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1 Introduction

Quantum chromodynamics (QCD) is a fundamental theory to describe strong interaction
between quarks and gluons. However, due to its non-perturbative properties under the
hadron energy scale, one cannot get the hadron-hadron interaction through QCD in the
framework of perturbation theory, i.e., it is unavailable to extract the hadron-hadron in-
teraction directly from quarks and gluons. Until now, since the analytical mathematical
method for non-perturbation is still missing, it is sufficient for the effective way to extract
the hadron information from experimental data.
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In phenomenology, establishing a clear hadron spectrum is the promise to understand
the low-energy behavior of strong interaction, including the properties of hadron mass,
lifetime or width, spin, parity and so on. In order to obtain such informations, it is necessary
to analyze the final state invariant mass and angular distributions by partial wave analysis
(PWA) which is, in principle, a model-independent approach. PWA is a standard method
that extracts quantum numbers from invariant mass and angular distributions. It projects
the scattering amplitude into several parts with definite orbital angular momentum L and
spin S quantum numbers.

There are several PWA formalisms, including non-covariant methods such as the helic-
ity formalism [1], the Zemach formalism [2], multipole analysis [3–6], and covariant methods
such as the covariant helicity formalism [7], the covariant effective Lagrangian approach [8],
and the covariant orbital-spin (L-S) scheme [9–12]. Compared to non-covariant methods,
covariant methods maintain Lorentz covariance, making it easier to apply these schemes
in various cascade decays. Additionally, fixed L-S quantum numbers of the covariant L-S
scheme help distinguish contributions from different partial wave amplitudes and make it
simpler to introduce L-dependent form factors. The covariant L-S scheme was first pro-
posed in refs. [9, 10] to describe ψMM , N∗NM partial wave amplitudes and later applied
to radiation decay processes such as N∗Nγ and ψMγ [11, 12], which is widely used by
BESIII group for PWA [13–17].

However, in previous works [9–12] of covariant L-S scheme, a general formula for partial
wave amplitude with any spin s = N/2 (N = 0, 1, 2, · · · ) is lacking. Especially for the high
half-integer spin cases, e.g., the coupling of one meson and two fermions with spin- 3

2 is
missing. In this paper, a general theoretical framework of covariant L-S scheme has been
developed by using irreducible tensors (IRTs) of the homogeneous proper Lorentz group
(Lp) and its little groups.

This paper is organized as follows. In section 2, we systematically introduce a general
form of three-particle Lorentz covariant partial wave amplitude. In section 3, we provide
three examples, including (a) a process with three bosons; (b) a process involving two
fermions; and (c) a process that includes a massless particle. In section 4, a brief summary
is given.

2 The general framework of covariant orbital-spin scheme

2.1 General form of covariant L-S scheme

In this section, we will make a general discussion on Lorentz covariant partial wave ampli-
tudes. To ensure the covariance of scattering amplitudes under Lorentz transformations,
the coupling structures (amplitudes without spin wave functions of external particles) of
n-particle vertex amplitudes must be an order-n covariant tensor (COVT). Any COVT
can be decomposed into IRTs, and any IRT can be expressed by order-3 IRTs. For a brief
discussion on this topic, please refer to appendix A. From the physics point of view, the
multi-particle vertex can be derived recursively from the three-particle vertex. Therefore,
in this work, we will focus on the coupling structure involving three external particles.

– 2 –
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The vertex amplitude of three-particle interaction (e.g., consider a process of 1 →
2 + 3)1 with arbitrary spin can be written in the following general form,

Aσ2σ3
σ1 (p1,p2,p3; s1, s2, s3) = Γα2α3

α1 (p1,p2,p3) ūα1
σ1 (p1; s1)uσ2

α2(p2; s2)uσ3
α3(p3; s3), (2.1)

where uσiαi(pi; si)/ū
αi
σi (pi; si) is the covariant/contravariant spin wave function of the i-

th particle with total spin si, spin polarization component σi, three momentum pi and
Lorentz covariant index αi carrying the representation [αi] of the homogeneous proper
Lorentz group (Lp); Γα2α3

α1 (p1,p2,p3) is an order-3 COVT; we adopt Einstein’s summation
rule, the repeated indices indicate summation. For convenience, we will drop s1, s2 and s3
in A in the rest of this paper.

The L-S scheme aims to decompose the full amplitude into terms with fixed orbital
angular momentum (L) and total spin (S) of two final-state particles. This can be achieved
in three steps. At the first step, we need to separate the continuous part labeled by
momentum p from the discrete part labeled by spin s in the spin wave function as follows,

uσα(p; s) = D β
α (hp) uσβ(k; s), (2.2)

where D β
α (g) (g ∈ Lp) is a Lorentz transformation matrix; hp (∈ Lp) is a pure-boost

transformation; uσα(k; s) is the spin wave function in the standard momentum frame.2 The
standard momentum is labeled as kµ =

(
k0,k

)
. As a result, uσα(k; s) does not contain any

continuous degrees of freedom, which just describes a particle’s intrinsic property, spin.
Since S and L are defined in the standard momentum frame of particle-1, i.e., p1 = k1,
the eq. (2.1) becomes

Aσ2σ3
σ1 (k1,p∗2,p∗3) = Γα2α3

α1 (k1,p∗2,p∗3)D β2
α2

(
hp∗2

)
D β3
α3

(
hp∗3

)
︸ ︷︷ ︸

pure-orbitial part

×

ūα1
σ1 (k1; s1)uσ2

β2
(k2; s2)uσ3

β3
(k3; s3)︸ ︷︷ ︸

pure-spin part

, (2.3)

where p∗2 and p∗3 are the three-momenta of particle-2 and particle-3 in the standard mo-
mentum frame of particle-1, respectively.

At the second step, we will decompose the above amplitude (eq. (2.3)) into the pure
orbital angular momentum L part and pure spin angular momentum S part. The pure-spin
part can be kept but we need spin projection tensors to pick out fixed S of two final-state
particles, while the pure-orbital part will be divided by fixed L. Consequently, a Lorentz
covariant partial wave amplitude can be expressed as follows,

Aσ2σ3
σ1 (k1,p∗2,p∗3;L, S) = Γα2α3

α1 (k1,p∗2,p∗3;L, S) ūα1
σ1 (k1; s1)uσ2

α2(k2; s2)uσ3
α3(k3; s3), (2.4)

1It is important to note that a Lorentz covariant three-particle vertex amplitude can represent various
processes, including 1→ 2 + 3 and 2→ 1 + 3, due to the crossing symmetry. However, when examining the
partial wave amplitude with a specific Lorentz covariant coupling structure, the partial wave components
in the amplitudes of different processes connected by crossing symmetry are typically distinct. For some
examples, please refer to appendix B.

2For further details about standard momentum frame, please refer to section V of chapter II in ref. [18].
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where Γα2α3
α1 (k1,p∗2,p∗3;L, S) is a Lorentz covariant coupling structure with definite L and

S quantum numbers. The main objective of this paper is to express the coupling structure
explicitly. In ref. [10], a pure spin wave function for two fermions was constructed by
combining various Lorentz structures. For instance, one can construct a pure spin-1 system(3S1

)
of two fermions with spin- 1

2 by a linear combination of ψ̄2γµψ1 and ψ̄2
↔
∂ µ ψ1 by

ignoring the 3P0 component (see table 5). Therefore, it is feasible to use IRTs to decompose
the amplitudes containing different Lorentz structures, and obtain partial wave amplitudes
through their linear combinations. However, with the increase of L and S, the amount of
computation will increase dramatically, see table 6 for the case including a fermion with
spin-3

2 . For this reason, here we directly consider how to construct the Lorentz covariant
partial wave amplitude based on the IRTs of Lp and the IRTs of the little group SO(3).

At the third step, since three-particle amplitude is just a block for the whole ampli-
tude in the cascade reaction, it is necessary to transfer the rest frame of initial state to
any given frame, i.e., from (k1,p∗2,p∗3) to (p1,p2,p3). It is quiet straightforward to use
several Lorentz-boost transformations. Finally, one will get a Lorentz covariant partial
wave amplitude Aσ2σ3

σ1 (p1,p2,p3;L, S) in any frame as follows,

Aσ2σ3
σ1 (p1,p2,p3;L, S) = Γα2α3

α1 (k1,p∗2,p∗3;L, S)D β2
α2 (R12)D β3

α3 (R13)
× ūα1

σ1 (k1; s1) uσ2
β2

(k2; s2) uσ3
β3

(k3; s3), (2.5)

where R1i = h−1
p∗i
· h−1

p1 · hpi (i = 2, 3).
To construct Lorentz covariant partial wave amplitudes based on eq. (2.5), one needs to

write down the spin wave functions of particles with arbitrary spin, and the specific form of
covariant coupling structure Γα2α3

α1 (k1,p∗2,p∗3;L, S) which can be organized as three parts,
(a) the covariant tensor of orbital angular momentum L part, (b) the covariant tensor of
s2 and s3 coupled to total spin S, and (c) the covariant tensor of S and L coupled to s1,
as follows,

Γα2α3
α1 (k1,p∗2,p∗3;L, S) = Pα

LαS

α1 (k1; s1, L, S) Pα2α3
αS

(k1;S, s2, s3) t̃(L)
αL

(k1,p∗2 − p∗3), (2.6)

where PαLαS
αJ

(k1; J, L, S) is the angular momentum coupling structure for J = L + S in
the standard momentum frame of particle-1; and t̃

(L)
αL

(k1,p∗2 − p∗3) is the L-wave orbital
angular tensor. Typically, these tensors are the IRTs of the group SO(3) with Lorentz
covariance, which can be constructed by spin wave functions according to the eigen-function
method [19]. Thus, all building blocks of covariant L-S scheme can be reduced to the spin
wave functions, while the spin wave function can be described by the representation of Lp.

The remaining part of this section is organized as: in subsection 2.2, we give a general
discussion on Lorentz covariant spin wave function for any spin; in subsection 2.3, we show
how to use these spin wave functions to construct the IRTs of Lp and the little group SO(3);
in subsection 2.4, we discuss the difference between spin wave functions for massive and
massless particles; in subsection 2.5, we explicitly present a general expression of Lorentz
covariant partial wave amplitude Aσ2σ3

σ1 (p1,p2,p3;L, S).

– 4 –



J
H
E
P
0
6
(
2
0
2
3
)
0
3
9

Standard kµ Little group Lp,k Generators of Lp,k =
(±|m|, 0, 0, 0) SO(3) J1, J2, J3
(±|k|, 0, 0, |k|) ISO(2) J3, (J2 +K1), (J1 −K2)

(0, 0, 0, |k|) SO(1,2) J3, K1, K2
(0, 0, 0, 0) SO(1,3) J1, J2, J3, K1, K2, K3

Table 1. Standard momenta kµ and the corresponding little group Lp,k for various classes of four-
momenta. Ji (i = 1, 2, 3) and Ki (i = 1, 2, 3) are rotation and boost generators of Lp, respectively
and satisfy the commutation relations: [Ji, Jj ] = iεijkJk, [Ki,Kj ] = −iεijkJk and [Ji,Kj ] =
iεijkKk.

2.2 Spin wave function based on irreducible representations of Lp

By considering Poincáre invariance and causality, Weinberg had constructed the covariant
causal field operator for both massive and massless particles with spin s [20–22], the covari-
ant and contravariant spin wave functions with momentum pµ = (ωp,p)

(
ωp =

√
|p|2 +m2

)
are defined as follows,

uσα(p; s) = D β
α (hp)uσβ(k; s), ūασ(p; s) = D α

β (h−1
p ) ūβσ(k; s). (2.7)

The Lorentz transformation matrix in any representation [α] can be derived easily, please
refer to appendix C for a brief discussion. The contraction of a covariant spin wave function
with the corresponding contravariant spin wave function obeys the following orthonormal
relation,

ūασ1(p; s)uσ2
α (p; s) = δ σ2

σ1 . (2.8)

Some systematic discussion would be useful to obtain the specific form of uσα(k; s) and
ūσα(k; s). Firstly, one should fix a representation [α]. On the one hand, by recombining the
six generators of Lp (table 1) as,

Ai = Ji + iKi, Bi = Ji − iKi (i = 1, 2, 3). (2.9)

Then, one has,

[Ai, Aj ] = iεijkAk, [Bi, Bj ] = iεijkBk, [Ai, Bj ] = 0. (2.10)

These commutation relations imply that Lp w SU(2)L ⊗ SU(2)R. Thus, an irreducible
representation (IRREP) of Lp can be labeled by a binary (sL, sR) where sL and sR are any
positive integers or half integers. For instance, the IRREP

(
1
2 , 0
)
describes a left-handed

Dirac spinor; the IRREP
(

1
2 ,

1
2

)
describes a Lorentz four-vector and so on. On the other

hand, in order to conveniently describe a process with definite P-parity (space inversion)
and C-parity (charge conjugation), it is better to consider an IRREP (sL, sR) together
with the corresponding complex conjugate representation (sR, sL). Thus, we will focus on
self-conjugate representations in table 2 and use the following convention,

[sL, sR] ≡


(sL, sR) for sL = sR

(sL, sR)⊕ (sR, sL) for sL 6= sR

. (2.11)

– 5 –
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Representation Physical correspondence
(0, 0) Scalar(

1
2 , 0
)
⊕
(
0, 1

2

)
Dirac spinor (spin 1/2)(

1
2 ,

1
2

)
Lorentz four-vector

(1, 0)⊕ (0, 1) Maxwell electromagnetic fields(
3
2 , 0
)
⊕
(
0, 3

2

)
Weinberg spinor (spin 3/2)

(1, 1) Lorentz order-2 traceless symmetric tensor(
1, 1

2

)
⊕
(

1
2 , 1
)

Rarita-Schwinger spinor (spin 3/2)
(2, 0)⊕ (0, 2) Einstein gravitational fields

...
...

Table 2. The self-conjugate representations of Lp with physical correspondence.

Figure 1. Three different little group chains of the homogeneous Lorentz group Lp.

Secondly, there are group elements of Lp that make kµ unchanged. All of these elements
construct a subgroup of Lp, which is known as the little group [23], denoted as Lp,k.
The little groups of various standard momenta kµ are shown in table 1. Except for the
trivial case of vacuum momentum kµ = (0,0), the other three cases correspond to three
different little group chains of Lp as shown in figure 1. These different little group chains
imply that one can choose different complete set of commuting operators (CSCO, see
ref. [19]) to characterize Lorentz covariant wave functions. Here, we will discuss the case
of little group chain containing SO(3). A Lorentz covariant wave function characterized
by this little group chain is identified as spin wave function. Due to the requirement
of Lorentz covariance, under any rotation transformation R ∈ SO(3) ⊂ Lp, spin wave
functions require [20]

D β
α (R)uσβ(k; s) = uσ

′
α (k; s)D(s)σ

σ′ (R), D β
α (R) ūασ(k; s) = ūβσ′(k; s) D(s)σ′

σ (R), (2.12)

where D(s)σ
σ′ (R) is Wigner-D matrix in arbitrary IRREP of SO(3), labeled by spin s. From

eq. (2.12) and the definition of IRT in eq. (A.1), one can get uσα(k; s) and ūασ(k; s) which
are IRTs of the little group SO(3). The relevant two representations are D β

α (Lp,k) and
D

(s)σ
σ′ (Lp,k), respectively. According to this conclusion, one can obtain the specific form

of the spin wave function in the standard momentum frame by calculating the IRT of the
little group SO(3). For example, we consider an IRREP of Lp, labeled by

[α] = (sL, sR) = (sL, 0)⊗ (0, sR) ≡ [l]⊗ [r],

– 6 –
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where l = −sL,−sL + 1, · · · , sL and r = −sR,−sR + 1, · · · , sR correspond to the IRREPs
indices of SU(2)L and SU(2)R, respectively. The corresponding covariant and contravariant
spin wave functions with standard momentum are as follows,

uσα (k; s) ≡ uσα (k; (sL, sR), s) = U lrα uσlr (k; (sL, sR), s) ,
ūασ (k; s) ≡ ūασ (k; (sL, sR), s) = Uαlr ū

lr
σ (k; (sL, sR), s) , (2.13)

where U lrα and Uαlr are two operations which flatten two indices l (−sL ≤ l ≤ sL) and
r (−sR ≤ r ≤ sR) into one index α (1 ≤ α ≤ (2sL + 1)(2sR + 1)) with the following
explicit form,

U lrα = δ [(l+sL)(2sR+1)+r+sR+1]
α , Uαlr = δ α[(l+sL)(2sR+1)+r+sR+1]. (2.14)

Then, eq. (2.12) can be written as

D
(sL)l′
l (R) D(sR)r′

r (R)uσl′r′(k; (sL, sR), s) = uσ
′
lr (k; (sL, sR), s)D(s)σ

σ′ (R),

D
(sL)l
l′ (R) D(sR)r

r′ (R) ūl′r′σ (k; (sL, sR), s) = ūlrσ′(k; (sL, sR), s)D(s)σ′
σ (R). (2.15)

Comparing eq. (2.15) with eq. (A.4), one can immediately obtain uσlr(k; (sL, sR), s) and
ūlrσ (k; (sL, sR), s) which are just the Clebsch–Gordan coefficients (CGCs) of SU(2) (see
also section XI of chapter V in ref. [18]),

uσlr(k; (sL, sR), s) = (CssLsR)σlr, ūlrσ (k; (sL, sR), s) = (CsLsRs )lrσ . (2.16)

Indeed, uσlr(k; (sL, sR), s) and ūlrσ (k; (sL, sR), s) satisfy the orthonormal relation as shown
in eq. (2.8).

Futhermore, in any self-conjugate representation [α] = [sL, sR] (sL 6= sR), a spin wave
function can be straightforwardly written as,

uσα(k; s) ≡ uσα(k;χ, s) =


(UL)lrα uσlr(k; (sL, sR), s) with χ = (sL, sR)

(UR)lrα uσlr(k; (sR, sL), s) with χ = (sR, sL)
,

ūασ(k; s) ≡ ūασ(k;χ, s) =


(UR)αlr ūlrσ (k; (sR, sL), s) with χ = (sL, sR)

(UL)αlr ūlrσ (k; (sL, sR), s) with χ = (sR, sL)
, (2.17)

where
(
UL/R

)lr
α
and

(
UL/R

)α
lr
are four operations that flatten two indices l (−sL ≤ l ≤ sL)

and r (−sR ≤ r ≤ sR) into one index α (1 ≤ α ≤ 2(2sL + 1)(2sR + 1)) with the following
explicit form,

(UL)lrα = δ [(l+sL)(2sR+1)+r+sR+1]
α , (UR)lrα = δ [(3sL+l+1)(2sR+1)+r+sR+1]

α ,

(UL)αlr = δ α[(l+sL)(2sR+1)+r+sR+1], (UR)αlr = δ α[(3sL+l+1)(2sR+1)+r+sR+1]. (2.18)

The corresponding orthonormal relation is as follows,

ūασ1(k;χ∗1 , s)u
σ2
α (k;χ2 , s) = δ σ2

σ1 δχ1χ2
, (2.19)

where χ∗1 is the complex conjugate representation of χ1 .

– 7 –
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Finally, by combining the Lorentz transformation matrix and the spin wave functions in
standard momentum frame, one can obtain a spin wave function in any frame. Furthermore,
eq. (2.16) implies that uσα(p;χ, s) can describe a particle with spin s which satisfies the
following triangular relation,

|sL − sR| ≤ s ≤ sL + sR, (2.20)

otherwise uσα(p;χ, s) must be zero. This means that there are many choices to express a
spin wave function with spin s in a Lorentz covariant way. Actually, in the development of
relativistic spin wave function, there are several formulations for particles with arbitrary
spin s. The most famous one is known as Rarita-Schwinger spin wave function [24], which
is based on the following self-conjugate representation,

[αs] =


(

2s+1
4 , 2s−1

4

)
⊕
(

2s−1
4 , 2s+1

4

)
for half-integer s

(
s
2 ,

s
2
)

for integer s
. (2.21)

These representations can be expressed by Lorentz four-vector indices for integer s and
an additional Dirac spinor index for half-integer s. Unfortunately, there are too many
components of such spin wave function, including many irrelevant degrees of freedom. In
1948, Bargmann and Wigner proposed spin wave function which is based on the following
self-conjugate reducible representation (REREP) [23],

[αs] =
[1

2 , 0
]
⊗
[1

2 , 0
]
⊗ · · · ⊗

[1
2 , 0

]
︸ ︷︷ ︸

2s

for integer and half-integer s. (2.22)

These representations can be expressed by Dirac spinor indices only, which make the ex-
pression more compact, but there are still many irrelevant degrees of freedom. In 1964,
Weinberg proposed general covariant causal fields and suggested the following self-conjugate
REREP [20],

[αs] = (s, 0)⊕ (0, s) for integer and half-intger s. (2.23)

These representations do not contain any redundant components, which make the ex-
pression elegant and concise. Subsequently, in order to further simplify the expression of
scattering amplitude, only the left or right-handed spinor with spin- 1

2 is retained as the ba-
sic quantity, which is abbreviated as λIα/λ̃α̇I instead of uσl0

(
p;
(

1
2 , 0
)
, 1

2

)
/ū0r

σ

(
p;
(

1
2 , 0
)
, 1

2

)
with α 7→ l, α̇ 7→ r and I 7→ σ in our convention. Amplitudes including particles of higher
spin can be expressed by tensor product and contraction of the basic quantity, which is
called spinor-helicity formalism. For more details, one may refer to Nima’s recent work on
scattering amplitudes [25] and references therein.

2.3 Irreducible tensors of Lp and its little group SO(3)

In this subsection, we will show how to derive the IRTs of Lp and the IRTs of little group
SO(3) based on spin wave functions which are introduced in subsection 2.2.

– 8 –
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Rep. of Lp Notations of Rep. Indices of Rep.
(s, 0) (2s ∈ N∗) [l] l

(0, s) (2s ∈ N∗) [r] r(
2s+1

4 , 2s−1
4

)
⊕
(

2s−1
4 , 2s+1

4

) (
s ∈ N+ 1

2

)
[a2s], [b2s], · · · a2s, b2s, · · ·(

2s+1
4 , 2s−1

4

) (
s ∈ N+ 1

2

)
[a2s
L ], [b2sL ], · · · a2s

L , b
2s
L , · · ·(

2s−1
4 , 2s+1

4

) (
s ∈ N+ 1

2

)
[a2s
R ], [b2sR ], · · · a2s

R , b
2s
R , · · ·(

s
2 ,

s
2
)

(s ∈ N) [µs], [νs], · · · µs, νs, · · ·
any other representation [ζ], [ξ], · · · ζ, ξ, · · ·

Table 3. The first column is the representations of the Lp. The second column is the simplified
notations for these representations. The third column is the index for each representation space.

In the following discussion, we will use the Latin alphabet a, b, c, · · · to label Dirac
spinor representation

(
1
2 , 0
)
⊕
(
0, 1

2

)
; and use a3, b3, c3, · · · to label the Rarita-Schwinger

spinor representation
(
1, 1

2

)
⊕
(

1
2 , 1
)
; and use the Greek alphabet µ, ν, ρ , · · · to label the

Lorentz four-vector representation
(

1
2 ,

1
2

)
; and use µ2, ν2, ρ2, · · · to label the representation

(1, 1); and see table 3 for other cases. In general, we will use α, β to label any representation
of Lp. We will focus on the self-conjugate representations.

An order-3 IRT of Lp, denoted as Tα1α2
β , is a projection operator from the representa-

tion space [α1] ⊗ [α2] to its representation subspace [β]. Thus, one can obtain an order-3
IRT Tα1α2

β by using spin wave functions as follows,

Tα1α2
β =

∑
χ,s

uσβ(k;χ, s) ūα1α2
σ (k;χ∗, s), (2.24)

where the summation of χ spans all possible IRREPs belonging to both the representation
[β] and the direct product representation [α1]⊗ [α2]; the summation of s spans all possible
spins in χ from the selection rule as shown in eq. (2.20). The specific form of spin wave
functions with two Lorentz covariant / contravariant indices are as follows,

uσα1α2 (k;χ, s) =
∑
s1,s2

√
(2s1 + 1)(2s2 + 1)(2sL + 1)(sR + 1)


s1L s1R s1
s2L s2R s2
sL sR s


×
(
Css1s2

)σ
σ1σ2

uσ1
α1 (k;χ1 , s1) uσ2

α2 (k;χ2 , s2) ,

ūα1α2
σ (k;χ∗, s) =

∑
s1,s2

√
(2s1 + 1)(2s2 + 1)(2sL + 1)(sR + 1)


s1L s1R s1
s2L s2R s2
sL sR s


× (Cs1s2s )σ1σ2

σ ūα1
σ1

(
k;χ∗1 , s1

)
ūα2
σ2

(
k;χ∗2 , s2

)
, (2.25)

with χ = (sL, sR), χ1 = (s1L, s1R) and χ2 = (s2L, s2R), where the summation of s1/2
spans all possible spins in χ∗

1/2
from the selection rule as shown in eq. (2.20); χ is arbitrary

IRREP belonging to [α1]⊗ [α2]; χ1/2 is arbitrary IRREP belonging to [α1/2]; {· · · } denotes
Wigner-9j symbol. By using order-3 IRTs, any order-n IRTs can be obtained recursively.
For convenience, we give some examples in appendix D.
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For IRTs of little group SO(3), according to the definition of generators Ai and Bi (i =
1, 2, 3) as given by eq. (2.9), there is no difference between the left-handed representation
(sL, 0) and the right-handed representation (0, sR) for rotation transformation. In addition,
the spin quantum number s is an invariant quantity. Thus, one can get arbitrary order-3
IRT of little group SO(3) by removing the restriction on type of IRREPs (χ 7→ χ∗) and
the summation of spins s in eq. (2.24),

Pα1α2
β (p;χ1 , χ2 , s) = uσβ(p;χ1 , s) ūα1α2

σ (p;χ∗2 , s), (2.26)

where χ1 and χ2 are arbitrary IRREPs belonging to the representation [β] and [α1]⊗ [α2],
respectively. By employing eq. (2.25), it is more convenient to use the following definition,

Pα1α2
β (p;χ, s;χ1 , s1;χ2 , s2) = (Cs1s2s )σ1σ2

σ uσβ(p;χ, s) ūα1
σ1

(
p;χ∗1 , s1

)
ūα2
σ2

(
p;χ∗2 , s2

)
. (2.27)

IRTs of little group SO(3) are always called Lorentz covariant spin projection tensors. It is
worth noting that the components of different spin states of arbitrary IRREP (sL, sR) will
mix with each other after a Lorentz boost transformation, unless there is only one possible
spin value in the IRREP.3 Therefore, spin projection tensors are depend on the momentum
p, and they are invariant under rotation. To gain a more intuitive understanding of IRTs
of the little group SO(3), we provide examples in appendix E.

2.4 Spin wave function of massless particle

In subsection 2.2, we did not mention the difference of the spin wave functions of particles
with and without mass. In this subsection, we will focus on this point.

As given in table 1, the little group of a massive particle is SO(3). The corresponding
group element hp (eq. (2.7)) must belong to Lp/SO(3) which corresponds to a pure-boost
Lorentz transformation, and can be written as follows,

Lp/SO(3) 3 hp = Rp̂ · B|p| · R−1
p̂ , (2.28)

where Rp̂ is a space-rotation transformation from z-axis to the direction of p, denoted as p̂;
and B|p| is a pure-boost transformation along z-axis which makes the energy of a massive
particle at rest from m to ωp. Thus, for a massive particle, the general form of spin wave
function has been discussed in subsection 2.2. We will adopt Rarita-Schwinger spin wave
function (eq. (2.21)) for a massive particle by default in the remaining of this paper.

For massless particles, since the little group is ISO(2), the corresponding group el-
ement h̃p must belong to Lp/ISO(2), which will not correspond to pure-boost Lorentz
transformation, and can be written as follows (see section V of chapter II in ref. [18] for
details),

Lp/ISO(2) 3 h̃p = Rp̂ · B|p|. (2.29)

Then, similar with eq. (2.7), one has

uσα (p;χ, s̃) = D β
α

(
h̃p
)
uσβ (k;χ, s̃) , ūασ (p;χ, s̃) = D α

β

(
h̃−1

p

)
ūβσ (k;χ, s̃) , (2.30)

3This is only true for IRREP (sL, sR) with sL = 0 or sR = 0, i.e., the Weinberg spin wave function as
discussed in section 2.2.
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where s̃ is eigenvalue of Casimir operator CISO(2) of ISO(2), which labels IRREPs of ISO(2).
Since the goal of this paper is to construct Lorentz covariant partial wave amplitude,
according to eq. (2.3), the pure-spin part is indispensable. We require a definite spin s

for uσα (k;χ, s̃) / ūασ (k;χ, s̃), then it is rewritten as uσα (k;χ, s, s̃) / ūασ (k;χ, s, s̃). In other
words, it is an eigenstate of the Casimir operator CSO(3) of SO(3). Thus, uσα (k;χ, s, s̃) /
ūασ (k;χ, s, s̃) should be an eigenstate of both CISO(2) and CSO(3), as well as the J3 which is
the Casimir operator of SO(2). Correspondingly, from the commutation relations as shown
in table 1, one can obtain

CISO(2) = (K1 − J2)2 + (K2 + J1)2 , CSO(3) = J2
1 + J2

2 + J2
3 . (2.31)

The eigen-equations of uσα (k;χ, s, s̃) can be expressed as follows,

[ J3 ] β
α uσβ (k;χ, s, s̃) = σ uσα (k;χ, s, s̃) ,[

CISO(2)
] β

α
uσβ (k;χ, s, s̃) = s̃ uσα (k;χ, s, s̃) ,[

CSO(3)
] β

α
uσβ (k;χ, s, s̃) = s(s+ 1)uσα (k;χ, s, s̃) . (2.32)

The eigen-equations of ūασ (k;χ, s, s̃) are similar.
Then, by combining eqs. (2.31) and (2.32), the spin wave function for a massless

particle with spin s and helicity σ = ±s must be described in the following self-conjugate
representation,

[ζs] = (s, 0)⊕ (0, s) , (2.33)

and one also has s̃ = 0 in these representations. For simplicity, we can rewrite uσζs (k;χ, s, s̃)
/ ūζsσ (k;χ, s, s̃) as uσζs (k;χ, s) / ūζsσ (k;χ, s), which has the same arguments as the spin wave
function of massive particles. One will find the spin wave function of massless particles
can be projected from the corresponding spin wave function of massive particles. Such
projection operator is named as helicity projection tensor. Now, we will explain how to
construct these helicity projection tensors.

Above all, we note that the REREP [s, 0] is included in the following decompositions
(with the convention as given in table 3),

[αs]⊗
[
ν s̄
]

= [ζs]⊕ · · · , (2.34)

where s̄ = bsc (rounding down). This decomposition indicates the existence of IRTs as
follows,

[αs]⊗
[
ν s̄
]
7→ (s, 0) : Tα

sνs̄

l , [αs]⊗
[
ν s̄
]
7→ (0, s) : Tα

sνs̄

r , (2.35)

where the index ν s̄ can be replaced by Lorentz four-vector indices by using IRT T ν1ν2···νs̄
νs̄

as follows,

Tα
sν1ν2···νs̄

l = Tα
sνs̄

l T ν1ν2···νs̄
νs̄ , Tα

sν1ν2···νs̄
r = Tα

sνs̄

r T ν1ν2···νs̄
νs̄ . (2.36)

One can get these IRTs from eq. (2.24).

– 11 –



J
H
E
P
0
6
(
2
0
2
3
)
0
3
9

Then, since the standard momentum of a massless particle, kµ = (|k|, 0, 0, |k|), is
covariant under Lorentz transformation and invariant under transformation of little group
ISO(2), the contractions between kµ and IRTs in eq. (2.36) have the same properties. In
other words, one will have the following helicity projection tensors,

Pα
s

l (k; s) = Tα
sν1ν2···νs̄

l kν1 kν2 · · · kνs̄ , Pα
s

r (k; s) = Tα
sν1ν2···νs̄

r kν1 kν2 · · · kνs̄ . (2.37)

With the above helicity projection tensors, one can convert the massive spin wave function
uσαs (k;χ, s) / ūαsσ (k;χ, s) into the massless spin wave function uσζs (k;χ, s) / ūζsσ (k;χ, s),
the relations are as follows,

uσζs (k; (s, 0), s) = lim
|p|→∞

N (|p|) (UL)l0ζs P
αs

l (k; s) D βs

αs

(
B|p|

)
uσβs (0;χL , s) ,

uσζs (k; (0, s), s) = lim
|p|→∞

N (|p|) (UR)0r
ζs P

αs

r (k; s) D βs

αs

(
B|p|

)
uσβs (0;χR , s) ,

ūζ
s

σ (k; (s, 0)∗, s) = lim
|p|→∞

N (|p|) (UL)ζ
s

l0 P lαs (k; s) D αs

βs

(
B−1
|p|

)
ūβ

s

σ

(
0;χ∗

L
, s
)
,

ūζ
s

σ (k; (0, s)∗, s) = lim
|p|→∞

N (|p|) (UR)ζ
s

0r P
r
αs (k; s) D αs

βs

(
B−1
|p|

)
ūβ

s

σ

(
0;χ∗

R
, s
)
, (2.38)

where N (|p|) = 1
(
|p|−1/2

)
is a normalization factor for bosons (fermions); UL/R is defined

in eq. (2.18); B|p| is defined in eq. (2.28); 0 denotes the spatial part of standard momentum
of little group SO(3); χ

L/R
= [αs] for arbitray self-conjugate IRREP, otherwise corresponds

to the left/right-handed IRREP belonging to [αs]. It is worth pointing out that the limit in
eqs. (2.38) is to remove the non-transverse polarized components in the spin wave functions,
and has no effect on the remaining two transverse polarized components. Thus, after some
derivation, the massless spin wave functions can be reduced as follows,

uσζs (k; (s, 0), s) = δ1
ζs δ

σ
−s, uσζs (k; (0, s), s) = δ

2(2s+1)
ζs δσs ,

ūζ
s

σ (k; (s, 0)∗, s) = δζ
s

1 δ−sσ , ūζ
s

σ (k; (0, s)∗, s) = δζ
s

2(2s+1) δ
s
σ.

(2.39)

Finally, we need to separate uσζs (p;χ, s) / ūζsσ (p;χ, s) into the pure orbital part and
the pure spin part. Thus, according to eqs. (2.3) and (2.29), for the covariant/contravariant
spin wave function, we will adopt the following separation,

uσζs(p;χ, s) = D
ζs1

ζs

(
h̃p
)
uσζs1 (k;χ, s) = D

ζs1
ζs

(
Rp̂
)
D

ζs2
ζs1

(
B|p|

)
︸ ︷︷ ︸

pure orbital part

uσζs2 (k;χ, s)︸ ︷︷ ︸
pure spin part

,

ūζ
s

σ (p;χ, s) = D ζs

ζs1

(
h̃−1

p

)
ū
ζs1
σ (k;χ, s) = D ζs

ζs1

(
R−1

p̂

)
D

ζs1
ζs2

(
B−1
|p|

)
︸ ︷︷ ︸

pure orbital part

ū
ζs2
σ (k;χ, s)︸ ︷︷ ︸

pure spin part

.

(2.40)

In addition, from table 2, the self-conjugate representation
[
ζ1] = (1, 0)⊕ (0, 1) carries

Maxwell fields, which is the adjoint representation of Lp. The dimension of this representa-
tion is 6, with three vectors and three axial vectors that respectively correspond to the elec-
tric and magnetic field components. The self-conjugate representation

[
ζ2] = (2, 0)⊕ (0, 2)
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carries Einstein gravitational field. The dimension of this representation is 10, correspond-
ing to the ten components of Riemann curvature tensor. Therefore, describing the spin
wave function of a massless particle through the self-conjugate representation [ζs] and
field strength tensor is equivalent. It automatically satisfies gauge invariance when the
scattering process involves gauge bosons.

2.5 Explicit form of covariant L-S scheme and its relation with helicity scheme

In this subsection, we will construct Lorentz covariant partial wave amplitude by using
IRTs of little group SO(3). In subsection 2.1, we have shown

Γα2α3
α1 (k1,p∗2,p∗3;L, S) = Pα

LαS

α1 (k1; s1, L, S)Pα2α3
αS

(k1;S, s2, s3) t̃(L)
αL

(k1,p∗2 − p∗3), (2.41)

with

t̃
(L)
αL

(k1,p∗2 − p∗3) ≡ P β1···βL
αL

(k1;L) (p∗2 − p∗3)β1 · · · (p∗2 − p∗3)βL ,

P β1···βL
αL

(k1;L) = P β1αL−1

αL
(k1;L, 1, L− 1) P β2···βL

αL−1 (k1;L− 1), (2.42)

where (p∗2−p∗3)β =
(
U−1) µ

β (p∗2−p∗3)µ with
(
U−1) µ

β is defined in eq. (C.6); and the general
form of order-3 spin projection tensor is as follows,

Pα2 α3
α1 (k1; j1, j2, j3) =

∑
χ1 ,χ2 ,χ3

Cχ1χ2χ3
Pα2 α3
α1 (k1;χ1 , j1;χ2 , j2;χ3 , j3), (2.43)

where Pα2 α3
α1 (k1;χ1 , j1;χ2 , j2;χ3 , j3) is defined in eq. (2.27). The Cχ1χ2χ3

s are indetermi-
nate coefficients, which represent the degrees of freedom of the Lorentz covariant coupling
structure.4

By adopting [αi] = [αsi ] as shown in eq. (2.21), one can easily obtain the exact expres-
sion of Aσ2σ3

σ1 (p1,p2,p3;L, S) for a process that only involves massive particles based on
eq. (2.5). For a process that involves massless particles, the explicit form is basically the
same as that in eq. (2.5). The only difference is that, for massless particle, one needs to
replace the spin wave function uσαi(ki; s) / ūαiσ (ki; s) and the Lorentz transformation R1i
in eq. (2.5) with uσζsi (ki;χ, s) / ūζsiσ (ki;χ, s) and R̃1i = R−1

p̂∗i
·R1i ·Rp̂i , respectively. As a

summary, the covariant L-S scheme provides the general steps for calculating partial wave
amplitude Aσ2 σ3

σ1 (p1,p2,p3;L, S), which are summarized in figure 2.
In addition, it is useful to show the relation between the partial wave amplitude ob-

tained by covariant L-S scheme and the helicity formalism [1]. By combining eqs. (2.4)
and (2.6), the partial wave amplitude at the rest frame of the initial particle can be written
as follows,

Aσ2σ3
σ1 (k1,p∗2,p∗3;L, S) =Pα

LαS

α1 (k1; s1, L, S)Pα2α3
αS

(k1;S, s2, s3) t̃(L)
αL

(k1,p∗2 − p∗3)
× ūα1

σ1 (k1; s1)uσ2
α2(k2; s2)uσ3

α3(k3; s3), (2.44)
4It is worth pointing out that according to Wigner-Eckart theorem, the form of the partial wave am-

plitude is only related to the values of L and S and is independent of Cχ1χ2χ3 s. In fact, any change
in Cχ1χ2χ3 s can be absorbed into the definition of coupling constants. If one further requires coupling
structure with conserved quantities such as P-parity and C-parity, Cχ1χ2χ3 s will be limited by additional
conditions. An example of this can be seen in subsection 3.2.
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Figure 2. A panoramic view of deriving partial wave amplitude by using covariant L-S scheme.
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where three polarization indices σi (i = 1, 2, 3) refer to the polarization component along
the z-axis.5 According to the definition of helicity amplitude [1], the polarization of the
initial particle (λ1 = σ1) is along the z-axis, and the polarizations of the final particles (λ2
and λ3) are along their respective motion directions. One has

Hλ2λ3
λ1

(k1,p∗2,p∗3;L, S) = Hλ2λ3
σ1 (k1,p∗2,p∗3;L, S)

= D(s2)λ2
σ2

(
Rp̂∗2

)
D(s3)λ3
σ3

(
Rp̂∗3

)
Aσ2σ3
σ1 (k1,p∗2,p∗3;L, S) . (2.45)

From eq. (2.42), the angular dependence of A comes from the relative momentum (p∗2 − p∗3),
so one can separate the angular variables through a rotation transformation as follows,

t̃
(L)
αL

(k1,p∗2 − p∗3) = Pµ1···µL
αL

(k1;L) (p∗2 − p∗3)µ1 · · · (p∗2 − p∗3)µL
= Pµ1···µL

αL
(k1;L)D ν1

µ1

(
Rp̂∗2

)
(p̄∗2 − p̄∗3)ν1 · · ·D νL

µL

(
Rp̂∗2

)
(p̄∗2 − p̄∗3)νL

= D βL

αL

(
Rp̂∗2

)
Pµ1···µL
βL

(k1;L) (p̄∗2 − p̄∗3)µ1 · · · (p̄∗2 − p̄∗3)µL

= D βL

αL

(
Rp̂∗2

)
t̃
(L)
βL

(k1, p̄∗2 − p̄∗3), (2.46)

where (p̄∗2 − p̄∗3) is the relative momentum along z-axis; from the second line to the third
line, the rotational invariance of spin projection tensor has been used. Similarly, the
rotation transformation matrix D βL

αL

(
Rp̂∗2

)
can be continuously transferred to the three

polarization indices σi (i = 1, 2, 3) and one obtains

Aσ2σ3
σ1 (k1,p∗2,p∗3;L, S) = D

(s1)σ′1
σ1

(
Rp̂∗2

)
D

(s2)σ2
σ′2

(
R−1

p̂∗2

)
D

(s3)σ3
σ′3

(
R−1

p̂∗2

)
Aσ
′
2σ
′
3

σ′1
(k1, p̄∗2, p̄∗3;L, S).

(2.47)

Then, substituting eq. (2.47) into eq. (2.45), one obtains

Hλ2λ3
σ1 (k1,p∗2,p∗3;L, S) = D

(s1)σ′1
σ1

(
Rp̂∗2

)
D(s3)λ3
σ3

(
R−1

p̂∗2
·Rp̂∗3

)
Aλ2σ3
σ′1

(k1, p̄∗2, p̄∗3;L, S)

≡ e
iΘ
(
Rp̂∗2

,Rp̂∗3

)
D

(s1)σ′1
σ1

(
Rp̂∗2

)
Fλ2 λ3
σ′1

(k1, |p∗2|, |p∗3|;L, S), (2.48)

where e
iΘ
(
Rp̂∗2

,Rp̂∗3

)
is a global phase factor which depends on the phase convention;

and Fλ2λ3
σ1 (k1, |p∗2|, |p∗3|;L, S) = Aλ2−λ3

σ1 (k1, p̄∗2, p̄∗3;L, S) is called helicity-coupling ampli-
tude [7]. Eqs. (2.45), (2.47) and (2.48) clearly show the relation between the helicity
amplitude, the helicty coupling amplitude and the partial wave amplitude obtained from
the covariant L-S scheme.

3 Examples of deriving Lorentz covariant partial wave amplitudes

In this section, we provide specific examples of two-body decay processes to further illus-
trate our scheme.

5As shown in eq. (2.40), we also use helicity wave function for massless particle in covariant L-S scheme.
Thus, the relation between these two schemes for cases including massless particles will be simpler and we
will not discuss it again.
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3.1 Spin-one particle to two-body system of spin-one and spin-zero

In this subsection, we employ eq. (2.5) to obtain the Lorentz covariant partial wave am-
plitudes corresponding to the decay process 1(s1 = 1) → 2(s2 = 1) + 3(s3 = 0) (where all
particles are massive).

Firstly, specific representations of Lp must be selected to express the spin wave func-
tions under consideration. Here, recalling eq. (2.21) and the conventions in table 3, one has

[α1] =
[
µ1
]
⇒ ūα1

σ1

(
k1;

[
µ1
]
, 1
)

= Uα1
lr

(
C

1
2

1
2

1

)lr
σ1

,

[α2] =
[
µ1
]
⇒ uσ2

α2

(
k2;

[
µ1
]
, 1
)

= U lrα2

(
C1

1
2

1
2

)σ1

lr
, (3.1)

[α3] =
[
µ0
]
⇒ uσ3

α3

(
k3;

[
µ0
]
, 1
)

= U00
α3

(
C0

00

)σ1

00
.

Then, to obtain the Lorentz covariant coupling structure Γα2α3
α1 (k1,p∗2,p∗3;L, S) based on

eq. (2.41), one needs to calculate the three spin projection tensors PαLαSα1 (k1; s1, L, S),
Pα2α3
αS

(k1;S, s2, s3) and P β1···βL
αL

(k1;L). Let us discuss them one by one.
The spin projection tensor PαLαSα1 (k1; s1, L, S) has three indices, where α1 is introduced

in eq. (3.1). The indices αS and αL carry the representations that depend on the quantum
number of total spin S and orbital angular momentum L, respectively. Applying the
selection rule of angular momentum, one can get

|s2 − s3| ≤ S ≤ s2 + s3 ⇒ S = 1, |s1 − S| ≤ L ≤ s1 + S ⇒ L = 0, 1, 2. (3.2)

Thus, one has
[
αS
]

=
[
µ1] and

[
αL
]

=
[
µL
]
. According to eq. (2.43), we obtain the

explicit form of PαLαSα1 (k1; s1, L, S) as follows,

Pα
LαS

α1 (k1; 1, L, 1) =
(
CL1

1

)σLσS
σ1

uσ1
α1

(
k1;

[
µ1
]
, 1
)
ūα

L

σL

(
k1;

[
µL
]
, L
)
ūα

S

σS

(
k1;

[
µ1
]
, 1
)
,

(3.3)
where we have choosen Cχ1χSχL

= 1 for simplicity, since all χi (i = 1, S, L) are fixed.
The spin projection tensor Pα2α3

αS
(k1;S, s2, s3) has three indices. From the above

discussion, we have [α1] = [α2] =
[
αS
]

=
[
µ1] and [α3] =

[
αL=0

]
=
[
µ0], thus, the explicit

form of Pα2α3
αS

(k1; 1, 1, 0) is the same as PαLαSα1 (k1; 1, 1, L) with L = 0.
The spin projection tensor P β1···βL

αL
(k1;L) has L + 1 indices, which can be obtained

recursively according to eq. (2.42). The explicit forms are as follows,

L = 0 : Pα0(k1; 0) = u0
α0

(
k1;

[
µ0
]
, 0
)
,

L = 1 : P β1
α1 (k1; 1) = P β1α0

α1 (k1; 1, 1, 0) Pα0(k1; 0),

L = 2 : P β1β2
α2 (k1; 2) = P β1α1

α2 (k1; 2, 1, 1) P β2
α1 (k1; 1), (3.4)

where P β1α0

α1 (k1; 1, 1, 0) is the same as Pα2α3
αS

(k1; 1, 1, 0); and P β1α1

α2 (k1; 2, 1, 1) is as follows,

P β1α1

α2 (k1; 2, 1, 1) =
(
C11

2

)σ′σ′′
σ

uσα2

(
k1;

[
µ2
]
, 2
)
ūβ1
σ′

(
k1;

[
µ1
]
, 1
)
ūα

1
σ′′

(
k1;

[
µ1
]
, 1
)
. (3.5)
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Combining the aforementioned spin projection tensors, one can obtain Lorentz covari-
ant coupling structures with different orbital angular momentum L, expressed as follows,

Γα2α3
α1 (k1,p∗2,p∗3;L, 1) = Pα

LαS

α1 (k1; 1, L, 1)Pα2α3
αS

(k1; 1, 1, 0) t̃(L)
αL

(k1,p∗2 − p∗3). (3.6)

Further, one can use the similarity transformations as shown in eq. (C.6) to get these
coupling structures in space-time representation as follows,

Γνµ(k1,p∗2,p∗3;L, 1) = U α1
µ

(
U−1

) ν

α2
Γα2α3
α1 (k1,p∗2,p∗3;L, 1), (3.7)

where we have droped the index α3, since [α3] =
[
µ0] is the identity representation. The

explicit forms can be obtained as follows,

Γνµ(k1,p∗2,p∗3; 0, 1) = −g ν
µ + k1µk

ν
1

m2
1
,

Γνµ(k1,p∗2,p∗3; 1, 1) = i gµµ′

(
k1
m1

)
ν′
U α1
ρ′ t̃

(1)
α1 (k1,p∗2 − p∗3) εµ′ν′ρ′ν

Γνµ(k1,p∗2,p∗3; 2, 1) = U α1
µ

(
U−1

) ν

α2
Tα2α2
α1 t̃

(2)
α2 (k1,p∗2 − p∗3), (3.8)

where k1µ = (m1, 0, 0, 0); Tα2α2
α1 is an order-3 IRT of Lp which can be found in appendix D.

Finally, by combining eqs. (2.5) and (3.8), one can obtain the Lorentz covariant partial
wave amplitudes as follows,

Aσ2
σ1(p1,p2,p3;L, 1) = ε̄µσ1 (p1) Γρµ(p1,p2,p3;L, 1)Dν

ρ

(
hp1 · h−1

p∗2
· h−1

p1

)
ερν (p2) , (3.9)

where εσµ(p) = U α
µ uσα

(
p;
[
µ1] ; 1

)
and ε̄µσ(p) =

(
U−1) µ

α ūασ
(
p;
[
µ1] ; 1

)
are covariant and

contravariant polarization vectors, respectively; D ν
ρ

(
hp1 · h−1

p∗2
· h−1

p1

)
is a Lorentz trans-

formation matrix. If one removes D ν
ρ

(
hp1 · h−1

p∗2
· h−1

p1

)
in eq. (3.9), the partial wave

amplitude will be exactly the same as the result of ref. [9]. In fact, as shown in eq. (2.5),
if D β

α (R1i) is replaced by D β
α

(
hp∗i ·R1i

)
(i = 1, 2), such partial wave amplitudes for

fixed L and S are exactly the same as that in ref. [9]. Now they are only consistent at the
two-body threshold of final state, i.e., |p∗2|/E∗2 → 0 and then D ν

ρ

(
hp1 · h−1

p∗2
· h−1

p1

)
→ δ ν

ρ .
However, when both methods include all partial wave amplitudes for L-S quantum num-
bers, they are actually equivalent because they both include all independent Lorentz co-
variant structures and just use different complete bases to parameterize the amplitudes. In
other words, the definition of L-S quantum number is different in two methods, while our
definition as shown in eq. (2.5) is exactly the same as them in ref. [1].

3.2 Spin-half particle to two-body system of spin-half and spin-one

In this subsection, we employ eq. (2.5) to obtain the Lorentz covariant partial wave am-
plitudes corresponding to the decay process 1(s1 = 1

2)→ 2(s2 = 1
2) + 3(s3 = 1) (where all

particles are massive).

– 17 –



J
H
E
P
0
6
(
2
0
2
3
)
0
3
9

Firstly, specific representations of Lp must be selected to express the spin wave func-
tions under consideration. Recalling eq. (2.21) and the conventions in table 3, one has

[α1] =
[
a1
]
⇒ ūα1

σ1

(
k1;χ, 1

2

)
=


(UR)α1

lr

(
C

0 1
2

1
2

)lr
σ1

for χ =
[
a1
R

]

(UL)α1
lr

(
C

1
2 0
1
2

)lr
σ1

for χ =
[
a1
L

] ,

[α2] =
[
a1
]
⇒ uσ2

α2

(
k2;χ, 1

2

)
=


(UL)lrα2

(
C

1
2
1
2 0

)σ2

lr
for χ =

[
a1
L

]

(UR)lrα2

(
C

1
2
1
2 0

)σ2

lr
for χ =

[
a1
R

] , (3.10)

[α3] =
[
µ1
]
⇒ uσ3

α3

(
k3;

[
µ1
]
, 1
)

= U lrα3

(
C1

1
2

1
2

)σ3

lr
.

Then, to obtain the Lorentz covariant coupling structure Γα2α3
α1 (k1,p∗2,p∗3;L, S) based on

eq. (2.41), one needs to calculate the three spin projection tensors PαLαSα1 (k1; s1, L, S),
Pα2α3
αS

(k1;S, s2, s3) and P β1···βL
αL

(k1;L). Let us discuss them one by one.
The spin projection tensor PαLαSα1 (k1; s1, L, S) has three indices, where α1 is introduced

in eq. (3.10). Applying the selection rule of angular momentum, one can get

|s2 − s3| ≤ S ≤ s2 + s3 ⇒ S = 1
2 ,

3
2 , |s1 − S| ≤ L ≤ s1 + S ⇒ L = 0, 1, 2. (3.11)

Thus, one has
[
αS
]

=
[
a2S

]
and

[
αL
]

=
[
µL
]
. According to eq. (2.43), we obtain the

explicit form of PαLαSα1 (k1; s1, L, S) as follows,

Pα
LαS

α1

(
k1; 1

2 , L, S
)

=
∑

χ1=
[
a1
L/R

]
,χ
S

=
[
a2S
L/R

]Cχ1χS

(
CLS1

2

)σLσS
σ1

uσ1
α1

(
k1;χ1 ,

1
2

)

× ūαLσL
(
k1;

[
µL
]
, L
)
ūα

S

σS
(k1;χS , S) , (3.12)

where we have droped χL since it is fixed; Cχ1χS
s are some indeterminate coefficients as

mentioned in eq. (2.43), which represents the difference of coupling strength between left
and right-handed spinors. If coupling structure with conserved quantities such as P-parity
and C-parity is required, these Cχ1χS

s will be limited by additional conditions.
The spin projection tensor Pα2α3

αS
(k1;S, s2, s3) has three indices, where [α2] =

[
a1],

[α3] =
[
µ1] and [αS] =

[
a2S

]
, which are chosen from the PαLαSα1 (k1; s1, L, S) above. Again,

according to eq. (2.43), we obtain the explicit form of Pα2α3
αS

(k1;S, s2, s3) as follows,

Pα2α3
αS

(
k1;S, 1

2 , 1
)

=
∑

χ
S

=
[
a2S
L/R

]
,χ2=

[
a1
L/R

] CχSχ2

(
C

1
2 1
S

)σ2σ3

σS

uσS
αS

(k1;χS , S)

× ūα2
σ2

(
k1;χ2 ,

1
2

)
ūα3
σ3

(
k1;

[
µ1
]
, 1
)
, (3.13)
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where we have droped χ3 since it is fixed; Cχ
S
χ2
s are indeterminate coefficients similar to

Cχ1χS
s in eq. (3.12).

The spin projection tensor P β1···βL
αL

(k1;L) only depends on angular momentum L.
Eq. (3.11) gives the possible values of L, which is the same as that in eq. (3.2). Thus,
Pµ1···µL
µL

(k1;L) here is the same as that in eq. (3.4).
Then, Lorentz covariant coupling structures with different (L, S) combinations are

obtained by combining the above three spin projection tensors together as follows,

Γα2α3
α1 (k1,p∗2,p∗3;L, S) = Pα

LαS

α1

(
k1; 1

2 , L, S
)
Pα2α3
αS

(
k1;S, 1

2 , 1
)
t̃
(L)
αL

(k1,p∗2 − p∗3).
(3.14)

Finally, by combining eqs. (2.5) and (3.14), one can get the explicit form of these partial
wave amplitudes as follows,

Aσ2σ3
σ1 (p1,p2,p3;L, S) = ūα1

σ1

(
k1;

[
a1
]
,

1
2
P1
)

Γα
′
2α
′
3

α1 (k1,p∗2,p∗3;L, S)D α2
α′2

(R12)

×D α3
α′3

(R13) uσ2
α2

(
k2;

[
a1
]
,
1
2
P2
)
uσ3
α3

(
k3;

[
µ1
]

; 1
)
, (3.15)

where uσα
(
ki; [α], sP

)
/ūασ

(
ki; [α], sP

)
(i = 1, 2) is covariant/contravariant spin wave func-

tion for particle with definite parity P as defined in eq. (E.4).
In addition, a Lorentz covariant amplitude are expressed as contraction of tensors

containing only Dirac spinor and Lorentz four-vector indices in the conventional form.
However, as we have seen in subsections 3.1 and 3.2, the conventional form, which will
become more and more complicated with the increase of spin, is unnecessary. Therefore,
detailed results of the amplitudes (eq. (3.15)) in the conventional form are not presented.
Instead, a brief discussion of the relation between the different forms of spin wave function
is included in appendix F.

3.3 Three-particle partial wave amplitude including massless particles

In this subsection, we reconsider the example in subsection 3.1 with particle-2 is massless
(such as photon) and make a general discussion on three-particle partial wave amplitude
including massless particles.

According to eq. (2.33), we take [α2] = (1, 0)⊕(0, 1) ≡ [ζ], and use the same representa-
tions for particle-1 and particle-3 as in eq. (3.1). From eq. (2.39), the left and right-handed
helicity wave functions of photon can be written as follows,

uσ2
ζ (k2; (1, 0), 1) = δ1

ζ δ
σ2
−1, uσ2

ζ (k2; (0, 1), 1) = δ6
ζ δ

σ2
1 . (3.16)

It is worth emphasizing that σ2 (= ±1) in the above equation refers to helicity rather than
polarization components along a fixed direction. According to eq. (E.4), the above two
helicity wave functions can be also written as the following form of parity-eigenstate,

Positive parity : uσ2
ζ

(
k2; [ζ], 1+

)
= uσ2

ζ (k2; (1, 0), 1) + uσ2
ζ (k2; (0, 1), 1) ,

Negative parity : uσ2
ζ

(
k2; [ζ], 1−

)
= uσ2

ζ (k2; (1, 0), 1)− uσ2
ζ (k2; (0, 1), 1) . (3.17)
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To obtain the Lorentz covariant coupling structure Γζα3
α1 (k1,p∗2,p∗3;L, S) based on eq. (2.41),

one needs to calculate three spin projection tensors PαLαSα1 (k1; s1, L, S), P ζα3
αS

(k1;S, s2, s3)
and P β1···βL

αL
(k1;L). Let us discuss them one by one.

The specific form of PαLαSα1 (k1; s1, L, S) and P β1···βL
αL

(k1;L) solely depends on the spin-
orbital quantum numbers L and S, which are identical to those presented in eqs. (3.3)
and (3.4). Using eq. (2.43), we can derive the explicit form of P ζα3

αS
(k1;S, s2, s3) as follows,

P ζα
3

αS
(k1; 1, 1, 0) =

∑
χ=(1,0),(0,1)

Cχ
(
C10

1

)σσ3

σS
uσS
αS

(
k1;

[
µ1
]
, 1
)
ūζσ (k1;χ, 1) ūα3

σ3

(
k1;

[
µ0
]
, 0
)
,

(3.18)
where we have droped χi (i = S, 3) since they are fixed; Cχs are indeterminate coefficients
that are similar to Cχ1χS

s in eq. (3.12); ūζσ (k1;χ, 1) denotes the contravariant spin wave
function for a massive particle in the self-conjugate REREP [1, 0], which can be obtained
from eq. (2.17).

One can obtain Lorentz covariant coupling structures with different orbital angular
momentum L by combining the aforementioned spin projection tensors. It can be expressed
as follows,

Γζα1(k1,p∗2,p∗3;L, 1) = Pα
LαS

α1 (k1; 1, L, 1)P ζ
αS

(k1; 1, 1, 0) t̃(L)
αL

(k1,p∗2 − p∗3), (3.19)

where we have droped α3 for simplicity, since particle-3 is a scalar.
Finally, by combining eqs. (2.5) and (3.19), we obtain the Lorentz covariant partial

wave amplitudes satisfying gauge invariance as follows,

(A±)σ2
σ1(p1,p2,p3;L,1) = ūα1

σ1

(
k1;
[
µ1
]
,1
)

Γζ′α1(k1,p∗2,p∗3;L,1)D ζ
ζ′

(
R̃12

)
uσ2
ζ

(
k2; [ζ];1±

)
.

(3.20)
Furthermore, according to eq. (2.48), the helicity-coupling amplitudes which are inde-

pendent on angular variables can be extracted from partial wave amplitudes in eq. (3.20)
as follows,

(F±)λ2
σ1

(k1, |p∗2|, |p∗3|; 0, 1) ∝

 1 0 0
0 0 0
0 0 ±1


λ2

σ1

,

(F±)λ2
σ1

(k1, |p∗2|, |p∗3|; 1, 1) ∝

 1 0 0
0 0 0
0 0 ∓1


λ2

σ1

,

(F±)λ2
σ1

(k1, |p∗2|, |p∗3|; 2, 1) ∝

 1 0 0
0 0 0
0 0 ±1


λ2

σ1

. (3.21)

It can be seen that only two of the above three amplitudes are linearly independent.
This example shows that, for process involving massless particles such as photons, with
definite L-S quantum numbers, we are able to write down the partial wave amplitudes
which satisfy both Lorentz covariance and gauge invariance. However, in general, these
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Range N0(s1; s2, s3) N1(s1; s2, s3) N2(s1; s2, s3) N3(s1; s2, s3)
(a) (2s1 + 1)(2s3 + 1) 0 0 0
(b) 2(s1 − s2 + s3 + 1) 2

2
(c) n(s1; s2, s3) 0
(d) (2s1 + 1)(2s2 + 1) 2(2s1 + 1) 2
(e) 0 0
(f) (2s2 + 1)(2s3 + 1) 2(2s3 + 1) 4 2
(g) 0

Table 4. The number of linearly independent terms of three-particle amplitudes (s1 → s2 + s3) is
determined in seven different ranges: (a) s1 < s2− s3; (b) s1 = s2− s3; (c) |s2− s3| < s1 < s2 + s3;
(d) s1 = s3 − s2; (e) s1 < s3 − s2; (f) s1 = s2 + s3; (g) s1 > s2 + s3. Ni(s1; s2, s3) (i = 0, 1, 2, 3)
represents the number of linearly independent terms for four cases: (i = 0) all particles are massive;
(i = 1) particle-2 is massless and s2 6= 0; (i = 2) both particle-2 and 3 are massless and s2,3 6= 0;
(i = 3) all particles are massless and s1,2,3 6= 0. The value of n(s1; s2, s3) is calculated as follows:
n(s1; s2, s3) = −(s2

1 + s2
2 + s2

3) + 2(s1s2 + s2s3 + s1s3) + s1 + s2 + s3 + 1.

amplitudes are not all linearly independent (e.g., see the treatment of radiation decay of
ψ in ref. [9]). Therefore, to avoid the introduction of redundant fitting parameters in the
PWA of experimental data, it is necessary to select the linearly independent terms from
the partial wave amplitudes of all possible L-S combinations. To achieve this, one must
determine the number of linearly independent terms in these partial wave amplitudes and
select a complete basis from these amplitudes. We define vectors VI(s1, s2, s3, L, S) based
on the helicity-coupling amplitude definition given in eq. (2.48) as follows,

VI(s1, s2, s3, L, S) ≡ V σ2σ3
σ1 (s1, s2, s3, L, S) = (Cs2s3S )σ2σ3

σ1

(
CSLs1

)σ1 0

σ1
,

dim [I] = dim [σ1]× dim [σ2]× dim [σ3], (3.22)

where we have denoted the three spin polarization indices σi (i = 1, 2, 3) as an index I.
The number of linearly independent terms in partial wave amplitudes equals the number
of linearly independent vectors VI(s1, s2, s3, L, S) of all possible L-S combinations.

Table 4 provides formulas for calculating the number of linearly independent partial
wave amplitudes. To obtain a set of linearly independent partial wave amplitudes, one
needs to select L-S combinations of a given number (the number of linearly indepen-
dent terms) from all possible L-S combinations and ensure that the corresponding vectors
VI(s1, s2, s3, L, S) are linearly independent with each other. However, there is no unique se-
lection criterion except that the number of L-S combinations with even and odd L must be
equal. To facilitate the selection process, we construct a weight function W (s1, s2, s3, L, S)
(see appendix G) and suggest6 that L-S combinations with larger weight can be considered
first when selecting L-S combinations within requirements.

6This is only a suggestion, because any other L-S combinations can also be selected, as long as these
amplitudes are linearly independent.
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4 Summary

In this work, we generalized the covariant L-S coupling scheme based on the IRTs of Lp and
its little groups (SO(3) and ISO(2)) which gives a general procedure for constructing the
partial wave amplitude with obvious Lorentz covariant form. The scheme is applicable to
both massive and massless particles with arbitrary spins and to processes with or without
the conservation of P-parity, C-parity, and so on. In addition, the partial wave amplitudes
including gauge bosons proposed here automatically satisfy gauge invariance. Therefore,
this scheme is useful for the PWA of strong and electroweak interaction processes.

We provided detailed derivations for calculating the partial wave amplitudes of three
examples, including bosons, fermions, and photon. Through the example in subsection 3.1,
we show that a pure L-S component in the corresponding partial wave amplitude labeled
by (L, S) is well-defined for any initial mass m1, while in refs. [9, 10, 12], this was only
the case for threshold mass m1 = m2 + m3 (non-relativistic limit). This point should be
paid special attention when cross-checking the results of different PWA schemes. Through
the example in subsection 3.2, we show that the conventional form for expressing Lorentz
covariant amplitude is unnecessary. If needed, the IRTs of Lp can be used to convert
different forms of spin wave functions. In subsection 3.3, we show that the number of
linearly independent partial wave amplitudes for cases that include massless particles is
always less than the number of all possible L-S combinations because of gauge invariance.
To prevent the introduction of redundant fitting parameters, we introduce a weight function
W (s1, s2, s3, L, S) to select a set of linearly independent complete bases from these partial
wave amplitudes.
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A Covariant tensor and irreducible tensor

In this appendix, we give a brief introduction to COVT and IRT. A tensor T a1a2···
b1b2··· is called a

COVT of a group G, where the lower/upper indices correspond to covariant/contravariant
components, if it transforms as follows,

T a1a2···
b1b2···

g∈G−−−→ T̃ a1a2···
b1b2··· = D

b′1
b1

(g) D b′2
b2

(g) Da1
a′1

(g) Da2
a′2

(g) · · · T a
′
1a
′
2···

b′1b
′
2···

,

where D b
a (g) and Da

b(g) are the corresponding IRREP matrices of arbitrary group ele-
ment g(∈ G).
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There is a special class of COVTs which is invariant under group transformation, called
invariant tensor (INVT). For a given group G, one can obtain an INVT T a1a2···

b1b2··· by solving
the following equation except for an overall factor,

T a1a2···
b1b2···

g∈G−−−→ T̃ a1a2···
b1b2··· = D

b′1
b1

(g) D b′2
b2

(g) Da1
a′1

(g) Da2
a′2

(g) · · · T a
′
1a
′
2···

b′1b
′
2···

= T a1a2···
b1b2··· . (A.1)

Tensors can be divided by the number of indices, as order-0, order-1, order-2 and so on. Let
us discuss INVTs order by order. Without loss of generality, we will only discuss INVTs
with covariant indices.

Order-0 INVT: an order-0 INVT T has no index and must be a scalar, which is invariant
automatically under group transformation. This is a trivial case.

Order-1 INVT: an order-1 INVT Ta is a vector, which is a set of bases that carry the
IRREP D b

a (G), while it is also invariant under group transformation. The IRREP must
be the identity representation which returns to the case of order-0 INVT. Otherwise, Ta
will be a zero vector.

Order-2 INVT: an order-2 INVT Ta1a2 has two indices which correspond to two sets of
bases which carry the IRREPs D1(G) and D2(G). From the definition of INVT, one has
D1(g)T D2(g−1) = T or equivalent D1(g)T = T D2(g) for any g ∈ G. Then, by employing
the famous Schur’s lemma, one gets T = 0 iff D1(G) and D2(G) are two nonequivalent
IRREPs; for the case where D1(G) and D2(G) are equivalent, one gets T must be the
identity element of G.

Order-3 INVT: an order-3 INVT Ta1a2a3 has three indices which correspond to three
sets of baseas which carry the IRREPs D a1

a′1
(G), D a2

a′2
(G) and D a3

a′3
(G), respectively.

Here, an index a23 can be defined as a pair combination of the indices a2 and a3 with
the corresponding representation D a23

a′23
(G) ≡ D a2

a′2
(G) ⊗ D a3

a′3
(G). Then, Ta1a2a3 can

be expressed as an order-2 tensor Ta1a23 . In general, the representation D a23
a′23

(G) is not
an IRREP. Thus, it needs to be decomposed into a direct sum of some IRREPs, i.e.,
D a23
a′23

(G) = D b1
b′1

(G) ⊕ D b2
b′2

(G) ⊕ · · · . With this decomposition, we can express the
eq. (A.1) of an order-3 INVT as a direct sum of eq. (A.1) of many order-2 INVTs. Thus,
we can apply Schur’s lemma again: Ta1a2a3 = 0 if any IRREP in the decomposition of
D a23
a′23

(G) is not equivalent to D a1
a′1

(G); otherwise, Ta1a2a3 must be uniquely determined
by group transformations from eq. (A.1).

Order-n INVTs: any order-n (n ≥ 4) INVT can be expressed by contraction of order-3
INVTs.

Further, INVTs have a projective property that is independent of the bases and can
be used to decompose COVTs. For example, consider an order-2 COVT Xij and direct
product decomposition [i]⊗ [j] = [k1]⊕ [k2]⊕ · · · , one has

Xij = Ck1 T
k1
ij + Ck2 T

k2
ij + · · · , with Ckn

g∈G−−−→ C̃kn = D
k′n

kn
(g)Ck′n , (A.2)
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where Ckn (n = 1, 2, · · · ) are a kind of sets of bases carrying IRREPs [kn] (n = 1, 2, · · · );
T knij (n = 1, 2, · · · ) are some order-3 INVTs. These Ckn (n = 1, 2, · · · ) can be obtained by
the orthogonal relation of INVT as follows,

T kmij T ijkn ∝ δmn δ
km

kn
, (A.3)

where the proportional sign represents the arbitrariness of normalization. Eq. (A.2) clearly
shows that a COVT can be decomposed into several parts by INVTs, while an INVT cannot
be further decomposed. Thus, INVTs are also called IRTs.

From the above discussion, one can realize that CGCs are order-3 INVTs. For example,
it is easy to find that the CGCs of SU(2), Csms1m1,s2m2 ≡

(
Css1s2

)m
m1m2

, are order-3 IRTs,

(
Css1s2

)m
m1m2

g∈SU(2)−−−−−→ D
(s)m
m′ (g−1) D(s1)m′1

m1 (g) D(s2)m′2
m2 (g)

(
Css1s2

)m′
m′1m

′
2

=
(
Css1s2

)m
m1m2

,

(A.4)
where D(s)m′

m (g) is Wigner-D matrix. If one choose s = 1, s1 = 1
2 and s2 = 1

2 , the

corresponding CGCs are
(
C1

1
2

1
2

)m
m1m2

, where m ∈ {−1, 0, 1} and m1,m2 ∈ {−1
2 ,

1
2}. By

using some similarity transformations to change the indices (m, m1, m2) to (i, a, b), the
2 × 2 matrices

[(
C1

1
2

1
2

)m]
m1m2

will become Pauli-σ matrices (σi) b
a (a, b = 1, 2 and i =

1, 2, 3). Thus, Pauli-σ matrices (σi) b
a form an order-3 IRT of SU(2) with three indices

a, b and i which carry three IRREPs
[

1
2

]
,
[

1
2

]∗
and [1], respectively. Here, [s] denotes the

IRREP of SU(2) with dimension 2s+ 1.
Actually, since the core concept of modern physics is symmetry, which is expressed as

the principle of relativity — the form of physical laws dose not depend on the selection of
frame. Therefore, IRTs, a kind of invariant under group transformation, have become ideal
mathematical objects to describe the laws of physics. In particle physics, beside Pauli-σ
matrix, many common tensors are IRTs of specific group. For example, Minkowski metric
gµν , Levi-Civita tensor εµνρσ and Dirac-γ matrix γµ are all IRTs of Lp. Similarly, Dirac
spinor wave functions uσ(p), vσ(p), and polarization vector εσµ(p) are IRTs of the little
group SO(3). Furthermore, a particle’s field operator is an IRT belonging to poincáre
group — a basic building block to construct poincáre invariant S-matrix.

B Partial wave components of some three-particle amplitudes

For a given Lorentz covariant three-particle amplitude, one can extract the partial wave
amplitudes through IRTs and spin projection tensors as introduced in subsection 2.3. Here,
we provide a comprehensive list of all possible partial wave components for two spin- 1

2
particles and for a spin- 1

2 and a spin-3
2 particle using the aforementioned method. The

results for two spin- 1
2 particles can be found in table 5, while those for a spin- 1

2 and a
spin-3

2 particle can be found in table 6.
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Lorentz structure Partial wave components
(

2S+1LJ
)

ψ̄2ψ1

3P0
1S0

ψ̄2γ5ψ1

1S0
3P0

ψ̄2γµψ1

3P0
3S1

3D1
1S0

1P1
3P1

ψ̄2γ5γµψ1

3P1
1S0

1P1
3P0

3S1
3D1

ψ̄2σµνψ1

1P1
3S1

3P1
3D1

1P1
3S1

3P1
3D1

ψ̄2
↔
∂ µ ψ1

3S1
3P0

3D1
1S0

∂µ
(
ψ̄2ψ1

) 3P0
1S0

1P1
...

...

Table 5. Possible partial wave components contained in some common three-particle ampli-
tudes including two fermions with spin- 1

2 . For each Lorentz structure, the upper row and
lower row of the partial wave components represent the results of the decay mode B(boson) →
F (fermion)F̄ (antifermion) and F → BF , respectively.

C Lorentz transformation in any irreducible representation of Lp

Since Lp is a Lie group, a group element g (∈ Lp) can be written as an exponential of its
generators (table 1) as follows,

g(θi, ϑi) = exp {i ( Ji θi +Ki ϑi )}, (C.1)

where θi and ϑi(i = 1, 2, 3) are correspond to the group parameters of rotations and boosts,
respectively. Equivalently, one can express g by using Ai and Bi(i = 1, 2, 3) (eq. (2.10)) as
follows,

g(zi, z∗i ) = exp {i ( Ai z∗i +Bi zi )}, (C.2)

where z∗i = θi − iϑi(i = 1, 2, 3) and zi = θi + iϑi are corresponding to group parameters
of the left and right-handed rotations, respectively. For an IRREP (sL, sR) = (sL, 0) ⊗
(0, sR), the representation matrices of the generators will be A(sL,sR)

i = S
[sL]
i ⊗ 1[sR] and

B
(sL,sR)
i = 1

[sL] ⊗ S[sR]
i (i = 1, 2, 3), where S[s]

i and 1[s] are the SU(2) generators in IRREP
[s] and (2s + 1)-dimensional identity matrix, respectively. Thus, the representation of Lp
in arbitrary IRREP [α] = (sL, sR), denoted as D α′

α (θ, ϑ), is just a direct product of two
Wigner-D matrices with complex arguments as follows,

D α′
α (θi, ϑi) = U lrα Uα

′
l′r′ D

l′r′
lr (θi, ϑi) = U lrα Uα

′
l′r′ D

(sL)l′
l (z∗i ) D(sR)r′

r (zi), (C.3)
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Lorentz structure Partial wave components
(

2S+1LJ
)

ψ̄2ψ1µ

5D0
3P1

5P1
5F1

3P0
3S1

3D1

ψ̄2γ5ψ1µ

3P0
3S1

3D1
5D0

3P1
5P1

5F1

ψ̄2γνψ1µ

5D0
3S1

3P1
5P1

3D1
5D1

5S2
3D2

5D2
3P0

3S1
3P1

5P1
3D1

5D1
3P2

5P2

ψ̄2γ5γνψ1µ

3P0
3S1

3P1
5P1

3D1
5D1

3P2
5P2

5D0
3S1

3P1
5P1

3D1
5D1

5S2
3D2

5D2

ψ̄2σνρψ1µ

3P0
5D0

3S1
3P1

5P1
3D1

5D1
5S2

3P2
5P2

3D2
5D2

3P0
5D0

3S1
3P1

5P1
3D1

5D1
5S2

3P2
5P2

3D2
5D2

ψ̄2
↔
∂ ν ψ1µ

5D0
3S1

3P1
5P1

3D1
5D1

5F1
5S2

3D2
5D2

5G2
3P0

3S1
3D1

∂ν
(
ψ̄2ψ1µ

) 5D0
3P1

5P1
5F1

3P0
3S1

3P1
3D1

3P2
3F2

...
...

Table 6. Notations are the same as in table 5 except that a fermion is replaced by spin- 3
2 .

where U lrα and Uαlr are defined in eq. (2.14). For a pure rotation, zi = z∗i = θi (i = 1, 2, 3)
are reals, the corresponding transformation matrix is usual Wigner-D matrix. For a pure
boost, zi = −z∗i = iϑi (i = 1, 2, 3) are pure imaginary numbers. Then, the corresponding
transformation matrix can be obtained by performing the analytic continuation of usual
Wigner-D matrix. According to eq. (2.28), any pure boost transformation can be written
as follows,

D α′
α (hp) = D α′′

α

(
Rp̂
)
D α′′′
α′′

(
B|p|

)
D α′
α′′′

(
R−1

p̂

)
, (C.4)

where

D α′
α

(
Rp̂

)
= U lrα Uα

′
l′r′ D

(sL)l′′
l (θ3) D(sL)l′

l′′ (θ2) D(sR)r′′
r (θ3) D(sR)r′

r′′ (θ2),

D α′
α

(
B|p|

)
= U lrα Uα

′
l′r′ D

(sL)l′
l (−iϑ3) D(sR)r′

r (iϑ3),

with D(s)σ′
σ (±iϑ3) = δ σ′

σ e∓σϑ3 .
Finally, one can obtain a Lorentz transformation in arbitrary representation from

eq. (C.4). For example, considering the fundamental representation [α] = (1
2 ,

1
2), one

obtains

D µ′
µ (hp) = U α

µ D α′
α (hp)

(
U−1

) µ′

α′
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=


cosh[ϑ3] cos[θ3] sin[θ2] sinh[ϑ3]

cos[θ3] sin[θ2] sinh[ϑ3] cos[θ3]2
(
cos[θ2]2 + cosh[ϑ3] sin[θ2]2

)
+ sin[θ3]2

sin[θ2] sin[θ3] sinh[ϑ3] sin[θ2]2 sin[2θ3] sinh
[
ϑ3
2

]2
cos[θ2] sinh[ϑ3] sin[2θ2] cos[θ3] sinh

[
ϑ3
2

]2
sin[θ2] sin[θ3] sinh[ϑ3] cos[θ2] sinh[ϑ3]

sin[θ2]2 sin[2θ3] sinh
[
ϑ3
2

]2
sin[2θ2] cos[θ3] sinh

[
ϑ3
2

]2
cos[θ3]2 +

(
cos[θ2]2 + cosh[ϑ3] sin[θ2]2

)
sin[θ3]2 sin[2θ2] sin[θ3] sinh

[
ϑ3
2

]2
sin[2θ2] sin[θ3] sinh

[
ϑ3
2

]2
cos[θ2]2 cosh[ϑ3] + sin[θ2]2



µ′

µ

,

(C.5)

where U α
µ and

(
U−1) µ

α are similarity transformations, defined as follows,

U α
µ =


0 1√

2 −
1√
2 0

1√
2 0 0 − 1√

2
i√
2 0 0 i√

2
0 − 1√

2 −
1√
2 0


α

µ

,
(
U−1

) µ

α
=


0 1√

2 −
i√
2 0

1√
2 0 0 − 1√

2
− 1√

2 0 0 − 1√
2

0 − 1√
2 −

i√
2 0


µ

α

. (C.6)

D Some examples of deriving irreducible tensors of Lp

In this appendix, we present examples on how to derive IRTs of Lp. The fundamental
representation

(
1
2 ,

1
2

)
can be expressed as

(
1
2 , 0
)
⊗
(
0, 1

2

)
, which implies the existence of

an order-3 IRT, as shown below,(1
2 ,

1
2

)
7→

(1
2 , 0

)
⊗
(

0, 1
2

)
: Tµlr, (D.1)

where we adopt the conventions presented in table 3 for simplicity (these conventions will
be used throughout the following without declaration). According to eq. (2.24), one has

Tµlr =
∑
s

uσlr

(
k;
[(1

2 , 0
)
⊗
(

0, 1
2

)]
, s

)
ūµσ

(
k;
(1

2 ,
1
2

)
, s

)
, (D.2)

and by using eqs. (2.16) and (2.25), one can obtain

Tµlr =
∑
s

(
Cs1

2
1
2

)σ
lr

(
C

1
2

1
2

s

)l′r′
σ

Uµα U
α
l′r′ =

(
U−1

) µ

α
Uαlr. (D.3)

where Uαlr and
(
U−1) µ

α are specified in eqs. (2.14) and (C.6), respectively. Therefore, the
order-3 IRT Tµlr is just a similarity transformation, which is known as four-dimensional
Pauli matrix (σµ) r

l .
Next, we discuss the direct product decomposition of two (1

2 ,
1
2) IRREPs, which can

be written as follows,(1
2 ,

1
2

)
⊗
(1

2 ,
1
2

)
= (0, 0)⊕ (1, 0)⊕ (0, 1)⊕ (1, 1) . (D.4)
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This decomposition gives rise to four IRREPs and their corresponding IRTs can be ex-
pressed as(1

2 ,
1
2

)
⊗
(1

2 ,
1
2

)
7→ (0, 0) : Tµνµ0 ,

(1
2 ,

1
2

)
⊗
(1

2 ,
1
2

)
7→ (1, 0) : Tµνl ,(1

2 ,
1
2

)
⊗
(1

2 ,
1
2

)
7→ (0, 1) : Tµνr ,

(1
2 ,

1
2

)
⊗
(1

2 ,
1
2

)
7→ (1, 1) : Tµνµ2 . (D.5)

Using eq. (2.24), we obtain

Tµνµ0 = U00
µ0

(
C

1
2

1
2

0

)l1l2
0

(
C

1
2

1
2

0

)r1r2
0

Tµl1r1T
ν
l2r2 , Tµνl =

(
C

1
2

1
2

1

)l1l2
l

(
C

1
2

1
2

0

)r1r2
0

Tµl1r1T
ν
l2r2 ,

Tµνµ2 = U lrµ2

(
C

1
2

1
2

1

)l1l2
l

(
C

1
2

1
2

1

)r1r2
r

Tµl1r1T
ν
l2r2 , Tµνr =

(
C

1
2

1
2

0

)l1l2
0

(
C

1
2

1
2

1

)r1r2
r

Tµl1r1T
ν
l2r2 ,

(D.6)

where Tµlr is given by eq. (D.3); U00
µ0 and U lrµ2 can be obtained from eq. (2.14). The IRTs in

eq. (D.6) can be expressed in a familiar way, containing only Lorentz four-vector indices,
as follows, (

T(0,0)
)µν,µ′ν′

≡ Tµνµ0 T
µ0µ′ν′ = 1

4 gµνgµ
′ν′ ,(

T[(1,0)⊕(0,1)]+
)µν,µ′ν′

≡ Tµνl T lµ
′ν′ + Tµνr T rµ

′ν′ = 1
2
(
gµµ

′
gνν

′ − gµν′gνµ′
)
,(

T[(1,0)⊕(0,1)]−
)µν,µ′ν′

≡ Tµνl T lµ
′ν′ − Tµνr T rµ

′ν′ = i

2 εµνµ
′ν′ ,(

T(1,1)
)µν,µ′ν′

≡ Tµνµ2 T
µ2µ′ν′ = 1

2
(
gµµ

′
gνν

′ + gµν
′
gνµ

′)− 1
4 gµνgµ

′ν′ . (D.7)

Then, we discuss two examples with Dirac spinor representation
[

1
2 , 0
]
. The direct

product decomposition of two
[

1
2 , 0
]
representations is as follows,[(1

2 , 0
)
⊕
(

0, 1
2

)]
⊗
[(1

2 , 0
)
⊕
(

0, 1
2

)]
=

(0, 0)L ⊕ (0, 0)R ⊕ (1, 0)⊕ (0, 1)⊕
(1

2 ,
1
2

)
L
⊕
(1

2 ,
1
2

)
R
. (D.8)

This yields six corresponding IRTs as follows,[(1
2 , 0

)
⊕
(

0, 1
2

)]
⊗
[(1

2 , 0
)
⊕
(

0, 1
2

)]
7→ (0, 0)L : (TL)abµ0 ,[(1

2 , 0
)
⊕
(

0, 1
2

)]
⊗
[(1

2 , 0
)
⊕
(

0, 1
2

)]
7→ (0, 0)R : (TR)abµ0 ,[(1

2 , 0
)
⊕
(

0, 1
2

)]
⊗
[(1

2 , 0
)
⊕
(

0, 1
2

)]
7→ (1, 0) : T abl ,[(1

2 , 0
)
⊕
(

0, 1
2

)]
⊗
[(1

2 , 0
)
⊕
(

0, 1
2

)]
7→ (0, 1) : T abr ,[(1

2 , 0
)
⊕
(

0, 1
2

)]
⊗
[(1

2 , 0
)
⊕
(

0, 1
2

)]
7→

(1
2 ,

1
2

)
L

: (TL)abµ ,[(1
2 , 0

)
⊕
(

0, 1
2

)]
⊗
[(1

2 , 0
)
⊕
(

0, 1
2

)]
7→

(1
2 ,

1
2

)
R

: (TR)abµ . (D.9)

– 28 –



J
H
E
P
0
6
(
2
0
2
3
)
0
3
9

According to eq. (2.24), we obtain

(TL)abµ0 =
(
C

1
2

1
2

0

)l1l2
0

(
C00

0

)r1r2
0

(UL)al1r1 (UL)bl2r2 ≡ (TL)ab ,

(TR)abµ0 =
(
C00

0

)l1l2
0

(
C

1
2

1
2

0

)r1r2
0

(UR)al1r1 (UR)bl2r2 ≡ (TR)ab ,

T abl =
(
C

1
2

1
2

1

)l1l2
l

(
C00

0

)r1r2
0

(UL)al1r1 (UL)bl2r2 ,

T abr =
(
C00

0

)l1l2
0

(
C

1
2

1
2

1

)r1r2
r

(UR)al1r1 (UR)bl2r2 ,

(TL)abµ =
(
C

1
2 0
1
2

)l1l2
l

(
C

0 1
2

1
2

)r1r2
r

T lrµ (UL)al1r1 (UR)bl2r2 ,

(TR)abµ =
(
C

0 1
2

1
2

)l1l2
l

(
C

1
2 0
1
2

)r1r2
r

T lrµ (UR)al1r1 (UL)bl2r2 , (D.10)

where T lrµ is the same as that in eq. (D.3);
(
UL/R

)a
lr
can be obtained from eq. (2.18). The

IRTs in eq. (D.10) can be expressed in a familiar way (only contains Lorentz four-vector
indices and Dirac spinor indices) as follows,

(
T(0,0)+

)ab
≡ (TL)ab + (TR)ab ≡ gab,(

T(0,0)−
)ab
≡ (TL)ab − (TR)ab = gac (γ5) b

c ,(
T[1,0]+

)ab,µν
≡ T abl T lµν + T abr T rµν = −i√

2
gac (σµν) b

c ,(
T[1,0]−

)ab,µν
≡ T abl T lµν − T abr T rµν = −i√

2
gac (γ5σ

µν) b
c ,(

T( 1
2 ,

1
2)+

)ab
µ
≡ (TL)abµ + (TR)abµ = 1√

2
gac (γ5γµ) b

c ,(
T( 1

2 ,
1
2)−

)ab
µ
≡ (TL)abµ − (TR)abµ = 1√

2
gac (γµ) b

c , (D.11)

where γµ and γ5 are Dirac-γ matrices; σµν = i
2 [γµ, γν ]; gab is the metric of Dirac spinor

space, with the following explicit form,

gab =


0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0


ab

, gab = −gab. (D.12)

We then consider the direct product decomposition of Dirac spinor representation[
1
2 , 0
]
and fundamental representation

(
1
2 ,

1
2

)
as follows,

[(1
2 , 0

)
⊕
(

0, 1
2

)]
⊗
(1

2 ,
1
2

)
=
(1

2 , 0
)
⊕
(

0, 1
2

)
⊕
(

1, 1
2

)
⊕
(1

2 , 1
)
. (D.13)
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This yields four corresponding IRTs as follows,[(1
2 , 0

)
⊕
(

0, 1
2

)]
⊗
(1

2 ,
1
2

)
7→

(1
2 , 0

)
: T aµl ,[(1

2 , 0
)
⊕
(

0, 1
2

)]
⊗
(1

2 ,
1
2

)
7→

(
0, 1

2

)
: T aµr ,[(1

2 , 0
)
⊕
(

0, 1
2

)]
⊗
(1

2 ,
1
2

)
7→

(
1, 1

2

)
: (TL)aµa3 ,[(1

2 , 0
)
⊕
(

0, 1
2

)]
⊗
(1

2 ,
1
2

)
7→

(1
2 , 1

)
: (TR)aµa3 . (D.14)

Using eq. (2.24), we have

T aµl =
(
C

0 1
2

1
2

)l1l2
l

(
C

1
2

1
2

0

)r1r2
0

(UR)al1r1 T
µ
l2r2

,

T aµr =
(
C

1
2

1
2

0

)l1l2
0

(
C

0 1
2

1
2

)r1r2
r

(UL)al1r1 T
µ
l2r2

,

(TL)aµa3 =
(
C

1
2

1
2

1

)l1l2
l

(
C

1
2 0
1
2

)r1r2
r

(UL)lra3 (UL)al1r1 T
µ
l2r2

,

(TR)aµa3 =
(
C

0 1
2

1
2

)l1l2
l

(
C

1
2

1
2

1

)r1r2
r

(UR)lra3 (UR)al1r1 T
µ
l2r2

, (D.15)

where Tµlr is the same as that in eq. (D.3);
(
UL/R

)a
lr

and
(
UL/R

)lr
a3

can be obtained from
eq. (2.18). Similarly, the IRTs in eq. (D.15) can be expressed in a familiar way (only
contains Lorentz four-vector indices and Dirac spinor indices) as follows,(

T[ 1
2 ,0]

+

)aµ
b

= (UL)l0b T aµl + (UR)0r
b T aµr = (γ5γ

µ) a
b ,(

T[ 1
2 ,0]
−

)aµ
b

= (UL)l0b T aµl − (UR)0r
b T aµr = (γµ) a

b ,(
T[1, 12 ]+

)aµ
bν

= (TL)a
3

bν (TL)aµa3 + (TR)a
3

bν (TR)aµa3 = 3
4 g

µ
ν δ a

b − i

4 g
µρ (σρν) a

b ,(
T[1, 12 ]−

)aµ
bν

= (TL)a
3

bν (TL)aµa3 − (TR)a
3

bν (TR)aµa3 = 3
4 g

µ
ν (γ5) a

b −
i

4 g
µρ (γ5σρν) a

b ,

(D.16)

where
(
UL/R

)lr
b
is the same as that in eq. (D.10) with r = 0 or l = 0.

The derivation of any other IRT of Lp is similar. These IRTs serve as the building
blocks for constructing Lorentz covariant and invariant structures.

E Some examples of deriving irreducible tensors of little group SO(3)

In this appendix, we present examples of IRTs of the little group SO(3). Firstly, for a
specific class of the spin projection tensors with [β] = [α1] ≡ [α] and [α2] = (0, 0) in
eq. (2.26), one has the following spin projection tensor,

P β
α (p;χ1 , χ2 , s) = uσα(p;χ1 , s) ūβσ(p;χ∗2 , s). (E.1)
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Using the orthonormal relation in eq. (2.19), we obtain

P β
α (p;χ1 , χ2 , s1)uσβ(p;χ1 , s2) = δχ1χ2

δs1s2 u
σ
α(p;χ1 , s1), (E.2)

which is the relativistic equation of spin wave functions in momentum space. For instance,
considering the case of [α] =

(
1
2 ,

1
2

)
, one has the following spin projection tensors,

P ν
µ

(
p;
(1

2 ,
1
2

)
,

(1
2 ,

1
2

)
, 0
)

=pµp
ν

p2 ,

P ν
µ

(
p;
(1

2 ,
1
2

)
,

(1
2 ,

1
2

)
, 1
)

=g ν
µ − pµp

ν

p2 . (E.3)

The two spin projection tensors in eq. (E.3) implies Proca equation for a massive vector
particle, i.e., ∂µFµν + m2Aν = 0 with Fµν = ∂µAν − ∂νAµ. This equation reduces to the
Maxwell equation when m = 0.

For a self-conjugate REREP [sL, sR] (sL 6= sR), one can transform the left and right-
handed states uσα(p; (sL, sR), s) and uσα(p; (sR, sL), s) as shown in eq. (2.17) into parity
eigenstates as follows,

Positive parity: uσα(p; [sL, sR], s+) = 1√
2

[uσα(p; (sL, sR), s) + uσα(p; (sR, sL), s)] ,

ūασ(p; [sL, sR], s+) = 1√
2

[ūασ(p; (sL, sR), s) + ūασ(p; (sR, sL), s)] ,

Negative parity: uσα(p; [sL, sR], s−) = 1√
2

[uσα(p; (sL, sR), s)− uσα(p; (sR, sL), s)] ,

ūασ(p; [sL, sR], s−) = 1√
2

[ūασ(p; (sR, sL), s)− ūασ(p; (sL, sR), s)] . (E.4)

Using this transformation, one can obtain the relativistic equations for particle with any
half-integer spin and definite parity as follows,

P β
α (p; [sL, sR], s+)uσβ(p; [sL, sR], s+) = uσα(p; [sL, sR], s+),
P β
α (p; [sL, sR], s+)uσβ(p; [sL, sR], s−) = 0,
P β
α (p; [sL, sR], s−)uσβ(p; [sL, sR], s−) = uσα(p; [sL, sR], s−),
P β
α (p; [sL, sR], s−)uσβ(p; [sL, sR], s+) = 0, (E.5)

where

P β
α (p; [sL, sR], s+) = uσα(p; [sL, sR], s+)ūβσ(p; [sL, sR], s+),
P β
α (p; [sL, sR], s−) = −uσα(p; [sL, sR], s−)ūβσ(p; [sL, sR], s−). (E.6)

For instance, considering the case of [sL, sR] =
[

1
2 , 0
]
, one will get

P b
a

(
p;
[1

2 , 0
]
,

1
2

+)
= uσa

(
p;
[1

2 , 0
]
,

1
2

+)
ūbσ

(
p;
[1

2 , 0
]
,

1
2

+)
,

P b
a

(
p;
[1

2 , 0
]
,

1
2
−)

= −uσa
(

p;
[1

2 , 0
]
,
1
2
−)

ūbσ

(
p;
[1

2 , 0
]
,

1
2
−)

. (E.7)
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By recalling eqs. (2.16), (2.17) and (E.4), one can obtain

P b
a

(
p;
[1

2 , 0
]
,
1
2

+)
=
(
1+ vµγ

µ

2

) b

a
, P b

a

(
p;
[1

2 , 0
]
,
1
2
−)

=
(
1− vµγµ

2

) b

a
, (E.8)

where vµ denotes the four-velocity of the particle. The two spin projection tensors given
in eq. (E.8) imply Dirac equation.

Considering another kind of spin projection tensors with [α1] = [µs1 ], [α2] = [µs2 ] and
[β] = [µs], and employing eq. (2.27), we can derive

Pµ
s1µs2

µs (p;χ, s;χ1 , s1;χ2 , s2) = (Cs1s2s )σ1σ2
σ uσµs(p;χ, s) ūµs1σ1

(
p;χ∗1 , s1

)
ūµ

s2
σ2

(
p;χ∗2 , s2

)
,

(E.9)
where χ = [µs], χ1 = [µs1 ] and χ2 = [µs2 ] are fixed. For convenience, one can rewrite the
spin projection tensor as Pµ

s1µs2
µs (p; s, s1, s2). This spin projection tensor is corresponding

to Lorentz covariant coupling structure among three bosons.
For example, considering the case of s = s1 = s2 = 1, according to eq. (E.9), one

obtains
P νρµ (p; 1, 1, 1) = i√

2
gµµ′ vν′ ε

µ′ν′νρ. (E.10)

The derivation of any other IRT of the little group SO(3) follows a similar procedure.
These IRTs serve as the building blocks for constructing Lorentz covariant partial wave
amplitudes.

F Relation between the different forms of spin wave functions

The conventional form of relativistic spin wave functions only contains two kinds of Lorentz
covariant indices — Dirac spinor indices a, b, c, · · · and Lorentz four-vector indices µ, ν, ρ, · · · .
These spin wave functions for spin-0 (time-like four momentum), spin-1 (polarization vec-
tor) and spin-1

2 (Dirac spinor) are as follows,

pµ (p) = D µ′
µ (hp) kµ′ (k) , εσµ (p) = D µ′

µ (hp) εσµ′ (k) ,

uσa (p) = D a′
a (hp) uσa′ (k) , vσa (p) = D a′

a (hp) vσa′ (k) , (F.1)

where D a′
a (hp) and D µ′

µ (hp) are pure boost transformations (eq. (C.4)); uσa (k), vσa (k)
and εσµ (k) are the spin wave functions with standard momentum kµ = [mass] · k̂µ as follows,

uσa (k) =


1√
2 0

0 1√
2

1√
2 0

0 1√
2


σ

a

, vσa (k) =


1√
2 0

0 1√
2

− 1√
2 0

0 − 1√
2


σ

a

,

εσµ (k) =


0 0 0
1√
2 0 − 1√

2
i√
2 0 i√

2
0 −1 0


σ

µ

, k̂µ (k) =


1
0
0
0


µ

. (F.2)
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According to table 2, Dirac spinor wave function carries the self-conjugate REREP[
1
2 , 0
]
, which can only describe a particle with spin- 1

2 (eq. (2.20)); while Lorentz four-

vector spin wave function carries the self-conjugate IRREP
(

1
2 ,

1
2

)
, which can describe a

particle with spin-0 or spin-1. Therefore, to describe a particle with higher spin in the
conventional form, one needs to consider the direct product of these two representations,
i.e., consider spin wave functions with many Dirac spinor and Lorentz four-vector indices.

In the case of a particle with spin- 3
2 , there are two different ways to describe the

respective spin wave function in the following form,

[a]⊗ [µ] =
[(1

2 , 0
)
⊕
(

0, 1
2

)]
⊗
(1

2 ,
1
2

)
=

(1
2 , 0

)
⊕
(

0, 1
2

)
⊕
(

1, 1
2

)
⊕
(1

2 , 1
)
,

[a]⊗ [a]⊗ [a] =
[(1

2 , 0
)
⊕
(

0, 1
2

)]
⊗
[(1

2 , 0
)
⊕
(

0, 1
2

)]
⊗
[(1

2 , 0
)
⊕
(

0, 1
2

)]
=

(
1, 1

2

)
⊕
(1

2 , 1
)
⊕
(

1, 1
2

)
⊕
(1

2 , 1
)
⊕
(

1, 1
2

)
⊕
(1

2 , 1
)

⊕
(3

2 , 0
)
⊕
(

0, 3
2

)
⊕ · · · , (F.3)

where the self-conjugate REREP
[
1, 1

2

]
belonging to [a]⊗ [µ] (or [a]⊗ [a]⊗ [a]) can describe

a particle with spin- 1
2 or spin-3

2 ; the self-conjugate REREP
[

3
2 , 0
]
belonging to [a]⊗ [a]⊗ [a]

can describe a particle with spin- 3
2 . If one chooses the direct product representation [a]⊗[µ]

to express the spin wave function, one obtains the following relativistic equations,

(γµ) b
a uσbµ (p) = 0, [pν γν −m1] b

a uσbµ (p) = 0. (F.4)

The left hand side of eq. (F.4) removes 4 components belonging to the REREP
[

1
2 , 0
]
of [a]⊗

[µ], and the right hand side of eq. (F.4) removes the other 8 components belonging to the
REREP

[
1, 1

2

]
of [a]⊗ [µ]. Then the remaining 4 components of uσaµ (p) correspond to the

4 polarization components of a particle with spin- 3
2 . Eq. (F.4) also implies pµ uσaµ (p) = 0.

The form adopted by Rarita and Schwinger [24] corresponds to the choice described
above. In the form adopted by covariant L-S scheme (eq. (2.17)), the spin wave function
for a particle with spin- 3

2 are as follows (with conventions in table 3),

uσa3

(
p; 3

2
±)

= 1√
2

[
uσa3

(
p;
(

1, 1
2

)
,

3
2

)
± uσa3

(
p;
(1

2 , 1
)
,

3
2

)]
, (F.5)

which can be transformed into Rarita-Schwinger spin wave functions as follows,

uσaµ (p) =
[
(TL)a

3

aµ + (TR)a
3

aµ

]
uσa3

(
p; 3

2
±)

≡ T a
3

aµ u
σ
a3

(
p; 3

2
±)

, (F.6)

where (TL)a
3

aµ and (TR)a
3

aµ are order-3 IRTs as shown in eq. (D.15). This relation can be
extended to higher-spin cases as follows,

for spin-52 : uσaµν (p) = T a
3

aµ T
a5

a3ν u
σ
a5 (p) ,

for spin-72 : uσaµνρ (p) = T a
3

aµ T
a5

a3ν T
a7

a5ρ u
σ
a7 (p) , (F.7)
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and so on. For spin wave function of a particle with integer-spin, the form adopted by
covariant L-S scheme (eq. (2.13)) is related with the conventional form as follows,

for spin-1: εσµ (p) = uσµ (p; [µ], 1) ,

for spin-2: εσµν (p) = Tµ
2

µν u
σ
µ2

(
p;
[
µ2
]
, 2
)
,

for spin-3: εσµνρ (p) = Tµ
2

µν T
µ3

µ2ρ u
σ
µ3

(
p;
[
µ3
]
, 3
)
, (F.8)

and so on.
If the direct product representation [a] ⊗ [a] ⊗ [a] is chosen to express the spin wave

function, the following relativistic equations are obtained for a particle with spin- 3
2 ,[

pµ γkµ −m1
] bk

ak
uσb1b2b3 (p) = 0 (k = 1, 2, 3), (F.9)

where γkµ (k = 1, 2, 3) are Dirac-γ matrices of k-th index bk and three Dirac spinor indices
of ub1b2b3 (p) are symmetric. Eq. (F.9) reduces the 64 components belonging to the rep-
resentation [a] ⊗ [a] ⊗ [a] to 8 components, while the symmetrization of the three Dirac
indices b1, b2, b3 further reduces to 4 components which correspond to the 4 polarization
components of a particle with spin- 3

2 . This choice corresponds to the form adopted by
Bargmann and Wigner [23].

In the form adopted by covariant L-S scheme (eq. (2.17)), the Bargmann-Wigner spin
wave function for a particle with spin- 3

2 are given as follows,

uσa1a2a3 (p) = 1
2
√

2
∑

[α]∈[a]⊗[a]⊗[a]
Tαa1a2a3u

σ
α

(
p; [α], 3

2

)
, (F.10)

where the summation of [α] span all possible IRREP belonging to the direct product
representation [a] ⊗ [a] ⊗ [a], which has 8 possibilities as shown in eq. (F.3), and Tαa1a2a3

is an order-4 IRT of Lp which can be constructed by order-3 IRTs (eq. (2.24)). The spin
wave function in eq. (F.10) is for particle with positive parity. Similar to eq. (F.5), the spin
wave function with negative parity can be obtained by changing the relative sign between
the spin wave functions on the right hand side, which are conjugate representations of each
other.

To summarize, an IRREP [α] = (sL, sR) can be utilized to represent a particle with
spin-s provided that it satisfies the triangular relation (eq. (2.20)). Consequently, there
exist numerous ways to describe a particle with a definite spin. These different forms of
spin wave functions can be transformed into each other via the use of IRTs of Lp.

G Explicit form of the weight function W (s1, s2, s3, L, S)

For processes involving one massless particle, the weight function is given by:

W (s1, s2, s3, L, S) = FS(s1, s2, s3, S).

For processes involving two or three massless particles, the weight function is given by:

W (s1, s2, s3, L, S) = FS(s1, s2, s3, S) + FL(s1, s2, s3, L, S) + Fσ(s1, s2, s3, L, S),
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where the individual weight functions are defined as follows:

FS(s1, s2, s3, S) = −(s2 + s3 + 1) |S − s1|+ S,

FL(s1, s2, s3, L, S) = −2(s2 + s3 + 1)2
∣∣∣∣L− |S − s1| −

1
2

∣∣∣∣ ,
Fσ(s1, s2, s3, L, S) =


−2(s2 + s3 + 1)2(s1 + s2 + s3) for

(
CLSs1

)0 s2±s3

s2±s3
= 0

0 for others
.
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