhnhp , f

(2)
5,i ⊃

1
(16π2)2

1
96λijklλjmnphkhlhmhnhp .

(2.21)
The residues of the 1/ε poles determine the beta function according to (2.11).

From (2.10) and including the leading order results (2.12), we have, at next-to-leading
order,

βi = −1
2εhi + 1

6λijklhjhkhl + 1
12λijklλjklmhm −

1
4λijklλklmnhjhmhn −

1
12λijklλjmnphkhlhmhnhp ,

(2.22)
where we have rescaled λ → 16π2λ. Eq. (2.22) agrees with the results of [6] for the case
of the O(N) model.5 It is also consistent with the results of [5], up to a scheme change
in (2.17). Finally, it is consistent with the general results of [9] and [7].

2.2 Scalars and fermions in the bulk

When fermions are included in the bulk, the relevant action is

S =
∫
ddx

(1
2∂

µφi∂µφi+ iψ̄aσ̄
µ∂µψa+ 1

4!λijklφiφjφkφl+
(1

2 yiabφiψaψb + h.c.
))

, (2.23)

where φi, i = 1, . . . , Ns are again real scalar fields and ψa, a = 1, . . . , Nf , are two-component
fermions. The coupling tensor yiab is symmetric in the fermionic flavour indices. In the pres-
ence of fermions renormalisation of the scalar propagator requires (φB)i = (Z1/2

φ )ij(φR)j
with [19, 21]

(Zφ)ij = δij −
1
ε

(
Yij −

1
2 Ỹikjk −

3
4 Ỹikkj + 1

12λiklmλjklm
)

+ . . . , (2.24)

where
Yij = yiaby

∗
jab + y∗iabyjab = Tr(yiy∗j + y∗iyj) ,

Ỹijkl = Tr(yiy∗jyky∗l + y∗iyjy
∗
kyl) .

(2.25)

We have included the 1/ε results up to two loops and rescaled y → 4πy, λ→ 16π2λ.
The contributions to 〈φi(x)〉 that involve fermions are described by the diagrams in

figure 2. The computation proceeds in a straightforward way, which we describe in ap-
pendix A. The most difficult graph is the fourth one, whose 1/ε pole can however be
extracted from [8]. Along with the purely-scalar contributions (2.22), the defect coupling
beta function at next-to-leading order is

βi = −1
2εhi + 1

6λijklhjhkhl + 1
12λijklλjklmhm −

1
4λijklλklmnhjhmhn −

1
12λijklλjmnphkhlhmhnhp

+ 1
2Yijhj −

1
4 Ỹijkjhk −

3
8 Ỹijjkhk +

(
1− 1

6π
2
)
Ỹijklhjhkhl −

1
4λijklYlmhjhkhm . (2.26)

5To obtain the O(N) model we need to set λijkl = λ(δijδkl + δikδjl + δilδjk).
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Figure 2. Diagrams that contribute to the beta function of the defect coupling involving fermions
in the bulk, up to next-to-leading order.

2.3 Relation to bulk wavefunction renormalisation

Coefficients of terms in βi linear in h are simply given by the coefficients of the correspond-
ing diagrams that renormalise the scalar propagator in the bulk. Indeed, renormalisation
of the scalar two-point function in the bulk requires (Zφ)ij = δij +

∑∞
n=1 b

(n)
ij /ε

n, and then
(γφ)ij = −1

2ρIgI∂b
(1)
ij /∂gI , where gI stands for either λijkl, yiab or y∗iab, and ρI is equal to 1

when its index corresponds to a quartic coupling and 1
2 when it corresponds to a Yukawa

coupling. For example, (γφ)ij ⊃ 1
2Yij . The same scalar wavefunction renormalisation

appears in the defect computation, with which we renormalise hi.
From eq. (2.3) we see that there is no divergence associated with attaching a propagator

to the defect. Therefore, any divergence in these sort of diagrams must arise purely from
the divergence associated with renormalisation in the bulk. These divergences will thus
be exactly cancelled by the bulk counterterms. However, as we are only considering the
one-point function we should not subtract the full propagator counterterm but only half
of it, leaving the other half for the defect counterterm. That is to say, for renormalisation
linear in h we get

(Zh)1,i =

h

= 1
2(hi − (Zφ)ijhj) . (2.27)

Thus, the computation of (Zφ)ij in the bulk, e.g. (2.24) for scalar-fermion theories up to two
loops, allows us to easily determine a subset of the contributions to the beta functions of
the defect couplings. Using the above definition of the anomalous dimension for the scalar
field, one finds that the diagrams (2.27) contribute a term 1

2(γφ)ijhj . One can then combine
this term with the classical beta function to find that the beta function takes the form

βi =
(
− 1

2εδij + (γφ)ij
)
hj + · · · =

(
(∆φ)ij − δij

)
hj + · · · , (2.28)

where the ellipses represent terms of higher order in the defect coupling arising from
diagrams with more scalar legs attaching to the defect.

3 Scalar fields

For scalar vector models described by (2.1), since ∆φ = 1 − 1
2ε at leading order in ε the

defect deformation is relevant. We will consider only the leading order results for the

– 9 –
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defect beta function obtained above. At leading order the flow is gradient, as there exists
a quantity H given by

H = −1
4εh

2 + 1
24λijklhihjhkhl , h2 = hihi , (3.1)

such that
βi = ∂H

∂hi
. (3.2)

We have H = 2 log g, where log g is discussed in [6, 22].
To consider dCFTs, we take the bulk theory (2.1) to be critical, meaning that

ελijkl = λijmnλklmn + λikmnλjlmn + λilmnλjkmn , (3.3)

and look for non-trivial fixed points of

βi = −1
2εhi + 1

6λijklhjhkhl (3.4)

in the space of the hi couplings.
If one starts with the free bulk theory, for which λijkl = 0, then it is obvious that the

only root of (3.4) is hi = 0. In that case, H = 0. Now consider a non-trivial bulk CFT.
The hi = 0 root of (3.4) remains, and again H = 0, but now we may also seek non-trivial
roots for which H 6= 0 if hi are real. At a non-trivial dCFT, then, we may use

βihi = 0 ⇒ λijklhihjhkhl = 3εh2 (3.5)

to obtain
H = −1

8εh
2 6 0 . (3.6)

Thus, any non-trivial dCFT that may arise in the IR by deforming the bulk theory will
necessarily have H < 0 and the g-theorem [22] will be satisfied. As we will see below there
may exist bulk theories in which multiple inequivalent dCFTs can be found. In those cases
the g-theorem predicts that the stable dCFT is the one with the smallest value of H. Our
results are consistent with this. We also find examples of multiple stable dCFTs, in which
H is different. Nevertheless, there are no RG flows connecting these stable dCFTs.

We may consider as special cases bulk vector models obtained by single-coupling de-
formations of the O(N) theory:

S =
∫
ddx

(1
2∂

µφi∂µφi + 1
8λ(φ2)2 + 1

24 gdijklφiφjφkφl
)
. (3.7)

Such deformations break O(N) to a subgroup G, and dijkl is a rank-four invariant tensor
of G that is symmetric and traceless. It is well-known that beyond the free and O(N)
theories the action (3.7) has two further fixed points with global symmetry G given by

λ± = 1
N + 8 +X±2 ε ,

√
a g± = X±

N + 8 +X±2 ε , (3.8)
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where X± = 1
2
(
3b/
√
a ±

√
16− 4N + 9b2/a

)
. The parameters a and b are determined

by [12]

dijmndklmn = 1
N − 1a

(1
2N(δikδjl + δilδjk)− δijδkl

)
+ euwu,ijkl + b dijkl , (3.9)

where wu,ijkl are potential further rank-four invariant tensors of the group G (the index u
simply counts such invariant tensors) satisfying

wu,ijkl = wu,jikl = wu,klij , wu,i(jkl) = 0 , wu,iikl = 0 . (3.10)

The relation (3.9) ensures that the RG flow is restricted to the space of the two couplings
λ and g.

For the general line defect deformation of (3.7) the beta function of hi follows from (3.4)
and reads

βi = −1
2εhi + 1

2

(
λhih

2 + 1
3 g dijklhjhkhl

)
. (3.11)

This is the result at leading order in λ, g.
As an aside let us note here that in multiscalar models of the type (3.7) the φ2 operator

has anomalous dimension equal to (N+2)λ, where λ is the fixed point value of the coupling
given by (3.8). Its scaling dimension is thus ∆φ2 = 2 − ε + (N + 2)λ and we find that
∆φ2 < 2 for λ < 1

N+2ε. The solutions in (3.8) indeed satisfy λ± < 1
N+2ε, and one

may thus consider surface defect deformations of these theories, with φ2 localised on a
surface as the symmetry-preserving perturbing operator. Operators of the type φiφj need
to be decomposed under the global symmetry preserved by the bulk CFT. The associated
operators in the appropriate irreducible representations under the symmetry of the bulk
CFT can be used as symmetry-breaking surface defect deformations if their dimension is
below 2, but results here need to be discussed in a case by case basis.6

In the remainder of this section we will analyse in detail defect deformations in a few
examples. The bulk CFTs we will be perturbing around have been discussed in detail
in [12, 13].

3.1 O(N) model

In the simple case of the O(N) model we have

λ = 1
N + 8ε , g = 0 , (3.12)

for the bulk theory (3.7), and then

βi = −1
2εhi

(
1− 1

N + 8h
2
)
. (3.13)

If hi 6= 0 we find that βi = 0 for
h2 = N + 8 . (3.14)

6Surface defects in d = 6− ε have recently been discussed in [9].
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Note that the individual hi’s are left undetermined but are subject to the constraint (3.14),
i.e. they live on an (N − 1)-dimensional sphere.

Looking at the stability matrix ∂iβj evaluated at (3.14) we find that the operator
O = hiφi has dimension 1 + ε, while N − 1 operators that can be chosen to have the form
Oı̂ = h1φı̂−hı̂φ1 , ı̂ = 2, . . . , N have dimension exactly 1. These operators transform in the
vector representation of O(N − 1), and we see that the dCFT breaks O(N) to O(N − 1).
The quotient O(N)/O(N − 1) is isomorphic to SN−1. Operators like Oı̂ are sometimes
called tilt operators in the literature.

We would like to emphasise here that the Oi’s do not generate non-trivial deformations
of the dCFT defined by (3.14). All dCFTs on the hypersphere defined by (3.14) are
physically equivalent, in the sense that local CFT data do not depend on the specific hi
that satisfies (3.14). Despite the fact that the quotient is trivial in this sense, its presence
implies that a certain combination of integrated connected four-point functions involving
the Oi’s corresponds to its Riemann curvature [2].

3.2 Hypercubic model

For the hypercubic model with global symmetry BN = Z2
N o SN , where SN is the group

of permutations of N objects, we have

dijklφiφjφkφl =
∑
i

φ 4
i −

3
N + 2(φ2)2 (3.15)

in (3.7), and a non-trivial fixed point is found for

λ = 2(N − 1)
3N(N + 2)ε , g = N − 4

3N ε . (3.16)

The other fixed point in (3.8) corresponds to N decoupled Ising models. The defect beta
function is

βi = −1
2εhi

(
1− 1

3N h2 − N − 4
9N h2

i

)
. (3.17)

The equation βi = 0 has 1 +
∑N
n=1

(N
n

)
2n = 3N solutions, falling into N + 1 equivalence

classes preserving different global symmetries on the defect. One of them is the solution
hi = 0. The other N equivalence classes of solutions are given by choosing n couplings
to be equal to each other in absolute value so that their squares are all equal to ĥ2

n and
N − n couplings to be zero, for n = 1, . . . , N . Then, the beta functions corresponding
to couplings that were set to zero are also zero trivially, while the remaining ones satisfy
βı̂/hı̂ = −1

2ε(1−
n

3N ĥ
2
n − N−4

9N ĥ2
n), which becomes zero for

ĥ2
n = 9N

N + 3n− 4 . (3.18)

The dCFT with n couplings non-zero has global symmetry BN−n × Sn.
The stability matrix Sij = ∂iβj takes a block-diagonal form,

S =
(
P 0
0 Q

)
. (3.19)
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(a) n = 1, K = D4. (b) n = 2, K = Z2
2. (c) n = 3, K = S3.

Figure 3. The three symmetry breaking patterns for N = 3. K is the subgroup of B3 preserved
in each case. The vectors hi drawn point to the center of faces (left), center of edges (middle) and
vertices (right) of the cube.

Corresponding to the n non-zero couplings we have the n× n matrix

P = N − 4
N + 3n− 4ε


1 0 · · · 0
0 1 · · · 0
...
... . . . ...

0 0 · · · 1

+ 3
N + 3n− 4ε


1 1 · · · 1
1 1 · · · 1
...
... . . . ...

1 1 · · · 1

 , (3.20)

while for the N − n zero couplings we have the (N − n)× (N − n) multiple of the identity
matrix

Q = − N − 4
2(N + 3n− 4)ε


1 0 · · · 0
0 1 · · · 0
...
... . . . ...

0 0 · · · 1

 . (3.21)

When n = N the eigenvalues of the stability matrix give one operator with dimension
1+ε andN−1 operators with dimension 1+ N−4

4(N−1)ε. Obviously the case n = N corresponds
to the unique stable fixed point when N > 4. The corresponding IR dCFT has global
symmetry SN . All other fixed points we have found for N > 4 and up to N = 9 are
unstable. The case N = 4 is special as then we have coincidence with the O(4) case.7

For n = 1 S is obviously diagonal and has one eigenvalue equal to ε and N − 1
eigenvalues equal to − N−4

2(N−1) . For N = 3 these latter eigenvalues are positive and thus in
that case a stable fixed point is the n = 1 one and it turns out to be the only fixed point
with that property. The global symmetry of the IR stable dCFT for this N = 3 case is the
dihedral group D4 of order 8. In figure 3 we draw the vectors hi in the quotient B3/K for
the three different non-trivial dCFTs obtained in this case.

3.3 Hypertetrahedral model

To describe a theory with hypertetrahedral symmetry TN = SN+1 × Z2, we introduce
N + 1 vectors in N -space, (eN )αi , i = 1, . . . , N , α = 1, . . . , N + 1, which give the locations
of the N + 1 vertices of an N -dimensional hypertetrahedron. Starting from N = 1 with

7This coincidence does not persist beyond the leading loop order.
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(e1)1
1 = −(e1)2

1 = − 1√
2 , we define, recursively,

(eN )αi = (eN−1)αi , i = 1, . . . , N − 1, α = 1, . . . , N ,

(eN )αN = −
√

1
N(N + 1) , α = 1, . . . , N ,

(eN )N+1
i =

√
N

N + 1δi
N .

(3.22)

These vectors satisfy

∑
α

(eN )αi = 0 ,
∑
α

(eN )αi (eN )αj = δij , (eN )αi (eN )βi = δαβ − 1
N + 1 , (3.23)

and they define a hypertetrahedron of edge length
√

2, with its associated ciscumscribed
hypersphere having radius

√
N
N+1 . The bulk theory is then given by (3.7) with

dijklφiφjφkφl =
∑
α

(
(eN )αi φi

)4 − 3N
(N + 1)(N + 2)(φ2)2 . (3.24)

There are two fixed points with hypertetrahedral symmetry, with couplings given by

λ− = 2(N + 1)
3(N + 2)(N + 3)ε , g− = N + 1

3(N + 3)ε , (3.25)

and
λ+ = (N − 1)(N − 2)

3(N + 2)(N2 − 5N + 8)ε , g+ = (N − 4)(N + 1)
3(N2 − 5N + 8)ε . (3.26)

We will refer to the former as TN− and the latter as TN+. For N 6 4 one or both of
these coincide with other fixed points. The first non-trivial hypertetrahedral fixed point
is T4−, while for N = 5 the T5± fixed points coincide. For N > 5 there are distinct
hypertetrahedral fixed points at leading order in the ε expansion.

To discuss a general line defect deformation we use

dijklhjhkhl =
∑
α

(eN )αi
(
(eN )αj hj

)3 − 3N
(N + 1)(N + 2)h

2hi (3.27)

in (3.11). Explicit forms of the beta functions are rather unsightly, and an analysis for
general N appears to be complicated, due to the presence of the eN vectors. However, one
can overcome this difficulty by noticing that there is a correspondence between TN and the
hypercubic system with one more field, CN+1. If we consider the N + 1 fields

φα = (eN )αi φi , (3.28)

then using the properties (3.23) of the eN vectors one can see that (3.24) becomes

dijklφiφjφkφl =
∑
α

(φα)4 − 3N
(N + 1)(N + 2)(φ2)2 , φ2 = φαφα , (3.29)
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which, up to the coefficient of the second term in the right-hand side, is of the form of
the rank-four tensor of the hypercubic case with N + 1 fields given in (3.15). If we then
introduce a defect hα, the defect fixed points will follow from the analysis of hypercubic
fixed points given in section 3.2. The defect couplings hi can then be obtained by

hi = (eN )αi hα . (3.30)

However, TN 6= CN+1, and there are two crucial features that distinguish between
them. First, the bulk couplings remain as (3.25) or (3.26) even after we have transformed
into this hypercubic-like form, and the N -dependence of the coefficient of (φ2)2 in the d
tensor differs. This will only amount to altering the numerical values of the solutions,
but will not affect the form of the solutions themselves. More importantly, the tetrahedral
system has a constraint on its fields which is not present in the hypercubic model. From the
first equation in (3.23), we see that the bulk field and the defect couplings ought to obey∑

α

φα = 0 ,
∑
α

hα = 0 . (3.31)

In terms of the hypercubic fixed points exhibited in section 3.2, which have all of the
non-zero hα equal to the same constant, this constraint is realised by restricting us to
only consider fixed points at which an even number of the hα are non-zero. Of these
non-zero hα, half of them must be positive, with the other half negative. The SN+1 × Z2
symmetry of TN then acts on these vectors by permuting their entries and multiplying by
an overall minus sign. One can then easily see that the solutions will lie in a single orbit
of SN+1 × Z2. Hence, each CN+1 solution with an even number of non-zero couplings will
yield a single equivalence class of TN solutions.

When one looks at βα = (eN )αi βi, one finds

(eN )αi dijklhjhkhl = (hα)3 − 1
N + 1

N+1∑
β=1

(hβ)3 − 3N
(N + 1)(N + 2)h

2hα . (3.32)

Were it not for the middle term, TN would be precisely equivalent to CN+1 with the
constraint

∑
α h

α = 0. For solutions descending from hypercubic points this term vanishes,
and one can show that it gives an additive positive-definite contribution to the stability
matrix, so that these solutions inherit all of the properties from their CN+1 antecedents one
would naively expect. In general, however, this term may not vanish, leading to additional
classes of solutions. For instance, one will have solutions in which k of the hα vanish, and
the non-zero couplings take the form

hα = h

m
for m α , hα = − h

N + 1− k −m for the remaining N + 1− k −m α , (3.33)

for some k 6 N+1, m 6 N+1 such that k+m 6 N+1, where h is then determined by the
resulting beta functions. There are 2

(N+1
k

)(N+1−k
m

)
equivalent solutions in each class. A

survey of solutions of T4 reveal that there are also solutions which take a more complicated
form, and it is likely that these isolated points proliferate both in number and complexity as
N increases. In the remainder of this subsection we report results for a few low values of N .
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For N = 4 at the T4− fixed point we find 81 solutions in 5 distinct universality classes.
Among them there are 20 equivalent solutions that correspond to an IR stable dCFT.
The eigenvalues of their corresponding stability matrix are ε, 2

5ε,
1
10ε(2), where we use the

notation x(y) with x the eigenvalues of the stability matrix and y their multiplicities. Since
the order of the quotient of the symmetry breaking is 20, the order of the symmetry group
preserved by the IR stable dCFT is 5!× 2/20 = 12. Among the subgroups of S5×Z2 with
order 12 there is only one with a two-dimensional irreducible representation, namely the
dihedral group D6.8 The fact that there exists a multiplicity-two eigenvalue of the stability
matrix of the IR stable dCFT then shows that its global symmetry group is D6.

We find solutions among which only one corresponds to a stable fixed point for N = 5, 6,
but for N = 7 we have the first example of two distinct stable IR dCFTs. Here there are
nine inequivalent non-trivial classes of solutions, two of which give IR stable fixed points.
At the λ+, g+ fixed point we find the representative solutions

h+,i =
(

0,0,0,4
√

66
85 ,8

√
11
85 ,8

√
11
119 ,−3

√
33
119

)
; κ=

{
ε(1), 14

17ε(2), 2
17ε(4)

}
; H=−495

136ε,

(3.34)
and

h+,i =
(

0,0, 32

√
11
2 ,

3
2

√
33
10 ,−

√
11
5 ,2

√
11
7 ,
√

33
7

)
; κ=

{
ε(1), 12ε(6)

}
; H =−33

8 ε.

(3.35)
There is also a pair of IR stable fixed points for the λ−, g− fixed point, represented by

h−,i =
(

0,−
√

15
2 ,
√

15
4 ,

3
4 ,

1
2

√
3
2 ,−

5
2

√
15
14 ,−

15
4

√
5
14

)
; κ=

{
ε(1), 7

16ε(2), 1
16ε(4)

}
; H=−675

256ε,

(3.36)
and

h−,i=
(
−3

2

√
5
2 ,−

1
2

√
15
2 ,−

√
15
4 ,

9
4 ,

3
2

√
3
2 ,−

3
2

√
15
14 ,3

√
5
14

)
; κ=

{
ε(1),14ε(6)

}
; H=−45

16ε.

(3.37)
The fact that the stability matrices have different multiplicity eigenvalues in (3.34)
and (3.35) (as well as in (3.36) and (3.37)) shows that these dCFTs have different symme-
try. While we have not been able to determine the global symmetry groups of these dCFTs,
we have found that the solutions (3.35) and (3.37) descend from the N = 8 hypercubic case
as described above, and the order of their symmetry group is 1152. The solutions (3.34)
and (3.36) arise from setting k = 0,m = 3 in (3.33), and their symmetry group has order
720. We encounter a similar situation of two distinct stable IR dCFTs for N = 9 in our
explicit calculations.

The solutions arising as hypercubic fixed points allow us to understand the origin of
these multiple stable fixed points. The stable fixed point for a hypercubic model is, from
section 3.2, the one in which h2

α are all non-zero and equal. For TN , the CN+1 stable fixed
point will only be consistent with the constraint

∑
α h

α = 0 for N odd. As this point
8The other order-12 subgroups of S5 × Z2 are the alternating group A4 and Z6 × Z2.
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continues to be stable as a TN solution, TN for N odd will necessarily see at least one
stable fixed point arising from a hypercubic solution. Importantly, it seems that the class
of solutions with

∑
α(hα)3 6= 0 is also able to independently provide stable solutions. The

N = 4 stable fixed point must, and indeed does, arise from this second class, just as one
of the N = 7, 9 stable fixed points comes from the stable N = 8, 10 hypercubic solution,
while the other lies in the second class. It seems likely that this pattern will continue, and
that for larger odd N theories will again have multiple stable defect fixed points.

3.4 O(m) × O(n) biconical model

The O(m)×O(n) biconical model has two quadratic invariants and three symmetric trace-
less rank four invariant tensors, so it goes beyond the class of examples described by (3.7).
Nevertheless, it can be treated in a similar way — see [12, appendix B]. The action is

S =
∫
ddx

(1
2∂

µφ̂ı̂∂
µφ̂ı̂ + 1

2∂
µφ̌ı̌∂

µφ̌ı̌ + 1
8λ1(φ̂2)2 + 1

8λ2(φ̌2)2 + 1
4gφ̂

2φ̌2
)
, (3.38)

where φ̂ı̂, ı̂ = 1, . . . ,m are the fields transforming under O(m) and φ̌ı̌, ı̌ = 1, . . . , n the fields
transforming under O(n). The location of the biconical fixed point in the space of λ1, λ2, g

couplings is a complicated function of m and n, which simplifies considerably when m = n:

λ1 = λ2 = n

2(n2 + 8)ε , g = − n− 4
2(n2 + 8)ε (m = n) . (3.39)

This is the stable fixed point for 2 < n < 4. For m = n = 4 it coincides with two decoupled
O(4) models, but at higher orders in ε the n for which the m = n biconical theory coincides
with the decoupled one receives corrections [12, appendix B].

In the biconical model we may discuss the defect deformation

S → S′ = S + ĥı̂

∫
dτ φ̂ı̂ + ȟı̌

∫
dτ φ̌ı̌ . (3.40)

We find
β̂ı̂ = −1

2 ĥı̂(ε− λ1ĥ
2 − gȟ2) , β̌ı̌ = −1

2 ȟı̌(ε− λ2ȟ
2 − gĥ2) , (3.41)

with non-trivial roots occurring at

ĥ2 = g − λ2
g2 − λ1λ2

ε , ȟ2 = g − λ1
g2 − λ1λ2

ε , (3.42)

or
ĥ2 = 1

λ1
ε , ȟı̌ = 0 , (3.43)

or
ĥı̂ = 0 , ȟ2 = 1

λ2
ε . (3.44)

The preserved symmetry is O(m− 1)×O(n− 1), or O(m− 1)×O(n) or O(m)×O(n− 1),
respectively.
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For m = n we correspondingly find

ĥ2 = ȟ2 = 1
2(n2 +8) , or ĥ2 = 2

n
(n2 +8) , ȟı̌ = 0 , or ĥı̂ = 0 , ȟ2 = 2

n
(n2 +8) .

(3.45)
The analysis of stability proceeds in a straightforward manner. Corresponding to the

different solutions above we find for the stability matrix that

SIJ =
(
λ1ĥı̂ĥ̂ gĥı̂ȟ̌
gȟı̌ĥ̂ λ2ȟı̌ȟ̌

)
, (3.46)

or

SIJ =
(
λ1ĥı̂ĥ̂ 0

0 ε
2
( g
λ1
− 1

)
δı̂̂

)
, (3.47)

or

SIJ =
(
ε
2
( g
λ2
− 1

)
δı̂̂ 0

0 λ2ȟı̌ȟ̌

)
. (3.48)

Noting that λ1, λ2 > g,9 we see that both (3.47) and (3.48) have negative eigenvalues.
Thus, the fixed points with one of the defects being trivial will be unstable. To see that
the fixed point (3.46) is in fact stable, we note that there will be m−1 vectors vı̂ orthogonal
to ĥı̂ and n− 1 vectors uı̌ orthogonal to ȟı̌, giving us m+n− 2 vectors in the kernel of the
stability matrix:

S

(
v̂
0

)
= 0 , S

(
0
ǔ

)
= 0 . (3.49)

To find the remaining two eigenvectors, we note that the beta functions require that the
solution itself must be an eigenvector of the stability matrix with eigenvalue ε, that is

S

(
ĥ̂
ȟ̌

)
=
(
ĥı̂(λ1ĥ

2 + gȟ2)
ȟı̌(gĥ2 + λ2ȟ

2)

)
= ε

(
ĥı̂
ȟı̌

)
. (3.50)

The trace of the stability matrix can easily be seen to be

TrS = λ1ĥ
2 + λ2ȟ

2 = ε+ (g − λ1)(g − λ2)
λ1λ2 − g2 ε , (3.51)

so that the last eigenvalue will be

κ = (g − λ1)(g − λ2)
λ1λ2 − g2 ε > 0 . (3.52)

The corresponding eigenvector can also be determined:

S

−√g−λ1
g−λ2

ĥ̂√
g−λ2
g−λ1

ȟ̌

 = (g − λ1)(g − λ2)
λ1λ2 − g2 ε

−√g−λ1
g−λ2

ĥ̂√
g−λ2
g−λ1

ȟ̌

 . (3.53)

As SIJ has no negative eigenvalues, the dCFT described by (3.42) will be stable.
9Positivity of the scalar potential of the bulk biconical model requires λ1, λ2 > 0 and λ1λ2 > g2.

Unitarity of the defect CFT as defined by (3.42) then requires λ1, λ2 > g.
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Loosening the restrictions of λ1, λ2, and g brought by unitarity, the stability of the
fixed points can shift. If one relaxes this requirement, thus allowing λ1 < g or λ2 < g,
one can arrive at different stability configurations. Positivity of the potential in the bulk
prevents λ1, λ2 < g simultaneously, so that one finds only two different scenarios. In both
cases (3.46) will become unstable due to the eigenvalue κ becoming negative. If λ1 < g < λ2
then (3.47) will become the stable fixed point, while if λ1 < g < λ2 (3.48) become stable.

3.5 MN model

The MN model refers to CFTs with global symmetry O(m)noSn. It has N = mn scalars,
and one way to describe it is by decomposing φi into n vectors ~ϕr of size m each. Then, it
can be written in the form of (3.7) with

dijklφiφjφkφl =
∑
r

(~ϕ 2
r )2 − m+ 2

N + 2(~ϕ 2)2 , ~ϕ 2 =
∑
r

~ϕ 2
r . (3.54)

There are two fixed points of this type, with one being that of n decoupled O(m) theories
and the other fully interacting. The fully interacting fixed point is RG stable for m < 4
and has

λ = 6(N −m)
(N + 2)((m+ 8)N − 16(m− 1))ε , g = 3(N − 4)

(m+ 8)N − 16(m− 1)ε . (3.55)

The other fixed point in (3.8) corresponds to n decoupled O(m) models. Form = 1 the fully
interacting MN fixed point reduces to the hypercubic one. For m = 4 we have reduction
to the case of n decoupled O(4) models. For m = n = 2 we have coincidence with the O(4)
model.

With the defect, we will find it useful to put the interaction action in a form reminiscent
of the O(m) × O(n) biconical case. To this end, we will not use λ and g, but instead the
combination

u = 1
3

(
3λ+ N −m

N + 2 g
)
, v = 2

3

(
3λ− m+ 2

N + 2g
)
, (3.56)

so that the scalar interaction takes the more convenient form

λijklφiφjφkφl = 3
(
u
∑
r

(~ϕ 2
r )2 + v

∑
r<s

~ϕ 2
r ~ϕ

2
s

)
. (3.57)

Focusing on the fully interacting fixed point, we introduce the defect

~hr ·
∫
dτ ~ϕr(τ,0) = har

∫
dτ ϕar(τ,0) , a = 1, . . . ,m . (3.58)

The defect couplings will have the beta functions

βar = −1
2h

a
r

(
ε− u~h2

r − v
∑
s 6=r

~h2
s

)
. (3.59)

The fixed points of this model take a very similar form to those of the O(m) × O(n)
biconical model, and can then be divided into n classes depending on the number k of
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trivial defect coupling vectors, where 0 6 k 6 n. Using the Sn symmetry we can choose
the trivial coupling vectors to be the first k, with the other n−k being equal in magnitude
and satisfying (for k 6= n)

~h2
r = ε

u+ (n− k − 1)v , r = k + 1, . . . , n . (3.60)

The fixed point will not be stable for k 6= 0. To see this, notice that the defect beta
function has derivatives

∂arβ
b
r = −1

2δ
ab
(
ε− u~h2

r − v
∑
r 6=r

~h2
s

)
+ uharh

b
r (no sum on r) ,

∂bsβ
a
r = vharh

b
s (r 6= s) .

(3.61)

Notice that if har = 0, then ∂arβ
b
r 6= 0. For k 6= 0 we can permute the indices to choose

~h1 = 0, so that the stability matrix will take the form

SIJ =

 ε
2

(
(n−k)v

(n−k)v−v+u − 1
)
δab 0

0 S′IJ

 , (3.62)

where S′IJ is the rest of the stability matrix. As with the biconical model, positivity and
unitarity demand that u > 0 and v < u, so that the upper-left block will be a diagonal
matrix with negative elements. Thus, SIJ will have at least m negative eigenvalues. The
symmetry is broken at these fixed points to

(
O(m)k o Sk

)
×
(
O(m− 1)n−k o Sn−k

)
.

For the k = 0 fixed point, where ~h2
r = h2 = ε

u+(n−1)v for all r = 1, . . . , n, the stability
matrix takes the form

SIJ =


uha1h

b
1 vha1h

b
2 · · ·

vha2h
b
1 uha2h

b
2 · · ·

...
... . . .

 . (3.63)

This is very similar to eq. (3.46), and the analysis proceeds similarly. For each r, there will
be m− 1 vectors in the kernel corresponding to vectors orthogonal to har . There will be a
single eigenvector with eigenvalue ε corresponding to the perturbation itself:

S


ha1
ha2
...

 = (u+ (n− 1)v)h2


ha1
ha2
...

 = ε


ha1
ha2
...

 . (3.64)

The remaining n − 1 eigenvectors have eigenvalue κ = (u − v)h2 > 0 and are essentially
generalisations of eq. (3.53), with only two elements being non-zero in each,

S



−ha1
0
...
0
har
0
...


= (u− v)h2



−ha1
0
...
0
har
0
...


(r = 2, . . . , n) . (3.65)
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As SIJ has no negative eigenvalues, this fixed point will be stable. Its symmetry is
O(m− 1)n o Sn.

4 Adding fermions

With fermions in the bulk we consider the action (2.23). At any non-trivial scalar-fermion
fixed point, the dimension of the φi’s will be given by the eigenvalues of the matrix

(∆φ)ij =
(

1− 1
2ε
)
δij + 1

2Yij . (4.1)

Eigenvalues that are below 1 will correspond to scalar fields that can serve as non-trivial
line defect deformations. Assuming that is indeed the case for ns of the Ns scalars, we can
consider deformations of the form (1.1). Due to the presence of fermions there is now an
extra term in βi compared to (3.4). As we saw above, at leading order in the bulk couplings
we have

βi = −1
2εhi + 1

6λijklhjhkhl + 1
2Yijhj . (4.2)

The RG flow is again gradient with

H = −1
4εh

2 + 1
24λijklhihjhkhl + 1

4Yijhihj . (4.3)

4.1 Gross-Neveu-Yukawa model

This Gross-Neveu-Yukawa (GNY) was discussed in detail in [8]. The action is

SGNY =
∫
ddx

(1
2∂

µφ∂µφ+ iΨa/∂Ψa + yφΨaΨa + 1
8λφ

4
)
, (4.4)

with one real scalar φ and Nf Dirac fermions Ψa, a = 1, . . . , Nf . We define Ψ = Ψ†γ0. In
our conventions the beta functions of y and λ at leading order are

βy = −1
2εy + 1

2(N + 6)y3 , βλ = −ελ+ 9λ2 + 2Nλy2 − 4Ny4 , (4.5)

where N = 4Nf . A fixed point occurs for

y2 = 1
N + 6ε , λ =

√
PN −N + 6
18(N + 6) ε , (4.6)

where PN = N2 + 132N + 36. At that fixed point we have

∆φ = 1− 3
N + 6ε < 1 , (4.7)

and we may consider the defect deformation

SGNY → S′GNY = SGNY + h

∫
dτ φ(τ,0) . (4.8)
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For the defect coupling we have10

βh = −1
2h(ε− λh2 −Ny2) , (4.9)

and a non-trivial fixed point is found for

h2 = 108√
PN −N + 6

. (4.10)

This is a stable fixed point, since ∆φ = 1 + 6
N+6ε > 1.

Let us remark here that the bulk GNY model has emergent supersymmetry when
N = 1, which requires a fractional number of Dirac fermions in (4.4), namely Nf = 1

4 .
With this choice and in the limit ε → 1 the GNY model would have one 3D Majorana
spinor and two supercharges [17].

4.2 Nambu-Jona-Lasinio-Yukawa model

The Nambu-Jona-Lasinio-Yukawa (NJLY) model has two real scalar fields φ1 and φ2 (φ2 is
a pseudoscalar) and Nf Dirac fermions Ψa, a = 1, . . . , Nf . It is sometimes called the chiral
XY model; see e.g. [23]. Its action is

SNJLY =
∫
ddx

(1
2∂

µφ1∂µφ1+ 1
2∂

µφ2∂µφ2+iΨa/∂Ψa+yΨa(φ1+iγ5φ2)Ψa+ 1
8λ(φ2

1+φ2
2)2
)
,

(4.11)
and it has a chiral U(1) symmetry generated by

φ = φ1 + iφ2 → e−2iαφ , Ψa → eiαγ
5Ψa . (4.12)

The beta functions of y and λ at leading order are

βy = −1
2εy + 1

2(N + 4)y3 , βλ = −ελ+ 10λ2 + 2Nλy2 − 4Ny4 , (4.13)

where N = 4Nf , and the NJLY fixed point lies at

y2 = 1
N + 4ε , λ =

√
RN −N + 4
20(N + 4) ε , (4.14)

where RN = N2 + 152N + 16.
At this fixed point one may compute

∆φ1 = ∆φ2 = 1− 2
N + 4ε , (4.15)

and since ∆φi < 1 one may discuss the line defect deformation

SNJLY → S′NJLY = SNJLY + h1

∫
dτ φ1(τ,0) + h2

∫
dτ φ2(τ,0) . (4.16)

10Here Yij → Ny2 and Ỹijkl → Ny4.
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It is straightforward to compute11

βi = −1
2hi(ε− λh

2 −Ny2) , i = 1, 2 , h2 = h2
1 + h2

2 , (4.17)

and a non-trivial root is found for

h2 = 80√
RN −N + 4

. (4.18)

Due to the U(1) symmetry of the NJLY model we see that we can fix h2
1 + h2

2 but not h1
and h2 separately. Obviously the line defect breaks the U(1) symmetry completely.

Looking at the stability matrix of the IR dCFT defined by (4.18) we find one irrelevant
operator given byO = hiφi with dimension ∆O = 1+ 4

N+4ε, and the marginal (tilt) operator
O′ = h1φ2 − h2φ1.

The NJLYmodel has emergent supersymmetry whenN = 2, which requires a fractional
number of Dirac fermions in (4.11), namely Nf = 1

2 . With this choice and in the limit
ε→ 1 the NJLY model would have one 3D Dirac spinor and four supercharges [17].

4.3 Chiral Heisenberg model

The chiral Heisenberg (cH) model is a generalisation of the GNY model useful for modelling
the semimetallic-antiferromagnetic phase transition in graphene [23–25]. The theory is
governed by the action

ScH =
∫
ddx

(1
2∂

µφi∂µφi + iΨ(12 ⊗ γµ)∂µΨ + yφiΨ
(
σi ⊗ 12Nf

)
Ψ + 1

8λ(φ2)2
)
, (4.19)

containing three real scalar fields φi, i = 1, 2, 3, Nf Dirac fermions arranged into two larger
spinors

Ψ =
(

Ψ+
Ψ−

)
, Ψ = Ψ†(12 ⊗ γ0) , (4.20)

and where σi are the Pauli matrices. For Nf = 2 the spinors Ψ± will be the usual four-
component Dirac spinors, but at the level of the beta function one can imagine taking Nf to
be a continuous parameter, with each Ψ± then containing 2Nf complex components [23].
This action retains an SO(3) symmetry associated with the rotations,

φi → Rijφj , Ψ→ e
iθ~n·(~σ⊗12Nf )Ψ , (4.21)

where Rij is the SO(3) matrix associated with a rotation about ~n by an angle θ. If we again
use N = 4Nf , the beta functions for the couplings are given to one-loop order by [25]12

βy = −1
2εy + 1

2(N + 2)y3 , βλ = −ελ+ 11λ2 + 2Nλy2 − 4Ny4 , (4.22)

11Here Yij = Ny2δij and Ỹijkl = Ny4(δijδkl − δikδjl + δilδjk).
12This example does not belong to the class of examples captured by (2.23). Nevertheless, the one-loop

beta function for the defect depends only on the fermionic coupling through γφ, and thus takes a similar
form to (4.9) and (4.17).

– 23 –



J
H
E
P
0
6
(
2
0
2
3
)
1
8
6

from which one finds the non-trivial fixed point

y2 = 1
N + 2ε , λ =

√
SN −N + 2
22(N + 2) ε , (4.23)

where SN = N2 +172N +4. At the fixed point, the scaling dimension of the scalar fields is

∆φi = 1− 1
N + 2ε < 1 , (4.24)

so that we can add a relevant defect deformation:

ScH → S′cH = ScH + hi

∫
dτ φi(τ,0) . (4.25)

To leading order we find the beta function for the defect coupling to be

βi = −1
2hi(ε− λh

2 −Ny2) . (4.26)

Besides the trivial hi = 0 solution, at the chiral Heisenberg point there is the additional
solution

h2 = 44√
SN −N + 2

. (4.27)

Much as with the GNY and NJLY models, analysing the stability matrix at this point shows
that again we have one irrelevant operator O = hiφi with dimension ∆O = 1 + 2

N+2ε, and
two marginal operators O1 = h1φ2− h2φ1 and O2 = h1φ3− h3φ1. The presence of the two
marginal operators is related to the breaking of the bulk SO(3) symmetry to SO(2) on the
defect. The associated quotient is SO(3)/SO(2), which is isomorphic to the two-sphere S2.

5 Conclusion

Beginning with a general action for both a scalar and a scalar-fermion system, we have
found the beta function for a scalar line defect coupling to next-to-leading order in the bulk
parameters. Using this general form, we have explored defects in a number of different
scalar and scalar-fermion theories. Importantly, we note that, unlike in the bulk scalar
system, the uniqueness of the stable defect fixed point is not guaranteed. However, we have
only found one example, the hypertetrahedral model, where uniqueness is not observed,
perhaps indicating that multiple stable fixed points requires very specific interactions. As
stability can be seen to depend on the size of the defect coupling, h2, this is likely due to
the symmetry of the other systems we have considered greatly restricting the number and
form of defect fixed points.

One could quite simply continue with this programme and examine defects in further
scalar or scalar-fermion theories. For example, one could consider a defect in a scalar bulk
theory with O(m)×O(n) or U(m)× U(n) symmetry (see e.g. [12, 26]), however our brief
preliminary examination of these theories do not indicate either a nice analytic form for
the defect fixed point, or any interesting behaviour such as multiple stable fixed points. A
more general brute-force numerical search, in the vein of [14], may be able to reveal more
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unusual bulk theories which can be associated with multiple stable defect fixed points. One
can also pursue studies of our theories with numerical bootstrap methods, as was done for
the O(2) line defect in [27], although in cases with discrete symmetries in the bulk there are
no tilt operators. Computations of higher-point functions and analytic bootstrap studies
could also be performed along the lines of [28–30].

The patterns of symmetry breaking may be understood by inspection of the defect beta
functions, at least in simple cases. It is obvious that for the bulk O(N) model the defect
CFT will have O(N−1) symmetry, but other cases appear to be more complicated. For ex-
ample, in the cubic case one can find dCFTs where the bulk Z2

3oS3 symmetry is broken to
D4,Z2

2 or S3, see figure 3, presumably due to the fact that the breaking is due to a deforma-
tion proportional to φi, which transforms in the defining representation of the bulk global
symmetry. It would be beneficial to develop general diagnostics for the patterns of symme-
try breaking that may be obtained with line defect deformations of CFTs in the ε expansion.

As far as applications go, it is well-known that the cubic and Heisenberg models in three
dimensions are very hard to distinguish experimentally in d = 3 due to the fact that their
most easily accessible critical exponents are nearly identical. As we have seen in this work,
the presence of a pinning field in these cases will have very different consequences: the O(3)
symmetry of the Heisenberg model will be broken to O(2), while the Z2

3 oS3 symmetry of
the cubic model will be broken to D4 in the corresponding IR dCFTs. Potential experimen-
tal consequences of this may be of relevance in determining the universality class of systems
like cubic magnets at criticality without relying on measurements of critical exponents.

The one-point function of the order parameter in the presence of the defect has coef-
ficients

a2
φ = 11

4 + 1
4(11 log 2− 1)ε (Heisenberg) , a2

φ = 27
8 + 1

8

(
27 log 2− 179

18

)
ε (cubic)

(5.1)
at next-to-leading order in the corresponding IR stable dCFTs.13 These evaluate to ap-
proximately 4.406 for Heisenberg and 4.471 for cubic if we use ε = 1. As we observe,
the order-ε correction reduces the difference in these coefficients obtained from the leading
term by an order of magnitude. Higher order corrections can be computed and a more
trustworthy estimate of a2

φ can then be made in the ε → 1 limit in these theories. A
sufficiently different one-point function coefficient between the Heisenberg and cubic cases
could be useful in distinguishing these universality classes in experiments.
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A Contributions to defect coupling beta function from fermions in the
bulk

In this appendix, we exhibit the derivation of the defect counterterms leading to eq. (2.26).
With the inclusion of fermions, our bulk action takes the form

S =
∫
ddx

(1
2∂

µφi∂µφi + iψ̄aσ̄
µ∂µψa + 1

4!λijklφiφjφkφl +
(1

2 yiabφiψaψb + h.c.
))

, (A.1)

so that the addition of the defect brings our action to

S′ = S + hi

∫
dτ φi(τ,0) . (A.2)

In addition to eq. (2.2), the presence of fermions gives us the additional rules

x1, α̇ x2, α =
(d− 2)Γ(1

2d− 1)
4πd/2

x µ
12 σ̄

α̇α
µ

(x 2
12 )d/2

,

x1, α x2, α̇ =
(d− 2)Γ(1

2d− 1)
4πd/2

x µ
12 σµαα̇

(x 2
12 )d/2

,

a b

i

x = −µε/2yiab
∫
ddx .

(A.3)

In order to solve the integrals that arise from the diagrams in figure 2, we will make
repeated use of the integrals

∫
ddx3

1
(x 2

13 )∆1/2(x 2
23 )∆2/2

= πd/2

(x 2
12 )

∆1+∆2−d
2

Γ
(∆1+∆2−d

2
)
Γ
(d−∆1

2
)
Γ
(d−∆2

2
)

Γ
(∆1

2
)
Γ
(∆2

2
)
Γ
(2d−∆1−∆2

2
) ,

∫
dτ ′

1
(x2 + (τ − τ ′)2)∆ =

√
π

|x|1−2∆
Γ(∆− 1

2)
Γ(∆) .

(A.4)

To begin, we notice that, following section 2.3, there is no need to perform any integration
for the diagrams

and we can instead immediately write down the defect counterterms based on the bulk
field renormalization:

f
(1)
1,i ⊃

1
16π2

1
2Yijhj−

1
(16π2)2

(1
4 Ỹijkjhk−

3
8 Ỹijjkhk

)
, f

(2)
1,i ⊃

1
(16π2)2

(
2Ỹijkjhk+Ỹijjkhk

)
.

(A.5)
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Next, we must require

+ + = finite in the limit ε→ 0 , (A.6)

where now the bulk vertex counterterm is given by [32]

i j

kl

= − 1
16π2

4
ε

(Ỹijkl + Ỹikjl + Ỹijlk) . (A.7)

To calculate the poles of the first diagram in (A.6) we follow [8, appendix B] and work in
momentum space rather than coordinate space. The fermionic loop divides the integral
into three different terms. It is important to note that while δ of [8] is not connected to the
dimension d, we must take it to be equal to −ε. Thus, while they may safely drop terms
linear in δ from the integrals, in our case such terms may interact with potential O(ε−2)
terms to affect the first order pole. The first integral is given by (B.6) in [8], where it is
evaluated in (B.9). Happily, this is already only O(ε−1), so that we can simply borrow
their result, which in our case gives a contribution

− 1
256π4

π2

18εỸijklhjhkhl (A.8)

to the counterterm. The other two terms we must compute explicitly. They are in fact
both equal and the relevant integral to compute is

1
2µ

3εỸijklhjhkhl

∫
ddk

(2π)d
dd−1k1
(2π)d−1

dd−1k2
(2π)d−1

1
k2

1k2
2(k1 + k2)2(k − k1)2(k + k2)2 = (A.9)

= 1
256π4

1
3

( 1
ε2 −

1
2ε

(
2 + 3γ − 3 log

(16πµ2

m2

))
+ O(ε0)

)
Ỹijklhjhkhl ,

where here k0
1 = k0

2 = 0 and m is a mass scale introduced to regulate an IR divergence.
The IR divergence in these integrals is a consequence of working in momentum rather than
position space. Them-dependence cancels with a corresponding term needed to regulate an
identical IR divergence in the momentum space expression for the bulk counterterm graph
(middle diagram in (A.6)). After a short calculation, one then finds the full counterterm

f
(1)
3,i ⊃

1
(16π2)2

1
3

(
1− 1

6π
2
)
Ỹijklhjhkhl , f

(2)
3,i ⊃ −

1
(16π2)2

1
3 Ỹijklhjhkhl . (A.10)

Note that 1
6π

2 is equal to ζ2 or Li2(1). The 1/ε2 term agrees with the ’t Hooft relations [33],
whose general form is here obtained from (2.9) at order 1/εn for n > 1:

−
(1

2

(
1−hj

∂

∂hj
−yjab

∂

∂yjab
−y∗jab

∂

∂y∗jab

)
−λjklm

∂

∂λjklm

)∑
p

f
(n+1)
p,i (A.11)

=
(
β̂j

∂

∂hj
+ β̂jab

∂

∂yjab
+ β̂∗jab

∂

∂y∗jab
+ β̂jklm

∂

∂λjklm

)∑
p

f
(n)
p,i ,
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where β̂ are the standard quantum corrections to the beta functions; see e.g. [15, 20, 21,
32, 34]. One then sees that for this diagram only the Ỹijkl term from the quartic coupling
beta function will contribute on the right-hand side of the ’t Hooft relations.

Finally, we must demand

+ + = finite in the limit ε→ 0 , (A.12)

where the middle graph in the left-hand side includes a bulk propagator correction to
the O(λ) diagram. Note that only the diagrams where the correction lies on an internal
leg will contribute to the beta function, for placing it on the external leg would only
lead to non-overlapping divergences that would be totally cancelled by already determined
counterterms. The counterterm we use for the propagator correction is given from (2.24):

i j = − 1
16π2

1
ε
Yij . (A.13)

One then finds that (A.12) fixes

f
(1)
3,i ⊃ −

1
(16π2)2

1
12λijklYlmhjhkhm , f

(2)
3,i ⊃

1
(16π2)2

1
12λijklYlmhjhkhm . (A.14)

Combining these defect counterterms, one finds the beta function given in eq. (2.26) in the
text with the use of the extension of eq. (2.11) to include Yukawa couplings, namely

β̂i = −
(1

2

(
1− hj

∂

∂hj
− yjab

∂

∂yjab
− y∗jab

∂

∂y∗jab

)
− λjklm

∂

∂λjklm

)∑
p

f
(1)
p,i , (A.15)

and after rescaling y → 4πy, λ→ 16π2λ.
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