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1 Introduction

Feynman integrals play an important role in making precise perturbative predictions in
quantum field theory and statistical physics. Theoretical predictions for experiments at
the LHC [1, 2] as well as at future colliders such as the FCC [3] demand knowledge of
precise radiative corrections. Precise experimental measurements are to be interpreted
with sufficient precision of theoretical predictions [4]. The complexity of the evaluation
of such radiative corrections is related, in particular, to the difficulties in calculating
integrals corresponding to Feynman diagrams with many external legs depending on many
kinematic variables. Purely numerical evaluation of such integrals sometimes cannot provide
sufficiently high precision within the reasonable computer time. Problems of numerical
evaluation of the one-loop integrals were considered, for example, in refs. [5–8]. Numerical
instability in evaluating one-loop scalar integrals near exceptional momentum configurations
was addressed in refs. [9–11].

At present, there are many various methods of evaluating Feynman integrals. These
integrals depend on two significantly different sets of variables. They are functions of
continuous variables — scalar products of external momenta and masses, as well as functions
of discrete parameters — powers of propagators and space — time dimension parameter
d. External kinematic invariants and squared masses were used to derive differential
equations [12] (see also reviews [13, 14]). The space-time dimension d and powers of
propagators were used to derive difference equations [15–17] for these integrals. Then the
results for integrals are obtained by solving these equations. Practical application of the
method of differential equation and methods based on recurrence relations to evaluating high-
order, multi-leg Feynman diagrams clearly demonstrates the need for further improvements
and development of methods for solving differential and recursion relations.

On the other hand, it is possible to extend the applicability of these methods by
combining them with other approaches. For instance, these methods can be used in
combination with the approach proposed in refs. [18–20]. In ref. [18], a new type of relations
among Feynman integrals, namely functional relations was discovered. In ref. [19], a simple
method was proposed for deriving functional relations applicable to integrals corresponding
to Feynman diagrams with any number of loops and legs. Using these relations, a method
of functional reduction was formulated and applied to several massless integrals in ref. [20].
This method allows one to express the integral of interest in terms of integrals with fewer
variables. In general, the latter integrals will be easier to evaluate by the above mentioned
methods than the original integral.

Integrals appearing in the final results of functional reduction have two important
features. Firstly, they depend on the minimal number of variables (MNV) and, secondly,
these variables are the ratios of Gram determinants.

As for our representation of integrals in terms of functions that depend explicitly on the
ratios of the Gram determinants, we would like to mention refs. [6, 11] where the importance
of representing the kinematic dependence of integrals in terms of the ratios of the Gram
determinants was demonstrated. As the authors have shown, such a representation turns
out to be useful for the stability of numerical calculation of integrals.
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The primary purpose of the paper is to apply the method of functional reduction to
scalar one-loop integrals that depend on arbitrary kinematic variables and masses.

The article is organized as follows. In section 2, we briefly describe the method
for deriving functional relations given in ref. [19]. In section 3, we describe the method
of functional reduction proposed in ref. [20]. In section 4, the functional reduction of
the 2-point integral is considered. In section 5, a two-step functional reduction of the
integral corresponding to a 3-point Feynman diagram is described. The Feynman parameter
representation and dimensional recurrence relations for the integrals arising at the final
stage of the functional reduction are given. We present the analytic result derived by using
the dimensional recurrence relation and the result in terms of the double hypergeometric
series obtained by expanding the Feynman parameter integral.

In section 6, we propose the three-step functional reduction procedure for the 4-point
integral. Solving the dimensional recurrence relation, we obtained an analytic result for the
integral depending on the MNV. A representation of this integral in terms of the triple
hypergeometric series is also given.

In section 7, we describe the derivation of the functional relations of a four-step reduction
procedure for a 5-point integral. We also give here the Feynman parameter representation
of the 5-point integral depending on the MNV and the dimensional recurrence relation for
this integral. Using the parametric representation of the integral, we express it as a fourfold
hypergeometric series.

In section 8, we describe 5 steps of the functional reduction of a 6-point integral. The
Feynman parameter representation and the dimensional recurrence relation for the integral
with the MNV are given. Using the parametric representation, we express the integral as a
multiple hypergeometric series.

In section 9, we describe a modification of the functional reduction method for inte-
grals depending on special values of kinematic variables and present analytic results for
these integrals.

In section 10, a general method is proposed for obtaining the final formula of the func-
tional reduction for an arbitrary one-loop n-point integral. The parametric representation is
also given for the n-point integrals depending on the MNV. Using this parametric represen-
tation, we obtain a representation of the integral in terms of multiple hypergeometric series.

We offer some concluding remarks in section 11.
Finally, in the appendix, we give the definition of kinematic determinants, provide

useful formulae for hypergeometric functions and describe a method of deriving Feynman
parameter representations of the integrals depending on the MNV.

2 Algebraic relations among propagators

We consider the one-loop scalar integral in the general dimension d corresponding to the
Feynman diagram with n external lines and n internal propagators with arbitrary masses
mi and external momenta

I(d)
n ({m2

j}; {sik}) = 1
iπd/2

∫
ddk1

D1. . .Dn
(2.1)

– 2 –



J
H
E
P
0
6
(
2
0
2
2
)
1
5
5

k1 − p2

k1 − p3
k1 − p1

k1 − pn

k1 − pn−1

Figure 1. The generic n-point one-loop graph.

where the inverse massive propagators have the form

Dj = (k1 − pj)2 −m2
j + iη. (2.2)

In what follows, we omit the iη term assuming that all masses have such a correction. The
propagators and momenta are labeled as in figure 1. As was shown in ref. [19], functional
relations for these integrals can be derived from the following algebraic relations among the
products of propagators:

n∏
r=1

1
Dr

= 1
D0

n∑
r=1

xr

n∏
j=1
j 6=r

1
Dj

. (2.3)

We assume that k1 is an arbitrary momentum and pj correspond to external momenta. The
proceeding equation is satisfied if p0, m2

0 and xj , (j = 1, . . . n) are chosen to satisfy the
system of equations. In order to obtain such a system, we proceed as follows. We multiply
both sides of eq. (2.3) by the product ∏n

j=0Dj and get

D0 =
n∑
r=1

xrDr, (2.4)

or
k2

1 − 2k1p0 + p2
0 −m2

0 =
n∑
r=1

xr(k2
1 − 2k1pr + p2

r −m2
r). (2.5)

It is assumed that k1 will be an integration momentum and pj , xr do not depend on it.
Differentiating both sides of eq. (2.5) with respect to k1µ, one gets a linear equation in k1
from which two equations follow:

1 =
n∑
r=1

xr, (2.6)

p0 =
n∑
j=1

xjpj . (2.7)

Substituting eqs. (2.6), (2.7) into eq. (2.5) yields the following equation:

m2
0 −

n∑
k=1

xkm
2
k +

n∑
j=2

j−1∑
l=1

xjxlslj = 0, (2.8)
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where the kinematic invariants sij are defined as

sij = si,j = (pi − pj)2. (2.9)

Solving eq. (2.6) for one of the parameters xj and then substituting this solution into eq. (2.8)
gives a quadratic equation for the remaining parameters xi. This quadratic equation can
be solved with respect to one of the parameters xj . Thus, the solution of the system of
equations (2.6), (2.8) depends on (n− 2) of the remaining arbitrary parameters xi and one
arbitrary mass m0.

Integrating algebraic relation (2.3) over momentum k1 yields a functional equation for
a general one-loop n-point integral

I(d)
n ({m2

r}; {sik}) =
n∑
j=1

xj I
(d)
n ({m2

r}; {sik})
∣∣∣
m2

j→m
2
0,sjk→s0k

. (2.10)

This equation will be our starting equation for deriving relations for the functional reduction
of integrals I(d)

n ({m2
r}; {sik}).

Notice that linear relations among inverse propagators were also derived in ref. [21]
and used for finding relationships among one-loop Feynman integrals. These relationships
allow one to reduce n-point integrals to a combination of (n− 1)-point integrals. Relations
among propagators were obtained as a result of vanishing of the Gram determinants for
the set of n vectors considered in d-dimensional space with n > d and d being integer. In
our approach, we assume that all vectors are d dimensional with d being noninteger. Our
original algorithm [18] for finding functional relations among n- point integrals was based on
vanishing the Gram determinants made of a set of momenta for the (n+ 1) point integrals.
However, for obtaining functional relations, we find it more convenient to introduce an
additional propagator depending on an auxiliary external vector and an arbitrary mass [19].
Arbitrariness of these parameters is easier to use for reducing the number of variables in
integrals, as compared to our original algorithm [18].

In the next sections, we will consider in detail the derivation of functional relations for
reducing integrals I(d)

2 ,. . . ,I(d)
6 .

3 Method of functional reduction

By choosing arbitrary parameters xj , m2
0, we can try to express the integral of interest

in terms of integrals with fewer variables. If we manage to find these parameters, we will
actually solve the functional equation for the integral.

The systematic method for solving functional equations for Feynman integrals was
presented in ref. [20]. In a sense, this is a generalization of the method that is used to solve
the usual Sincov functional equation [22–24]

f(x, y) = f(x, z)− f(y, z). (3.1)

By setting z = 0 in this equation, we get a general solution

f(x, y) = g(x)− g(y), (3.2)

– 4 –



J
H
E
P
0
6
(
2
0
2
2
)
1
5
5

where
g(x) = f(x, 0), (3.3)

i.e. the function f(x, y) is a combination of its ‘boundary values’, which may be completely
arbitrary.

As for solving functional equations for Feynman integrals, the situation is much more
complicated here — too many variables are involved, too many functions. For this reason,
we used a computer to systematically search for possible relationships among the arguments
of integrals leading to a decrease in the number of variables of these integrals. To reduce
the number of variables, we impose the following simple conditions on the new variables
sj0, m2

0

s0j = 0, s0j − s0i = 0, s0j ± sik = 0, s0j ±m2
0 = 0, m2

j ±m2
0 = 0,

m2
0 = 0, s0j ±m2

0 ±m2
k = 0, (i, j, k = 1. . .n). (3.4)

From the set of equations obtained by combining eqs. (3.4), (2.6) and (2.8), we have formed
various systems of equations with 2, 3, 4, etc. equations in each system. Solutions of these
systems of equations and analysis of these solutions were performed using the computer
algebra system MAPLE. The number of these systems depends on n and varies from 103

to 106. CPU execution time ranged from a few minutes to several hours. Many solutions
of these equations have been found. Some of them lead to a simultaneous decrease in the
number of variables in all integrals on the right-hand side of the functional equation (2.10).
In the following sections, we will describe in detail how this method works.

4 Functional reduction of the 2-point integral I
(d)
2

We start by considering a simple one-loop integral depending on arbitrary masses and
external momentum

I
(d)
2 (m2

1,m
2
2; s12) =

∫
ddk1
iπd/2

1
[(k1 − p1)2 −m2

1][(k1 − p2)2 −m2
2] . (4.1)

Setting n = 2 in eq. (2.3), leads to an algebraic relation between the products of two
propagators

1
D1D2

= x1
D0D2

+ x2
D1D0

. (4.2)

At n = 2, according to (2.6)–(2.8), the parameters xj , m2
0 and momentum p0 in this equation

must obey the following conditions:

x1 + x2 = 1, p0 = x1p1 + x2p2,

m2
0 − x1m

2
1 − x2m

2
2 + x1x2s12 = 0. (4.3)

Integrating algebraic relation (4.2) over momentum k1 yields

I
(d)
2 (m2

1,m
2
2; s12) = x1I

(d)
2 (m2

2,m
2
0; s20) + x2I

(d)
2 (m2

1,m
2
0; s10). (4.4)

– 5 –
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By solving the system of equations (4.3) for x1, x2, we get

x1 = m2
2 −m2

1 + s12
2s12

±

√
4s12(m2

0 − r12)
2s12

, x2 = 1− x1. (4.5)

Both kinematic invariants s10, s20 can be expressed in terms of x1 as

s10 = (p1 − p0)2 = (1− x1)2s12 = m2
1 +m2

0 − 2r12 ±
m2

2 −m2
1 − s12

2s12

√
4s12(m2

0 − r12),

s20 = (p2 − p0)2 = x2
1s12 = m2

2 +m2
0 − 2r12 ±

m2
2 −m2

1 + s12
2s12

√
4s12(m2

0 − r12), (4.6)

where
r12 = −λ12

g12
= 2m2

1m
2
2 + 2s12m

2
1 + 2s12m

2
2 −m4

1 −m4
2 − s2

12
4s12

. (4.7)

The definitions of the determinants λ12, g12 are given in the appendix.
Equation (4.4) strongly resembles Sincov’s equation (3.1). By setting the only remaining

arbitrary parameter m2
0 to some special value, one can try to reduce the number of variables

simultaneously for both integrals on the right-hand side of eq. (4.4). We will consider three
different cases.

Case 1. m2
0 = 0. The most obvious choice is to take m2

0 = 0. Substituting this value
into eq. (4.4), we obtain

I
(d)
2 (m2

1,m
2
2; s12) = x1I

(d)
2 (m2

2, 0; s20) + x2I
(d)
2 (m2

1, 0; s10), (4.8)

where
x1,2 = x1,2|m2

0=0 , s01 = s01|m2
0=0 , s02 = s02|m2

0=0 . (4.9)

The analytic expression for the integral I(d)
2 (m2, 0; p2) is well known (see refs. [25, 26])

I
(d)
2 (m2, 0; p2) = −Γ

(
1− d

2

)
md−4

2F1

[
1, 2− d

2 ;
d
2 ;

p2

m2

]
. (4.10)

Note that the ε = (4− d)/2 expansion of the hypergeometric function 2F1 in eq. (4.10) is
known to all orders in ε [27–29]. Using eq. (4.8), one can easily obtain ε expansion of the
original integral I(d)

2 (m2
1,m

2
2; s12).

Case 2. m2
0 = r12. The second special value of m2

0, which leads to a simultaneous
decrease in the number of variables in both integrals on the right-hand side of eq. (4.4), is
m2

0 = r12. In this case, the square roots in eqs. (4.5), (4.6) vanish, and we get

I
(d)
2 (m2

1,m
2
2; s12) = κ12I

(d)
2 (r12, r2; r2 − r12) + κ21I

(d)
2 (r12, r1; r1 − r12), (4.11)

where
κ12 = ∂r12

∂m2
1
, κ21 = ∂r12

∂m2
2
, ri = m2

i . (4.12)

– 6 –
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The analytic result for integrals I(d)
2 (r12, rj , rj − r12), (j = 1, 2) can be obtained either from

the Feynman parameter representation

I
(d)
2 (r12, rj ; rj − r12) = Γ

(
2− d

2

)∫ 1

0
h

d
2−2
2 dx1, (4.13)

where
h2 = r12 − (r12 − rj)x2

1, (4.14)
or by solving the dimensional recurrence relation

(d− 1)I(d+2)
2 (r12, rj ; rj − r12) = −2r12I

(d)
2 (r12, rj ; rj − r12)− I(d)

1 (rj). (4.15)

In the latter case, the result reads

I
(d)
2 (r12, rj ; rj − r12) = −π

3
2 r

d
2−2
12

2 sin πd
2 Γ

(
d−1

2

)√ r12
r12 − rj

+ π

2r12

r
d
2−1
j

sin πd
2 Γ

(
d
2

) 2F1

[
1, d−1

2 ;
d
2 ;

rj
r12

]
. (4.16)

It is valid for |rj/r12| < 1. In order to solve the dimensional recurrence relation (4.15), we
used the method described in ref. [30].

By changing the variable in the integral (4.13) and comparing the result with the
integral representation of the 2F1 function (A.20), we find

I
(d)
2 (r12, rj ; rj − r12) = r

d
2−2
12 Γ

(
2− d

2

)
2F1

[
2− d

2 ,
1
2 ;

3
2 ; 1− rj

r12

]
. (4.17)

This result may also be obtained by expanding the integrand in eq. (4.13) in powers of
zj = 1− rj/r12, assuming |zj | < 1, and then integrating with respect to x1 term by term.
Formula (4.16) can be obtained from eq. (4.17) by performing an analytic continuation of
the hypergeometric function 2F1.

Case 3. Combination of two equations. The third reduction of integrals can be
achieved in a slightly more complicated way. First, we set m2

0 = m2
2 in eq. (4.4) and obtain

I2(m2
1,m

2
2; s12) = m2

1 −m2
2

s12
I

(d)
2

(
m2

1,m
2
2; (m2

1 −m2
2)2

s12

)

+ s12 −m2
1 +m2

2
s12

I
(d)
2

(
m2

2,m
2
2; (s12 −m2

1 +m2
2)2

s12

)
. (4.18)

Then we interchange masses m2
1 ↔ m2

2 in this formula and add the result to (4.18). Due to
the invariance of I(d)

2 under this permutation, two terms in this sum having different signs
cancel out, so we get

I2(m2
1,m

2
2; s12) = s12 +m2

1 −m2
2

2s12
I

(d)
2

(
m2

1,m
2
1; (s12 +m2

1 −m2
2)2

s12

)

+ s12 −m2
1 +m2

2
2s12

I
(d)
2

(
m2

2,m
2
2; (s12 −m2

1 +m2
2)2

s12

)
. (4.19)
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The same result can be derived by setting m2
0 = m2

1 in eq. (4.4) and then adding the obtained
result to the result obtained by setting m2

0 = m2
2 in eq. (4.4). The analytic expression for

the integral with equal masses is well known (see refs. [25, 26]):

I
(d)
2 (m2,m2; p2) = md−4 Γ

(
2− d

2

)
2F1

[
1, 2− d

2 ;
3
2 ;

p2

4m2

]
. (4.20)

Thus, we have presented three different possibilities of reducing the integral I(d)
2 to a

sum of integrals with fewer variables. Different reduction formulae can be used in different
kinematic domains.

Using eqs. (4.8), (4.11) and (4.19), one can easily find relations among integrals that
appeared in the right-hand sides of these equations. For example, setting m2

1 = r12, m2
2 = rj ,

s12 = rj − r12 in eq. (4.19), we get

I2(r12, rj ; rj − r12) = I2(rj , rj ; 4(rj − r12)) (j = 1, 2). (4.21)

We conclude this section with a remark about the differences between integrals found
in the three reduction procedures. In eq. (4.8), the arguments of integrals on the right-hand
side depend on the square roots of the ratios of polynomials, while in eqs. (4.11), (4.19)
the arguments of integrals on the right-hand side are just the ratios of polynomials. In
all these cases, the integrals were expressed in terms of the hypergeometric function 2F1.
However, the ε = (4 − d)/2 expansion of the functions in eq. (4.8) is technically slightly
simpler than the expansion of the 2F1 functions in eqs. (4.11), (4.19). The reason is that in
the first case, the parameters of the 2F1 functions are integers plus terms proportional to
the ε while in the 2F1 functions from eqs. (4.11), (4.19) some parameters are half integers.
The ε expansion of the 2F1 functions with half integer parameters contains logarithms and
polylogarithms depending on the square roots of the argument of the 2F1 function [27–29],
while expansion of the 2F1 functions with integer parameters do not have such square roots.

Our preliminary study shows that a similar situation takes place with the integrals
I

(d)
3 and I

(d)
4 . Analytical results for these integrals involve the function 2F1 as well as

more complicated hypergeometric functions. We expect that finding relationships among
those functions with integer and half integer parameters will be helpful in performing the ε
expansion of the integrals I(d)

3 and I(d)
4 .

5 Functional reduction of the 3-point integral I
(d)
3

Now we turn to a 3-point integral with arbitrary internal mass scales and arbitrary external
momenta

I
(d)
3 (m2

1,m
2
2,m

2
3; s23, s13, s12) = 1

iπd/2

∫
ddk1

D1D2D3
. (5.1)

Setting n = 3 in equation (2.3) leads to an algebraic relation for the products of three
propagators [19]:

1
D1D2D3

= x1

D0D2D3
+ x2
D1D0D3

+ x3
D1D2D0

. (5.2)

– 8 –
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Equation (5.2) holds if
p0 = x1p1 + x2p2 + x3p3, (5.3)

and the parameters m2
0, xj obey the following system of equations:

x1 + x2 + x3 = 1,
x1x2s12 + x1x3s13 + x2x3s23 − x1m

2
1 − x2m

2
2 − x3m

2
3 +m2

0 = 0. (5.4)

Integrating (5.2) over momentum k1 gives a functional relation for the one-loop integral
I

(d)
3 with arbitrary masses and kinematic variables:

I
(d)
3 (m2

1,m
2
2,m

2
3; s23, s13, s12) = x1I

(d)
3 (m2

0,m
2
2,m

2
3; s23, s03, s02)

+ x2I
(d)
3 (m2

1,m
2
0,m

2
3; s03, s13, s01)

+ x3I
(d)
3 (m2

1,m
2
2,m

2
0; s02, s01, s12). (5.5)

Now our aim is to find the values of m2
0, xj (j = 1, 2, 3), leading to a simultaneous reduction

in the number of variables in all integrals on the right-hand side of eq. (5.5). Equation (5.5)
will be our starting point at all steps of the functional reduction.

5.1 Functional reduction procedure

Functional reduction of the 3-point integral is not so straightforward as compared to the
integral I(d)

2 . We will work out a two-step procedure of functional reduction allowing one to
express an integral I(d)

3 that depends on 6 variables in terms of integrals depending on 3
variables.

Reduction of the integral I
(d)
3 , step 1. One of the solutions of the systems of equa-

tions (3.4), taken at n = 3 and combined with equations (5.3), (5.4), leads to the desired
relation

I3
(
m2

1,m
2
2,m

2
3; s23, s13, s12

)
= κ123I3 (r123, r2, r3; s23, r3 − r123, r2 − r123)

+ κ213I3 (r123, r1, r3; s13, r3 − r123, r1 − r123)
+ κ312I3 (r123, r2, r1; s12, r1 − r123, r2 − r123) , (5.6)

where

r123 = −λ123
g123

, ri = m2
i ,

κ123 = ∂r123
∂m2

1
, κ213 = ∂r123

∂m2
2
, κ312 = ∂r123

∂m2
3
, (5.7)

and the determinants λ123, g123 are defined in the appendix. Note that all integrals on the
right-hand side of equation (5.6) depend only on 4 variables.

This is not the only functional relation that reduces the number of variables of the
integral I(d)

3 . We have discovered another functional relationship that reduces the number
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of variables by one

I3
(
m2

1,m
2
2,m

2
3;s23, s13, s12

)
= s23(s23−s12−s13)

g123
I3
(
m2

0,m
2
2,m

2
3;s23, s123, s123

)
+ s13(s13−s12−s23)

g123
I3
(
m2

1,m
2
0,m

2
3;s123, s13, s123

)
+ s12(s12−s13−s23)

g123
I3
(
m2

1,m
2
2,m

2
0;s123, s123, s12

)
, (5.8)

where

m2
0 = − 2δ3

g123
, s123 = −2s12s13s23

g123
, (5.9)

δ3 = −s12s13s23 + s23(s12 + s13 − s23)m2
1

+ s13(s12 − s13 + s23)m2
2 − s12(s12 − s13 − s23)m2

3, (5.10)

and g123 is defined in the appendix. We have found many other functional relations that
reduce the number of variables, although not in all integrals at once. However, as was
shown in section 4, integrals without reducing the number of variables can be eliminated by
combining various functional relations (see eq. (4.19)). Derivation of this kind of functional
relations will be studied in more detail in a forthcoming publication.

Reduction of the integral I
(d)
3 , step 2 Now we proceed to the next step of the

functional reduction. Applying relation (5.5) to the first integral on the right-hand side of
eq. (5.6) and solving for the new variables m2

0, s0j , xk the corresponding system of equations
from (3.4), combined with eqs. (5.3), (5.4), leads to the equation

I
(d)
3 (r123, r2, r3; s23, r3 − r123, r2 − r123)

= κ23I
(d)
3 (r123, r23, r3; r3 − r23, r3 − r123, r23 − r123)

+ κ32I
(d)
3 (r123, r23, r2; r2 − r23, r2 − r123, r23 − r123), (5.11)

where
κ23 = ∂r23

∂m2
2
, κ32 = ∂r23

∂m2
3
.

By an appropriate change of variables, two more equations for reducing other integrals in
the right-hand side of eq. (5.6) can be obtained from eq. (5.11).

Combining eq. (5.6), eq. (5.11) and two equations that follow from eq. (5.11) by changing
variables, we get the final reduction formula for the integral I(d)

3 :

I
(d)
3 (m2

1,m
2
2,m

2
3; s23, s13, s12) = κ123κ23I

(d)
3 (r123, r23, r3; r3 − r23, r3 − r123, r23 − r123)

+ κ123κ32I
(d)
3 (r123, r23, r2; r2 − r23, r2 − r123, r23 − r123)

+ κ213κ31I
(d)
3 (r123, r13, r1; r1 − r13, r1 − r123, r13 − r123)

+ κ213κ13I
(d)
3 (r123, r13, r3; r3 − r13, r3 − r123, r13 − r123)

+ κ312κ12I
(d)
3 (r123, r12, r2; r2 − r12, r2 − r123, r12 − r123)

+ κ312κ21I
(d)
3 (r123, r12, r1; r1 − r12, r1 − r123, r12 − r123).

(5.12)
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This formula allows one to express the integral I(d)
3 , which depends on 6 variables in terms

of integrals depending only on 3 variables.
It is interesting to note that the replacement of masses and kinematic invariants on

both sides of eq. (5.12) with the arguments of the first integral I(d)
3 on the right-hand side

of this equation, i.e.

m2
1 → r123, m2 → r23, m2

3 → r3,

s23 → r3 − r23, s13 → r3 − r123, s12 → r23 − r123, (5.13)

leads to the following transformations of the coefficients and arguments of integrals on the
right-hand side of eq. (5.12)

r123 → r123, κ123 → 1, κ213 → 0, κ312 → 0,
r23 → r23, r13 → r123, r12 → r123,

κ23, κ13, κ12 → 1, κ32, κ31, κ21 → 0. (5.14)

As expected, in eq. (5.12), after these substitutions only the first term remains. Change of
variables (5.13) leads to a factorization of the determinants λ and g

λ123 = 8r123(r23 − r3)(r123 − r23), g123 = −8(r23 − r3)(r123 − r23),
λ23 = −4r23(r23 − r3), g23 = −4(r3 − r23), (5.15)

and as follows from these relations, r123, r23 remain invariant under substitutions (5.13).

5.2 Analytic results for integrals depending on the MNV

An analytic result for the integral I(d)
3 (r123, r23, r3; r3 − r23, r3 − r123, r23 − r123) can be

obtained, for example, either by solving the dimensional recurrence relation or by calculating
the Feynman parameter integral.

The dimensional recurrence relation for this integral reads

(d− 2)I(d+2)
3 (r123, r23, r3; r3 − r23, r3 − r123, r23 − r123)

= −2r123I
(d)
3 (r123, r23, r3; r3 − r23, r3 − r123, r23 − r123)

− I(d)
2 (r23, r3; r3 − r23). (5.16)

The solution of the dimensional recurrence relation (5.16) was obtained by the method
described in ref. [30]. Assuming that |r3/r123| < 1, |r3/r23| < 1, |r23/r123| < 1, we found
the following result:

I
(d)
3 (r123, r23, r3; r3 − r23, r3 − r123, r23 − r123)

= 1
sin πd

2

 r
d−6

2
123

Γ
(
d−2

2

)C3(x, y)

+ π
3
2 r

d−4
2

23

4r123Γ
(
d−1

2

)√ r23
r23 − r3

2F1

[
1, d−2

2 ;
d−1

2 ;
r23
r123

]

− πr
d−2

2
3

4Γ
(
d
2

)
(r23 − r3)r123

√
1− r3

r23
F1

(
d− 2

2 , 1, 1
2 ,
d

2 ; r3
r123

,
r3
r23

) , (5.17)
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where

C3(x, y) = πxy2

4(x2 − y2) 1
2

ln
(
x− (x2 − y2) 1

2

x+ (x2 − y2) 1
2

)
, (5.18)

and the variables x, y are defined as

x =
√

r123
r123 − r3

, y =
√

r123
r123 − r23

. (5.19)

The function C3(x, y) was derived from the system of differential equations

x
∂C3(x, y)

∂x
+ y

∂C3(x, y)
∂y

= 2C3(x, y),

(x2 − y2)x∂C3(x, y)
∂x

= −y2C3(x, y)− 1
2πx

2y2. (5.20)

This system was obtained from the system of differential equations for the integral I(d)
3 . We

would like to notice the coefficient 1/ sin(πd/2) in front of the braces which is singular at
d = 4. Since the integral I(4)

3 is finite, the terms in the braces at d = 4 must cancel. This
fact makes it possible to easily obtain the hypergeometric Appell function F1 at d = 4 as a
combination of logarithms

F1

(
1,1, 1

2 ,2; r3
r123

,
r3
r23

)
= x2√1−y2

1−x2

[
ln
(

1+
√

1−y2

1−
√

1−y2

)
+ln

(
x−

√
x2−y2

x+
√
x2−y2

)]
, (5.21)

where x,y are defined in (5.19). This expression has been checked numerically to a precision
of at least 200 decimal digits.

Another hypergeometric representation of the integral I(d)
3 was derived directly from

the Feynman parameter integral

I
(d)
3 (r123, r23, r3;r3−r23, r3−r123, r23−r123) =−Γ

(
3− d2

)∫ 1

0

∫ 1

0
x1h

d
2−3
3 dx1dx2, (5.22)

where
h3 = r123 − (r123 − r23)x2

1 − (r23 − r3)x2
1x

2
2. (5.23)

The method to derive the Feynman parameter representation of the integrals I(d)
n depending

on the MNV is described in the appendix. Expanding the integrand in powers of variables

z1 = r123 − r23
r123

, z2 = r23 − r3
r123

, (5.24)

assuming that |z1| < 1, |z2| < 1 and integrating over x1, x2, we then get

I
(d)
3 (r123, r23, r3; r3 − r23, r3 − r123, r23 − r123)

= −1
2Γ
(

3− d

2

) ∞∑
n1,n2=0

(
3− d

2

)
n1+n2

(1)n1+n2

(2)n1+n2

(
1
2

)
n2(

3
2

)
n2

zn1
1
n1!

zn2
2
n2! . (5.25)
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Here (a)k = Γ(a + k)/Γ(a) is the so-called Pochhammer symbol. The double series in
eq. (5.25) can be written [31] as the hypergeometric function S1

I
(d)
3 (r123, r23, r3; r3 − r23, r3 − r123, r23 − r123)

= −1
2Γ
(

3− d

2

)
r

d
2−3
123 S1

(
3− d

2 , 1,
1
2 , 2,

3
2 ,
r23 − r3
r123

, 1− r23
r123

)
. (5.26)

The definition of the hypergeometric function S1 is given in the appendix. Using the formula
for the analytic continuation of the function S1 presented in ref. [31], the integral I(d)

3 can
be written in terms of the hypergeometric functions 2F1 and F1:

I
(d)
3 (r123, r23, r3; r3 − r23, r3 − r123, r23 − r123) =

Γ
(
2− d

2

)
2(r123 − r23)r

d
2−2
123

×
{

2F1

[
1, 1

2 ;
3
2 ;

r3 − r23
r123 − r23

]
− r

d
2−2
23

r
d
2−2
123

F1

(1
2 , 1, 2−

d

2 ,
3
2; r23 − r3
r23 − r123

, 1− r3
r23

)}
. (5.27)

The formula for the analytic continuation of the function S1 is given in the appendix (see
eq. (A.17)). Note that the results in terms of the hypergeometric function S1 for some I(d)

3
integrals were presented in ref. [31].

6 Functional reduction of the 4-point integral I
(d)
4

Now we proceed to formulate a functional reduction procedure for the 4-point integral. For
n = 4, the algebraic relation (2.3) reads

1
D1D2D3D4

= x1
D0D2D3D4

+ x2
D1D0D3D4

+ x3
D1D2D0D4

+ x4
D1D2D3D0

. (6.1)

Equation (6.1) holds if
p0 = x1p1 + x2p2 + x3p3 + x4p4, (6.2)

and the parameters m2
0, xj obey the following system of equations:

x1 + x2 + x3 + x4 = 1,
x1x2s12 + x1x3s13 + x1x4s14 + x2x3s23 + x2x4s24 + x3x4s34

−x1m
2
1 − x2m

2
2 − x3m

2
3 − x4m

2
4 +m2

0 = 0. (6.3)

Integrating equation (6.1) over momentum k1 yields

I
(d)
4 (m2

1,m
2
2,m

2
3,m

2
4; s12, s23, s34, s14, s24, s13)

= x1I
(d)
4 (m2

0,m
2
2,m

2
3,m

2
4; s02, s23, s34, s04, s24, s03)

+ x2I
(d)
4 (m2

1,m
2
0,m

2
3,m

2
4; s01, s03, s34, s14, s04, s13)

+ x3I
(d)
4 (m2

1,m
2
2,m

2
0,m

2
4; s12, s02, s04, s14, s24, s01)

+ x4I
(d)
4 (m2

1,m
2
2,m

2
3,m

2
0; s12, s23, s03, s01, s02, s13). (6.4)

This will be our initial equation for deriving functional relations in all three steps of the
reduction procedure.
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6.1 Functional reduction procedure

In this subsection, we provide functional relations for expressing the integral I(d)
4 that

depends on 10 variables in terms of the integrals I(d)
4 depending on 4 variables.

Reduction of the integral I
(d)
4 , step 1. Solving various systems of equations, formed

from equations (6.3) combined with equations (3.4), taken at n = 4, we obtained one
solution which leads to the functional relation that reduces the number of variables by 3 in
all integrals on the right-hand side of eq. (6.4). The functional relation corresponding to
this solution reads

I4(m2
1,m

2
2,m

2
3,m

2
4; s12, s23, s34, s14, s24, s13)

= κ1234I4(r1234, r2, r3, r4; r2 − r1234, s23, s34, r4 − r1234, s24, r3 − r1234)
+ κ2134I4(r1234, r1, r3, r4; r1 − r1234, s13, s34, r4 − r1234, s14, r3 − r1234)
+ κ3124I4(r1234, r2, r1, r4; r2 − r1234, s12, s14, r4 − r1234, s24, r1 − r1234)
+ κ4123I4(r1234, r2, r3, r1; r2 − r1234, s23, s13, r1 − r1234, s12, r3 − r1234), (6.5)

where

r1234 = −λ1234
g1234

, ri = m2
i ,

κ1234 = ∂r1234
∂m2

1
, κ2134 = ∂r1234

∂m2
2
, κ3124 = ∂r1234

∂m2
3
, κ4123 = ∂r1234

∂m2
4
. (6.6)

At the next step, the integrals on the right-hand side of equation (6.5) depending on 7
variables will be expressed in terms of integrals depending on 5 variables.

Reduction of the integral I
(d)
4 , step 2. Applying formula (6.4) to the first integral

on the right-hand side of eq. (6.5) and solving the systems of equations formed from
equations (6.3) combined with equations (3.4) given for the kinematics of this integral, we
found the following relation:

I4(r1234, r2, r3, r4;r2−r1234, s23, s34, r4−r1234, s24, r3−r1234)
= κ234I4(r1234, r234, r3, r4;r234−r1234, r3−r234, s34, r4−r1234, r4−r234, r3−r1234)

+κ324I4(r1234, r234, r2, r4;r234−r1234, r2−r234, s24, r4−r1234, r4−r234, r2−r1234)
+κ423I4(r1234, r234, r3, r2;r234−r1234, r3−r234, s23, r2−r1234, r2−r234, r3−r1234),

(6.7)

where

r234 = −λ234
g234

, κ234 = ∂r234
∂m2

2
, κ324 = ∂r234

∂m2
3
, κ423 = ∂r234

∂m2
4
. (6.8)

Similar expressions for all other integrals on the right-hand side of eq. (6.5) can be obtained
from eq. (6.7) by changing variables and coefficients appropriately.

After reducing integrals depending on 7 variables to integrals depending on 5 variables,
the next step is to reduce the latter integrals to integrals depending on 4 variables.
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Reduction of the integral I
(d)
4 , step 3. Applying our initial functional relation (6.4)

to the first integral on the right-hand side of eq. (6.7) and solving the systems of equations
corresponding to this case, we obtained several solutions. One of these solutions leads to
the two-term functional relation

I4(r1234, r234, r3, r4; r234 − r1234, r3 − r234, s34, r4 − r1234, r4 − r234, r3 − r1234)
= κ34I4(r1234, r234, r34, r4;

r234 − r1234, r34 − r234, r4 − r34, r4 − r1234, r4 − r234, r34 − r1234)
+ κ43I4(r1234, r234, r34, r3;

r234 − r1234, r34 − r234, r3 − r34, r3 − r1234, r3 − r234, r34 − r1234), (6.9)

where
r34 = −λ34

g34
, κ34 = ∂r34

∂m2
3
, κ43 = ∂r34

∂m2
4
. (6.10)

Note that both integrals on the right-hand side of eq. (6.9) depend only on 4 variables.
Combining eqs. (6.5), (6.7), (6.9) and all required relations that follow from these equations
by changing variables as mentioned previously, we obtain the final functional reduction
formula for the integral I(d)

4

I4(m2
1,m

2
2,m

2
3,m

2
4; s12, s23, s34, s14, s24, s13)

= κ1234κ234κ34I
(d)
4 (r1234, r234, r34, r4;

r234 − r1234, r34 − r234, r4 − r34, r4 − r1234, r4 − r234, r34 − r1234)

+ κ1234κ234κ43I
(d)
4 (r1234, r234, r34, r3;

r234 − r1234, r34 − r234, r3 − r34, r3 − r1234, r3 − r234, r34 − r1234)

+ κ1234κ324κ24I
(d)
4 (r1234, r234, r24, r4;

r234 − r1234, r24 − r234, r4 − r24, r4 − r1234, r4 − r234, r24 − r1234)

+ κ1234κ324κ42I
(d)
4 (r1234, r234, r24, r2;

r234 − r1234, r24 − r234, r2 − r24, r2 − r1234, r2 − r234, r24 − r1234)

+ κ1234κ423κ23I
(d)
4 (r1234, r234, r23, r3;

r234 − r1234, r23 − r234, r3 − r23, r3 − r1234, r3 − r234, r23 − r1234)

+ κ1234κ423κ32I
(d)
4 (r1234, r234, r23, r2;

r234 − r1234, r23 − r234, r2 − r23, r2 − r1234, r2 − r234, r23 − r1234)

+ κ2134κ134κ34I
(d)
4 (r1234, r134, r34, r4;

r134 − r1234, r34 − r134, r4 − r34, r4 − r1234, r4 − r134, r34 − r1234)

+ κ2134κ134κ43I
(d)
4 (r1234, r134, r34, r3;

r134 − r1234, r34 − r134, r3 − r34, r3 − r1234, r3 − r134, r34 − r1234)

+ κ2134κ314κ14I
(d)
4 (r1234, r134, r14, r4;

r134 − r1234, r14 − r134, r4 − r14, r4 − r1234, r4 − r134, r14 − r1234)
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+ κ2134κ314κ41I
(d)
4 (r1234, r134, r14, r1;

r134 − r1234, r14 − r134, r1 − r14, r1 − r1234, r1 − r134, r14 − r1234)

+ κ2134κ413κ13I
(d)
4 (r1234, r134, r13, r3;

r134 − r1234, r13 − r134, r3 − r13, r3 − r1234, r3 − r134, r13 − r1234)

+ κ2134κ413κ31I
(d)
4 (r1234, r134, r13, r1;

r134 − r1234, r13 − r134, r1 − r13, r1 − r1234, r1 − r134, r13 − r1234)

+ κ3124κ124κ24I
(d)
4 (r1234, r124, r24, r4;

r124 − r1234, r24 − r124, r4 − r24, r4 − r1234, r4 − r124, r24 − r1234)

+ κ3124κ124κ42I
(d)
4 (r1234, r124, r24, r2;

r124 − r1234, r24 − r124, r2 − r24, r2 − r1234, r2 − r124, r24 − r1234)

+ κ3124κ214κ14I
(d)
4 (r1234, r124, r14, r4;

r124 − r1234, r14 − r124, r4 − r14, r4 − r1234, r4 − r124, r14 − r1234)

+ κ3124κ214κ41I
(d)
4 (r1234, r124, r14, r1;

r124 − r1234, r14 − r124, r1 − r14, r1 − r1234, r1 − r124, r14 − r1234)

+ κ3124κ412κ12I
(d)
4 (r1234, r124, r12, r2;

r124 − r1234, r12 − r124, r2 − r12, r2 − r1234, r2 − r124, r12 − r1234)

+ κ3124κ412κ21I
(d)
4 (r1234, r124, r12, r1;

r124 − r1234, r12 − r124, r1 − r12, r1 − r1234, r1 − r124, r12 − r1234)

+ κ4123κ123κ23I
(d)
4 (r1234, r123, r23, r3;

r123 − r1234, r23 − r123, r3 − r23, r3 − r1234, r3 − r123, r23 − r1234)

+ κ4123κ123κ32I
(d)
4 (r1234, r123, r23, r2;

r123 − r1234, r23 − r123, r2 − r23, r2 − r1234, r2 − r123, r23 − r1234)

+ κ4123κ213κ13I
(d)
4 (r1234, r123, r13, r3;

r123 − r1234, r13 − r123, r3 − r13, r3 − r1234, r3 − r123, r13 − r1234)

+ κ4123κ213κ31I
(d)
4 (r1234, r123, r13, r1;

r123 − r1234, r13 − r123, r1 − r13, r1 − r1234, r1 − r123, r13 − r1234)

+ κ4123κ312κ12I
(d)
4 (r1234, r123, r12, r2;

r123 − r1234, r12 − r123, r2 − r12, r2 − r1234, r2 − r123, r12 − r1234)

+ κ4123κ312κ21I
(d)
4 (r1234, r123, r12, r1;

r123 − r1234, r12 − r123, r1 − r12, r1 − r1234, r1 − r123, r12 − r1234). (6.11)

This formula allows us to express an integral I(d)
4 , that depends on 15 variables, as a linear

combination of 24 integrals, each depending only on 4 variables.
We conclude this subsection by noting an interesting property of this equation. By

replacing the masses and kinematic invariants in eq. (6.11) with the corresponding arguments
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of the first integral on the right-hand side of this equation

m2
1 → r1234, m2

2 → r234, m2
3 → r34, m2

4 → r4,

s12 → r234 − r1234, s23 → r34 − r234, s34 → r4 − r34,

s14 → r4 − r1234, s24 → r4 − r234, s13 → r34 − r1234, (6.12)

we get the following transformations of the coefficients and arguments of integrals in this
equation

r1234 → r1234, r234 → r234, r34 → r34,

κ1234, κ234, κ34 → 1, κ2134, κ3124, κ4123 → 0. (6.13)

As a result of these substitutions, only the first integral remains on the right-hand side of the
equation. Note that the transformations (6.12) lead to a factorization of the determinants
λ and g such as

λ1234 = 16r1234(r34 − r4)(r34 − r234)(r1234 − r234),
g1234 = −16(r34 − r4)(r34 − r234)(r1234 − r234). (6.14)

Similar factorization holds for lower order determinants. We observed analogous factorization
of determinants appearing in the final functional relations for the integrals I(d)

5 and I(d)
6 .

6.2 Analytic results for integrals depending on the MNV

An analytic expression for the integral

I
(d)
4 (m2

1,m
2
2,m

2
3,m

2
4;m2

2 −m2
1,m

2
3 −m2

2,m
2
4 −m2

3,m
2
4 −m2

1,m
2
4 −m2

2,m
2
3 −m2

1), (6.15)

which depends on the MNV, can be obtained, for example, by solving the dimensional
recurrence relation or by evaluating the Feynman parameter integral.

The dimensional recurrence relation for this integral reads

(d− 3)I(d+2)
4 (r1234, r234, r34, r4;

r234 − r1234, r34 − r234, r4 − r34, r4 − r1234, r4 − r234, r34 − r1234)

= −2r1234I
(d)
4 (r1234, r234, r34, r4;

r234 − r1234, r34 − r234, r4 − r34, r4 − r1234, r4 − r234, r34 − r1234)

− I(d)
3 (r234, r34, r4; r4 − r34, r4 − r234, r34 − r234). (6.16)

To solve this equation, we used for the integral I(d)
3 the analytic result given in eq. (5.17).
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Applying the method described in ref. [30], we get

I
(d)
4 (r1234, r234, r34, r4;

r234 − r1234, r34 − r234, r4 − r34, r4 − r1234, r4 − r234, r34 − r1234)

= 1
sin πd

2

{
r

d
2−4
1234

Γ
(
d−3

2

)C4(x, y, z) +
πr

d
2−2
234 arctan (r34−r4)

1
2

(r234−r34)
1
2

4r1234(r34 − r4) 1
2 (r234 − r34) 1

2 Γ
(
d−2

2

)
× 2F1

[
1, d−3

2 ;
d−2

2 ;
r234
r1234

]
− π

3
2 r

d
2−2
34

8r1234r234Γ
(
d−1

2

) ( r34
r34 − r4

) 1
2
(

r234
r234 − r34

) 1
2

× F1

(
d− 3

2 , 1, 1
2 ,
d− 1

2 ; r34
r1234

,
r34
r234

)

+ πr
d
2−1
4

8r1234(r34 − r4)(r234 − r4)Γ
(
d
2

)
× FS

(
d− 3

2 , 1, 1, 1, 1, 1
2 ,
d

2 ,
d

2 ,
d

2 ; r4
r1234

,
r4

r4 − r234
,

r4
r4 − r34

)}
, (6.17)

where

C4(x, y, z) = π
3
2 xy2z2

8(x2 − y2) 1
2 (z2 − y2) 1

2
ln
[
xz + y2 − (z2 − y2) 1

2 (x2 − y2) 1
2

xz + y2 + (z2 − y2) 1
2 (x2 − y2) 1

2

]
, (6.18)

and the definition of the hypergeometric Lauricella-Saran function FS is given in the
appendix (see eq. (A.13)). Here the variables x, y, z are defined as

x =
√

r1234
r1234 − r4

, y =
√

r1234
r1234 − r34

, z =
√

r1234
r1234 − r234

. (6.19)

The function C4(x, y, z) was obtained by solving the system of differential equations

x
∂C4(x, y, z)

∂x
+ y

∂C4(x, y, z)
∂y

+ z
∂C4(x, y, z)

∂z
= 3C4(x, y, z),

∂C4(x, y, z)
∂x

= − y2

x(x2 − y2)C4(x, y, z)− π
3
2xy2z2

4(x2 − y2)(x+ z)
∂C4(x, y, z)

∂z
= (2y2 − z2)
z(y2 − z2)C4(x, y, z) + π

3
2 xy2z2

4(y2 − z2)(x+ z) . (6.20)

This system was derived from the system of differential equations for the integral I(d)
4 . The

constant of integration that occurs in solving the system of differential equations (6.20)
was determined by comparing the asymptotic behavior of eq. (6.17) with the asymptotic
behavior of the integral I(d)

4 as r1234 →∞.
Note that in calculations of Feynman integrals, the Lauricella-Saran function FS was

first discovered when calculating the one-loop box integral [32]. In ref. [32], it was shown
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that this function can be represented by the one-fold integral

FS

(
d− 3

2 , 1, 1; 1, 1, 1
2; d2 ,

d

2 ,
d

2 ;x, y, z
)

=
Γ
(
d
2

)
(y − z)− 1

2

Γ
(
d−3

2

)
Γ
(

3
2

) ∫ 1

0

arcsin
√

(y−z)t
1−tz (1− t) d−5

2

(1− x+ tx)
√

1− ty dt. (6.21)

We note that similarly to the integral I(d)
3 , there is a factor 1/ sin(πd/2) in front of

the braces in eq. (6.17) which is singular at d = 4. Since the integral I(4)
4 is finite, the

terms in the braces must cancel at d = 4. This fact makes it possible to easily obtain the
hypergeometric function FS at d = 4 as a combination of logarithms

FS

(1
2 , 1, 1, 1, 1,

1
2 , 2, 2, 2; r4

r1234
,

r4
r4 − r234

,
r4

r4 − r34

)
= (x2 − y2) 1

2 (x2 − z2)
(z2 − y2) 1

2 (1− x2)x

{
ln
[
xz + y2 − (z2 − y2) 1

2 (x2 − y2) 1
2

xz + y2 + (z2 − y2) 1
2 (x2 − y2) 1

2

]

− ln
[
x(y2 − z2) 1

2 − z(y2 − x2) 1
2

x(y2 − z2) 1
2 + z(y2 − x2) 1

2

]
+ ln

[
(z2 − y2) 1

2 − (1− y2) 1
2

(z2 − y2) 1
2 + (1− y2) 1

2

]}
, (6.22)

where x, y and z are defined in eq. (6.19). This expression has been checked numerically to
a precision of at least 200 decimal digits. Complications in analytic calculation of a periodic
function that appears in solving the recurrence relation for the one-loop box integral were
discussed in ref. [33].

The integral I(d)
4 depending on the MNV can be represented as a triple hypergeometric

series. Such a representation can be derived from the Feynman parameter integral

I
(d)
4 (r1234, r234, r34, r4; r234 − r1234, r34 − r234, r3 − r34, r4 − r234, r34 − r1234)

= Γ
(

4− d

2

)∫ 1

0

∫ 1

0

∫ 1

0
x2

1x2 h
d
2−4
4 dx1dx2dx3, (6.23)

where

h4 = r1234 − (r1234 − r234)x2
1 − (r234 − r34)x2

1x
2
2 − (r34 − r4)x2

1x
2
2x

2
3. (6.24)

Expanding the integrand of (6.23) with respect to three variables

z1 = 1− r234
r1234

, z2 = r234 − r34
r1234

, z3 = r34 − r4
r1234

, (6.25)

assuming that |z1| < 1, |z2| < 1, |z3| < 1 and integrating over x1, x2, x3 term by term, we
obtain the series representation

I
(d)
4 (r1234, r234, r34, r4; r234 − r1234, r34 − r234, r3 − r34, r4 − r234, r34 − r1234)

= 1
6Γ
(

4− d

2

)
r

d
2−4
1234

∞∑
n1,n2,n3=0

(
4− d

2

)
n1+n2+n3

×

(
3
2

)
n1+n2+n3(

5
2

)
n1+n2+n3

(1)n2+n3

(2)n2+n3

(
1
2

)
n3(

3
2

)
n3

zn1
1 zn2

2 zn3
3

n1!n2!n3! . (6.26)
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The analytic continuation of this series can be expressed in terms of the hypergeometric
function 2F1, the Appell functions F1, F3 and various hypergeometric Lauricella-Saran
functions. Formula (6.17) is an example of such a representation. Other examples can
be found in refs. [34, 35]. The relationship between the hypergeometric Lauricella-Saran
functions FS and FN is given in the appendix (see eq. (A.14)).

7 Functional reduction of the 5-point integral I
(d)
5

In this section, we describe the functional reduction of the 5-point integral. At n = 5, the
algebraic relation that follows from eq. (2.3) reads

1
D1D2D3D4D5

= x1
D0D2D3D4D5

+ x2
D1D0D3D4D5

+ x3
D1D2D0D4D5

+ x4
D1D2D3D0D5

+ x5
D1D2D3D4D0

. (7.1)

Equation (7.1) is valid if

p0 = x1p1 + x2p2 + x3p3 + x4p4 + x5p5, (7.2)

and the parameters m2
0, xj obey the following system of equations:

x1 + x2 + x3 + x4 + x5 = 1,
x1x2s12 + x1x3s13 + x1x4s14 + x1x5s15 + x2x3s23 + x2x4s24

+ x2x5s25 + x3x4s34 + x3x5s35 + x4x5s45

− x1m
2
1 − x2m

2
2 − x3m

2
3 − x4m

2
4 − x5m

2
5 +m2

0 = 0. (7.3)

Integrating equation (7.1) over k1 yields the functional relation

I
(d)
5 (m2

1,m
2
2,m

2
3,m

2
4,m

2
5; s12, s23, s34, s45, s15, s13, s14, s24, s25, s35)

= x1I
(d)
5 (m2

0,m
2
2,m

2
3,m

2
4,m

2
5; s02, s23, s34, s45, s05, s03, s04, s24, s25, s35)

+ x2I
(d)
5 (m2

1,m
2
0,m

2
3,m

2
4,m

2
5; s01, s03, s34, s45, s15, s13, s14, s04, s05, s35)

+ x3I
(d)
5 (m2

1,m
2
2,m

2
0,m

2
4,m

2
5; s12, s02, s04, s45, s15, s01, s14, s24, s25, s05)

+ x4I
(d)
5 (m2

1,m
2
2,m

2
3,m

2
0,m

2
5; s12, s23, s03, s05, s15, s13, s01, s02, s25, s35)

+ x5I
(d)
5 (m2

1,m
2
2,m

2
3,m

2
4,m

2
0; s12, s23, s34, s04, s01, s13, s14, s24, s02, s03). (7.4)

This equation will be our initial equation in deriving functional relations at all stages of the
reduction procedure.

7.1 Functional reduction procedure

In this subsection, we describe four steps of the functional reduction procedure, which will
allow us to represent the integral I(d)

5 that depends on 15 variables in terms of integrals
depending on 5 variables.
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Reduction of the integral I
(d)
5 , step 1. The systems of equations that were formed

from a set of equations (3.4) and eqs. (7.2), (7.3) have many solutions. One of these solutions
leads to the following relation:

I
(d)
5 (m2

1,m
2
2,m

2
3,m

2
4,m

2
5; s12, s23, s34, s45, s15, s13, s14, s24, s25, s35)

= κ12345I
(d)
5 (r12345, r2, r3, r4, r5;

r2 − r12345, s23, s34, s45, r5 − r12345, r3 − r12345, r4 − r12345, s24, s25, s35)

+ κ21345I
(d)
5 (r1, r12345, r3, r4, r5;

r1 − r12345, r3 − r12345, s34, s45, s15, s13, s14, r4 − r12345, r5 − r12345, s35)

+ κ31245I
(d)
5 (r1, r2, r12345, r4, r5;

s12, r2 − r12345, r4 − r12345, s45, s15, r1 − r12345, s14, s24, s25, r5 − r12345)

+ κ41235I
(d)
5 (r1, r2, r3, r12345, r5;

s12, s23, r3 − r12345, r5 − r12345, s15, s13, r1 − r12345, r2 − r12345, s25, s35)

+ κ51234I
(d)
5 (r1, r2, r3, r4, r12345;

s12, s23, s34, r4 − r12345, r1 − r12345, s13, s14, s24, r2 − r12345, r3 − r12345), (7.5)

where

r12345 = −λ12345
g12345

, κ12345 = ∂r12345
∂m2

1
, κ21345 = ∂r12345

∂m2
2
, ri = m2

i ,

κ31245 = ∂r12345
∂m2

3
, κ41235 = ∂r12345

∂m2
4
, κ51234 = ∂r12345

∂m2
5
.

This equation is the first step in the functional reduction procedure expressing an integral
depending on 15 variables as a linear combination of integrals depending on 11 variables.

Reduction of the integral I
(d)
5 , step 2. By setting the masses and kinematic variables

in equation (7.4) to be equal to the arguments of the first integral in the right-hand side of
equation (7.5) and solving the corresponding sets of systems of equations, we found

I
(d)
5 (r12345, r2, r3, r4, r5;

r2 − r12345, s23, s34, s45, r5 − r12345, r3 − r12345, r4 − r12345, s24, s25, s35)

= κ2345I
(d)
5 (r12345, r2345, r3, r4, r5; r2345 − r12345, r3 − r2345, s34,

s45, r5 − r12345, r3 − r12345, r4 − r12345, r4 − r2345, r5 − r2345, s35)

+ κ3245I
(d)
5 (r12345, r2, r2345, r4, r5; r2 − r12345, r2 − r2345, r4 − r2345,

s45, r5 − r12345, r2345 − r12345, r4 − r12345, s24, s25, r5 − r2345)

+ κ4235I
(d)
5 (r12345, r2, r3, r2345, r5; r2 − r12345, s23, r3 − r2345, r5 − r2345,

r5 − r12345, r3 − r12345, r2345 − r12345, r2 − r2345, s25, s35)

+ κ5234I
(d)
5 (r12345, r2, r3, r4, r2345; r2 − r12345, s23, s34, r4 − r2345,

r2345 − r12345, r3 − r12345, r4 − r12345, s24, r2 − r2345, r3 − r2345), (7.6)
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where

r2345 = −λ2345
g2345

,

κ2345 = ∂r2345
∂m2

2
, κ3245 = ∂r2345

∂m2
3
, κ4235 = ∂r2345

∂m2
4
, κ5234 = ∂r2345

∂m2
5
. (7.7)

Equation (7.6) allows one to express the first integral on the right-hand side of equation (7.5),
which depends on 11 variables, in terms of integrals depending on 8 variables. Similar
equations that reduce the number of variables by 3 for other integrals in the right-hand
side of equation (7.5) can be obtained by a proper change of arguments and coefficients in
equation (7.6).

Reduction of the integral I
(d)
5 , step 3. Integrals depending on 8 variables can be

expressed in terms of integrals depending on 6 variables. Similar to the previous steps, we
apply relation (7.4) to the first integral on the right-hand side of equation (7.6), and solving
the corresponding sets of systems of equations, we get

I
(d)
5 (r12345, r2345, r3, r4, r5; r2345 − r12345, r3 − r2345,

s34, s45, r5 − r12345, r3 − r12345, r4 − r12345, r4 − r2345, r5 − r2345, s35)

= κ345I
(d)
5 (r12345, r2345, r345, r4, r5; r2345 − r12345, r345 − r2345, r4 − r345,

s45, r5 − r12345, r345 − r12345, r4 − r12345, r4 − r2345, r5 − r2345, r5 − r345)

+ κ435I
(d)
5 (r12345, r2345, r3, r345, r5; r2345 − r12345, r3 − r2345, r3 − r345,

r5 − r345, r5 − r12345, r3 − r12345, r345 − r12345, r345 − r2345, r5 − r2345, s35)

+ κ534I
(d)
5 (r12345, r2345, r3, r4, r345; r2345 − r12345, r3 − r2345, s34, r4 − r345,

r345 − r12345, r3 − r12345, r4 − r12345, r4 − r2345, r345 − r2345, r3 − r345), (7.8)

where

r345 = −λ345
g345

, κ345 = ∂r345
∂m2

3
, κ435 = ∂r345

∂m2
4
, κ534 = ∂r345

∂m2
5
.

The functional relation (7.8) reduces an integral depending on 8 variables to a linear
combination of integrals depending on 6 variables. From equation (7.8) one can obtain
similar equations for reducing all the other integrals in the right-hand side of eq. (7.6).

Reduction of the integral I
(d)
5 , step 4. Now we proceed to derive the last set of

reduction equations. To do this, we apply relation (7.4) to the first integral on the right-
hand side of (7.8), solve the systems of equations consisting of equations (3.4), (7.2), (7.3)
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and find

I
(d)
5 (r12345, r2345, r345, r4, r5; r2345 − r12345, r345 − r2345, r4 − r345, s45,

r5 − r12345, r345 − r12345, r4 − r12345, r4 − r2345, r5 − r2345, r5 − r345)

= κ45I
(d)
5 (r12345, r2345, r345, r45, r5; r2345 − r12345, r345 − r2345, r45 − r345, r5 − r45,

r5 − r12345, r345 − r12345, r45 − r12345, r45 − r2345, r5 − r2345, r5 − r345)

+ κ54I
(d)
5 (r12345, r2345, r345, r4, r45; r2345 − r12345, r345 − r2345, r4 − r345, r4 − r45,

r45 − r12345, r345 − r12345, r4 − r12345, r4 − r2345, r45 − r2345, r45 − r345), (7.9)

where
r45 = −λ45

g45
, κ45 = ∂r45

∂m2
4
, κ54 = ∂r45

∂m2
5
.

Again, functional relations for reducing all other integrals on the right-hand side of eq. (7.8)
can be obtained from (7.9) by a proper change of variables.

By combining equations (7.5), (7.6), (7.8), (7.9), and all required relations that follow
from these equations by changing variables and coefficients, as mentioned previously, we
obtained a formula that will allow us to express the integral I(d)

5 , depending on 15 variables,
as a linear combination of 120 integrals, each depending only on 5 variables. All resulting
integrals in this combination depend on the MNV and have the form

I
(d)
5 (m2

i ,m
2
j ,m

2
k,m

2
l ,m

2
r ; m2

j −m2
i ,m

2
k −m2

j ,m
2
l −m2

k,m
2
r −m2

l ,m
2
r −m2

i ,

m2
k −m2

i ,m
2
l −m2

i ,m
2
l −m2

j ,m
2
r −m2

j ,m
2
r −m2

k), (7.10)

where m2
i , m2

j ,m2
k,m2

l ,m2
r are the ratios of polynomials in masses and kinematic invariants.

The coefficients in front of these integrals are also the ratios of polynomials in masses and
kinematic invariants.

The final reduction formula for the integral I(d)
5 is too lengthy to present in the

manuscript. Instead, we provide these formulae in electronic form in the supplementary
material distributed with this article.

7.2 Dimensional recurrence relation and series representation

The dimensional recurrence relation for the integral I(d)
5 depending on the MNV reads

(d− 4)I(d+2)
5 (r12345, r2345, r345, r45, r5; r2345 − r12345, r345 − r2345, r45 − r345,

r5 − r45, r5 − r12345, r345 − r12345, r45 − r12345, r45 − r2345, r5 − r2345, r5 − r345)

= −2r12345I
(d)
5 (r12345, r2345, r345, r45, r5; r2345 − r12345, r345 − r2345, r45 − r345,

r5 − r45, r5 − r12345, r345 − r12345, r45 − r12345, r45 − r2345, r5 − r2345, r5 − r345)

− I(d)
4 (r2345, r345, r45, r5;
r345 − r2345, r45 − r345, r5 − r45, r5 − r2345, r5 − r345, r45 − r2345). (7.11)

Notice that the inhomogeneous part of this equation consists of only one term — the integral
I

(d)
4 which also depends on the MNV. The solution of the dimensional recurrence relation
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for the integral I(d)
5 is a bit cumbersome but straightforward. We will present the result

and details of the derivation in a separate publication.
At d = 4 the term with the integral I(d+2)

5 in eq. (7.11) drops out, and we get a
simple relation

2r12345I
(4)
5 (r12345, r2345, r345, r45, r5; r2345 − r12345, r345 − r2345, r45 − r345,

r5 − r45, r5 − r12345, r345 − r12345, r45 − r12345, r45 − r2345, r5 − r2345, r5 − r345)

= −I(4)
4 (r2345, r345, r45, r5;

r345 − r2345, r45 − r345, r5 − r45, r5 − r2345, r5 − r345, r45 − r2345). (7.12)

Now we proceed to derive a multiple series representation for the integral I(d)
5 depending

on the MNV. To do this, we will use the following Feynman parameter integral representation

I
(d)
5 (r12345, r2345, r345, r45, r5; r2345 − r12345, r345 − r2345, r45 − r345, r5 − r45, r5 − r12345,

r345 − r12345, r45 − r12345, r45 − r2345, r5 − r2345, r5 − r345)

= −Γ
(

5− d

2

)∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
x3

1x
2
2x3h

d
2−5
5 dx1dx2dx3dx4, (7.13)

where

h5 = r12345 − (r12345 − r2345)x2
1

− (r2345 − r345)x2
1x

2
2 − (r345 − r45)x2

1x
2
2x

2
3 − (r45 − r5)x2

1x
2
2x

2
3x

2
4. (7.14)

A multiple series representation of the integral I(d)
5 can be derived in a similar manner,

as it was done for the integrals I(d)
3 , I(d)

4 . Expanding the integrand in eq. (7.13) with respect
to four variables

z1 = r12345 − r2345
r12345

, z2 = r2345 − r345
r12345

, z3 = r345 − r45
r12345

, z4 = r45 − r5
r12345

, (7.15)

assuming that all |zi| < 1, and then integrating term by term over x1,. . . ,x4, we get

I
(d)
5 (r12345, r2345, r345, r45, r5; r2345 − r12345, r345 − r2345, r45 − r345, r5 − r45,

r5 − r12345, r345 − r12345, r45 − r12345, r45 − r2345, r5 − r2345, r5 − r345)

= − 1
24Γ

(
5− d

2

) ∞∑
n1,n2,n3,n4=0

(
5− d

2

)
n1+n2+n3+n4

× (2)n1+n2+n3+n4

(3)n1+n2+n3+n4

(
3
2

)
n2+n3+n4(

5
2

)
n2+n3+n4

(1)n3+n4

(2)n3+n4

(
1
2

)
n4(

3
2

)
n4

zn1
1
n1!

zn2
2
n2!

zn3
3
n3!

zn4
4
n4! . (7.16)

Note the similarity of the summand of this series to summands of the series given in
eqs. (5.25), (6.26).
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8 Functional reduction of the 6-point integral I
(d)
6

Now we proceed to derive functional relations for reducing the 6-point integral. At n = 6
the algebraic relation (2.3) reads

1
D1D2D3D4D5D6

= x1
D0D2D3D4D5D6

+ x2
D1D0D3D4D5D6

+ x3
D1D2D0D4D5D6

+ x4
D1D2D3D0D5D6

+ x5
D1D2D3D4D0D6

+ x6
D1D2D3D4D5D0

. (8.1)

Equation (8.1) is valid if

p0 = x1p1 + x2p2 + x3p3 + x4p4 + x5p5 + x6p6, (8.2)

and the parameters m2
0, xj obey the following system of equations:

x1 + x2 + x3 + x4 + x5 + x6 = 1,
x1x2s12 + x1x3s13 + x1x4s14 + x1x5s15 + x1x6s16 + x2x3s23 + x2x4s24

+ x2x5s25 + x2x6s26 + x3x4s34 + x3x5s35 + x3x6s36 + x4x5s45 + x4x6s46

+ x5x6s56 − x1m
2
1 − x2m

2
2 − x3m

2
3 − x4m

2
4 − x5m

2
5 − x6m

2
6 +m2

0 = 0. (8.3)

Integrating both sides of eq. (8.1) over k1 yields the functional relation

I
(d)
6 (m2

1,m
2
2,m

2
3,m

2
4,m

2
5,m

2
6; s12, s23, s34, s45, s56, s16,

s13, s14, s15, s24, s25, s26, s35, s36, s46)

= x1I
(d)
6 (m2

0,m
2
2,m

2
3,m

2
4,m

2
5,m

2
6; s02, s23, s34, s45, s56, s06,

s03, s04, s05, s24, s25, s26, s35, s36, s46)

+ x2I
(d)
6 (m2

1,m
2
0,m

2
3,m

2
4,m

2
5,m

2
6; s01, s03, s34, s45, s56, s16,

s13, s14, s15, s04, s05, s06, s35, s36, s46)

+ x3I
(d)
6 (m2

1,m
2
2,m

2
0,m

2
4,m

2
5,m

2
6; s12, s02, s04, s45, s56, s16,

s01, s14, s15, s24, s25, s26, s05, s06, s46)

+ x4I
(d)
6 (m2

1,m
2
2,m

2
3,m

2
0,m

2
5,m

2
6; s12, s23, s03, s05, s56, s16,

s13, s01, s15, s02, s25, s26, s35, s36, s06)

+ x5I
(d)
6 (m2

1,m
2
2,m

2
3,m

2
4,m

2
0,m

2
6; s12, s23, s34, s04, s06, s16,

s13, s14, s01, s24, s02, s26, s03, s36, s46)

+ x6I
(d)
6 (m2

1,m
2
2,m

2
3,m

2
4,m

2
5,m

2
0; s12, s23, s34, s45, s05, s01,

s13, s14, s15, s24, s25, s02, s35, s03, s04). (8.4)

This equation will be used at all steps of the functional reduction of the integral I(d)
6 .

Derivation of the reduction formulae is completely analogous to that of the integrals
I

(d)
2 ,. . . ,I(d)

5 .
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8.1 Functional reduction procedure

In this subsection, we will describe five steps of the functional reduction procedure allowing
us to represent the integral I(d)

6 depending on 21 variables in terms of integrals depending
on 6 variables.

Reduction of the integral I
(d)
6 , step 1. At the first step, we formed various systems

of equations by combining eqs. (3.4) taken at n = 6 and eqs. (8.2), (8.3), and solved these
systems for xj , m2

0. Many solutions have been found. One of these solutions leads to a
functional relation reducing 5 variables simultaneously for all integrals in the right-hand
side of eq. (8.4). The functional relation corresponding to this solution reads

I
(d)
6 (m2

1,m
2
2,m

2
3,m

2
4,m

2
5,m

2
6; s12, s23, s34, s45, s56, s16,

s13, s14, s15, s24, s25, s26, s35, s36, s46)

= κ123456I
(d)
6 (r123456, r2, r3, r4, r5, r6; r2 − r123456, s23, s34, s45, s56, r6 − r123456,

r3 − r123456, r4 − r123456, r5 − r123456, s24, s25, s26, s35, s36, s46)

+ κ213456I
(d)
6 (r1, r123456, r3, r4, r5, r6; r1 − r123456, r3 − r123456, s34, s45, s56, s16,

s13, s14, s15, r4 − r123456, r5 − r123456, r6 − r123456, s35, s36, s46)

+ κ312456I
(d)
6 (r1, r2, r123456, r4, r5, r6; s12, r2 − r123456, r4 − r123456, s45, s56, s16,

r1 − r123456, s14, s15, s24, s25, s26, r5 − r123456, r6 − r123456, s46)

+ κ412356I
(d)
6 (r1, r2, r3, r123456, r5, r6; s12, s23, r3 − r123456, r5 − r123456, s56,

s16, s13, r1 − r123456, s15, r2 − r123456, s25, s26, s35, s36, r6 − r123456)

+ κ512346I
(d)
6 (r1, r2, r3, r4, r123456, r6; s12, s23, s34, r4 − r123456, r6 − r123456,

s16, s13, s14, r1 − r123456, s24, r2 − r123456, s26, r3 − r123456, s36, s46)

+ κ612345I
(d)
6 (r1, r2, r3, r4, r5, r123456; s12, s23, s34, s45, r5 − r123456, r1 − r123456,

s13, s14, s15, s24, s25, r2 − r123456, s35, r3 − r123456, r4 − r123456), (8.5)

where

r123456 = −λ123456
g123456

, κ123456 = ∂r123456
∂m2

1
, κ213456 = ∂r123456

∂m2
2
, κ213456 = ∂r123456

∂m2
3
,

κ213456 = ∂r123456
∂m2

4
, κ213456 = ∂r123456

∂m2
5
, κ612345 = ∂r123456

∂m2
6
, ri = m2

i . (8.6)

There are several other solutions of the systems of equations (3.4), (8.2), (8.3) allowing us
to reduce the number of variables simultaneously for all integrals in the right-hand side of
eq. (8.4), but the number of variables reducible by the functional relations corresponding to
these solutions were less than 5. We obtained also many solutions leading to the functional
relations reducing the number of variables but not for all integrals simultaneously. Some of
these solutions depend on the square roots of the polynomials in kinematic variables and
masses.
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Reduction of the integral I
(d)
6 , step 2. At the second step of the reduction we take the

arguments of the first integral in the right-hand side of equation (8.5) and substitute them
into the initial functional equation (8.4). By solving the systems of equations composed of
equations (3.4) and equations (8.2), (8.3), for the new unknowns m2

0, s0j , xj we found a
solution allowing us to reduce four variables simultaneously for all integrals. This solution
leads the following reduction formula:

I
(d)
6 (r123456, r2, r3, r4, r5, r6; r2 − r123456, s23, s34, s45, s56, r6 − r123456,

r3 − r123456, r4 − r123456, r5 − r123456, s24, s25, s26, s35, s36, s46)

= κ23456I
(d)
6 (r123456, r23456, r3, r4, r5, r6; r23456 − r123456, r3 − r23456, s34, s45, s56,

r6 − r123456, r3 − r123456, r4 − r123456, r5 − r123456, r4 − r23456,

r5 − r23456, r6 − r23456, s35, s36, s46)

+ κ32456I
(d)
6 (r123456, r2, r23456, r4, r5, r6; r2 − r123456, r2 − r23456, r4 − r23456, s45, s56,

r6 − r123456, r23456 − r123456, r4 − r123456, r5 − r123456, s24, s25, s26,

r5 − r23456, r6 − r23456, s46)

+ κ42356I
(d)
6 (r123456, r2, r3, r23456, r5, r6; r2 − r123456, s23, r3 − r23456, r5 − r23456, s56,

r6 − r123456, r3 − r123456, r23456 − r123456, r5 − r123456, r2 − r23456, s25, s26,

s35, s36, r6 − r23456)

+ κ52346I
(d)
6 (r123456, r2, r3, r4, r23456, r6; r2 − r123456, s23, s34, r4 − r23456, r6 − r23456,

r6 − r123456, r3 − r123456, r4 − r123456, r23456 − r123456, s24, r2 − r23456, s26,

r3 − r23456, s36, s46)

+ κ62345I
(d)
6 (r123456, r2, r3, r4, r5, r23456; r2 − r123456, s23, s34, s45, r5 − r23456,

r23456 − r123456, r3 − r123456, r4 − r123456, r5 − r123456, s24, s25, r2 − r23456, s35,

r3 − r23456, r4 − r23456), (8.7)

where

r23456 = −λ23456
g23456

, κ23456 = ∂r23456
∂m2

2
, κ32456 = ∂r23456

∂m2
3
,

κ42356 = ∂r23456
∂m2

4
, κ52346 = ∂r23456

∂m2
5
, κ62345 = ∂r23456

∂m2
6
. (8.8)

Similar considerations apply to other integrals from the right-hand side of equation (8.5).
Hence with the aid of the functional relation (8.7), the original integral depending on 16
variables will be reduced to a combination of integrals depending on 12 variables.

Reduction of the integral I
(d)
6 , step 3. At the third step, integrals depending on 12

variables were reduced to integrals depending on 9 variables. We substitute arguments of
the first integral in the right-hand side of equation (8.7) into our initial equation (8.4) and
solve the systems of equations composed of equations (3.4) and (8.2), (8.3) for the new
unknowns xj , m2

0.
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One of the obtained solutions yields the required reduction formula

I
(d)
6 (r123456, r23456, r3, r4, r5, r6; r23456 − r123456, r3 − r23456, s34, s45, s56, r6 − r123456,

r3 − r123456, r4 − r123456, r5 − r123456, r4 − r23456, r5 − r23456, r6 − r23456, s35, s36, s46)

= κ3456I
(d)
6 (r123456, r23456, r3456, r4, r5, r6; r23456 − r123456, r3456 − r23456, r4 − r3456,

s45, s56, r6 − r123456, r3456 − r123456, r4 − r123456, r5 − r123456, r4 − r23456,

r5 − r23456, r6 − r23456, r5 − r3456, r6 − r3456, s46)

+ κ4356I
(d)
6 (r123456, r23456, r3, r3456, r5, r6; r23456 − r123456, r3 − r23456, r3 − r3456,

r5 − r3456, s56, r6 − r123456, r3 − r123456, r3456 − r123456,

r5 − r123456, r3456 − r23456, r5 − r23456, r6 − r23456, s35, s36, r6 − r3456)

+ κ5346I
(d)
6 (r123456, r23456, r3, r4, r3456, r6; r23456 − r123456, r3 − r23456, s34,

r4 − r3456, r6 − r3456, r6 − r123456, r3 − r123456, r4 − r123456, r3456 − r123456,

r4 − r23456, r3456 − r23456, r6 − r23456, r3 − r3456, s36, s46)

+ κ6345I
(d)
6 (r123456, r23456, r3, r4, r5, r3456; r23456 − r123456, r3 − r23456, s34,

s45, r5 − r3456, r3456 − r123456, r3 − r123456, r4 − r123456, r5 − r123456,

r4 − r23456, r5 − r23456, r3456 − r23456, s35, r3 − r3456, r4 − r3456), (8.9)

where

r3456 = −λ3456
g3456

, κ3456 = ∂r3456
∂m2

3
, κ4356 = ∂r3456

∂m2
4
,

κ5346 = ∂r3456
∂m2

5
, κ6345 = ∂r3456

∂m2
6
. (8.10)

Functional relations for reducing other integrals from the right-hand side of eq. (8.7) can be
obtained from eq. (8.9) by an appropriate change of variables.

Reduction of the integral I
(d)
6 , step 4. At the next step, we derive a formula for

expressing integrals depending on 9 variables in terms of integrals depending on 7 variables.
Again, as it was done in the previous step, we substitute the arguments of the first integral
on the right-hand side of eq. (8.9) into eq. (8.4), solve appropriate systems of equations for
the new unknowns and get

I
(d)
6 (r123456, r23456, r3456, r4, r5, r6; r23456 − r123456, r3456 − r23456, r4 − r3456,

s45, s56, r6 − r123456, r3456 − r123456, r4 − r123456, r5 − r123456, r4 − r23456,

r5 − r23456, r6 − r23456, r5 − r3456, r6 − r3456, s46)

= κ456I
(d)
6 (r123456, r23456, r3456, r456, r5, r6; r23456 − r123456, r3456 − r23456, r456 − r3456,

r5 − r456, s56, r6 − r123456, r3456 − r123456, r456 − r123456, r5 − r123456, r456 − r23456,

r5 − r23456, r6 − r23456, r5 − r3456, r6 − r3456, r6 − r456)

+ κ546I
(d)
6 (r123456, r23456, r3456, r4, r456, r6; r23456 − r123456, r3456 − r23456, r4 − r3456,

r4 − r456, r6 − r456, r6 − r123456, r3456 − r123456, r4 − r123456, r4 − r23456,

r456 − r123456, r456 − r23456, r6 − r23456, r456 − r3456, r6 − r3456, s46)
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+ κ645I
(d)
6 (r123456, r23456, r3456, r4, r5, r456; r23456 − r123456, r3456 − r23456, r4 − r3456,

s45, r5 − r456, r456 − r123456, r3456 − r123456, r4 − r123456, r5 − r123456, r4 − r23456,

r5 − r23456, r456 − r23456, r5 − r3456, r456 − r3456, r4 − r456), (8.11)

where
r456 = −λ456

g456
, κ456 = ∂r456

∂m2
4
, κ546 = ∂r456

∂m2
5
, κ645 = ∂r456

∂m2
6
. (8.12)

Notice that all integrals in the right-hand side of equation (8.11) depend on 7 variables.
These integrals may be expressed in terms of integrals depending on 6 variables.

Reduction of the integral I
(d)
6 , step 5. The final formula for the first integral on the

right-hand side of eq. (8.11) was derived by the same method which was used in the previous
steps and reads

I
(d)
6 (r123456, r23456, r3456, r456, r5, r6; r23456 − r123456, r3456 − r23456, r456 − r3456,

r5 − r456, s56, r6 − r123456, r3456 − r123456, r456 − r123456, r5 − r123456, r456 − r23456,

r5 − r23456, r6 − r23456, r5 − r3456, r6 − r3456, r6 − r456)

= κ56I
(d)
6 (r123456, r23456, r3456, r456, r56, r6; r23456 − r123456, r3456 − r23456, r456 − r3456,

r56 − r456, r6 − r56, r6 − r123456, r3456 − r123456, r456 − r123456, r56 − r123456,

r456 − r23456, r56 − r23456, r6 − r23456, r56 − r3456, r6 − r3456, r6 − r456)

+ κ65I
(d)
6 (r123456, r23456, r3456, r456, r5, r56; r23456 − r123456, r3456 − r23456, r456 − r3456,

r5 − r456, r6 − r56, r56 − r123456, r3456 − r123456, r456 − r123456, r5 − r123456,

r456 − r23456, r5 − r23456, r56 − r23456, r5 − r3456, r56 − r3456, r56 − r456), (8.13)

where
r56 = −λ56

g56
, κ56 = ∂r56

∂m2
5
, κ65 = ∂r56

∂m2
6
. (8.14)

Analogous formulae for the reduction of other integrals on the right-hand side of eq. (8.11)
can be obtained form eq. (8.13) by changing variables appropriately. This completes the
derivation of the reduction formulae for the integral I(d)

6 .
Composition of equations (8.5), (8.7), (8.9), (8.11), (8.13) and all required relations

that follow from these equations by changing variables as mentioned previously, gives a
formula for the complete functional reduction of the integral I(d)

6 . This formula represents
the integral depending on 21 variables as a sum of 720 integrals, each depending only on 6
variables. All the resulting integrals in this sum have the form

I
(d)
6 (m2

i ,m
2
j ,m

2
k,m

2
l ,m

2
r ,m

2
s; m2

j −m2
i ,m

2
k −m2

j ,m
2
l −m2

k,m
2
r −m2

l ,

m2
s −m2

r ,m
2
s −m2

i ,m
2
k −m2

i ,m
2
l −m2

i ,m
2
r −m2

i ,m
2
l −m2

j ,

m2
r −m2

j ,m
2
s −m2

j ,m
2
r −m2

k,m
2
s −m2

k,m
2
s −m2

l ), (8.15)

where m2
i , m2

j , m2
k, m2

l , m2
r, m2

s are the ratios of polynomials in masses and kinematic
invariants. The coefficients in front of these integrals are also the ratios of polynomials in
masses and kinematic invariants.
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The final formula of the reduction is too lengthy to display here, but we provide it< in
a computer-readable ancillary file attached to this article.

8.2 Dimensional recurrence relation and series representation

An analytic result for the integral I(d)
6 can be obtained, for example, by solving the

dimensional recurrence relation or by evaluating the Feynman parameter integral.
The dimensional recurrence relation for the integral I(d)

6 depending on the MNV reads

(d−5)I(d+2)
6 (r123456, r23456, r3456, r456, r56, r6;r23456−r123456, r3456−r23456, r456−r3456,

r56−r456, r6−r56, r6−r123456, r3456−r123456, r456−r123456, r56−r123456,

r456−r23456, r56−r23456, r6−r23456, r56−r3456, r6−r3456, r6−r456)

=−2r123456I
(d)
6 (r123456, r23456, r3456, r456, r56, r6;r23456−r123456, r3456−r23456,

r456−r3456, r56−r456, r6−r56, r6−r123456, r3456−r123456, r456−r123456, r56−r123456,

r456−r23456, r56−r23456, r6−r23456, r56−r3456, r6−r3456, r6−r456)

−I(d)
5 (r23456, r3456, r456, r56, r6;r3456−r23456, r456−r3456, r56−r456, r6−r56, r6−r23456,

r456−r23456, r56−r23456, r56−r3456, r6−r3456, r6−r456). (8.16)

Notice that the inhomogeneous term in this equation is an integral depending on the MNV.
The solution of this recurrence relation is straightforward but cumbersome. The result is a
bit lengthy and for this reason it will not be presented in this article.

We obtained the following Feynman parameter representation of this integral:

I
(d)
6 (r123456, r23456, r3456, r456, r56, r6; {sij})

= Γ
(

6− d

2

)∫ 1

0
. . .

∫ 1

0
x4

1x
3
2x

2
3x4 h

d
2−6
6 dx1 . . . dx5, (8.17)

where

h6 = r123456 − (r123456 − r23456)x2
1 − (r23456 − r3456)x2

1x
2
2 − (r3456 − r456)x2

1x
2
2x

2
3

− (r456 − r56)x2
1x

2
2x

2
3x

2
4 − (r56 − r6)x2

1x
2
2x

2
3x

2
4x

2
5, (8.18)

and

sij = m2
j −m2

i , (j > i),
m2

1 = r123456, m
2
2 = r23456, m

2
3 = r3456, m

2
4 = r456, m

2
5 = r56, m

2
6 = r6. (8.19)

A series representation of the integral I(d)
6 can be obtained by the same method which

was used in deriving the series representation of integrals I(d)
3 , I(d)

4 , I(d)
5 . Expanding the

integrand of (8.17) in terms of the variables

z1 = r123456 − r23456
r123456

, z2 = r123456 − r23456
r123456

, z3 = r123456 − r23456
r123456

,

z4 = r123456 − r23456
r123456

, z5 = r123456 − r23456
r123456

, (8.20)
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assuming that all |zj | < 1 and integrating over x1,. . . ,x5 term by term, we get

I
(d)
6 (m2

1,m
2
2,m

2
3,m

2
4,m

2
5,m

2
6; {sij})

= r
d
2−6
123456
120 Γ

(
6− d

2

) ∞∑
n1,n2,n3,n4,n5=0

(
6− d

2

)
n1+n2+n3+n4+n5

(
5
2

)
n1+n2+n3+n4+n5(

7
2

)
n1+n2+n3+n4+n5

× (2)n2+n3+n4+n5

(3)n2+n3+n4+n5

(
3
2

)
n3+n4+n5(

5
2

)
n3+n4+n5

(1)n4+n5

(2)n4+n5

(
1
2

)
n5(

3
2

)
n5

zn1
1
n1!

zn2
2
n2!

zn3
3
n3!

zn4
4
n4!

zn5
5
n5! . (8.21)

One can see that the summand of this series is very similar to that of the series given in
eqs. (5.25), (6.26), (7.16).

9 Functional reduction of integrals with special kinematics

The procedure of functional reduction must be modified if the Gram determinant g12...n = 0.
In this case, the integral I(d)

n can be reduced [36] to a combination of integrals I(d)
n−1. The

functional reduction can be applied to integrals obtained after such a reduction. Notice
that if the lower order Gram determinant gij..k vanishes, then it means that the Gram
determinant g12...n also vanishes [37]. A modification of the functional reduction is needed
in the case when some kinematic invariants sij vanish.

If some sij = 0 (rij →∞), then the corresponding last step of the functional reduction
must be skipped. There is no further functional reduction of integrals with such values of
kinematic invariants. Analytic results for these integrals are simpler than those for integrals
depending on general kinematics. We will consider derivation of these results integral by
integral.

The integral I
(d)
3 at s23 = 0. If, at the last step of the functional reduction, the

kinematic invariant of the integral I(d)
3 , say s23 = 0, then the application of formula (5.11)

should be skipped.
The Feynman parameter representation of this integral reads

I3(r123, r2, r3; 0, r3 − r123, r2 − r123)

= −Γ
(

3− d

2

)∫ 1

0

∫ 1

0
x1[r123 − (r123 − r3)x2

1 − (r3 − r2)x2
1x2]

d
2−3dx1dx2. (9.1)

Notice a small difference between this expression and the Feynman parameter representation
of the integral I(d)

3 given in eq. (5.22). The integral (9.1) can be easily evaluated. First,
integrating with respect to x1 and then with respect to x2 yields

I
(d)
3 (r123, r2, r3; 0, r3 − r123, r2 − r123) = −π

2 sin πd
2 Γ

(
d
2 − 1

)
×

 r
d
2−2
3

r3 − r123
F1

(
1, 1, 2− d

2 , 2; r3 − r2
r3 − r123

,
r3 − r2
r3

)
− r

d
2−2
123

r2 − r3
ln r123 − r2
r123 − r3

 . (9.2)
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The result for this integral may be obtained in a slightly different form. Expanding the
integrand of (9.1) with respect to the variables

z1 = r123 − r3
r123

, z2 = r3 − r2
r123

, (9.3)

assuming |z1| < 1, |z2| < 1 and integrating with respect to x1 and x2 term by term, we get
the series representation

I
(d)
3 (r123, r2, r3; 0, r3 − r123, r2 − r123)

= −r
d
2−3
123
2 Γ

(
3− d

2

) ∞∑
n1,n2=0

(
3− d

2

)
n1+n2

(1)n1+n2

(2)n1+n2

(1)n2

(2)n2

zn1
1
n1!

zn2
2
n2! . (9.4)

Another series representation can be obtained by a slight modification of the above
derivation. We expand the integrand with respect to z1 and integrate over x1 first. Finally,
performing the integration with respect to x2, we get the result in terms of two generalized
hypergeometric series 3F2

I
(d)
3 (r123, r2, r3; 0, r3 − r123, r2 − r123) = −r

d
2−3
123
2 Γ

(
3− d

2

)
×
{
z1 + z2
z2

3F2

[
3− d

2 , 1, 1 ;
2, 2 ; z1 + z2

]
− z1
z2

3F2

[
3− d

2 , 1, 1 ;
2, 2 ; z1

]}
. (9.5)

The analytical expression for the integral can also be obtained by solving dimensional
recurrence relation

(d− 2)I(d+2)
3 (r123, r2, r3; 0, r3 − r123, r2 − r123)

= −2r123I
(d)
3 (r123, r2, r3; 0, r3 − r123, r2 − r123)− I(d)

2 (r2, r3; 0). (9.6)

Here the integral I(d)
2 is a combination of two tadpole integrals. The solution of this

dimensional recurrence relation reads

I
(d)
3 (r123, r2, r3; 0, r3 − r123, r2 − r123)

= πr
d
2−2
123

(r2 − r3) sin πd
2 Γ

(
d
2

) {d− 2
4 ln(r123 − r2)− d− 2

4 ln(r123 − r3)

+1
2

(
r2
r123

) d
2−1

2F1

[
1, d−2

2 ;
d
2 ;

r2
r123

]
− 1

2

(
r3
r123

) d
2−1

2F1

[
1, d−2

2 ;
d
2 ;

r3
r123

]}
. (9.7)

An arbitrary function, invariant under d→ d+ 2, appearing in the solution of eq. (9.6), was
obtained by solving the system of differential equations with respect to kinematic variables.

As was shown in ref. [38], different representations of the Feynman integrals can be
used to find new relations among hypergeometric functions. In particular, a comparison of
eq. (9.5) with eq. (9.7) yields the following relationship:

3F2

[
3− d

2 , 1, 1 ;
2, 2 ; z

]
= 2
z(d− 4)

{
2(1− z) d−2

2

d− 2 2F1

[
1, d−2

2 ;
d
2 ; 1− z

]
+ ln z + ψ

(
d

2 − 1
)

+ γ

}
,

(9.8)
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where the function ψ(x) is the logarithmic derivative of the Euler’s Γ function, ψ(x) =
d ln Γ(x)/dx, and γ = 0.57721566 . . . denotes Euler’s or Mascheroni’s constant [39].

By comparing eq. (9.2) with eq. (9.7), we get the following relationship:

F1

(
1, 1, 2− d

2 , 2;x, y
)

= 2
(d− 2)y

{
(1− y) d

2−1

x− 1 2F1

[
1, 1 ;
d
2 ;

x(1− y)
y(1− x)

]
+ 2F1

[
1, 1 ;
d
2 ;

x

y

]}
.

(9.9)

This formula can be used to evaluate a high-order series expansion in ε = (4− d)/2 of the
hypergeometric Appell function F1. Such an expansion can easily be derived, as expansion
of the hypergeometric functions 2F1 from eq. (9.9) is known to any order in ε.

The integral I
(d)
4 at s34 = 0. The situation concerning the integral I(d)

4 is very similar
to the case of the integral I(d)

3 . If, for example, a kinematic variable of the integral I(d)
4 in

equation (6.9), say s34 = 0, then the application of relation (6.9) must be skipped.
An analytic result for the integral I(d)

4 in this case can also be obtained by solving the
dimensional recurrence relation

(d− 3)I(d+2)
4 (r1234, r234, r34, r4;

r234 − r1234, r34 − r234, 0, r4 − r1234, r4 − r234, r34 − r1234)

= −2r1234I
(d)
4 (r1234, r234, r34, r4;

r234 − r1234, r34 − r234, 0, r4 − r1234, r4 − r234, r34 − r1234)

− I(d)
3 (r234, r34, r4; 0, r4 − r234, r34 − r234). (9.10)

In order to solve this equation, we used the analytic result (9.7) for the integral I(d)
3 and

obtained

I
(d)
4 (r1234, r234, r34, r4;

r234 − r1234, r34 − r234, 0, r4 − r1234, r4 − r234, r34 − r1234)

= r
d
2
1234 c4(r1234, r234, r34, r4)

Γ
(
d−3

2

)
sin πd

2

− π

8 sin πd
2 Γ

(
d
2

)
r1234(r34 − r4)

×
{

(d− 2)r
d
2−2
234

[
ln(r234 − r34)− ln(r234 − r4)

]
2F1

[
1, d−3

2 ;
d−2

2 ;
r234
r1234

]

+ 2r
d
2−1
34

r234 − r34
F3

(
1, 1, 1, d− 3

2 ,
d

2 ; r34
r34 − r234

,
r34
r1234

)

− 2r
d
2−1
4

r234 − r4
F3

(
1, 1, 1, d− 3

2 ,
d

2 ; r4
r4 − r234

,
r4
r1234

)}
, (9.11)
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where

c4(r1234, r234, r34, r4)

= π
3
2

4r
5
2
1234(r34 − r4)(r1234 − r234) 1

2

{
ln(r234 − r34)− ln(r234 − r4)

− ln
√
r1234 − r34 −

√
r1234 − r234√

r1234 − r34 +
√
r1234 − r234

+ ln
√
r1234 − r4 −

√
r1234 − r234√

r1234 − r4 +
√
r1234 − r234

}
. (9.12)

The definition of the hypergeometric Appell function F3 is given in the appendix. The
function c4(r1234, r234, r34, r4) appeared as an arbitrary periodic function in the solution of
the dimensional recurrence relation for the integral I(d)

4 . This function was obtained by
solving the system of differential equations which was derived from the system of differential
equations for the integral I(d)

4 .
The integral I(d)

4 can also be evaluated using the Feynman parameter representation.
In the case under consideration, the integral representation is slightly different from the
representation given in (6.23)

I
(d)
4 (r1234, r234, r3, r4; r234 − r1234, r3 − r234, 0, r4 − r1234, r4 − r234, r3 − r1234)

= Γ
(

4− d

2

)∫ 1

0

∫ 1

0

∫ 1

0
x2

1x2h
d
2−4
4 dx1dx2dx3, (9.13)

where
h4 = r1234 − (r1234 − r234)x2

1 − (r234 − r3)x2
1x

2
2 − (r3 − r4)x2

1x
2
2x3. (9.14)

The difference between this h4 and h4 from eq. (6.24) is only in the last term. Expanding
the integrand of (9.13) with respect to three variables

z1 = r1234 − r234
r1234

, z2 = r234 − r3
r1234

, z3 = r3 − r4
r1234

, (9.15)

assuming that |zj | < 1, (j = 1, 2, 3), and integrating with respect to x1, x2, x3 term by
term, we then obtain

I
(d)
4 (r1234, r234, r34, r4;r234−r1234, r34−r234,0,

r4−r1234, r4−r234, r34−r1234)

= 1
6Γ
(

4− d2

)
r

d
2−4
1234

∞∑
n1,n2,n3=0

(
4− d2

)
n1+n2+n3

(
3
2

)
n1+n2+n3(

5
2

)
n1+n2+n3

(1)n2+n3

(2)n2+n3

(1)n3

(2)n3

zn1
1 zn2

2 zn3
3

n1!n2!n3! .

Note that the summand of this series is slightly different from the summand of the integral
I

(d)
4 for general kinematics in eq. (6.26).

The integral I
(d)
5 at s45 = 0. If one of the kinematic variables of the integral I(d)

5 , say
s45 = 0, then the application of the reduction relation (7.9) must be skipped.

An analytic result for such an integral can be obtained either by solving the dimen-
sional recurrence relation or by calculating the Feynman parameter integral. Solving the
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dimensional recurrence relation for the integral I(d)
5 is somewhat cumbersome and the result

is relatively long. For these reasons, we will not present it here. Instead, we have derived
the expression for the integral I(d)

5 in terms of multiple hypergeometric series. The Feynman
parameter representation of this integral reads

I
(d)
5 (r12345, r2345, r345, r4, r5; r2345 − r12345, r345 − r2345, r4 − r345, 0, r5 − r12345,

r345 − r12345, r4 − r12345, r4 − r2345, r5 − r2345, r5 − r345)

= −Γ
(

5− d

2

)∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
x3

1x
2
2x3h

d
2−5
5 dx1dx2dx3dx4, (9.16)

where

h5 = r12345 − (r12345 − r2345)x2
1

− (r2345 − r345)x2
1x

2
2 − (r345 − r4)x2

1x
2
2x

2
3 − (r4 − r5)x2

1x
2
2x

2
3x4. (9.17)

Expanding the Feynman parameter integrand with respect to the four variables

z1 = r12345 − r2345
r12345

, z2 = r2345 − r345
r12345

, z3 = r345 − r4
r12345

, z4 = r4 − r5
r12345

, (9.18)

and integrating over x1,. . . ,x4 term by term then yields

I
(d)
5 (r12345, r2345, r345, r4, r5; r2345 − r12345, r345 − r2345, r4 − r345, 0, r5 − r12345,

r345 − r12345, r4 − r12345, r4 − r2345, r5 − r2345, r5 − r345)

= − 1
24Γ

(
5− d

2

) ∞∑
n1,n2,n3,n4=0

(
5− d

2

)
n1+n2+n3+n4

× (2)n1+n2+n3+n4

(3)n1+n2+n3+n4

(
3
2

)
n2+n3+n4(

5
2

)
n2+n3+n4

(1)n3+n4

(2)n3+n4

(1)n4

(2)n4

zn1
1
n1!

zn2
2
n2!

zn3
3
n3!

zn4
4
n4! . (9.19)

Note a slight difference between this representation and series representation (7.16) of the
integral I(d)

5 for general kinematics.

The integral I
(d)
6 at s56 = 0. The integral I(d)

6 for the case when one of the kinematic
variables, say s56 = 0, should be considered in the same way as the integral I(d)

5 . The
application of the reduction formula (8.13) in the last step must be skipped.

The analytic calculation of the integral can be performed either by solving the dimen-
sional recurrence relation or by evaluating the Feynman parameter integral. The solution
of the dimensional recurrence relation is straightforward but cumbersome and the result
is relatively long. For this reason the derivation of the solution and the result will not be
considered in the present paper.

The parametric representation of the integral reads

I
(d)
6 (r123456, r23456, r3456, r456, r5, r6; r23456 − r123456, r3456 − r23456, r456 − r3456,

r5 − r456, 0, r6 − r123456, r3456 − r123456, r5 − r123456, r456 − r23456,

r456 − r123456, r5 − r23456, r6 − r23456, r5 − r3456, r6 − r3456, r6 − r456)

= Γ
(

6− d

2

)∫ 1

0
. . .

∫ 1

0
x4

1x
3
2x

2
3x4h

d
2−6
6 dx1dx2dx3dx4dx5, (9.20)
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where

h6 = r123456 − (r123456 − r23456)x2
1 − (r23456 − r3456)x2

1x
2
2

− (r3456 − r456)x2
1x

2
2x

2
3 − (r456 − r5)x2

1x
2
2x

2
3x

2
4 − (r5 − r6)x2

1x
2
2x

2
3x

2
4x5. (9.21)

The last term of h6 here differs from that given in eq. (8.18). Expanding the integrand with
respect to the five variables

z1 = r123456 − r23456
r123456

, z2 = r23456 − r3456
r123456

,

z3 = r3456 − r456
r123456

, z4 = r456 − r5
r123456

, z5 = r5 − r6
r123456

, (9.22)

and integrating over x1,. . . ,x5 term by term, we get the multiple series representation

I
(d)
6 (r123456, r23456, r3456, r456, r5, r6; r23456 − r123456, r3456 − r23456, r456 − r3456,

r5 − r456, 0, r6 − r123456, r3456 − r123456, r456 − r123456, r5 − r123456, r456 − r23456,

r5 − r23456, r6 − r23456, r5 − r3456, r6 − r3456, r6 − r456)

= r
d
2−6
123456
120 Γ

(
6− d

2

) ∞∑
n1,n2,n3,n4,n5=0

(
6− d

2

)
n1+n2+n3+n4+n5

(
5
2

)
n1+n2+n3+n4+n5(

7
2

)
n1+n2+n3+n4+n5

× (2)n2+n3+n4+n5

(3)n2+n3+n4+n5

(
3
2

)
n3+n4+n5(

5
2

)
n3+n4+n5

(1)n4+n5

(2)n4+n5

(1)n5

(2)n5

zn1
1
n1!

zn2
2
n2!

zn3
3
n3!

zn4
4
n4!

zn5
5
n5! . (9.23)

Note similarities between summand of this multiple series and the summands of (9.4), (9.16), (9.19).
This concludes our consideration of integrals for special values of kinematic variables.

10 General algorithm of the functional reduction

Comparing expressions (4.11), (5.12), (6.11), (7.5), (7.6), (7.8), (7.9), (8.5), (8.7), (8.9), (8.11), (8.13),
it is not hard to see common features and similarities between them. Based on these ob-
servations, we have developed a regular algorithm for obtaining final reduction formulae,
which is valid for the integrals considered in the article. We assume that the algorithm can
be applied to integrals I(d)

n with n > 6 as well.
Final functional reduction formulae for the integrals I(d)

2 , . . . , I(d)
6 can be obtained by

exploiting the following algorithm:

• write down the term

κ1...nκ2...n. . .κn−1 n I(d)
n (m2

1,m
2
2, . . .m

2
n; s12, s23, . . .) (10.1)

• replace in the integral sij → m2
j −m2

i (j > i)

• replace in the integral m2
1 → r1...n, m2

2 → r2...n, . . .,m
2
n → rn

• replace κij... → ∂rij...

∂m2
i
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• generate n!− 1 terms by symmetrizing the term (10.1) with respect to the indices
1, 2, . . .n and add all these terms to (10.1).

All steps are very straightforward and easily achieved with a computer program. This
algorithm works perfectly for the integrals I(d)

2 ,. . . ,I(d)
6 . We have verified numerically that

it is also valid for the integrals I(d)
7 , I(d)

8 . Notice that the number of terms in the final
reduction formula for massless integrals is n!/2.

We found that the parametric representation of the integral I(d)
n depending on the

MNV can be written as

I(d)
n (m2

1, . . . ,m
2
n; {sik = m2

k −m2
i |k > i})

= (−1)nr
d
2−n
1...n

2n−1 Γ
(
n− d

2

)∫ 1

0

dt1√
t1

∫ t1

0

dt2√
t2
. . .

∫ tn−2

0

h
d
2−n
n√
tn−1

dtn−1, (10.2)

where hn is a polynomial linear in the integration variables

hn = 1− z1t1 − z2t2 − . . .− zn−1tn−1, zi =
m2
i −m2

i+1
m2

1
. (10.3)

The parametric representation of integrals depending on the special kinematics consid-
ered in section 9 differs from that of (10.2) and reads

I(d)
n (m2

1, . . . ,m
2
n; {sn−1,n = 0; sik = m2

k −m2
i |i < k})

= (−1)nr
d
2−n
1...n

2n−2 Γ
(
n− d

2

)
×
∫ 1

0

dt1√
t1

∫ t1

0

dt2√
t2
. . .

∫ tn−4

0

dtn−3√
tn−3

∫ tn−3

0

dtn−2
tn−2

∫ tn−2

0
h

d
2−n
n dtn−1, (10.4)

where hn is given in (10.3). The integration with respect to tn−1 can be performed explicitly.
As a result of this integration, the integral I(d)

n that depends on n − 1 variables will be
expressed as a difference of two functions, each depending on n− 2 variables. In section 9
such a representation was derived for the integrals I(d)

3 , I(d)
4 .

The multiple series representation of the integral I(d)
n for n = 2, . . . , 6 was given in the

previous sections. The generic form of all these series is

Tk(a, {βj}; {γi}; z1, . . . , zk)

=
∞∑

n1,...,nk=0
(a)n1+n2...+nk

(β1)n1+n2...+nk

(γ1)n1+n2...+nk

(β2)n2+...+nk

(γ2)n2+...+nk

. . .
(βk)nk

(γk)nk

zn1
1
n1! . . .

znk
k

nk!
. (10.5)

This representation holds for integrals depending on general kinematics as well as for
integrals depending on the special kinematics considered in section 9. As one can see from
the considered examples, the integral I(d)

n depending on general kinematics can be written
in terms of the function Tn−1 with the parameters

a = n− d

2 , βk = n− k
2 , γk = βk + 1, 1 ≤ k ≤ n− 1. (10.6)
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The integral I(d)
n depending on the special kinematics can be written in terms of the function

Tn−1 with the parameters

a = n− d

2 , βn−1 = 1, βk = n− k
2 , 1 ≤ k ≤ n− 2;

γj = βj + 1, 1 ≤ j ≤ n− 1. (10.7)

We assume that for n > 6 the integrals I(d)
n depending on generic as well as special

kinematics can also be expressed in terms of the hypergeometric series given in (10.5) with
the parameters βk, γk defined in (10.6), (10.7).

Note that the functions T1 and T2 can be identified with the already known hypergeo-
metric functions 2F1 and S1:

T1(a, β1; γ1; z1) = 2F1

[
a, β1 ;
γ1 ; z1

]
,

T2(a, β1, β2; γ1, γ2; z1, z2) = S1(a, β1, β2, γ1, γ2; z2, z1). (10.8)

The function Tk(a, {βi}; {γj}; {zn}) can be considered as a generalization of the hypergeo-
metric functions S1 and 2F1.

At present, there are several publications where the series representations of one-loop
integrals were considered. In ref. [40], it was shown that the n-point one-loop integral
can be represented by a generalized hypergeometric power series depending on n(n− 1)/2
variables. In refs. [41, 42], the representation of the general scalar n-point one-loop Feynman
integral in terms of the n(n+ 1)/2-fold multiple hypergeometric series was derived by using
Mellin-Barnes technique.

We expect that our representation of one-loop integrals in terms of the (n− 1)-fold hy-
pergeometric series will be useful for the analytic continuations as well as for the ε expansion
of one-loop integrals. We also hope that the parametric representations (10.2), (10.4), (A.33)
can be of interest in other approaches for evaluating Feynman integrals, for example, for
methods based on the intersection theory proposed in ref. [43] or just for direct evaluation
of integrals at fixed integer values of the dimension d.

11 Conclusions and outlook

In this paper, we provided a systematic approach for reducing a generic n-point one-loop
integral with arbitrary masses and kinematic invariants to a linear combination of integrals
that depend on n variables. The integrals depending on the MNV encountered at the
last stage of the reduction were expressed in terms of the multiple hypergeometric series
depending on n−1 dimensionless variables. We have not found functional relations allowing
for a further reduction in the number of variables. Probably, some additional relations
among integrals depending on the MNV can be obtained for integer values of the space-
time dimension d. A new class of identities for Feynman integrals valid at fixed integer
value of the dimension d was discovered in ref. [44]. Such identities were derived by using
Schouten identities which are valid only for integer d. It will be interesting to investigate
the applicability of the method of ref. [44] to our integrals depending on the MNV.
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We have shown that analytic results for integrals with the MNV can be derived by
solving dimensional recurrence relations. The explicit expressions for the integrals I(d)

2 , I(d)
3 ,

I
(d)
4 as solutions of the dimensional recurrence relations were given. Arbitrary periodic
functions appearing in the solutions of the dimensional recurrence relations were found by
solving systems of differential equations.

The choice of integrals depending on the MNV is not unique. One can find relationships
among integrals depending on different minimal sets of variables using our functional
relations and rewrite the results in the most preferable set of functions. In section 4, such
a relationship was given for the integral I(d)

2 . Relevant relationship for the integral I(d)
3

was presented in ref. [38] and analogous relationships will be given for other integrals in a
forthcoming publication.

We expect that our representation of one-loop integrals can be helpful for deriving
ε = (4 − d)/2 expansion of these integrals. For instance, multiple series (10.5) can be
expanded in ε by exploiting the methods proposed in refs. [45, 46] or by solving the system
of differential equations for this series. In the latter case, to effectively solve the problem,
one should construct an appropriate alphabet. As shown in ref. [47], the alphabet for the
one-loop integrals can be expressed in terms of the Gram determinants. We expect that
our representation of integrals in terms of multiple hypergeometric series with arguments
depending explicitly on the Gram determinants, can be useful for finding a canonical basis
used to solve a system of differential equations as well as for finding an alphabet of these
integrals.

The new set of hypergeometric series Tk, encountered in computation of integrals
depending on the MNV, will be studied in detail in our future publications.

We plan to formulate a systematic procedure based on functional relations that would
allow analytic continuation of Feynman integrals to different kinematic domains. As it
was discovered in the course of our preliminary investigation (see also [38]), the functional
relations can help to find still unknown relationships among hypergeometric functions.

One of our next directions of research will be the derivation and investigation of
functional relations and functional reduction of multi-loop integrals. Integrating algebraic
relations for products of propagators with loop integrals, one can easily get functional
equations for multi-loop integrals. For example, integrating the three term relation (5.2)
multiplied by the one-loop vertex type integral depending on k1, one can get a functional
equation for the two-loop pentagon integral. Certainly, the functional reduction of multi-
loop integrals will be more complicated. It will include integrals corresponding to diagrams
with a different topology but with the same leading Landau singularity.

We also plan to apply the functional reduction method for evaluating the Feynman
diagrams required for computing radiative corrections for modern experiments.
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A Useful formulae for kinematic determinants, hypergeometric func-
tions and parametric representation of integrals

A.1 Kinematic determinants

The modified Cayley and the Gram determinants occurring in many formulae of the paper
are defined as

∆n ≡ ∆n({p1,m1}, . . . {pn,mn}) =

∣∣∣∣∣∣∣∣∣∣
Y11 Y12 . . . Y1n
Y12 Y22 . . . Y2n
...

... . . . ...
Y1n Y2n . . . Ynn

∣∣∣∣∣∣∣∣∣∣
, (A.1)

Yij = m2
i +m2

j − sij , (A.2)

Gn−1 ≡ Gn−1(p1, . . . , pn) = −2

∣∣∣∣∣∣∣∣∣∣
S11 S12 . . . S1 n−1
S21 S22 . . . S2 n−1
...

... . . . ...
Sn−1 1 Sn−1 2 . . . Sn−1 n−1

∣∣∣∣∣∣∣∣∣∣
, (A.3)

Sij = sin + sjn − sij , (A.4)

where s2
ij = (pi − pj)2, pi are the combinations of external momenta flowing through the

i-th lines, respectively, and mi is the mass of the i-th line. We will use throughout the
article indexed notation for ∆n and Gn−1

λi1i2...in = ∆n({pi1 ,mi1}, {pi2 ,mi2}, . . . , {pin ,min}),
gi1i2...in = Gn−1(pi1 , pi2 , . . . , pin). (A.5)

Our results depend on the ratios of λi1i2...in and gi1i2...in and, therefore, it is convenient to
introduce the notation

rij...k = −λij...k
gij...k

. (A.6)

Coefficients in front of the integrals in reduction formulae are expressed in terms of derivatives
of ri...k with respect to masses. For convenience we use the following shorthand notation:

κjrj1...jr−1jr+1...jn = ∂rj1...jr...jn
∂m2

jr

. (A.7)

The imaginary part of r is rather simple. Using
n∑
j=1

∂jλi1...in = −gi1...in = −Gn−1(pi1 , pi2 , . . . , pin), (A.8)

one shows that to all orders in η

λi1i2...in({m2
r − iη}) = λi1i2...in({m2

r}) + igi1i2...in η, (A.9)

and, therefore, the causal η prescription for r is (with the same η for all masses)

rij...k|m2
j−iη

= rij...k|m2
j
− iη. (A.10)
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A.2 Hypergeometric functions for the integrals I
(d)
2 , I

(d)
3 , I

(d)
4

In this subsection, we provide a collection of formulae related to different hypergeometric
functions which were encountered in the derivation of some results of the paper.

A.2.1 Series representation

Series representation of the Appell function F1 [48]

F1(α, β, β′, γ;x, y) =
∞∑

m,n=0

(α)m+n(β)m(β′)n
(γ)m+n

xm

m!
yn

n! . (A.11)

The Appell function F3 is defined by [48]

F3(α, α′, β, β′, γ;x, y) =
∞∑

m,n=0

(α)m(α′)n(β)m(β′)n
(γ)m+n

xmyn

m! n! . (A.12)

The Lauricella-Saran function FS was introduced in [49, 50] and it is defined by a triple
hypergeometric series

FS(α1, α2, α2, β1, β2, β3; γ1, γ1, γ1;x, y, z)

=
∞∑

r,m,n=0

(α1)r(α2)m+n(β1)r(β2)m(β3)n
(γ1)r+m+n

xrymzn

r! m! n! . (A.13)

A relation between the hypergeometric Lauricella-Saran functions FS and yet another
Lauricella-Saran function FN [51]

FS(α1, α2, α2, β1, β2, β3; γ1, γ1, γ1;x, y, z)

= zβ2

yβ2
FN

(
β2, α1, α2, β2 + β3, β1, β2 + β3;β2 + β3, γ1, γ1; 1− z

y
, x, z

)
, (A.14)

where

FN (α1, α2, α3, β1, β2, β1; γ1, γ2, γ2;x, y, z)

=
∞∑

m,n,p=0

(α1)m(α2)n(α3)p(β1)m+p(β2)n
(γ1)m(γ2)n+p

xm

m!
yn

n!
zp

p! . (A.15)

More relations between the FS and FN functions can be found in ref. [51].
The generalized Kampé de Fériet hypergeometric function S1 in equation (5.27) is

defined by a double series

S1
(
α, α′, β, γ, δ;x, y

)
=

∞∑
m,n=0

(α)m+n(α′)m+n(β)m
(γ)m+n(δ)m

xm

m!
yn

n! . (A.16)

The domain of convergence of this series |x|+ |y| < 1. The analytic continuation formula
for the function S1, which was used in the derivation of eq. (5.27) reads [31]

S1
(
α, α′, β, γ, δ;x, y

)
= Γ (α′ − α) Γ (γ)

Γ (γ − α) Γ (α′)(−y)−αF2

(
α, β, α+ 1− γ, δ, α+ 1− α′;−x

y
,

1
y

)
+ Γ (α− α′) Γ (γ)

Γ (γ − α′) Γ (α)(−y)−α′F2

(
α′, β, α′ + 1− γ, δ, α′ + 1− α;−x

y
,

1
y

)
. (A.17)

– 41 –



J
H
E
P
0
6
(
2
0
2
2
)
1
5
5

The function F3 can be reduced to the function F1 by means of [39]

F3(α, α′, β, β′, α+ α′;x, y) = (1− y)−β′F1

(
α, β, β′, α+ α′;x, y

y − 1

)
. (A.18)

A similar reduction formula takes place for the Appell function F1

F1
(
a, b, b′, b+ b′;w, z

)
= (1− z)−a 2F1

[
a, b ;
b+ b′ ;

w − z
1− z

]
. (A.19)

A.2.2 Integral representations

Euler’s integral representation of the hypergeometric Gauss function 2F1

2F1 (α, β, γ, x) = Γ (γ)
Γ (β) Γ (γ − β)

∫ 1

0
duuβ−1(1− u)γ−β−1(1− ux)−α. (A.20)

β > 0, γ − β > 0. (A.21)

Euler’s integral representation of the Appell function F1

F1(α, β, β′, γ;x, y) = Γ (γ)
Γ (α) Γ (γ − α)

∫ 1

0
duuα−1(1− u)γ−α−1(1− ux)−β(1− uy)−β′ .

(A.22)

Euler’s integral representation of the Appell function F3

F3
(
α, α′, β, β′, γ;x, y

)
= Γ (γ)

Γ (β) Γ (β′) Γ (γ − β − β′)

×
∫ ∫ u+v≤1

u≥0, v≥0

du dv uβ−1vβ
′−1(1− u− v)γ−β−β′−1

(1− ux)α(1− vy)α′ , (A.23)

Re(β) > 0, Re(β′) > 0, Re(γ − β − β′) > 0. (A.24)

An integral representation of the function S1 [31]

S1
(
α, α′, β, γ, δ;x, y

)
= Γ (γ)

Γ (α) Γ (γ − α)

∫ 1

0
duuα−1(1− u)γ−α−1F2(α′, β, 1, δ, 1;ux, uy)

= Γ (γ) Γ (δ)
Γ (α) Γ (γ − α) Γ (β) Γ (δ − β)

×
∫ 1

0
du

∫ 1

0
dv uα−1vβ−1(1− u)γ−α−1(1− v)δ−β−1(1− uvx− uy)−α′ (A.25)

In the derivation of eq. (6.21) the following integral representation of the Lauricella-
Saran function FS was used [51]:

Γ(α1)Γ(γ1 − α1)
Γ(γ1) FS(α1, α2, α2, β1, β2, β3; γ1, γ1, γ1;x, y, z)

=
∫ 1

0

tγ1−α1−1(1− t)α1−1

(1− x+ tx)β1
F1(α2, β2, β3, γ1 − α1; ty, tz)dt. (A.26)
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A.3 Differential relations for the Lauricella-Saran function FS

In order to obtain a system of differential equations for the boundary function C4(x, y, z)
in equation (6.17), we used the following differential relations for the Lauricella-Saran
function FS :

2(1− x)x(x+ y − xy)(x+ z − xz) ∂
∂x
F (d)
s (x, y, z)

= x2(d− 2)− x2
2F1

[
1, d−3

2 ;
d
2 ; x

]
+ (1− x)xz(d− 3) 2F1

[
1
2 , 1 ;
d
2 ; z

]

+ y(d− 4)(xz − x− z)(x− 1)F1

(
1, 1, 1

2 ,
d

2 ; y, z
)

+ (dxy − dx− dy − 3xy + 3x+ 4y)(xz − x− z)(x− 1)F (d)
s (x, y, z),

2(1− y)(y − z)(x+ y − xy) ∂
∂y
F (d)
s (x, y, z)

= x(1− y) 2F1

[
1, d−3

2 ;
d
2 ; x

]
− z(d− 3) 2F1

[
1
2 , 1 ;
d
2 ; z

]
− (y − 1)(2xy − xz − x− 2y + z)F (d)

s (x, y, z)

− (y − z)(d− 4)F1

(
1, 1, 1

2 ,
d

2 ; y, z
)

+ y(d− 2),

2(1− z)(y − z)(x+ z − xz) ∂
∂z
F (d)
s (x, y, z)

= x(z − 1) 2F1

[
1, d−3

2 ;
d
2 ; x

]
+ z(d− 3) 2F1

[
1, 1

2 ;
d
2 ; z

]
+ (z − 1)(xz − x− z)F (d)

s (x, y, z)− z(d− 2), (A.27)

where
F (d)
s (x, y, z) = FS

(
d− 3

2 , 1, 1, 1, 1, 1
2; d2 ,

d

2 ,
d

2 ;x, y, z
)
. (A.28)

These differential relations were derived by using series representation (A.13).
Solving the dimensional recurrence relation for the integral I(d)

4 , we used the following
recurrence relation for the hypergeometric function FS :

(d− 3)xF (d+2)
s (x, y, z) = dF (d)

s (x, y, z)− dF1

(
1, 1, 1

2 ,
d

2 ; y, z
)
. (A.29)

Additionally, we provide here differential relations for the Appell function F1, which
were used to find a system of differential equations for the function C4(x, y, z)
∂

∂x
F1

(
d− 3

2 , 1, 1
2 ,
d− 1

2 ;x, y
)

= −(dx− dy − 3x+ 4y)
2x(x− y) F1

(
d− 3

2 , 1, 1
2 ,
d− 1

2 ;x, y
)

− y(d− 4)
2x(x− y) 2F1

[
1
2 ,

d−3
2 ;

d−1
2 ; y

]
+ (d− 3)

√
1− y

2(x− y)(1− x) ,

∂

∂y
F1

(
d− 3

2 , 1, 1
2 ,
d− 1

2 ;x, y
)

= 1
2(x− y)F1

(
d− 3

2 , 1, 1
2 ,
d− 1

2 ;x, y
)

+ (d− 4)
2(x− y) 2F1

[
1
2 ,

d−3
2 ;

d−1
2 ; y

]
− d− 3

2(x− y)
√

1− y (A.30)

In order to obtain these relations, we used the series representation (A.11).
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A.4 Derivation of parametric representation of integrals with MNV

In order to derive a Feynman parametric representation of the integrals depending on the
MNV, we used the following parametric formula (see, for example, [52], p.632):

1
D1D2 . . . Dn

=
∫ 1

0
. . .

∫ 1

0
dx1 . . . dxn−1 (A.31)

× Γ(n) xn−2
1 xn−3

2 . . . xn−2
[Dnx1 . . . xn−1+Dn−1x1 . . . xn−2(1−xn−1)+. . .+D1(1−x1)]n ,

where Dj are defined in (2.2). Shifting k1 in order to remove the linear term and integrating
over k1 by means of

∫
ddk1

[iπd/2]
1

(k2
1 −m2

i )
α = (−1)α

Γ
(
α− d

2

)
Γ(α)(m2

i )α−
d
2
, (A.32)

we obtain

I(d)
n (m2

1, . . . ,m
2
n; {sik = m2

k −m2
i |k > i})

= (−1)nΓ
(
n− d

2

)∫ 1

0
dx1 . . .

∫ 1

0
dxn−1x

n−2
1 xn−3

2 . . . xn−2 h
d
2−n
n , (A.33)

where hn are the polynomials of form

hn = m2
1 −

n−1∑
j=1

(m2
j −m2

j+1)
j∏

k=1
x2
k. (A.34)

The integral representation (10.2) can be obtained from (A.33) by changing variables. To
our knowledge, such representation has not been found so far in the literature.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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