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1 Introduction

In the early 1970s, Hawking proposed a black hole radiation called Hawking radiation using
quantum field theory techniques on a curve space-time background [1, 2]. The discovery
of Hawking radiation is one of the significant developments in gravitational physics. It
shows that black holes have a thermodynamical features. Refs. [3, 4] determined that the
horizon area and the black hole’s entropy are proportional. More precisely, the black hole’s
entropy is equal to one-fourth of its horizon area. Since then, theoretical physicists have
paid a lot of attention to Hawking radiation and a number of approaches have been used
to determine Hawking radiation.

Generally, there are two approaches to investigate the imaginary part of the action.
They are the radial null geodesic method and the Hamilton-Jacobi method. The radial null
geodesic method was put forth by Parikh and Wilczek [5–8]. In this method, the emitted
particles act as the potential barrier and the semiclassical WKB approximation is used
to determine the imaginary part of the radial action. Later, Zhang and Zhao [9–11] have
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made significant progress by extending Parikh-Wilczek method to non-spherical symmetric
stationary black holes and the radiation of charged massive particle. Moreover, using the
Parikh-Wilczek method, extensive investigations of many types of black holes have been
conducted [12–16]. The second is the Hamilton-Jacobi method, used by Angheben et
al. [17] and Vagenas [18] as an extension of the complex path integral method introduced
by Padmanabhan et al. [19–21]. In both methods, the WKB approximation is used to
investigate the tunneling probability for classically forbidden trajectory from inside to
outside the horizon and it is given by Γ = exp

[
−2

~ Im I
]
, where I and ~ denote the

semiclassical action of the outgoing particle and Planck’s constant. Kerner and Mann [22,
23] investigated the tunneling of spin-1/2 fermions particle from rotating and non-rotating
black holes using Dirac equation, Pauli sigma matrix and Fenyman prescription. By the
fermions tunneling method the Hawking radiation from the black ring is also derived [24].
Using their method, many interesting results have been obtained in [25–28]. Damour and
Ruffini [29] used a new approach called tortoise coordinate transformation to study Hawking
radiation. Later, Sannan [30] extended the work of Damour and Ruffini by deriving the
probability distributions for boson and fermions emission from a black hole. Moreover,
topological approach has been used to derive Hawking temperature of black holes [31–35].

The existence of a minimum measurable length that can be identified with the order
of the Planck scale is predicted by numerous quantum gravity theories, such as string the-
ory, loop quantum gravity, non-commutative geometry and Gedanken experiments [36–42].
Constructing new theoretical models is one of the fields of study for quantum gravity. The
Generalized Uncertainty Principle (GUP) is a modified theory that realizes this minimum
length. It is the generalization of the Heisenberg uncertainty principle (HUP). The modified
fundamental commutation relation proposed by Kempf et al. [43] is of the form[

xi, pj
]

= i~δi,j
[
1 + βp2], (1.1)

where the positions xi and momentum operators pj are defined by

xi = x0i, pj = p0j
(
1 + βp2

0
)
. (1.2)

Then x0i and p0j satisfy the canonical commutation relations as
[
x0i, p0j

]
= i~ δij . The

corresponding GUP takes the form

∆x∆p ≥ ~
2
[
1 + (∆p)2β

]
, (1.3)

where β = β0l2p
~2 = β0

M2
p c

2 . Here β0(≤ 1034), lp andMp represent the dimensionless parameter
of order unity, Planck length and Planck mass respectively.

The implications of the aspects of GUP have been investigated in many contexts such
as modifications of the quantum Hall effect, unruh effect, neutrino oscillations, Landau
levels, Newton’s law, cosmology, and the weak equivalence principle (WEP) [44–52]. Adler
et al. [53] studied the influence of GUP on the thermodynamics of the Schwarzschild black
hole. Later, ref. [54] investigated the tunneling of scalar and fermion particles from a
Schwarzschild black hole immersed in an electromagnetic universe under the effect of GUP
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. Further, using the Parikh-Wilczek tunnelling approach, Nozari and Saghaf [55] stud-
ied the Hawking radiation for massless scalar particles in the background geometry of
Schwarzschild black hole and retrieved the tunnelling rate as well as the corrected Hawk-
ing temperature by taking GUP into account. It should be noted that the GUP has also
influenced the thermodynamics of black holes. As a result, the GUP concept has been
applied to various black holes in order to study their thermodynamics properties [56]. Ap-
plying the WKB approximation to the Dirac equation, the tunnelling of fermions from
the Kerr and Kerr-Newman black holes are studied in [57, 58]. Yale [59] investigated the
tunneling of arbitrary scalars, fermions and spin-1 bosons by ignoring back-reaction effects.
Banerjee and Majhi [60, 61] discussed the tunneling of fermions and bosons at the event
horizon of black holes beyond the semiclassical approximation. They derived the modified
Hawking temperature and change in black hole entropy. Ibungochouba et al. [62] studied
fermions quantum tunneling from the BTZ black hole. Li [63] studied the tunneling of
massive spin-1 particle from Reissner-Nordstrom and Kerr black hole under the effect of
quantum gravity. Övgün et al. [64] investigated the charged massive bosons tunneling from
noncommutative charged black holes.

GUP prevents a black hole from complete evaporation as the black hole’s mass ap-
proaches the Planck scale. This late stage of a black hole under Hawking evaporation is
referred as black hole remnant. A black hole remnant consists of a black hole phase that
evaporates under the Hawking radiation, which is either stable or long-lived/meta-stable.
Many researchers have investigated the black hole remnant in [65–72]. In the context of
the information loss paradox, the study of black hole remnant plays a crucial role [73, 74].

This article’s layout is constructed in the following manner: in section 2, we revisit
the generalized field equation for massive vector boson particles. The quantum tunneling
of massive vector boson from KNdS black hole under quantum gravity effects is presented
in section 3. Further, section 4 provides the analysis of the remnant of 3-dimensional
KNdS black hole under quantum gravity effects. The graphical analysis of quantum cor-
rected Hawking temperatures and heat capacities are presented in section 5. Lastly, some
concluding remarks are presented in section 6.

2 Generalized field equations for massive vector bosons

The GUP-corrected Lagrangian of massive vector field Ψµ is given by [63]

LGUP = −1
2
(
D+
µΨ+

ν −D+
ν Ψ+

µ

) (
D−µΨ−ν −D−νΨ−µ

)
− m2

~2 W
+
µ W

−µ

− i

~
eFµνW+

µ W
−
ν , (2.1)

where D±0 =
(
1 + β~2g00D±2

0

)
D±0 , D

±
i =

(
1− β~2giiD±2

i

)
D±i ,

Fµν = ∇̂µAν − ∇̂νAµ with D±µ = ∇µ ± i
~eAµ, ∇̂0 =

(
1 + β~2g00∇2

0
)
∇0 and ∇̂i =(

1− β~2gii∇2
i

)
∇i. Here e, m and Aµ denote the charge of W+ boson, mass of the vector

particle and electromagnetic potential of the black hole respectively.

– 3 –



J
H
E
P
0
6
(
2
0
2
3
)
0
5
4

The generalized action of the massive vector bosons particles takes the form

SGUP =
∫
dx4√−g LGUP

(
Ψ±µ , ∂µΨ±ν , ∂µ∂ρΨ±ν , ∂µ∂ρ∂λΨ±ν

)
. (2.2)

Following from eq. (2.2), the modified wave equation for massive vector bosons is
obtained as

∂µ(
√
−gΨµν)− 3β∂0

[√
−gg00

(
e2A2

0 + i~e∇0A0
)

Ψ0v
]

+3β ∂i
[√
−ggii

(
e2A2

i + i~e∇iAi
)

Ψiv
]

+ 3β∂0∂0
[√
−gg00i~eA0Ψ0v

]
−3β∂i∂i

[√
−ggiii~eAiΨiv

]
+ β~2∂0∂0∂0

[√
−gg00Ψ0v

]
−β~2∂i∂i∂i

[√
−ggiiΨiv

]
+
√
−g i

~
eAµΨµν −

√
−gm

2

~2 Ψν

−
√
−g i

~
eFµνΨµ + β

√
−gg00

[
i~e∇0∇0A0 + 3e2A0∇0A0 −

i

~
e3A3

0

]
Ψ0ν

−β
√
−ggii

[
i~e∇i∇iAi + 3e2Ai∇iAi −

i

~
e3A3

i

]
Ψiν = 0, (2.3)

where GUP modified anti-symmetric tensor Ψµν is given by Ψµν = DµΨν −DνΨµ.

3 Quantum tunneling from KNdS black hole

The line element of KNdS black hole in well known Boyer-Lindquist coordinates
(t, r, θ, ϕ) [75] is expressed as

ds2 = −
(

∆−∆θ a
2 sin2 θ

Σ2ρ2

)
dt2 − 2a sin2 θ[(r2 + a2)∆θ −∆]

Σ2ρ2 dtdϕ+ ρ2

∆ dr2

+ ρ2

∆θ
dθ2 + sin2 θ

[
(r2 + a2)2 ∆θ −∆a2 sin2 θ

]
Σ2ρ2 dϕ2, (3.1)

where

Σ = 1 + Λa2

3 , ρ2 = r2 + a2 cos2 θ, ∆θ = 1 + Λa2 cos2 θ

3 ,

∆ =
(

1− Λa2

3

)(
r2 + a2

)
− 2Mr +Q2.

The electromagnetic potential Aµ of KNdS black hole is given by

Aµ =
Qr
(
δtµ − a sin2 θδϕµ

)
ρ2Σ . (3.2)

Eq. (3.1) describes a charged rotating black hole with mass m, spin parameter a and charge
Q with the cosmological constant Λ. The case Λ = 0 gives the solution of the Kerr-Newman
black hole. For Λ > 0 or Λ < 0, eq. (3.1) represents KNdS black hole or anti KNdS black
hole respectively.
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The horizons of the KNdS can be obtained from the event horizon equation as

∆ =
(

1− Λr2

3

)(
r2 + a2

)
− 2Mr +Q2 = 0. (3.3)

If Λ > 0, eq. (3.3) gives four real roots whenever 1
Λ � M2 > Q2 + a2. The four roots

are rC , rH , r+ and r− (rC > rH > r+ > r−). Here rC denotes the cosmological horizon,
rH represents the event horizon and r− corresponds to the Cauchy horizon. One reaches
singularity r = 0, θ = π

2 and on other side of r = 0, r = r− is considered as another
cosmological horizon [76].

In this coordinate system, the event horizon and the infinite red-shift surface do not
coincide due to rotation. Because of this, it is inconvenient to study the characteristic of
tunneling radiation. So, we perform the dragging coordinate transformation [77]

dϕ

dt
= Ω = −gtϕ

gϕϕ
. (3.4)

The line element (3.1) is reduced to

ds2 = − ∆∆θρ
2

Σ2 [∆θ(r2 + a2)2 −∆a2 sin2 θ
]dt2 + ρ2

∆ dr2 + ρ2

∆θ
dθ2. (3.5)

The non-vanishing component of electromagnetic potential A0 is given by

A0 = (r2 + a2)∆θQr

Σ
[
∆θ(r2 + a2)2 −∆a2 sin2 θ

] . (3.6)

The dragging coordinate transformation makes the geometrical optical limit a reliable
approximation; hence, the WKB approximation can be applied.

Near the event horizon r = rH , we use the approximation

∆(r) = ∆(rH) + (r − rH)∆,r (rH) +O
(
(r − rH)2

)
≈ (r − rH)∆,r (rH), (3.7)

where rH is defined as

rH = 1
α1

(
1 + 4ΛM2

3β2
1α1

+ . . .

)(
M +

√
M2 − (a2 +Q2)α1

)
, (3.8)

where β =
√

1− Λa2

3 and α1 =
√(

1 + Λa2

3

)2
+ 4ΛQ2

3 . Then eq. (3.5) takes the form

ds2 = −(r − rH)∆,r (rH) ρ2(rH)
Σ2 (r2

H + a2)2 dt2 + ρ2(rH)
(r − rH)∆,r (rH)dr

2 + ρ2(rH)
∆θ

dθ2. (3.9)
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The metric determinant and contravariant components of the line element (3.9) are as
follows

g = − ρ6(rH)
Σ2 (r2

H + a2)2 ∆θ

,

g00 = − Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH) ,

g11 = (r − rH)∆,r (rH)
ρ2(rH) , g22 = ∆θ

ρ2(rH) ,

g01 = g02 = g10 = g12 = g20 = g21 = 0. (3.10)

The angular velocity at the event horizon is given as

Ω = a

r2
h + a2 . (3.11)

The surface gravity near the event horizon of the KNdS black hole is obtained as

κ = lim
g00→0

(
−1

2

√
−g

11

g00

dg00
dr

)

=

[
(rH −M)− Λ rH

3
(
2r2
H + a2)](

r2
H + a2) (1 + Λa2

3

) . (3.12)

The original Hawking temperature of the KNdS black hole is obtained from the relation
To = κ

2π [78] as

To =

[
(rH −M)− Λ rH

3
(
2r2
H + a2)]

2π
(
r2
H + a2) (1 + Λa2

3

) . (3.13)

By using the expression of M from eq. (3.3), we derive the heat capacity of the black
hole by using the relation Co = ∂M

∂To
[79, 80] as

Co =
(
∂M

∂rh

)(
∂rh
∂To

)
= 2π

(
a2 + r2)2 (3 + a2Λ

) [
a2 (3 + r2Λ

)
+ 3

(
Q2 − r2 + r4Λ

)]
3 [a4 (r2Λ− 3) + 3r2 (r2 + r4Λ− 3Q2) + a2 (8r4Λ− 3Q2 − 12r2)] . (3.14)

Applying WKB approximation, Ψµ given in eq. (2.3) is taken as

Ψµ = cµ(t, r, θ) exp
[
i

~
S(t, r, θ)

]
, (3.15)

where S is defined as

S(t, r, θ) = S0(t, r, θ) + ~ S1(t, r, θ) + ~2 S2(t, r, θ) + · · · . (3.16)
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By substituting eqs. (3.15), (3.16) and (3.9) in eq. (2.3) and keeping only the lowest
order in ~, we obtain the equations for the coefficients cµ as

(r − rH)∆,r (rH)
ρ2(rH)

[
c0 B2

1 (∂rS0)2 − c1 B0B1 (∂rS0) (∂tS0 + eA0)
]

(3.17)

+ ∆θ

ρ2(rH)
[
c0 B2

2(∂θS0)2 − c2B0B2(∂θS0)(∂tS0 + eA0)
]

+m2c0 = 0,

− Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)
[
c1 B2

0(∂tS0 + eA0)2 − c0 B0B1 (∂rS0) (∂tS0 + eA0)
]

(3.18)

+ ∆θ

ρ2(rH)
[
c1 B2

2(∂θS0)2 − c2B1B2(∂rS0)(∂θS0)
]

+m2c1 = 0,

− Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)
[
c2 B2

0(∂tS0 + eA0)2 − c0 B0B2 (∂θS0) (∂tS0 + eA0)
]

(3.19)

+(r − rH)∆,r (rH)
ρ2(rH)

[
c2 B2

1(∂rS0)2 − c1B1B2(∂rS0)(∂θS0)
]

+m2c2 = 0,

where the Bµ’s are defined as

B0 = 1 + β Σ2 (r2
H + a2)2 (∂tS0 + eA0)2

(r − rH)∆,r (rH) ρ2(rH) ,

B1 = 1 + β (r − rH)∆,r (rH)(∂rS0)2

ρ2(rH) , B2 = 1 + β∆θ(∂θS0)2

ρ2(rH) . (3.20)

Considering the symmetries of the metric (3.9), we carry on the separation of variables
as follows

S0 = −(E − jΩ) t+R(r) + Θ(θ) + U, (3.21)

where E is the energy of the emitted vector particles, j is the angular momentum and U is a
complex constant. On inserting eq. (3.21) in eqs. (3.17)–(3.19), we get a matrix equation as

F (c0, c1, c2)T = 0, (3.22)

where F is a 3× 3 matrix and all the entries are as follows

F11 = (r − rH)∆,r (rH)
ρ2(rH) B2

1R′2 + ∆θ

ρ2(rH)B
2
2J

2
θ +m2,

F12 = −(r − rH)∆,r (rH)
ρ2(rH) (−E + jΩ + eA0)B0B1R′,

F13 = − ∆θ

ρ2(rH)(−E + jΩ + eA0)B0B2Jθ,

F21 = Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)(−E + jΩ + eA0)B0B1R′,

F22 = − Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)(−E + jΩ + eA0)2B2
0 + ∆θ

ρ2(rH)B
2
2J

2
θ +m2,

F23 = − ∆θ

ρ2(rH)B1B2JθR′,
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F31 = Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)(−E + jΩ + eA0)B0B2Jθ,

F32 = −(r − rH)∆,r (rH)
ρ2(rH) B1B2JθR′,

F33 = − Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)(−E + jΩ + eA0)2B2 + (r − rH)∆,r (rH)
ρ2(rH) B2

1R′2

+m2, (3.23)

where R′ = ∂rR and Jθ = ∂θΘ.
To find a non-trivial solution of eq. (3.22), we put the determinant of the matrix F

equals zero, which in turn gives

O(β4)(∂rR)12 +O(β3)(∂rR)10 +O(β2)(∂rR)8 +
[
H6 +O(β2)

]
(∂rR)6

+
[
H4 +O(β2)

]
(∂rR)4 +

[
H2 +O(β2)

]
(∂rR)2 +H0 +O(β2) = 0, (3.24)

where

H6 = 4β
[(r − rH)∆,r (rH)

ρ2(rH)

]3
,

H4 =
(r − rH)2∆2

,r(rH)
ρ4(rH)

[
1 + 4β

{
−(−E + jΩ + eA0)2 Σ2 (r2

H + a2)2
(r − rH)∆,r (rH) ρ2(rH) + ∆θJ

2
θ

ρ2(rH) +m2
}]

,

H2 = 2(r − rH)∆,r (rH)
ρ2(rH)

[
−(−E + jΩ + eA0)2 Σ2 (r2

H + a2)2
(r − rH)∆,r (rH) ρ2(rH) + ∆θJ

2
θ

ρ2(rH) +m2

−2β
{

(−E + jΩ + eA0)4 Σ4 (r2
H + a2)4

(r − rH)2∆2,r (rH) ρ4(rH) − ∆2
θJ

4
θ

ρ2(rH)

}]
,

H0 =
{
−(−E + jΩ + eA0)2 Σ2 (r2

H + a2)2
(r − rH)∆,r (rH) ρ2(rH) + ∆θJ

2
θ

ρ2(rH) +m2
}[

∆θJ
2
θ

ρ2(rH) +m2

+(−E + jΩ + eA0)2 Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH) − 4β
{

(−E + jΩ + eA0)4 Σ4 (r2
H + a2)4

(r − rH)2∆2,r (rH) ρ4(rH)

− ∆2
θJ

4
θ

ρ4(rH)

}]
.

By neglecting the higher order term of β, eq. (3.24) becomes

4β(r − rH)2∆2,r (rH) (∂rR)4

ρ4(rH) + (r − rH)∆,r (rH) (∂rR)2

ρ2(rH) + ∆θJ
2
θ

ρ2(rH) (3.25)

+4β
{

∆2
θJ

4
θ

ρ4(rH) −
(−E + jΩ + eA0)4Σ4 (r2

H + a2)4
(r − rH)2∆2,r (rH) ρ4(rH)

}
+m2

−(−E + jΩ + eA0)2Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH) = 0.
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We obtain the solution to the derivative of the radial action by neglecting the higher
power of β as

∂rR = ±

√√√√− (
J2
θ∆θ +m2ρ2)

(r − rH) ∆,r (rH) + (−E + jΩ + eA0)2 (r2
H + a2)2 Σ2

(r − rH)2 (∆,r (rH))2

(
1 + β

χ1
χ2

)
, (3.26)

where

χ1 = 2∆,r (rH)(r − rH)
(
2J4

θ∆2
θ + 2J2

θm
2∆θρ

2 +m4ρ4
)

− 4Σ2(−E + jΩ + eA0)2
(
r2
H + a2

)2 (
J2
θ∆θ +m2ρ2

)
,

χ2 = ρ2
{

(r − rH)∆,r (rH)
(
J2
θ∆θ +m2ρ2

)
− Σ2(−E + jΩ + eA0)2

(
r2
H + a2

)2
}
. (3.27)

The solution of the radial action is obtained by integrating eq. (3.26) around the pole
r = rH . The imaginary part of the radial action gives the particle’s rate of tunneling as

Im R± = ±Im
∫
dr

√√√√− (
J2
θ∆θ +m2ρ2)

(r − rH) ∆,r (rH) + (−E + jΩ + eA0)2 (r2
H + a2)2 Σ2

(r − rH)2 (∆,r (rH))2

×
(

1 + β
χ1
χ2

)

= ±
π(E − jΩ− eA0)

(
r2
H + a2) (1 + Λa2

3

)
2
[
(rH −M)− Λ rH

3
(
2r2
H + a2)] (1 + β Π) , (3.28)

where Π = 4m2+ 4J2
θ∆θ

ρ2 . R+ andR− stand for the radial action of the outgoing and ingoing
particles respectively. Based on WKB approximation, the probabilities of the vector boson
particles tunneling across the event horizon rH are

Poutgoing = exp
[
−2
{
Im(R+) + Im(U)

}]
and

Pingoing = exp
[
−2
{
Im(R−) + Im(U)

}]
. (3.29)

According to the semiclassical WKB approximation, the ingoing vector boson particles
have a 100% chance of entering the black hole [81]. It shows that Im(R+) = −Im(R−).
Thus the tunneling rate of the vector boson particles is given by

Γ = Poutgoing
Pingoing

= exp [−4 Im R+]

= exp

−2π(E − jΩ− eA0)
(
r2
H + a2) (1 + Λa2

3

)
[
(rH −M)− Λ rH

3
(
2r2
H + a2)] (1 + β Π)

 . (3.30)
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The Hawking temperature of the KNdS black hole under the quantum gravity effect
is obtained as

Td =

[
(rH −M)− Λ rH

3
(
2r2
H + a2)]

2π
(
r2
H + a2) (1 + Λa2

3

) (1− β Π)

= To (1− β Π) , (3.31)

where To =

[
(rH−M)−Λ rH

3 (2r2
H+a2)

]
2π(r2

H+a2)
(

1+ Λa2
3

) is the original Hawking temperature. It is obvious from

the point Π > 0 that the Hawking temperature is modified due to the quantum gravity
effects. The modifed Hawking temperature is lower than the original Hawking temperature
due to the presence of β > 0. Further, the modified Hawking temperature relies on the
mass and angular momentum of the emitted vector boson particles. In the absence of the
quantum gravity effects i.e. β = 0, the original Hawking temperature of KNdS black hole
is recovered.

The modified heat capacity is calculated as

CH = 2π
(
a2 + r2)2 (3 + a2Λ

) [
a2 (3 + r2Λ

)
+ 3

(
Q2 − r2 + r4Λ

)]
3 [a4 (r2Λ− 3) + 3r2 (r2 + r4Λ− 3Q2) + a2 (8r4Λ− 3Q2 − 12r2)]
× (1 + β Π)

= Co (1 + β Π) . (3.32)

From eq. (3.32), it is observed that the modified heat capacity reduced to the original heat
capacity (Co) when β = 0. The modified heat capacity of KNdS black hole increases due
to the quantum gravity effects.

Now using another coordinate transformation φ = ϕ− Ωt [82] where

Ω = a [(r2 + a2)∆θ −∆]
(r2 + a2)2 ∆θ −∆a2 sin2 θ

, (3.33)

then the line element (3.1) reduces to

ds2 = − ∆∆θρ
2

Σ2 [∆θ(r2 + a2)2 −∆a2 sin2 θ
]dt2 + ρ2

∆ dr2 + ρ2

∆θ
dθ2

+
[
∆θ(r2 + a2)2 −∆a2 sin2 θ

]
sin2 θ

ρ2Σ2 dφ2. (3.34)

The corresponding non-zero electromagnetic potentials are given by

A0 = (r2 + a2)∆θ Q r

Σ
[
∆θ(r2 + a2)2 −∆a2 sin2 θ

] , A3 = − Qra sin2 θ

(r2 + a2 cos2 θ)Σ . (3.35)

Using eq. (3.7) in eq. (3.34), we get

ds2 = −(r − rH)∆,r (rH) ρ2(rH)
Σ2 (r2

H + a2)2 dt2 + ρ2(rH)
(r − rH)∆,r (rH)dr

2 + ρ2(rH)
∆θ

dθ2

+ ∆θ

(
r2
H + a2)2 sin2 θ

ρ2(rH)Σ2 dφ2. (3.36)

– 10 –



J
H
E
P
0
6
(
2
0
2
3
)
0
5
4

The metric determinant and the nonzero contravariant components of the line element
given above are as follows

g = ρ4 sin2 θ

Σ4 , g00 = − Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH) ,

g11 = (r − rH)∆,r (rH)
ρ2(rH) , g22 = ∆θ

ρ2(rH) ,

g33 = ρ2(rH)Σ2

∆θ

(
r2
H + a2)2 sin2 θ

. (3.37)

According to WKB approximation, Ψµ from eq. (2.3) can be written as

Ψµ = cµ(t, r, θ, φ) exp
[
i

~
S(t, r, θ, φ)

]
, (3.38)

where S is defined as

S(t, r, θ) = S0(t, r, θ, φ) + ~ S1(t, r, θ, φ) + ~2 S2(t, r, θ, φ) + · · · . (3.39)

By substituting eqs. (3.38) and (3.39) in eq. (3.36), and keeping only the lowest order
in ~, we derive the equations for the coefficients cµ as

(r − rH)∆,r (rH)
ρ2(rH)

[
c0 H2

1 (∂rS0)2 − c1 H0H1 (∂rS0) (∂tS0 + eA0)
]

+ ∆θ

ρ2(rH)[
c0 H2

2 (∂θS0)2 − c2H0H2 (∂θH)(∂tS0 + eA0)
]

+ ρ2(rH) Σ2

∆θ

(
r2
H + a2)2 sin2 θ

(3.40)[
c0H2

3 (∂φS0 + eA3)2 − c3 H0H3 (∂tS0 + eA0) (∂φS0 + eA3)
]

+m2c0 = 0,

− Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)
[
c1 H2

0(∂tS0 + eA0)2 − c0 H0H1 (∂rS0) (∂tS0 + eA0)
]

+ ∆θ

ρ2(rH)
[
c1 H2

2(∂θS0)2 − c2H1H2(∂rS0)(∂θS0)
]

+ ρ2(rH)Σ2

∆θ

(
r2
H + a2)2 sin2 θ

(3.41)[
c1 H2

3(∂φS0 + eA3)2 − c3 H1H3 (∂rS0) (∂φS0 + eA3)
]

+m2c1 = 0,

− Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)
[
c2 H2

0(∂tS0 + eA0)2 − c0 H0H2 (∂θS0) (∂tS0 + eA0)
]

+(r − rH)∆,r (rH)
ρ2(rH)

[
c2 H2

1(∂rS0)2 − c1H1H2(∂rS0)(∂θS0)
]

+ ρ2(rH)Σ2

∆θ

(
r2
H + a2)2 sin2 θ

(3.42)[
c2 H2

3(∂φS0 + eA3)2 − c3 H2H3 (∂θS0) (∂φS0 + eA3)
]

+m2c2 = 0,

− Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)
[
c3 H2

0(∂tS0 + eA0)2 − c0 H0H3(∂tS0 + eA0)

(∂φS0 + eA3)] + (r − rH)∆,r (rH)
ρ2(rH)

[
c3 H2

1(∂rS0)2 − c1H1H3(∂rS0)(∂φS0 + eA3)
]

(3.43)

+ ∆θ

ρ2(rH)
[
c3 H2

2 (∂θS0)2 − c2H2H3 (∂θS0)(∂φS0 + eA3)
]

+m2c3 = 0,
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where the Hµ’s are defined as

H0 = 1 + β
Σ2 (r2

H + a2)2 (∂tS0 + eA0)2

(r − rH)∆,r (rH) ρ2(rH) , H1 = 1 + β
(r − rH)∆,r (rH)(∂rS0)2

ρ2(rH) ,

H2 = 1 + β
∆θ (∂θS0)2

ρ2(rH) , H3 = 1 + β
ρ2(rH)Σ2 (∂φS0 + eA3)2

∆θ

(
r2
H + a2)2 sin2 θ

. (3.44)

Considering the symmetry of the black hole, the corresponding action of the vector
boson particles can be written as

S0 = −(E − jΩ) t+W(r) + Θ(θ, φ) + V, (3.45)

where E, j and V are the energy of the emitted vector particles, angular momentum
and complex constant respectively. On inserting eq. (3.45) in eqs. (3.40)–(3.43), a matrix
equation is obtained as

F (c0, c1, c2, c3)T = 0, (3.46)

where F is a 4× 4 matrix, whose components of the matrix are as follows

F11 = (r − rH)∆,r (rH)
ρ2(rH) H2

1 W ′2 + ∆θ

ρ2(rH)H
2
2 J

2
θ + ρ2(rH)Σ2

∆θ

(
r2
H + a2)2 sin2 θ

×H2
3 (Jφ + eA3) +m2,

F12 = −(r − rH)∆,r (rH)
ρ2(rH) (−E + jΩ + eA0)H0H1W ′,

F13 = − ∆θ

ρ2(rH)(−E + jΩ + eA0)H0H2 Jθ,

F14 = − ρ2(rH) Σ2

∆θ

(
r2
H + a2)2 sin2 θ

(−E + jΩ + eA0) (Jφ + eA3) H0H3,

F21 = Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)(−E + jΩ + eA0)H0H1W ′,

F22 = − Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)(−E + jΩ + eA0)2H2
0 + ∆θ

ρ2(rH)H
2
2J

2
θ

+ ρ2(rH)Σ2

∆θ

(
r2
H + a2)2 sin2 θ

(Jφ + eA3)2H2
3 +m2,

F23 = − ∆θ

ρ2(rH)H1H2 Jθ W ′,

F24 = − ρ2(rH) Σ2

∆θ

(
r2
H + a2)2 sin2 θ

(Jφ + eA3) W ′ H1H3,

F31 = Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)(−E + jΩ + eA0)H0H2 Jθ,

F32 = −(r − rH)∆,r (rH)
ρ2(rH) H1H2 Jθ W ′,
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F33 = − Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)(−E + jΩ + eA0)2 H2
0 + (r − rH)∆,r (rH)

ρ2(rH) H2
1 W ′2

+ ρ2(rH)Σ2

∆θ

(
r2
H + a2)2 sin2 θ

(Jφ + eA3)2H2
3 +m2,

F34 = − ρ2(rH) Σ2

∆θ

(
r2
H + a2)2 sin2 θ

(Jφ + eA3) Jθ H2H3,

F41 = Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)(−E + jΩ + eA0) (Jφ + eA3) H0H3,

F42 = −(r − rH)∆,r (rH)
ρ2(rH) (Jφ + eA3)H1H2 W ′,

F43 = − ∆θ

ρ2(rH) (Jφ + eA3) Jθ H2H3,

F44 = − Σ2 (r2
H + a2)2

(r − rH)∆,r (rH) ρ2(rH)(−E + jΩ + eA0)2 H2
0 + (r − rH)∆,r (rH)

ρ2(rH) H2
1 W ′2

+ ∆θ

ρ2(rH)H
2
2J

2
θ +m2, (3.47)

where W ′ = ∂rW, Jθ = ∂θΘ and Jφ = ∂φΘ.

Eq. (3.46) has a non-trivial solution if the determinant of the matrix F equals zero. If
det(F) = 0, then eq. (3.46) gives

O(β6)(∂rW)18 +O(β5)(∂rW)16 +O(β4)(∂rW)14 +O(β3)(∂rW)12 +O(β2) (3.48)
(∂rW)10 +O(β2)(∂rW)8 +O(β2)(∂rW)6 +O(β2)(∂rW)4 +O(β2)(∂rW)2 +O(β2)

+
[
A∗0(∂rW)2 +A∗1

]{
B0 +B2(∂rW)2 +B4(∂rW)4 +B6(∂rW)6

}
= 0.

(The expressions for A∗i and Bi are given in appendix A.)

Solving eq. (3.48) by neglecting the higher order terms of β, we obtain the solution of
the derivative of radial action as

∂rW =
(
−m

2ρ2(rH) + J2
θ∆θ

(r − rH)∆,r (rH) + (−E + jΩ + eA0)2 (r2
H + a2)2 Σ2

(r − rH)2∆2,r (rH)

− (Jφ + eA3)2 ρ4(rH) Σ2 csc2 θ

(r − rH)
(
r2
H + a2)∆θ ∆,r (rH)

)1
2
×
(

1 + χ1
χ2
β

)
. (3.49)

(The expressions of χ1 and χ2 are given in appendix B.)
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The imaginary part of the radial action is obtained by integrating eq. (3.49) at the
pole, r = rH as

ImW± = ±Im
∫
dr

(
−m

2ρ2(rH) + J2
θ∆θ

(r − rH)∆,r (rH) + (−E + jΩ + eA0)2 (r2
H + a2)2 Σ2

(r − rH)2∆2,r (rH)

− (Jφ + eA3)2 ρ4(rH) Σ2 csc2 θ

(r − rH)
(
r2
H + a2)∆θ ∆,r (rH)

)1
2
×
(

1 + χ1
χ2
β

)

= ±
π(E − jΩ− eA0)

(
r2
H + a2) (1 + Λa2

3

)
2
[
(rH −M)− Λ rH

3
(
2r2
H + a2)] (1 + β Ξ) , (3.50)

where

Ξ = −4 (Jφ + eA3)2 ρ2(rH) Σ2 csc2 θ(
r2
H + a2)2 ∆θ

+ 1
2 ρ4(rH) Σ2 (Jφ + eA3) (Jφ + eA3 − 1)

×
[
3m2

(
r2
H + a2

)2
∆θ sin2 θ

{
5J2

θ∆θ + 3m2 ρ2(rH)
}

+ (Jφ + eA3)3 ρ2(rH) Σ2

×
[
−8J2

θ ∆θ (Jφ + eA3 − 1) +m2 ρ2(rH)
{
8 + 7 (Jφ + eA3)

}]]
. (3.51)

Here W+ and W− indicate the radial action of the outgoing and ingoing particles
respectively. According to WKB approximation, the tunneling probabilities are given by

Poutgoing = exp
[
−2
{
Im(R+) + Im(V )

}]
and

Pingoing = exp
[
−2
{
Im(R−) + Im(V )

}]
. (3.52)

There is a 100% probability of ingoing particle to enter the black hole in accordance
with the semiclassical WKB approximation. Thus, the tunneling rate ofW+ boson particles
is given by

Γrate = Poutgoing
Pingoing

= exp
[
−4{Im(R+)

]
= exp

[−2 π(E − jΩ− eA0)
(
r2
H + a2) (1 + Λa2

3

)
[
(rH −M)− Λ rH

3
(
2r2
H + a2)] (1 + β Ξ)

]
. (3.53)

The Boltzman factor gives the Hawking temperature of the black hole [23]. Thus, the GUP
modified Hawking temperature is derived as

Td4 =

[
(rH −M)− Λ rH

3
(
2r2
H + a2)]

2 π
(
r2
H + a2) (1 + Λa2

3

) (1− β Ξ)

= To (1− β Ξ) , (3.54)
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where To =

[
(rH −M)− Λ rH

3
(
2r2
H + a2)]

2 π
(
r2
H + a2) (1 + Λa2

3

) , is the original Hawking temperature of KNdS

black hole without any quantum gravity effects. The modified Hawking temperature Td4
may be lower or greater than the original Hawking temperature To according to Ξ > 0 or
Ξ < 0 respectively. The modified Hawking temperature depends on the quantum numbers
(mass and angular momentum) of the emitted vector boson particles.

The modified heat capacity is calculated as

CH4 =
(
∂M

∂rh

)(
∂rh
∂Td

)
= 2π

(
a2 + r2)2 (3 + a2Λ

) [
a2 (3 + r2Λ

)
+ 3

(
Q2 − r2 + r4Λ

)]
3 [a4 (r2Λ− 3) + 3r2 (r2 + r4Λ− 3Q2) + a2 (8r4Λ− 3Q2 − 12r2)]
× (1 + β Ξ) . (3.55)

From eq. (3.55), it is observed that the modified heat capacity reduces to the original
heat capacity when β = 0. Thus, the original heat capacity is recovered in the absence of
the quantum gravity effects. The modified heat capacity CH4 is higher or lower than the
original heat capacity Co, according to Ξ > 0 or Ξ < 0 respectively.

4 Remnant of 3-dimensional KNdS black hole

Many studies have shown that the GUP effect could give a black hole remnant [67–
71, 84, 85]. For 3-dimensional KNdS black hole the quantum gravity effects slow down the
increase of Hawking temperature. This leads to the formation of remnants in black hole
evaporation. From this point, we will investigate the remnant of 3-dimensional KNdS black
hole. The tunneling particle’s mass is no longer considered in the following discussion since
the tunneling particles at the event horizon are effectively massless. According to the uncer-
tainty principle, the lower limit of the tunneling particle energy can be expressed [65, 86] as

E ≥ ~
∆x. (4.1)

Near the event horizon, one may take the uncertainty of the position as the radius of the
black hole [65, 86] as

∆x ≈ rBH = rH . (4.2)

From eq. (3.31), we obtain

Td =

[
rH −

1
2

(
1− Λr2

H

3

)(
rH + a2

rH

)
− Q2

2rH
− Λ rH

3
(
2r2
H + a2)]

2π
(
r2
H + a2) (1 + Λa2

3

)
×
(

1− 4βJ2
θ∆θ

r2
H + a2 cos2 θ

)
. (4.3)
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From eq. (4.3), it is observed that when

rH ≤

√
4βJ2

θ

(
1 + Λa2 cos2 θ

)
− 3a2 cos2 θ

3 , (4.4)

the modified Hawking temperature becomes negative. This violates the law of black hole
thermodynamics and thus has no physical meaning. It is clear that the evaporation will
stop under the effects of GUP. Thus the Hawking temperature becomes zero when rH
reaches the minimum radius, rmin as

rmin =

√
4βJ2

θ

(
1 + Λa2 cos2 θ

)
− 3a2 cos2 θ

3 . (4.5)

Using eq. (3.8) in eq. (3.31), we obtain the expression of Td in terms of the mass of the
black hole as

Td ≈
ζ1
ζ2

1− 4βJ2
θ∆θ

1
α2

1

(
1 + 4ΛM2

3β2
1α1

)2 (
M +

√
M2 − (a2 +Q2)α1

)2
+ a2 cos2 θ

 , (4.6)

where

ζ1 = 1
α1

(
1 + 4ΛM2

3β2
1α1

)(
M +

√
M2 − (a2 +Q2)α1

)

×

1− Λa2

3 − 2Λ
3 α2

1

(
1 + 4ΛM2

3β2
1α1

)2 (
M +

√
M2 − (a2 +Q2)α1

)2
−M,

ζ2 = 2π
(

1 + Λa2

3

)a2 + 1
α2

1

(
1 + 4ΛM2

3β2
1α1

)2 (
M +

√
M2 − (a2 +Q2)α1

)2
 . (4.7)

To make the Hawking temperature T ≥ 0 i.e. to ensure the GUP corrected temperature
has a physical meaning, the mass of the black hole must hold the inequality

M ≥ β2
1

8(a2 +Q2)Λ− 6β2
1

[
3
√
−α1(a2 +Q2) + 3

2

{
−4α1(a2 +Q2)

+8α1ζ3
{
3β2

1 − 4(a2 +Q2)Λ
} (
−a2 +Q2 + 4J2

θα1β∆θ − a2α1 cos2 θ
)

3β2
1

} 1
2

 . (4.8)

It is noted that the mass of the black hole has a minimum value which is given by

Mmin = β2
1

8(a2 +Q2)Λ− 6β2
1

[
3
√
−α1(a2 +Q2) + 3

2

{
−4α1(a2 +Q2)

+8α1ζ3
{
3β2

1 − 4(a2 +Q2)Λ
} (
−a2 +Q2 + 4J2

θα1β∆θ − a2α1 cos2 θ
)

3β2
1

} 1
2

 . (4.9)
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Figure 1. Hawking temperature Td with respect to radius of event horizon rH for different values
of β.
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Figure 2. Hawking temperature Td with respect to the radius of event horizon rH for different
values of cosmological constant Λ.

5 Graphical analysis

In this section, we will examine graphically the effects of parameters β, Λ andm on the mod-
ified Hawking temperatures and modified heat capacities with respect to event horizon rH .

5.1 Temperature Td with radius of event horizon rH for 3-dimensional KNdS
black hole

This subsection is devoted to analysing the behaviour of modified Hawking temperature.
The parameters are taken as follows a = 0.3, Q = 1, θ = π

2 and Jθ = 0.1.

1. Figure 1 indicates the variation of the modified Hawking temperature with rH > 0,
for different values of β with fixed value of the cosmological constant Λ = 1 and
m = 0.1. We observe that for β = 25, the temperature decreases and tends to zero.
As the radius of horizon increases for β < 25, the modified Hawking temperatures
become negative. This negative temperature and divergent behaviour reveals the non-
physically unstable state of the black hole [87]. Moreover, for β > 25, as the horizon
increases, the temperature decreases and once the minimum value is reached, the tem-
perature increases. It is worth mentioning that, for β < 25, we observe the nonphys-
ical behaviour with negative temperature and for β = 25, the temperature vanishes.
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Figure 3. Hawking temperature Td with respect to radius of event horizon rH for different values
of m.
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Figure 4. Hawking temperature Td versus radius of event horizon rH for different values of a.

Furthermore, the temperatures are positive when β > 25. The β effects decelerate
the increase in Hawking temperature which is also shown numerically in table 1.

2. Figure 2 shows the behaviour of modified Hawking temperature with rH > 0, for
different values of positive cosmological constant Λ > 0. The parameters are taken as
follows: m = 0.1 and β = 40. It is observed that the modified Hawking temperatures
decrease and attain its minimum values, which is also calculated numerically in
table 2. Later, it keeps on increasing as rH increases and its behaviour is linear.
The change in Λ gives the diverging temperature Td as rH increases.

3. Figure 3 indicates the behaviour of Hawking temperature for different values of m.
At first, the Hawking temperature drops suddenly and after attaining its minimum
point, it keeps on increasing with increasing the horizon radius. Increasing the
values of parameter m tend to increase the modified Hawking temperatures of the
black hole which is also shown numerically in table 3.

– 18 –



J
H
E
P
0
6
(
2
0
2
3
)
0
5
4

a=0.3; m=0.1; Λ = 1
β 25 30 50 70 90
rcH 7.97272 1.81347 1.43917 1.3935 1.37473
T cd 0.00953 0.06208 0.16458 0.26337 0.36169

Table 1. The tabulated values of the critical radius rC
H and the critical temperature TC

H for different
values of β.

a=0.3; m=0.1; β = 40
Λ 0.3 0.4 0.6 0.8 1
rcH 1.4842 1.4876 1.49087 1.49664 1.5016
T cd 0.01115 0.02619 0.05600 0.08596 0.11457

Table 2. The tabulated values of the critical radius rC
H and the critical temperature TC

H for different
values of Λ.

a=0.3; Λ = 1; β = 40
m 0.1 0.3 0.5 0.7 0.9
rcH 1.5016 1.18474 1.16561 1.16027 1.15807
T cd 0.11457 1.07833 2.97447 5.81695 9.60655

Table 3. The tabulated values of the critical radius rC
H and the critical temperature TC

H for different
values of emitted particle mass m.

4. Figure 4 provides the graphical analysis of Td via horizon radius rH for different
values of spin parameter a. The pink line, which corresponds to a = 0 represents the
Hawking temperature graph for Reissner-Nordstrom-de Sitter (RNdS) black hole.
The graph shows that the Hawking temperature of the RNdS black hole is greater
than that of the KNdS black hole. The effect of spin parameter a decelerates the
increase in Hawking temperature. This graphical presentation is compatible with
the numerical calculation of table 4.

From figures 1 to 4 show that the temperature cools down to the minimum TCd , at
rH = rCH and keeps on increasing as rH > rCH .

5.2 Heat capacity CH with radius of event horizon rH for 3-dimensional KNdS
black hole

This subsection focuses on analysing modified heat capacity in different domains of event
horizon radius rH with fixed parameters: a = 0.3, Q = 1, θ = π

2 and J = 0.1. The heat
capacity is connected to the local thermal stability. If the black hole has a negative heat
capacity, it is unstable to thermal radiation and if it has a positive heat capacity, it is
stable to thermal radiation.

(i) For fixed parameters a = 0.3, Λ = 1 and m = 0.5, the variation of heat capacity CH
with the horizon radius rH for different values of β is shown in figure 5. It is observed
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m=0.1; Λ = 1; β = 40
a 0.3 0.4 0.6 0.8 1
rcH 1.44254 1.86004 1.96988 2.07671 2.17653
T cd 0.11791 0.05845 0.04575 0.03314 0.02359

Table 4. The tabulated values of the critical radius rC
H and the critical temperature TC

H for different
values of a.
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Figure 5. Heat capacity CH versus radius of event horizon rH for different values of β.
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Figure 6. Heat capacity CH versus radius of event horizon rH for different values of Λ.

that the phase transition occurs at rH = r∗H = 1.15467, r∗H denotes the position of the
horizon radius at which the phase transition takes place. The position of phase tran-
sition remains unchanged in 3-dimensional KNdS black hole for different values of β.

(ii) Figure 6 illustrates the behaviour of CH w.r.t. rH for fixed parameters a = 0.3, β = 40,
m = 0.5 and for different values of Λ. For different values of cosmological constant Λ,
there are different positions of phase transition for 3-dimensional KNdS black hole.
Increasing the values of Λ, the positions of phase transition r∗H are shifted towards the
origin, which ensures the black hole faster stability for larger value of Λ. Different po-
sitions of phase transition for different black hole parameters are presented in table 5.
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Figure 7. Heat capacity CH versus radius of event horizon rH for different values of a.

a=0.3; m = 0.5; β = 40
Λ 0.3 0.5 0.7 0.9
r∗H 1.42403 1.31282 1.23652 1.17887

Table 5. The tabulated values of the position of phase transition r∗
H for different values of Λ.

Λ = 0.1; m = 0.5; β = 40
a 0.5 1 1.5 2
r∗H 1.17485 1.23815 1.29861 1.35098

Table 6. The tabulated values of the position of phase transition r∗
H for different values of a.

(iii) Figure 7 shows the variation of CH for different values of spin parameter a and for
fixed Λ = 1, β = 40, m = 0.5. Increasing the value of rotation parameter a, the
phase transition occurs at larger value of horizon radius r∗H which is also shown in
table 6. Moreover, larger the value of a delays the stability of the black hole.

Figures 5 to 7 show that there is a phase transition when rH = r∗H . The positions
of phase transition are shown in tables 5 and 6. The black holes are unstable in the
region 0 < rH < r∗H and stable in the region r∗H < rH < ∞ i.e. the smaller black
holes are less stable than larger black holes and vice versa.

5.3 Hawking temperature Td4 with radius of event horizon for 4-dimensional
KNdS black hole

This subsection is devoted to analysing the behaviour of modified Hawking temperatures
of KNdS black hole. The parameters are taken as follows: Q = 0.1, θ = π

2 , e = 1, Jθ = 0.1
and Jφ = 0.2.

(i) Figure 8 shows the behaviour of Td4 for different values of β and for fixed values of
a = 0.2, Λ = 1 and m = 0.1. Td4 increases exponentially and reaches its maximum
height Tmax

d4 for different values of β. Further, the temperature keeps on decreasing
with increasing the horizon radius. It is noteworthy to mention that the temperature
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Figure 8. Hawking temperature Td4 with respect to radius of event horizon rH for different values
of m.
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Figure 9. Hawking temperature Td4 with respect to radius of event horizon rH for different values
of β.

increases with increasing the values of β. Hence, the β effects accelerate the increase
in Td4. The proof of the above statement is also calculated in table 7.

(ii) The behaviour of Td4 for varying cosmological constant Λ is depicted in figure 9. The
parameters are as follows: a = 0.2, β = 50 and m = 0.1. The temperature increases
to a certain height and attains its peak point T max

d4 at rH = rcH , then Td4 decreases
as rH increases. It is noted that the Λ effects decelerate the increase in Td4 which is
also shown numerically in table 8.

(iii) The behaviour of Td4 w.r.t. rH for varying mass of the vector boson particle m is
depicted in figure 10. The temperature increases to a certain height T max

d4 and then
decreases with increasing rH . The rate of increase of temperature Td4 is dependent
on the increase of m. The validity of the above statements is calculated numerically
in table 9.
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Figure 10. Hawking temperature Td4 with respect to radius of event horizon rH for different values
of m.
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Figure 11. Hawking temperature Td4 with respect to radius of event horizon rH for different values
of a.

(iv) Figure 11 shows the behaviour of Td4 w.r.t. rH for varying a and fixed β = 50, Λ = 1
and m = 0.1. The temperatures increase exponentially upto T max

d4 and decrease with
increasing the horizon radius. The temperature gradually increases with decreasing
the values of rotation parameter, a. The numerical calculation shown in table 10
supports the above statement.

We present the following tables to see the effects of β, Λ, m and a on the Hawking temper-
ature. Table 7 confirms that T max

d4 gradually increases on increasing β (for fixed values of
λ, m and a). Similarly table 9 also confirms that T max

d4 gradually increases on increasing
m (for fixed values of β, λ, and a). On the contrary, tables 8 and 10 confirm that T max

d4
gradually decreases with increasing λ (for fixed values of β, m and a) and a (for fixed values
of β, λ, and m) respectively. From table 9, it is observed that T max

d4 is highly dependent
on m compared to that of β, Λ and a.
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a=0.2; Λ = 1; m = 0.1
β 10 30 50 70 90
rcH 0.34861 0.34849 0.34847 0.34846 0.34845

T max
d4 14.2974 42.7385 71.1796 99.6206 128.062

Table 7. The tabulated values of rC
H and T max

d4 for different values of β.

a=0.2; Λ = 1; β = 50
Λ 0.2 0.4 0.6 0.8 1
rcH 0.35376 0.35244 0.35117 0.34979 0.34847

T max
d4 87.2216 82.793 78.4615 75.4107 71.1796

Table 8. The tabulated values of rC
H and T max

d4 for different values of Λ.

a = 0.2; Λ = 1; β = 50
m 0.1 0.3 0.5 0.7 0.9
rcH 0.34847 0.39069 0.45936 0.50492 0.53291

T max
d4 71.1796 111.502 211.269 386.449 652.623

Table 9. The tabulated values of rC
H and T max

d4 for different values of m.

β = 20; Λ = 1; m = 0.1
a 0.1 0.15 0.2 0.25 0.3
rcH 0.2075 0.27555 0.34852 0.42236 0.49421

T max
d4 176.342 65.3181 28.518 13.7598 6.89087

Table 10. The tabulated values of rC
H and T max

d4 for different values of a.

5.4 Heat capacity CH4 versus horizon radius rH for 4-dimensional KNdS black
hole

This subsection studies the modified heat capacity for different values of β, Λ and a for
fixed values of Q = 1, θ = π

2 , e = 1, Jθ = 0.1 and Jφ = 0.2.

(i) The variation of modified heat capacity for different values of β is shown in figure 12.
The parameters are taken as a = 0.2, Λ = 0.5 and m = 0.1. It is observed that
there is one position of phase transition in the absence of GUP, but there are two
positions of phase transition under the influence of GUP. The first phase transition in
figure 12 is due to the quantum gravity effects and it occurs at rH = rH1 = 0.99338.
The position of second phase transition is at rH = rH2 = 1.29667. The variation of β
doesn’t affect the position of phase transition.

(ii) For a = 0.2, β = 15 and m = 0.1, the variation of CH4 w.r.t. rH changing the values
of Λ is illustrated in figure 13. Varying the values of cosmological constant Λ, the
positions of phase transition are also varied. With increasing the values of Λ, the
position of phase transition is shifted toward the origin, which implies a slower rate
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Figure 12. Heat Capacity CH4 with respect to radius of event horizon rH for different values of β.
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Figure 13. Heat Capacity CH4 with respect to radius of event horizon rH for different values of Λ.

a = 0.2; β = 15; m = 0.1 Λ = 0.5; β = 15; m = 0.1
Λ rH1 rH2 a rH1 rH2

0.3 0.99602 1.40094 0.1 0.49917 1.2864
0.5 0.99338 1.29667 0.4 0.7472 1.29073
0.7 0.99075 1.22479 0.6 0.99338 1.29667

Table 11. The tabulated values of rH1 and rH2 for different values of Λ and a.

of becoming a stable black hole. Table 11 is constructed numerically to show the
different positions of phase transitions.

(iii) Figure 14 represents the behaviour of CH4 versus rH for fixed β = 15, Λ = 0.5 and
m = 0.1. The position of phase transition is shifted to far away from the origin
toward the positive direction of rH with increasing the value of spin parameter a. It
shows that the black hole becomes stable faster with increasing the value of rotational
parameter a which is also indicated numerically by table 11.
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Figure 14. Heat Capacity CH4 with respect to radius of event horizon rH for different values of a.

6 Conclusion

This work studies the GUP effects on tunneling of massive vector boson particles from
KNdS black hole. Firstly, we utilize the GUP-corrected Lagrangian of massive vector
field and derive the modified wave equation for massive vector boson particles. Using
the modified wave equation, the quantum tunneling of KNdS black hole in 3-dimensional
and 4-dimensional frame dragging coordinates are investigated. Further, the modified
Hawking temperatures and heat capacities due to GUP are derived. They depend not
only on the quantum gravity parameter β, spin parameter a, mass of the emitted particle
m, cosmological constant Λ, charge of the black hole Q but also on angular coordinates
θ, Jθ and Jφ. For 3-dimensional KNdS black hole, the corrected Hawking temperature is
lower than the original Hawking temperature which shows that the quantum gravity effects
slow down the increase of the Hawking radiation temperature. Moreover, the modified heat
capacity of 3-dimensional KNdS black hole is greater than the original heat capacity. In the
case of 4-dimensional KNdS black hole, the modified Hawking temperature is either lower
or higher than the original Hawking temperature according to Ξ > 0 or Ξ < 0 respectively.
Further, the modified heat capacity is either lower or higher than the original Hawking
temperature according to Ξ < 0 or Ξ > 0 respectively. The stable and unstable formation
of black hole are studied in quantum gravity effects. The remnant of 3-dimensional KNdS
black hole is also discussed in the presence of quantum gravity effects. We also illustrate
the graphs of modified Hawking temperatures and heat capacities and explore the effects
of β, Λ, a and m. If the radius of event horizon rH increases, the modified Hawking
temperature of a 3-dimensional KNdS black hole tends to decrease for β < 25, but for
β > 25, the temperature cools down till it reaches its minimum point and then increases,
which leads to the formation of stable black hole. For a 4-dimensional KNdS black hole
with the above fixed parameters, the modified Hawking temperature increases w.r.t. rH and
after attaining maximum height, the temperature eventually goes down. It is worth noting
that there are one phase transition and two phase transitions for a non-zero horizon of
3-dimensional KNdS black hole and 4-dimensional KNdS black hole respectively. Different
positions of phase transitions are due to the quantum gravity effects. It is noted that for
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different values of dimensionless parameter β, the position of phase transitions remain the
same in 3-dimensional and 4-dimensional KNdS black hole under the influence of quantum
gravity effects. The modified Hawking temperatures and heat capacities tend to the original
Hawking temperature and heat capacity of KNdS black hole in the absence of quantum
gravity effects. Hence quantum gravity effects modified the Hawking temperature and heat
capacity of the black hole.
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A Coefficients of eq. (3.48)

A∗0 = (r − rH)∆,r (rH)
ρ2(rH) , (A.1)

A∗1 = m2 + J2
θ∆θ

ρ2(rH) −
(−E + jΩ + eA0)2 (r2

H + a2)2 Σ2

(r − rH)∆,r (rH)ρ2(rH) + (Jφ + eA3)2 ρ2(rH)Σ2 csc2 θ(
r2
H + a2)2 ∆θ

,

(A.2)

B6 = 6m2β (r − rH)3 ∆2,r (rH)
ρ6(rH) , (A.3)

B4 = m2 (r − rH)2 ∆2,r (rH)
ρ4(rH) + 2β (r − rH)2 ∆2,r (rH)

ρ4(rH)

[
−
{

1
(r − rH) ∆,r (rH) ρ2(rH)

×
(

(−E + jΩ + eA0)2
(
r2
H + a2

)2
Σ2
[
− 2 (Jφ + eA3 − 1) (Jφ + eA3) ρ2(rH)Σ2 csc2 θ(

r2
H + a2)2 ∆θ

+ 3m2
])}

+m2
[
3m2 + 3J2

θ∆θ

ρ2(rH) + (Jφ + eA3) (2 + Jφ + eA3) ρ2(rH)Σ2 csc2 θ(
r2
H + a2)2 ∆θ

]]
,

(A.4)

B2 = (r − rH) ∆,r (rH)
ρ2(rH)

[
(−E + jΩ + eA0)2 (Jφ + eA3) (Jφ + eA3 − 1) Σ4 csc2 θ

(r − rH) ∆2,r (rH)

+ 2m4 + 2 J2
θm

2∆θ

ρ2(rH) + (Jφ + eA3) (1 + Jφ + eA3)m2ρ2(rH)Σ2 csc2 θ(
r2
H + a2)2 ∆θ

− 2m2(−E + jΩ + eA0)2 (r2
H + a2)2 Σ2

(r − rH) ∆,r (rH) ρ2(rH) + 2β
{

1
(r − rH)2 ∆2,r (rH) ρ4(rH)

×
[
(−E + jΩ + eA0)4

(
r2
H + a2

)4
Σ4
{(Jφ + eA3 − 1) (Jφ + eA3) ρ2(rH)Σ2 csc2 θ(

r2
H + a2)2 ∆θ
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− 3m2
}]

+ (−E + jΩ + eA0)2 (Jφ + eA3)3 (Jφ + eA3 − 1) ρ2(rH)Σ6 csc4 θ

(r − rH)
(
r2
H + a2)2 ∆2

θ ∆,r (rH)

+m2
[3J4

θ∆2
θ

ρ4(rH) + (Jφ + eA3)3 {1 + 2 (Jφ + eA3)} ρ4(rH)Σ4 csc4 θ(
r2
H + a2)4 ∆2

θ

]}]
, (A.5)

B0 = −
[
J2
θ∆θ

ρ2(rH) −
(−E + jΩ + eA0)2 (r2

H + a2)2 Σ2

(r − rH)∆,r (rH)ρ2(rH) + (Jφ + eA3)2 ρ2(rH)Σ2 csc2 θ(
r2
H + a2)2 ∆θ

+m2
]
+ 2 β

(r − rH)3 (r2
H + a2)6 ∆3

θ ∆3,r (rH) ρ6(rH)

[
3(−E + jΩ + eA0)6∆6

θΣ6

×
(
r2
H + a2

)10
{
m2

(
r2
H + a2

)2
∆θ − (Jφ + eA3) (Jφ + eA3 − 1) ρ2(rH)Σ2 csc2 θ

}

− (−E + jΩ + eA0)4(r − rH)
(
r2
H + a2

)8
∆2
θ ∆,r (rH)Σ4

(
3m2

(
r2
H + a2

)2
∆θ

×
(
J2
θ∆θ +m2ρ2(rH)

)
− (Jφ + eA3)2 ρ2(rH)

{
J2
θ (Jφ + eA3 − 1) ∆θ − 3m2ρ2(rH)

}

× Σ2 csc2 θ

)
+m2(r − rH)3∆3,r (rH)

(
3J6

θ

(
r2
H + a2

)6
∆6
θ + J2

θ ∆2
θ ρ

8(rH) Σ4 csc4 θ

× (Jφ + eA3)3
{

1 + 2 (Jφ + eA3)
}

+ (Jφ + eA3)3 ρ10(rH) Σ4 csc4 θ

[
m2∆θ

×
{

1 + 2 (Jφ + eA3)
}(

r2
H + a2

)2
+ 3ρ2(rH)Σ2 csc2 θ (Jφ + eA3)2

]
+ J4

θ ∆4
θ ρ

2(rH)

×
(
r2
H + a2

)4
{

3m2
(
r2
H + a2

)2
∆θ + (Jφ + eA3) (2 + Jφ + eA3) ρ2(rH) Σ2 csc2 θ

})

− (−E + jΩ + eA0)2
(
r2
H + a2

)2
(r − rH)2∆2,r (rH)Σ2

(
(1− Jφ − eA3) (Jφ + eA3)

× ρ2(rH) Σ2 csc2 θ

{
2J2

θ

(
r2
H + a2

)4
∆4
θ + J2

θ (Jφ + eA3)2
(
r2
H + a2

)2
∆2
θρ

4(rH) Σ2

× csc2 θ + 3 (Jφ + eA3)4 ρ8(rH) Σ4 csc4 θ

}
+m2

(
r2
H + a2

)2
∆θ

{
3J4

θ∆4
θ

(
r2
H + a2

)4

+ (Jφ + eA3)3 (2 + Jφ + eA3) ρ8(rH) Σ4 csc4 θ

})]
. (A.6)

B The expressions of χ1 and χ2 given in eq. (3.49)

χ1 =−3(−E+jΩ+eA0)6m2 (r2
H +a2)6 Σ6

(r−rH)3∆3,r (rH) ρ6(rH) + (−E+jΩ+eA0)4 Σ4

(r−rH)2 ∆2
θ ∆2,r (rH) ρ6(rH)

×
[
9m2

(
r2
H +a2

)2
∆θ−4(Jφ+eA3−1)(Jφ+eA3)ρ2(rH) Σ2 csc2 θ

]
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×
[
∆θ

(
r2
H +a2

)2(
J2
θ∆θ+m2 ρ2(rH)

)
+(Jφ+eA3)2 ρ4(rH) Σ2 csc2 θ

]

+m2
[

3
(
J2
θ∆θ+m2 ρ2(rH)

)3
ρ6(rH) + (Jφ+eA3)Σ2 csc2 θ(

r2
H +a2)2 ∆θ ρ2(rH)

{
2J2

θ m
2 ∆θ ρ

2(rH)

×
[
2+7(Jφ+eA3)

]
+J2

θ ∆2
θ

[
4+5(Jφ+eA3)

]
+m4 ρ4(rH)

[
4+5(Jφ+eA3)

]}

+
ρ2(rH) Σ4 csc4 θ (Jφ+eA3)3 [4+5(Jφ+eA3)

](
J2
θ ∆θ+m2 ρ2(rH)

)(
r2
H +a2)4 ∆2

θ

− (Jφ+eA3−4)(Jφ+eA3)5 ρ6(rH)Σ6 csc6 θ(
r2
H +a2)6 ∆3

θ

]
− (jΩ+eA0−E)2 (r2

H +a2)2 Σ2

(r−rH) ∆,r (rH) ρ2(rH)

×
[
9m6 +m2

{
J2
θ ∆θ

ρ2(rH) + (Jφ+eA3)2 ρ2(rH) Σ2 csc2 θ(
r2
H +a2)2 ∆θ

}

×
{ 9Jθ∆1
ρ2(rH) + ρ2(rH) Σ2 csc2 θ (Jφ+eA3)(8+Jφ+eA3)(

r2
H +a2)2 ∆θ

}

+6m4
{3J2

θ∆φ

ρ2(rH) + ρ2(rH) Σ2 csc2 θ (Jφ+eA3) [1+2(Jφ+eA3)](
r2
H +a2)2 ∆θ

}

− 4 Σ2 csc2 θ (Jφ+eA3−1)(Jφ+eA3)(
r2
H +a2)6 ∆3

θ ρ
2(rH)

{
J4
θ ∆4

θ

(
r2
H +a2

)4
+J2

θ ∆2
θ ρ

4(rH)

×Σ2 csc2 θ (Jφ+eA3)2
(
r2
H +a2

)2
+ ρ8(rH)Σ4 csc4 θ (Jφ+eA3)4

}]
, (B.1)

χ2 = ρ2(rH) Σ2 csc2 θ (1−Jφ−eA3)(Jφ+eA3)(
r2
H +a2)2 ∆θ

[
m2− Σ2(−E+jΩ+eA0)2 (r2

H +a2)2
(r−rH) ∆,r (rH) ρ2(rH)

]

×
[
m2 + J2

θ∆θ

ρ2(rH)−
Σ2(−E+jΩ+eA0)2 (r2

H +a2)2
(r−rH) ∆,r (rH) ρ2(rH) + ρ2(rH) Σ2 csc2 θ (Jφ+eA3)2(

r2
H +a2)2 ∆θ

]
.

(B.2)
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