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1 Introduction

The understanding of theories at strong coupling is one of the most important challenges
of modern particle physics. Besides the pragmatic interest for QCD hadronic physics, such
understanding would broaden our perspective on theories beyond the Standard Model and
plausibly provide intuition on its shortcomings.

Dispersion relations distill the essential ingredients of quantum field theory, unitarity
and causality, into consistency conditions for scattering amplitudes. They have been used
as positivity bounds to shape the parameter space of effective field theories originating
from healthy, albeit strongly coupled, microscopic dynamics, see e.g. [1–8], and have had
important applications to QCD and the chiral Lagrangian [9–22].

At the same time, in the context of SU(Nc) gauge theories, the limit of many col-
ors Nc → ∞ has provided one of the most insightful approaches for understanding the
strongly-coupled regime [23, 24], even though real-world QCD has only Nc = 3. The main
consequence of this approximation is that the theory has a dual description in terms of
weakly-coupled mesons, rather than quarks and gluons. In spite of this important step
forward, the predictions of large-Nc QCD have been limited by the fact that the theory
contains an infinite number of mesons of any spin, whose Lagrangian is unknown or contains
an infinite number of terms.

Recently, ref. [25] has combined these two approaches and derived important con-
straints on the low energy ππ → ππ scattering amplitude. Despite the higher-spin meson
spectrum remains unknown, the simple analytic structure of large-Nc amplitudes — com-
bined with certain assumptions on their high-energy behavior — improves the predictive-
ness of dispersion relations.

In this article we push forward this approach, combining analytic and numerical meth-
ods. One of the most important questions raised in ref. [25] concerns the understanding
of which theories define the kinks (and the bulk) of the Wilson coefficient allowed regions.
In particular, their numerical approach suggested the existence of a new kink, speculated
to correspond to large-Nc QCD. Here we show analytically that this is not the case. We
prove that the kink position can be reformulated as a 1D moment-problem whose solution
converges to a theory with only one J = 1 resonance and thus cannot be large-Nc QCD.

We make a step forward in the full identification of theories that lie on the boundaries
and kinks of Wilson coefficients exclusion plots. By separating the contributions from
J = 0 and J ≥ 1 spectral densities, we are able to generalize the results of ref. [25] to
higher-order Wilson coefficients, where we reveal the following structure:

• Kinks correspond to either theories with an infinitely degenerate higher-spin spec-
trum, or theories with a unique state at finite mass, of spin J = 0, J = 1 or J = 2.
While some of these kinks were already known [4, 7, 25], we have identified for the
first time the kinks corresponding to J = 1 and J = 2.

• There are some boundaries of the allowed regions that could only be found numeri-
cally. In those cases, from an analytic point of view, the best one can do is to build
an interpolation amplitude [25] that seems to lie close to the boundary found nu-
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merically. In this work we construct amplitudes that reside even closer to the true
boundary. These are variations of the Lovelace-Shapiro amplitude [26, 27] and the
Coon amplitude [28] in which the spin-0 (and sometimes also spin-1) poles have been
removed.

We also study the connection between Vector Meson Dominance (VMD) and positivity
bounds. An important emerging property of low-energy QCD is VMD [29], the hypothesis
that the spin-1 ρ meson gives the main contribution to the chiral Lagrangian [30]. This
property has an empirical origin (it works!), but it lacks a theoretical explanation. We will
show that VMD finds its origin in the positivity bounds. Indeed, the chiral Lagrangian
coefficients can be written as a sum over positive quantities that depend on the couplings
and masses of the different mesons: when the theory contains a ρ, this dominates over the
other J > 1 states. This is especially prominent when the higher-spin states are heavier
than the ρ, as it occurs in real-world QCD. Our analysis also provides insight into why
holographic models, which contain only (charged) spin-0 and spin-1 states, have been so
successful in predicting low-energy properties of QCD, see e.g. [31, 32]. Finally, we will
show that this reasoning also extends to the heavy-meson couplings to pions: the higher
the spin, the smaller the coupling.

These arguments, as well as all those from ref. [25], rely on assuming that the high-
energy amplitudes are particularly well behaved, M/s → 0 at large |s|. In this article we
will also discuss the implications of relaxing this assumption, such that the ππ → ππ ampli-
tude is limited only by the Froissart-Martin boundM/s2 → 0 at large energies [33, 34]. In
this case, the spin-1 and spin-0 contributions decouple from (and can contribute more than)
the J ≥ 2 ones, that are now dominated by the spin-2 state instead, in a generalisation
of VMD.

The paper is organised as follows. In section 2 we review the analytical structure of the
ππ → ππ amplitude and the dispersion relations that lead to positivity constraints. We also
present possible UV completions to the chiral Lagrangian, as they will play an important
role to understand the boundaries of the Wilson-coefficient allowed regions. In section 3
we consider the case in which the four-pion amplitude at large |s| satisfiesM/s → 0. We
determine the allowed regions of the leading Wilson coefficients and show which theories
reside at the kinks of these boundaries. We also study the emergence of VMD and derive
bounds on the couplings of meson resonances to pions. In section 4 we extend the analysis
to the case in which the four-pion amplitude only satisfies the Froissart-Martin bound at
high energies. We present several appendices with extended discussions on the numerical
bootstrap (appendix A), on the analytical determination of the kinks (appendix B), the
su-models (appendix C), and the Lovelace-Shapiro and Coon amplitudes (appendix D and
appendix E respectively).

2 The ππ → ππ amplitude in large-Nc QCD

This section contains mostly a review of previous literature on the 2→ 2 pion amplitude,
in particular the results of ref. [25]. We will work in the massless quark limit.
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Pions are the massless Goldstone bosons associated to the spontaneous breaking of
the global SU(Nf )L × SU(Nf )R → SU(Nf ), where Nf is the number of quark flavors in
QCD. They transform in the Adj. representation of SU(Nf ), which for the case Nf = 2
corresponds to the Isospin I = 1, the triplet π± and π0. This allows us to write the 2→ 2
pion amplitude as

M(πaπb → πcπd) = A(s|t, u)
[

2
Nf

δs + ds

]
+A(t|u, s)

[
2
Nf

δt + dt

]
+A(u|s, t)

[
2
Nf

δu + du

]
+B(s|t, u) δs +B(t|u, s) δt +B(u|s, t) δu , (2.1)

where s = (pa + pb)2, t = (pa − pc)2, u = (pa − pd)2, and

δs = δabδcd , δt = δs(b↔ c) , δu = δs(b↔ d) , (2.2)
ds = dabedcde , dt = ds(b↔ c) , du = ds(b↔ d) , (2.3)

correspond to the various ways of contracting SU(Nf ) adjoint indices into singlets. A(s|t, u)
and B(s|t, u) are functions of t, u symmetric under their interchange, i.e. A(s|t, u) =
A(s|u, t).

In the large-Nc limit, QCD reduces to a theory of weakly coupled mesons, whose
trilinear couplings scale as ∼ 1/

√
Nc [23, 24]. In this limit, the B functions in eq. (2.1)

vanish, since they are associated to double-trace interactions which are subleading in the
large-Nc expansion [35]. The 2 → 2 pion amplitude is then dominated by a tree-level
meson exchange. Since these mesons are qq̄ states with isospin I = 0, 1, the isospin I = 2
amplitude,

MI=2
s (πaπb → πcπd) = A(t|u, s) +A(u|s, t) ≡M(t, u) , (2.4)

(symmetric under t ↔ u) has no poles in the large-Nc limit for real s > 0. All this leads
to the following important implications for the analytical structure of M in the large-Nc

limit:

• The only singularities ofM in the complex s-plane are simple poles associated with
the tree-level meson exchange (the branch cut along the physical region is at least
O(1/N2

c )).

• The absence of I = 2 meson exchange in the s-channel implies thatMI=2
s =M(t, u)

has no poles for real s > 0. Since t = −s− u, this implies that for fixed u < 0, there
cannot be poles in M(t, u) on the negative real t axis. Now, by a simple exchange
of arguments (t → s), we come to the conclusion that M(s, u), for fixed u < 0, can
only have poles on the positive real s axis.

• For fixed u < 0,M(s, t) can have poles either on the real positive or negative s axis.

This analytic structure ofM is illustrated in figure 1.
At energies below the mass M of the lightest massive meson (corresponding to the

position of the first pole in figure 1), pions can be well described by an effective theory,
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C∞

C0

s

M2

(a) M(s, u)

C∞

C0

s

M2−M2 − u

(b) M(s, t = −u− s)

Figure 1. Analytic structure of M(s, u) and M(s, t = −s − u) for fixed u < 0. We denote by
C0, C∞ (to be taken at |s| → ∞) and the discontinuity along the real axis the relevant contours of
integration used for dispersion relations.

corresponding to an expansion in s/M, u/M → 0,

M(s, u) =
∞∑
n=1

[n/2]∑
l=0

gn,l s
{n−lul}

= g1,0 (s+ u) + g2,0 (s2 + u2) + g2,1su+ g3,0 (s3 + u3)
+g3,1 (s2u+ su2) + g4,0 (s4 + u4) + g4,1 (s3u+ su3) + g4,2 s

2u2 + . . . , (2.5)

where for convenience we have defined the weighed symmetric tensor s{iuj} ≡ siuj + (1−
δij)sjui to avoid double counting of terms with n = 2l, such as g2,1, g4,2, etc. A constant
term is absent in eq. (2.5) as the amplitude must go to zero for s, u → 0 in order to
restore the Adler condition for pions. In the large-Nc limit all Wilson coefficients scale
as gn,l ∼ 1/Nc. For the connection of eq. (2.5) with the QCD chiral Lagrangian, see
section 3.2.1.

2.1 Dispersion relations and sum rules

Dispersion relations can be derived assuming that the amplitudeM satisfies the following
high-energy conditions, for fixed u < 0 and for all k ≥ kmin,

lim
|s|→∞

M(s, u)
sk

→ 0 , (2.6a) lim
|s|→∞

M(s,−u− s)
sk

→ 0 . (2.6b)

Different assumptions about the high-energy behavior of amplitudes are associated with
different values of kmin. On general grounds, the Froissart-Martin bound [33, 34, 36] ensures
that in theories with a mass gap eqs. (2.6) are satisfied for kmin = 2, with similar results
for the massless case [8, 37, 38].

On the other hand, refs. [25, 39–41] provide arguments, based on Regge theory or on
explicit assumptions about the UV, for which the four-pion amplitude might be bounded
byM . s and therefore kmin = 1. In this article we will study both, the case with kmin = 1
and kmin = 2.
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2.1.1 IR-UV relations

Taking u < 0 fixed, we have that the integral of M(s, u)/sk+1 along the contour C∞ of
figure 1a vanishes for k ≥ kmin, due to eq. (2.6a). Because of amplitude’s analyticity, we
can deform C∞ into the blue contour in figure 1a,∮

C0
ds′
M(s′, u)
s′k+1 = 2i

∫ ∞
M2

ds′
ImM(s′, u)

s′k+1 . (2.7)

The amplitude can be expanded in partial waves in the physical region s > 0,

ImM(s, u) =
∑
J

(2J + 1)ρJ(s)PJ
(

1 + 2u
s

)
, (2.8)

where PJ are the Legendre polynomials and ρJ(s), the spectral density, must be positive,
ρJ(s) ≥ 0, due to unitarity of the S-Matrix. The partial wave expansion is guaranteed to
converge in the physical region. For large-Nc theories, we have that the spectral density is
given by

(2J + 1)ρJ(m2) = π
∑
i

g2
iππm

2
i δ(m2 −m2

i )δJJi , (2.9)

where i labels mesons of mass mi, spin Ji and coupling to pions giππ.
Plugging eq. (2.8) into eq. (2.7), performing the contour integrals, and expanding

around small u < 0 we find

k = 1 : g1,0 + g2,1u+ g3,1u
2 + . . . =

〈
PJ(1)
m2 + 2P

′
J(1)
m4 u+ 2P

′′
J (1)
m6 u2 + . . .

〉
,

k = 2 : g2,0 + g3,1u+ g4,2u
2 + ... =

〈
PJ(1)
m4 + 2P

′
J(1)
m6 u+ 2P

′′
J (1)
m8 u2 + . . .

〉
,

k = 3 : g3,0 + g4,1u+ g5,2u
2 + . . . =

〈
PJ(1)
m6 + 2P

′
J(1)
m8 u+ 2P

′′
J (1)
m10 u2 + . . .

〉
,

... (2.10)

with the definition of the high-energy average [7],

〈(. . .)〉 ≡ 1
π

∑
J

(2J + 1)
∫ ∞
M2

dm2

m2 ρJ(m2)(. . .) . (2.11)

Considering equations with k ≥ kmin (that we will take later to be kmin = 1, 2), we
can relate the IR Wilson coefficients with the UV-averages of derivatives of PJ in the
following way:

gn+l,l = 2l
l!

〈
P

(l)
J (1)

m2(n+l)

〉
, n ≥ kmin and l = 0, 1, . . . ,

[
n− 1

2

]
. (2.12)

Since P (l)
J (1) ≥ 0, the contributions to eq. (2.12) from the different J-states are always

additive, and therefore gn+l,l ≥ 0 — this is a direct consequence of the lack of s < 0
poles inM(s, u). Moreover, P (l)

J (1) = 0 for l > J implying that states with J ≤ l do not
contribute to gn+l,l.
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In particular,

gn,0 =
〈 1
m2n

〉
=
∑
i

g2
iππ

m2n
i

,

gn+1,1 =
〈
J 2

m2(n+1)

〉
=
∑
i

g2
iππ Ji(Ji + 1)
m

2(n+1)
i

,

gn+2,2 = 1
4

〈
J 4 − 2J 2

m2(n+1)

〉
=
∑
i

g2
iππ Ji(Ji − 1)(Ji + 1)(Ji + 2)

4m2(n+1)
i

, (2.13)

where J 2 ≡ J(J+1). Notice that only for kmin = 1 all Wilson coefficients have a dispersive
representation in terms of eq. (2.12). For kmin = 2, the couplings g1,0 and g2,1 are not
captured by these dispersion relations.

In a similar way, we can obtain dispersion relations for the M(s, t) amplitude, whose
analytic structure is given in figure 1b,

1
2i

∮
C0
ds′
M(s′,−u− s′)

s′k+1 =
∫ ∞
M2

ds′
ImM(s′,−u− s′)

s′k+1 + (−1)k
∫ ∞
M2

ds′
ImM(s′,−u− s′)

(s′ + u)k+1 .

(2.14)
These can be expanded as in the previous section, and provide yet more relations [25]. In
the case kmin > 1 these new relations are crucial, as they give access to Wilson coefficients
that do not have a dispersive representation in terms ofM(s, u). In particular, for kmin = 2,
the coupling g2,1 is not determined by eq. (2.12) but appears in eq. (2.14),

g2,1 = 2g2,0 − 2
〈

(−1)J
m4

〉
, (2.15)

while for kmin = 3, g3,1 can only be determined by

g3,1 = 3g3,0 +
〈

(−1)J(2J 2 − 3)
m6

〉
. (2.16)

2.2 Null constraints

The dispersion relations in eq. (2.10), and the small-u expansion of eq. (2.14), over-
determine the Wilson coefficients. This leads to a set of null constraints,

〈
Xn,k(J,m2)

〉
= 0 ,

〈
Yn,k(J,m2)

〉
= 0 , (2.17)

on the high-energy spectral density, with m2nXn,k and m2nYn,k functions of J only. Their
compact expression at all orders is provided in ref. [25]. For the analytic arguments in
this article we are only interested in the most relevant null constraints (those involving less
powers of 1/m) and in those with the leading asymptotic J →∞ behavior at a fixed order
n in 1/m2n.

– 7 –
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For kmin = 1, there is one (and only one) null constraint ∼ O(J2(n−1)/m2n) at each
order n,1

n = 2 : m4 Y2,1 = −2(1− (−1)J) + J 2 ,

n = 3 : m6X3,1 = −6J 2 + J 4 ,

n = 4 : m8X4,1 = −24J 2 − 8J 4 + J 6 ,

...

(n− 1)!2 m2nXn,1 = 2n−1

(n− 1)!P
(n−1)
J (1)− J 2 . (2.18)

The other null constraints have only subleading terms in powers of J w.r.t. these.
When we study larger kmin, the constraints in eq. (2.18) disappear, and subleading

null constraints now dominate. For kmin = 2 this involves null constraints that grow as
O(J2(n−2)/m2n). There are two of them at each order n, and can be separated into those
where the sign of the term O(J2(n−2)/m2n) is fixed, and those where this sign oscillates
between J-odd and J-even. In the first class we have,

n = 4 : m8(Y4,2 − Y4,1
)

= 8(1− (−1)J)− 10J 2 + J 4 ,

n = 5 : m10X5,2 = 30J 2 − 17J 4 + J 6 ,

n = 6 : m12X6,2 = 144J 2 − 46J 4 − 20J 6 + J 8 ,

...

(n− 2)!2 m2nXn,2 = 2n−2

(n− 2)!P
(n−2)
J (1)− 2P (2)

J (1) . (2.19)

In both cases, eq. (2.18) and eq. (2.19), the Yn,k null constraints (originating fromM(s, t)
dispersion relations) appear only at the lowest order in 1/m2, and at higher order the
dominant J behavior is controlled by the Xn,k null constraints (originating from M(s, u)
dispersion relations). On the other hand, the most relevant oscillating null constraint is,

n = 3 : m6 Y3,1 = −6(1− (−1)J) + 2(1− 2(−1)J)J 2 , (2.20)

where the sign of the J 2 term oscillates with J .
Notice that for J = 0 the arguments of all null constraints vanish, as can be easily

seen in eq. (2.18) and eq. (2.19) (and more generally by the expressions in ref. [25]). This
implies that the spin-0 component of the UV spectrum decouples and is not restricted by
null constraints. This is related to the fact that models with only J = 0 states can provide
a consistent UV completion of the pion amplitude, satisfying eq. (2.6a) and eq. (2.6b) for
kmin = 1, as we will discuss in section 2.3. For kmin = 2, also J = 1 states give zero
contributions and decouple from the null constraints. This again can be understood from
the fact that models with only J = 1 states provide a pion amplitude that consistently
satisfies the Froissart-Martin bound. This pattern persists: for kmin = 3, one finds that
the J = 0, 1, 2 states decouple from the null constraints, and so on.

1We use a slightly different normalization w.r.t. ref. [25], which has no impact on eq. (2.17).

– 8 –



J
H
E
P
0
6
(
2
0
2
3
)
0
9
4

0 1 2 3 4 5

0

20

40

60

Figure 2. Null constraints from eq. (2.18), as a function of J , for fixed m.

It is also instructive to understand how the null constraints can be satisfied, as this
tells us information about the mass spectrum of the theories. In figure 2 we show the first
few null constraints in eq. (2.18) as a function of J . We see that for the first two null
constraints the contribution from the J = 1 is the only opposite in sign to the other ones.
As these expressions must average to zero, eq. (2.11), this implies that the theory must
contain J = 1 states. For X4,1, also the J = 2 contribution is negative, implying that also
J = 2 states are needed. As the order n of the null constraint increases, one finds that the
number of states with negative coefficients increases: eventually all J are needed to satisfy
the null constraints. So, for kmin = 1, theories in the large-Nc limit either have no J > 0
state, or have states with all values of J from 1 to ∞. Similarly, for kmin = 2, states with
spin J ≥ 2 are either absent, or are all present.

2.3 UV completions of the pion amplitude

Before proceeding to examine the implications from positivity, we would like to discuss
simple UV completions for a theory of pions. By this we mean theories that generate con-
sistent crossing-symmetric amplitudes M(s, u), with simple poles at real s > 0, positive
spectral density, satisfying the high-energy behavior of eqs. (2.6) for some kmin. Interest-
ingly, these amplitudes will turn out to reside at the kinks of the allowed parameter space,
as we will discuss in the next section.

Simple amplitudes describing exchange of a single spin-J particle with mass mJ are
characterised by a pole-structure with residue on the associated partial wave,

MJ(s, u) = m2
JPJ(1 + 2u/m2

J)
m2
J − s

+ F (s, u) + (s↔ u) , (2.21)

where F is an analytic function that defines the theory, but does not contribute to the
residue. We will fix F by imposing the Adler’s zeroMJ(0, 0) = 0 and by requiring that the
amplitude satisfies the large-s behavior of eqs. (2.6) for the lowest possible value of kmin.

– 9 –
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2.3.1 Theory of scalars

Scalars can provide a consistent UV completion to a theory of pions, via the Higgs mech-
anism in the linear sigma-model. The 2 → 2 pion amplitude mediated by a spin-0 state
with I = 0 is given by,

M(s)(s, u) = g2
sππs

m2
s − s

+ (s↔ u) . (2.22)

Expanding eq. (2.22) at low energies, s, u� m2
s, we obtain,

gn,0 = g2
sππ

m2n
s

(n ≥ 1) , gn,l = 0 (l 6= 0) . (2.23)

An important property of eq. (2.22) is that it satisfies the high-energy behavior in
eqs. (2.6a), (2.6b) with kmin = 1. Therefore the Wilson coefficients eq. (2.23) obey the
sum rules eq. (2.13), as can be easily checked. The fact that a model of only scalars does
not need higher-spin states to satisfy eqs. (2.6a), (2.6b) with kmin = 1, explains why the
J = 0 states decouple from the null constraints, as explained above.

2.3.2 Theory of vectors

Let us now consider a (weakly coupled) spin-1 resonance with isospin I = 1 (or, in general,
in the Adj. representation of SU(Nf )), which we will refer to as ρ, in analogy with QCD.
From eq. (2.21) we have,

M(ρ)(s, u) =
g2
ρππm

2
ρ

m2
ρ − s

P1

(
1 + 2u

m2
ρ

)
+ (s↔ u) , (2.24)

corresponding to the contribution from the transverse components of a massive vector
coupling to pions via gρππfabcρ

a
µπ

b∂µπc (minimal coupling) where fabc are the SU(Nf )
structure constants.2 This amplitude can arise in models in which the ρ gets its mass from
the Higgs mechanism, or in holographic models where the ρ arises as a Kaluza-Klein state.

Eq. (2.24) satisfies the Froissart-Martin bound, eqs. (2.6a), (2.6b) but only for kmin = 2.
Nevertheless, the high-energy behavior of eq. (2.24) can be improved by the following
deformation [25]:

M̂(ρ)(s, u) =
g2
ρππm

2
ρ

m2
ρ − s

P1

(
1 + 2u

m2
ρ

)
m2
∞

m2
∞ − u

+ (s↔ u) , (2.25)

that at high energy s � m2
∞ satisfies eqs. (2.6a), (2.6b) with kmin = 1. By studying the

pole structure of eq. (2.25), one can see that the amplitude is mediated by states of any
J with masses m∞, but also at s = mρ we have now states with J 6= 1. Nevertheless, by
taking the limit m∞/mρ →∞ in eq. (2.25), we recover eq. (2.24) as well as its low-energy
predictions. So, as long as we are only interested in the Wilson coefficients, we can safely
use eq. (2.24).

2A more general function F in eq. (2.21) would be associated with the exchange of longitudinal modes
(contact terms to the Lagrangian) which would yield in the amplitude multiplicative factors (s/m2

ρ)n that
worsen the high-energy behavior.
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At low energies, eq. (2.24) leads to

g1,0 = 3
g2
ρππ

m2
ρ

, g2,1 = 4
3
g1,0
m2
ρ

, gn,0 = 1
3
g1,0
m2n
ρ

, gn+1,1 = 2
3

g1,0

m
2(n+1)
ρ

(n ≥ 2) , (2.26)

while gn,l = 0 for l ≥ 2. Alternatively, we could compute the Wilson coefficients eq. (2.26)
from dispersion relations, by using the explicit form of the UV spectral density eq. (2.9),
with support on J = 1 and mi = mρ only. This can help us to appreciate the difference
betweenM(ρ) and its improved version M̂(ρ). Indeed, since the vector amplitude eq. (2.24)
fulfils eq. (2.6a) only for kmin ≥ 2, we can not use the sum rules eq. (2.12) for kmin = 1. In
particular, the expressions for g1,0 and g2,1 from eq. (2.13) do not hold — indeed they differ
from those obtained directly from the amplitude eq. (2.26). On the other hand, eq. (2.24)
fulfills eq. (2.6b) for kmin = 1 and one can use the prediction for g2,1 from eq. (2.15), that
agrees with eq. (2.26).

If instead we use M̂(ρ) from eq. (2.25) — which has kmin = 1 high-energy behavior —
the extra states beyond the ρ give a nonzero contribution to g1,0 and g2,1 that makes it to
coincide with eq. (2.26). These contributions tend to zero in eq. (2.15).

2.3.3 Theory of spin-2 states
The pole structure of four-pion amplitude mediated by a spin-2 state only (in analogy with
QCD we refer to it as f2), can be written as,

M(f2) =
g2
f2ππ

m2
f2

m2
f2
− s

P2

(
1 + 2u

m2
f2

)
+ (s↔ u) . (2.27)

Since P2(x) = (3x2 − 1)/2, this amplitude grows like ∼ s2/u for large s, violating even the
Froissart-Martin kmin = 2 bound. Nevertheless, eq. (2.27) can be deformed as in eq. (2.25)
to improve its high-energy behavior:

M̂(f2) =
g2
f2ππ

m2
f2

m2
f2
− s

P2

(
1 + 2u

m2
f2

)
m2
∞

m2
∞ − u

+ (s↔ u) , (2.28)

that indeed satisfies the Froissart-Martin bound for s � m2
∞, and leads to eq. (2.27)

in the limit m∞/mf2 → ∞. It is not possible to improve this further, as the resulting
amplitude would have negative spectral density, and violates unitarity. For this reason
amplitudes with light J ≥ 3 (which grow as sJ from PJ(1 + 2s/m2

J) can not be completed
into amplitudes that satisfy the Froissart-Martin bound, see also [42].

Contact terms (the function F in eq. (2.21)) would modify eq. (2.27). Nevertheless,
demanding that they do not grow faster than eq. (2.27), leaves only terms up to O(s). These
terms can only affect g1,0, telling us that this Wilson coefficient cannot be predicted in a
theory of spin-2 states. The rest of the Wilson coefficients, however, can be unambiguously
derived from eq. (2.27) in the low-energy limit:

g2,0 = 7
g2
f2ππ

m4
f2

, g2,1 = 12
7 g2,0 = g3,1m

2
f2 = g4,2m

4
f2 , gn,0 = 1

7
g2,0

m2n−4
f2

(n ≥ 3) ,

gn,1 = 6
7

g2,0

m2n−4
f2

(n ≥ 4) , gn,2 = 6
7

g2,0

m2n−4
f2

(n ≥ 5) , (2.29)

with gn,l = 0 for l > 2.
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Similarly to the spin-1 case, we could calculate some of the Wilson coefficients from
dispersion relations, with spectral density for J = 2 only. As eq. (2.27) satisfies the
high-energy limit eqs. (2.6) for k ≥ kmin = 3, we can use the sum rules eq. (2.12) with
kmin = 3 to obtain all the Wilson coefficients except g1,0, g2,0, g2,1, g3,1, g4,2 and g5,3 —
indeed their value via eq. (2.12) disagrees with eq. (2.29). This can also be understood by
realizing that the states of mass m∞ present in the consistent amplitude eq. (2.28) give
finite contributions to g1,0, g2,0, g2,1, g3,1, g4,2 and g5,3 when eq. (2.12) is used, even in
the limit m∞ →∞. For the coefficient g3,1, however, we can alternatively determine it by
using eq. (2.16) that indeed agrees with eq. (2.29).

2.3.4 The su-models

The su-models [7, 8] give the simplest four-pion amplitude mediated entirely by higher-
spin states. The particularity of these models is that their spectrum is fully degenerate,
M(s, u) ∝ 1/(s − m2)(u − m2), a condition that naturally places these models at the
boundary of the allowed parameter space, as we shall see. These su-amplitudes and the
associated Wilson coefficients are discussed in detail in appendix C.

2.3.5 The Lovelace-Shapiro and Coon amplitude

There are other four-pion amplitudes mediated by higher-spin states: the Lovelace-
Shapiro [26, 27] amplitude and its generalization, the Coon amplitude [28]. These am-
plitudes originate in the context of string theory, and can provide therefore fully consistent
UV completions to a theory of pions. We will see that the Wilson coefficients predicted by
these amplitudes lie at the closest point to one of the boundaries of the allowed regions.
Therefore they provide information about the mass spectrum of the theories residing on
these boundaries. The details of these amplitudes are given in appendices D and E.

3 Implications of M(s, u)/s→ 0 at large s

In this section, we assume that the pion amplitude M(s, u) satisfies the conditions
eqs. (2.6a), (2.6b) for kmin = 1, as argued in ref. [25]. Since all Wilson coefficients scale like
1/Nc, and because positivity bounds are inherently projective (i.e. only ratios of Wilson
coefficients are constrained), we will work with

g̃n,l ≡
gn,l
g1,0

M2(n−1) , (3.1)

where g1,0 is the leading Wilson coefficient and M the EFT cutoff defined in figure 1. From
eq. (2.13) it follows that gn,l ≥ g1,0 ≥ 0 for any theory and the ratio eq. (3.1) is well-defined.
Unless stated, we will take M as the lowest resonance mass. The g̃n,l are independent of
Nc in the large-Nc limit.

We can use the sum rules eq. (2.12) to determine the Wilson coefficients as a function
of the mass spectrum, which is itself constrained by the null constraints. Our goal will be
to shape the boundaries of the EFT parameter space, and identify the UV theories that
generate it. When possible we shall use analytic arguments, complemented when necessary
by numerics.
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Figure 3. Allowed regions in the g̃2,1– g̃2,0 plane, divided into regions with J = 0 states only
(red line) and J > 0 states (blue) — using null constraints with nmax = 3 (dashed light-blue
line) and nmax = 11 (dashed blue line). The dark blue area spans eq. (3.18) for 0 ≤ mρ ≤ M

and mρ ≤ m ≤ ∞. Moreover, J = 1 models lie on the blue line, J > 0 su-models on the black
line (eq. (C.2) with eq. (C.4) and 0 ≤ m ≤ M), and the magenta line corresponds to eq. (3.19).
The brown and yellow dot correspond to the Lovelace-Shapiro amplitude with and without scalars
(eq. (D.9))) respectively. The dashed brown and yellow line are the Coon amplitude (eq. (E.1) with
C = 1) with and without J = 0 states respectively.

3.1 Bounds on the leading Wilson coefficients

Let us start by studying the implications of positivity bounds for ππ scattering at order
O(s2), i.e. for the coefficients g2,0 and g2,1. As explained in ref. [25], and recalled in
appendix A, the allowed regions can be obtained by numerical methods, see figure 3. These
methods work extremely well as explorative tools and give conclusive answers when they
rapidly approach known theories, e.g. [43]. Nevertheless, they are limited by computer
power, and leave the question open of whether the extrapolation from finite resolution
truly reveals a physically meaningful result. Here we will show that for some questions the
numerical convergence is too slow, and we proceed by using analytic methods to map as
much of the parameter space as possible.

Scalar theories and the g̃2,1 > 0 boundary. The smallest value of g̃2,1 = 0 is satu-
rated by an amplitude mediated by J = 0 states, as discussed in section 2.3.1 — see also
ref. [25]. In particular, from eq. (2.23), identifying M = ms, we have (g̃2,1, g̃2,0) = (0, 1),
depicted as a red dot in figure 3. This point must clearly be a corner (kink) of the full
allowed region, since from eq. (2.13) one can see that g̃2,1 ≥ 0 and g̃2,0 ≤ 1. When more
(non-degenerate) scalars are present, the value of g2,0/g1,0 always decreases, since g2,0 scales
as ∼ 1/m4

s and therefore extra heavy scalars contribute more to g1,0 than g2,0 (the same is
true for gn,0/gn−1,0). This is shown in figure 3 by a red line.
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As discussed in section 2.1, states with J < kmin decouple from the null constraints.
For kmin = 1, only the J = 0 states decouple, meaning that it is the only simple theory
that can provide a standalone UV completion of the chiral Lagrangian. All other UV
completions must involve infinitely many states with all spins. It is therefore interesting to
study the boundary of the region with J ≥ 1 independently, as we discuss in what follows.

Spin-1 theories, the g̃2,1/g̃2,0 < 4 boundary and its kink. The largest value of
g̃2,1/g̃2,0 can be determined from eq. (2.13) and eq. (2.15), which gives

g̃2,1
g̃2,0

=
4
〈

1
m4

〉
J−odd〈

1
m4

〉
J−odd

+
〈

1
m4

〉
J−even

, (3.2)

where the subscript denotes average over even or odd J only. This is saturated by
g̃2,1/g̃2,0 = 4 and corresponds to theories with only J-odd states. The simplest theory
of this type is that described in section 2.3.2 consisting of a light spin-1 state only, whose
amplitude with the improved high-energy behavior is given in eq. (2.25) withm∞/mρ →∞.
From eq. (2.26) we have

(g̃2,1, g̃2,0)vector = (4/3, 1/3) , (3.3)

shown in figure 3 as a blue dot. Adding extra spin-1 states allows us to move down from
eq. (3.3) to the origin, along the blue line of figure 3. This line must be part of the
boundary of the allowed region for (g̃2,1, g̃2,0), since the ratio g̃2,1/g̃2,0 = 4 takes the largest
possible value.

The important question to address now is whether the allowed region can extend along
the blue line beyond eq. (3.3) or not. The numerical analysis of [25] was able to show that
as one increases the number of null constraints, the kink moves towards eq. (3.3), but
appeared to tend asymptotically to a larger value. Here we will show that the kink resides
at eq. (3.3), i.e. the extremal theory along the boundary contains only a spin-1 light state.

To show this, we will first argue that at the boundary,

g̃2,0 = M2

〈
1
m4

〉
〈

1
m2

〉 → M2

〈
1
m4

〉
J=1〈

1
m2

〉
J=1

1

1 +
〈

1
m2
〉
J>1〈

1
m2
〉
J=1

. (3.4)

This can be proven as follows. Eq. (3.2) implies that at the boundary even-J states must
decouple from the average in g2,0,

〈 1
m4
〉
J−even → 0 . (3.5)

Using the Cauchy-Schwarz inequality (where
〈
J 4/m8〉 must be finite because it enters in

the null constraint in the first expression of eq. (2.19)), we have√〈J 4

m8

〉
J−even

〈 1
m4

〉
J−even

≥
〈
J 2

m6

〉
J−even

→ 0 . (3.6)
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This, together with the null constraint
〈
Y3,1

〉
= 0 eq. (2.20), implies,〈

J 2

m6

〉
J−even

= 3
〈
J 2 − 2
m6

〉
J−odd

≥ 12
〈 1
m6

〉
J>1−odd

→ 0 , (3.7)

because J 2 − 2 = 0 on J = 1 and J 2 − 2 ≥ 4 for J ≥ 2. Using Cauchy-Schwarz again
(with measure on odd J > 1 only), and the fact that

〈 1
m2
〉
J>1−odd is finite, we find

√〈 1
m6

〉
J>1−odd

〈 1
m2

〉
J>1−odd

≥
〈 1
m4

〉
J>1−odd

→ 0 , (3.8)

thus proving eq. (3.4). The theory that lives on the boundary must therefore consist of
spin-1 states at finite mass accompanied by higher-spin states at infinite mass.

Unfortunately, this is not yet enough to claim that it is exactly the theory in eq. (2.25),
since there might be different ways in which the J →∞ states enter in the spectral density.

To prove that it is, we reformulate the question of finding the maximum value of the
kink, as a 1D moment problem. Indeed, the kink is positioned at the maximum value
of g̃2,0 along the boundary given by eq. (3.4). The first factor

〈 1
m4 〉J=1/〈 1

m2
〉
J=1 ≤ 1 is

maximally saturated when the spectrum contains only one spin-1 particle at the mass M ,
M2〈 1

m4 〉J=1 = 〈 1
m2 〉J=1 ≡ g2

ρππ/M
2. Then, from the second factor in eq. (3.4) we read that

the kink is located at the minimum of,

M2

g2
ρππ

〈 1
m2

〉
J>1

. (3.9)

This minimum cannot be zero, because the null constraints relate the high-energy averages
to g2

ρππ, in such a way that the ratio is finite. Indeed, along the boundary, the dominant
null constraints eq. (2.18) can be written as,

2(n− 1)!2 = M2n

g2
ρππ

〈
J2(n−1)

m2n

〉
J>1

, n = 2, 3, 4, . . . , (3.10)

i.e. all subleading terms Jk with k < 2(n − 1) can be neglected. This can be under-
stood from the comment below eq. (3.8) — for states with infinite mass, if in the average
limm→∞ J

2(n−1)/m2n is finite, then all subleading powers of J must vanish.3 With a change
of variables to (the square of) impact parameter x ≡ J2M2/m2, and redefining n, we can
write eq. (3.10) as

2n!2 =
∫ ∞

0
dµ(x)xndx ≡ µn , n = 1, 2, 3, . . . , (3.12)

3It can also be seen by using the Hölder inequality and
〈
1/m2k〉

J>1
→ 0 (for k ≥ 1) from eq. (3.8),

〈 1
m2k

〉 1
k

J>1

〈
J2(n−k−1)

m2(n−k)

〉1− 1
k

J>1
≥
〈
J2(n−k−1)

m2n

〉
J>1
→ 0 . (3.11)
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with dµ(x) a positive distribution. In this language eq. (3.9) is µ0, and the problem of
finding the kink position translates into a 1-dimensional moment problem:

finding the minimum of µ0 such that {µ0, µ1, µ2, · · · } is a moment series from a
positive distribution, with µn = 2n!2 for n ≥ 1. (3.13)

A sufficient condition for this, is that the Hankel matrix H0
N , with (Hk

N )ij = µi+j+k,
for i, j = 0, . . . , bN/2c, be asymptotically positive definite [4, 44],

lim
N→∞

H0
N = 2 lim

N→∞



µ0/2 1!2 2!2 · · · n!2
1!2 2!2 3!2 · · · (n+ 1)!2
2!2 3!2 4!2 · · · (n+ 2)!2

· · · · · · · · · . . . ...
n!2 (n+ 1)!2 (n+ 2)!2 · · · (2n)!2


� 0 . (3.14)

Equivalently (using Silvester’s criterion) this can be rewritten as,

1− µ0/2 ≤ lim
N→∞

det H0
N

∣∣
µ0=1

detH2
N

. (3.15)

Explicit evaluation of eq. (3.15) for fixed N enables us to reach smaller and smaller
values, going from µ0 ≈ 0.95 for N = 10 (equivalent to g̃2,0 ≈ 0.51) to µ0 ≈ 1.54 for
N = 700 (equivalent to g̃2,0 ≈ 0.39) — to be compared with g̃2,0 ≈ 0.42 of ref. [25].
Computing the asymptotic behavior of determinants of this type is an interesting open
problem in mathematics, see e.g. [45], motivated by their appearance in random matrix
theory (interestingly, also in relation with QCD and chiral perturbation theory [46, 47]).
Leaving this for future work, in appendix B we take a shortcut and, rather that computing
the individual determinants, we focus on the most efficient way of computing the ratio
eq. (3.15), and show that as n→∞,

µ0 → 2 and (g̃2,1, g̃2,0)→ (4/3, 1/3) . (3.16)

At the kink resides the theory of a single spin-1 state, with the improved high-energy
behavior amplitude eq. (2.25) with m∞ � mρ.

The su-model and the boundary for J ≥ 1 with minimal g̃2,1/g̃2,0. At the largest
value of g̃2,0 = 1 must lie theories with a degenerate spectrum, see eq. (2.13). Apart from a
theory of a scalar (discussed before), the only amplitude with this property is the su-model
discussed in appendix C, with amplitude eq. (C.2). This amplitude can also be obtained
analytically by solving the null constraints. Indeed, for a degenerate spectrum, the null
constraints reduce to a system of equations for the couplings g2

iππ. The dominant null
constraints eq. (2.18), for instance, are linearly independent, and can be solved explicitly
for a fixed number of couplings g2

iππ with i = 1, · · · , n. The solution is a function that can
be resummed and converges into the su-model prediction.

This su-model contains a fraction of scalar residues, controlled by the value of λ in
eq. (C.3); for the value in eq. (C.4) the theory has no scalars. Its amplitude lies at,

(g̃2,1, g̃2,0)J>0 su−model = (≈ 3.26, 1) , (3.17)
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shown by the black dot in figure 3. The uniqueness of this amplitude naturally puts it
at kink of the J ≥ 1 region (and its linear combination with the scalar amplitude at the
boundary of the J ≥ 0 region).

As the spectrum becomes heavier,M/m→ 0, the su-model morphs into the free theory
(at the origin of the plot in figure 3). Interestingly, this line defines the boundary of the
allowed region for theories characterised by resonances of spin J ≥ 1. In appendix C we
show that this line is indeed a boundary by considering the most generic deformation of
the su-model and showing that in order to not spoil positivity these deformations must
push you in the bulk of the exclusion region (excluding the contribution from scalars).

Boundary between kinks. Therefore we are left with the boundary line joining the
two kinks, eq. (3.3) and eq. (3.17). We have not found an analytical expression for this
curve. Nevertheless, as proposed in ref. [25], we can have a reasonable analytical formula
by considering a model that interpolates between a spin-1 model and the J > 0 su-model.
The interpolating amplitude is given by4

M =M(su)
1 − 3(ln 8− 2)

g2
ρππ

(
M̂(ρ)(mρ → m)− M̂(ρ)

)
, (3.18)

which corresponds to a J > 0 su-model in which the spin-1 state of mass m has been
subtracted and replaced by a spin-1 state of massmρ. We have used the corrected amplitude
M̂(ρ) from eq. (2.25), to assure that eq. (3.18) satisfies the high-energy conditions with
kmin = 1 for all values of its parameters; nevertheless we will be taking the limit m∞/mρ →
∞ that corresponds to M̂(ρ) →M(ρ). From eq. (3.18) it is clear that by varying the mass
m from mρ to infinity, we are effectively pushing up the masses of the J > 1 states in the
su-model, leaving only a J = 1 state at low energy. The corresponding Wilson coefficients
of eq. (3.18) can be easily calculated and one obtains, for M = mρ,

g̃2,0 = a− (3− 10a)(r2 − 1)
a− (9− 28a)(r − 1) , g̃2,1 = 1 + (36a− 11)(r2 − 1)

a− (9− 28a)(r − 1) , (3.19)

where r = m2
ρ/m

2 and a = 1 − ln 2. The magenta line in figure 3 is obtained by varying
r ∈ [0, 1].

We have determined this boundary numerically (following ref. [25], see our appendix A
for details), including null constraints with nmax = 3 and nmax = 11, shown by dashed lines
in figure 3. Due to the lack of computational power, however, we have not been able to
understand how much the true boundary approaches the analytic boundary eq. (3.19) as
n → ∞. Nevertheless, we can claim that eq. (3.19) cannot coincide with the true bound,
as we know of another consistent amplitude that lies on the r.h.s. of this line. This is
the Lovelace-Shapiro amplitude in which the scalar contribution has been removed (see
appendix D for details). The prediction for this amplitude (see eq. (D.11)) is shown by
a yellow dot in figure 3. In spite of this, the prediction of this amplitude is impressively

4There are other possible interpolating amplitudes, but eq. (3.18) is the one with the smallest number
of states that we have found. Adding more states will give predictions for (g̃2,1, g̃2,0) that will lie on the left
of the magenta line of figure 3.
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close to eq. (3.18) as can be appreciated by the zoom area in figure 3. We also show a
version of the scalar-subtracted Coon amplitude, eq. (E.1) in appendix E, with C = 1
and q varied from 0 to 1. This line starts at the J > 0 su-model and goes down to the
Lovelace-Shapiro model. It slightly improves eq. (3.19) but only close to the Lovelace-
Shapiro values (q ' 1). It could be interesting to know if there is another deformation of
the Lovelace-Shapiro amplitude that saturates the true boundary. We also show in figure 3
the prediction from the full Lovelace-Shapiro and Coon amplitudes (with C = 1) without
subtracting the scalar contributions.

For models with both J = 0 and J > 0 states, the allowed region corresponds to the
convex hull spanned by the individual boundaries, shown in light red (plus blue) in figure 3.

3.2 Emergence of vector meson dominance

We have seen that a theory of a spin-1 state does not satisfyM(s, u)/s→ 0 at large s, fixed
u < 0, and requires higher-spin states to soften the high-energy behavior. The converse
is also true: any model of higher-spin states must contain spin-1 mesons. This can be
made explicit by looking at null constraints. For example, the first two null constraints,
〈Y2,1〉 = 0 and 〈X3,1〉 = 0 of eq. (2.18), lead to〈 1

m4

〉 ∣∣∣∣
J=1

= 3
〈 1
m4

〉 ∣∣∣∣
J=2

+ 4
〈 1
m4

〉 ∣∣∣∣
J=3

+ · · · ,〈 1
m6

〉 ∣∣∣∣
J=1

= 9
〈 1
m6

〉 ∣∣∣∣
J=3

+ 35
〈 1
m6

〉 ∣∣∣∣
J=4

+ · · · . (3.20)

Since the r.h.s. is always positive, this identity can only be fulfilled if there are spin-
1 states in the theory. These equations also tell us that, at any order in 1/mn in the
average, the contributions from any individual J > 1 state must always be smaller than
the ρ contribution, since the coefficients appearing on the r.h.s. are always bigger than one.
Moreover, these coefficients scale with large J as ∼ J2n−2/m2n, which is faster than how
they appear in the low-energy couplings such as gn,0 ∼ 〈1/m2n〉 or gn,1 ∼ 〈J2/m2n〉 (but
g2,1 ∼ 〈1/m4〉) from eq. (2.12).5

The property that the ρ meson dominates the low-energy amplitude of pions (or at
least that amplitudes with ρ mesons populate the space of consistent pion amplitudes)
is referred to as Vector Meson Dominance (VMD) [29, 30]. Despite its poor theoretical
motivation, VMD is known to lead to good agreement with QCD experimental data. Here
we see that VMD emerges from unitarity and crossing symmetry. For the most relevant
couplings, it is illustrated by the alignment between the J > 0 allowed region and the spin-1
line observed in figure 4. The QCD experimental value, as determined from refs. [48, 49],
is denoted by the red crosses in the figure.6

5For couplings gn,l with larger and larger l this argument is more involved, since the J = 1 contribution
cancels from eq. (2.12) and is restored only via null constraints.

6The relation between the low-energy coefficients g̃2,0, g̃2,1 and the SU(3) chiral Lagrangian coefficients
is given in eq. (3.25). The two crosses correspond to different values of L1, L2 and L3 taken from different
references. The first cross is computed from the three-flavor fits of Ke4 and ππ data with unitarized form
factors in [48]. For the second cross we take the NNLO three-flavor low-energy chiral coefficients of the
preferred fit in [49].
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Figure 4. Allowed regions from positivity with J ≥ 1 (as in figure 3). The green regions have
heavier resonances of all spin J ≥ 1 with masses M ′ ≥ 1.65mρ: the dashed green line uses null
constraints up to nmax = 11. In orange the allowed region for a fixed g̃ρ = 1/2 (left) and g̃ρ = 1/3
(right), with still M ′/mρ = 1.65. In purple, the allowed region from Lattice simulations [50–52].
In red the QCD experimental value. The upper cross is obtained from [49] and the lower cross
from [48].

As the masses of the J > 1 states increase, VMD becomes more manifest. Indeed, from
eqs. (2.13), (2.15), the contributions from the high-spin states at large mass mJ>1 → ∞
go as,

g2,0
g1,0
∼ g2,1
g1,0
∼ 1
m2
J>1
→ 0 ,

while the J = 1 contribution remains finite. This is also true for the rest of the Wilson
coefficients, since for large scale separations between the ρ and higher spins mρ/mJ>1 → 0,
The null constraints eq. (2.18) require a finite contribution from the J →∞ states, in such
a way that J2/m2

J>1 remains fixed in units of g1,0 ∼ 1/m2
J>1. Using eq. (2.13), this implies

that the J > 1 contribution to the Wilson coefficients scales as,

∆gn+l,l ∼
J2l

m
2(n+l)
J>1

∼ 1
m2n
J>1

, (3.21)

and therefore tends to zero for large mJ>1.
At finite masses, we can study this effect numerically, requiring a finite mass gap

between the ρ meson and other resonances M ′ > mρ, i.e. we work with the spectral
density [25],

(2J + 1)ρJ(s)→ π

2 g
2
ρππδJ,1δ(s−m2

ρ) + (2J + 1)ρ′J(s) , (3.22)

where the last term corresponds to extra states with s ∈ [M ′,∞) (see appendix A). In
QCD, the lightest higher-spin resonce is a spin-2 meson f2 with a mass mf2 ≈ 1.3GeV,
which implies M ′/mρ ∼ 1.65. With this mass gap, the allowed region reduces to the
small green strip in figure 4, which is more strongly aligned with the spin-1 prediction,
evidencing VMD.
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It is instructive to further divide the allowed region of parameters in terms of the
contribution of the ρ to the leading Wilson coefficient g1,0, i.e.

g̃2
ρ ≡

g2
ρππ

g1,0m2
ρ

, (3.23)

which can be thought to quantify VMD. In figure 4 we show in orange the allowed regions
in which g̃2

ρ matches the experimental QCD value and the value taken in the vector model
eq. (2.24),

(a) g̃2
ρ '

1
2 (QCD) , (b) g̃2

ρ = 1
3 (spin-1 model) . (3.24)

As we will discuss in section 3.4, g̃2
ρ = 1/2 is close to its maximal value g̃2

ρ ∼ 0.78, which is
also where the associated spectral density has the J > 1 contributions maximised (saturated
by the su-model). On the other hand, even for g̃2

ρ = 1/3 (for which 2/3 of the leading effects
are taken care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to
the spin-1 contribution (blue dot), showing a small effect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1
mesons: these are the difficult ones to model, and for which our arguments are particularly
important. On the other hand, since J = 0 states decouple from the null constraint,
they could indeed dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless,
scalars can be easily accommodated in any phenomenological analyses as they have simple
UV completions. It is worth noticing, however, that when a spin-1 ρ is assumed to be
the lightest meson in the spectrum, as in QCD, the scalar contribution becomes smaller.
This property is tied to the fact that contributions to the Wilson coefficients are always
positive. For example, taking scalars with masses & 1.65 mρ, while still fixing g̃2

ρ to the
values considered above, we find that the resulting allowed regions depicted in figure 4
increase in size by only 10− 25% along the g̃2,0 direction.

3.2.1 Comparison with lattice QCD

The Wilson coefficients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7
are related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)M
2

F 2
π

, g̃2,1 = 16L2
M2

F 2
π

. (3.25)

In the large-Nc limit, 2L1 = L2 [35], which leads to

g̃2,0
g̃2,1

= 1
4

(
1 + ∆L

L2

)
, (3.26)

where ∆L = 3L2 + L3. This quantity vanishes for theories with only spin-1 resonances,
so VMD predicts ∆L ∼ 0. Moreover, the positivity of the Wilson coefficients implies that
L2,∆L ≥ 0.

7Following the chiral Lagrangian definition in ref. [35],

L= F 2
π

4 Tr
(
∂µU

†∂µU
)

+L1Tr2 (∂µU†∂µU)+L2Tr
(
∂µU

†∂νU
)
Tr
(
∂µU†∂νU

)
+L3Tr

(
∂µU

†∂µU∂νU
†∂νU

)
.
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A combination of recent lattice simulation results for large-Nc QCD [50–52], gives8

∆L = (−0.12± 0.22) · 10−3. Unfortunately, we have not found any lattice determination of
L2. Nevertheless, for any given value of g̃ρ, we have a minimal value for L2 ∝ g2,1, which
plugged into eq. (3.26) with the lattice value of ∆L, can provide a bound on g̃2,0/g̃2,1. For
the two values of eq. (3.24), we find

(a) 0.15 .
g̃2,0
g̃2,1

. 0.28 , (b) 0.10 .
g̃2,0
g̃2,1

. 0.30 , (3.27)

that correspond to the purple areas in figure 4. We notice that in both cases positivity
bounds are complementary to bounds from lattice, ruling out different regions. In the
particular case (a), the upper bound coming from lattice seems to be more restrictive
than the one from positivity, but this is not the case as we decrease g̃2

ρ. In the future a
combination of both approaches can lead to a better determination of the geometry of the
allowed regions in parameter space.

3.2.2 Holography

The results in figures 4 provide also an explanation for the success of holography for pre-
dicting QCD properties [31, 32]. Holographic models consist in weakly-coupled 5D con-
structions describing 4D strongly-coupled dynamics in both the Nc → ∞ limit, and the
limit of a large mass gap between spin-0,1 states and other higher-spin states.9

In real QCD, however, the mass ratio between the qq̄ mesons of spin-2 and spin-1 is
not large, mf2/mρ ∼ 1.65. Therefore, one would expect holographic models not to provide
a good description of low-energy QCD, contrary to what is observed [31, 32]. Nevertheless,
the above analysis shows that unitarity, causality and crossing-symmetry suppress the
effects of higher-spin states in the QCD Wilson coefficients. Therefore, even if the mass
gap mf2/mρ is not large, the low-energy QCD quantities are mostly affected by only spin-0
and spin-1 states, which are the ones captured by holographic models. For this reason they
can provide a good fit to real-world QCD.

In particular, in the holographic model of ref. [53], one can show that the predictions
for g̃2,0 and g̃2,1 are very close to those of the vector model (g̃2,1, g̃2,0) = (1.32, 0.33).

3.3 Higher order Wilson coefficients

The features that sculpt the allowed region of g̃2,0 and g̃2,1 play a dominant role also in
understanding higher-order Wilson coefficients, g̃n,0 versus g̃n,1. From eq. (2.13) we have,

g̃n,1
g̃n,0

=
〈 J 2

m2n
〉〈 1

m2n
〉 , (3.28)

8In particular, we use ∆L−L5+L8 = (−0.02±0.08)·10−3 from [52], together with L5 = (−0.3±0.4)·10−3

and 2L8−L5 = (−0.1± 0.1) · 10−3 from [51]. In order to compute the bounds on g̃2,0/g̃2,1 we use the value
of the mass of the ρ meson in the large-Nc limit mρ/(Fπ

√
3/Nc) = (7.08± 0.10) from [50].

9The model also has 5D gravitons, but these correspond to glueballs of spin J ≤ 2, which decouple from
the pion amplitudes.
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Figure 5. Allowed region in the g̃3,1– g̃3,0 plane from positivity. Same labelling as in figure 3, with
nmax = 11 null constraints.

whose minimal value (zero) corresponds to a model with J = 0. Focusing instead on J > 0
theories, the minimal value arises for models of spin-1 that give g̃n,1/g̃n,0 = 2.10

We illustrate this in figure 5, where a blue dot corresponds to a model with a single
J = 1 state:

(g̃3,1, g̃3,0)vector = (2/3, 1/3) , (3.29)

while theories with many spin-1 states populate the blue line.
As for g̃2,0, g̃2,1, we can show that eq. (3.29) corresponds to a kink of the boundary, see

appendix B. The other kink corresponds again to the J > 0 su-model (the only one with
a degenerate spectrum) that gives

(g̃3,1, g̃3,0)su−model = (≈ 3.26, 1) . (3.30)

We have not been able to find an analytic formula for the boundary connecting the two
kinks, eq. (3.29) and eq. (3.30); we illustrate the numerical analysis in figure 5. We believe
that by adding more null constraints the boundary must approach, but not reach, eq. (3.18),
consisting of a theory connecting the two kinks (the magenta line in figure 5). Nevertheless,
as in section 3.1, this line cannot be the true boundary since the Lovelace-Sphapiro model
with J > 0 states lies at the left of this line, and so does part of the Coon amplitude,
eq. (E.1) (with C = 1 and q ∈ [0, 1], after subtracting all scalars).

10Notice that we could not use this argument for the case n = 2, since we cannot use the sum rules in
eq. (3.28) with n = 2 for a theory of J = 1 states only, as explained at the end of section 2.3.2. In other
words, the infinitely heavy J > 1 states give zero contribution to eq. (3.28) only when n > 2.
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◆◆

◆◆

Figure 6. Upper bound on g̃2
ρ (dashed blue line), g̃2

f2
(dashed green line) and g̃2

ρ3
(dashed magenta

line) as a function of mρ/M
′ using null constraints with nmax = 7. The solid lines correspond to

the prediction from the interpolating model eq. (3.18). The dots correspond to the values of the
Lovelace-Shapiro amplitude without scalars, and the diamonds to the QCD experimental values.

3.4 Bounding the couplings of mesons to pions

So far, we have phrased dispersion relations as UV→ IR vehicles to reformulate microscopic
unitarity, causality and crossing-symmetry as predictions for low-energy coefficients. Null
constraints, however, provide genuine UV-UV relations, inspired by the same principles.
As such, they contain information on the UV meson spectrum and couplings to pions. We
define the latter, normalized as,

g̃2
i = g2

iππ

g1,0m2
i

, (3.31)

where i = s, ρ, f2, ρ3, . . . labels J = 0, 1, 2, 3, . . . mesons, following the QCD notation of
ref. [54].

Since spin-0 mesons decouple from the null constraints, it is easy to understand that
g̃2
s is maximised by the smallest possible value of g1,0 that, due to its additive property,
occurs when the spectrum contains one scalar only:

g̃2
s ≤ 1 . (3.32)

On the other hand, bounds on the couplings of J ≥ 1 mesons, involve all null con-
straints, which we explore numerically, as explained in appendix A. The results are illus-
trated in figure 6. For instance, the bound on the ρ coupling g̃2

ρ (dashed blue line), is
obtained as a function of M ′ ≥ mρ by singling out this state from the spectral density
as in eq. (3.22). The bound goes from a maximal value g̃2

ρ ' 0.78, corresponding to the
J > 0 su-model where M ′ = mρ, to the minimal value corresponding to the vector model,
g̃2
ρ = 1/3 where M ′ → ∞. This can be compared with the interpolating model eq. (3.18)
shown by the solid blue line and with the Lovelace-Shapiro model without scalars eq. (D.9)
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(shown by dots) that lies between the two lines. Interestingly, while all these models give
similar predictions in terms of the Wilson coefficients — see figure 3 — they differ substan-
tially at the quantitative level in figure 6. This provides an interesting experimental handle
to differentiate these theories by testing the couplings of pions to the accessible resonances
(amplitude’s residues).

Similarly for the spin-2 meson f2, we rewrite the spectral density as,

(2J + 1)ρJ(s)→ π

2 g
2
ρππδJ,1δ(s−m2

ρ) + π

2 g
2
f2ππδJ,2δ(s−M

′2) + (2J + 1)ρ′J(s) , (3.33)

and look for the upper bound on g̃2
f2

as a function of M ′/mρ for any value of g2
ρππ > 0.

This is shown by the green dashed line in figure 6. The resulting bound is much stricter
than that for the ρ — another manifestation of VMD.

As we study mesons of higher and higher spin J , the bound on g̃2
i becomes stronger

and stronger — see the magenta dashed line for g̃2
ρ3 . Interestingly, this pattern is also

tracked by the QCD experimental values, g̃2
ρ = 0.51± 0.01 and g̃2

f2
= 0.18± 0.01, extracted

from the widths ρ, f2 → ππ [54], as shown by the diamonds in figure 6.

4 Implications of M(s, u)/s2 → 0 at large s

A more conservative assumption is that the four-pion amplitude satisfies the Froissart-
Martin bound, eqs. (2.6a), (2.6b) for kmin = 2, rather than kmin = 1 as in the previous
section. Unfortunately in this case we lose the sum rule for the Wilson coefficient g1,0 (and
g2,1 is no longer expressible by eq. (2.12) — which comes from kmin = 1 — but requires
eq. (2.15)). So, we will need to choose another Wilson coefficient to normalize the rest and
make the predictions Nc-independent. We will use g2,0 and define,

ḡn,l ≡
gn,l
g2,0

M2(n−2) . (4.1)

There is another important difference w.r.t. section 3. The amplitude mediated by a
spin-1 state, eq. (2.24), fulfilsM(ρ)/s2 → 0 for large |s|, and therefore now provides a good
UV description of the four-pion amplitude. As a consequence, models of spin-1 states do
not require anymore higher-spin states. From the perspective of null constraints this is
realised by the decoupling of J = 1, when setting kmin = 2, as we explained in section 2.1

It is the spin-2 state that now plays an analog role to that of the ρ-meson in section 3.
Indeed, the 〈Y4,2 − Y4,1〉 = 0 null constraint reads,

6
〈 1
m8

〉 ∣∣∣∣
J=2

= 10
〈 1
m8

〉 ∣∣∣∣
J=3

+ 50
〈 1
m8

〉 ∣∣∣∣
J=4

+ · · · , (4.2)

which tells us that spin-2 states need J > 2 states and viceversa (for instance, the amplitude
eq. (2.27) requires J ≥ 3 states as in eq. (2.28), to comply with the Froissart-Martin bound).

4.1 Bounds on Wilson coefficients

At the leading order O(s2), we only have ḡ2,1. As discussed before, we have ḡ2,1 = 0
(ḡ2,1 = 4) for J = 0 (J = 1) models, that are decoupled from higher-spin states. Focusing
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Figure 7. Allowed region in the ḡ3,1– ḡ3,0 plane (left) and ḡ4,1– ḡ4,0 plane (right) from positivity.
The black lines correspond to the J > 1 su-model (eq. (C.7) with eq. (C.8) and 0 ≤ m ≤ M), the
green lines to J = 2 models, and the magenta lines to eq. (4.7) and eq. (4.8) for the left and right
plot respectively. The green areas limited by the dashed line corresponds to the allowed region with
nmax = 7 null constraints.

instead on theories with J ≥ 2 states, the largest value of ḡ2,1 comes from the su-model,
once we have subtracted not only the scalar but also the J = 1 state, whose amplitude is
given by eq. (C.7) in appendix C, using eq. (C.8). Then, from eq. (C.10) we find,

ḡ2,1 ≤
18 ln 2− 13
10 ln 2− 7 ' 7.6 . (4.3)

At order O(s3) and O(s4) we can also consider (ḡ3,1, ḡ3,0) and (ḡ4,1, ḡ4,0). The contri-
butions from models of scalars and vectors are given by the lines going respectively from
the points (0, 1) and (2, 1) to the origin, illustrated in figure 7 in red and blue.

The allowed regions for J ≥ 2 are less trivial, and correspond to the green areas
in figure 7. Again the upper kink is associated with the su-model, with its degenerate
spectrum that makes ḡn,0 maximal. The coefficients are

(ḡn,1, ḡn,0)J>1 su−model = (≈ 7.6, 1) , (4.4)

as illustrated by the black dots in figure 7. Form ∈ [0,M ], the su-model spans the minimum
and maximum of the J ≥ 2 region of (ḡ3,1, ḡ3,0) and (ḡ4,1, ḡ4,0) respectively (black lines in
the figures).

From eq. (3.28) the minimal values for ḡn,1/ḡn,0 correspond to models with the lowest
possible spin. This would mean a theory with J = 2 mesons only, but we have seen that this
is incompatible with the Froissart-Martin bound: J ≥ 2 states are also needed to satisfy
the null constraints. Although these states can be made infinitely heavy (see section 2.3.3),
they only decouple in ḡn,1 for n ≥ 4. Therefore the J = 2 theory would give the minimal
value for ḡ4,1/ḡ4,0 = J(J + 1)|J=2 = 6, but not for ḡ3,1/ḡ3,0. The amplitude of a single
spin-2 meson gives from eq. (2.27),

(ḡ4,1, ḡ4,0)spin−2 = (6/7, 1/7) . (4.5)

Following a similar analysis as in appendix B, we expect this to be also a kink in the limit
where all null constraints are taken into account. The boundary between this kink eq. (4.5)
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and the J > 1 su-model has be obtained numerically and is illustrated by the green dashed
line in figure 7.

For (ḡ3,1, ḡ3,0), we cannot assure the existence of a kink at the J = 2 value (12/7, 1/7),
but the numerical bound (green dashed line) seems to approach this point.

A consistent amplitude that interpolates between the J > 1 su-model and the spin-2
model is given by

M̂ =M(su)
2 − 5(13 ln 2− 9)

g2
f2ππ

(
M̂(f2)(mf2 → m)− M̂(f2)

)
, (4.6)

and corresponds to the J > 1 su-model with the spin-2 state of mass m removed and added
back at mass mf2 . In the limit m∞ →∞, eq. (4.6) leads to

ḡ3,0 = 20− 23r3 + a(−65 + 75r3)
140− 143r2 + 5a(−91 + 93r2) , ḡ3,1 = 240− 245r3 + a(−780 + 798r3)

140− 143r2 + 5a(−91 + 93r2) , (4.7)

ḡ4,0 = 20− 23r4 + a(−65 + 75r4)
140− 143r2 + 5a(−91 + 93r2) , ḡ4,1 = 120− 125r4 + 6a(−65 + 68r4)

140− 143r2 + 5a(−91 + 93r2) . (4.8)

where r = m2
f2
/m2 and a = 1 − ln 2, shown in figure 7 as magenta lines, and compared

to the predictions from the Lovelace-Shapiro amplitude (yellow dot), that lies — again —
outside of the area limited by the magenta lines.

4.2 VMD and spin-2 dominance

As we have seen, for amplitudes satisfying M/s2 → 0 at large energies, spin-1 states
decouple and our previous arguments for VMD no longer hold. In this case, spin-1, spin-
0 and higher spin contributions are independent phenomenological quantities and VMD
would be a mere accident of Nature. In spite of this, we still expect the f2 coupling to
pions to be larger than that for J ≥ 3 states, in analogy to VMD. This fact was observed
already in ref. [55], and dubbed Low Spin Dominance. To quantify this statement, we
define

ḡ2
i = g2

iππ

g2,0m4
i

, (4.9)

and look for their largest allowed values compatible with positivity. For scalars and vectors,
that decouple from the null constraints, we have

ḡ2
s , ḡ

2
ρ ≤ 1 . (4.10)

For the spin-2 state, instead, we obtain

ḡ2
f2 . 0.80 . (4.11)

Similarly to the spin-1 meson in the case M/s2 → 0, this latter bound is saturated by
the J > 1 su-model. The QCD experimental value (extracted from data in [54]) is ḡ2

f2
=

0.41± 0.25 and is much smaller than eq. (4.11). This is due to the presence of the ρ-meson
that also contributes to the normalization factor g2,0 and therefore makes ḡ2

f2
smaller. For

higher-spin states, we find, taking mi/mf2 ∼ 1.3,

ḡ2
ρ3 . 0.14 , ḡ2

f4 . 0.04 . (4.12)
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Interestingly, if we assume ḡρ 6= 0 (which is not implied by the null constraints), we
can still find a bound on the maximal contribution to the Wilson coefficients arising from
J > 1 states:

ḡ2,1
ḡ2,1|ρ

. 1 + 0.17
1− ḡ2

ρ

ḡ2
ρ

. (4.13)

Here we have used that theories containing J ≥ 2 mesons have 〈1/m4〉J−odd/〈1/m4〉 . 0.17,
with the bound saturated by the J > 1 su-model. Taking for instance ḡ2

ρ ∼ 0.5, we obtain
from eq. (4.13) that the ρ contributes & 80%: it still dominates, in line with VMD.

5 Conclusions

We have studied pion scattering amplitudes in the large-Nc limit, using dispersion relations
based on crossing-symmetry, unitarity and causality of the QCD dynamics. Under different
assumptions about the high-energy behavior of amplitudes, but agnostic of the specific
meson spectral density, we have identified the allowed regions of parameter space for the
low-energy Wilson coefficients.

For amplitudes with M(s) . s at high-energy, building upon ref. [25], we have made
progress in several directions. By separating theories with J = 0 mesons only, from theories
with J ≥ 1, we have revealed a pattern of kinks that characterizes both the leading and
the more irrelevant Wilson coefficients. Some kinks are populated by known theories, such
as the linear sigma model (involving only a spin-0 meson in the UV completion) and the
(scalarless) su-model, that involves a degenerate spectrum of infinitely many higher-spin
resonances. The other kinks appear to be associated with a more complex high-energy
spectrum, but a numerical exploration of the constraints converges slowly. In these points,
we have been able to solve the null constraints analytically, by translating them into a
1D moment problem, and shown that at the kink sits a theory with a single light spin-1
resonance, the ρ meson.

There is one part of the boundary of the allowed region of Wilson coefficients that
still eludes analytic methods: here we have found that the scalar-subtracted Lovelace-
Shapiro (and part of the Coon) amplitude, provides the best analytical approximation
of the constraints — within the numerical bounds but outside the region spanned by
simpler theories. This suggests that possibly another deformation of the Lovelace-Shapiro
amplitude exists which better approximates the entire boundary.

We have also shown how the soft high-energy behavior of amplitudes implies, via
positivity bounds, Vector Meson Dominance and explains the success of holographic QCD.
The reason is that although these models do not incorporate higher-spin states, positivity
constraints tell us that their contributions in low-energy quantities have to be small.

For amplitudes that are not as soft at high-energy, but that still respect the Froissart-
Martin boundM(s) . s log2 s, we have found that analogous results hold. Now, theories
with states with J = 0 or J = 1 decouple from the rest and can be studied in isolation.
The remaining theories with J ≥ 2 also have kinks, populated by the (scalarless and
vectorless) su-model or by a theory with a single light spin-2 meson. In this context, we
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have highlighted a version of “spin-2 meson dominance” which coincides with the Low Spin
Dominance defined in ref. [55].

The comparison between our results and large-Nc lattice simulations (see figure 4) em-
phasizes the complementarity between the two methods and lies down an exciting symbiotic
program that combines analytic and lattice methods to corner QCD.

The physics captured by the chiral Lagrangian is rich and describes many processes
beyond ππ scattering: the program of cornering large-Nc QCD with positivity bounds
can move forward in many directions. An important direction for further study would
be processes involving pions interacting with external sources, scalars or photons. Here
we expect that including full unitarity of the QCD amplitude, as done by ref. [56] in the
context of the a-anomaly, would reveal an interesting interplay between the chiral anomaly,
the QED minimal coupling, and the parameters studied in this article. This direction of
research is interesting also in the framework of physics beyond the Standard Model, in
particular for the question of whether the Higgs is composite or not. There, ref. [57]
proposed a set of power-counting rules (on of which was dubbed minimal coupling) which
are realized at weak coupling and in string theory — it would be interesting to prove this
in the wider context of dispersion relations.

On a different front, it would be interesting to incorporate more systematically real-
world QCD data to shape the meson spectrum, or vice-versa, see e.g. [58]. To this goal,
it is essential to first understand finite Nc effects, as discussed in the single-flavor case in
refs. [4, 59] — a task that we will leave for future work [60, 61].

From a more technical point of view, it is important to bring the analytic methods we
have used in this work into a more systematic tool to identify all theories at the boundary,
e.g. via a clever use of Lagrange multipliers and resummations at all orders. This would
allow us to understand if the Lovelace-Shapiro amplitude (with subtracted scalars, or
scalars and vectors) is indeed extremal or not. Here it would be useful to further understand
which deformations of known amplitudes are consistent with unitarity, along the lines
of [62–64].
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A Numerical bootstrap

In this appendix, we briefly explain the numerical optimization procedure used in this
article, following [7, 8, 25]. From eq. (2.17) we know that,〈

Xn,l(m2, J)
〉

= 0 ,
〈
Yn,l(m2, J)

〉
= 0 , (A.1)

while eq. (2.12) implies,

gn+l,l =
〈
gn+l,l(m2, J)

〉
, where gn+l,l(m2, J) = 2l

l!
P

(l)
J (1)

m2(n+l) . (A.2)

If we define the vectors

~v1 =


1
0
...
0

 , ~vn =


0
1
...
0

 , ~vHE(m2, J) =


−g1,0(m2, J)M2

−gn,l(m2, J)M2n

Y2,1(m2, J)
...

 , (A.3)

then the following equation holds

g1,0M
2~v1 + gn,lM

2n~vn +
〈
~vHE(m2, J)

〉
= 0 . (A.4)

This equation can be adjusted to include more Wilson coefficients.Now, multiplying every-
thing by a vector ~α we can solve the following optimization problem:

maximize ~α · ~v1

such that ~α · ~vHE(m2, J) ≥ 0 (A.5)
~α · ~vn = ±1 ,

where positivity of the high-energy average and the normalization ~α · ~vn = +1 will yield
the upper bound g̃n,l ≤ −~α(+) · ~v1, while ~α · ~vn = −1 the lower bound g̃n,l ≥ ~α(−) · ~v1.

A problem of this kind is solved using a semidefinite problem solver such as SDPB [65].
Notice that in this procedure, we divided everything by the positive term g1,0M

2 and for
the last term in eq. (A.4) we reabsorbed it in the definition of the high-energy average.
Furthermore SDPB can only impose the positivity condition in eq. (A.6) at the level of
polynomials, therefore we must perform the change of variables m2 → M2(1 + x) with
x ≥ 0 and absorb the common denominator once again in the definition of the high-energy
average. We can also implement a mass gap simply by modifying the above change of
variables to the one m2 →M ′2(1+x), whereM ′/M is the mass gap. Numerically, eq. (A.4)
is evaluated on a grid in x and J . The choice of the maximum value Jmax depends on the
number of null constraints we want to consider; as more null constraints are included, a
bigger Jmax must be chosen in order to ensure the convergence of the bounds.

In the specific case of constraining g̃2,0, g̃2,1, we input fixed values of g̃2,0, and use

~v1 + g̃2,0~v2 +
〈
~vHE(m2, J)

〉
= 0 . (A.6)
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Then we probe the allowed values of g̃2,0 to find bounds on g̃2,1,

(1 + g̃2,0)~v1 + g̃2,1~v2 +
〈
~vHE(m2, J)

〉
= 0 . (A.7)

To extract a ρ state from the high-energy average and impose a mass gap between the ρ and
the spectrum in the UV (as explained in the paragraph above), we define ~vρ = ~vHE(m2

ρ, 1).
Then we start by bounding g̃2,0 via,

~v1 + g̃2
ρ~vρ + g̃2,0~v2 +

〈
~vHE(m2, J)′

〉
= 0 . (A.8)

We can both reabsorb the term g̃2
ρ~vρ in ~v1 if we want to assume a value for the coupling,

otherwise we can add it to the high-energy average in the positivity condition eq. (A.6).
Then we use the allowed values of g̃2,0 to bound g̃2,1 with the equation

(1 + g̃2,0)~v1 + g̃2
ρ~vρ + g̃2,1~v2 +

〈
~vHE(m2, J)′

〉
= 0 . (A.9)

The procedure described above gives the plots shown in figures 3, 4. As we vary nmax (the
number of null constraints included), features of the exclusion plots vary.

B Minimum of µ0

A measure that reproduces eq. (3.12) is dµ̃(x) ≡ 4K0(2
√
x)dx, where K0 is the Bessel

function of the second kind. The (Stieltjes) moment problem associated with eq. (3.13)
is indeterminate, in the sense that there exist multiple measures dµ(x) that give rise to
this sequence of moments. For instance, asymptotically K0(

√
x) → e−

√
x has the same

moments as e−
√
x(1 + w cos

√
x) for any w. For this reason, as far as µ0 is concerned, we

will treat the measure as unknown, and employ dµ̃(x) only for µn, n ≥ 1.
We separate the integration domain I ≡ [0,∞[ into the origin 0 and IL ≡]0, L], where

eventually we will take L→∞. Physically this corresponds to separate out the contribution
of states with infinite mass but fixed spin J ≥ 1. As noted already on page 13, heavy
states contribute more to lower, rather than higher, moments; in what follows we will
see that in this case infinitely heavy states (x = 0) contribute only to the first moment.
Indeed, moments µn with n ≥ 1 have no support on 0 and therefore µn = µILn , where
µILn =

∫
IL
xndµ(x) > 0 are also moments. Instead µ0 has support in 0 (we call it µ0

0 ≥ 0),
and we can write µ0 = µ0

0 + µIL0 ≥ µ
IL
0 .

To prove that µIL0 can be as small as 1, we define a sequence of functions built using
positive powers of x, fn(x) = ∑n

k=1 akx
k, so that

0 ≤ 1− fn(x) ≤ 1 x ∈ IL , (B.1)

and such that fn converges pointwise to unity limn→∞ fn(x) → 1 on IL (for instance, a
candidate for fn(x) is 1/x times the Taylor expansion of 1/x in L). Then, integrating over
the measure,

0 ≤
∫
IL

(1− fn(x))dµ(x) = µIL0 −
∫
IL

fn(x)dµ̃(x) , (B.2)
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where the last integral can be written in terms of higher moments ∑n
k=1 akµ

IL
k and provides

an expression for the minimum of µIL0 in terms of higher-moments only. Now we can use
the dominated convergence theorem to write

µ0 ≥ µL0 ≥ lim
n→∞

∫
IL

fn(x)dµ̃(x) =
∫
IL

dµ̃(x) . (B.3)

Since x corresponds to (the square of) impact parameter, in theories with a mass gap,
the measure µ(x) falls off exponentially at large x.

Since the measure decreases exponentially at large x, the limit L→∞ is regular, and
the arguments still hold. For L → ∞, the integral in eq. (B.3) is known, and we find,
µ0 ≥

∫
dµ̃(x) = 2 which is equivalent to

g̃2,0 ≤
1
3 . (B.4)

This implies that the kink must lie at (g̃2,1, g̃2,0) = (4/3, 1/3), corresponding to a theory of
a spin-1 particle at mass M , and higher-spin states at ∞, as in eq. (2.25).

Higher kinks. These arguments can be exploited also to obtain the kink positions in
the planes of other Wilson coefficients. In particular, considering only spins J ≥ 1 (i.e.
singling out the spin-0 contribution), one finds that the allowed regions of (g̃n,1, g̃n,0) have
also kinks, see figure 5. Again, numerically the position of such kinks converges very slowly,
but analytically we can prove that their position is at,

(g̃n,1, g̃n,0) = (2/3, 1/3) , for n > 2 . (B.5)

Indeed, from eq. (3.28), we have for J ≥ 1 that gn,1
gn,0
≥ 2. Moving along the extremal

line gn,1 = 2gn,0, corresponding to a spin-1 state, the kink resides at the largest value of
gn,0/g1,0. To find this value one has to ask whether it is possible add to the spin-1 state a
spectrum of states that enhance gn,0/g1,0 without affecting the ratio gn,1/gn,0 (n = 3, 4, . . .).
This latter condition implies, from eq. (3.28),

〈 J 2

m2n
〉
→ 0 and therefore also

〈
1/m2n〉→ 0.

This leads to
g̃n,0 = 1

1 + M2

g2
ρππ

〈 1
m2 〉

. (B.6)

Following the same reasoning as before, one can obtain that M2

g2
ρππ

〈 1
m̂2 〉 ≥ 2, and therefore

g̃n,0 ≤ 1/3, leading to eq. (B.5). Also this kink lies at the extremum of the spin-1 line.

C The su-models

Let us consider the most general theory of a degenerate spectrum that contributes to the
four-pion amplitude M(s, u) [7, 8]. This means that all states have equal mass m, and
therefore the denominator of this amplitude is fixed to beM(s, u) ∝ 1/((s−m2)(u−m2)).
If we further demand that eq. (2.6a) and eq. (2.6b) are satisfied for kmin = 1, we are led to

M(s, u) = a1m
4 + a2m

2(s+ u) + a3su

(s−m2)(u−m2) , (C.1)
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where ai are constants. The Adler’s zero condition fixes a1 = 0. Then, aside from a global
multiplicative factor, the amplitude has only one free parameter. We can write it as

M(su)
1 (s, u) = m2(s+ u) + λsu

(s−m2)(u−m2) , (C.2)

where the possible values of λ are determined by unitarity. Indeed, imposing the positivity
of the residues of eq. (C.2), we obtain

− 2 ≤ λ ≤ 2 ln 2− 1
1− ln 2 . (C.3)

In the limiting case λ = −2, the residues of all J > 0 states are zero, and we are left with
the scalar amplitude eq. (2.22). In the other limit,

λ = 2 ln 2− 1
1− ln 2 ' 1.26 , (C.4)

the residue of the spin-0 state is zero, leading to an amplitude mediated by an infinite
tower of states of spin J > 0 and mass m. We will refer to this latter case as the J > 0
su-model.

Expanding eq. (C.2) for s, u� m2, we can obtain the Wilson coefficients:

gn,0 = 1
m2n , gn,l = 2 + λ

m2n (n, l > 0) . (C.5)

For eq. (C.4), the Wilson coefficients, normalized as in eq. (3.1) for M = m, are given by

g̃n,0 = 1 , g̃n,l = 1
1− ln 2 ' 3.26 (n > 1, l > 0) . (C.6)

These are shown in figures 3–5 as a black dot.
We can proceed in a similar way to construct the most general amplitude of degenerate

high-spin states, but now satisfying eq. (2.6a) and eq. (2.6b) for kmin = 2. Imposing the
Adler’s zero condition, such amplitude is given by (up to a multiplicative constant factor)

M(su)
2 (s, u) = m2(s+ u) + λ1su+ λ2(s2 + u2)

(s−m2)(u−m2) . (C.7)

The values of the constants λ1 and λ2 determine different theories according to:

• For 2 + λ1 + 2λ2 = 0, the residues for J > 1 vanish and we have a theory with only
a spin-0 and spin-1 state.

• For λ2 = (2 + λ1) 6 ln 8−12
25−36 ln 2 , the residue for the spin-1 state is zero and we have a

theory with J = 0 and J > 1.

• For λ2 = −1 + 1−λ1(ln 4−2)
ln 16−1 , the residue for the spin-0 vanishes and we have a theory

with spins J > 0.
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Furthermore, for λ1 = −2, λ2 = 0, we recover the scalar amplitude eq. (2.22), while for
λ1 = λ2 = −2/3 we obtain the spin-1 amplitude eq. (2.24). We are interested in the case
where the amplitude eq. (C.7) contains only J > 1 states which corresponds to taking

λ1 = 20 ln 2− 13
19− 28 ln 2 , λ2 = 6 ln 8− 12

19− 28 ln 2 . (C.8)

We will refer to this case as the J > 1 su-model.
The Wilson coefficients of eq. (C.7) are given by

g1,0 = 1
m2 , g2,1 = 2 + λ1

m4 , gn,0 = 1 + λ2
m2n (n > 1) ,

gn,1 = 2 + λ1 + λ2
m2n , gn,l = 2 + λ1 + 2λ2

m2n (n, l > 1) .
(C.9)

For the case eq. (C.8), normalizing the coefficients as given in eq. (4.1), we have

ḡn,0 = 1 , ḡn,1 = 18 ln 2− 13
10 ln 2− 7 ' 7.64 , ḡn,l = 1

7− 10 ln 2 ' 14.59 (n > 2, l > 1) . (C.10)

These are shown in figure 7 as a black dot.

C.1 Two-mass su-model

The su-models define part of the boundaries of the allowed regions of the Wilson coeffi-
cients. To see this, we can deform the above su-models by introducing an additional pole
in the amplitude, i.e.,M(s, u) ∝ 1/((s−m2)(u−m2)(s−M2)(u−M2)). In this case the
most general amplitude can be written as

M(s, u) =M(su)
1 (m) + αM(su)

1 (M) + β s2u2

(s−m2)(u−m2)(s−M2)(u−M2) , (C.11)

that corresponds to two su-models (eq. (C.2)) with mass m and M respectively, and an
extra term. Apart from the masses, the amplitude has 4 parameters: the two λ of the
su-models, α and β. We are interested in this model without the scalars. Removing the
scalars in the two su-models fixes the λ’s to the value eq. (C.4). Removing the scalar from
the last term of eq. (C.11) corresponds to adding to the amplitude the term

β

[
f(m,M)

( 1
s−m2 + 1

u−m2

)
+ (M ↔ m)

]
, (C.12)

where

f(m,M) =
m4M2 +m6 (ln 2− 1) +m2M4 ln M2

m2+M2

(m2 −M2)2 . (C.13)

Requiring the positivity of the spectral function for the J > 0 states in eq. (C.11) leads
to β ≥ 0.

Eq. (C.11) with eq. (C.12) leads to

g̃2,1
g̃2,0

=
3.26

(
1
m4 + a

M4

)
(

1
m4 + a

M4

)
− β

(
f(m,M)
m4 + f(M,m)

M4

) . (C.14)

Since β(f(m,M)
m4 + f(M,m)

M4 ) is a positive-definite function, we see that the ratio g̃2,1/g̃2,0 is
bounded from below by the su-model.
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D The Lovelace-Shapiro amplitude

The Lovelace-Shapiro (LS) amplitude for the scattering of four pions is defined as [26, 27]

M(LS)(s, u) = Γ(1− α(s))Γ(1− α(u))
Γ(1− α(s)− α(u)) , (D.1)

where α(s) = α0 + α′s is referred as the Regge trajectory. We will fix the values of α0
and α′ by requiring that eq. (D.2) satisfies the Adler zero condition, M(LS)(s, u) → 0 for
s, u→ 0, and that the first pole of eq. (D.2) occurs for s = m2

ρ. These two conditions lead
to α0 = 1/2 and α′ = 1/(2m2

ρ) [66] and then we can write

M(LS)(s, u) =
Γ
(

1
2 −

s
2m2

ρ

)
Γ
(

1
2 −

u
2m2

ρ

)
Γ
(

t
2m2

ρ

) . (D.2)

By looking at the poles of eq. (D.2), one can see that the LS amplitude corresponds to a
theory of higher-spin states with masses

m2
n = m2

ρ(2n+ 1) , n = 0, 1, 2, . . . . (D.3)

For a given n, there are at most n + 1 states with spin J = 0, 1, . . . , n + 1. Furthermore,
eq. (D.2) satisfies the condition eq. (2.6a) and eq. (2.6b) with kmin = 1.

The first Wilson coefficients arising from eq. (D.2) in a low-energy expansion are
given by

g1,0 = π

2m2
ρ

, g2,0 = 1
2g2,1 = π ln 2

2m4
ρ

, g3,0 = π3+12π ln2 2
48m6

ρ

, (D.4)

g3,1 = 3π ln2 2
4m6

ρ

, g4,0 =
π
(
π2 ln 2 + 4 ln3 2 + 6ζ(3)

)
48m8

ρ

, (D.5)

g4,1 =
π
(
π2 ln 2+16 ln3 2+3ζ(3)

)
48m8

ρ

, g4,2 =
π
(
4 ln3 2− ζ(3)

)
8m8

ρ

, (D.6)

with ζ the Riemann zeta function. For the normalized Wilson coefficients defined in
eq. (3.1) we have, taking M = mρ,

g̃2,0 ' 0.69 , g̃2,1 ' 1.39 , g̃3,0 ' 0.65 , g̃3,1 ' 0.72 , g̃4,0 ' 0.64 , g̃4,1 ' 0.66 , g̃4,2 ' 0.03 ,
(D.7)

while for the normalized coefficients in eq. (4.1), we have

ḡ2,1 ' 2 , ḡ3,0 ' 0.94 , ḡ3,1 ' 1.04 , ḡ4,0 ' 0.92 , ḡ4,1 ' 0.95 , ḡ4,2 ' 0.05 . (D.8)

Since a theory of scalars provides a consistent UV completion of the pion amplitude M,
satisfying eq. (2.6a) and eq. (2.6b) with kmin = 1, we can find a new consistent amplitude
by subtracting the scalars from eq. (D.2). This leads to

M(LS)
J>0(s, u) =M(LS)(s, u)−

∞∑
n=0

[
m2
n

s−m2
n

κLS
s,0 + (s↔ u)

]
, (D.9)

– 34 –



J
H
E
P
0
6
(
2
0
2
3
)
0
9
4

with
κLS
s,J = 2J + 1

2

∫ 1

−1
dx PJ(x) Res

s=m2
n

[
M(LS)(s, u(x))

]
, (D.10)

where u(x) = −s(1− x)/2. From eq. (D.9), we obtain by expanding at small s, u:

g̃2,0 ' 0.55 , g̃2,1 ' 2.05 , g̃3,0 ' 0.49 , g̃3,1 ' 1.07 , g̃4,0 ' 0.48 , g̃4,1 ' 0.97 , g̃4,2 ' 0.05 .
(D.11)

In a similar way, we can also remove the (infinite) spin-1 states of eq. (D.9) to obtain an
amplitude that still satisfies the Froissart-Martin condition, eq. (2.6a) and eq. (2.6b) with
kmin = 2:

M(LS)
J>1(s, u) =M(LS)

J>0(s, u)−
∞∑
n=0

[
m2
n + 2u
s−m2

n

κLS
s,1 + (s↔ u)

]
. (D.12)

From eq. (D.12) we obtain

ḡ2,1 ' 0.97 , ḡ3,0 ' 0.71 , ḡ3,1 ' 5.99 , ḡ4,0 ' 0.60 , ḡ4,1 ' 4.18 , ḡ4,2 ' 8.15 . (D.13)

E The Coon amplitude

The Lovelace-Shapiro amplitude presented in appendix D can be generalized to a larger
class of amplitudes depending on an additional parameter q. This is the so-called Coon
amplitude, which was first proposed in [28]:11

Mq(s, u) = C(σ, τ, q)
∞∏
n=0

(
1− qn+1) (στ − qn+1)
(σ − qn+1) (τ − qn+1) , (E.1)

where σ = 1+(q−1)(α0 +α′s) and τ = 1+(q−1)(α0 +α′u). As explained in appendix D,
we take α0 = 1/2 and α′ = 1/(2m2

ρ). The parameter q takes values between 0 and 1, and
in the limit q → 1 we recover the LS amplitude eq. (D.2). There is some freedom in the
choice of the prefactor C, as long as it satisfies limq→1C(σ, τ, q) = 1.

The Coon amplitude has an infinite number of simple poles at

sn = m2
ρ

1 + q − 2qn+1

1− q , n = 0, 1, 2, . . . . (E.2)

The corresponding residues are

Res
s=sn

Mq(s, u) = C(σn, τ, q)
2qn+1

1− q
τ − 1
τn+1 m2

ρ

n−1∏
l=0

(τ − ql−n)
(1− ql−n) , (E.3)

where σn = σ(s = sn). It is important to remark that the spectrum has an accumulation
point at s∗ = limn→∞ sn = m2

ρ
1+q
1−q . In the limit q → 1, the accumulation point is located

at infinity and we recover the evenly-spaced spectrum of the LS amplitude.
11The idea of the Coon amplitude goes back to an earlier work by Coon [67], where he defined a gen-

eralization of the Veneziano amplitude which was slightly different from eq. (E.1). Shortly after that he
proposed the Coon version of Lovelace-Shapiro amplitude together with Sukhatme and Tran Thanh Van
in [28].
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It is customary to fix the prefactor C(σ, τ, q) with the further assumption that the
residues of the Coon amplitude are polynomials in u, since it is believed that non-
polynomial residues lead to problems with the locality of the theory. The prefactor is
in this case set to

C(σ, τ, q) = q
lnσ ln τ
ln q ln q , (E.4)

which reduces to C(σn, τ, q) = τn+1 at the sn pole. This term cancels the factor τn+1 in
the denominator of eq. (E.3) and ensures that the residues are polynomials. In this case,
we have that for any n, there are n + 1 states with spin J = 0, 1, . . . , n + 1, as in the LS
amplitude.

Using the prefactor eq. (E.4) makes however the Coon amplitude eq. (E.1) non-
meromorphic. In addition to the simple poles, there is a branch cut starting at the accu-
mulation point s∗. Although the physical meaning of this kind of singularities is unclear,
amplitudes with branch cuts can still obey the requirements of unitarity, crossing symmetry
and Regge boundedness, so it is interesting to include them in our study.

Regarding the high-energy behavior, the amplitude with prefactor eq. (E.4) grows
at fixed u like Mq(s, u) ∼ f(u) sln τ/ ln q. For negative u, ln τ/ ln q < 0.5, so the am-
plitude obeys eq. (2.6a) for kmin = 1. At fixed t, the amplitude grows like Mq(s, u) ∼
sln((1−q)α′s)/ ln q. Since ln((1− q)α′s)/ ln q < 0.5, it also obeys eq. (2.6b) for kmin = 1.

The last point to address is the unitarity of the Coon amplitude. We have found that
the J = 0 states have negative residues for all n > 0, making the amplitude non-unitary.
This result is in agreement with the early study [68],12 which pointed out the presence
of ghosts. On the other hand, we have found that the rest of the J states have positive
residues inside the scope of our numerical searches. As for the branch cut discontinuity, it
can also be expanded in partial waves according to eq. (2.8). We have obtained that the
spectral density ρJ(s) is positive for all J except from J = 0. Due to this problems, we
will not discuss this case further.

On the other hand, relaxing the assumption of polynomial residues, we can simply take
C(σ, τ, q) = 1, and the amplitude becomes meromorphic (there is no branch cut). We now
have an infinite number of spins present for each n. At large s, taking both fixed u and
t, we have Mq(s, u) ∼ constant. Therefore it satisfies both eq. (2.6a) and eq. (2.6b) for
kmin = 1. For C(σ, τ, q) = 1 we have also found that the only negative residue corresponds
to the J = 0, n = 1 state only in the small region 0.94 . q < 1.

The contribution of the Coon amplitude with C = 1 is shown in figure 3 for q ∈ [0, 1].
We also show the case in which all scalars are removed from the spectrum. In the limit
q → 1 the Coon amplitude approaches the J > 0 Lovelace-Shapiro model, while for q → 1,
the Coon amplitude is dominated by the n = 0 level (the n > 0 levels decouple), giving
the J > 0 su-model.

12Some recent works [69–71] on the Veneziano version of the Coon amplitude have shown that it is
unitary in D = 4 dimensions. Our result agrees with the results of Coon and Yu [68], who considered the
Lovelace-Shapiro version of the Coon amplitude.
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