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1 Introduction and summary of results

Recent years have witnessed renewed efforts in the study of two-body systems undergoing
classical gravitational collisions, motivated by the ultimate objective of providing increas-
ingly accurate waveform templates for gravitational wave detection [4, 5]. While at first
sight counterintuitive, scattering-amplitude methods borrowed from collider physics [6–12]
have proven to be powerful tools for describing such systems and providing state-of-the-
art predictions in the Post-Minkowskian (PM) regime, when the two colliding objects
are sufficiently far apart and interact weakly [13–18]. Interactions between astrophysical
black holes or neutron stars involved in such collisions are indeed classical, since their
typical quantum wavelength is much smaller than the length scale associated to the grav-
itational curvature they induce, a statement that for black holes of mass M translates
to GM2/~ � 1 [16, 19, 20]. This inequality, which is of course amply satisfied by such
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objects, signals, however, a breakdown of conventional perturbation theory, since the effec-
tive coupling to gravity is not small. Therefore scattering amplitudes, which are organized
as a weak-coupling G-expansion, must actually be supplemented with a nonperturbative
principle in order to correctly capture the classical limit.

One such guiding principle, which is also familiar from the non-relativistic WKB ap-
proximation, is that in the classical limit the S-matrix should be dominated by the expo-
nential e2iδ of a large phase 2δ, which plays the role of a large action in units of ~. For the
elastic 2→ 2 amplitude this resummation is known as the eikonal exponentiation and the
eikonal phase, or the closely related radial action, has been employed to extract from the
amplitude the deflection angle(s) for two-body collisions up to 4PM order [17–19, 21–33].
The nonperturbative nature of the problem manifests itself at each loop order via “super-
classical” or “iteration” terms, contributions that scale with higher powers of the large ratio
GM2/~, or, for short, of ~−1. The eikonal exponentiation dictates how such spurious terms
should be subtracted, by matching with the power series expansion of the exponential, and
fixes all ambiguities associated to possible remainders, providing a direct connection to the
impulse and to the deflection angle via a saddle point approximation [27, 34–39].

However, by focusing on the elastic 2→ 2 amplitude, the conventional eikonal frame-
work fails to capture possible subtractions associated to inelastic channels. For instance the
infrared (IR) divergent imaginary part in the 3PM eikonal signals the fact that at O(G3) an
inelastic 3-particle channel involving the two massive states and a graviton opens up, and
the standard eikonal exponentiation does not capture it. This problem has been studied
and solved in [1–3, 33], the basic idea being that, in a more comprehensive framework, the
eikonal should be promoted to the exponential of i times a suitable Hermitian operator that
is able to appropriately combine all needed channels. The approach of ref. [1] is to apply
this principle to the full S-matrix, writing S = eiN with N † = N and building N -matrix
elements out of conventional scattering amplitudes, which are of course T -matrix elements
with S = 1 + iT .

A complementary approach is provided by the formalism first introduced by Kosower,
Maybee and O’Connell (KMOC) [40] and later developed in refs. [2, 41–46]. This frame-
work is based on the principle that, after identifying a well-defined classical observable
O associated to the collision, its expectation value in the final state dictated by the S-
matrix, 〈in|S†OS|in〉 will be free of superclassical terms and thus possesses a well-defined
classical limit. The state |in〉 models the two incoming massive particles with given im-
pact parameter(s) via an appropriate superposition of plane-wave states built with suit-
able wave-packets, whose details become immaterial after the cancellation of superclassical
terms.

In this paper, we explore further the exponentiation in the classical limit and the
connection between amplitudes and classical observables. We focus on the 2→ 3 amplitude
for the scattering of two minimally-coupled massive scalars plus the emission of a single
graviton in General Relativity, whose loop expansion reads Aµν = Aµν0 + Aµν1 + · · · , or,
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pictorially,

= + + · · · (1.1)

and discuss the calculation of its 1-loop part, Aµν1 , starting from the integrand provided
in ref. [47]. We focus on the non-analytic terms in the near-forward limit, whereby the
transferred momentum and the emitted graviton’s momentum are simultaneously taken to
be small, O(~), in comparison with the particles’ masses, O(~0). To this end we apply
the method of regions and restrict our attention to the soft region, in which the loop
momentum assigned to the exchanged gravitons is also small, O(~). We employ dimensional
regularization, letting ε = 4−D

2 , and express the result as a Laurent expansion around ε = 0.
The calculation of Aµν1 in the soft region constitutes one of the main new results of this

work, and represents a first step in generalizing the studies of graviton emissions during
collisions of ultrarelativistic or massless objects [48–50] to the case of massive objects with
generic velocities. The amplitude Aµν1 , as expected, involves both superclassical, O(~−2),
and classical, O(~−1), contributions, for each of which we calculate both infrared (IR)
divergent and finite terms. For the IR divergent pieces, we find complete agreement with
the well-known exponential pattern [51] according to which IR divergences in a given
one-loop amplitude are equal to a one-loop-exact divergent factor W times the tree-level
amplitude with the same external states [27, 52].

In the Weinberg limit, in which the emitted graviton’s frequency becomes very small,
kµ ∼ O(λ) with λ → 0, the one-loop amplitude Aµν1 must also exhibit O(λ−1) terms
whose form is completely fixed by the leading soft graviton theorem [53] as the factor
Fµν =

√
8πG

∑
n p

µ
np

ν
n/(pn · k) times the 2 → 2 one-loop amplitude without graviton

emissions. This 1/λ pole is a frequency-space manifestation of the memory effect [54,
55]. Comparing with the results available from the literature [14, 23, 56], we find perfect
agreeement with this prediction, reproducing in particular the terms arising from the 2PM
deflection encoded in one-loop 2 → 2 “triangle” contributions, i.e. from the sub-leading
eikonal phase 2δ1. Moreover, exploiting the conventional exponentiation of the 2 → 2
amplitude, this factorization allows us to check the inelastic exponentiation of refs. [2, 3]
to leading order in the soft limit. Throughout the paper, we focus on emitted gravitons
with positive frequencies, so that we do not include in our analysis terms with support
localized at ω = 0 in frequency space, which are associated to static effects in time domain
(see e.g. [57, 58] for their concrete appearance in the tree-level expressions). The inclusion
of such terms has been discussed in [59, 60] and can be typically performed by means
an appropriate dressing of the initial and final states with a modified Weinberg factor√

8πG
∑
n p

µ
np

ν
n/(pn ·k − i0).

After constructing the appropriate subtractions dictated by the N -matrix formal-
ism [1], we calculate the 2 → 3, N -matrix element Bµν1 from the amplitude Aµν1 . In this
way we obtain a purely classical object, Bµν1 , which is also real and free of IR divergences.
Indeed, by comparing the operator power series N = −i log(1+iT ) = T− i

2T
2 +· · · and the
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S-channel O(~−2)

C-channel O(~−1)

Table 1. The s, s′, s1, s2 channels and their scaling in the classical limit.

unitarity constraint i(T †−T ) = T †T , it is easy to see that, at one loop, the operator expo-
nentiation of [1] boils down to simply dropping the imaginary parts of the amplitude, i.e. to
subtracting its unitarity cuts, 2 ImAµν1 =

∑
(cuts). For the process under considerations,

there are four distinct channels, which we depict in table 1.
Two of them, often referred to as s and s′, involve cutting an intermediate state with

two massive particles, and we shall call them collectively “S-channel”. We find that the
subtraction of the S-channel is actually enough to get rid of all superclassical terms. This
is in accordance with refs. [2, 3], since this subtraction in momentum space is equivalent in
b-space to the subtraction of 2iδ0 Ãµν0 . Indeed, since this cut contributes schematically via
+ i

2(S-channel) to the amplitude and each of the two diagrams in the first line of table 1
contributes as 2δ0 Ãµν0 in b-space, it is crucial to consider both diagrams in order to get the
right combinatoric factor in front.

The remaining two cuts in table 1, s1 and s2, instead involve an intermediate state
with a massive particle and a graviton, in which the latter re-scatters against the massive
line in the gravitational analog of a Compton process. For this reason, we may call them
collectively “C-channel”. Albeit classical as far as the ~ scaling is concerned, the C-channel
involves an infrared divergence and its subtraction is crucial in order to make the resulting
Bµν1 (real and) finite as ε→ 0.

The amplitude Aµν1 , and the N -matrix element Bµν1 , encode the dynamical informa-
tion needed in order to evaluate the O(G3) corrections to asymptotic value of the metric
fluctuation far away from the collision, which provide the next order in the PM expansion
compared to the results of refs. [57, 58, 61–64]. For this reason we investigate the construc-
tion of the associated KMOC kernel, i.e. the object whose Fourier transform from q-space to
b-space provides the waveform in frequency domain. We find that this kernel is not simply
given by iBµν1 , as perhaps expected. Rather, it equals iBµν1 minus 1

2 times the IR divergent
C-channel cuts. By its very nature, the associated IR pole in 1/ε can be exponentiated
to a q-independent phase, amounting to a (divergent) shift of the origin of the observer’s
retarded time, at the price of introducing a logarithm involving an unspecified scale in the
finite part. Neither the phase nor this logarithm appear in the energy-momentum spectra,
and could as such be considered “harmless”. The appearance of ambiguous logarithms in
the waveform, as a result of the long-range nature of the gravitational force, is a known is-
sue [65, 66] and is associated to an ambiguity in the definition of the asymptotic detector’s
retarded time induced by so-called tail or rescattering effects [67–70]. We leave further
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investigations of this issue for future work, together with the calculation of the (b-space)
waveform and with a comparison with subleading log λ-corrected soft theorems [71–74],
which are also intimately related with long-range corrections to the asyptotic interactions.

The paper is organized as follows. In section 2 we present our conventions for deal-
ing with the external states of the scattering, illustrating a useful choice of variables and
polarizations, while more details on them are available in appendix A. In section 3 we
discuss the classical limit and how focusing on the soft region simplifies the integration.
We list the corresponding 9 independent master integrals in appendix B and in the file
master_integrals.m. Section 4 is devoted to illustrating our result for the amplitude,
which is collected in computer-readable format in the file Results_Ampl_5pt.nb, discussing
the consistency checks offered by the exponentiation of IR divergences and from factoriza-
tion in the soft limit. We also discuss the implications of unitarity and the subtraction of
superclassical iterations, explicitly proving the leading constraint coming from the inelas-
tic exponentiation. The tree-level amplitudes needed to perform such checks are presented
in appendix C. In section 5, we discuss the calculation of the gravitational field, of the
associated spectrum and of the asymptotic waveform, before presenting a summary of our
conclusions and a prospect of possible future directions in section 6.

Conventions: we employ the mostly-plus signature, ηµν = diag(−,+,+,+). All mo-
menta are regarded as formally outgoing, so that p3, p4 and k are the physical momenta of
the final states of the scattering, while p1 and p2 are minus the physical momenta of the
initial states.

Note added: while working on this project we became aware of independent progress by
refs. [75–77], whose scope partly overlaps with our analysis. These groups’ work was also
presented as a series of seminars [78–80] at the “QCD Meets Gravity 2022” conference.

2 Kinematics

We consider the scattering of two massive objects with masses m1 (depicted with a thick
blue line) and m2 (thick green line) and the emission of a graviton (thin red line),

Aµν =
k

p1

p2

p4

p3

q1

q2

(2.1)

with
p2

1 = p2
4 = −m2

1 , p2
2 = p2

3 = −m2
2 , k2 = 0 . (2.2)

– 5 –



J
H
E
P
0
6
(
2
0
2
3
)
1
2
6

The figure in (2.1) is meant to help remembering the definition of the “transferred mo-
menta” q1, q2,

q1 = p1 + p4 , q2 = p2 + p3 , q1 + q2 + k = 0 (2.3)

and does not represent an actual topology. Let us begin by discussing a useful choice of
variables.

2.1 Physical variables

We let
pµ1 = −m̄1u

µ
1 + qµ1 /2 , pµ4 = m̄1u

µ
1 + qµ1 /2

pµ2 = −m̄2u
µ
2 + qµ2 /2 , pµ3 = m̄2u

µ
2 + qµ2 /2

(2.4)

with
u2

1 = −1 = u2
2 , y = −u1 · u2 ≥ 1. (2.5)

In this way,
u1 · q1 = 0 , u2 · q2 = 0 , (2.6)

and
m̄2

1 = m2
1 + q2

1
4 , m̄2

2 = m2
2 + q2

2
4 . (2.7)

The momentum transfers qµ1 and qµ2 are not independent because of momentum conserva-
tion (2.3) and of the mass-shell condition k2 = 0, which implies

q1 · q2 = −1
2(q2

1 + q2
2) . (2.8)

Five independent invariant Lorentz products can be taken as follows:

y = −u1 · u2 , ω1 = u1 · q2 , ω2 = u2 · q1 , q2
1 , q2

2 . (2.9)

The variable y is the relative Lorentz factor of two observers with four-velocities uµ1 ,
uµ2 . Letting v̄ denote the velocity of the former as seen from the rest frame of the latter
(or vice-versa),

y = 1√
1− v̄2

. (2.10)

Using (2.3), we see that ω1 and ω2 are the frequency of the graviton measured by these
two observers,

ω1 = −u1 · k ≥ 0 , ω2 = −u2 · k ≥ 0 . (2.11)

In order to simplify square roots that frequently appear in the calculations, it is con-
venient to define the following dimensionless variables

x = y −
√
y2 − 1 , w1 =

ω1 +
√
ω2

1 + q2
2

q2
, w2 =

ω2 +
√
ω2

2 + q2
1

q1
, (2.12)

with the inverse relations given by

y = 1
2

(
x+ 1

x

)
, ω1 = q2

2

(
w1 −

1
w1

)
, ω2 = q1

2

(
w2 −

1
w2

)
(2.13)
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so that they obey the inequalities

0 < x ≤ 1 , w1 ≥ 1 , w2 ≥ 1 . (2.14)

The limit x→ 0 corresponds to the high-energy (ultrarelativistic) regime and x→ 1 to the
low-energy one.

2.2 Polarization tensor

It is convenient to contract the amplitude with an appropriate polarization tensor, which
we can build as follows. We start from a vector

εµ = c1u
µ
1 + c2u

µ
2 + d1q

µ
1 + d2q

µ
2 (2.15)

with generic coefficients c1, c2, d1, d2. We solve the transversality condition,

kµεµ = −(q1 + q2)µεµ = 0 , (2.16)

by letting
d1 = d+ − d− , d2 = d+ + d− , d− = c1ω1 + c2ω2

q2
1 − q2

2
. (2.17)

We then define the polarization tensor

εµν = εµεν . (2.18)

This is transverse, thanks to (2.16). It can be also made traceless and related to more
standard choices of graviton polarizations as detailed in appendix A. We introduce the
symbol

A1 = εµAµν1 εν (2.19)

to denote the contracted amplitude. Defining

ε̂µ = εµ − d+(q1 + q2)µ = εµ + d+k
µ , (2.20)

gauge invariance requires that we can freely replace εµ with ε̂µ

A1 = ε̂µAµν1 ε̂ν . (2.21)

The new polarization vector (2.20) is independent of d+, which thus constitutes a free
parameter that ought to drop out from the final expression. This serves as a very useful
cross-check of the calculations.

3 Classical limit and integration

Let us spell out the decomposition of our amplitude in the classical or near-forward limit.
In this regime the momentum transfers q1, q2 are taken to be simultaneously small with
respect to the masses of the incoming particles, or, equivalently, the masses are taken to
be large with respect to the exchanged momenta. We can therefore use a common scaling
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parameter as a bookkeeping device for the associated power counting. We shall use ~ for
this bookkeeping purpose and define the scaling by

q1,2 ∼ O(~) , m̄1,2 ∼ u1,2 ∼ O(~0) , ε ∼ O(~0) , ~→ 0 . (3.1)

We emphasize again that (3.1) only serves to keep track of powers of the transferred
momenta and does not refer to the actual dependence of the amplitude on the Planck
constant after restoring standard units [40]. We shall also scale the integrated momentum
` associated to exchanged gravitons in the same way as the exchanged momenta q1,2,

` ∼ O(~) . (3.2)

This enforces the expansion for the loop integrals in the soft region, which is the appropriate
one to capture all the non-analytic dependence on q1, q2 in the amplitude. From eq. (3.1),
it also follows that

k ∼ O(~) , c1,2 ∼ O(~0) , d1,2 ∼ O(~−1) , (3.3)

where c1,2 and d1,2 are the decomposition coefficients in (2.15).
We follow the numbering of the 24 topologies, Gj with j = 1, . . . , 24, associated to the

integrand numerators given in ref. [47], which are depicted in table 2 and can be grouped
into five families as in table 3. As we shall discuss in the subsection 3.1, all integrals
belonging to the P , P ′, M and M ′ families can be mapped to a collection of linearized
pentagon integrals. The 5 integrals of the quantum family are manifestly associated to
intermediate processes, like creation of black-hole-/anti-black-hole pairs, which ought be
disregarded in the classical limit, and indeed the associated integrals vanish in the soft
region. In this way, the 16 master integrals in table 4 below suffice to decompose the
integrand via Integration By Parts and to evaluate the resulting integrals relevant for our
purposes.

Each of the 16 numerators belonging the P , P ′, M and M ′ families should be mul-
tiplied by the appropriate propagators dictated by its diagram, and summed over the 8
independent permutations

P8 = {σ1, σ2, σ3, σ4, σ2σ3, σ3σ4, σ2σ4, σ2σ3σ4} (3.4)

generated by the following ones,

σ1: The trivial transformation (identity element).

σ2: The permutation interchanging the endpoints of the blue line in eq. (2.1), sending
uµ1 7→ −u

µ
1 and correspondingly1

y 7→ −y , ω1 → −ω1 ; x 7→ −1
x
, w1 7→

1
w1

. (3.5)
1In principle also x 7→ −x corresponds to changing the sign of y, but the transformation in (3.5) is the

one that leaves
√

y2 − 1 = 1
2 (x + 1

x
) invariant. For the same reason, one discards w1 7→ −w1.

– 8 –
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G1, P ′, s1 = 1
2 G2, P , s2 = 1

2 G3, P , s3 = 1 G4, M ′, s4 = 1
4

G5, P ′, s5 = 1
4 G6, M , s6 = 1

2 G7, P , s7 = 1
2 G8, M , s8 = 1

2

G9, P , s9 = 1
2 G10, P , s10 = 1

2 G11, M , s11 = 1
2 G12, M , s12 = 1

2

G13, P , s13 = 1
4 G14, M , s14 = 1

2 G15, P , s15 = 1
2 G16, P , s16 = 1

8

· · ·

· · ·
G20, P , s20 = 1

4 ×
1
2 G23, P , s23 = 1

2 ×
1
2 G24, P , s24 = 1

2 G17,18,19,21,22

Table 2. Topologies of the 24 numerators of ref. [47]. Color code: yellow = pentagon (P ), white
= pentagon prime (P ′), red = mushroom (M), orange = mushroom prime (M ′), gray = quantum
topologies. Our conventions on the external states are summarized in eq. 2.1.

Family Topology
Pentagon (P ) 2, 3, 7, 9, 10, 13, 15, 16, 20, 23, 24

Pentagon prime (P ′) 1, 5
Mushroom (M) 6, 8, 11, 12, 14

Mushroom prime (M ′) 4
Quantum 17, 18, 19, 21, 22

Table 3. Families of topologies.

σ3: The permutation interchanging the endpoints of the green line in eq. (2.1), sending
uµ2 7→ −u

µ
2 and correspondingly

y 7→ −y , ω2 7→ −ω2 ; x 7→ −1
x
, w2 7→

1
w2

. (3.6)

σ4: Particle-interchange symmetry, which corresponds to replacing the blue line with the
green one and vicevesa, and to interchanging all particle labels 1↔ 2.

Of course, these operations should be performed while leaving εµ in eq. (2.15) invariant. For
this reason, after expanding it as in (2.15), one should compensate for the transformations
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of the basis vectors by also sending c1 7→ −c1 (resp. c2 7→ −c2) when performing σ2
(resp. σ3) and by sending c1 ↔ c2, d1 ↔ d2 when performing σ4. Moreover, each diagram
should only be summed over its nontrivial permutations. Equivalently, when summing over
the whole P8, each diagram should be supplied with the appropriate symmetry factor si
accounting for the fact that a subset of the permutations may leave it invariant. Massless
bubble diagrams G20, G23 carry an additional factor of 1/2 due to the freedom of relabeling
the loop momentum.

After evaluating the integrals in each family using the integration measure∫
`

= eγEε
∫
d4−2ε`

iπ2−ε (3.7)

and summing over the allowed permutations, the last step is to multiply by the overall
normalization factor N given by

N = e−γEεµ2ε

(4π)2−ε (32πG)5/2 = N4 µ̄
2ε , N4 = (32πG)5/2

(4π)2 , µ̄2 = 4πe−γEµ2 , (3.8)

with µ an arbitrary energy scale introduced by dimensional regularization. All in all, we
may summarize this construction as follows,

A1 = N
24∑
j=1

∫
`

∑
σ∈P8

σ

[
sj
Gj
denj

]
. (3.9)

3.1 Mapping to the pentagon family

In the limit (3.1), with an appropriate choice of loop momentum routing, all integrals in
the pentagon family can be mapped to the following collection of integrals

Ii1,i2,i3,i4,i5 =
∫
`

1
(2u1 · `)i1(−2u2 · `)i2(`2)i3((`+ q2)2)i4((`− q1)2)i5 . (3.10)

In eq. (3.10) and in the following, the −i0 prescription is left implicit for brevity. The
family (3.10) is obtained from the conventional scalar pentagon with two massive lines
(the momentum flows clockwise in the loop and, as in eq. (2.1), the external momenta are
all outgoing)

k`

−p1 + `

p2 + `

`− q1

`+ q2

(3.11)

by linearizing the two massive propagators and factoring out m̄1, m̄2:

1
(`− p1)2 +m2

1
= 1
−2p1 · `+ `2

= 1
2m̄1u1 · `+ `2 − q2

1
= 1
m̄1

1
(2u1 · `)

+O(~0) , (3.12)

1
(`+ p2)2 +m2

2
= 1

2p2 · `+ `2
= 1
−2m̄2u2 · `+ `2 + q2

2
= 1
m̄2

1
(−2u2 · `)

+O(~0) . (3.13)
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I0,0,1,0,1 I0,0,1,1,0 I0,1,0,0,1 I1,0,0,1,0

I0,1,1,1,0 I1,0,1,0,1 I0,1,1,0,1 I1,0,1,1,0

I1,1,0,1,0 I1,1,0,0,1 I0,1,1,1,1 I1,0,1,1,1

I1,1,0,1,1 I1,1,1,0,1 I1,1,1,1,0 I1,1,1,1,1

Table 4. Topologies of the 16 master integrals for the pentagon family. Color code: lighter green
= non-analytic in q2, darker green = analytic in q2. The appearance of the latter type of topologies
where matter lines “touch” and which do not appear in table 2 is induced by the IBP reduction,
whose coefficients can be non-analytic in q2 and thus induce long-range effects in position space.
Such contributions would be scale-less in the 2→ 2 kinematics.

In our conventions, the sign of each propagator is fixed due to the −i0 prescription, e.g.
1

(−2u2 · `)
= 1
−2u2 · `− i0

, − 1
(2u2 · `)

= − 1
2u2 · `− i0

, (3.14)

so that
1

(−2u2 · `)
+ 1

(2u2 · `)
= 2iπδ(2u2 · `) . (3.15)

A basis of for the family of integrals (3.10), which determine all the others via Integration
By Parts (IBP), can be obtained using LiteRed [81, 82] and is given by the 16 elements
in table 4 (although 7 of them can be deduced from the remaining 9 by using σ4). Using
HyperInt [83] and dimensional shift identities [84–86], we have found the values of all such
master integrals up to transcendental weight 2. We present our results in appendix B in
the Euclidean region, and discuss their analytic continuation to the physical one in the
subsection 3.2.

It turns out that the pentagon prime, mushroom and mushroom prime families can
be also mapped to the integrals (3.10) in the limit (3.1), by suitably decomposing the
linearized propagators into partial fractions and applying symmetry transformations. Let
us discuss this step in detail focusing on a prototypical integral for each family, with
propagators raised to the first power. Generalizing this procedure to any other positive
power is straightforward. A typical integral of the pentagon prime family takes the form

` → I(P ′) =
∫
`

1
(2u1 · `)(−2u2 · `)(−2u2 · `+ 2ω2)`2(`− q1)2 (3.16)
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and decomposing the second and third propagator into partial fractions leads to

I(P ′) = 1
2ω2

∫
`

1
(2u1 · `)(−2u2 · `)`2(`− q2

1)
− 1

2ω2

∫
`

1
(2u1 · `)(−2u2 · `+ 2ω2)`2(`− q1)2 .

(3.17)
We can change integration variable in the second integral, letting `→ q1 − `, and obtain

I(P ′) = 1
2ω2

∫
`

1
(2u1 · `)(−2u2 · `)`2(`− q2

1)
− 1

2ω2

∫
`

1
(−2u1 · `)(2u2 · `)`2(`− q1)2 . (3.18)

The two integrals do not simply cancel against each other, due to (3.14), (3.15), but we
can map them to the family (3.10) by applying permutations σ2 and σ3 to the second one,

I(P ′) = 1
2ω2

I1,1,1,0,1 −
1

2ω2
σ2σ3I1,1,1,0,1 . (3.19)

For a typical integral of the mushroom family,2

`
→ I(M) =

∫
`

1
(2u2 · `)(2u2 · `− 2ω2)`2 (3.20)

we have
I(M) = − 1

2ω2

∫
`

1
(2u2 · `)`2

+ 1
2ω2

∫
`

1
(2u2 · `− 2ω2)`2 . (3.21)

Noting that the first integral on the right-hand side is scaleless, and sending `→ q1 − ` in
the second one, we find

I(M) = 1
2ω2

I0,1,0,0,1 . (3.22)

Finally, a typical mushroom prime integral takes the form

`+ p3 → I(M ′) =
∫
`

1
(2u2 · `)(2u2 · `− 2ω2)(`− q1)2(`+ q2)2 , (3.23)

and leads to the following partial fractions

I(M ′) = − 1
2ω2

∫
`

1
(2u2 · `)(`− q1)2(`+ q2)2 + 1

2ω2

∫
`

1
(2u2 · `− 2ω2)(`− q1)2(`+ q2)2 .

(3.24)
Performing the permutation σ3 in the first integral and sending ` → q1 − q2 − ` in the
second one,

I(M ′) = − 1
2ω2

σ3I0,1,0,1,1 + 1
2ω2

I0,1,0,1,1 . (3.25)

Let us comment that, since one is ultimately summing over all allowed permutations (3.10)
to build the full integrand from the 19 diagrams in table 2, it is not strictly necessary to
apply σ2σ3 as in (3.19) and σ3 as in (3.25). One can also first treat the two contributions to
each equation as separate objects, perform the IBP reduction and mapping to the master
integrals only for the appropriate permutation, and then perform all 8 permutations on
the result.

2For the diagram in the figure 1/(2u2 · `) would actually be raised to the second power.
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3.2 Euclidean variables and analytic continuation

The amplitude is the boundary value of an analytic function which develops branch cuts
when its variables are located in the physical region. For this reason it is convenient to
introduce complex variables yE , ω1E , ω2E such that the physical region corresponds to
setting

yE = −y − i0 , ω1E = −ω1 − i0 , ω2E = −ω2 − i0 , (3.26)

with y, ω1, ω2 the invariant products defined in eq. (2.9). The new variables allow for man-
ifestly real expressions of the master integrals (3.10) when they are taken in the Euclidean
region, defined by

yE ≥ 1 , ω1E ≥ 0 , ω2E ≥ 0 . (3.27)

We similarly define new rationalized variables according to

xE = yE +
√
y2
E − 1 , w1E =

√
ω2

1E + q2
2 + ω1E

q2
, w2 =

√
ω2

2E + q2
1 + ω2E

q1
, (3.28)

so that

yE = 1
2

(
xE + 1

xE

)
, ω1E = q2

2

(
w1E −

1
w1E

)
, ω2E = q1

2

(
w2E −

1
w2E

)
. (3.29)

The rationalized variables fall in the physical region when

xE = −x+ i0 , w1E = −w1 − i0 , w2E = −w2 − i0 , (3.30)

with x, w1, w2 as in eq. (2.12). The conditions (3.27) defining the Euclidean region instead
translate to the following ones in terms of the rationalized variables,

xE ≥ 1 , w1E ≥ 1 , w2E ≥ 1 . (3.31)

Mapping back to the physical variables discussed in subsection 2.1 via (3.26), (3.30),
one encounters branch singularities when the variables fall in the physical region. We have
expressed our master integrals (see appendix B) in terms of the analytic functions

log xE , log(xE − 1) , logw1E , log(w1E ± 1) , logw2E , log(w2E ± 1) , (3.32)

and
Li2

(
± 1
xE

)
, Li2

(
± 1
w1E

)
, Li2

(
± 1
w2E

)
(3.33)

so that their expressions are manifestly real in the Euclidean region (3.31). We then
perform the analytic continuation back to the physical region (3.30) by letting

log xE → log x+ iqIπ ,

logw1E → logw1 − iqOπ ,
logw2E → logw2 − iqAπ ,

(3.34)
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where we have kept all analytic continuations in principle arbitrary. We find that, consis-
tently with the i0 prescriptions in (3.30) or equivalently by demanding consistency with
the exponentiation of infrared divergences (see subsection 4.1),

qI = qO = qA = +1 . (3.35)

The sign of the i0 prescription qI for xE matches the elastic calculation in [27] where for
instance in the double box solution log xE → log x + iπ. The elementary choices made
in (3.34) then resolve all other branch ambiguities upon reducing the analytic continuation
of the dilogarithms to those of conventional logarithms via

Li2
(1
z

)
= −Li2(z)− π2

6 −
1
2(log(−z))2 , (3.36)

which holds whenever z doesn’t belong to the positive real axis.

4 Structure of the amplitude in the classical limit

Looking at the integrand obtained by combining the diagrams in table 2, we find the
following structure in the limit (3.1), (3.2) (including the scaling of the measure element
d4`),

A1 = A[−3]
1 +A[−2]

1 +A[−1]
1 +O(~0) , (4.1)

where
A[−j] ∼ O(~−j) . (4.2)

We expand each coefficient for small ε = 4−D
2 , defining

A[−j]
1 = µ̄2ε

[
A[−j,−2]

1
ε2

+ A
[−j,−1]
1
ε

+A[−j,0]
1 +O(ε)

]
. (4.3)

The first (second) index within square brackets thus refers to the ~ (resp. ε) scaling.
After inputting the values of the master integrals, we find that (for nonzero graviton

frequencies)
A[−3]

1 = O(ε) . (4.4)

This cancellation is expected because it mirrors a similar one occurring for the tree-level
amplitude A0, whose classical limit also naively goes like ~−3 (and it indeed involves terms
localized at zero frequency at that order), while its actual scaling is ~−2 in our present
conventions. Eq. (4.4) also serves a nontrivial check of the symmetry factors because it
relies on s3 = 2s1 and on s6 + s24 = s11 + s14. We also find that the coefficient of the
double pole in ε vanishes,

A[−j,−2]
1 = 0 , j = 2, 1 . (4.5)

For instance, both G2, G4 and G9 would naively diverge like 1/ε2 to order O(~−2), but
thanks to the transversality condition (2.17) such divergences cancel between G2 and G9,
and separately in G4. This serves as a cross check that s2 = s9. This cancellation is also
expected on general grounds [51] as we shall discuss more in detail shortly.
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Taking into account the vanishing of these coefficients, we find the following structure
of the amplitude in the classical limit,

A1 = µ̄2ε
{[
A[−2,−1]

1
ε

+A[−2,0]
1

]
+
[
A[−1,−1]

1
ε

+A[−1,0]
1

]
+O(ε) +O(~0)

}
. (4.6)

The functions A[−2,−1]
1 , A[−2,0]

1 , A[−1,−1]
1 , A[−1,0]

1 constitute the main results of the present
work and are all provided in the supplementary files in attachment, where for convenience
we collect their expressions after dividing by N4 defined in (3.8). We have checked that our
expressions for the classical terms, A[−1,−1]

1 and A[−1,0]
1 , agree with the results of ref. [77] on

numerical points, up to an overall sign. In turn, this also ensures agreement with the results
of ref. [75]. The remainder of this section is devoted to the discussion and illustration of
eq. (4.6).

We find that the coefficients of the ε−1 poles, A[−2,−1]
1 , A[−1,−1]

1 , are in complete agree-
ment with the prediction obtained from the exponentiation of infrared divergences, which
fixes them completely in terms of the tree-level five-point amplitude A0 times a universal
factor [51]. The combinations A[−2,−1]

1 /N4 and A[−1,−1]
1 /N4 have uniform transcendental

weight 1, i.e. they are rational functions of the invariants x, w1, w2 in (2.12), q1 and q2
times iπ. For all terms displayed in (4.6), we also find agreement with Weinberg’s soft the-
orem [53], which dictates that, as the frequency of the graviton tends to zero, their most
singular term must reduce to a universal factor times the one-loop four-point amplitude
A(4)

1 . Moreover, the “superclassical” terms A[−2,−1]
1 , A[−2,0]

1 , as well as A[−1,−1]
1 and the

terms proportional to the imaginary unit in A[−1,0]
1 , when written in terms of c1 and c2,

arise from the cuts of the amplitude exactly as predicted by unitarity.
The terms that do not multiply the imaginary unit in A[−1,0]

1 /N4 have uniform tran-
scendental weight 2. When expressed in terms of

log x , log(1± x) , logw1,2 , log(w1,2 ± 1) , log(q1,2) (4.7)

and
Li2(x) , Li2

(
1
w1,2

)
, (4.8)

all dependence on the logarithms and dilogarithms drops out in such terms, so that they
reduce to rational functions of the invariants x, w1, w2 in (2.12), q1 and q2 times π2. After
this simplification, the structure of this piece is thus analogous to that of the O(~−1) in
the elastic 2→ 2 amplitude at one loop (eq. (4.34) below).

The terms that multiply the imaginary unit in A[−1,0]
1 /N4 (and similarly the combina-

tion A[−2,0]
1 /N4), instead, can have transcendental weight either 2, i.e. reduce to rational

functions times the logarithms (4.7) times iπ, or 1, i.e. reduce to rational functions times
iπ. Schematically,

A[−1,0]
1
N4

= π2Q(x,w1, w2, q1, q2) + iπ
[∑

j

(log xj)Rj(x,w1, w2, q1, q2) + S(x,w1, w2, q1, q2)
]

(4.9)
where Q, Rj and S are real, rational functions of the invariants and log xj are the loga-
rithms (4.7).
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4.1 Exponentiation of infrared divergences

Infrared divergences in gravity amplitudes follow a simple exponential pattern first clarified
by Weinberg [51] (see also [29, 87]),

Aα→β = eWα→β [Aα→β ]IR finite (4.10)

with Wα→β an infrared-divergent, one-loop-exact exponent whose expression in terms of
the states α, β takes a universal form. Accordingly, the infrared divergences of any one-loop
five-point amplitude are equal to

W = G

2πε

5∑
n,m=1

wnm (4.11)

times the tree-level five-point amplitude with the same external states. When the 5 particles
are massive, letting (ηn is +1 if n is outgoing and −1 if n is incoming)

ζnm = −ηnηmpn · pm > 0 , (4.12)

we have

wnm =
ζ2
nm − 1

2 m
2
nm

2
m√

ζ2
nm −m2

nm
2
m

[
ηnηm log ζnm +

√
ζ2
nm −m2

nm
2
m

ζnm −
√
ζ2
nm −m2

nm
2
m

− iπηnm

]
(4.13)

where ηnm = +1 provided n 6= m and n and m are both outgoing or both incoming, and
vanishes otherwise. Moreover wnn = m2

n/2. When m5 → 0 and p5 → k, the function W is
smooth and reduces to

W = G

2πε

4∑
n,m=1

wnm + G

2πε

4∑
n=1

2(−pn · k)
[
log 4(pn · k)2

Λ2m2
n

− iπηn5

]
(4.14)

with Λ an arbitrary energy scale. One can explicitly check this by taking the limit in (4.12)
and by using momentum conservation

p1 + p2 + p4 + p4 = −k (4.15)

to show that a potentially dangerous logm5 cancels out, leaving behind an arbitrary ref-
erence scale Λ in the logarithm in (4.14). All in all, this dictates the IR divergences of our
amplitude,

A1 =WA0 +O(ε0) , (4.16)

with A0 = εµAµν0 εν the tree-level five-point amplitude (C.2). In particular, (4.16) predicts
that no double pole 1/ε2 should occur and eq. (4.5) is consistent with this prediction.

We checked that, expanding to leading and subleading order in ~,

W =W [0] +W [1] +O(~2) , (4.17)

where

W [0] = −
i2Gm̄1m̄2

(
y2 − 1

2

)
ε
√
y2 − 1

, W [1] = − iG
ε

(m̄1ω1 + m̄2ω2) . (4.18)
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Therefore, to this order in ~, the Weinberg exponent is purely imaginary. W [0] is a divergent
phase arising from soft graviton exchanges between lines 1− 2 and 3− 4 while W [1] arises
from those between the outgoing graviton line and lines 3, 4. The other ingredient is the
tree-level five-point amplitude, which in the classical limit is given by A0 = A[−2]

0 +O(~0)
as in (C.13) [52, 57, 59, 88, 89]. Note the lack of O(~−1) corrections to this leading O(~−2)
result, as discussed below Eq (C.13). Consistently with these general facts, we checked
that our result (4.6) obeys

1
ε
A[−2,−1]

1 =W [0]A[−2]
0 ,

1
ε
A[−1,−1]

1 =W [1]A[−2]
0 . (4.19)

4.2 Factorization in the soft limit

In the limit
k ∼ O(λ) , λ→ 0 , (4.20)

the one-loop five-point amplitude Aµν1 must factorize according to the Weinberg soft gravi-
ton theorem [53] as

Fµν =
√

8πG
4∑

n=1

pµnp
ν
n

pn · k
∼ O(λ−1) (4.21)

times the one-loop four-point amplitude A(4)
1 ,

A1 = F A(4)
1 +O(λ0) , (4.22)

where F = εµFµνεν in analogy with (2.19). The limit (4.20) is best taken after performing
the decomposition in eq. (A.3) and following, introducing also the exchanged momentum

q = 1
2(q1 − q2) , (4.23)

whose decomposition reads

qµ = −ω1
2 ǔµ1 + ω2

2 ǔµ2 + qµ⊥ . (4.24)

The limit (4.20) should then be understood for fixed u1, u2 and qµ⊥, so that

u1,2 ∼ O(λ0) , q⊥ ∼ O(λ0) , y ∼ O(λ0) , ω1,2 ∼ O(λ) (4.25)

and to leading order

q2
1,2 = q2 +O(λ) = q2

⊥ +O(λ) , q2
2 − q2

1 = 2k · q +O(λ2) = 2k⊥ · q⊥ +O(λ2) . (4.26)

To leading order in this limit, the five-point kinematics (2.4) reduces to the four-point one
introduced in ref. [90],

pµ1 = −m̄1u
µ
1 + qµ⊥/2 , pµ4 = m̄1u

µ
1 + qµ⊥/2 (4.27)

pµ2 = −m̄2u
µ
2 − q

µ
⊥/2 , pµ3 = m̄2u

µ
2 − q

µ
⊥/2 (4.28)
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with
u1,2 · q⊥ = 0 , m̄2

1 = m2
1 + q2

⊥
4 , m̄2

2 = m2
2 + q2

⊥
4 . (4.29)

Both sides of the factorization (4.22) should be expanded in the near-forward limit (3.1)
in order to be applied to our results. One finds the following near-forward limit for the
Weinberg factor [19],

F = F [0] +O(~2) , F [0] = Oαqα (4.30)

with

Oα =
√

8πG (ω1(u2 · ε)− ω2(u1 · ε))(2ω1ω2εα + kαω2(u1 · ε) + kαω1(u2 · ε))
ω2

1ω
2
2

. (4.31)

Note the absence of O(~1) corrections in (4.30). For the other ingredient of (4.22), the
one-loop four-point amplitude, one has instead [14, 23, 56]

A(4)
1 = A(4)[−2]

1 +A(4)[−1]
1 +O(~0) (4.32)

with the O(~−2) term A(4)[−2]
1 = 1

εA
(4)[−2,−1]
1 +A(4)[−2,0]

1 +O(ε) given by

A(4)[−2]
1 = µ̄2ε

i32πG2m̄3
1m̄

3
2

(
y2 − 1

2−2ε

)2√
y2 − 1

eγEεΓ(ε+ 1)Γ(−ε)2

(q2)1+εΓ(−2ε) (4.33)

for generic ε, while we will only need the O(~−1) term A(4)[−1]
1 = A(4)[−1,0]

1 +O(ε) to leading
order in ε,

A(4)[−1,0]
1 = 6π2G2m̄2

1m̄
2
2
(
5y2 − 1

)
(m̄1 + m̄2)

q
. (4.34)

Eq. (4.22) then translates into the following relations

A[−2]
1 = F [0]A(4)[−2]

1 +O(λ0) , A[−1]
1 = F [0]A(4)[−1]

1 +O(λ0) , (4.35)

which can be also expanded for small ε.
Of course, the soft limit of the 1/ε terms,

1
ε
A[−2,−1]

1 = F [0]A(4)[−2,−1]
1 +O(λ0) , 1

ε
A[−1,−1]

1 = O(λ0) , (4.36)

is already captured by the exponentiation of infrared divergences discussed in subsec-
tion 4.1. If one considers the soft limit of eq. (4.19) and takes into account that the
tree-level amplitude obeys the Weinberg theorem, A[−2]

0 = F [0]A(4)
0 + O(λ0), then (4.19)

becomes equivalent to (4.36), because A(4)
1 also obeys the factorization of infrared diver-

gences. For the O(~−2) term, this dictates 1
εA

(4)[−2,−1]
1 =W [0]A(4)

0 , i.e. (see e.g. eq. (3.52)
of [29])

1
ε
A(4)[−2,−1]

1 = 64G2m̄3
1m̄

3
2

εq2

(
y2 − 1

2

)2 −iπ√
y2 − 1

. (4.37)

For the O(~−1) terms in (4.36), the absence of a Weinberg pole ∼ 1/λ is also ensured
by (4.19) because W [1] carries an extra power of λ.

– 18 –



J
H
E
P
0
6
(
2
0
2
3
)
1
2
6

Constraints on the soft limit of A1 independent of the exponentiation of infrared di-
vergences instead involve the finite parts,

A[−2,0]
1 = F [0]A(4)[−2,0]

1 +O(λ0) , A[−1,0]
1 = F [0]A(4)[−1,0]

1 +O(λ0) . (4.38)

We have checked that our results are consistent with these constraints. It is instructive to
see how they translate to impact-parameter space, by letting

FT[A(4)] = Ã(4)(b) =
∫
A(4)(q) 2πδ(2m̄1u1 · q)2πδ(2m̄2u2 · q)eib·q

dDq

(2π)D , (4.39)

where the 2 → 2 amplitude (see (C.1), (C.12) for the tree level) obeys the eikonal expo-
nentiation [23, 56]

Ã(4)
0 = 2δ0 , Ã(4)

1 = i
(2δ0)2

2 + 2δ1 . (4.40)

Since we work to leading order in the soft limit, we can apply the same Fourier trans-
form (4.39) to the 2→ 3 amplitude as well, finding that (4.35) translates to

Ã[−2]
1 = 2δ0OαQ1PM

α +O(λ0) , Ã[−1]
1 = −iOαQ2PM

α +O(λ0) , (4.41)

where we have used that FT[qα( · · · )] = −i∂αb FT[ · · · ] and the relation between the impulse
and the eikonal phase up to 2PM,

Qα = ∂2δ
∂bα

, 2δ = 2δ0 + 2δ1 +O(G3) , Q = Q1PM +Q2PM +O(G3) . (4.42)

Of course the soft theorem also holds for the tree-level amplitude, and one has

A[−2]
0 = OαqαA(4)

0 +O(λ0) , Ã[−2]
0 = −iOαQ1PM

α +O(λ0) . (4.43)

Combining (4.41) and (4.43) provides a check of the leading inelastic exponentiation of the
one-loop level amplitude in b-space, to first order in the soft limit

Ã[−2]
1 = 2iδ0 Ã[−2]

0 +O(λ0) , (4.44)

whereby the “superclassical” term of the one-loop inelastic amplitude factorizes in terms
of the elastic tree-level amplitude times the inelastic one in b-space. Moreover, the rela-
tions (4.41) can be seen as a manifestation order by order in G of the non-perturbative
pattern discussed in [33, 60] according to which the soft dressing governing the soft theo-
rem/memory effect for processes with generic deflections can be obtained from the Wein-
berg factor (4.21) by replacing the perturbative momentum transfer qα with the classical
impulse Qα given by (4.42).

4.3 Imaginary parts and unitarity

The “superclassical” contributions3 Aµν[−2,−1]
1 , Aµν[−2,0]

1 are purely imaginary and, by uni-
tarity, they must correspond to appropriate intermediate states for the 2 → 3 process

3The discussion of real and imaginary parts of the amplitude should be performed by either stripping
off the polarization tensor, which has both real and imaginary parts in our case, or by keeping it while
disregarding factors of “i” arising from it.
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under consideration. We find that they are equal to the sum of two processes where one
“cuts” two intermediate massive states, which we may term “S-channel” by analogy with
the situation at four points,

µ̄2ε
[1
ε
Aµν[−2,−1]

1 +Aµν[−2,0]
1

]
= i

2 + i

2

(4.45)
The first process on the right-hand side is obtained by gluing together a tree-level 2 → 2
amplitude A(4)

0 involving four massive states (C.1) and a tree-level 2→ 3 amplitude A0 for
the inelastic process under consideration (C.2). The second process formally corresponds
to a 2→ 3 amplitude glued together with a partially disconnected 3→ 3 one, in which the
graviton line simply “passes through” the second blob, so that in practice it corresponds to
gluing together A(4)

0 and A0 in the opposite order. Equivalently, it can be obtained from
the first one by applying the permutation σ2σ3, which flips ω1, ω2 and leaves y unaltered.

We have checked eq. (4.45) in two ways. First, by leaving the signs of the analytic
continuations arbitrary as in (3.34), i.e. without imposing (3.35), one sees that the left-
hand side of (4.45) is only sensitive to qI , the sign of the analytic continuation of y, which
is the invariant associated to propagation in the S-channel. More precisely, denoting by
f(qI , qO, qA) this generalized version of the amplitude obtained by leaving the three signs
of the analytic continuations arbitrary, the left-hand side of (4.45) coincides with the S-
channel discontinuity

DiscS f = 1
8 [f(+1,+1,+1) + f(+1,+1,−1) + f(+1,−1,+1) + f(+1,−1,−1)

−f(−1,+1,+1)− f(−1,+1,−1)− f(−1,−1,+1)− f(−1,−1,−1)].
(4.46)

Second, we have explicitly constructed the integrand for the right-hand side of (4.45)
by gluing together A(4)

0 and A0 (for completeness, we provide their explicit expressions
in appendix C) in the classical limit and performed the integration over phase space via
reverse unitarity [41, 42, 91–94]. This amounts to treating the Lorentz-invariant phase space
delta functions like formal propagators, performing the IBP reduction while dropping all
integrals that do not possess the cut (4.45), and lastly substituting the master integrals
with 2 times their imaginary parts obtained by applying DiscS as defined by (4.46) (i.e. the
imaginary parts associated to their S-channel discontinuities).

The purely imaginary term Aµν[−1,−1]
1 and the imaginary part of Aµν[−1,0]

1 arise instead
due to intermediate processes whereby one cuts a massive line and a graviton line. Since
these cuts are built using the “Compton” amplitude (C.7) involving two massive states
and two gravitons, together with the tree-level 2 → 3 amplitude A0, we may term these
“C-channel” cuts,

µ̄2ε
[1
ε
Aµν[−1,−1]

1 + i ImAµν[−1,0]
1

]
= i

2 + i

2

(4.47)
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Once again these processes can be also thought of as 2→ 3 amplitudes glued with partially
disconnected 3→ 3 ones. We have checked (4.47) in the same two ways as for (4.45), both
by calculating the discontinuity of the f(qI , qO, qA) with respect to qO (and separately qA),
and by building the integrand for the cuts and evaluating it via reverse unitarity.4

Combining (4.45) with (4.47), we reconstruct the complete unitarity relation for the
one-loop amplitude,

2 Im = +

+ +

(4.48)

4.4 Removing superclassical iterations

We follow ref. [1] and consider the operator N linked to the S-matrix by

S = 1 + iT = eiN , N = −i log(1 + iT ) = T − i T
2

2 + · · · . (4.49)

As usual, we define their matrix elements by stripping a momentum-conserving delta func-
tion,

〈β|T |α〉 = (2π)Dδ(D)(Pα + Pβ)Aα→β , 〈β|N |α〉 = (2π)Dδ(D)(Pα + Pβ)Bα→β , (4.50)

where Aα→β are the conventional scattering amplitudes. From (4.49), one trivially obtains

Bµν0 = Aµν0 (4.51)

at tree level. Going to the next order and inserting a complete set of free intermediate
states to resolve the terms involving T 2, one finds

Bµν1 = Aµν1 −
i

2 − i

2

− i

2 − i

2

(4.52)

In view of the unitarity relation (4.48), all imaginary parts of Aµν1 cancel out and one is
left with the real and IR-finite result

Bµν1 = ReAµν1 = ReAµν[−1,0]
1 +O(ε) +O(~0) . (4.53)

4For this check, we find that the trace condition (A.14) plays an important role.
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In fact, the subtractions in the first line of (4.52) are enough in order to remove all O(~−2)
“superclassical” terms, while as already discussed the ones in the second line are O(~−1).
Both types of subtractions involve imaginary infrared divergences, the ones in the first line
being associated to W [0], i.e. to soft-graviton exchanges between massive lines, and the
ones in the second line being associated to W [1], i.e. soft-graviton exchanges between the
graviton and an outgoing massive line, as also suggested by the respective figures. Letting
B1 = εµBµν1 εν , as already mentioned, B1/N4 has uniform transcendental weight 2 and takes
the form of π2 multiplying a rational function of the invariants.

Let us conclude this section by commenting on the parity properties of B1 under the
transformation5

ω1,2 7→ −ω1,2 , w1,2 7→
1
w1,2

. (4.54)

We find that
B1 = B1E + B1O , (4.55)

with B1E (resp. B1O) even (odd) under (4.54). In particular, the odd piece is equal to an
x-dependent function times iπ times the coefficient of the ~−1ε−1 pole

B1O = 2x4 (x2 − 3
)

(x2 − 1)3 (iπ)A[−1,−1]
1 =

1−
y
(
y2 − 3

2

)
(y2 − 1)3/2

 (iπ)A[−1,−1]
1 . (4.56)

Time-reversal-odd terms in the finite real part thus arise from the analytic continuation
of logarithms left behind by the 1/ε in the imaginary part. This mechanism is highly
reminiscent of how radiation reaction enters the eikonal phase at two loops [19, 27, 33, 60,
95] (see also [76, 80]).

5 Gravitational field, spectrum and waveform

Following refs. [2, 40, 43], let us model the initial state of the collision by

|in〉 = |1〉 ⊗ |2〉 , (5.1)

with

|1〉 =
∫

2πδ(p2
1 +m2

1)θ(−p0
1) d

Dp1
(2π)D ϕ1(−p1) eib1·p1 | − p1〉 (5.2)

|2〉 =
∫

2πδ(p2
2 +m2

2)θ(−p0
2) d

Dp2
(2π)D ϕ2(−p2) eib2·p2 | − p2〉 (5.3)

in terms of wavepackets ϕ1,2 and impact parameters b1, b2. We can then take the expecta-
tion value of the graviton field

Hµν(x) =
∫
k

[
eik·xaµν(k) + e−ik·xa†µν(k)

]
,

∫
k

=
∫

2πδ(k2)θ(k0) dDk

(2π)D , (5.4)

5As already mentioned, also w1,2 7→ −w1,2 corresponds to changing the sign of ω1,2, but the transfor-
mation in (4.54) is the one that leaves

√
ω2

1,2 + q2
2,1 = q2,1

2

(
w1,2 + 1

w1,2

)
invariant.
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in the state obtained by applying the S matrix (4.49),

|out〉 = S|in〉 . (5.5)

We denote this expectation by (“c.c” stands for “complex conjugate”)

gµν(x)− ηµν√
32πG

= hµν(x) = 〈out|Hµν(x)|out〉 =
∫
k
eik·x〈out|aµν(k)|out〉+ (c.c.) . (5.6)

Defining the Fourier transform by the generalization of (4.39) to the 2→ 3 kinematics,

FT [fµν ] = f̃µν =
∫

dDq1
(2π)D

dDq2
(2π)D (2π)Dδ(D)(q1 + q2 + k)

× 2πδ(2m̄1u1 · q1)2πδ(2m̄2u2 · q2)eib1·q1+ib2·q2fµν
(5.7)

and introducing a shorthand notation for the wavepacket average

〈f〉 =
∫ ∏

j=1,2
2πδ(p̄2

j + m̄2
j )θ(p̄0

j )
dDp̄j
(2π)D ϕj(p̄j − 1

2qj)ϕ
∗
j (p̄j + 1

2qj)f , (5.8)

we find
hµν(x) =

∫
k

[
eik·x iFT〈Wµν〉

]
+ c.c. , Wµν = Wµν

0 +Wµν
1 (5.9)

where

Wµν
0 = Bµν0 = Aµν0 ,

Wµν
1 = Bµν1 + i

2 + i

2
(5.10)

Notably, although B0 and B1 are real and finite, the two infrared divergent C-channel cuts
have “reappeared” in the loop-level result for the KMOC kernel Wµν

1 in (5.10). This comes
about because, to this order, using S = eiN = 1 + iN − 1

2N
2 + · · · ,

〈out|aµν(k)|out〉 = i〈in|aµν(k)N |in〉− 1
2〈in|aµν(k)N2|in〉+ 〈in|Naµν(k)N |in〉+ · · · . (5.11)

Inserting a complete set of states, we see that at one loop the term 〈in|aµν(k)N2|in〉 includes
all cuts depicted in table 1, while 〈out|Naµν(k)N |out〉 only contains the second S-channel
cut. Thanks to the factor of −1

2 , this leads to a cross-cancellation of the S-channel cuts
in (5.11), which leaves behind the C-channel cuts as in (5.10).

We may rewrite Wµν
1 as follows6

Wµν
1 = Bµν1 − iµ̄

2εG

ε
(m1ω1 +m2ω2)Bµν0 + i ImAµν[−1,0]

1 +O(ε) (5.12)

6From now on, we drop the explicit wavepacket average, and neglect the difference between, say m̄1,2

and m1,2, since superclassical terms have all been subtracted out.
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where we have used that the infrared divergence is proportional to the tree-level result
by (4.19) and (4.18). By exponentiating it, we may also rewrite Wµν in the following way

Wµν = e−i
G
ε

(m1ω1+m2ω2) [Bµν0 + Bµν1 + iMµν
1 ] +O(ε) +O(G7/2) (5.13)

in terms of the infrared-finite object

Mµν
1 = G(m1ω1 +m2ω2)Bµν0 log µ̄2 + ImAµν[−1,0]

1 . (5.14)

As usual, the factorization of an infrared-divergent scale has left behind the logarithm of an
arbitrary scale, and one can verify that such log µ̄2 terms neatly combine with the leftover
log q2

1,2 terms in ImAµν[−1,0]
1 to reconstruct logarithms of dimensionless quantities.

Let us now turn to the spectral rate,

dρ̃ = |W̃ |2θ(k0) 2πδ(k2) d4k

(2π)4 , (5.15)

where omitting the µν indices stands for contraction according to

|W̃ |2 = W̃µν
(
ηµρηνσ −

1
2 ηµνηρσ

)
W̃ ρσ∗ . (5.16)

Then it is clear that, although Wµν in (5.13) has an IR-divergent phase, the spectrum is
free from infrared divergences, since this overall phase cancels out, and retaining terms up
to O(G4),

|W̃ |2 = B̃∗0B̃0 + (B̃∗0 B̃1 + B̃∗1 B̃0)− i(B̃∗0 M̃1 − M̃∗1 B̃0) +O(G5) . (5.17)

In principle this cancellation could leave behind ambiguities associated to the log µ̄2 terms
in (5.13), (5.14). To see why this is not the case, let us denote by

E(k) = G(m1ω1 +m2ω2) (5.18)

the combination appearing in the log µ̄2 terms, which is insensitive to the Fourier trans-
form (5.7). Terms of type B0E log µ̄2 in the imaginary part M1 of the waveform kernel
enter the spectral rate via

B̃∗0B̃0E(k) log µ̄2 − E(k)B̃0B̃∗0 log µ̄2 = 0 . (5.19)

In this way, we see that the log µ̄2 terms in (5.13) do not contribute to the spectral rate
and a fortiori to the energy emission spectrum.

One then considers a detector with four-velocity tµ placed at a spatial distance r from
the scattering event in the angular direction characterized by the null vector n̂µ, so that

xµ = u tµ + r n̂ν , n̂ · t = −1 , (5.20)

and takes the asymptotic limit

r →∞ , u, n̂µ fixed. (5.21)
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In this limit, the asymptotic field (5.9) takes the form [43, 96, 97]

hµν(x) ∼
∫ ∞

0

λ−ε

(ir)1−ε e
−iλu

(
iW̃µν

∣∣
k=λn̂

) dλ

2(2π)2−ε + (c.c.) , (5.22)

so that using (5.13)

hµν(x) ∼
∫ ∞

0

λ−ε

(ir)1−ε e
−iλ(u−Gε (m1u1+m2u2)·n̂) i

[
B̃µν0 + B̃µν1 + iM̃µν

1

]
k=λn̂

dλ

2(2π)2−ε + (c.c.).

(5.23)
In this way, the classical information extracted from the one-loop amplitude can be used to
build the O(G3) corrections to the asymptotic metric fluctuation

√
32πGhµν , and its IR-

divergent phase can be formally reabsorbed via a constant shift of the detector’s retarded
time [65, 66].

6 Conclusions and outlook

In this paper we calculated the 2→ 3 amplitude for the collision of two massive scalars and
the emission of a graviton. We focused on the near-forward regime, where the exchanged
momenta are small, O(~), compared to the masses, and on the soft region in which the
loop momentum associated to the exchanged gravitons is of the same order. This allowed
us to perform the integration of the integrand first obtained in ref. [47], calculating the
result up to and including O(~−1) and O(ε0). The result passes nontrivial consistency
checks. It displays the appropriate structure of IR divergences predicted by ref. [51] as well
as the correct factorization in the soft limit [53]. After checking that the operator version
of the eikonal exponentiation [1–3] indeed works as expected and produces a classical, real
and finite matrix element for the “eikonal”, or more precisely N -operator [1], we sketched
the calculation of the asymptotic waveform and spectral emission rates. We derived an
expression for such quantities, showed that the spectra are free of ambiguities, while the
waveform itself is affected by an IR divergent phase or, once such an irrelevant phase is
discarded, by the presence of the logarithm of an arbitrary scale.

The appearance of logarithms of arbitrary parameters left behind by infrared diver-
gences in waveform calculations is a manifestation of the so-called “hereditary” or “tail”
effects [17, 67–69, 98] and can be ascribed to an arbitrariness in fixing the origin of the
detector’s retarded time [65, 66]. It is interesting that these features already appear in the
one-loop five-point calculation performed here, whereas they only intervene at three loops
in the four-point calculation [17, 18, 99, 100]. We leave further investigations of this point
for future work. Another interesting issue to which we plan to return is the comparison
with subleading log-corrected soft theorems [72–74], which are also intimately related to
tail effects and to the long-range nature of the gravitational force in four spacetime di-
mensions. In analogy with the tree-level case, such checks will likely require to first obtain
sufficient analytic control of the b-space expression of the waveform. More generally, but
also in connection with the issue of infrared divergences, which here we removed by follow-
ing the exponentiation [51], it will be interesting to investigate how our results fit within the
broader program of the eikonal operator and to understand whether an improved operator
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formalism is actually able to directly provide an infrared finite answer, possibly fixing the
associated scale ambiguity. Of course, for all such open issues, extremely valuable guidance
will come from comparisons with the available PN results (see e.g. ref. [70] and references
therein).

In the spirit of reverse-unitarity applications for classical gravitational scattering [3,
27, 41, 42, 58, 101–103], our result can be useful for verifying and extending calculations of
radiative observables to O(G4), including emitted energy-momentum [70, 104] and angular
momentum (see refs. [3, 41, 42, 59] for the analogous O(G3) results). In this work we
focused on the ω > 0 portion of the graviton spectrum, although of course interesting
phenomena are associated with static effects [3, 57, 58, 60, 105] and require taking into
account terms localized at ω = 0. Such additional contributions can be typically included
by means of suitable dressed states, and are likely to be important in order to correctly
account for angular momentum losses.
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A More on the kinematics and on the polarization tensor

It this appendix, we complement the material presented in sections 2.1 and 2.2 concerning
the properties of the kinematic variables and of the polarization tensor employed in the
text. Introducing the dual vectors

ǔµ1 = yuµ2 − u
µ
1

y2 − 1 , ǔµ2 = yuµ1 − u
µ
2

y2 − 1 , (A.1)

so that ui · ǔj = −δij for i, j = 1, 2, we can decompose

kµ = ω1ǔ
µ
1 + ω2ǔ

µ
2 + kµ⊥ (A.2)

with k⊥ · ui = 0 and similarly

qµ1 = −ω2ǔ
µ
2 + qµ1⊥ , qµ2 = −ω1ǔ

µ
1 + qµ2⊥ , qµ1⊥ + qµ2⊥ + kµ⊥ = 0 (A.3)

where we used (2.6). The condition k2 = 0 then takes the following form

k2
⊥ = −ω

2
1 + 2yω1ω2 − ω2

2
y2 − 1 ≥ 0 , (A.4)

while q2
1 and q2

2 read

q2
1 = ω2

2
y2 − 1 + q2

1⊥ ≥ q2
1⊥ ≥ 0 , q2

2 = ω2
1

y2 − 1 + q2
2⊥ ≥ q2

2⊥ ≥ 0 . (A.5)
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The relations (A.4), (A.5) imply that

1
y +

√
y2 − 1

≤ ω1
ω2
≤ y +

√
y2 − 1 , q2

1 ≥
ω2

2
y2 − 1 , q2

2 ≥
ω2

1
y2 − 1 . (A.6)

In addition, the Schwarz inequality (q1⊥ · q2⊥)2 ≤ q2
1⊥q

2
2⊥ is equivalent to

S = (y2 − 1)(q2
1 − q2

2)2 − 4yω1ω2(q2
1 + q2

2) + 4ω2
1q

2
1 + 4ω2

2q
2
2 + 4ω2

1ω
2
2 ≤ 0 . (A.7)

The vector (2.15) can be rewritten as follows, after imposing the transversality condi-
tion (2.17),

εµ = c1ξ
µ
1 + c2ξ

µ
2 + d+(qµ1 + qµ2 ) (A.8)

in terms of the two transverse vectors

ξµ1 = uµ1 − ω1
qµ1 − q

µ
2

q2
1 − q2

2
, ξµ2 = uµ2 − ω2

qµ1 − q
µ
2

q2
1 − q2

2
. (A.9)

The vectors kµ, ξµ1 , ξ
µ
2 form a basis of the space of vectors ξµ such that k · ξ = 0. All such

vectors, except for those aligned with kµ, are spacelike, as can be easily seen by going to a
frame where kµ = (κ, 0, 0, κ), where ξt = ξz and therefore ξ2 = (ξx)2 + (ξy)2 ≥ 0. We can
thus introduce

|ξ1| =
√
ξ2

1 ≥ 0 , |ξ1| =
√
ξ2

2 ≥ 0 , ∆ = 1− (ξ1 · ξ2)2

ξ2
1ξ

2
2
≥ 0 , (A.10)

where the very last relation is the standard Cauchy-Schwarz inequality. Explicitly,

ξ2
1 = −1+ 4ω2

1q
2
1

(q2
1 − q2

2)2 , ξ1 ·ξ2 = −y+ 2ω1ω2
(q2

1 − q2
2)2 (q2

1 +q2
2) , ξ2

2 = −1+ 4ω2
2q

2
2

(q2
1 − q2

2)2 (A.11)

and (cf. eq. (A.7))

−∆ ξ2
1ξ

2
2 = y2 − 1 + 4(ω2

1q
2
1 + ω2

2q
2
2)− 4yω1ω2(q2

1 + q2
2) + 4ω2

1ω
2
2

(q2
1 − q2

2)2 ≤ 0 . (A.12)

The polarization tensor (2.18) can be made traceless by imposing

εµε
µ = ξ2

1c
2
1 + 2(ξ2 · ξ2)c1c2 + ξ2

2c
2
2 = 0 , (A.13)

which we can solve by allowing c1 and c2 to take complex values and letting

|ξ1| c1 =
[
−(ξ1 · ξ2)
|ξ1| |ξ2|

+ i
√

∆
]
|ξ2| c2 , (A.14)

or equivalently
|ξ1| c1 = i eiϕ12 |ξ2| c2 , ϕ12 = arcsin (ξ1 · ξ2)

|ξ1| |ξ2|
. (A.15)

One can identify
εµ = 1√

2
(εµ1 + iεν2) , (A.16)
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in terms of real orthonormal vectors εµ1 , ε
µ
2 ,

εi · εj = δij , i, j = 1, 2 , (A.17)

after imposing the normalization condition

ε∗ · ε = ξ2
1 |c1|2 + (ξ1 · ξ2)(c∗1c2 + c∗2c1) + ξ2

2 |c2|2 = 1 , (A.18)

that is,
|ξ1| |c1| = 1/

√
2∆ = |ξ2| |c2| . (A.19)

Building the standard real polarization tensors,

εµν+ = εµ1ε
ν
1 − ε

µ
2ε
ν
2√

2
, εµν× = εµ1ε

ν
2 + εν1ε

µ
2√

2
, (A.20)

the identification is √
2 Re εµν = εµν+ ,

√
2 Im εµν = εµν× . (A.21)

In the main body of the text, we mostly work without explicitly imposing the trace con-
straint (A.14) and the normalization conditions (A.18), treating c1 and c2 as formally
independent. In order to obtain Aµν1 from (2.19), one ought to first impose (A.14), (A.18)
and then build

Aµν1 = εµ(ε∗αA
αβ
1 ε∗β)εν + ε∗µ(εαAαβ1 εβ)ε∗ν . (A.22)

B Master integrals

In this appendix, we present the master integrals that we have used in order to perform
the integration of the one-loop amplitude presented in the main text. As is clear from the
drawings in table 4, it is enough to provide the expressions for 9 of them, since the remaining
7 are obtained by interchanging all labels 1 and 2, i.e. applying the permutation σ4.

I0,0,1,1,0 = = 1
ε

+ 2− 2 log (q2) + ε

12
(
48− π2 − 48 log (q2) + 24 log (q2)2

)
+O(ε)

(B.1)

I1,0,0,1,0 = = 1
ε

q2(w2
1E − 1)

2w1E
(B.2)

+ q2(w2
1E − 1)
w1E

(log (w1E − 1)− 1− log (w1E) + log (1 + w1E) + log (q2))

+ ε
q2(w2

1E − 1)
24w1E

(48 + 5π2 + 24(log (w1E − 1)− 2− log (w1E) + log (1 + w1E) + log (q2))

× (log (−1 + w1E)− log (w1E) + log (1 + w1E) + log (q2))) +O(ε2)

I0,1,1,1,0 = = π2

2q2
+O(ε) (B.3)
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The integrals I0,0,1,1,0, I1,0,0,1,0 and I0,1,1,1,0 can be in fact evaluated in generic D = 4− 2ε
with elementary methods. However, we opted to present their expansion for small ε in the
form which is ready-to-use for the analytic continuation discussed in section 3.2.

I1,0,1,1,0 = =
2w1E

(
π2 + 6Li2

(
−1
w1E

)
+ 6Li2

(
1

w1E

)
+ 3 log (w1E)2

)
3q2(1 + w2

1E)
+O(ε) (B.4)

I1,1,0,1,0 = = 1
ε

xE log (xE)
(x2
E − 1)2 (B.5)

+ xE
6(x2

E − 1)2 (π2 − 12Li2
(−1
xE

)
− 12Li2

( 1
xE

)
− 6 log (xE) (2 log (−1 + w1E)

− 2 log (w1E) + 2 log (1 + w1E)− 2 log (−1 + xE) + 3 log (xE)− log (1 + xE) + 2 log (q2)))
+O(ε)

I1,0,1,1,1 = = 1
ε2

w2E
2q2q2

1(−1 + w2
1E)

(B.6)

+ 1
ε

w1E
q2q2

1(−1 + w2
1E)

(− log (w1E − 1) + log (w1E)− log (1 + w1E) + log (q2)− 2 log (q1))

+ w1E
8q2q2

1(−1 + w2
1E)

(
−π2 + 8 log (−1 + w1E)2 + 8 (log (w1E)− log (1 + w1E))

× (log (w1E)− log (1 + w1E) + 2 log (q2)− 4 log (q1))
−16 log (−1 + w1E) (log (w1E)− log (1 + w1E)

+ log (q2)− 2 log (q1)) + 64 log (q1)2 + 8 log (q2)
(
−3 log (q2) + 4 log

(
q2

1 − q2
2

))
−32 log (q1) log

(
q2(q2

1 − q2
2)
)

+ 16Li2

(
q2

2
q2

1

))
+O(ε)

I1,1,0,1,1 = = 1
ε2

w1Ew2E
q1q2

(
−1 + w2

1E)(−1 + w2
2E
) (B.7)

− 1
ε

w1Ew2E
q1q2

(
−1 + w2

1E)(−1 + w2
2E
) (log (−1 + w1E)− log (w1E)

+ log (1 + w1E) + log (−1 + w2E)− log (w2E) + log (1 + w2E) + log (q1) + log (q2))

+ w1Ew2E
12q1q2

(
−1 + w2

1E)(−1 + w2
2E
)(− 7π2 − 12 log (xE)2 + 24(log(q1) + log(w2E − 1)

− log(w2E) + log(w2E + 1))(log(q2) + log(w1E − 1)− log(w1E) + log(w1E + 1))
)

+O(ε)

I1,1,1,1,0 = = − xE log(xE)
q2

2
(
x2
E − 1

)
ε

(B.8)

+ xE
6q2

2
(
x2
E − 1

)[− 12 Li2
( 1
xE

)
− 12 Li2

(
− 1
xE

)
+ 6 log(xE)(2(log(q2) + log(xE + 1))− 2 log(w1E − 1) + 2 log(w1E)

− 2 log(w1E + 1) + 2 log(xE − 1)− 3 log(xE)) + π2
]

+O(ε)

I1,1,1,1,1 = = c2
ε2

+ c1
ε

+ c0 +O(ε) . (B.9)
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We have obtained c2, c1 and c0 by means of dimension shifting identities (see e.g. [81, 82]).
These express the 6-dimensional pentagon I6D

1,1,1,1,1, which is finite, as a linear combina-
tion of 4-dimensional pentagon and box integrals. Since I6D

1,1,1,1,1 only involves objects of
transcendental weight 3, it can only contribute to the O(ε) part of I1,1,1,1,1 in D = 4− 2ε.
Therefore, the “ansatz coefficients” c2, c1 and c0 can be fixed in terms of the box integrals
already provided in the previous equations.

C Tree-level amplitudes

In this appendix we collect the tree level amplitudes that are useful in order to perform
various checks on the 2→ 3 one-loop amplitude calculated in the text. We start from the
tree-level 2→ 2 amplitude A(4)

0 involving four massive states,

A(4)
0 = = 4πGm̄2

1m̄
2
2
(
8y2(ε− 1) + 4

)
q2(ε− 1) − 4πG

(
m̄2

1 + m̄2
2
)

ε− 1 + πGq2(3− 2ε)
ε− 1 .

(C.1)
The 2 → 3 tree level amplitude Aµν0 involving four massive states and a graviton can be
written as follows as the sum of a piece obtained form the double copy minus a piece only
including the dilaton exchanges,

Aµν0 = = Aµνdc −A
µν
dil , (C.2)

where [25]

Aµνdc = 2 (8πGN )
3
2

{
(p4p2) (p3p1)

(
pµ4
p4k
− pµ3
p3k

)(
pν2
p2k
− pν1
p1k

)
+ 4q2

1q
2
2

×
[
qµ1 (p1p2)− pµ2 (p1k) + pµ1 (p2k)

q2
1q

2
2

− pµ3
2p3k

(
p1p2
q2

1
+ 1

2

)
+ pµ4

2p4k

(
p1p2
q2

2
+ 1

2

)]

×
[
qν1 (p4p3)− pν3 (p4k) + pν4 (p3k)

q2
1q

2
2

+ pν1
2p1k

(
p4p3
q2

2
+ 1

2

)
− pν2

2p2k

(
p4p3
q2

1
+ 1

2

)]}
(C.3)

and
Aµνdil√

2 (πG)3/2 = 4
(
q2

1 − q2
2
)
qµ1 q

ν
1
(
4m̄2

1 − q2
1
) (
q2

2 − 4m̄2
2
)

q2
2(ε− 1)

(
−4ω1m̄1 + q2

1 − q2
2
) (

4ω1m̄1 + q2
1 − q2

2
)

+ 4
(
q2

1 − q2
2
)
qµ2 q

ν
2
(
q2

1 − 4m̄2
1
) (
q2

2 − 4m̄2
2
)

q2
1(ε− 1)

(
−4ω2m̄2 + q2

1 − q2
2
) (

4ω2m̄2 + q2
1 − q2

2
)

− 32ω2m̄
2
2
(
q2

1 − 4m̄2
1
) (

4m̄2
2 − q2

2
)
q

(µ
1 u

ν)
2

q2
1(ε− 1)

(
−4ω2m̄2 + q2

1 − q2
2
) (

4ω2m̄2 + q2
1 − q2

2
)

− 32ω1m̄
2
1
(
4m̄2

1 − q2
1
) (
q2

2 − 4m̄2
2
)
u

(µ
1 q

ν)
2

q2
2(ε− 1)

(
−4ω1m̄1 + q2

1 − q2
2
) (

4ω1m̄1 + q2
1 − q2

2
)
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− 16
(
q2

1 − q2
2
)
m̄2

1u
µ
1u

ν
2
(
4m̄2

1 − q2
1
) (
q2

2 − 4m̄2
2
)

q2
2(ε− 1)

(
−4ω1m̄1 + q2

1 − q2
2
) (

4ω1m̄1 + q2
1 − q2

2
)

+ 16
(
q2

1 − q2
2
)
m̄2

2u
µ
2u

ν
2
(
q2

1 − 4m̄2
1
) (

4m̄2
2 − q2

2
)

q2
1(ε− 1)

(
−4ω2m̄2 + q2

1 − q2
2
) (

4ω2m̄2 + q2
1 − q2

2
)

(
q2

1 + q2
2
) (
q2

1 − 4m̄2
1
) (
q2

2 − 4m̄2
2
)
ηµν

q2
1q

2
2(ε− 1)

− q
(µ
1 q

ν)
2

q2
1q

2
2

2
(
q2

1 − 4m̄2
1
) (
q2

2 − 4m̄2
2
)
Pq1q2

(ε− 1)Qq1q2

(C.4)

with A(µBν) = AµBν +AνBµ,

Pq1q2 =2q4
1

(
8ω2

1m̄
2
1−8ω2

2m̄
2
2+3q4

2

)
+
(
q4

2−16ω2
1m̄

2
1

)(
16ω2

2m̄
2
2+q4

2

)
+q8

1−4q2
2q

6
1−4q6

2q
2
1,

(C.5)

Qq1q2 =
(
−4ω1m̄1+q2

1−q2
2

)(
4ω1m̄1+q2

1−q2
2

)(
−4ω2m̄2+q2

1−q2
2

)(
4ω2m̄2+q2

1−q2
2

)
. (C.6)

The last ingredient is the “Compton” amplitude for the scattering of a graviton and a
massive particle [23]

ACρσ,αβ =
k1 k2

(ρσ) r1 r2 (αβ)
(C.7)

which reads

ACρσ,αβ = 2κ2 r1 · (k1 + r2) r1 · k1
r1 · r2

×
[

(k1 + r2)ρ kα1
r1 · (k1 + r2) −

(k1 + r1)α kρ1
k1 · r1

+ ηρα
] [

(k1 + r2)σ kβ1
r1 · (k1 + r2) −

(k1 + r1)β kσ1
k1 · r1

+ ησβ
]
.

(C.8)

Both Aµνdc , A
µν
dil and A

ρσ,αβ
C are gauge invariant,

Aµνdc kµ = 0 , Aµνdilkµ = 0 , Aρσ,αβC r1ρ = 0 = Aρσ,αβC r2α = 0 (C.9)

and can be glued into cuts by replacing the transverse-traceless projector Πµν,ρσ over in-
termediate graviton states via

Πµν,ρσ → 1
2

(
ηµρηνσ + ηµσηνρ − 1

1− ε η
µνηρσ

)
. (C.10)

It is easy to see that, provided the gravitons have nonzero frequency,

ACρσ,αβ = AC[0]
ρσ,αβ +O(~) (C.11)

in the limit (3.1). The tree-level 2 → 2 amplitude (C.1) behaves as ~−2 to leading order,
and only receives corrections analytic in q2,

A(4)
0 = A(4)[−2]

0 + (analytic in q2) . (C.12)
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These corrections become short-range terms the Fourier transform (4.39) and are thus
completely irrelevant to our analysis. The tree-level 2 → 3 amplitude (C.2) also behaves
as ~−2 to leading order,

Aµν0 = Aµν[−2]
0 +O(~0) (C.13)

and is free of ~−1 corrections. The property (C.13) holds thanks to the choice of vari-
ables (2.4), (2.9) discussed in subsection 2.1. The leading order Aµν[−2]

0 coincides with the
one given in [27, 52] (see also [106]).
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