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1 Introduction

Ever since the seminal work [2], the Euclidean gravitational path integral has been a
prominent tool that has led to tremendous progress in thermodynamic and entanglement
aspects of quantum black holes. In some cases, one finds exact agreement with microscopic
calculations in string theory or holographic CFTs, even beyond the leading order in GN [3–
7].

Operationally, one starts with a formal path integral integrating over all metrics and
matter fields, and then expands g = g∗+ δg,Φ = Φ∗+ δφ around the saddle points (g∗,Φ∗)

Z =
∫
DgDΦ e−S[g,Φ] ≈

∑
g∗,Φ∗

e−S[g∗,Φ∗]Z1-loop [g∗,Φ∗] (1 + · · · ) . (1.1)

Many aspects of such a formal object remain to be understood. For example, what exactly
should we sum over in ∑g∗,Φ∗? Another well-known confusion is that in the gravity sector1

there is a conformal mode that renders the gravitational action unbounded from below [9].
This paper is a continuation of [1], concerning the 1-loop contributions from matter

fields and the graviton around a (d+1)-dimensional static spherically symmetric black hole
background. In Euclidean signature, this means we always have U(1) × SO(d) symmetry,
associated with the thermal circle and the codimension-2 sphere, as part of the isome-
tries. In [1], we considered the 1-loop Euclidean path integral for a real scalar on such a
background, which takes the form of a functional determinant

ZPI(m2) =
∫
Dφ e−

1
2

∫
(∇φ)2+m2φ2 = 1

det (−∇2 +m2)1/2 . (1.2)

Our key result in [1] is that (1.2) has a canonical interpretation through the relation

ZPI = Z̃bulk , Z̃bulk ≡
Zbulk
ZRin

bulk
(scalar) . (1.3)

Here Zbulk ≡ Tr e−βHĤ is the formal thermal canonical partition function at the inverse
black hole temperature βH for the scalar living outside the horizon, while ZRin

bulk is analo-
gously defined but on a Rindler-like wedge at the inverse temperature βH . As explained

1In general, for any massless fields with spin s ≥ 2 there are finite number of modes with a wrong sign
of kinetic term, which has been demonstrated explicitly in [8] for the case of massless higher spin fields on
a sphere.
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in [1] and briefly reviewed in section 2.2, while these traces Tr are ill-defined, their ratios
can be unambiguously defined. Explicitly, the “renormalized” partition function is given
by the formula

log Z̃bulk =
∫ ∞

0

dt

2t
1 + e−2πt/βH

1− e−2πt/βH
χQNM(t) , χQNM(t) ≡

∑
z

Nz e
−izt . (1.4)

Here χQNM(t) is a “quasinormal mode (QNM) character” defined as a sum over the QNM
spectrum, with z the frequencies of the QNMs and Nz their degeneracies. The relation (1.3)
has been verified in [1] for the case of scalars on static BTZ, Nariai, and the de Sitter static
patch.

In this work, we extend these considerations to arbitrary spinning fields. While we will
focus on massive fields, since the 1-loop path integrals for massless gauge fields are given
by ratios of determinants of differential operators, we can simply put together the massive
results taking the masses to specific values in order to obtain the massless results.2

As demonstrated by our explicit examples of massive higher spin (HS) fields on static
BTZ and massive vectors on Nariai, one can still define Z̃bulk as a formal ratio like (1.3),
which continues to be given explicitly by the formula (1.4). However, it turns out that
ZPI 6= Z̃bulk for any spin s ≥ 1. In fact, for massive symmetric tensor [11, 12] and p-form
fields [13] with arbitrary spins on a round sphere Sd+1 or EAdSd+1, it was observed that
their Euclidean path integrals could be brought into the form

ZPI = Z̃bulk
Zedge

. (1.5)

Our goal is to provide an explanation for this bulk-edge split and systematically characterize
the edge part Zedge for general higher spin fields on any static black hole background.

To arrive at (1.5), we first note that the formula (1.4) is equivalent to a formula derived
by Denef, Hartnoll, and Sachdev (DHS) [14] for the scalar Euclidean path integral (1.2).
The DHS derivation was based on the analytic properties of ZPI(m2) as a function on the
complex m2-plane, and the fact that any QNM would Wick-rotate to a regular Euclidean
mode at the correct (complex) value of m2.

As explained in section 3, the key subtlety for spinning fields is associated with the
regularity condition (i.e. smoothness and single-valuedness around the Euclidean time di-
rection) imposed on the field configurations included in the Euclidean path integration.
While this condition seems innocuous (and is naturally assumed in any calculation of
1-loop determinants in the literature), a careful analysis reveals that it has non-trivial con-
sequences in the DHS derivation, as already pointed out in the context of spin-2 fields on a
BTZ background in [15].3 As we will see, the regularity condition for spinning fields creates

2For compact spaces there could be new subtleties for massless fields, such as residual group volume or
Polchinski’s phase coming from Wick-rotating the conformal modes [8–10]. These are contributions from a
finite number of modes and do not affect the general consideration of this paper.

3In [15], the analysis was phrased in terms of (local) square integrability at the origin, which is implied
if the functions are regular at the origin.
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an obstruction for some QNMs to Wick-rotate to a subset of regular Euclidean modes and
eventually leads to the form (1.5), with the edge part explicitly given by

logZedge =
∫ ∞

0

dt

2t

s−1∑
k=−(s−1)

∑
ze,k

e
−
(

2π
βH
|k|+ize,k

)
t

(1.6)

for a massive spin-s field. Here, ze,k = ze,k(m2) are the frequencies of those QNMs which fail
to Wick-rotate to a regular Euclidean mode with U(1) quantum number |k| for any complex
value of mass m2. The sum∑

ze,k
receives contributions from SO(d) representations of spin

0, 1, . . . , s−1. Since Zedge is characterized based on the regularity condition near the origin,
it is natural to associate these SO(d) degrees of freedom as living on the bifurcation surface
Sd−1 in the Lorentzian signature, thus justifying the terminology “edge”. In sections 4
and 5, we work out the explicit form of (1.6) for massive HS on static BTZ and massive
vector on Nariai. In combination with (1.4), we then find exact agreement with ZPI as
in (1.5).

While in this work we do not have a canonical interpretation for Zedge, the struc-
ture (1.5) is generally expected from studies of entanglement entropy in gauge theories and
gravity. We will comment more on this as we conclude in section 6.

As mentioned earlier on, the general form (1.5) for higher spin fields on a sphere was
first observed in [11], where, however, the precise SO(d) contents for Zedge were somewhat
obscure. To clarify those, one could follow the same procedure of checking the Euclidean
continuation of QNMs demonstrated in our explicit examples in sections 4 and 5, and
put Zedge into the form (1.6). However, it turns out that there exists yet another way
to work out the precise SO(d) contents for Zedge, by exploiting powerful methods from
representation theory. This will be explained in an upcoming work [16].

Plan of the paper. We review the DHS formula for scalars and its Lorentzian inter-
pretation in section 2. In section 3, we examine the Euclidean regularity condition and
generalize the DHS arguments to arbitrary spinning fields. In sections 4 and 5 we work
out the explicit examples of massive HS on static BTZ and massive vector on Nariai re-
spectively. We collect some helpful basic facts for scalar and vector spherical harmonics in
appendix A. Appendices B–D contain technical calculations that are useful in our analysis.

2 Comments on the Denef-Hartnoll-Sachdev formula

2.1 Review of the Denef-Hartnoll-Sachdev argument for scalars

The following discussion applies to arbitrary (d + 1)-dimensional static spherically sym-
metric backgrounds:

ds2 = −F (r)dt2 + dr2

F (r) + r2dΩ2
d−1 . (2.1)

Here dΩ2
d−1 is the metric on the unit Sd−1. There is a horizon at r = rH if F (rH) = 0,

with inverse Hawking temperature βH = 1
TH

= 4π
F ′(rH) . Wick-rotating t = −itE in (2.1)
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and making it periodic

ds2 → ds2
E = F (r)dt2E + dr2

F (r) + r2dΩ2
d−1 , tE ' tE + βH , (2.2)

we obtain a smooth geometry that arises as a saddle point in the Euclidean gravitational
path integral. The above analytic continuation maps the horizon at r = rH to the origin,
near which we can make a change of variables

ρ2 = 4
F ′(rH)(r − rH) , ϕ = 2π

βH
tE , (2.3)

so that the near-horizon spacetime takes the product form

ds2 ≈ dρ2 + ρ2dϕ2 + r2
H dΩ2

d−1 = dudū+ r2
H dΩ2

d−1 . (2.4)

In the last equality we have introduced the complex coordinates

u = ρ e−iϕ , ū = ρ eiϕ . (2.5)

At 1-loop, corrections to the gravitational path integral are given by integrating quadratic
fluctuations of matter fields (including the graviton) living on (2.2). For instance, the
1-loop contribution of a real scalar φ with mass m2 is given by

ZPI(m2) =
∫
Dφ e−

1
2

∫
(∇φ)2+m2φ2 = 1

det (−∇2 +m2)1/2 . (2.6)

Regularity condition. We demand the functions in the functional integration (2.6) to
be smooth at the origin ρ = 0 and single-valued in the Euclidean time direction, i.e. they
should be regular functions. This means that φ has a Taylor expansion in the complex
coordinates u, ū near the origin. More precisely, a mode with thermal frequency k has the
following ρ→ 0 behavior:

φk ∼ ρ|k|e−ikϕ =

uk , k ≥ 0
ū−k , k ≤ 0

. (2.7)

As part of the definition of the path integral, φ is typically required to satisfy other bound-
ary conditions (e.g. standard or alternate boundary condition in asymptotically AdS black
holes).

The idea of [14] is that we assume the functional determinant (2.6) to be a meromorphic
function on the complex m2-plane, and try to match its poles and zeros. ZPI(m2) has no
zero, and hits a pole whenever

(−∇2 +m2)φ = 0 . (2.8)

Solving this equation near ρ = 0, we deduce the near-origin behavior

φ ∼ ρ∓i
z

2πTH e
− z

2πTH
ϕ = ρ

∓i z
2πTH e−ztE , (2.9)
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where z = z(m2) is a function of m2. If we Wick rotate (2.9) back to real time, the ρ→ 0
behavior becomes the near-horizon behavior

φ ∼ ρ∓i
z

2πTH e−izt = e−iz(t±x), x ≡ ln ρ
2πTH

. (2.10)

This is the boundary condition satisfied by (anti-)QNMs purely approaching (leaving) the
horizon. Therefore, for physical m2, z is a QNM or anti-QNM frequency.

Now, for m2 to be a pole of ZPI(m2), we need the Euclidean solution φ to be regular
at the origin. We can see from (2.9) that for generic m2 this will not be the case. However,
by varying m2 (and thus z(m2)) over the complex plane, we encounter a regular solution
of (2.8) every time that (2.9) matches onto either branch of (2.7). The ∓ branch in (2.9)
can only be matched onto the k > 0 (k < 0) branch in (2.7), while either can match onto
the k = 0 mode. Therefore, we conclude that4

1
det (−∇2 +m2) =

∏
z,z̄

∞∏
k=−∞

(
|k|+ iz

2πTH

)−Nz/2 (
|k| − iz̄

2πTH

)−Nz̄/2
. (2.11)

Here z̄ are anti-QNM frequencies. When the theory is PT-symmetric, z̄ can be taken to be
the complex conjugate of z. Alternatively, we observe that since the Lorentzian equation
of motion is invariant under t → −t, for a QNM with frequency z, there is an anti-QNM
with frequency −z. Therefore, we can replace z̄ → −z in (2.11), and we have simply

ZPI(m2) =
∏
z

∞∏
k=−∞

(
|k|+ iz

2πTH

)−Nz/2
. (2.12)

We will focus on this case from now on. Using log x =
∫∞

0
dt
t e
−xt (ignoring the issue of

UV-divergence), we can formally write [1]

logZPI =
∫ ∞

0

dt

2t
∑
z

∞∑
k=−∞

Nz e
−
(
|k|+ iz

2πTH

)
t

=
∫ ∞

0

dt

2t
1 + e−2πt/βH

1− e−2πt/βH
χQNM(t) . (2.13)

In the second equality we performed the sum over k, scaled t→ 2πt/βH , and expressed in
terms of the “QNM character”

χQNM(t) ≡
∑
z

Nz e
−izt . (2.14)

2.2 Black hole scattering and the renormalized partition function

The main result of [1] is a Lorentzian calculation that reproduces the 1-loop Euclidean
path integral as computed by the DHS formula (2.13), which we review in this section. We
refer the reader to [1] for a more detailed discussion. For concreteness we focus on the case
of asymptotically AdS black holes for d ≥ 3.

4Generally there is a holomorphic function eP (m2) multiplying (2.11), which is related to the UV-
divergences (including the logarithmic divergence d+1 is even) of (2.11) and can be determined by comparing
m2 → ∞ asymptotics of (2.11) and the heat kernel coefficients [14]. We proceed formally neglecting this
issue, and will provide a rigorous regularization when we discuss explicit examples.
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Black hole scattering. To start with, we separate

φωl(t, r,Ω) = e−iωt
ψl(r)
r
d−1

2
Yl(Ω) . (2.15)

For every integer l ≥ 0, Yl are the (d − 1)-dimensional spherical harmonics. Making
use of this ansatz and the tortoise coordinate x ≡

∫ r
∞

dr′

F (r′) , the Klein-Gordon equation(
−∇2 +m2)φ = 0 on the background (2.1) is recast into a 1D Schrödinger form for each l:(

−∂2
x + Vl(x)

)
ψl(x) = ω2ψl(x) , (2.16)

with the effective potential

Vl(x) = F (r)
[
d− 1
2r d−1

2
∂r
(
r
d−3

2 F (r)
)

+
(
l(l + d− 2)

r2 +m2
)]

. (2.17)

In the near-horizon regime (x → −∞), the normalizable solution to (2.16) satisfying the
standard boundary condition at infinity (x = 0) takes the asymptotic form

ψl(x→ −∞) ∼ Aout
l (ω) e−iωx +Ain

l (ω) eiωx . (2.18)

Here by “in” (“out”) we mean the waves travel away from (towards) the horizon, as opposed
to the common terminology in studies of QNMs. For real ω, Ain

l (ω) = Aout
l
∗(ω), and the

ratio
Sl(ω) = Aout

l (ω)
Ain
l (ω) ≡ e

2iθl(ω) (2.19)

is a pure phase, or a rank-1 unitary S-matrix.

The renormalized partition function. A naive Lorentzian calculation to be compared
with the 1-loop Euclidean path integral (2.6), would be that of the ideal gas canonical
partition function for the scalar field living on the background (2.1):

logZbulk ≡ log Tr e−βHĤ =
∫ ∞

0
dω ρ(ω) log

(
eβHω/2 − e−βHω/2

)
. (2.20)

Here ρ(ω) = ∑
lD

d
l ρl(ω) is the total single-particle density of states (DOS). As it is, (2.20)

is pathological: for every SO(d) angular momenta l ≥ 0, there is a continuum of normal
modes in any small interval ∆ω, and thus ρl(ω) is strictly infinite . This infinity is distinct
from the usual UV-divergences coming from integrating over all ω > 0 and summing over
all l ≥ 0.

The key realization of [1] is that the non-trivial information about the spacetime and
the scalar field encoded in the potential (2.17) can be extracted by comparing the scattering
problem (2.16) to a reference problem with potential V̄l(x). The difference of ρl(ω) from
the reference ρ̄l(ω) is a completely finite quantity, related to the scattering matrices (2.19):

∆ρl(ω) = ρl(ω)− ρ̄l(ω) = 1
2πi∂ω

(
logSl(ω)− log S̄l(ω)

)
. (2.21)
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Here the difference in the first equality is understood in a limiting sense explained in [1].
Therefore, instead of (2.20), a class of better defined objects are given by differences of
free energies:

logZbulk − log Z̄bulk =
∫ ∞

0
dω∆ρ(ω) log

(
eβHω/2 − e−βHω/2

)
(2.22)

where

∆ρ(ω) =
∞∑
l=0

Dd
l ∆ρl(ω) = 1

2πi∂ω
∞∑
l=0

Dd
l

(
logSl(ω)− log S̄l(ω)

)
. (2.23)

Quantities like (2.22) are still UV-divergent due to the integration over all ω and the sum
over all l ≥ 0, but these are the usual divergences that are absorbed into the renormalization
of the cosmological constant, Newton’s constant and curvature couplings once we couple
our theory to gravity.

A priori, there is no canonical choice of the reference scattering problem. For example,
one could consider the reference with the minimal potential V̄l(x) = 0. Any choice of
V̄l(x) would lead (after UV-regularization) to a finite “renormalized” free energy (2.22).
By working out the examples for scalars on static BTZ, Nariai and static patch in de
Sitter, [1] observes that choosing Z̄bulk to be that on a Rindler-like wedge at the inverse
black hole temperature βH , with the associated scattering problem

[
−∂2

x + V Rin(βH , x)
]
ψ(x) = ω2ψ(x) , V Rin(β, x) ≡

(4π
β

)2
e

4π
β
x
, (2.24)

the renormalized free energy equals the 1-loop Euclidean partition function:

Z̃bulk = ZPI , Z̃bulk ≡
Zbulk

ZRin
bulk(βH)

(scalar) . (2.25)

In particular, from all the examples, one finds that the S-matrix for the original prob-
lem always takes the form Sl(ω) = SQNM

l (ω)SRin(βH , ω), where SQNM
l (ω) contains QNM

frequencies as poles and anti-QNM frequencies as zeros, and

SRin(β, ω) =
Γ
(
iβω
2π

)
Γ
(
− iβω

2π

) . (2.26)

is the scattering matrix for the Rindler problem (2.24), which has the Matsubara frequencies
as zeros and poles. Therefore, choosing the Rindler problem (2.24) as the reference, the
renormalized DOS is the Fourier transform of the QNM character

∆ρ(ω) = 1
2πi

∑
z

Nz

( 1
ω + z

− 1
ω − z

)
=
∫ ∞

0

dt

2π
(
eiωt + e−iωt

)
χQNM(t) . (2.27)

While in principle there could be a holomorphic part contributing to ∆ρ(ω), in all the
explicit examples ∆ρ(ω) does not receive such a contribution and (2.27) gives the complete
answer. Plugging (2.27) and performing the ω-integral gives the DHS formula (2.13).

– 7 –
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Generalization to higher spins. To conclude this section, we note that the Lorentzian
considerations above readily generalize to spinning fields. In appendix B, we explicitly
solve the scattering problem for a massive higher spin (HS) field on the Rindler-like wedge
and obtain the S-matrices.

In section 4, we study the example of massive higher spin on static BTZ. For any
spin s ≥ 1, it remains true that for each angular momentum l ∈ Z, the S-matrix for
the associated problem takes the product form Sl(ω) = SQNM

l (ω)SRin,(s)(βH , ω), where
SQNM
l (ω) contains QNM frequencies as poles and anti-QNM frequencies as zeros, and
SRin,(s)(βH , ω) is the Rindler S-matrix (B.60) generalized to a spin-s field. Therefore,
choosing the reference to be the Rindler problem, the renormalized free energy is still given
by the formula

log Z̃bulk =
∫ ∞

0

dt

2t
1 + e−2πt/βH

1− e−2πt/βH
χQNM(t) , (2.28)

where the QNM character χQNM(t) is analogously defined as (2.14). However, in contrast
to the scalar case, this turns out not to be equal to the 1-loop Euclidean path integral.
The latter needs to be modified by “edge” corrections. We turn to this next.

3 Edge partition functions for spinning fields

In this section we extend the DHS formula to spinning fields. As we will see, the regularity
condition in Euclidean signature is more subtle than its scalar counterpart; in certain
sectors some components are required to have enhanced fall-offs near the origin. This
eventually leads to a natural bulk-edge split for the Euclidean path integral.

3.1 Spin-1

As an illustration of the idea, we first consider a massive vector Aµ living on the back-
ground (2.1), with the 1-loop path integral

ZPI(m2) =
∫
DAe

−
∫ (

1
4FµνF

µν+m2
2 AµAµ

)
= det

(
−∇2

(1) +m2
)−1/2

. (3.1)

We denote −∇2
(1) as the Laplacian acting on transverse vector fields. On compact spaces

such as a sphere, there will be an extra correction due to a normalizable constant scalar
mode [8, 11]. The inclusion of this mode is essential for consistency with locality and
unitarity [17]. Here we neglect such a contribution to keep the argument as simple as
possible. Such a subtlety will matter when we study the example of Nariai spacetime in
section 5.

Regularity condition and the analyticity argument. Similar to the scalar case, we
demand the vector fields Aµ in the functional integration (3.1) to be smooth at the origin
ρ = 0 and single-valued in the Euclidean time direction, i.e. they are regular vector fields.
Once again, the most convenient way to assess regularity is to work with the complex
coordinates u = ρ e−iϕ and ū = ρ eiϕ. At the origin these are well-defined, unlike the polar
coordinates (ρ, ϕ). The components (Au, Aū) are related to (Aρ, Aϕ) through

Aρ = e−iϕAu + eiϕAū , Aϕ = −iρ
(
e−iϕAu − eiϕAū

)
. (3.2)

– 8 –
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A mode with U(1) quantum number k ∈ Z, takes the form

(Aρ , Aϕ , Ai) ∝ e−ikϕ , (3.3)

which from (3.2) implies that Au, Aū and Ai contain the factors

Au ∝ e−i(k−1)ϕ , Aū ∝ e−i(k+1)ϕ , Ai ∝ e−ikϕ . (3.4)

The regularity condition boils down to requiring (Au, Aū, Ai) to have a Taylor series expan-
sion in u and ū near the origin, which means that the leading term of the ρ-expansions of
Au, Aū and Ai must combine with (3.4) to form non-negative powers of u or ū. Explicitly,
the result is

• for k ≥ 1,
Au ∼ uk−1 , Aū ∼ uk+1 , Ai ∼ uk ; (3.5)

• for k ≤ −1,
Au ∼ ū−k+1 , Aū ∼ ū−k−1 , Ai ∼ ū−k ; (3.6)

• for k = 0,
Au ∼ ū , Aū ∼ u , Ai ∼ u0 . (3.7)

Observe that when k = 0, the fall-offs of Au and Aū do not follow the same pattern as
the generic |k| ≥ 1 sectors. Indeed, naively putting k = 0 in (3.5) or (3.6) would lead
to a mode that diverges at the origin. This highlights the qualitative difference between
spinning fields and scalars.

Now we repeat the DHS analyticity argument for the path integral (3.1) as a function
on the complex m2-plane. The functional determinant hits a zero whenever

(−∇2
(1) +m2)Aµ = 0 (3.8)

has a solution on the space of smooth vector fields. Here comes an important difference
compared to the scalar case. Recall that in the latter case, any QNM would Wick rotate
to a regular Euclidean mode with U(1) quantum number k ∈ Z≥0 as we vary m2 so that

iz

2πTH
= −k . (3.9)

This is not true for the massive vector: because of the enhanced fall-off (3.7), a subset of
QNMs cannot be Wick-rotated to the k = 0 sector. Similar comments apply to anti-QNMs.
We will focus on PT-symmetric theories, where z̄ can be taken to be −z.

Edge partition function. Denoting by ze the QNMs that cannot be Wick-rotated to
the k = 0 Euclidean modes due to the fall-off condition (3.7), we have a modified DHS
formula:

ZPI = Z̃bulk
Zedge

(3.10)
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where

log Z̃bulk =
∫ ∞

0

dt

2t
1 + e−2πt/β

1− e−2πt/β χQNM(t) , logZedge =
∫ ∞

0

dt

2t
∑
ze

e−izet . (3.11)

Here χQNM(t) is the QNM character defined analogously as (2.14). As discussed at the end
of section 2, the bulk part Z̃bulk has an unambiguous meaning of a Rindler-renormalized
thermal canonical partition function. Our analyticity argument reveals that the Euclidean
path integral demands a division by the edge partition function Zedge, which accounts for
the fact that some QNMs cannot be Wick-rotated to k = 0 Euclidean modes due to the
fall-off condition (3.7).

Note that the modes with frequency ze must have non-zero Au and Aū components,
which must be constructed from SO(d) scalars; therefore, Zedge can be thought of as a path
integral of a scalar on Sd−1. Since our argument is based on the behavior of the vector
field near the origin, it is natural to identify this Sd−1 with the bifurcation surface in the
Lorentzian signature, thus justifying the terminology “edge”.

3.2 Spin-2 and beyond

The argument above readily generalizes to higher spin fields. For instance, for a symmetric
spin-2 field hµν , requiring huu, huū, hūū, hui, hūi, hij to have a Taylor expansion in u, ū leads
to the fall-offs near the origin:

• for k ≥ 2,

huu ∝ uk−2, huū ∝ uk, hūū ∝ uk+2, hui ∝ uk−1, hūi ∝ uk+1, hij ∝ uk;
(3.12)

• for k = 1,

huu ∝ ū, huū ∝ u, hūū ∝ u3, hui ∝ u0, hūi ∝ u2, hij ∝ u; (3.13)

• for k = 0,

huu ∝ ū2, huū ∝ u0, hūū ∝ u2, hui ∝ ū, hūi ∝ u, hij ∝ u0; (3.14)

• for k = −1,

huu ∝ ū3, huū ∝ ū, hūū ∝ u, hui ∝ ū2, hūi ∝ ū0, hij ∝ ū; (3.15)

• for k ≤ −2,

huu∝ ū−k+2, huū∝ ū−k, hūū∝ ū−k−2, hui∝ ū−k+1, hūi∝ ū−k−1, hij ∝ ū−k.
(3.16)
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Observe the enhanced fall-off of huu in the k = 0, 1 sector, that of hūū for k = 0,−1,
and those of hui, hūi for k = 0. Note that huu, hūū can only be constructed from SO(d)
scalars, while hui, hūi can be constructed from either SO(d) scalars or vectors.

The pattern goes on for tensor fields of arbitrary rank s ≥ 1. The component

φu · · ·u︸ ︷︷ ︸
a

ū · · · ū︸ ︷︷ ︸
b

i1 · · · ic︸ ︷︷ ︸
c

, a+ b+ c = s , (3.17)

would have enhanced fall-offs for k = 0, 1, . . . , a−b−1 if a > b, or k = 0,−1, . . . , a−b+1 if
a < b. Such a component can be constructed from SO(d) representations of spin 0, 1, . . . , c.
Repeating the analyticity argument, we then expect that for each fixed |k| = 0, 1, . . . , s−1,
there will be a subset of (anti-)QNMs with frequencies ze,k (z̄e,k) that cannot be Wick-
rotated to regular Euclidean modes of U(1) quantum number |k| (−|k|). For PT-symmetric
theories where z̄e,k can be taken to be −ze,k, the edge partition function will take the general
form

logZedge =
∫ ∞

0

dt

2t

s−1∑
k=−(s−1)

∑
ze,k

e
−
(

2π
βH
|k|+ize,k

)
t
. (3.18)

In sections 4 and 5, we will work out the explicit expressions of Zedge for massive HS fields
on static BTZ and massive vector on Nariai, and check (3.10) against the full Euclidean
path integrals obtained by direct derivations.

4 Example: massive higher spin on static BTZ

As our prime example, we consider massive higher spin (HS) fields living on the static BTZ
background (setting `AdS = 1):

ds2 = −
(
r2 − r2

H

)
dt2 + dr2

r2 − r2
H

+ r2dφ2 = r2
H

sinh2(rHx)

(
−dt2 + dx2 + cosh2(rHx)dϑ2

)
.

(4.1)
In the second equality we have written in terms of the tortoise coordinate
r(x) = −rH coth(rHx). We recall that rH ≡MBH = 2πTH .

A spin-s (s ≥ 1) field of mass m2 = (∆− s)(∆ + s− 2) living on such a background is
described by either (∓) set of first-order equations [18]

ε αβ
µ1 ∇αφβµ2···µs = ∓Mφµ1µ2···µs , M = ∆− 1 . (4.2)

In the current setting we are interested in the parity-invariant theory that includes both
± solutions.

It turns out to be natural to study components with respect to the coordinates

y± = e∓rH t sech(rHx) , (4.3)

in terms of which the metric becomes

ds2 = 1
4(1− y+y−)2

(
y2
−dy

2
+ + 2(2− y+y−)dy+dy− + y2

+dy
2
−

)
+ r2

H

1− y+y−
dϑ2 . (4.4)
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Notice that near horizon x→ −∞, y± → 2 erH(x∓t) and

ds2 ≈ dy+dy− + r2
Hdϑ

2 . (4.5)

Comparing this to (2.4), we see that y+ and y− are essentially the Lorentzian analogs for
the complex coordinates ū and u in (2.5) respectively. Thus, working with the components
with respect to these coordinates make the comparison with section 3 more direct.

Upon Wick-rotating t → −itE and identifying tE ∼ tE + β in (4.1), the resulting
Euclidean BTZ (EBTZ) geometry is related to thermal AdS3 (TAdS3) by a large diffeo-
morphism. As a result, their path integrals are equal upon the modular transformation

τ → −1
τ

τ = 2πiTH . (4.6)

This is expected to be true for any theories. Reproducing the TAdS3 results (reviewed in
appendix C) hence serves as a consistency check for our method after we obtain ZBTZ

PI in
section 4.3.

4.1 Explicit solutions, scattering matrices, and quasinormal modes

While the system (4.2) for massive HS fields on BTZ has been solved in for example [19],
we present a simpler version of this computation in appendix D, where we work with
components with respect to the coordinates (4.4).

4.1.1 Massive scalar

We start with the simplest case of a massive scalar, whose normal mode functions will serve
as the seed solutions for constructing those for general massive HS fields.

For a scalar with mass m2 = ∆(∆−2), the normal mode solutions to the Klein-Gordon
equation

(
−∇2 +m2)φ = 0 are solved with the ansatz

φ(t, x, ϑ) = e−iωt+ilϑ
√
− tanh(rHx)ψScalar

ωl (x) . (4.7)

The normalizable solution satisfying the standard boundary condition is

ψScalar
ωl (x) = (cosh (rHx))

il
rH (− sinh (rHx))∆√
− tanh(rHx) 2F1

(
aωl, a−ωl; ∆;− sinh2 (rHx)

)
, (4.8)

where
aωl = ∆

2 + i(−ω + l)
2rH

. (4.9)

This solution has the near-horizon behavior

ψScalar
ωl (x→ −∞) ∝

Γ
(
iω
rH

)
Γ (a−ω,l) Γ (a−ω,−l)

e−iωx +
Γ
(
− iω
rH

)
Γ (aωl) Γ (aω,−l)

eiωx . (4.10)

The ratio of the incoming and outgoing coefficients defines a unitary S-matrix:

Sl(ω) = SBTZ
l (ω)SRin

( 2π
rH
, ω

)
SBTZ
l (ω) = SBTZ,L

l (ω)SBTZ,R
l (ω) , SBTZ,L

l (ω) = SBTZ,R
−l (ω) ≡ Γ (aωl)

Γ (a−ω,−l)
. (4.11)
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Here SRin (β, ω) is the Rindler S-matrix (2.26). The poles of SBTZ
l (ω) are the QNM fre-

quencies
zLnl = l − 2πTHi(∆ + 2n) , zRnl = −l − 2πTHi(∆ + 2n) , (4.12)

while its zeros are the anti-QNM frequencies −zL/Rnl or
(
z
L/R
nl

)∗
.

4.1.2 Massive higher spin

As explained in appendix D, the incoming and outgoing behaviors for a normal mode
solution to (4.2) are dominated by the components with all +- and −-indices respectively.
We will focus on these and use the shorthand notation5

φ(±) ≡ φ± · · ·±︸ ︷︷ ︸
s

. (4.13)

With our explicit calculations in appendix D, we find the normal mode solutions to be

φ
(∓)
(±) = C

(∓)
ωl,(±) e

±srH t−iωt+ilϑ(− tanh(rHx))
1
2−sψScalar

ω±isrH ,l(x) , (4.14)

with ψScalar
ωl (x) defined in (4.8). Here the superscript (∓) corresponds to the ∓-equa-

tions (4.2). In (4.14) we have the relative polarization constants fixed by (4.2) to be

C
(∓)
ωl,(+)

Γ(a−ω+isrH ,∓l)
Γ(a−ω−isrH ,∓l)

= (−)sC(∓)
ωl,(−)

Γ(aω+isrH ,±l)
Γ(aω−isrH ,±l)

. (4.15)

Combining (4.10), (4.14) and (4.15), we can deduce(
φ(+), φ(−)

)(∓)

ωl
(x→ −∞) ∝ B(∓),out

ωl (0, (−)s) e(−iω−srH)(t+x) +B
(∓),in
ωl (1, 0) e(−iω+srH)(t−x)

(4.16)
where (0, (−)s) e(−iω−srH)(t+x) and (1, 0) e(−iω+srH)(t−x) are the outgoing and incoming
waves respectively, with coefficients

B
(∓),out
ωl =

Γ
(
iω
rH

+ s
)

Γ (a−ω−isrH ,∓l) Γ (a−ω+isrH ,±l)
, B

(∓),in
ωl =

Γ
(
− iω
rH

+ s
)

Γ (aω−isrH ,±l) Γ (aω+isrH ,∓l)
.

(4.17)
The ratio between the coefficients is again a pure phase and takes the form

S(∓)
l (ω) ≡ B

(∓),out
ωl

B
(∓),in
ωl

= SBTZ,(∓)
s,l (ω)SRin,(s)

l (βH , ω) (4.18)

with SRin,(s)
l (β, ω) defined in (B.60) and

SBTZ,(∓)
s,l (ω) = SBTZ,(∓,L)

s,l (ω)SBTZ,(∓,R)
s,l (ω) ,

SBTZ,(∓,L)
s,l (ω) ≡ Γ (aω∓isrH ,l)

Γ (a−ω∓isrH ,−l)
, SBTZ,(∓,R)

s,l (ω) ≡ Γ (aω±isrH ,−l)
Γ (a−ω±isrH ,l)

, (4.19)

5In terms of the notation (B.51) in appendix D, φ(+) = φ(s)(0)(0) and φ(−) = φ(0)(s)(0).
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in accordance with the discussion at the end of section 2.2. QNM frequencies are the poles
of the S-matrices SBTZ,(∓)

s,l (ω), which can be summarized by

z
(∓),L
nl = l − 2πTHi(∆∓ s+ 2n) z

(∓),R
nl = −l − 2πTHi(∆± s+ 2n) , (4.20)

while the anti-QNM frequencies are given by
(
z

(∓),L/R
nl

)∗
, the zeros of SBTZ,(∓)

s,l (ω). In a
parity invariant theory where both (∓)-QNMs (4.20) are included, the set of anti-QNMs
is also spanned by −z(∓),L/R

nl , the zeros of SBTZ,(±)
s,l (ω).

4.2 Euclidean continuation of the quasinormal modes

In this part we examine the Euclidean continuation of the QNMs. The analysis for anti-
QNMs is analogous.

4.2.1 Massive scalar

As a warm-up illustration, we first look at the case of the massive scalar. At the QNM
frequencies (4.12), with (4.7), (4.8) we can write down the full explicit mode functions

φLnl ∝ e
−izLn,lt(cosh (rHx))

il
rH (− sinh (rHx))∆

2F1

(
−n, iz

L
nl

rH
− n; ∆;− sinh2 (rHx)

)
,

φRnl ∝ e
−izRn,lt(cosh (rHx))−

il
rH (− sinh (rHx))∆

2F1

(
−n, iz

R
nl

rH
− n; ∆;− sinh2 (rHx)

)
.

(4.21)

We have suppressed the eilϑ dependence which is unimportant for the following. In deriving
φRnl(x) we have used

2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z) . (4.22)

Following the DHS analyticity argument, we vary m2 or ∆ such that
izLnl
rH

= −|k| or izRnl
rH

= −|k| , k ∈ Z . (4.23)

At these (complex) mass values, upon Wick rotating t → −itE = −i 1
rH
ϕ, the mode

functions (4.21) behave near the origin like

φLnl(−itE , x→ −∞) ∝ e−i|k|ϕe(|k|+2n)rHx 2F1

(
−n,−|k| − n; ∆;−1

4e
−2rHx

)
φRnl(−itE , x→ −∞) ∝ e−i|k|ϕe(|k|+2n)rHx 2F1

(
−n,−|k| − n; ∆;−1

4e
−2rHx

)
. (4.24)

To proceed, we will make use of another identity

F (−m, b; c; z) = Γ(b+m)Γ(c)
Γ(b)Γ(c+m)(−z)mF

(
−m, 1− c−m; 1− b−m; 1

z

)
, (4.25)

where m is a non-negative integer. It is important to note that when b = −j for j a non-
negative integer, (4.25) holds if m ≤ j. Using this, one can show that for any n = 0, 1, 2, . . .
and k ∈ Z, (4.24) is equivalent to

φLnl(−itE , x→ −∞) ∝ u|k| or φRnl(−itE , x→ −∞) ∝ e|k|(rHx−iϕ) = u|k| . (4.26)

We thus conclude that these modes obey the regularity condition (2.7).
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4.2.2 Massive higher spin
Now, let us study the Wick-rotation of QNMs for a massive spin-s field, for general s ≥ 1.
From (4.16), we observe that at the QNM frequencies (4.20), the incoming piece vanishes
and we are left with the purely outgoing piece determined by φ(−). Using (4.14), we first
write down the explicit normal modes for φ(−):

φωl(−) ∝ e−srH t−iωt (cosh (rHx))
il

rH (− sinh (rHx))∆

(− tanh(rHx))s 2F1
(
aω−isrH ,l, a−ω+isrH ,l; ∆;− sinh2 (rHx)

)
.

(4.27)
We have suppressed the eilϑ dependence which is unimportant for the following. The QNMs
at frequencies (4.20) read explicitly

φ
(−),L
nl,(−)∝ e

−i(z
(−),L

nl
−isrH)t (cosh(rHx))

il
rH (−sinh(rHx))∆

(−tanh(rHx))s 2F1

(
−n,

iz
(−),L
nl

rH
−n+s;∆;−sinh2(rHx)

)
,

φ
(−),R
nl,(−)∝ e

−i(z
(−),R

nl
−isrH)t (cosh(rHx))− il

rH (−sinh(rHx))∆

(−tanh(rHx))s 2F1

(
−n−s,

iz
(−),R
nl

rH
−n;∆;−sinh2(rHx)

)
,

φ
(+),L
nl,(−)∝ e

−i(z
(+),L

nl
−isrH)t (cosh(rHx))

il
rH (−sinh(rHx))∆

(−tanh(rHx))s 2F1

(
−n−s,

iz
(+),L
nl

rH
−n;∆;−sinh2(rHx)

)
,

φ
(+),R
nl,(−)∝ e

−i(z
(+),R

nl
−isrH)t (cosh(rHx))− il

rH (−sinh(rHx))∆

(−tanh(rHx))s 2F1

(
−n,

iz
(+),R
nl

rH
−n+s;∆;−sinh2(rHx)

)
,

(4.28)

Again, we vary m2 or ∆ such that

iz
(∓),L
nl

rH
= −|k| or iz

(∓),R
nl

rH
= −|k| , k ∈ Z . (4.29)

At these (complex) values of masses, upon Wick rotating t → −itE = −i 1
rH
ϕ, the mode

functions (4.28) behave near the origin like

φ
(−),L
nl,(u)(−itE , x→ −∞) ∝ e−i(|k|−s)ϕe(|k|+2n−s)rHx 2F1

(
−n,−|k| − n+ s; ∆;−1

4e
−2rHx

)
φ

(−),R
nl,(u)(−itE , x→ −∞) ∝ e−i(|k|−s)ϕe(|k|+2n−s)rHx 2F1

(
−n− s,−|k| − n; ∆;−1

4e
−2rHx

)
,

φ
(+),L
nl,(u)(−itE , x→ −∞) ∝ e−i(|k|−s)ϕe(|k|+2n−s)rHx 2F1

(
−n− s,−|k| − n; ∆;−1

4e
−2rHx

)
φ

(+),R
nl,(u)(−itE , x→ −∞) ∝ e−i(|k|−s)ϕe(|k|+2n−s)rHx 2F1

(
−n,−|k| − n+ s; ∆;−1

4e
−2rHx

)
.

(4.30)

Here we recall that under the Wick rotation, the −-component becomes the u-component.
Using (4.25), one can show that for any |k| ≥ s, all four mode functions (4.30) are regular
near the origin

φ
(∓),L
nl,(u)(−itE , x→ −∞) ∝ φ(∓),R

nl,(u)(−itE , x→ −∞) ∝ e(|k|−s)rHxe−i(|k|−s)ϕ ∝ u|k|−s . (4.31)

The case for |k| < s is more intricate. On the one hand, we always have

φ
(+),L
nl,(u)(−itE , x→ −∞) ∝ φ(−),R

nl,(u)(−itE , x→ −∞) ∝ e(s−|k|)rHxe−i(|k|−s)ϕ ∝ ūs−|k| , (4.32)
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so that these are regular at the origin. On the other, when |k|+ n ≥ s > |k|,

φ
(−),L
nl,(u)(−itE , x→ −∞) ∝ φ(+),R

nl,(u)(−itE , x→ −∞) ∝ e(s−|k|)rHxe−i(|k|−s)ϕ = ūs−|k| , (4.33)

while for |k|+ n < s,

φ
(−),L
nl,(u)(−itE , x→ −∞) ∝ φ(+),R

nl,(u)(−itE , x→ −∞) ∝ e||k|−s|rHxe−i(|k|−s)ϕ = u−(s−|k|) .

(4.34)
We can see that (4.33) is a regular behavior while (4.34) is not.

To summarize, for a fixed k ∈ Z, any QNM can Wick-rotate to a regular Euclidean
mode with U(1) quantum number |k| at complex masses (4.29), except for those with
frequencies

z
(−),L
nl = l−2πTHi(∆−s+2n) z

(+),R
nl = −l−2πTHi(∆−s+2n) , n < s−|k| . (4.35)

The irregularity of such modes agrees with the case of s = 2 first pointed out in [15].

4.3 Euclidean path integral

4.3.1 Quasinormal mode character and renormalized bulk partition function

With the QNM spectrum (4.20) we can compute the QNM character

χBTZ
[∆,s](t) =

∑
l∈Z

∞∑
n=0

∑
±

(
e−iz

L
n,l,±t + e−iz

R
n,l,±t

)
= 4πe−2πTH∆t

1− e−4πTH t
2 cosh(2πTHst)

∑
k∈Z

δ(t− 2πk) .

(4.36)
Substituting this into (2.28) yields the renormalized bulk partition function

log Z̃BTZ
bulk [∆, s] =

∞∑
k=1

qsk + q−sk
k

q∆
k

(1− qk)2 , qk = e−(2π)2THk . (4.37)

Note that this is not related to the TAdS3 expression (C.4) through the modular transfor-
mation (4.6) for any s ≥ 1.

4.3.2 Edge partition function

As we checked explicitly in section 4.2, for a fixed k ∈ Z, QNMs with frequencies (4.35)
cannot Wick-rotate to a regular Euclidean mode with U(1) quantum number |k| at complex
masses (4.29). They contribute to the integrand (3.18) as

1
2t

s−1∑
k=−(s−1)

∑
l∈Z

s−1−|k|∑
n=0

(
e
−
(

2πTH |k|+iz
(−),L
nl

)
t
+ e
−
(

2πTH |k|+iz
(+),R
nl

)
t
)

=2πe−2πTH∆t

t

∑
j∈Z

δ(t− 2πj)e
−2πsTH t + e2πsTH t − 2

(1− e−2πtTH ) 2 (4.38)

Substituting this into (3.18) yields the BTZ edge partition function

logZedge =
∑
j

qsj + q−sj − 2
j

q∆
j

(1− qj)2 . (4.39)
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4.3.3 The full Euclidean path integral

Taking the difference between the renormalized bulk partition function (4.37) and the edge
partition function (4.39), we obtain the full path integral

logZBTZ
PI = log Z̃BTZ

bulk − logZBTZ
edge =

∞∑
k=1

2
k

q∆
k

(1− qk)2 , (4.40)

which precisely equals the TAdS3 result (C.4) after the modular transformation (4.6).
In [19] the authors found a prescription to modify the DHS formula so that the result (4.40)
was reproduced. Our discussion in section 3 gave a justification for their prescription.

5 Example: massive vector on Nariai

In this section we study a free massive vector Aµ on Nariai spacetime (d ≥ 3):

ds2 = −
(
1− y2

)
dt2 + `2N

1− y2 dy
2 + r2

N dΩ2
d−1 , −1 < y < 1 . (5.1)

Here `N and rN are related to the dS length `dS through

`N ≡
`dS√
d
, rN ≡

√
d− 2
d

`dS , `dS ≡

√
d(d− 1)

2Λ . (5.2)

This geometry is locally dS2×Sd−1, with isometry group SO(1, 2)× SO(d). There are two
horizons (cosmological and black hole) at y = ±1 with the same Hawking temperatures
TN = 1

2π`N . Note that this temperature is higher than the temperature TdS = 1
2π`dS

for
pure de Sitter.

Upon Wick-rotating t → −itE and identifying tE ∼ tE + 2π`N , the geometry (5.1)
becomes S2 × Sd−1. The 1-loop path integral for a massive vector on such a geometry is

ZPI =
∫
DAe−S[A], S[A] =

∫
S2×Sd−1

(
1
4FµνF

µν + m2

2 AµA
µ

)
. (5.3)

The derivation in [8] is readily carried over to this case:

ZPI = ZTPI Z
L
PI (5.4)

with

ZTPI = det
(
−∇2

(1) +m2 + 1
`2N

)−1/2

, ZLPI = (m2)1/2 . (5.5)

Here −∇2
(1) is the Laplacian acting on transverse vector fields on S2×Sd−1. We have used

the fact that the S2 and Sd−1 factors in the Euclidean Nariai geometry have respective radii
`N and rN defined in (5.2). The factor ZLPI comes from the integration over the off-shell
longitudinal modes and corresponds to the normalizable constant scalar mode [8, 11]. Our
general discussions in section 3 apply to ZTPI. We will comment on ZLPI when we directly
compute ZPI in section 5.3.
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5.1 Explicit solutions and quasinormal modes

The Proca equation of motion ∇µFµν = m2Aν on (5.1) is equivalent to(
− 1
`2N
∇2
dS2 −

1
r2
N

∇2
Sd−1 +m2 + 1

`2N

)
Aµ = 0 . (5.6)

In deriving this, it is important to use the relation (5.2) between `N and rN . In these
expressions, ∇2

dS2
and ∇2

Sd−1 are the Laplacians on the unit dS2 and Sd−1 respectively; the
former acts on (At, Ay) as a vector and Ai as a scalar, while the latter acts on (At, Ay) as
scalars and Ai as a vector. All components are related through the transversality condition

∇µAµ = − 1
1− y2∂tAt + 1− y2

`2N
∂yAy + 1

r2
N

∇iSd−1Ai = 0 . (5.7)

There are three types of solutions according to their SO(d) transformation properties. In
appendix A, we collect some basic facts about scalar and vector spherical harmonics that
are useful for our analysis.

Vector mode. This tower of solutions take the form

At = Ay = 0 , Ai = e−iωtRV (y)Y d−1
l,i (Ω) , l ≥ 1 , (5.8)

where Y d−1
l,i (Ω) are vector spherical harmonics on Sd−1. The transversality condition as

well as the y, t-components of the equation of motion (5.6) are automatically satisfied. The
i-component of (5.6) implies that

(1− y2)∂2
yR− 2y∂yR+

(
ω2`2N
1− y2 −∆V,l∆̄V,l

)
R = 0 , (5.9)

where

∆V,l = 1
2 + i νV,l , νV,l =

√
`2Nm

2
V,l + 3

4 , m2
V,l ≡ m2 + l(l + d− 2)− 1

r2
N

, (5.10)

and ∆̄V,l ≡ 1−∆V,l. There are two linearly independent solutions to (5.9):

RV,even
ωl = (1− y2)−

iω`N
2 2F1

(
∆V,l − iω`N

2 ,
∆̄V,l − iω`N

2 ; 1
2 , y

2
)

(5.11)

and

RV,odd
ωl = y (1− y2)−

iω`N
2 2F1

(
1 + ∆V,l − iω`N

2 ,
1 + ∆̄V,l − iω`N

2 ; 3
2 , y

2
)
. (5.12)

Both modes are regular at the location of the observer y = 0 and thus should be included
as solutions. The label even/odd denotes the parity under y → −y. Expanding near the
horizons in terms of the tortoise coordinate x = `N

2 log 1+y
1−y we find respectively

RV,even(|x| → ∞) ∝ Γ(iω`N )

Γ
(∆V,l+iω`N

2

)
Γ
(

∆̄V,l+iω`N
2

)eiω|x| + (ω → −ω) , (5.13)

– 18 –



J
H
E
P
0
6
(
2
0
2
3
)
0
2
5

and

RV,odd(|x| → ∞) ∝ Γ(iω`N )

Γ
(1+∆V,l+iω`N

2

)
Γ
(

1+∆̄V,l+iω`N
2

)eiω|x| + (ω → −ω) . (5.14)

Therefore, at QNM frequencies

izV∆nl`N = ∆V,l + n , izV∆̄nl`N = ∆̄V,l + n , n = 0, 1, 2, . . . , (5.15)

the even (odd) modes (5.13) are purely outgoing at both horizons when n is even (odd).
At these frequencies, one can solve (5.9) to get

RV∆nl(y) = P
n+∆V,l

−∆V,l
(y) and RV∆̄nl(y) = P

n+∆̄V,l

−∆̄V,l
(y) (5.16)

where n = 0, 1, 2, . . . . Alternatively, (5.16) can obtained (up to an overall normalization) by
substituting (5.16) into (5.11) ((5.12)) when n is even (odd) together with the relation be-
tween hypergeometric and associated Legendre functions (See for instance [20, §14.3(iii)]).
The spectrum of anti-QNM can be solved in a similar way, and the explicit mode functions
can be obtained by flipping t→ −t in the QNM ones.

Scalar mode I. This tower of scalar solutions takes the form

At = i
1− y2

`N
R′(y)e−iωtY d−1

l (Ω) , Ay = ω`N
1− y2R(y)e−iωtY d−1

l (Ω) , Ai = 0 , l ≥ 0,
(5.17)

where Y d−1
l (Ω) are scalar spherical harmonics on Sd−1. Plugging this ansatz into (5.6)

and (5.7), one finds that R satisfies (5.9), with ∆V,l replaced by ∆S,l defined as

∆S,l = 1
2 + iνS,l , νS,l =

√
m2
S,l`

2
N −

1
4 =

√
m2`2N + l(l + d− 2)− 1

4 , ∆̄l ≡ 1−∆l .

(5.18)
We essentially get a KK-tower of dS2 vectors with masses m2

S,l. The subsequent analysis
is the same as before but with ∆V,l replaced by ∆S,l. In particular, we can immediately
write down the QNM frequencies

iz
(S,1)
∆nl `N = ∆S,l + n , iz

(S,1)
∆̄nl `N = ∆̄S,l + n , n = 0, 1, 2, . . . , (5.19)

and the mode functions

R
(S,1)
∆nl (y) = P

n+∆S,l

−∆S,l
(y) and R

(S,1)
∆̄nl (y) = P

n+∆̄S,l

−∆̄S,l
(y) . (5.20)

The mode functions of the anti-QNMs can be obtained by flipping t → −t in the QNM
ones.

Scalar mode II. Another tower of scalar solutions are obtained with the ansatz

At = −iωR(y) e−iωt Y d−1
l (Ω), Ay = R′(y) e−iωt Y d−1

l (Ω) ,

Ai = ClR(y) e−iωt ∂iY
d−1
l (Ω)

l(l + d− 2) , l ≥ 1.
(5.21)
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The equations of motion again are satisfied when R solves (5.9) with ∆V,l replaced by ∆S,l

defined in (5.18). For this set of solutions, the transversality constraint (5.7) implies that
the respective divergences along the dS2 and Sd−1 directions cancel each other, with the
polarization constant Cl fixed to be

∆S,l∆̄S,l = Cl
d− 2 . (5.22)

Again the QNM frequencies are given by replacing ∆V,l → ∆S,l in (5.15):

iz
(S,2)
∆nl `N = ∆S,l + n, iz

(S,2)
∆̄nl `N = ∆̄S,l + n, n = 0, 1, 2, . . . . (5.23)

These are identical to (5.19) but we stress that here l ≥ 1. The mode functions are

R
(S,2)
∆nl (y) = P

n+∆S,l

−∆S,l
(y) and R

(S,2)
∆̄nl (y) = P

n+∆̄S,l

−∆̄S,l
(y) . (5.24)

Again, the anti-QNM functions can be obtained by flipping t→ −t in the QNM ones.

5.1.1 Renormalized bulk partition function

With the QNM spectra (5.15), (5.19) and (5.23), we can immediately write down the QNM
character

χ(t) =
∑
l≥1

(
Dd
l,1
q∆V,l + q∆̄V,l

1− q +Dd
l

q∆S,l + q∆̄S,l

1− q

)
+
∑
l≥0

Dd
l

q∆S,l + q∆̄S,l

1− q . (5.25)

Here we have defined q ≡ e−t/`N . Plugging this into (2.28) then gives

log Z̃Tbulk =
∫ ∞

0

dt

2t
1+q
1−q

∑
l≥1

(
Dd
l,1
q∆V,l+q∆̄V,l

1−q +Dd
l

q∆S,l+q∆̄S,l

1−q

)
+
∑
l≥0

Dd
l

q∆S,l+q∆̄S,l

1−q

 .
(5.26)

5.2 Quasinormal modes and eigenfunctions on Euclidean Nariai

5.2.1 Spectrum for the vector Laplacian on S2 × Sd−1

The eigenfunctions of the Laplace operator −∇2
(1) in (5.4) can be easily obtained by com-

bining together the spherical harmonics on S2 and Sd−1. We summarize this below, where
we use i, j, k and I, J,K to denote indices on the Sd−1 and S2 factors respectively.

Vector type. These eigenfunctions take the form

Aϕ = Aθ = 0 , Ai = Y 2
Lp(θ, ϕ)Y d−1

l,i (Ω) , L ≥ 0 , −L ≤ p ≤ L , l ≥ 1
(5.27)

with eigenvalues
λ

(V )
L,l = L(L+ 1)

`2N
+ l(l + d− 2)− 1

r2
N

(5.28)

and degeneracy D3
LD

d
l,1.
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Scalar type I. The first type of scalar eigenfunctions take the form

(Aϕ, Aθ) = Y 2
Lp,I(θ, ϕ)Y d−1

l (Ω) , Ai = 0 , L ≥ 1 , −L ≤ p ≤ L , l ≥ 0 ,
(5.29)

with eigenvalues
λ

(S,1)
L,l = L(L+ 1)− 1

`2N
+ l(l + d− 2)

r2
N

(5.30)

and degeneracy D3
LD

d
l .

Scalar type II. Another type of scalar eigenfunctions take the form

(Aϕ, Aθ) = ∂IY
2
Lp(θ, ϕ)Y d−1

l (Ω), Ai = CLl Y
2
Lp(θ, ϕ) ∂iY d−1

l (Ω) ,
L ≥ 1, −L ≤ p ≤ L, l ≥ 1, (5.31)

with eigenvalues

λ
(S,2)
L,l = L(L+ 1)− 1

`2N
+ l(l + d− 2)

r2
N

= L(L+ 1)
`2N

+ l(l + d− 2)− (d− 2)
r2
N

(5.32)

and degeneracy D3
LD

d
l . Here CLl is a relative constant fixed by the Casimir equation.

5.2.2 Euclidean continuation of the quasinormal modes

Since we have the exact expressions for the QNMs discussed in section 5.1 and the Euclidean
eigenfunctions summarized above, we can directly compare them after the Wick rotation
t → −itE . We will ignore overall normalization constants unimportant for this analysis.
Also, for a better comparison we change to the variables y = cos θ and ϕ = 1

`N
tE .

Vector type. For every l ≥ 1, whenever the mass m2 is varied such that

izV∆nl`N = n+ ∆V,l = −|k| or izV∆̄nl`N = n+ ∆̄V,l = −|k| , k ∈ Z , (5.33)

upon Wick rotation t→ −itE , the QNM with frequency (5.15) becomes

Aϕ = Aθ = 0 , Ai = Y 2
n+|k|,−|k|(θ, ϕ)Y d−1

l,i (Ω) (5.34)

while the anti-QNM given by flipping t→ −t becomes

Aϕ = Aθ = 0, Ai = Y 2
n+|k|,|k|(θ, ϕ)Y d−1

l,i (Ω). (5.35)

It is clear that running over n = 0, 1, 2, . . . and k ∈ Z, (5.34) and (5.35) span the set of
eigenfunctions of the vector type (5.27).

Scalar type I. For every l ≥ 0, whenever the mass m2 is varied such that

iz
(S,1)
∆nl `N = n+ ∆S,l = −|k| or iz

(S,1)
∆̄nl `N = n+ ∆̄S,l = −|k| , k ∈ Z , (5.36)

the QNM with frequency (5.19) upon Wick rotation t→ −itE becomes

(Aϕ, Aθ) = Y 2
n+|k|,−|k|,I(θ, ϕ)Y d−1

l (Ω) , Ai = 0 , (5.37)
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while the anti-QNM given by flipping t→ −t becomes

(Aϕ, Aθ) = Y 2
n+|k|,|k|,I(θ, ϕ)Y d−1

l (Ω), Ai = 0. (5.38)

Running over n = 1, 2, . . . and k ∈ Z, (5.34) and (5.35) span the set of eigenfunctions of
the scalar type I (5.29). Notice that when n = k = 0, the Wick-rotated mode does not
belong to this set.

Scalar type II. For every l ≥ 1, whenever the mass m2 is varied such that

iz
(S,2)
∆nl `N = n+ ∆S,l = −|k| or iz

(S,2)
∆̄nl `N = n+ ∆̄S,l = −|k| , k ∈ Z , (5.39)

the QNM with frequency (5.23) upon Wick rotation t→ −itE becomes

(Aϕ, Aθ) = ∂IY
2
n+|k|,−|k|(θ, ϕ)Y d−1

l (Ω) , Ai = Cn+|k|,l Y
2
n+|k|,−|k|(θ, ϕ) ∂iY d−1

l (Ω) ,
(5.40)

while the anti-QNM given by flipping t→ −t becomes

(Aϕ, Aθ) = ∂IY
2
n+|k|,|k|(θ, ϕ)Y d−1

l (Ω), Ai = Cn+|k|,l Y
2
n+|k|,|k|(θ, ϕ) ∂iY d−1

l (Ω),
(5.41)

In these expressions, CLl is as defined in (5.31). Running over n = 1, 2, . . . and k ∈ Z, (5.40)
and (5.41) span the set of eigenfunctions of the scalar type II (5.31). Notice that when
n = k = 0, the Wick-rotated mode does not belong to this set.

5.2.3 Edge partition function

From the last section, we see that all QNMs Wick-rotate to Euclidean modes for the correct
value of masses, except the n = 0 modes of both scalar type I and II with frequencies

iz
(S,1)
∆nl `N = ∆S,l , iz

(S,1)
∆̄nl `N = ∆̄S,l , l ≥ 0 , (5.42)

and
iz

(S,2)
∆,n=0,l`N = ∆S,l , iz

(S,2)
∆̄,n=0,l`N = ∆̄S,l , l ≥ 1 (5.43)

respectively. As we saw these modes do not Wick-rotate to the k = 0 Euclidean modes for
any value of masses, and contribute to the edge partition function as

logZTedge =
∫ ∞

0

dt

2t

∑
l≥1

+
∑
l≥0

Dd
l

(
q∆S,l + q∆̄S,l

)
. (5.44)

5.3 Euclidean path integral

With the eigenvalues and degeneracies of the spin-1 Laplacian on S2×Sd−1, we write down
the 1-loop path integral

logZPI =
∫ ∞

0

dτ

2τ e
− ε

2
4τ

[∑
l≥1

∑
L≥0

Dd
l,1D

3
L e
−
(
λ

(V )
L,l

+m2+ 1
`2
N

)
τ

+

∑
l≥1

+
∑
l≥0

∑
L≥1

Dd
lD

3
Le
−
(
λ

(S)
L,l

+m2+ 1
`2
N

)
τ

− e−m2τ

]
, (5.45)
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(a) original contour (b) folded contour (c) rotated folded contour

Figure 1. We fold the contour A (red) along the branch cut around the branch point +iε (green
dot), and then rotate u = it. The blue dots represent the poles of f(u).

where we have abbreviated λ(S,1)
L,l = λ

(S,2)
L,l = λ

(S)
L,l . The last term in the bracket comes from

the factor ZLPI = (m2)1/2 in (5.4). Here we have inserted the UV regulator e− ε
2

4τ so that
this integral is convergent for ε > 0.

To proceed, we substitute (5.28), (5.30), (5.32) and use the Hubbard-Stratonovich
trick, following the approach in [1, 11]. For the sum over L in the first line, we can write

∑
L≥0

D3
L e
−
(
λ

(V )
L,l

+m2+ 1
`2
N

)
τ

= e
−
ν2
V,l

`2
N

τ ∞∑
L=0

D3
L e
−τ(L+ 1

2)2
/`2N = e

−
ν2
V,l

`2
N

τ
∫
A
du

e−u
2/4τ

√
4πτ

f(u) ,

(5.46)
with the integration contour A = R + iδ, δ > 0 (see figure 1). Here we have defined

f(u) ≡
∞∑
L=0

D3
L e

iu(L+ 1
2)/`N =

(
1 + eiu/`N

1− eiu/`N

)
ei
u
2 /`N

1− eiu/`N
. (5.47)

For the sum over L and the last term in the second line of (5.45), we can write similarly

∑
L≥1

D3
L e
−
(
λ

(S)
L,l

+m2+ 1
`2
N

)
τ

= e
−
ν2
V,l

`2
N

τ
∫
A
du

e−u
2/4τ

√
4πτ

(
f(u)− ei

u
2`N
)

(5.48)

and

− e−m2τ = −e−τν
2
S,0/`

2
N e
−τ
(

1
2`N

)2

= −e−τν
2
S,0/`

2
N

∫
A
du

e−u
2/4τ

√
4πτ

e
i u
2`N , (5.49)

with the same contour A. We can then perform the τ -integral in (5.45) (keeping Im u =
δ < ε). Finally, after deforming the contour A as in figure 1 and changing variables to
u = it, we arrive at the regularized formula

logZPI = log Z̃bulk − logZedge (5.50)
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where

log Z̃bulk =
∫ ∞
ε

dt

2
√
t2 − ε2

1 + q

1− q

[∑
l≥1

Dd
l,1
e
− t

2`N
−iνV,l

√
t2−ε2 + e

− t
2`N

+iνV,l
√
t2−ε2

1− q

+

∑
l≥1

+
∑
l≥0

Dd
l

e
− t

2`N
−iνS,l

√
t2−ε2 + e

− t
2`N

+iνS,l
√
t2−ε2

1− q

]
(5.51)

and

logZedge = 2
∫ ∞
ε

dt

2
√
t2 − ε2

∑
l≥0

Dd
l

(
e
− t

2`N
−iνS,l

√
t2−ε2 + e

− t
2`N

+iνS,l
√
t2−ε2

)
. (5.52)

Putting ε = 0, we see that (5.51) recovers (5.26), while (5.52) recovers (5.44) plus the term
logZLPI. Notice the curious overall factor of 2 in (5.52), which might be associated with the
fact that we have two horizons in the Lorentzian geometry.

6 Discussion and outlook

We have revealed a natural structure for 1-loop Euclidean path integrals of general spinning
fields through the relation

ZPI = Z̃bulk
Zedge

. (6.1)

While we have explained in [1] and generalized in this work the unambiguous canonical
meaning of Z̃bulk ≡ Zbulk/Z

Rin
bulk as a ratio of thermal canonical partition functions, we have

not given the Hilbert space interpretation of Zedge.
The presence of the “edge” contributions is not surprising in view of past studies of

entanglement entropy in gauge theories and gravity. In the early work [21], a “contact
term” was found in the entanglement entropy for Maxwell theory on black holes computed
as a conical entropy. A considerable number of works have been devoted to the proper
interpretation for such a contact term as “edge” degrees of freedom living on the entan-
glement surface (the bifurcation surface Sd−1 in the case of black holes). See [22–40] for a
partial list. While the vast majority of these studies focus on gauge theories and gravity,
these edge degrees of freedom are expected to be present for massive spinning fields as
well. For one thing, the origin for the contact term in [21] is the linear curvature cou-
pling R present in the kinetic term S ∼

∫
A
(
−∇2 +R

)
A + . . . , which is also present for

massive fields. For another, from the Lorentzian two-sided geometry point of view, the
object Zbulk ≡ Tr e−βHĤ can be thought of as computing the normalization of the reduced
density matrix after tracing out one side. This assumes the global Hilbert space factorizes.
For all spinning fields, there are obstructions to this factorization of Hilbert space due to
the presence of constraints. In gauge theories and gravity, we have gauge constraints such
as the Gauss law constraint ∇ · E = 0 for Maxwell theory; for massive spinning fields,
we have for instance the transversality condition ∇λAλ = 0 for a Proca field. The edge
degrees of freedom account for the non-factorization of the global Hilbert space due to such
constraints. This point has been discussed in [37] for the Proca field on Rindler space. It is
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possible that by employing the Stückelberg trick, one could understand the massive theory
as a gauge theory, so that their edge modes can be understood in the same formalism as
in gauge theories and gravity.

In any case, with our purely Euclidean characterization described in section 3, it would
be very interesting to connect our work to existing approaches to edge modes and under-
stand their canonical pictures. To that end, we note the crucial role played by the regularity
condition imposed on the Euclidean eigenfunctions in the path integral. It is very plausible
that the regularity condition is closely related to “shrinkable boundary condition” recently
discussed by several authors [41, 42].

Finally, in the context of holography, our results capture O(G0
N )-effects in the bulk low-

energy effective field theory. It would be extremely interesting to investigate the boundary
interpretations of the results in [1] and the current paper. In particular, the boundary
counterpart of the edge modes uncovered in this paper might serve as a boundary signature
of the bulk black hole horizon. Our results for massive HS on static BTZ could provide a
set of concrete data for exploring this direction.
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A Scalar and vector spherical harmonics on Sd−1

Throughout this paper we use Latin letters such as i, j, k to denote components on Sd−1.
We also use a tilde to denote quantities living intrinsically on Sd−1; for example, ∇̃i acts
as a covariant derivative with the standard round metric and Levi-Civita connection on
Sd−1.

When d ≥ 4, we denote the (d − 1)-dimensional spherical harmonics by Yl(Ω), which
satisfies

− ∇̃2Yl = l(l + d− 2)Yl , l ≥ 0 , (A.1)

with degeneracy

Dd
l = 2l + d− 2

d− 2

(
l + d− 3
d− 3

)
. (A.2)

Vector spherical harmonics are denoted by Yl,i(Ω), satisfying

− ∇̃2Yl,i = (l(l + d− 2)− 1)Yl,i , l ≥ 1 , (A.3)

and the transversality condition
∇̃iYl,i = 0 , (A.4)
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with degeneracy

Dd
l,1 = l(d+ l − 2)(d+ 2l − 2)

(d− 3)(l + 1)

(
d+ l − 4
d− 4

)
. (A.5)

When d = 3, i.e. on S2 with standard metric ds2 = dθ2 +sin2 θdϕ2, the scalar spherical
harmonics are the familiar ones (restoring the magnetic quantum number m)

Ylm(θ, ϕ) ∝ eimϕPml (cos θ) , −l ≤ m ≤ l , (A.6)

where Pml (x) is the associated Legendre polynomial. The proportionality constant is not
important to us. Vector spherical harmonics are related to these by

Ylm,i(θ, ϕ) = 1√
l(l + 1)

εij∂
jYlm(θ, ϕ) (l ≥ 1) (A.7)

where εθφ = sin θ. Explicitly,

Ylm,θ(θ, ϕ) ∝ sin θ ∂ϕYlm(θ, ϕ) = im

sin θYlm(θ, ϕ)

Ylm,ϕ(θ, ϕ) ∝ sin θ ∂θYlm(θ, ϕ) ∝ sin2 θ eimϕ∂xP
m
l (x)

∣∣∣
x=cos θ

. (A.8)

B Scattering in the Rindler-like region

In this appendix we study massive spinning fields on the Rindler-like wedge:

ds2 = e
4π
β
x
(
−dt2 + dx2

)
+ r2

HdΩ2
d−1 , −∞ < x <∞ . (B.1)

This is nothing but a product of a 2D Rindler space and a transverse sphere with constant
radius rH . Another coordinate system that turns out to be useful is

y± = β

2πe
∓ 2π
β
t+ 2π

β
x
, (B.2)

in terms of which the metric becomes

ds2 = dy+dy− + r2
HdΩ2

d−1 . (B.3)

B.1 Massive scalar

This case has been studied in the appendix A of [1]. The Klein-Gordon equation (−∇2 +
m2)φ = 0 is equivalent to[

−∂2
t + ∂2

x + e
4π
β
x

(
∇̃2

r2
H

−m2
)]

φ = 0 . (B.4)

Solving with the ansatz
φ(t, x,Ω) = e−iωtψ(x)Yl(Ω) , (B.5)

the normalizable solution is

ψScalar
ωl (x′) = K iβω

2π

(
2e

2πx′
β

)
, (B.6)
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where

x′ = x+ β

2π log βMl

4π , Ml ≡
√
l(l + d− 2)

r2
H

+m2 . (B.7)

Near the horizon (B.6) takes the asymptotic form

ψScalar
ωl (x′ → −∞) ∝ Γ

(
iβω

2π

)
e−iωx

′ + Γ
(
− iβω2π

)
eiωx

′
. (B.8)

The ratio between the coefficients of the outgoing and incoming waves

SRin(β, ω) =
Γ
(
iβω
2π

)
Γ
(
− iβω

2π

) (B.9)

is a pure phase, or rank-1 unitary S-matrix.

B.2 Massive vector in any d ≥ 3

In this section we consider a vector field of mass m2 on the wedge (B.1). In the coordi-
nates (B.3), all Christoffel symbols except Γijk are trivial, and one immediately concludes
that the Proca equation of motion ∇µFµν = m2Aν is equivalent to[
−∂2

t + ∂2
x + e

4π
β
x

(
∇̃2

r2
H

−m2
)]

A± = 0 =
[
−∂2

t + ∂2
x + e

4π
β
x

(
∇̃2 − (d− 2)

r2
H

−m2
)]

Ai ,

(B.10)
together with the transversality condition

2 (∂−A+ + ∂+A−) + 1
r2
H

∇̃iAi = 0 , (B.11)

Here we have abbreviated ∂± ≡ ∂y± . Note A± are related to At, Ax through

A± = e
± 2π
β
t− 2π

β
x (∓At +Ax) . (B.12)

Since all equations in (B.10) take the same form as the scalar case (B.4), we can
immediately employ the results from the last section, except that there can be different
types of solutions according to SO(d) irreducible representations.

Vector type. First we have the vector-type solutions of the form

A± = 0 , Ai = e−iωtψ
(V )
l (x)Yl,i(Ω) , (B.13)

where the angular dependence of Ai are taken to be vector spherical harmonics Yl,i(Ω). For
this type of solutions, the transversality condition (B.11) is trivially satisfied. The only
non-trivial equation in (B.10) with ansatz (B.13) is[

−∂2
x′ +

(4π
β

)2
e

4π
β
x′
]
ψ

(V )
l (x′) = ω2ψ

(V )
l (x′) , (B.14)
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Here we have defined

x′ = x+ β

2π log βM1,l
4π , M1,l ≡

√
(l + 1)(l + d− 3)

r2
H

+m2 . (B.15)

The normalizable solution to (B.14) is

ψ
(V )
ωl (x′) = ψScalar

ωl (x′) = K iβω
2π

(
2 e

2πx′
β

)
, (B.16)

and the S-matrix is simply

S(Rin,V )(β, ω) = SRin(β, ω) =
Γ
(
iβω
2π

)
Γ
(
− iβω

2π

) . (B.17)

Scalar type. Next we have the scalar-type solutions, with ansatz

A± = e
± 2π
β
t−iωt

ψS±,l(x)Yl(Ω) , Ai = e−iωtψSi,l(x) ∇̃iYl(Ω)
l(l + d− 2) . (B.18)

Here we have inserted a factor e±
2π
β
t to compensate for the corresponding factors in (B.12)

to get a normal mode with time dependence e−iωt. We will focus on solving for ψS±,l, with
which the angular solution ψSi,l is completely determined through (B.11). For each l ≥ 1,
there are two linearly independent solutions, which can be taken to be

Scalar ±-type: A± 6= 0 , A∓ = 0 , Ai 6= 0 . (B.19)

For the ±-solution with A∓ = 0, plugging the ansatz (B.18) into (B.10) leads to[
−∂2

x′ +
(4π
β

)2
e

4π
β
x′
]
ψS,±±,l (x′) =

(
ω ± i2π

β

)2
ψS,±±,l (x′)[

−∂2
x′ +

(4π
β

)2
e

4π
β
x′
]
ψS,±i,l (x′) = ω2ψS,±i,l (x′) . (B.20)

Here we have defined

x′ = x+ β

2π log βM0,l
4π , M0,l ≡

√
l(l + d− 2)

r2
H

+m2 . (B.21)

The normalizable solutions are

ψS,±±,l (x′) = ψScalar
ω±i 2π

β
,l
(x′) = K iβω

2π ∓1

(
2 e

2πx′
β

)
, (l ≥ 1) . (B.22)

Using
d

dz
Kα(z) = ±α

z
Kα(z)−Kα±1(z) , (B.23)

one can check that the angular solutions ψSi,l obtained through (B.11) automatically solve
the angular equation (B.20). Since the ±-modes (B.22) are same as (B.6) but with ω →
ω ± i2π

β , we can immediately write down the S-matrices

SRin,±
l≥1 (β, ω) = SRin

(
β, ω ± i2π

β

)
, (B.24)
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with SRin(β, ω) defined in (B.9). Since the equations (B.20) for ψS,±±,l are related through
ω → −ω, they can be thought of as a time-reversal dual pair of scattering problems, and
their S-matrices (B.24) satisfy the unitary condition

SRin,+(β,−ω)SRin,−(β, ω) = 1 . (B.25)

When l = 0, the ansatz for Ai in (B.18) breaks down, and we have instead

A± = e
± 2π
β
t−iωt

ψS±,l=0 , Ai = 0 , (B.26)

where both A± must be non-zero. We still have the first line of (B.20), with normalizable
solutions

ψS±,l=0(x′) = ψScalar
ω±i 2π

β
,l=0(x′) = K iβω

2π ∓1

(
2 e

2πx′
β

)
, (l = 0) . (B.27)

The transverality condition (B.12) fixes the relative coefficients of these two solutions, so
that the full solution is

(A+, A−)l=0 = e−iωt
(
e

2π
β
t
ψS+,l=0 , −e

− 2π
β
t
ψS−,l=0

)
. (B.28)

Near horizon, this behaves as

(A+, A−)l=0 (x′ → −∞) ∝ Γ
(
iβω

2π + 1
)

(0, 1) e
(
−iω− 2π

β

)
(t+x′)

+ Γ
(
− iβω2π + 1

)
(−1, 0) e

(
−iω+ 2π

β

)
(t−x′)

.

(B.29)

Here the second and first terms correspond to waves incoming from and outgoing to the
horizon respectively, the ratio of their coefficients again defines a unitary S-matrix:

SRin
l=0(β, ω) =

Γ
(
iβω
2π + 1

)
Γ
(
− iβω

2π + 1
) . (B.30)

B.3 Massive higher spin in d = 2

When d = 2, the transverse sphere becomes a circle S1 with radius rH , and the metric is
simply

ds2 = e
4π
β
x
(
−dt2 + dx2

)
+ r2

Hdϑ
2 , −∞ < x <∞ , ϑ ' ϑ+ 2π . (B.31)

B.3.1 Massive vector

Now let us study a massive vector on (B.31). A special feature for the case of d = 2
is that (B.10) and (B.11) can be equivalently described by either (∓) set of first-order
equations

εαµν∇µAν = ∓mAα . (B.32)

Here we take the following convention for the Levi-Civita symbol

εµνλ ≡ ε̃µνλ√
−g

, ε̃−+ϑ = −ε̃−+ϑ = 1 . (B.33)
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It is straightforward to check that solutions to (B.32) satisfy (B.10) and (B.11) at d = 2. In
a parity-invariant theory, both sets of solutions should be included. To obtain the explicit
solutions, note that equations (B.10) and (B.11) remain valid. The only difference is that
the isometry group for S1 is U(1), and we do not have to separate the solutions into vector
or scalar type. The full set of normal mode solutions is obtained using the ansatz

A± = C± e
± 2π
β
t−iωt

ψ±,l(x) eilϑ , Aϑ = Cϑ e
−iωtψϑ,l(x) eilϑ , l = 0,±1,±2, . . . .

(B.34)
Here we have inserted overall constants C± and Cϑ to be determined below. Notice that
the U(1) angular momentum l takes values over all integers. For each l ∈ Z, we obtain

ψ±,l(x′) = ψScalar
ω±i 2π

β
,l
(x′) , ψϑ,l(x′) = ψScalar

ω,l (x′) l ∈ Z , (B.35)

where

x′ = x+ β

2π log βM0,l
4π , M0,l ≡

√
l2

r2
H

+m2 . (B.36)

Polarization vectors. In the first-order formulation (B.32), all components (B.35) are
coupled. To find their relative coefficients, we note that the ϑ-component of (B.32) reads
explicitly

2rH (∂+A− − ∂−A+) = ±mAϑ . (B.37)

On the other hand, the transversality condition (B.11) at d = 2 implies for the ansatz (B.34)

ilAϑ = −2r2
H (∂+A− + ∂−A+) . (B.38)

These then lead to the relation

(il ±mrH) ∂+A− = (il ∓mrH) ∂−A+ , (B.39)

where the upper (lower) signs correspond to the − (+)-branch (B.32). Plugging in (B.34)
and (B.35), one finds

C
(∓)
l,− (il ±mrH) = C

(∓)
l,+ (il ∓mrH) . (B.40)

To summarize, we have determined the two sets of normal modes

(A+, A−)(∓)
ωl = e−iωt+ilϑ

(
C

(∓)
l,+ e

2π
β
t
ψ±,l(x′), C(∓)

l,− e
− 2π
β
t
ψ−,l(x′)

)
(B.41)

satisfying the ∓ equations (B.32) respectively, with Aϑ uniquely determined by (B.37)
or (B.38).

S-matrices. Comparing (B.35) and (B.8), we see that near horizon the incoming and
outgoing waves are dominated by the components A+ and A− respectively. Explicitly,

(A+, A−)(∓)
ωl (x′ → −∞) ∝ B

(∓),out
ωl (0, 1) e−i

(
ω−i 2π

β

)
(t+x′) +B

(∓),in
ωl (1, 0) e−i

(
ω+i 2π

β

)
(t−x′)

.

(B.42)
We have suppressed the eilϑ dependence. The outgoing and incoming coefficients are

B
(∓),out
ωl = (il ∓mrH) Γ

(
iβω

2π + 1
)
, B

(∓),in
ωl = (il ±mrH) Γ

(
− iβω2π + 1

)
, (B.43)
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whose ratio

SRin,(±,s=1)
l (β, ω) = B

(∓),out
ωl

B
(∓),in
ωl

= il ∓mrH
il ±mrH

Γ
(
iβω
2π + 1

)
Γ
(
− iβω

2π + 1
) ≡ il ∓mrH

il ±mrH
SRin,(s=1)(ω)

(B.44)
defines a unitary S-matrix.

B.3.2 Massive higher spin

We now study a general spin-s symmetric tensor field φµ1µ2···µs with mass m2, described
by either (∓) set of first-order equations

ε αβ
µ1 ∇αφβµ2···µs = ∓mφµ1µ2···µs . (B.45)

One can show that the solutions to these equations solve the Fierz-Pauli system(
−∇2 +m2

)
φµ1µ2···µs = 0 , ∇λφλµ1µ2···µs−1 = 0 , φλλµ1µ2···µs−2 = 0 . (B.46)

In the coordinates (B.31), all Christoffel symbols are trivial, and one immediately concludes
that the components with respect to (B.3) all satisfy the scalar equation[

−∂2
t + ∂2

x + e
4π
β
x

(
∇̃2

r2
H

−m2
)]

φA1A2···As = 0 , (B.47)

where AI ∈ (±, ϑ). Because of this, the normal mode functions are all given by the
scalar mode function (B.6) (with x′ defined in (B.36)), with appropriate (complex) shifts
in ω dictated by the relation between the (+,−, ϑ)-components and the original (t, x, ϑ)-
components. For example, for a spin-2 field hµν ,

htt = e
− 4π
β

(t−x)
h++ − 2 e

4π
β
x
h+− + e

4π
β

(t+x)
h−−

htx = −2e−
4π
β

(t−x)
h++ + 2 e

4π
β

(t+x)
h−−

hxx = e
− 4π
β

(t−x)
h++ + 2 e

4π
β
x
h+− + e

4π
β

(t+x)
h−−

htϑ = −e−
2π
β

(t−x)
h+ϑ + e

2π
β

(t+x)
h−ϑ

hxϑ = e
− 2π
β

(t−x)
h+ϑ + e

2π
β

(t+x)
h−ϑ , (B.48)

which imply that the normal modes are solved with the ansatz

h±± = e
± 4π
β
t−iωt+ilϑ

ψ±±,l(x), h+− = e−iωt+ilϑψ+−,l(x) ,

h±ϑ = e
± 2π
β
t−iωt+ilϑ

ψ±ϑ,l(x), hϑϑ = e−iωt+ilϑψϑϑ,l(x) , (B.49)

where l ∈ Z. We can immediately write down the explicit solutions:

ψ±±,ωl(x) = ψScalar
ω±2i 2π

β
,l
(x′) = K iβω

2π ∓2

(
2 e

2πx′
β

)
,

ψ±ϑ,ωl(x) = ψScalar
ω±i 2π

β
,l
(x′) = K iβω

2π ∓1

(
2 e

2πx′
β

)
,

ψ+−,ωl(x) = ψϑϑ,l(x) = ψScalar
ωl (x′) = K iβω

2π

(
2 e

2πx′
β

)
. (B.50)
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It is straightforward to generalize to arbitrary spin s ≥ 2. We use the notation φ(a)(b)(c) to
denote the component of a spin-s field with a +-, b −-, and c = s− a− b ϑ-indices, i.e.

φ(a)(b)(c) ≡ φ+ · · ·+︸ ︷︷ ︸
a

− · · ·−︸ ︷︷ ︸
b

ϑ · · ·ϑ︸ ︷︷ ︸
c

. (B.51)

Normal modes are solved with the ansatz

φ(a)(b)(c) = C(a)(b)(c)e
(a−b) 2π

β
t−iωt

ψ(a)(b)(c),ωl(x) eilϑ , l ∈ Z , (B.52)

where we have inserted the relative coefficients C(a)(b)(c) to be determined. The solutions
are then

ψ(a)(b)(c),ωl(x) = ψScalar
ω+(a−b)i 2π

β
,l
(x′) = K iβω

2π +(b−a)

(
2 e

2πx′
β

)
. (B.53)

Polarization tensors. In the first-order formulation (B.45), all components (B.52) are
coupled. To find their relative coefficients, we note that the ϑ-component of (B.45) reads
explicitly

2rH
(
∂+φ(a−1)(b+1)(c) − ∂−φ(a)(b)(c)

)
= ±mφ(a−1)(b)(c+1) . (B.54)

On the other hand, the transversality condition (B.11) at d = 2 implies for the ansatz (B.34)

ilφ(a−1)(b)(c+1) = −2r2
H

(
∂+φ(a−1)(b+1)(c) + ∂−φ(a)(b)(c)

)
. (B.55)

These then lead to the relation

(il ±mrH) ∂+φ(a−1)(b+1)(c) = (il ∓mrH) ∂−φ(a)(b)(c) , (B.56)

where the upper (lower) signs correspond to the − (+)-branch (B.45). Plugging in (B.52)
and (B.53), one then finds

C
(∓)
l,(a−1)(b+1)(c) (il ±mrH) = C

(∓)
l,(a)(b)(c) (il ∓mrH) . (B.57)

S-matrices. Analogous to the vector case, near horizon the incoming and outgoing waves
are dominated by the components φ(s)(0)(0) and φ(0)(s)(0) respectively, and we have(

φ(s)(0)(0), φ(0)(s)(0)
)(∓)

ωl
(x→ −∞)

∝B(∓),out
ωl (0, 1) e−i

(
ω−is 2π

β

)
(t+x′) +B

(∓),in
ωl (1, 0) e−i

(
ω+is 2π

β

)
(t−x′)

, (B.58)

where we have suppressed the eilϑ dependence, and the outgoing and incoming coeffi-
cients are

B
(∓),out
ωl = (il ∓mrH)s Γ

(
iβω

2π + s

)
, B

(∓),in
ωl = (il ±mrH)s Γ

(
− iβω2π + s

)
, (B.59)

whose ratio

SRin,(±,s)
l (β, ω) = B

(∓),out
ωl

B
(∓),in
ωl

=
(
il ∓mrH
il ±mrH

)s Γ
(
iβω
2π + s

)
Γ
(
− iβω

2π + s
) =

(
il ∓mrH
il ±mrH

)s
SRin,(s)(β, ω)

(B.60)
defines a unitary S-matrix. Notice that the overall factor is independent of ω and drops
out in relation (2.21).
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C Massive higher spin on global AdS3

Even though global AdS3 (setting `AdS = 1)

ds2 = −
(
1 + r2

)
dt2 + dr2

1 + r2 + r2dϑ2 (C.1)

does not have a horizon and the considerations in the main text do not apply, we include
this example due to its relation with the BTZ case. Also, it is instructive to highlight the
difference between the two computations.

Thermal canonical partition function. The normal mode spectrum for a field with
spin s ≥ 1 and generic mass m2 = (∆− s)(∆ + s− 2) on global AdS3 is well-known:

ωnl = 2n+ |l|+ ∆ (C.2)

where n = 0, 1, 2, . . . and l = 0,±1,±2, . . . labels the U(1) angular momentum quantum
number. In this case the density of state is simply a sum of delta functions over the discrete
spectrum (C.2). The thermal canonical partition function is

logZAdS3
bulk ≡ log Tr e−βĤ = −2

∑
n,l

log
(
1− e−ωnlβ

)
. (C.3)

Here we have dropped an infinite contribution from zero point energies that renormalizes
the cosmological constant. Expanding the logarithm and performing the sums over n, l, we
have

logZAdS3
bulk =

∞∑
k=1

2
k

e−∆kβ

(1− e−kβ)2 =
∞∑
k=1

χAdS3
[∆,s] (kβ)

k
, χAdS3

[∆,s] (t) = 2 e−∆t

(1− e−t)2 . (C.4)

In the last equality we have expressed the result in terms of the SO(2, 2) group character
χAdS3

[∆,s] (t).

Path integral on thermal AdS (T AdS). The same result can be obtained by com-
puting the Euclidean path integral on TAdS3:

logZTAdS3
PI =

∫ ∞
0

dτ

2τ e
−ε2/4τ Tr e−(−∇2

s+M2
s )τ (C.5)

where e−ε2/4τ is a UV regulator. Here the trace Tr is over the spectrum of the Laplace
operator −∇2

s +M2
s on TAdS3. This has been computed by the image method in [43]:6

Tr e−(−∇2
s+M2

s )τ =
∞∑
k=1

β
√

4πτ sinh2 kβ
2
e−

kβ2
4τ e−(∆−1)2τ . (C.6)

Performing the τ -integral in (C.5) and putting ε = 0, we recover the canonical result (C.4).
6The heat kernel for s ≤ 2 on TAdS3 was first computed in [44].
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D Massive higher spin on BTZ: normal modes

In this appendix we find explicitly the normal mode solutions for massive higher spin (HS)
fields on a static BTZ black hole (setting `AdS = 1):

ds2 = r2
H

sinh2(rHx)

(
−dt2 + dx2 + cosh2(rHx)dϑ2

)
, −∞ < x < 0 . (D.1)

Another coordinate system that turns out to be useful is given by

y± = e∓rH t sech(rHx) , (D.2)

in terms of which the metric becomes

ds2 = 1
4(1− y+y−)2

(
y2
−dy

2
+ + 2(2− y+y−)dy+dy− + y2

+dy
2
−

)
+ r2

H

1− y+y−
dϑ2 . (D.3)

When expressing quantities in these coordinates, we use the shorthand notations ± to
denote the y±-components. The non-zero Christoffel symbols associated with the met-
ric (D.3) are

Γ±±± = y∓
1− y+y−

, Γ±±∓ = 1
2

y±
1− y+y−

, Γ±ϑϑ = −r2
Hy± , Γϑ±ϑ = 1

2
y∓

1− y+y−
,

(D.4)
which satisfy

Γ±±± = 2Γϑ±ϑ = 2Γ∓±∓ . (D.5)

D.1 Massive scalars

For a scalar with mass m2 = ∆(∆− 2), rescaling

φ(t, x, ϑ) =
√
− tanh(rHx)ψ(t, x, ϑ) , (D.6)

the Klein-Gordon equation
(
−∇2 +m2)φ = 0 becomes[

−∂2
t + ∂2

x + r2
H

sinh2(2rHx)
− (∆− 1)2r2

H

sinh2(rHx)
+ ∂2

ϑ

cosh2(rHx)

]
ψ(x) = 0 . (D.7)

Solving with the ansatz
ψ(t, x, ϑ) = e−iωt+ilϑψωl(x) , (D.8)

the normalizable solution satisfying the standard boundary condition is

ψScalar
ωl (x) = (cosh (rHx))

il
rH (− sinh (rHx))∆√
− tanh(rHx) 2F1

(
aωl, a−ωl; ∆;− sinh2 (rHx)

)
, (D.9)

with
aωl = ∆

2 + i(−ω + l)
2rH

. (D.10)
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D.2 Massive vector

A massive vector on static BTZ is described by the first-order equations

εαµν∇µAν = ∓mAα . (D.11)

Here we take the following convention for the Levi-Civita symbol

εµνλ ≡ ε̃µνλ√
−g

, ε̃−+ϑ = −ε̃−+ϑ = 1 . (D.12)

The solutions to each of the ±-equations (D.11) furnish an irreducible representation of
SO(2, 2). In a parity-invariant theory, both sets of solutions should be included. It is
straightforward to show that the solutions to each equation satisfy the Fierz-Pauli system(

−∇2 + ∆(∆− 2)− 1
)
Aµ = 0 , ∇λAλ = 0 , (D.13)

where ∆ = 1 + m. We will focus on the components A±, which uniquely determine Aϑ
through the ϑ-component of (D.11). Working out the ±-components of (D.11) and using
the transversality condition (D.13), one finds that A± satisfy[

−∇2
S + (∆− 1)2 + tanh2(rHx)− 2

rH
tanh(rHx)∂x

]
A± = 0 , (D.14)

where ∇2
S is the scalar Laplacian:

∇2
S≡

1√
−g

∂µ
(√
−g ∂µ

)
= sinh2(rHx)

r2
H

(−∂2
t +∂2

x)− tanh(rHx)
rH

∂x+ tanh2(rHx)
r2
H

∂2
ϑ. (D.15)

If we further define
A± = Ā±√

− tanh(rHx)
, (D.16)

we have [
−∂2

t + ∂2
x + r2

H

sinh2(2rHx)
− (∆− 1)2r2

H

sinh2(rHx)
+ ∂2

ϑ

cosh2(rHx)

]
Ā± = 0 . (D.17)

These take exactly the same form as the scalar equation (D.7). Note that in the near-
horizon limit x→ −∞, (D.17) reduces to the Rindler-like form (B.4). Since A± are related
to At, Ax through

A± = e±rH t

tanh(rHx) (± sinh(rHx)At + cosh(rHx)Ax) , (D.18)

normal modes correspond to the ansatz

Ā± = Cωl,±e
±rH t−iωt+ilϑψωl,±(x) , Aϑ = e−iωt+ilϑψωl,ϑ(x) . (D.19)

Here we have inserted the relative constants Cωl,± to be determined below. Since (D.17)
has exactly the same form as the scalar case (D.7), ψωl,±(x) are simply given by shifting
the scalar solution (D.9) by ω → ω ± irH , that is

ψωl,±(x) = ψScalar
ω±irH ,l(x) , (D.20)

where ψScalar
ωl (x) is defined in (D.9).
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Polarization vectors. In the first-order formulation (D.11), the solutions (D.19) are not
independent. We first consider the (−)-branch in (D.11), which explicitly reads

mA± =± 1
2rH

[
y2
± (∂∓Aϑ − ∂ϑA∓) + (2− y+y−) (∂ϑA± − ∂±Aϑ)

]
,

mAϑ = 2rH(1− y+y−) (∂+A− − ∂−A+) . (D.21)

Multiplying the first equation by y± and taking the sum, we have

+mrH (y+A+ + y−A−) = 1
rH
∂tAϑ + ∂ϑ (y+A+ − y−A−) . (D.22)

For the normal mode ansatz (D.19), we can replace

∂t → −iω , ∂ϑ → il . (D.23)

Using the ϑ equation (D.21) in (D.22), we then arrive at

2iω
m

(1−y+y−)∂−A+−(mrH−il)y+A+ = 2iω
m

(1−y+y−)∂+A−+(mrH +il)y−A− . (D.24)

Plugging in (D.19) and (D.20), this implies the relation

C
(−)
ωl,+(a−ω+irH ,−l − 1) = −C(−)

ωl,−(aω+irH ,+l − 1) (D.25)

with aωl defined in (D.10). Here the superscript (−) means that this is associated with the
(−)-branch (D.11). Similarly, for the (+)-branch we have

C
(+)
ωl,+(a−ω+irH ,+l − 1) = −C(+)

ωl,−(aω+irH ,−l − 1) . (D.26)

To summarize, we have determined the two sets of normal modes

(A+, A−)(∓)
ωl = e−iωt+ilϑ

(
C

(∓)
ωl,+e

rH tψScalar
ω+irH ,l(x), C(∓)

ωl,−e
−rH tψScalar

ω−irH ,l(x)
)

(D.27)

satisfying the ± equations (D.11) respectively.

D.3 Massive higher spin

Having worked out the warm-up cases of massive scalar and vector, we now study a general
spin-s symmetric tensor field φµ1µ2···µs with mass m2 = (∆ + s − 2)(∆ − s), described by
either (∓) set of first-order equations

ε αβ
µ1 ∇αφβµ2···µs = ∓Mφµ1µ2···µs , M ≡ ∆− 1 . (D.28)

The solutions to each of the first-order equations (D.28) satisfy the Fierz-Pauli system [19](
−∇2 + ∆(∆− 2)− s

)
φµ1µ2···µs = 0 , ∇λφλµ1µ2···µs−1 = 0 , φλλµ1µ2···µs−2 = 0 .

(D.29)
Solutions to both sets of equations (D.28) should be included for a parity-invariant theory.
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To proceed, we first note that the action of the Laplacian takes the general form

∇2φµ1µ2···µs =∇2
S φµ1µ2···µs −

1
√
g
∂α
(√

g gαλΓβλ(µ1

)
φµ2···µs)β − 2Γαλ(µ1

∇λφµ2···µs)α

− gαλΓραβΓβλ(µ1
φµ2···µs)ρ −

∑
i 6=j

gαλΓβαµiΓ
ρ
λµj

φµ1···µ̂iµ̂j ···µsβρ . (D.30)

In this expression, the symmetrization convention is simply to sum over permutations
without extra factors. The summation in the last line has s(s− 1) terms. ∇2

S is the scalar
Laplacian (D.15).

From now on, we use the notation φ(a)(b)(c) to denote the component of a spin-s sym-
metric field with a (+)-, b (−)-, and c = s − a − b (ϑ)-indices, analogous to (B.51). For
the most part, we will focus on the components with only ±-indices (i.e. those with c = 0).
Solving for these will then uniquely determine the other components through (D.28). For
these components, after a lengthy calculation we find explicitly (suppressing the (c = 0)
subscript)

∇2φ(a)(b) = ∇2
S φ(a)(b) − 2s(1− y+y−) (y+∂+ + y−∂−)φ(a)(b) − 3s φ(a)(b) + s2y+y−φ(a)(b) .

(D.31)
In deriving this, we have simplified in (D.30) the second term using

1
√
g
∂α
(√

g gαλΓβλµ
)

=


3 , β = µ = ±
2 , β = µ = ϑ

0 , otherwise
, (D.32)

the third term using the transversality condition (D.29), the fourth term using

gαλΓραβΓβλµ =


2y+y− , ρ = µ = ±
y2
± , ρ = ± , µ = ∓

0 , otherwise
, (D.33)

and the last term using

gαλΓβα±Γρλ± =
(1

2Γ±±±
)2
gβρ + δβ±δ

ρ
±2y+y− +

(
δβ+δ

ρ
− + δβ−δ

ρ
+

) y2
∓
2 ,

gαλΓβα±Γρλ∓ =1
4Γ+

++Γ−−−gβρ + δβ+δ
ρ
+
y2

+
2 + δβ−δ

ρ
−
y2
−
2 + δβ±δ

ρ
∓2y+y− , (D.34)

together with the tracelessness condition (D.29).
In terms of the variables t, x, we can write (D.31) as

∇2φ(a)(b) =
(

sinh2(rHx)
r2
H

(−∂2
t + ∂2

x)− tanh(rHx)
rH

∂x + tanh2(rHx)
r2
H

∂2
ϑ

)
φ(a)(b)

+ 2stanh (rHx)
rH

∂xφ(a)(b) − 3s φ(a)(b) + s2 sech2 (rHx)φ(a)(b) . (D.35)
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Finally, rescaling
φ(a)(b) = (− tanh(rHx))

1
2−sφ̄(a)(b) , (D.36)

we find that the second-order equations (D.29) for these components are reduced to[
−∂2

t + ∂2
x + r2

H

sinh2(2rHx)
− (∆− 1)2r2

H

sinh2(rHx)
+ ∂2

ϑ

cosh2(rHx)

]
φ̄(a)(b) = 0 . (D.37)

Therefore, we have a set of decoupled equations that take the scalar form (D.7). Dictated
by the relations between ±- and t, x-components, normal modes correspond to the ansatz

φ̄(a)(b)(c) = Cωl,(a)(b)(c) e
(a−b)rH t−iωt+ilϑψωl,(a)(b)(c)(x) . (D.38)

This is true even for c 6= 0. Here Cωl,(a)(b)(c) are polarization constants to be determined.
Since (D.37) has exactly the same form as the scalar case (D.7), ψωl,(a)(b)(x) are simply

given by shifting the scalar solution (D.9) by ω → ω + i(a− b)rH , that is

ψωl,(a)(b)(x) = ψScalar
ω+i(a−b)rH ,l(x) , (D.39)

with ψScalar
ωl (x) defined in (D.9).

Polarization tensors. In the first-order formulation (D.28), the solutions (D.39) are not
independent. Analogous to the vector case, we multiply the (a)(b)(c)- and (a−1)(b+1)(c)-
components of (D.28) by y+ and y− respectively and take their sum, which leads to

±MrH
(
y+φ(a)(b)(c) + y−φ(a−1)(b+1)(c)

)
= 1
rH
∂tφ(a−1)(b)(c+1) + ∂ϑ

(
y+φ(a)(b)(c) − y−φ(a−1)(b+1)(c)

)
+ c r2

H

(
y2

+φ(a+1)(b)(c−1) − y2
−φ(a−1)(b+2)(c−1)

)
. (D.40)

Here the upper (lower) sign corresponds to the − (+)-branch (D.28). For the normal mode
ansatz (D.38), we can replace

∂t → −iω + (a− 1− b)rH , ∂ϑ → il . (D.41)

For c = 0, using also the (a−1)(b)(c+1)-component of (D.28), (D.40) leads to the relation

2i(ω + i(a− 1− b)rH)
M

(
(1− y+y−)∂−φ(a)(b) −

s− 1
2 y+φ(a)(b)

)
− (MrH ∓ il)y+φ(a)(b)

= 2i(ω + i(a− 1− b)rH)
M

(
(1− y+y−)∂+φ(a−1)(b+1) −

s− 1
2 y−φ(a−1)(b+1)

)
+ (MrH ± il)y−φ(a−1)(b+1) . (D.42)

Substituting (D.38) and (D.39), we arrive at the recursion relation

C
(∓)
ωl,(a)(b)(a−ω−i(a−b−2)rH ,∓l − 1) = −C(∓)

ωl,(a−1)(b+1)(aω+i(a−b)rH ,±l − 1) , (D.43)

with aωl defined in (D.10). Here (∓) means that this is associated with the ∓-branch (D.28).
Using (D.43), it is straightforward to derive the relation (4.15).
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