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1 Introduction

Feynman integrals play an important role in making precise perturbative predictions in
quantum field theory and statistical physics. Theoretical predictions for experiments at
the LHC [1, 2] as well as at future colliders such as the FCC [3] demand knowledge of
precise radiative corrections. Precise experimental measurements are to be interpreted
with sufficient precision of theoretical predictions [4]. The complexity of the evaluation
of such radiative corrections is related, in particular, to the difficulties in calculating
integrals corresponding to Feynman diagrams with many external legs depending on many
kinematic variables. Purely numerical evaluation of such integrals sometimes cannot provide
sufficiently high precision within the reasonable computer time. Problems of numerical
evaluation of the one-loop integrals were considered, for example, in refs. [5-8]. Numerical
instability in evaluating one-loop scalar integrals near exceptional momentum configurations
was addressed in refs. [9-11].

At present, there are many various methods of evaluating Feynman integrals. These
integrals depend on two significantly different sets of variables. They are functions of
continuous variables — scalar products of external momenta and masses, as well as functions
of discrete parameters — powers of propagators and space — time dimension parameter
d. External kinematic invariants and squared masses were used to derive differential
equations [12] (see also reviews [13, 14]). The space-time dimension d and powers of
propagators were used to derive difference equations [15-17] for these integrals. Then the
results for integrals are obtained by solving these equations. Practical application of the
method of differential equation and methods based on recurrence relations to evaluating high-
order, multi-leg Feynman diagrams clearly demonstrates the need for further improvements
and development of methods for solving differential and recursion relations.

On the other hand, it is possible to extend the applicability of these methods by
combining them with other approaches. For instance, these methods can be used in
combination with the approach proposed in refs. [18-20]. In ref. [18], a new type of relations
among Feynman integrals, namely functional relations was discovered. In ref. [19], a simple
method was proposed for deriving functional relations applicable to integrals corresponding
to Feynman diagrams with any number of loops and legs. Using these relations, a method
of functional reduction was formulated and applied to several massless integrals in ref. [20].
This method allows one to express the integral of interest in terms of integrals with fewer
variables. In general, the latter integrals will be easier to evaluate by the above mentioned
methods than the original integral.

Integrals appearing in the final results of functional reduction have two important
features. Firstly, they depend on the minimal number of variables (MNV) and, secondly,
these variables are the ratios of Gram determinants.

As for our representation of integrals in terms of functions that depend explicitly on the
ratios of the Gram determinants, we would like to mention refs. [6, 11] where the importance
of representing the kinematic dependence of integrals in terms of the ratios of the Gram
determinants was demonstrated. As the authors have shown, such a representation turns
out to be useful for the stability of numerical calculation of integrals.



The primary purpose of the paper is to apply the method of functional reduction to
scalar one-loop integrals that depend on arbitrary kinematic variables and masses.

The article is organized as follows. In section 2, we briefly describe the method
for deriving functional relations given in ref. [19]. In section 3, we describe the method
of functional reduction proposed in ref. [20]. In section 4, the functional reduction of
the 2-point integral is considered. In section 5, a two-step functional reduction of the
integral corresponding to a 3-point Feynman diagram is described. The Feynman parameter
representation and dimensional recurrence relations for the integrals arising at the final
stage of the functional reduction are given. We present the analytic result derived by using
the dimensional recurrence relation and the result in terms of the double hypergeometric
series obtained by expanding the Feynman parameter integral.

In section 6, we propose the three-step functional reduction procedure for the 4-point
integral. Solving the dimensional recurrence relation, we obtained an analytic result for the
integral depending on the MNV. A representation of this integral in terms of the triple
hypergeometric series is also given.

In section 7, we describe the derivation of the functional relations of a four-step reduction
procedure for a 5-point integral. We also give here the Feynman parameter representation
of the 5-point integral depending on the MNV and the dimensional recurrence relation for
this integral. Using the parametric representation of the integral, we express it as a fourfold
hypergeometric series.

In section 8, we describe 5 steps of the functional reduction of a 6-point integral. The
Feynman parameter representation and the dimensional recurrence relation for the integral
with the MNV are given. Using the parametric representation, we express the integral as a
multiple hypergeometric series.

In section 9, we describe a modification of the functional reduction method for inte-
grals depending on special values of kinematic variables and present analytic results for
these integrals.

In section 10, a general method is proposed for obtaining the final formula of the func-
tional reduction for an arbitrary one-loop n-point integral. The parametric representation is
also given for the n-point integrals depending on the MNV. Using this parametric represen-
tation, we obtain a representation of the integral in terms of multiple hypergeometric series.

We offer some concluding remarks in section 11.

Finally, in the appendix, we give the definition of kinematic determinants, provide
useful formulae for hypergeometric functions and describe a method of deriving Feynman
parameter representations of the integrals depending on the MNV.

2 Algebraic relations among propagators

We consider the one-loop scalar integral in the general dimension d corresponding to the
Feynman diagram with n external lines and n internal propagators with arbitrary masses
m; and external momenta

1 dk
I ({m3}; {si}) = 2 | Dy.. .3)

(2.1)



Figure 1. The generic n-point one-loop graph.

where the inverse massive propagators have the form
Dj = (kl — pj)Q — m? + i??. (2.2)

In what follows, we omit the in term assuming that all masses have such a correction. The
propagators and momenta are labeled as in figure 1. As was shown in ref. [19], functional
relations for these integrals can be derived from the following algebraic relations among the
products of propagators:
tol 1 & |
—_— = — T —. 2.3
5 =515 (2.3)

T
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We assume that kq is an arbitrary momentum and p; correspond to external momenta. The
proceeding equation is satisfied if py, m3 and xj, (j = 1,...n) are chosen to satisfy the

system of equations. In order to obtain such a system, we proceed as follows. We multiply
both sides of eq. (2.3) by the product [[}_, D; and get

n
Do =Y x.Dy, (2.4)
r=1
or
n
K — 2kipo +pg —mi = D x (ki — 2kipr +pp —m?). (2.5)
r=1

It is assumed that k; will be an integration momentum and pj;, x, do not depend on it.
Differentiating both sides of eq. (2.5) with respect to k1, one gets a linear equation in ky
from which two equations follow:

1=>"a, (2.6)
r=1

Po = Z»ijj- (2.7)
j=1

Substituting egs. (2.6), (2.7) into eq. (2.5) yields the following equation:

n n j—1
mg — Z Tpmi + Z Z xjxys;; =0, (2.8)
k=1 j=21=1



where the kinematic invariants s;; are defined as
sij = sij = (i — i) (2.9)

Solving eq. (2.6) for one of the parameters x; and then substituting this solution into eq. (2.8)
gives a quadratic equation for the remaining parameters x;. This quadratic equation can
be solved with respect to one of the parameters x;. Thus, the solution of the system of
equations (2.6), (2.8) depends on (n — 2) of the remaining arbitrary parameters z; and one
arbitrary mass my.

Integrating algebraic relation (2.3) over momentum k; yields a functional equation for

a general one-loop n-point integral

IO (m2s {sa) = > @5 L0 {m2Y; {su)) (2.10)

2 2 :
,7 mj %mo,sjkﬂs%
7j=1

This equation will be our starting equation for deriving relations for the functional reduction
of integrals I\ ({m2}; {sir}).

Notice that linear relations among inverse propagators were also derived in ref. [21]
and used for finding relationships among one-loop Feynman integrals. These relationships
allow one to reduce n-point integrals to a combination of (n — 1)-point integrals. Relations
among propagators were obtained as a result of vanishing of the Gram determinants for
the set of n vectors considered in d-dimensional space with n > d and d being integer. In
our approach, we assume that all vectors are d dimensional with d being noninteger. Our
original algorithm [18] for finding functional relations among n- point integrals was based on
vanishing the Gram determinants made of a set of momenta for the (n 4 1) point integrals.
However, for obtaining functional relations, we find it more convenient to introduce an
additional propagator depending on an auxiliary external vector and an arbitrary mass [19].
Arbitrariness of these parameters is easier to use for reducing the number of variables in
integrals, as compared to our original algorithm [18].

In the next sections, we will consider in detail the derivation of functional relations for

reducing integrals I. éd) . | éd).

3 Method of functional reduction

By choosing arbitrary parameters x;, m2, we can try to express the integral of interest
in terms of integrals with fewer variables. If we manage to find these parameters, we will
actually solve the functional equation for the integral.

The systematic method for solving functional equations for Feynman integrals was
presented in ref. [20]. In a sense, this is a generalization of the method that is used to solve
the usual Sincov functional equation [22-24]

f@,y) = fz,2) = [(y, 2). (3.1)
By setting z = 0 in this equation, we get a general solution
fz,y) = g(x) = 9(y), (3.2)



where
g9(z) = f(z,0), (3.3)

i.e. the function f(z,y) is a combination of its ‘boundary values’, which may be completely
arbitrary.

As for solving functional equations for Feynman integrals, the situation is much more
complicated here — too many variables are involved, too many functions. For this reason,
we used a computer to systematically search for possible relationships among the arguments
of integrals leading to a decrease in the number of variables of these integrals. To reduce
the number of variables, we impose the following simple conditions on the new variables

540, M3
Soj = O, Soj — S0; = 0, Soj + Sik = O, Soj + mg = 0, m? + m% = 0,
md =0, so;Emi+tmi=0, (i,j,k=1.mn). (3.4)

From the set of equations obtained by combining eqs. (3.4), (2.6) and (2.8), we have formed
various systems of equations with 2, 3,4, etc. equations in each system. Solutions of these
systems of equations and analysis of these solutions were performed using the computer
algebra system MAPLE. The number of these systems depends on n and varies from 103
to 10%. CPU execution time ranged from a few minutes to several hours. Many solutions
of these equations have been found. Some of them lead to a simultaneous decrease in the
number of variables in all integrals on the right-hand side of the functional equation (2.10).
In the following sections, we will describe in detail how this method works.

7(@

4 Functional reduction of the 2-point integral I,

We start by considering a simple one-loop integral depending on arbitrary masses and
external momentum

d%y 1
i /2 [(ky — p1)? — mi][(k1 — p2)? — m3]

d
1D (2, m3; s1a) :/ (4.1)
Setting n = 2 in eq. (2.3), leads to an algebraic relation between the products of two

propagators
1 T €T

DiDs _ DoDs | DiDo’

(4.2)

At n = 2, according to (2.6)—(2.8), the parameters z;, m% and momentum pg in this equation
must obey the following conditions:

1+ a2 =1, Po = T1p1 + T2P2,
m% — xlm% — xgm% + x129812 = 0. (4.3)
Integrating algebraic relation (4.2) over momentum k; yields

IZ(d) (m%, m%; S12) = xlléd) (m%, mg; S90) + xzféd) (m%, m%; $10)- (4.4)



By solving the system of equations (4.3) for z1, xa, we get

2 _ 2 4812(m2 — ’r'12)
T = 3 4l + S12 + 0 y o — 1-— 1. (45)
2819 2512

Both kinematic invariants s1g, Sog can be expressed in terms of z1 as

2 2 2 2 m% - m% — 512 2
510 = (p1 —po)” = (1 —x1) 510 = m] + my — 2112 &£ T 4512(7””0 —T12),
2 2
ms — mj + S12
So0 = (pg — po)Q = .7}%812 = m% + m% — 27“12 + # \ 4812(7713 - Tl?)v (4'6)
where
- A _ 2m3m3 + 2s19m3 + 2s19m3 — mi — m3 — s3, (@7)
g12 4s19

The definitions of the determinants A2, gi12 are given in the appendix.

Equation (4.4) strongly resembles Sincov’s equation (3.1). By setting the only remaining
arbitrary parameter mg to some special value, one can try to reduce the number of variables
simultaneously for both integrals on the right-hand side of eq. (4.4). We will consider three
different cases.

Case 1. m2 = 0. The most obvious choice is to take m3 = 0. Substituting this value
into eq. (4.4), we obtain

I (m2,m2; s10) = T LY (M2, 0 520) + 213 (m2, 0;510), (4.8)

where

T2 = »’Cl,zlmgzoa So1 = Smlmg:m So2 = SOQIngO. (4.9)

The analytic expression for the integral Ig(d) (m?2,0; p?) is well known (see refs. [25, 26])

d _ 1,24, p?
Iéd)(mQaO; p’)=-T <1 - 2) m? 42F1[ a.’ }92] . (4.10)
2

;om
Note that the ¢ = (4 — d)/2 expansion of the hypergeometric function 2F; in eq. (4.10) is

known to all orders in ¢ [27-29]. Using eq. (4.8), one can easily obtain ¢ expansion of the
original integral Iéd) (m?%,m3; s12).

Case 2. mg = r12. The second special value of m3, which leads to a simultaneous
decrease in the number of variables in both integrals on the right-hand side of eq. (4.4), is
m3 = ri2. In this case, the square roots in egs. (4.5), (4.6) vanish, and we get

d d d
Ié )(m?,més 512) = Fﬂ12f§ )(7”12,?”2;7”2 —ri2) + /<a21[§ )(rlg,rl;rl —T12), (4.11)
where 3 3
712 712 2
R12 = 67771%’ K21 = ngy Ty =m;. (4‘12)



The analytic result for integrals Iéd) (r12,75,75 — 112), (j = 1,2) can be obtained either from

the Feynman parameter representation

d 1 a_
L (rig,rjimj — r12) =T (2 - 2) / hiday, (4.13)
0
where
hy =112 — (r12 — rj)a3, (4.14)
or by solving the dimensional recurrence relation
d d d
(d — 1)[5 +2) (7‘12, T‘j; T‘j — 7“12) == —27“12]5 )(Tlg, Tj; Tj - 7"12) - If )(T’j). (415)
In the latter case, the result reads
3 4.9

d
I )(T1277“j;7“j —T12) =

2sin T (1) | ri2 =7
T 7‘.%_1 1 d—1. r:

+ § 2F1[ e ’]]. (4.16)
2112 gin 74T (g) 55 T2

It is valid for |r;/r12| < 1. In order to solve the dimensional recurrence relation (4.15), we
used the method described in ref. [30].

By changing the variable in the integral (4.13) and comparing the result with the
integral representation of the o F; function (A.20), we find

I (r1g,7j;7j — 112) = v55 T (2 - d) QFllQ _3%7 25 ”] . (4.17)
2 55 712
This result may also be obtained by expanding the integrand in eq. (4.13) in powers of
zj =1 —rj/ri2, assuming |z;| < 1, and then integrating with respect to z; term by term.
Formula (4.16) can be obtained from eq. (4.17) by performing an analytic continuation of
the hypergeometric function o F}.

Case 3. Combination of two equations. The third reduction of integrals can be
achieved in a slightly more complicated way. First, we set m2 = m3 in eq. (4.4) and obtain

2 2 2 212

2 2, my — My (d) 2 .2, (mf —m3)

Ir(my,m3; s12) = ————=1y " | mi,my; ———
S12 S12

_l’_

$12 = M1+ 115 0 <m2 2, “”‘m%*m%)j. (4.18)

25 T19;
S12 S12
Then we interchange masses m3 <+ m3 in this formula and add the result to (4.18). Due to
the invariance of IQ(d) under this permutation, two terms in this sum having different signs
cancel out, so we get

Ig(m%,mg; 512) = M_ﬂd) <m2 2, (512 + m% - m%)2>

’m’
251 2 U $12
oy 9 2 2\2
T R Ryl e R TR B ERT)
2312 512



The same result can be derived by setting m = m7 in eq. (4.4) and then adding the obtained
result to the result obtained by setting m3 = m3 in eq. (4.4). The analytic expression for

the integral with equal masses is well known (see refs. [25, 26]):

1L,2-4; p?
%; 4m2 |’

d

L (m2,m2p?) =md4 T (2 - ) QFll (4.20)

2

Thus, we have presented three different possibilities of reducing the integral Iéd) to a
sum of integrals with fewer variables. Different reduction formulae can be used in different
kinematic domains.

Using egs. (4.8), (4.11) and (4.19), one can easily find relations among integrals that
appeared in the right-hand sides of these equations. For example, setting m? = ri2, m3 = T,
s12 =rj —riz in eq. (4.19), we get

IQ(T’lg,Tj;T'j — 7’12) = IQ(T’j,T‘j;4(7“j — 7“12>) (] = 1,2). (4.21)

We conclude this section with a remark about the differences between integrals found
in the three reduction procedures. In eq. (4.8), the arguments of integrals on the right-hand
side depend on the square roots of the ratios of polynomials, while in eqgs. (4.11), (4.19)
the arguments of integrals on the right-hand side are just the ratios of polynomials. In
all these cases, the integrals were expressed in terms of the hypergeometric function o F.
However, the e = (4 — d)/2 expansion of the functions in eq. (4.8) is technically slightly
simpler than the expansion of the o F} functions in egs. (4.11), (4.19). The reason is that in
the first case, the parameters of the o F} functions are integers plus terms proportional to
the € while in the 9} functions from eqs. (4.11), (4.19) some parameters are half integers.
The e expansion of the 9 F} functions with half integer parameters contains logarithms and
polylogarithms depending on the square roots of the argument of the o F; function [27-29],
while expansion of the o F; functions with integer parameters do not have such square roots.

Our preliminary study shows that a similar situation takes place with the integrals
I:gd) and I id). Analytical results for these integrals involve the function oF} as well as
more complicated hypergeometric functions. We expect that finding relationships among
those functions with integer and half integer parameters will be helpful in performing the &

expansion of the integrals I?Ed) and [ 4(d).

7(@

5 Functional reduction of the 3-point integral I3

Now we turn to a 3-point integral with arbitrary internal mass scales and arbitrary external
momenta

7@ 5 1 dky

2 2
m7, ms, Ma; 823, 813, S12) = - . 5.1
3 ( 15 11025 1183 ’ ’ ) Zﬂ'd/2 D1D5Ds ( )

Setting n = 3 in equation (2.3) leads to an algebraic relation for the products of three

propagators [19]:
1 T, 9 T3

DiDyDs _ DoDsDs |~ DiDeDs | DiDyDo’

(5.2)



Equation (5.2) holds if
Po = T1p1 + T2p2 + T3p3, (5.3)

and the parameters m2, xj obey the following system of equations:

1 +x9 + a3 =1,

2 2 2 2
T1T2512 + T1T3513 + T2T3S23 — T1M] — Tamy — x3ms +mj = 0. (5.4)

Integrating (5.2) over momentum k; gives a functional relation for the one-loop integral
1 éd) with arbitrary masses and kinematic variables:

e, 2,2 2. e, 2.2 2
I3 (m17m27m37823a8137312):xllg (m07m27m3782373037302)

(d, 2 2 2
+ 2215 (M7, mg, m3; S03, 513, So1)

d
+1‘31§ )(m%7m37m3§50275017512)- (5.5)

Now our aim is to find the values of m%, zj (j =1,2,3), leading to a simultaneous reduction
in the number of variables in all integrals on the right-hand side of eq. (5.5). Equation (5.5)
will be our starting point at all steps of the functional reduction.

5.1 Functional reduction procedure

Functional reduction of the 3-point integral is not so straightforward as compared to the

integral Iéd). We will work out a two-step procedure of functional reduction allowing one to

express an integral I?(,d) that depends on 6 variables in terms of integrals depending on 3

variables.

Reduction of the integral I?(,d), step 1. One of the solutions of the systems of equa-
tions (3.4), taken at n = 3 and combined with equations (5.3), (5.4), leads to the desired
relation

I3 (m%, m3,m3; sa3, 513, 812) = k12303 (7123, 72, 73; 823,73 — 123, T2 — '123)

+ ko1313 (1123, 71,735 S13, 73 — T123, 71 — T'123)

+ k31203 (1123, 72,715 S12, "1 — T123, T2 — T'123) , (5.6)
where
A123 9
123 = ——, Ty = my,
g123
Orias Ori23 Ori23

K123 = —%, K213 = —%, K312 = —5 5.7
123 8777/% ) 213 am% 3 312 amg ) ( )
and the determinants Ai123, g1o3 are defined in the appendix. Note that all integrals on the
right-hand side of equation (5.6) depend only on 4 variables.
This is not the only functional relation that reduces the number of variables of the

integral I?Ed). We have discovered another functional relationship that reduces the number



of variables by one

523(523 — S12 — 513) I (mg

2 o 9 _ 2 9.
I3 (m17m27m3,3237813,812) = O,mQ,m3,323,3123,3123)

g123
813(813—812—823) 2 92 92
+ I3 <m17m0am3§ 5123, 513, 8123>
g123
s12(812 — 13 — 523) 9 2 9
+ I3 (m17m27mo;8123,8123,812) , (5.8)
g123
where
203 2512513523
mg=——>, S193 = ———————, (5.9)
g123 g123
5 _ . 2
3 = —512513523 + S23(512 + S13 — S23)Mm]
2 2
+ s513(812 — S13 + S23)m5 — s12(S12 — S13 — S23)M3, (5.10)

and gjo3 is defined in the appendix. We have found many other functional relations that
reduce the number of variables, although not in all integrals at once. However, as was
shown in section 4, integrals without reducing the number of variables can be eliminated by
combining various functional relations (see eq. (4.19)). Derivation of this kind of functional
relations will be studied in more detail in a forthcoming publication.

Reduction of the integral Ig(,d), step 2 Now we proceed to the next step of the
functional reduction. Applying relation (5.5) to the first integral on the right-hand side of
eq. (5.6) and solving for the new variables mg, 505, 1, the corresponding system of equations
from (3.4), combined with egs. (5.3), (5.4), leads to the equation

d
I;E ) (7”12377“277’3; 523,173 — T123,72 — 7“123)

I () N _ _
= Ra3lj3 (7“12377“23,7“377“3 23,73 — T'123,723 7“123)

(d) .
+ kgaly ' (r123,723, 72572 — T23, T2 — T'123,723 — T'123), (5.11)
where
81”23 87‘23
K23 = ——5 K32 = 5.
om3’ om3

By an appropriate change of variables, two more equations for reducing other integrals in
the right-hand side of eq. (5.6) can be obtained from eq. (5.11).

Combining eq. (5.6), eq. (5.11) and two equations that follow from eq. (5.11) by changing
variables, we get the final reduction formula for the integral Iéd):

d 2,2 2 d
Ig(, )(ml,mQ,m3; 523,513, 512) = H123H23I§ )(7“123,7"2377“3; T3 — 193,13 — I'123, 723 — I'123)

7(@ :
+ K123kK3213 (7’1237 723,72;T2 — 723,72 — T'123,723 — T'123

7@ .
+ K213K31 3 \23,713,71;71 — 713,71 — 7'123,713 — 7123

d
+ 11213Ii13-7;§

(
(
+ H312Ii121§d)(

r123,713,73;7r3 — 713,73 — TI'123,713 — T123)
7“123,7“12,T2;7“2*7“12,7‘2*7“123,7“12*7”123)

( .
+ 11312%21[3 r123,712,71;71 — 712,71 — 123,712 — I'123)-
(5.12)

~10 -



(d)

This formula allows one to express the integral I3, which depends on 6 variables in terms
of integrals depending only on 3 variables.

It is interesting to note that the replacement of masses and kinematic invariants on
both sides of eq. (5.12) with the arguments of the first integral I. éd) on the right-hand side
of this equation, i.e.

2 2
my — 7123, ma — 723, m3 — 13,
S93 —» T3 —T23, S13 —» T3 —T123, S12 — T23 — T'123, (5.13)

leads to the following transformations of the coefficients and arguments of integrals on the
right-hand side of eq. (5.12)

T123 — T123, K123 — 1, k213 — 0, k312 — 0,
23 — 123, 13 — 7123, T12 — T123,
K23, K13, K12 — 1, K32, K31, ko1 — 0. (5.14)

As expected, in eq. (5.12), after these substitutions only the first term remains. Change of
variables (5.13) leads to a factorization of the determinants A and g

23 = 8r123(ro3 — 13) (1123 — r23),  g123 = —8(r23 — r3)(r123 — 123),

Aoz = —4r23(123 — 73), g23 = —4(rs —1r23), (5.15)

and as follows from these relations, 7123, 723 remain invariant under substitutions (5.13).

5.2 Analytic results for integrals depending on the MNV

An analytic result for the integral Iéd) (r123,T93,73; T3 — T'23,T3 — T123,723 — T'123) can be
obtained, for example, either by solving the dimensional recurrence relation or by calculating
the Feynman parameter integral.

The dimensional recurrence relation for this integral reads

d+2
(d—2)—7§ * )(7“123,7”2377’3;7"3 — 723,73 — T'123,723 —7“123)
d
= —27“123[§ )(7“123,7“23,7“3;7“3 — 723,73 —T123,723 — 7”123)
d
— I3 (rag, 73375 — 133). (5.16)

The solution of the dimensional recurrence relation (5.16) was obtained by the method
described in ref. [30]. Assuming that |r3/ri23| < 1, |r3/ra3] < 1, |ra3/r123] < 1, we found
the following result:

1) .
3 (7123, 723,73; 73 — ra3, T3 — T'123, 723 — T'123)

d—6
1 T2
_ 123
- d d—2 03(:C>y)
sin S5 | T (T)
3 d—4 49
war 32 T23 1,55%; 123
F 2 2
281 d-1,

/ < -2 1d 7‘3 7"3) (517)
4F (%) (7‘23—7’3 7123 17272 iz o ’




where
2

Cy(a, y) = LY In (m — (2% = ?)
Aoy et @)

NI=[ N=

) , (5.18)
and the variables x, y are defined as

T T
r =, —2 y = [ 1238 (5.19)
7123 — T3 7123 — 723

The function C3(z,y) was derived from the system of differential equations

xaC?)(xa y) + yac?)(xvy)

O ay = 203(.%,:1/),
0C3(x, 1
(@2~ 00D 20y y) — Lray? (5.20)

This system was obtained from the system of differential equations for the integral I. éd). We

would like to notice the coefficient 1/sin(wd/2) in front of the braces which is singular at
d = 4. Since the integral I:,(,A‘) is finite, the terms in the braces at d = 4 must cancel. This
fact makes it possible to easily obtain the hypergeometric Appell function F; at d =4 as a
combination of logarithms

L, s m\_2?VI-y2 | (14V1-y? )
F(1,1,2,2, 2 18 = 2| pln (VY E Y ) (5.21)
2 T2z ros -z 1—/1—42 -2

where z,y are defined in (5.19). This expression has been checked numerically to a precision
of at least 200 decimal digits.

Another hypergeometric representation of the integral I éd) was derived directly from
the Feynman parameter integral

(d) ay [ttt a3
I3 (r123,723,73;73 — 123,73 —T123,723 —T'123) = —I' 3—5 /0/0$1h3 dridxs, (5.22)

where

h3 = 123 — (123 — r23)x] — (123 — r3)wi]. (5.23)
The method to derive the Feynman parameter representation of the integrals L(qd) depending
on the MNV is described in the appendix. Expanding the integrand in powers of variables

T123 — 723 23 — T3
= =3 (5.24)
123 123

assuming that |z1| < 1, |22] < 1 and integrating over xj, x2, we then get

1) .
3 (123,723, 73,73 — 123, T3 — 123,723 — 7'123)

1
1 e Dnytny \2/, ny na
=—-T <3d) E (3d> @(2> 2@@ (5.25)
2 ni+nz

2 (2)n1+n2 (%) n1! ’I?,Q!
n2

- 12 —



Here (a)r = T'(a + k)/T'(a) is the so-called Pochhammer symbol. The double series in
eq. (5.25) can be written [31] as the hypergeometric function S}

1) .
3 (7123, 723,73; 73 — 123,73 — 7123, 723 — 7”123)

1 d\ 4_3 d 3 ro3—1s 7“23)
=T , 1, 2 — 1— . 2
2 (3 2)”123 Sl( 2027 iy T i (5:26)

The definition of the hypergeometric function S is given in the appendix. Using the formula

for the analytic continuation of the function S; presented in ref. [31], the integral I:gd) can
be written in terms of the hypergeometric functions o F; and Fy:

r(2-9) 4.,

r2.
2(rigg — rog) 2

d_9

1,4; r3— 2 1 d 3 -

xdom| 2 220 18 g (,1,2—,;7“237”3,1—”). (5.27)
53 Ti123 — 1723 7552 2 22 ro3 — 7123 23

1) . _
a3 (7123,723,73; 3 — 23,73 — 1123, 723 — I'123) =

The formula for the analytic continuation of the function S; is given in the appendix (see
eq. (A.17)). Note that the results in terms of the hypergeometric function S; for some I:,Ed)
integrals were presented in ref. [31].

6 Functional reduction of the 4-point integral I

Now we proceed to formulate a functional reduction procedure for the 4-point integral. For
n = 4, the algebraic relation (2.3) reads

1 T T2 3 T4
D1D2D3Dy - DyD2D3Dy * D1DyD3Dy + D1DyDyDy + D1DsDsDy’ (6.1)
Equation (6.1) holds if
Po = Z1p1 + Top2 + T3p3 + Tapa, (6.2)
and the parameters m3, xj obey the following system of equations:
1+ T9+ a3+ x4 =1,
T1X2512 + T1T3513 + T1T4514 + T2X3523 + T2T4524 + T3T4534
—xym? — xom3 — x3m3 — xam’i +mé = 0. (6.3)
Integrating equation (6.1) over momentum k; yields
LY (m3,m3, m3, m%; 12, 523, 534, 514, 524, 513)
= oy I (m3, m3, m3, m%; soa, 523, 534, 504, 524, 503)
+ Iy (m?, m3, m3,m3; so1, 803, 834, 514, S04, 513)
+ 231\ (m?, m3, m3, m3; 512, 502, 504, 514, 524, 501)
+ $4L§ )(ml,m%,mg,mo, $12, 823, S03, S01, S025 S13)- (6.4)

This will be our initial equation for deriving functional relations in all three steps of the
reduction procedure.
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6.1 Functional reduction procedure
In this subsection, we provide functional relations for expressing the integral I id) that

7@

depends on 10 variables in terms of the integrals I, ” depending on 4 variables.

7@

Reduction of the integral I; 7, step 1. Solving various systems of equations, formed

from equations (6.3) combined with equations (3.4), taken at n = 4, we obtained one
solution which leads to the functional relation that reduces the number of variables by 3 in
all integrals on the right-hand side of eq. (6.4). The functional relation corresponding to
this solution reads

2 9 9 o
I4(m7, m3, m3,my; 12, $23, S34, S14, S24, S13)
= K123414(7r1234, 72,73, 743 T2 — T'1234, 523, S34, T4 — T'1234, 524, '3 — T'1234)
+ k213414 (71234, 71,73, T4 T1 — T1234, S13, S34, T4 — T1234, S14, T3 — T1234)

+ K312404(71234, 72, 71, 743 T2 — T'1234, 512, 514, T4 — 71234, 524, 1 — T1234)

+ k12314 (1234, 72, 73, 13 T2 — 71234, 523, 813,71 — 1234, 812,73 — T'1234), (6.5)
where
A1234 9
71234 = — ) Ty = my,
91234
Ori234 Ori234 Ori234 Ori234
K1234 = —(—5» R2134 = 55 » R3124 = —5 5 » K4123 = 2 - (6.6)
omy oms oms omj

At the next step, the integrals on the right-hand side of equation (6.5) depending on 7
variables will be expressed in terms of integrals depending on 5 variables.

o)

Reduction of the integral I, ", step 2. Applying formula (6.4) to the first integral

on the right-hand side of eq. (6.5) and solving the systems of equations formed from
equations (6.3) combined with equations (3.4) given for the kinematics of this integral, we
found the following relation:

I4(r1234, 72,73, 74572 — 71234, $23, S34, T4 — I'1234, 524,73 — 1'1234)
= H234f4(7“1234, 7234,73,74;7234 —71234,73 — 7234, 534,74 —71234,74 —17234,73 — 7”1234)
+ /€324I4(T1234, 7234,72,74,7234 —71234,72 —17234,524,74 —11234,74 —1234,72 — 7“1234)

+ /%42314(7“1234, T234,73,7257234 —T1234,73 —71234,523,72 —T71234,72 —7234,73 — 7“1234),

(6.7)
where
To34 = _ Doz K34 = Orass K324 = Orass K423 = Orasa (6.8)
9231’ om3’ om3’ om?

Similar expressions for all other integrals on the right-hand side of eq. (6.5) can be obtained
from eq. (6.7) by changing variables and coefficients appropriately.

After reducing integrals depending on 7 variables to integrals depending on 5 variables,
the next step is to reduce the latter integrals to integrals depending on 4 variables.

— 14 —



Reduction of the integral I id), step 3. Applying our initial functional relation (6.4)
to the first integral on the right-hand side of eq. (6.7) and solving the systems of equations
corresponding to this case, we obtained several solutions. One of these solutions leads to

the two-term functional relation

14(7’12347 7234,T3,T457234 — 11234, 73 — 7234, 534,74 — 171234, T4 — 7234,73 — 7’1234)
= k3414(r1234, 7234, 734, 745
T34 — T1234,734 — T234,T4 — 734,74 — 71234, T4 — 7234, 734 — T'1234)
+ K4314(T1234, 7234, 734, 73}
T34 — T'1234,734 — 234,73 — 734,73 — 1234, 73 — 234,734 — T1234), (6.9)
where

A34 Or3s 0r34

T34 =——5 K3 = 5, K43 = .
934 om3 om3

(6.10)

Note that both integrals on the right-hand side of eq. (6.9) depend only on 4 variables.
Combining egs. (6.5), (6.7), (6.9) and all required relations that follow from these equations
by changing variables as mentioned previously, we obtain the final functional reduction

)

formula for the integral I id

2 2 92 2
I4(m1,m2,m3,m4,512,523,534,314,324,313)

= /412345234K34I£d) (71234, 7234, T34, T4
T34 — T'1234, 734 — 7234, T4 — T34, T4 — 71234, T4 — 7234, 734 — T'1234)

+ H1234ﬁ234f€431£d) (71234, 234, T34, T35

T34 — T'1234, 734 — T234,73 — 734,13 — 71234, 3 — 17234, 734 — 7'1234)
+ H1234/€324/€24I£d) (71234, 7234, 724, T4;

T34 — T1234,724 — T234,T4 — 724,74 — 71234, T4 — 234,724 — T'1234)
+ %1234ﬁ324f€421£d) (11234, 7234, 724, T2;

T34 — T'1234, 724 — T234,72 — 724,72 — 71234, T2 — 7234, 724 — T'1234)
+ K1234K423 H23I£d) (71234, 234,23, 735

T34 — T'1234, 723 — T234,73 — 723,13 — 71234, T3 — 234, 723 — '1234)
+ K1234K423 Hszfid) (71234, 7234, 723, T2;

T34 — T'1234,723 — T234,T2 — 723,72 — 71234, T2 — 234,723 — T'1234)
+ f€2134fi134l<6341£d) (71234, 7134, 734, T4;

T134 — T'1234, 734 — 7134, T4 — 734,74 — 71234, T4 — T134, 734 — T'1234)
+ H2134H134f€43f£d) (71234, 7134, T34, T35

T134 — T'1234,734 — T134,73 — 734,73 — 71234, 3 — 7134, 734 — 7'1234)
+ H2134/€314/€14I£d) (71234, 7134, 714, T4;

134 — 71234, 714 — T'134,74 — 114,74 — 71234, T4 — T134,714 — 7"1234)
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(d) .

+ Ko134K314k411 (7“1234, 134,714, 71;
T134 — 71234, 714 — T134,71 — 714,71 — 71234, 71 — 134,714 — 7‘1234)

7(@ :

+ K2134K413K1314 (7“1234,7’134,7”1377”3,
7134 — 71234,713 — T'134,73 — 713,73 — 7'1234,73 — 7134, 713 — T1234)

7(@ :

+ Ko1gaka13kardy (71234, 7134, 713, 715
7134 — T1234,713 — T'134,71 — 713,71 — 71234,71 — 7134, 713 — 7’1234)

K3124K124K241 (7“1234, 7124, 724, T4;
7124 — 71234,724 — T124,74 — 724,74 — 71234, 74 — T124,724 — 7“1234)

7(@) :

+ K3124K124K421y (7“123477’124,7”2477”2,
7124 — 71234,724 — T124,72 — 724,72 — 171234, 72 — 124,724 — T1234)

7(@) :

+ k312ak214k141y (71234, 7124, T14, 745
7124 — 71234,714 — T124,74 — 714,74 — 71234, 74 — T124,714 — 7’1234)

7(@ .

+ K3124K214K4114 (7‘1234, 124,714, 71;
7124 — 71234, 714 — T124,71 — 714,71 — 71234, 71 — 7124, 714 — ?“1234)

7(@) :

+ K3124K412K121y (7“123477"124,7”1277“2,
7124 — T1234,712 — T'124,72 — 712,72 — 171234, 72 — 7124, 712 — T1234)

7(@ :

+ K31akar2ko1dy (11234, 7124, T12, 715
7124 — 71234,712 — T124,71 — 712,71 — 71234, 71 — 7124, 712 — 7“1234)

7(@ :

+ Ka123k123k231, (71234, 7123, 723,735
T123 — T'1234,723 — 1'123,73 — 123,73 — 1'1234,73 — 1'123,723 — "“1234)

7(@) :

+ K4123K123K3214 (71234, 123, 723, 725
7123 — T'1234,723 — T'123,72 — 123,72 — 1'1234, 72 — 7123,723 — T1234)

7(@ :

+ Kato3k213k1314 (71234, 7123, 713, 7'3;
T123 — T1234,713 — 1'123,73 — 1'13,73 — 1'1234,73 — 1'123,713 — 7“1234)

(d) .

+ Ka123k213k311, (71234, 7123, 713,715
7123 — T1234,713 — T123,71 — 713,71 — 71234,71 — 7'123,713 — 7”1234)

7(@) :

+ K4123K312K1244 (71234, 7123, 712, 725
7123 — 7'1234,712 — T'123,72 — 112,72 — 7'1234, 72 — T123,712 — 7“1234)

(d) .
+ Ka123k312k211y (71234, 7123, 712,715

T123 — T'1234,7T12 — T123,71 — 712,71 — 1234, 71 — 123, 712 — '1234). (6.11)
. . d . .
This formula allows us to express an integral I i ), that depends on 15 variables, as a linear

combination of 24 integrals, each depending only on 4 variables.
We conclude this subsection by noting an interesting property of this equation. By
replacing the masses and kinematic invariants in eq. (6.11) with the corresponding arguments

~16 —



of the first integral on the right-hand side of this equation

2 2 2 2
my — 71234, My — 17234, m3 — 734, my — T4,
8§12 —> 7234 — 71234, S23 —> T34 — 17234, S34 — T4 — T'34,

814 — T4 — T'1234, 824 — T4 — 7234, 813 —> T34 — T'1234, (6~12)

we get the following transformations of the coefficients and arguments of integrals in this
equation

71234 — T1234, 71234 — 7234, T34 — T34,

K1234, K234, K34 — 1, K2134, k3124, k4123 — 0. (613)

As a result of these substitutions, only the first integral remains on the right-hand side of the
equation. Note that the transformations (6.12) lead to a factorization of the determinants
A and ¢ such as

234 = 1671934 (734 — 74) (734 — 7234) (71234 — T234),

g1234 = —16(r3a — 7r4) (734 — r234) (11234 — T234). (6.14)

Similar factorization holds for lower order determinants. We observed analogous factorization
of determinants appearing in the final functional relations for the integrals I, éd) and Iéd).

6.2 Analytic results for integrals depending on the MNV

An analytic expression for the integral

;2 92 2 92 92 92 92 2 92 2 92 9 92 9 9 9
I3 (mi, m3, m3, mj;my — mi, m3 — ma, my — m3, my — mi,my —mj,mz —mj), (6.15)

which depends on the MNV, can be obtained, for example, by solving the dimensional
recurrence relation or by evaluating the Feynman parameter integral.

The dimensional recurrence relation for this integral reads

(d— 3)I£d+2) (71234, 7234, T34, T4
T34 — T1234, T34 — 7234, T4 — T34, T4 — T1234, T4 — 7234, 734 — T'1234)
= —27’123414@ (11234, 7234, 734, T4;
T34 — T'1234, 734 — T234,74 — 734,74 — 71234, T4 — 7234, 734 — 71234

d)
- §, (234,734, 74574 — 134,74 — 234,734 — T234)- (6.16)

To solve this equation, we used for the integral I?Ed) the analytic result given in eq. (5.17).
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Applying the method described in ref. [30], we get

(d) .
1,7 (r1234, 7234, T34, 43

7234 — T1234,734 — 1234,74 — 134,74 — 71234, T4 — 7234,734 — T1234)

d %_2 (7”34*7"4)%
1 { 2 —4 MTry3, arctan ﬁ
— 1234 C (x ) + 7234734
d AT, Y, 2 T T _
sin 5 (T (d23) 4r1934(734 — 14)2 (ro34 — 1r34)2T (%)
1 d=3. r % % % r 2
><2F1’d%’234 T3y ( 4)( 234 )
575 T1234 | 8prqgsarosal (%) T34 — T4 7234 — T34
d— 1 d-— 1
XFI( 3717 ) [s4 r34)
2 2" 2 o34 To3a
41
7'['7"4
T d
8r1234(134 — 74) (1234 — r4)T (5)
d—3 1ddd
XFS( 71>17171 PRI R T4 ) 4 ) T4 > ) (617)
2 2727272 11934 ry —1ro3a T4 — T34
where
3 ay?s? vz +y? — (22— y?)3 (2% — )3
Ca(z,y,2) = 2 23,2 2)1 In 2 2 T 2 1] ’ (6.18)
8(z2 —y2)2(22 —y?)2 |z +y?+ (22 —y?)2(2? —y?)2

and the definition of the hypergeometric Lauricella-Saran function Fyg is given in the
appendix (see eq. (A.13)). Here the variables z,y, z are defined as

1234 1234 1234
o= VY i (6.19)
71234 — T4 71234 — T34 1234 — 7234

The function Cy(z,y, z) was obtained by solving the system of differential equations

xacll(xvya Z) + y304($,y, Z) + Z804($a Y, Z)

oz ay 0z = 304(1‘) Y, Z)7
2 3 2.2
804(1,‘,(7;72) - _ Y C4(.T,y,2) . T22Y“Z2
oz z(z? — y?) 4(332 —y?)(x + 2)
0Cy(z,y,2)  (2y% — 2?) T3 xy? 2>
= . .2
0z z(y? — 22)04($’y’ A+ 4(y? — 22)(z + 2) (6.20)

This system was derived from the system of differential equations for the integral I id). The
constant of integration that occurs in solving the system of differential equations (6.20)
was determined by comparing the asymptotic behavior of eq. (6.17) with the asymptotic
behavior of the integral I id) as 11234 —> 00.

Note that in calculations of Feynman integrals, the Lauricella-Saran function Fg was

first discovered when calculating the one-loop box integral [32]. In ref. [32], it was shown
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that this function can be represented by the one-fold integral
d d d )
5 3L, Y, 2
5

é/1 arcsin /W=2L(1 — )%
0

F5<d231111

F(%) (v -

1—tz

(1—z+tz)y/I—-ty

dt. (6.21)

We note that similarly to the integral I?Ed), there is a factor 1/sin(wd/2) in front of
the braces in eq. (6.17) which is singular at d = 4. Since the integral [, £4) is finite, the
terms in the braces must cancel at d = 4. This fact makes it possible to easily obtain the
hypergeometric function Fg at d = 4 as a combination of logarithms

1 1
FS <717171717)2)252; 1 ] 4 } 1 )
2 2 T1234 T4 — 7234 T4 — T34
(2% — y?)2 (a? — %) {1 vzt y? = (P =y (e —y >%]
— n
(2 —y2)3(1 -2z | |zz+y2+ (22— y?)3 (a2 — 2)3
2 _ L2\: _ _ 2\ _ .2\ 1
_m[x(y 22 — 2(y? w)ﬂﬂnl( y)j (1- )?H’ (6.22)
S LR ) I (R ERNTROE
where z,y and z are defined in eq. (6.19). This expression has been checked numerically to
a precision of at least 200 decimal digits. Complications in analytic calculation of a periodic

2

function that appears in solving the recurrence relation for the one-loop box integral were
discussed in ref. [33].

The integral I id) depending on the MNV can be represented as a triple hypergeometric
series. Such a representation can be derived from the Feynman parameter integral

(d) .
I4 (7'1234) 7234, 734, 7457234 — 71234, 734 — 7234,73 — 734,74 — 7234, 734 — T1234)

d\ Lot 4y
:F(4—2>/0/0/0 xiry h}  dridradas, (6.23)

hy = 11934 — (r1234 — 7234) %5 — (roga — 734) 505 — (134 — r4) 5T (6.24)

where

Expanding the integrand of (6.23) with respect to three variables

7234 7234 — T34 T34 — T4
z1=1- , =" 23=— (6.25)
71234 71234 71234

assuming that |z1| < 1, |22] < 1, |23] < 1 and integrating over x1, x2, x3 term by term, we
obtain the series representation

(d .
14 )(7’12347 T234,734,7T457234 — 11234, 734 — 234,73 — 734,74 — 1234,734 — 7’1234)
1 d\ 4.4 & d
— 2
= EF 4 — 5 T1234 E 4 — 5
ni,n2,n3=0 ni+nz2+ns

ni n2 ,n3

2, (3),
(2 1+n2+n3 1 7L2+n3 2 3”1 R2 %3
Imeolnal
g) (2) n2+n3 (%)n n1!nglng!
3

(6.26)
( ni1+n2+ns3
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The analytic continuation of this series can be expressed in terms of the hypergeometric
function oF%, the Appell functions Fy, F3 and various hypergeometric Lauricella-Saran
functions. Formula (6.17) is an example of such a representation. Other examples can
be found in refs. [34, 35]. The relationship between the hypergeometric Lauricella-Saran
functions Fg and Fyy is given in the appendix (see eq. (A.14)).

7 Functional reduction of the 5-point integral I (d)

In this section, we describe the functional reduction of the 5-point integral. At n =5, the
algebraic relation that follows from eq. (2.3) reads

1 _ X1 i)
D1DyDsDyDs - DoDsD3DyDs + D{DyDsD4Ds
I3 T4 ZIs
+ + + .
D1DyDoDyDs  D1D2D3DoDs D1 D2D3DyDy

(7.1)
Equation (7.1) is valid if

Po = T1P1 + Tap2 + T3p3 + Tapa + Tsps, (7.2)

and the parameters m2, x; obey the following system of equations:

T+ a2+ a3 +aat+as =1,
T122812 + X1X3513 + T1X4514 + T1T5515 + T2X3523 + T2T4S24
+ Tox5825 + T3X4S834 + T3T5835 + T4X5545

— xym? — xom3 — x3m3 — xami — x5mi + m3 = 0. (7.3)
Integrating equation (7.1) over kp yields the functional relation

(d) 2 2
I (m17m27m37m47m57312782378347845781575137814732473257835)
— I( ) 2 2 .
=T 5 (m05m27m37m47m5a802)823)834754575057503780478247825)835)
I( ) 2 2
+ x2l5 (m17m0,m3,m4,m5,501,303,334,345,515,515,514,504,505,535

2
+953—75 m1 mQ,mo,m4,m5,512,502,504,545,515,501,514,524,325,505

)
( )
+l‘415 (m 7m2,m37m0,m5a5123323750&505,3157313’5017502a3257535)
( )

=N =N

2
+335I5 m ,m27m37m4,mo7812,823,834,304,801,813,8147524,802,803 . (7.4)

This equation will be our initial equation in deriving functional relations at all stages of the
reduction procedure.
7.1 Functional reduction procedure

In this subsection, we describe four steps of the functional reduction procedure, which will
allow us to represent the integral I, éd) that depends on 15 variables in terms of integrals
depending on 5 variables.
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Reduction of the integral I éd), step 1. The systems of equations that were formed

from a set of equations (3.4) and egs. (7.2), (7.3) have many solutions. One of these solutions
leads to the following relation:

(dy, 2 2 92 9 9
I (mf, my, m3, mj, ms; S12, S23, S34, 545, S15, 513, S14, 524, 525, 535)

= 512345155(1)(7“12345,7“2,T3,7“4a7"5;

T — T12345, 523, 534, 545, 5 — T'12345, T3 — I'12345, T4 — 112345, 524, 525, 535)
+ H21345Iéd)(7’1, 712345, 73, T4, 15}

1 — 712345, 73 — 712345, 834, 845, 815, 813, $14, T4 — 1712345, 75 — 712345, 835)
+ 1131245I§d)(7’1, T2,712345, T4, 1’55

512,72 — T'12345, T4 — 712345, 545, 515, T1 — 112345, 514, 524, 525, 5 — T'12345)
+ fi41235—7éd) (r1,72,73, 712345, 7’55

512,823,173 — 712345, 75 — 1'12345, $15, $13, T'1 — 112345, T2 — T'12345, 525, 835)
+ H51234féd)(7’1, 72,73, T4, 712345}

512, 823,534,174 — 1712345, 71 — T'12345, S13, S14, 524,72 — T'12345, 73 — 7“12345)7 (7-5)

where
12345 _ Orioass _ Oriasss 9
r12345 = — ) K12345 = “om2 K21345 = om2 Ty =my,
912345 m3 m3
. 0r12345 . Ori12345 . 0r12345
31245 = —(; 5 41235 = (55 51234 = —(; 5 -
om3 "’ om3 "’ om?

This equation is the first step in the functional reduction procedure expressing an integral

depending on 15 variables as a linear combination of integrals depending on 11 variables.
Reduction of the integral I, éd), step 2. By setting the masses and kinematic variables
in equation (7.4) to be equal to the arguments of the first integral in the right-hand side of

equation (7.5) and solving the corresponding sets of systems of equations, we found

(d) .
I57 (112345, 72, 73, T4, T'5;
T2 — 112345, 523, $34, S45,T'5 — T'12345, 13 — 1'12345, T4 — T'12345, 24, 525, 335)
(d) .
= Ko34515 (712345, 72345, '3, T4, T'53 72345 — 712345, T3 — 72345, 534,
845,75 — 112345, 73 — 112345, T4 — 712345, 74 — 72345, 15 — 12345, 835)
I(d) e _ _
+ k324515 (?”12345, T2,72345,74, 175,72 — 1712345, 72 — 12345, T4 — 12345,
845, T5 — T12345, 72345 — 1712345, T4 — 712345, 524, 525,175 — T2345)
7@ - _ _
+ K423515 (7“1234577“277”3,7“2345, T'5; T2 — T'12345, 23, T3 — 12345, T'5 — 12345,
s — T12345, 73 — 112345, 72345 — 112345, T2 — 1'2345, 525, 835)
7 o _
+ K523415 (712345, 72, 73, T4, 72345 T2 — T12345, 523, 534, T4 — 72345,

72345 — T'12345,73 — 1'12345, T4 — T'12345, 524,72 — 1'2345,73 — 7“2345)7 (7-6)
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where

_ Aasgs
72345 = — q )
2345
_ Orazss _ Orasss _ Orasss _ Orasas
K345 = —5 5 K3245 = 5, K235 = 5, HK5234 = 5 - (7.7)
omj omg omj omg

Equation (7.6) allows one to express the first integral on the right-hand side of equation (7.5),
which depends on 11 variables, in terms of integrals depending on 8 variables. Similar
equations that reduce the number of variables by 3 for other integrals in the right-hand
side of equation (7.5) can be obtained by a proper change of arguments and coefficients in
equation (7.6).

Reduction of the integral Ig(,d), step 3. Integrals depending on 8 variables can be
expressed in terms of integrals depending on 6 variables. Similar to the previous steps, we
apply relation (7.4) to the first integral on the right-hand side of equation (7.6), and solving
the corresponding sets of systems of equations, we get

Iéd) (7“12345, 72345, 173,74, 75572345 — 1'12345, T3 — 172345,
534, 545,75 — 1712345, T3 — 1'12345, T4 — 112345, T4 — 72345, 5 — 172345, 835)
= R345I5(d) (7’12345, 72345, 7345, 74,175, 72345 — 712345, 7’345 — 172345, T4 — 7’345,
545,175 — 712345, 7345 — 712345, T4 — 712345, T4 — 12345, 75 — 72345, 75 — 7“345)
+ H435Iéd)(7“12345, 72345, T3, 17345, 5512345 — 112345, '3 — 1'2345, T3 — 7345,
T5 — 345,75 — T'12345, T3 — 712345, 7345 — T'12345, 7345 — 72345, 5 — 72345, 535)
+ 14534I§d)(7“12345, 72345, T3, T4, 7345, 72345 — 712345, T3 — 12345, S34, T4 — 345,

T345 — 112345, '3 — 712345, T4 — 712345, T4 — 12345, 7345 — 12345, 73 — T'345),  (7.8)
where

. A345 . 0r3as . 0r345 . 0rsus
345 = ———, K345 = -5, K435 = S5, K534 = 5 5
g345 8m§ ami 8m§

The functional relation (7.8) reduces an integral depending on 8 variables to a linear
combination of integrals depending on 6 variables. From equation (7.8) one can obtain
similar equations for reducing all the other integrals in the right-hand side of eq. (7.6).

Reduction of the integral Iéd), step 4. Now we proceed to derive the last set of

reduction equations. To do this, we apply relation (7.4) to the first integral on the right-
hand side of (7.8), solve the systems of equations consisting of equations (3.4), (7.2), (7.3)
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and find

I 5(d) (712345, 72345, 345, T4, T'5 72345 — T'12345, 345 — 72345, T4 — 7345, 545,
T5 — T'12345, 7345 — 712345, T4 — T'12345, "4 — 72345, 75 — 72345, 15 — 7'345)
= H45fg(,d) (7"123457 72345, 17345, 745, '5; 12345 — 1712345, 345 — 72345, 745 — 1345, 75 — T'45,
5 — 712345, 7345 — 112345, 745 — 112345, 745 — 72345, 75 — 72345, 75 — 7"345)
+ /f54[5(,d) (7”123457 72345, 17345, T4, 745572345 — 1712345, 1345 — 72345, T4 — 7’345, T4 — T'45,

T45 — T12345, 345 — 112345, T4 — 712345, T4 — 12345, T45 — 72345, 745 — 1'345),  (7.9)

where
A5 Orys Orys

T45 = ——, K45 = 5—5, K54 = 7 —5-
945 omj omg

Again, functional relations for reducing all other integrals on the right-hand side of eq. (7.8)
can be obtained from (7.9) by a proper change of variables.

By combining equations (7.5), (7.6), (7.8), (7.9), and all required relations that follow
from these equations by changing variables and coefficients, as mentioned previously, we

1 éd), depending on 15 variables,

obtained a formula that will allow us to express the integral
as a linear combination of 120 integrals, each depending only on 5 variables. All resulting

integrals in this combination depend on the MNV and have the form

a2, 2 2 92 92 92 2 9 92 92 2 92 92 9 92
I (mivmjvmk’mlvmrv My — My, My — Mg, My — M, My — M, My — My
2 2 2 2 2 22 2 2 2
Mj, — My, My — My, My — M5, My — M5, my —mg), (7.10)
where m%, m?,mi,m%,m% are the ratios of polynomials in masses and kinematic invariants.

The coeflicients in front of these integrals are also the ratios of polynomials in masses and
kinematic invariants.

The final reduction formula for the integral Iéd) is too lengthy to present in the

manuscript. Instead, we provide these formulae in electronic form in the supplementary
material distributed with this article.

7.2 Dimensional recurrence relation and series representation

The dimensional recurrence relation for the integral I éd) depending on the MNV reads

(d— 4)Iéd+2) (712345, 72345, T'345, T45, T'5; 72345 — 712345, 7345 — 12345, T45 — 7’345,
T5 — T45,T5 — T12345, 345 — T12345, 745 — 712345, T45 — 72345, 5 — 72345, 5 — 7'345)
= —27‘12345I§,d) (7"123457 12345, 1345, 745, T'5;5 72345 — 712345, 1345 — 12345, 7’45 — 1345,
T5 — T45,T5 — T12345, 345 — T'12345, 745 — 712345, T45 — 72345, 5 — 72345, 5 — 7'345)
- id) (12345, 7345, 745, 53
T345 — 12345, T45 — 345,75 — T45,T5 — 72345, 5 — 7345, T45 — 12345 (7.11)

Notice that the inhomogeneous part of this equation consists of only one term — the integral

I id) which also depends on the MNV. The solution of the dimensional recurrence relation
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for the integral I éd) is a bit cumbersome but straightforward. We will present the result

and details of the derivation in a separate publication.

At d = 4 the term with the integral Iéd+2) in eq. (7.11) drops out, and we get a
simple relation

(4) .
27”12345-75 (7“12345, 72345, 1345, 45, 755 72345 — 712345, 7'345 — 172345, 745 — T'345,
s —T45,T5 — 112345, 7345 — 712345, 745 — T'12345, 745 — 72345, 75 — 172345, 75 — 7"345)

(4) .
= —1; (72345, 7345, 745, 7’5}

345 — T2345, 45 — 7345, 75 — Td5, 5 — 12345, 75 — 7345, T'45 — 7'2345). (7.12)

Now we proceed to derive a multiple series representation for the integral I éd) depending
on the MNV. To do this, we will use the following Feynman parameter integral representation

(d) .
I5 (T1234Sa 12345, 1345, 745, T'5;5 72345 — 1712345, 7345 — 172345, 745 — 1345, 75 — T'45, 5 — T'12345,

7345 — 1712345, 745 — 1712345, 745 — 172345, 75 — 12345, 175 — 7’345)

d\ 1ot gl d_s
=-T (5—2>/0 /0 /0 /0 airdesh?dridredrsday, (7.13)

where

2
h5 = T12345 — (7’12345 - 7“2345).@1

— (1"2345 — 7“345):17%%’% — (7“345 — 7“45)13%1’%%’% — (T45 — T5)l’%l’%$§$i (7.14)

A multiple series representation of the integral I, éd) can be derived in a similar manner,

as it was done for the integrals Iéd) , 1 id). Expanding the integrand in eq. (7.13) with respect

to four variables

_ 712345 — 72345 _ T2345 — 7345 _ T345 —T45 _T45— 75
Zl - 9 22 - 9 Z3 - 9 Z4 - Y (715)
712345 712345 712345 712345
assuming that all |z;| < 1, and then integrating term by term over z1,...,x4, we get

(d) .
I5 (7“12345, 72345, 1345, 45, 155 72345 — T'12345, 7345 — 172345, 745 — 17’345, 75 — 145,

T's — 1712345, 17345 — 1712345, T'45 — 1'12345, 745 — 12345, 175 — 172345, 75 — 'r345)

1 d > d
a9 56
24 2 2 ni+nz+ng+ng

n1,n2,n3,n4=0

3

1
- urenrnrens (3 opengin, Wi (Bog 0 52 257 240 .

(3)n1+no+ng+na (% (2)ng+na (%) ni! ng! ngl ng!
ng

) n2+ng+na

Note the similarity of the summand of this series to summands of the series given in
egs. (5.25), (6.26).
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8 Functional reduction of the 6-point integral Iy (d)

Now we proceed to derive functional relations for reducing the 6-point integral. At n =6
the algebraic relation (2.3) reads

1 _ T T2 z3
D1DsDsD1DsDs  DoDaDsDaD3Dg | DiDoD3DaDsDs | DiDsDoDyDsDg
+ T4 + 5 + 6
D1DyD3DyDsDg D1DsD3D4DyDg D1D2D3D4D5D0.

(8.1)

Equation (8.1) is valid if
Po = T1P1 + Tap2 + T3p3 + Taps + TsPs + TePe, (8.2)

and the parameters m2, x; obey the following system of equations:

T+ 2o+ 23+ x4+ x5+ 26 =1,
T122812 + X1T3513 + 124514 + T1T5815 + T1X6S16 + L2T3523 + T2X4524
+ XoX5825 + Tox§S26 + L3L4834 + T3X5835 + L3T6S36 + L4X5545 + L4TeS46

2 2 2 2 2 2 2
+ T5TeS56 — T1M] — TaMs — T3M3 — Tamy — TsMy — TeMg +mgy = 0. (8.3)

Integrating both sides of eq. (8.1) over k; yields the functional relation

(d, 2 2 2 9 9 9
16 (m17m27m37m47m5;m673127323733473457356731&

8137814a515752478257526753578367846)
_ (d/ 2 2 2 92 92 92
=x1lg (m0>m27m37m47m5am6,502>523,334>345a35675067
503, 504, 505, S24, 525, 526, 535, 536, 546)
(d) 2 2 9 9
+$2I6 (m17m07m37m4)m57m675015503353475457356)816)
513, 514, 515, S04, 505, 506, 535, 536, 546
(d, 2 2 2 9 9 9
+333[6 (m17m27m07m47m57m67312730273047345735673167
3017514751578247825”526a50573063346)
I() 2 2
+ xyly (m17m27m37m0,m5>m675127523730&5057556,5167
513,501, 515, 502, 525, 526, 535, 536, S06)
I() 2 2
+ 514 (m1=m2vm3vm47m0>m675127523a534750473067516’
513, 514, S015 524, 5025 526, 503, S36, 846)
(d, 2 2 2 9 9 9
+336I6 (ml,mz,m3,m4,m5,m0,312,323,334,345,305,301,

513, 514, 515, S24, 525, 502, 535, 503, S04)- (8.4)

This equation will be used at all steps of the functional reduction of the integral Iﬁ(d).
Derivation of the reduction formulae is completely analogous to that of the integrals
DA O
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8.1 Functional reduction procedure

In this subsection, we will describe five steps of the functional reduction procedure allowing

us to represent the integral Iéd) depending on 21 variables in terms of integrals depending

on 6 variables.

Reduction of the integral Iéd), step 1. At the first step, we formed various systems

of equations by combining egs. (3.4) taken at n = 6 and eqs. (8.2), (8.3), and solved these
systems for x;, m3. Many solutions have been found. One of these solutions leads to a
functional relation reducing 5 variables simultaneously for all integrals in the right-hand
side of eq. (8.4). The functional relation corresponding to this solution reads

e 2 2 92 2 2 2
IG (mlﬂm27m3am4am57m6a812a523a5347545335675167

513, 514, 515, 524, 525, 526, 535, 536, 546)
= /‘612345616(d) (7123456, 72, '3, T4, T'5, 765 T2 — 1123456 523, 534, 545, 556, 76 — 123456,

T3 — 17123456, 4 — 7123456, T'5 — 1'123456, 524, $25, 526, S35, 536, 846)

+ /ﬁ213456[(§d)(7’1, 7123456, 73, T4, 15, T6; 71 — 7123456, '3 — 7"123456, 534, 545, 56, 516,
513, 514, 515, T4 — 7123456, 75 — 7123456, 6 — 71234565 535, 536, 546)

+ H312456If(5d) (71,72, 7123456, T4, T'5, 763 512, T2 — 7123456, T4 — 7123456, 545, 5565 5165
1 — T'123456, S14, S15, 524, 525, 526, I'5 — 1'123456, 76 — 7123456, 846)

+ f€412356féd)(7’1, T2,73,7123456, 15, T'6; S12, 523, '3 — 1'123456, 75 — 7123456, S56,
516,513, 71 — 7123456, S15, T2 — 7123456, 525, 526, S35, 36, 76 — 7“123456)

+ H5123461éd)(7’1, T2,73,74,7123456, 765 S12, 523, S34, 4 — T'123456, 7’6 — 7123456,
516, 513, 514, 1 — 71234565 524, T2 — T123456, 5265 T3 — 7123456 536 546)

(d) )
+ H612345—76 (Tl,T27T3, T4,7T5,71234565 S125 523, S34, S45,T5 — 7123456, "1 — 1123456,

513, 514, 515, 524, 525, 2 — 7123456, 535, T3 — 123456, T4 — 7123456, (8.5)
where
123456 _ Ori23456 _ Or123456 _ Origsas6
123456 = T 123456 = —oo 5 R218456 = 55 K213456 = — o5
9123456 my my m3
~ Or123456 ~ Or123456 ~ Or123456 s
R213156 = —p 5 R213456 = o5 R612345 = — o5 ri=m;.  (8.6)

There are several other solutions of the systems of equations (3.4), (8.2), (8.3) allowing us
to reduce the number of variables simultaneously for all integrals in the right-hand side of
eq. (8.4), but the number of variables reducible by the functional relations corresponding to
these solutions were less than 5. We obtained also many solutions leading to the functional
relations reducing the number of variables but not for all integrals simultaneously. Some of
these solutions depend on the square roots of the polynomials in kinematic variables and
masses.
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Reduction of the integral Iéd) , step 2. At the second step of the reduction we take the

arguments of the first integral in the right-hand side of equation (8.5) and substitute them
into the initial functional equation (8.4). By solving the systems of equations composed of
equations (3.4) and equations (8.2), (8.3), for the new unknowns m2, so;, ; we found a
solution allowing us to reduce four variables simultaneously for all integrals. This solution
leads the following reduction formula:

Iéd) (7’1234567 72,73,T4,T5,T65T2 — 1123456, S23, S34, $45, 556, 6 — 17123456,
T3 — 7123456, T4 — 1123456, T'5 — 1123456, S24, 525, 526, S35, 536, 546)
= 5234561((5@ (7123456, 723456, 73, T4, T'5, 765 723456 — 71234565 T3 — 7234565 534, 545, 556,

T6 — 7123456, '3 — 1123456, T4 — 7123456, 75 — 1123456, T4 — 723456,
T5 — 723456, 76 — 723456, 535, 536, 546)

+ /<032456Iéd) (7123456, T2, 7234565 T4, T'5, 763 T2 — 1123456, T2 — 7234565 T4 — 7234565 545, 556,
T6 — 1123456, 1'23456 — 7123456, 74 — 7123456, 1’5 — 1'123456, 524, 525, 526,
5 — 123456, 76 — 123456 546)

+ /142356-7éd) (7123456, T2, '3, 723456, T'5, 765 T2 — T1234565 523, T3 — 123456, 5 — 723456 556
T6 — 7123456, '3 — 7'123456, 723456 — 7'123456, 7’5 — 7'123456, T2 — 1'23456, 525, 526,
535, 536,76 — 23456)

+ I€52346I((5d) (7123456, T2, 3, T4, 23456, 765 T2 — T123456 523, 534, T4 — 723456, 76 — 7'23456
T6 — 7123456, T3 — T"123456, T4 — 1123456, 1'23456 — 7123456, 524, T2 — 123456, 526,
T3 — 123456, 536, 546)

+ ff62345]éd) (7“123456, T2,73,T4,75,723456; T2 — T'123456, 523, S34, S45,T5 — 1723456,

723456 — 7123456, T3 — 17123456, T4 — 7123456, 5 — 17123456, S24, 525, T2 — 123456, S35,

T3 — T23456, T4 — T23456), (8.7)
where
23456 _ Orazuse _ Orassse
T93456 = —————, K23456 = —a 5+ K32456 = —5 5
923456 om; om3
_ Orasase _ Orazuse _ Orassse
K42356 = — 5 K52346 = — 5y K62345 = — 5 (8.8)
8m4 a/rn,S 8m6

Similar considerations apply to other integrals from the right-hand side of equation (8.5).
Hence with the aid of the functional relation (8.7), the original integral depending on 16
variables will be reduced to a combination of integrals depending on 12 variables.

Reduction of the integral Iéd), step 3. At the third step, integrals depending on 12
variables were reduced to integrals depending on 9 variables. We substitute arguments of
the first integral in the right-hand side of equation (8.7) into our initial equation (8.4) and
solve the systems of equations composed of equations (3.4) and (8.2), (8.3) for the new
unknowns x;, mg.
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One of the obtained solutions yields the required reduction formula

Iéd) (r1234567 723456, 73, T4, 75, 765 123456 — 7123456, T3 — 1723456 S34, 545, S56, 16 — 1'123456,
T3 — 7123456, T4 — 7123456, T'5 — 1123456, "4 — 723456, T'5 — 723456, 76 — 123456, S35, 536, 546)
= "‘534561((5(1) (r1234567 723456, 13456, T4, 5, T'6; 123456 — 7123456, 1'3456 — 723456, 74 — 73456,
845, 856,76 — 11234565 73456 — 7123456, T4 — 7123456, 75 — 17123456, T4 — 123456,
T's — 123456, 76 — 123456, 17’5 — 173456, 7’6 — 173456, 346)
+ "‘7435616(;(1) (T123456> 723456, 13, 734565 75, T'65 123456 — 17123456, '3 — 123456, '3 — 73456,
T's5 — T'3456, S56, 76 — 1123456, T3 — 1123456, I'3456 — 7123456,
T'5 — T'123456, T'3456 — 723456, T'5 — 123456, 7’6 — 1723456, S35, 36,76 — 7'3456)
+ /435346[f(jd) (T1234567 723456, 135 T4, 3456, T'65 723456 — 17123456, T3 — 123456, S34,
T4 —T3456,76 — 13456, 76 — 1123456, 7"3 — 7123456, T4 — 1123456, 13456 — 7123456,

T4 — T23456, 73456 — 723456, 76 — 723456, 73 — 13456, 536, 346)

(d) .
+ /‘0634516 (71234567 723456, 13, 74, T'5, 134565 123456 — 7123456, '3 — 123456, S34,

845, 5 — 134565 13456 — 171234565 T3 — 7123456, 4 — 7123456, 7’5 — 17123456,

T4 — T23456, 5 — 7'23456, 3456 — 7'23456, 535, '3 — 13456, T4 — T'3456), (8.9)
where
_ A3456 ~ Orasse _ Or3ase
3456 = — » K356 = oy Ka3se = oo
93456 mg my
073456 073456

K5346 = —=—5> k6345 = —m 5 8.10
om?2 "’ om2 (8.10)

Functional relations for reducing other integrals from the right-hand side of eq. (8.7) can be

obtained from eq. (8.9) by an appropriate change of variables.

Reduction of the integral Iéd), step 4. At the next step, we derive a formula for
expressing integrals depending on 9 variables in terms of integrals depending on 7 variables.
Again, as it was done in the previous step, we substitute the arguments of the first integral
on the right-hand side of eq. (8.9) into eq. (8.4), solve appropriate systems of equations for
the new unknowns and get

Iéd) (7123456, 723456 73456 > 45 T'5, 763 723456 — 71234565 73456 — 7234565 T4 — 73456,
845, 856,16 — 71234565 1'3456 — 17123456, T4 — 7123456, 75 — 1123456, T4 — 723456,
T5 — 723456, 76 — 723456, 5 — 73456, 76 — 7’3456 546)
= /1456]6(60 (7123456, 723456, 3456, 7456, "5 T'63 723456 — 7'123456, 73456 — 123456, 7456 — 1'3456
5 — T'456, S56, 76 — 17123456, 1'3456 — 1123456, 456 — 7123456, 5 — 7123456, 1'456 — 723456,
5 — 123456, 76 — 723456, 5 — 73456, 6 — 73456, 76 — T456)

(d) .
Iﬁ (r1234567 723456, 13456, T4, 7456, 765 723456 — 1123456, 1'3456 — 723456, T4 — 73456,

+ K546
T4 — T456,76 — T456, 76 — 11234565 73456 — 7123456, T4 — 7'123456, T4 — 17'23456,

T456 — 17123456, 7456 — 723456, 7’6 — 123456, 456 — 73456, 76 — 173456, 546)
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(d) .
+ ’€64516 (T1234567 723456, 13456, T'4, T'5, 4565 123456 — 1123456, 1'3456 — 723456, T4 — 73456,

845, T5 — T'456, 456 — 17123456, 1'3456 — 7123456, 4 — 1123456, 7’5 — 7'123456, T4 — 723456,

T5 — T23456, T456 — 723456, 75 — T'34565 7456 — 7’3456, T4 — T456 ), (8.11)
where
A6 _ Orase ~ Orygse ~ Orase
Tas6 = T RAS6 = gogs RhI6 = oog K64 = oo o (8.12)
9456 my m? mé

Notice that all integrals in the right-hand side of equation (8.11) depend on 7 variables.
These integrals may be expressed in terms of integrals depending on 6 variables.

Reduction of the integral Iéd), step 5. The final formula for the first integral on the
right-hand side of eq. (8.11) was derived by the same method which was used in the previous

steps and reads

Iéd) (7'1234567 723456, 1'3456, 456, 1’5, 765 123456 — 1123456, 1'3456 — 723456, 456 — 73456,
5 — T'456, 856,76 — 17123456, 13456 — 1123456, 7456 — 7123456, T'5 — 7123456, 7'456 — 1723456,
5 — 123456, 76 — 123456, 75 — 73456, 76 — 73456, 76 — 7'456)
= 55616(60 <T1234567 723456, T'3456, 456, 156, 165 723456 — 71234565 73456 — 723456, T'456 — 173456,
56 — 7456576 — 756,76 — 7123456, '3456 — 17123456, 7456 — 7123456, I'56 — 7'123456,
7456 — 1723456, 756 — 1723456, 76 — 723456, 56 — 73456, 76 — 7'3456,76 — T456)
+ HGSIéd) (r1234567 723456, 13456, 7456, 1’5, 7563 1723456 — 7123456, 73456 — 723456, 456 — 73456,

5 — T'456, 76 — 156, 56 — 17123456, 3456 — 17123456, 7456 — 7123456, 75 — 7123456,

T456 — 723456, 5 — 123456, 756 — 1'23456, 5 — 13456, 756 — 7’3456, 756 — 7456 ), (8.13)
where ) P P
56 56 56
56 = ——, K56 = om2’ Kes = om2 (8.14)
956 ms mg

Analogous formulae for the reduction of other integrals on the right-hand side of eq. (8.11)
can be obtained form eq. (8.13) by changing variables appropriately. This completes the
derivation of the reduction formulae for the integral Iéd).

Composition of equations (8.5), (8.7), (8.9), (8.11), (8.13) and all required relations
that follow from these equations by changing variables as mentioned previously, gives a
formula for the complete functional reduction of the integral Iéd). This formula represents
the integral depending on 21 variables as a sum of 720 integrals, each depending only on 6

variables. All the resulting integrals in this sum have the form

¢ 2 2 92 92 2 92 92 92 2 92 2 2 2 2
16 (mi,mj,mk,ml,mr,ms, mj—mi,mk—mj,ml — My, m, —my,
2 2 2 2 2 22 2,2 22 2
My — My, My — Mg, My, — My, My — Mg,y — Mg, my — my,
2 2,2 2,2 2 2 2 2 2
M, — M35, M5 — M35, My — Mg, Mg — M, Mg — M), (8.15)

12, mjz, mz, ml2, m2, m? are the ratios of polynomials in masses and kinematic

invariants. The coefficients in front of these integrals are also the ratios of polynomials in

where m

masses and kinematic invariants.
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The final formula of the reduction is too lengthy to display here, but we provide it< in
a computer-readable ancillary file attached to this article.

8.2 Dimensional recurrence relation and series representation

7@

An analytic result for the integral Iz’ can be obtained, for example, by solving the

dimensional recurrence relation or by evaluating the Feynman parameter integral.
The dimensional recurrence relation for the integral Iéd) depending on the MNV reads

(d— 5)Iéd+2) (7123456, 723456 73456, 7456, 7565 T6; 723456 — 7123456, 73456 — 723456, 456 — 3456,
T56 —T456576 — T'56, 76 — 7123456 3456 — 1'123456 > 7456 — 1"123456, 7'56 — '123456
T456 — 723456, 756 — 234565 76 — 7'23456, 756 — T'3456, 6 — 3456, 76 — 456
= —2r123456/, éd) (7123456, 723456, 73456 7456, 56,5 763 723456 — 123456 73456 — 23456,
T456 — 134565756 — 1456, 76 — 565 76 — 1'123456 > 3456 — 1"123456, 456 — 1"123456, 756 — 71234565
T456 — 23456, 756 — 23456, 76 — 7'23456, 756 — 7’3456, 76 — 7’3456, 76 — 7456
- 5(d) (723456, 73456, 7456, 756 765 73456 — 23456, 456 — T'3456, 756 — 74565 76 — 56,76 — 7'23456

T456 — 123456, 56 — 123456, 56 — I'3456, 6 — 13456, 76 — 456 ) - (8.16)

Notice that the inhomogeneous term in this equation is an integral depending on the MNV.
The solution of this recurrence relation is straightforward but cumbersome. The result is a
bit lengthy and for this reason it will not be presented in this article.

We obtained the following Feynman parameter representation of this integral:

d
—76( ) (7193456, 723456, 734565 T456, 7565 T6; {sij})
d ! o432 56
=T <6 - 2> /0 /0 xixhr3rs he dxy ... dws, (8.17)
where

2 2,2 2,22
he = 123456 — (r123456 - r23456)1'1 - (T23456 - r3456)$1$2 - (T3456 - 7“456).%'1.1‘21'3

2.9 92 9 2992 92 9
— (ras6 — T56)T1THT5xE — (56 — T'6)T]THTZTLXE, (8.18)
and
sij =mj —mg, (j > 1),
2 2 2 2 2 2
M = 17123456, M5 = 123456, M3 = 3456, My = T456, M5 = r'sg, Mg = T'g. (8.19)

Ié-d) can be obtained by the same method which

Iéd), id), Iéd). Expanding the

A series representation of the integral
was used in deriving the series representation of integrals
integrand of (8.17) in terms of the variables

_ T123456 — 723456 o — 7123456 — 723456 e — 7123456 — 723456
— P 2 — 3 3 — )
7123456 T'123456 7123456
7123456 — 723456 T'123456 — 723456
gy = —=22 SRR 25 = =00 (8.20)
7123456 7123456
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assuming that all |z;| < 1 and integrating over x1,...,x5 term by term, we get

d
I (m2, m2, m2, m2, m2,mZ; {si;})

5

d_g 5
— T1223456F (6 . d> i (6 . d> (2)n1+n2+n3+n4+n5
120 2 2 ni+nz+nz+ngs+ns (7

ni,n2,n3,n4,n5=0 §)m+n2+n3+n4+n5
:) (3)
s = ny _m2 N3 N4 N5
> (2)n2+n3+n4+n5 (2 n3+na+ns (1)n4+n5 2 ng ?1 22 R34 250 (8 21)

(3)n2 +nz+nstns (5

2 (2)n4+n5 <§) n1! no! ng! ng! ng!’
ns

)n3+n4+n5

One can see that the summand of this series is very similar to that of the series given in
egs. (5.25), (6.26), (7.16).

9 Functional reduction of integrals with special kinematics

The procedure of functional reduction must be modified if the Gram determinant gqo._,, = 0.

IT(Ld) can be reduced [36] to a combination of integrals qud_)l. The

In this case, the integral
functional reduction can be applied to integrals obtained after such a reduction. Notice
that if the lower order Gram determinant g;; ; vanishes, then it means that the Gram
determinant gio._, also vanishes [37]. A modification of the functional reduction is needed
in the case when some kinematic invariants s;; vanish.

If some s;; = 0 (r;; — 00), then the corresponding last step of the functional reduction
must be skipped. There is no further functional reduction of integrals with such values of
kinematic invariants. Analytic results for these integrals are simpler than those for integrals
depending on general kinematics. We will consider derivation of these results integral by

integral.

The integral I?(,d) at so3 = 0. If; at the last step of the functional reduction, the
kinematic invariant of the integral I:gd), say sa3 = 0, then the application of formula (5.11)
should be skipped.

The Feynman parameter representation of this integral reads

I3(r123,72,73; 0,73 — T123,72 — T123)
d 1 rl d_
=-T (3 — 2) /0 /0 .Tl[T’lzg — (7“123 — 7“3).%'% — (7“3 — 7’2)33%1’2]2 ?’dmldacg. (9.1)

Notice a small difference between this expression and the Feynman parameter representation

7@

of the integral I3’ given in eq. (5.22). The integral (9.1) can be easily evaluated. First,

integrating with respect to x7 and then with respect to o yields

d —T
I;(., )(r123,72,73; 0,73 — F123,72 — T123) = I 7d
2sin 5T (5 — 1)
d_ d_
7’2 2 d rs —Tro T3 — T2 7’2 2 r123 — T2
x{—3—— [ (1,1,2 -2 , ) — 13y (9.2)
T3 —T123 2" "r3—rie3 T3 o —T3  T123 — T3
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The result for this integral may be obtained in a slightly different form. Expanding the
integrand of (9.1) with respect to the variables

123 — T3 rs —T2
=28 = : (9.3)
123 123

assuming |z1| < 1, |z2| < 1 and integrating with respect to x; and x2 term by term, we get
the series representation

I:gd) (r123,72,73; 0,73 — r123,72 — r123)
d_3
— _T1223 (3 _ d) i (3 _ d) (1)n1+n2 (1)712 Zilzim (9 4)
2 2 n1,n2=0 2 ni+ng (2)n1+n2 (2)n2 nl! n2!

Another series representation can be obtained by a slight modification of the above
derivation. We expand the integrand with respect to z; and integrate over x; first. Finally,
performing the integration with respect to xs, we get the result in terms of two generalized
hypergeometric series 3F5

d T d
Ig(, )(?"123,7“2,7’3; 0,73 — r123,72 — r123) = — 1;3 F(3—2>
21+ 22 3-41,1; 21 3—491,1;
F 27 b ) 7t F 2’ ) bl . 9‘5
X{ SRR 2{ 9.9 Z1+22] ot 2{ 29, 21 (9.5)

The analytical expression for the integral can also be obtained by solving dimensional
recurrence relation

(d— 2)I§d+2)(7’123, r2,73; 0,73 — 123,72 — T123)
= —2T123[§d) (r123,72,73; 0,73 — T123,72 — T'123) — Iéd) (r2,73;0). (9.6)

7@

Here the integral I, is a combination of two tadpole integrals. The solution of this

dimensional recurrence relation reads

d
IgE )(7“123, r2,73; 0,73 — 123,72 — T123)
d_9
2 d—2 d—2
Trizs { 111(7“123 — ’I“Q) - h1(""123 - "”3)
(rg —r3)sin %df (%) 4

4
d d
1 51 1.4=2. 1 51 1.4=2.
+2<T2>2 | LT _(Ts) N R R L ST
123 55 Ti23 2 \ 7123 3 Ti123

An arbitrary function, invariant under d — d + 2, appearing in the solution of eq. (9.6), was

obtained by solving the system of differential equations with respect to kinematic variables.

As was shown in ref. [38], different representations of the Feynman integrals can be
used to find new relations among hypergeometric functions. In particular, a comparison of
eq. (9.5) with eq. (9.7) yields the following relationship:

d—2
3-491,1; 2 2(1—2) 2 1,42,
F PRI — F I "1 —
3 2[ 2,2 Z} z(d—4){ i—2 ¥ 4 z

U

—i—lnz—i—w(g—l) —i—'y},
(9.8)
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where the function ¢ (z) is the logarithmic derivative of the Euler’s I' function, ¢ (x) =
d InT'(x)/dz, and v = 0.57721566 . . . denotes Euler’s or Mascheroni’s constant [39].

By comparing eq. (9.2) with eq. (9.7), we get the following relationship:
1,1; z
g vl

d
d 2 1—y)z? 1,1;2(1—
Fl <17172_727$7y): ( y)2 2Fl ;l ’u
2 1
(9.9)

+oF

(d=2)y| =z-1 55 y(1—x)

This formula can be used to evaluate a high-order series expansion in € = (4 — d)/2 of the
hypergeometric Appell function Fj. Such an expansion can easily be derived, as expansion
of the hypergeometric functions 2 F from eq. (9.9) is known to any order in e.

at s34 = 0. The situation concerning the integral I, id) is very similar

to the case of the integral I:gd)
equation (6.9), say s34 = 0, then the application of relation (6.9) must be skipped.

The integral I id)

. If, for example, a kinematic variable of the integral I AEd) in

An analytic result for the integral I id) in this case can also be obtained by solving the
dimensional recurrence relation

(d — 3) IS (11234, mo34, 730, 74
T34 — T'1234, 734 — 7234, 0,74 — 71234, T4 — 7234, 734 — T'1234)
= —27“123414&(1) (71234, 234, T34, T'4;
T34 — T'1234,734 — 7234, 0,74 — 71234, 74 — T234,734 — T'1234)

d
- 13(, )(7"234> 734,745 0,74 — 7234, 734 — T234). (9.10)

In order to solve this equation, we used the analytic result (9.7) for the integral I éd) and
obtained

d
Ii )(7’1234,7“23477’34,?“4;

7934 — T1234, 734 — 7234, 0,74 — 71234, T4 — 7234, 734 — T1234)
d
_ {934 €4(T1234, 7234, 734, 74) ™

d—3Y ooy md Qi mdp (d
F( 5 )sm% 8sin TFT (5) 171234(734 — 74)

d_o 17 =4 3 T
X {(d —2)rdy, [lD(T234 —734) — In(ro34 — 7‘4)} 2F1[ w3 1

55 T1234
4
2r3y ( d—3 d 734 T34 )
—= F3(1,1,1 —:
+7‘234—7“34 S\ T2 2 gy — ross Tiom
d_
27"42 1 . <1 L1 d—3 d‘ T4 T4 > (9 11)
7934 — T4 S\ 727 ry —ro3a T1234/) | '
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where

c4(T1234, 7234, T34, T4)
-
=—3 —<In(razs — r34) — In(rage — ra)
Arfza(r3a — ra)(r123a — 1234)2

—1In

\/T1234 — T34 — \/T1234 — 7234 tn V1234 — T4 — \/T1234 — 7234 (9.12)
V/T1234 — T34 + \/T1234 — 7234 V1234 — T4 + \/T1234 — 7234

The definition of the hypergeometric Appell function Fj3 is given in the appendix. The
function ¢4 (71234, 7234, 734, 74) appeared as an arbitrary periodic function in the solution of

7@

the dimensional recurrence relation for the integral I,”. This function was obtained by

solving the system of differential equations which was derived from the system of differential

equations for the integral [ id).

The integral I id) can also be evaluated using the Feynman parameter representation.
In the case under consideration, the integral representation is slightly different from the

representation given in (6.23)

(d) .
1,7 (11234, 7234, 73, 745 7234 — 71234, 73 — 7234, 0,74 — 71234, 74 — 7234, 73 — T1234)

d 1,1 1 d_y
:F<4—2)/0 /O/Ox%:czhj dzidzodes, (9.13)

hy = 11934 — (r1234 — 1234) 75 — (roga — r3)xias — (r3 — ra)xiarsws. (9.14)

where

The difference between this hy and hyg from eq. (6.24) is only in the last term. Expanding
the integrand of (9.13) with respect to three variables
_ T1234 — 7234 _ T234 — 73 T3 — T4

o= B e BT = , (9.15)
71234 71234 1234

assuming that |z;| < 1, (j = 1,2,3), and integrating with respect to z1, x2, x3 term by
term, we then obtain

) .
4 (71234,7234, 734,743 7234 — 71234, 734 — 234, 0,

T4 —T1234,T4 —T234,734 —7'1234)

3
ni+nz+nsg

T'1234 = '
6 2 n1,n2,n3=0 2 (2)n2+n3 (2)n3 nilng!Ing!

( ) nit+na2+n3

Note that the summand of this series is slightly different from the summand of the integral
1Y for 1 ki ics i
4 general kinematics in eq. (6.26).

The integral Iéd)

at sg5 = 0. If one of the kinematic variables of the integral I, éd), say
s45 = 0, then the application of the reduction relation (7.9) must be skipped.
An analytic result for such an integral can be obtained either by solving the dimen-

sional recurrence relation or by calculating the Feynman parameter integral. Solving the
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dimensional recurrence relation for the integral I5 is somewhat cumbersome and the result

is relatively long. For these reasons, we will not present it here. Instead, we have derived
the expression for the integral I, éd) in terms of multiple hypergeometric series. The Feynman

parameter representation of this integral reads

(d) .
I5 (7“12345, 72345, 345, 4, T55 72345 — 7'12345, 7345 — 72345, T4 — 7345, 0,75 — 712345,

345 — T'12345,74 — T'12345, 74 — 12345,T75 — 172345, 75 — 7"345)

d\ 11l a_g
=-T (5—2>/0 /0 /0 /0 adxdesh?  dridredraday, (9.16)

2
hs = 112345 — (712345 — T'2345) 2]

where
— (19345 — T345) 2325 — (7345 — ra)Tia323 — (14 — r5)TiTITIL,. (9.17)
Expanding the Feynman parameter integrand with respect to the four variables

712345 — 72345 72345 — 1’345 _ T345 — T4 T4 —T5

Z1 = ) Z9 = ) Z3 = ) Z4 = ) (918)
712345 712345 712345 712345
and integrating over x,...,r4 term by term then yields
79 :
5 (712345, 72345, 7345, T4, 755 72345 — 712345, 345 — 172345, T4 — 7345, 0,75 — 712345,

345 — T'12345, T4 — 112345, T4 — 12345, 75 — 172345, 75 — 7’345)

1 d > d
A
24 2 Z 2 ni1+n2+nz+ng

n1,n2,n3,14=0

3

g rttns (B mpimins Dnyims (Do 57 257 250 40
(3)n1+n2+n3+n4 (é (2)n3+n4 (2)114 ni! nal ngl ny!

(9.19)

2 ) na2+ng+ng

Note a slight difference between this representation and series representation (7.16) of the

(

integral 5d) for general kinematics.

The integral Iéd) at ss6 = 0. The integral Iéd) for the case when one of the kinematic
variables, say ssg = 0, should be considered in the same way as the integral I, 5(d). The
application of the reduction formula (8.13) in the last step must be skipped.

The analytic calculation of the integral can be performed either by solving the dimen-
sional recurrence relation or by evaluating the Feynman parameter integral. The solution
of the dimensional recurrence relation is straightforward but cumbersome and the result
is relatively long. For this reason the derivation of the solution and the result will not be
considered in the present paper.

The parametric representation of the integral reads

(d) )
Iﬁ (7”1234567 723456, 1'3456, 456, 1’5, 765 123456 — 1'123456, 73456 — 123456, 456 — 73456
5 — T'456, Oa T6 — 7123456, 73456 — 7123456, I'5 — 1'123456, 7’456 — 123456,

T'456 — 7123456575 — 723456, 76 — 723456, 15 — 73456, 76 — 73456576 — 7"456)

d 1 1 d_
=T (6 — 2) / / x%x%x%amhg 6dx1dx2d:n3dx4dx5, (9.20)
0 0
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where

he = 193456 — (r123456 — T23456)T7 — (23456 — T'3456) T 23
— (13456 — 7’456)$%$%:(}§ — (ras6 — r5)x%x%w§xi —(rs — r6)x%w%x§xix5. (9.21)

The last term of hg here differs from that given in eq. (8.18). Expanding the integrand with
respect to the five variables

7123456 — 723456 4., — 23456 — 7’3456
- 5 2 = 3
7123456 7123456
73456 — 7456 T456 — T'5 s —Tg
23 =, Ry = ———, z5 = s (9.22)
7123456 7123456 7123456
and integrating over x1,...,r5 term by term, we get the multiple series representation

(d) :
16 (7“1234567 723456, 1'3456, 456, T'55 765 123456 — 7123456, 1'3456 — 723456, 456 — 173456,
T5 — T456, 0, 76 — 7123456, 73456 — 7123456, 7456 — 7123456, 75 — T123456, 7456 — 723456,
s — 123456, 76 — 123456, 75 — 73456, 76 — T3456,76 — r456)

d_g 00

{346 _ ‘f _ Sl
120 L (6 2) 2 <6 2

n1,n2,n3,14,n5=0

)
( 2 ni1+ne+ng+ng+ns

) ni+nz+ng+ng+ns (*)
ni+ne+ng+ng+ns

3

- ptnprnions Oaginrins Dy g 231 257 550 20 220 0

(3)na-ns+na+ns (5 (2natns (2),, 7! 2! sl nyl ns!”

2 ) n3+ng+ns

Note similarities between summand of this multiple series and the summands of (9.4), (9.16), (9.19).
This concludes our consideration of integrals for special values of kinematic variables.

10 General algorithm of the functional reduction

Comparing expressions (4.11), (5.12), (6.11), (7.5), (7.6), (7.8), (7.9), (8.5), (8.7), (8.9), (8.11), (8.13),
it is not hard to see common features and similarities between them. Based on these ob-
servations, we have developed a regular algorithm for obtaining final reduction formulae,
which is valid for the integrals considered in the article. We assume that the algorithm can
be applied to integrals IT(Ld) with n > 6 as well.

Final functional reduction formulae for the integrals Iéd), ey Ié-d) can be obtained by
exploiting the following algorithm:

e write down the term

dy(, 2 2 2.
K1.nK2. m- - -Kn—1 n I,(l )(ml, M5, ... M5 512,523, - . .) (10.1)

o replace in the integral s;; — m? —m? (j >1i)

o replace in the integral m% — T, m% — Ty .,m% — T
8 L
o replace K. — g;){LQ

7
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o generate n!— 1 terms by symmetrizing the term (10.1) with respect to the indices
1,2,...n and add all these terms to (10.1).

All steps are very straightforward and easily achieved with a computer program. This

algorithm works perfectly for the integrals Iz(d),. . ,Iéd). We have verified numerically that

it is also valid for the integrals I§d), Iéd). Notice that the number of terms in the final

reduction formula for massless integrals is n!/2.
d)

We found that the parametric representation of the integral L(l
MNYV can be written as

depending on the

Ir(Ld)(m% oym2i s = mp — milk > i})

d
1 " Lt [todt tnth”
:(2)”7"11711“< )/ —L / = = dty_1, (10.2)
n—1

where h,, is a polynomial linear in the integration variables
hn =1- thl — thg T e T anltnfl, Z; = 17%"_1 (103)

The parametric representation of integrals depending on the special kinematics consid-
ered in section 9 differs from that of (10.2) and reads

Igd)(m% s ,mi; {Sn—l,n = 0; ik = m% - ml2|l < k})
d_n
_ %I‘ ( d)
on—2 9
1 dt t1 dt tn—a dt, _ tn—3 dt, _ th—2 d_
></ 1/ e n3 n 2/ he " dtny,  (10.4)
0 V tn—3 Jo tn—2 Jo

where h,, is given in (10.3). The integration with respect to ¢,,—; can be performed explicitly.
As a result of this integration, the integral IT(Ld) that depends on n — 1 variables will be
expressed as a difference of two functions, each depending on n — 2 variables. In section 9
such a representation was derived for the integrals I?Ed), 1 id).

The multiple series representation of the integral Ind for n =2,...,6 was given in the

previous sections. The generic form of all these series is

Ty (a, {8} {vits 215 -+ 2k)

= i (a) (Bl)ernz-..Jrnk (62)”2+“'+nk (Bk)nkﬁ ﬁ (10.5)
ni,...,np=0 ni+ng...+ng (’71)n1+n2...+nk ('72)n2+...+nk (Vk)”k ! !

This representation holds for integrals depending on general kinematics as well as for
integrals depending on the special kinematics considered in section 9. As one can see from

the considered examples, the integral Ifld) depending on general kinematics can be written

in terms of the function 7}, with the parameters
d n—=k
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The integral I, depending on the special kinematics can be written in terms of the function

T,,—1 with the parameters

d n—=k

a‘:n_§7 /Bn—1:1> Bk: 5 1<k<n-2;
vi=pBj+1, 1<j<n-—1 (10.7)
We assume that for n > 6 the integrals L(ld) depending on generic as well as special

kinematics can also be expressed in terms of the hypergeometric series given in (10.5) with
the parameters [, v defined in (10.6), (10.7).

Note that the functions 77 and 75 can be identified with the already known hypergeo-
metric functions o Fy and Si:

a, ;
Ti(a, B1;71;21) = 2F1[ '81. 211 ,

Ty (a, 1, B2; 71,72 21, 22) = S1(a, B, B2, Y1, 72; 22, 21)- (10.8)

The function Tj(a, {5:}; {7;}; {2n}) can be considered as a generalization of the hypergeo-
metric functions S7 and o Fj.

At present, there are several publications where the series representations of one-loop
integrals were considered. In ref. [40], it was shown that the n-point one-loop integral
can be represented by a generalized hypergeometric power series depending on n(n —1)/2
variables. In refs. [41, 42], the representation of the general scalar n-point one-loop Feynman
integral in terms of the n(n + 1)/2-fold multiple hypergeometric series was derived by using
Mellin-Barnes technique.

We expect that our representation of one-loop integrals in terms of the (n — 1)-fold hy-
pergeometric series will be useful for the analytic continuations as well as for the € expansion
of one-loop integrals. We also hope that the parametric representations (10.2), (10.4), (A.33)
can be of interest in other approaches for evaluating Feynman integrals, for example, for
methods based on the intersection theory proposed in ref. [43] or just for direct evaluation
of integrals at fixed integer values of the dimension d.

11 Conclusions and outlook

In this paper, we provided a systematic approach for reducing a generic n-point one-loop
integral with arbitrary masses and kinematic invariants to a linear combination of integrals
that depend on n variables. The integrals depending on the MNV encountered at the
last stage of the reduction were expressed in terms of the multiple hypergeometric series
depending on n — 1 dimensionless variables. We have not found functional relations allowing
for a further reduction in the number of variables. Probably, some additional relations
among integrals depending on the MNV can be obtained for integer values of the space-
time dimension d. A new class of identities for Feynman integrals valid at fixed integer
value of the dimension d was discovered in ref. [44]. Such identities were derived by using
Schouten identities which are valid only for integer d. It will be interesting to investigate
the applicability of the method of ref. [44] to our integrals depending on the MNV.
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We have shown that analytic results for integrals with the MNV can be derived by
solving dimensional recurrence relations. The explicit expressions for the integrals Iz(d), ?Ed),
1 id) as solutions of the dimensional recurrence relations were given. Arbitrary periodic
functions appearing in the solutions of the dimensional recurrence relations were found by
solving systems of differential equations.

The choice of integrals depending on the MNV is not unique. One can find relationships
among integrals depending on different minimal sets of variables using our functional
relations and rewrite the results in the most preferable set of functions. In section 4, such
Iéd). Relevant relationship for the integral I?Ed)
was presented in ref. [38] and analogous relationships will be given for other integrals in a

a relationship was given for the integral

forthcoming publication.

We expect that our representation of one-loop integrals can be helpful for deriving
€ = (4 — d)/2 expansion of these integrals. For instance, multiple series (10.5) can be
expanded in ¢ by exploiting the methods proposed in refs. [45, 46] or by solving the system
of differential equations for this series. In the latter case, to effectively solve the problem,
one should construct an appropriate alphabet. As shown in ref. [47], the alphabet for the
one-loop integrals can be expressed in terms of the Gram determinants. We expect that
our representation of integrals in terms of multiple hypergeometric series with arguments
depending explicitly on the Gram determinants, can be useful for finding a canonical basis
used to solve a system of differential equations as well as for finding an alphabet of these
integrals.

The new set of hypergeometric series T}, encountered in computation of integrals
depending on the MNV, will be studied in detail in our future publications.

We plan to formulate a systematic procedure based on functional relations that would
allow analytic continuation of Feynman integrals to different kinematic domains. As it
was discovered in the course of our preliminary investigation (see also [38]), the functional
relations can help to find still unknown relationships among hypergeometric functions.

One of our next directions of research will be the derivation and investigation of
functional relations and functional reduction of multi-loop integrals. Integrating algebraic
relations for products of propagators with loop integrals, one can easily get functional
equations for multi-loop integrals. For example, integrating the three term relation (5.2)
multiplied by the one-loop vertex type integral depending on ki, one can get a functional
equation for the two-loop pentagon integral. Certainly, the functional reduction of multi-
loop integrals will be more complicated. It will include integrals corresponding to diagrams
with a different topology but with the same leading Landau singularity.

We also plan to apply the functional reduction method for evaluating the Feynman
diagrams required for computing radiative corrections for modern experiments.
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A Useful formulae for kinematic determinants, hypergeometric func-
tions and parametric representation of integrals
A.1 Kinematic determinants

The modified Cayley and the Gram determinants occurring in many formulae of the paper
are defined as

Yii Yio ... Y1
Yiog Yoo ... Yo,
Ap = An({pr,ma}, . Apn,ma}) =| .. e (A1)
Yln Y2n o Ynn
Yij =m? + m? — Sijs (A.2)
511 512 o Sl n—1
5'21 522 o S2 n—1
Gno1=Gn1(p1,...,pn) = —2 . . . : ) (A.3)
Sn-11Sn-12 - Sn—1n-1
Sij = Sin + Sjn — Sij, (A.4)

where s?j = (pi — pj)Q, p; are the combinations of external momenta flowing through the
i-th lines, respectively, and m; is the mass of the i-th line. We will use throughout the
article indexed notation for A, and G,,_1

)\i1i2...in == An({pi17mi1}7 {pi27mi2}7 ey {plnv m’Ln}>7
Givis..ip = anl(pippiga s 7p2n) (A5)

Our results depend on the ratios of A; i, i, and ¢ 4,. 4, and, therefore, it is convenient to
introduce the notation

Aij..
Tijok = — £, (A.6)
9ij..k

Coeflicients in front of the integrals in reduction formulae are expressed in terms of derivatives

of r; ;. with respect to masses. For convenience we use the following shorthand notation:

or.: . .
%]7‘.71~~~.7r71]7'+1-~~,7n - 8m§ . (A?)
T

The imaginary part of r is rather simple. Using
n
> 0Ny in = —Giroin = —Gn1(Dirs Pins - - -+ Piy); (A.8)
j=1

one shows that to all orders in

)\ili2~--in({mg - “7}) = )‘21222n({mz}) + igi1i2~--in 7, (A,Q)

and, therefore, the causal n prescription for r is (with the same 7 for all masses)

Tij...k’mi_m = Tij...k|m§ —in. (A.10)
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A.2 Hypergeometric functions for the integrals Iéd), Iéd), Iid)

In this subsection, we provide a collection of formulae related to different hypergeometric
functions which were encountered in the derivation of some results of the paper.
A.2.1 Series representation
Series representation of the Appell function Fj [48]
2 (@min(Bm(B)n 2™ 3"
Fi(a, 8,8, v,y) = Y (@B )"—'—,. (A.11)
2 e minl

The Appell function Fj is defined by [48§]

F3(a, o, 8,8, v;2,y) = i (@) (C(l)) 2B f}:% (A.12)
m,n=0 V)mtn s

The Lauricella-Saran function Fg was introduced in [49, 50] and it is defined by a triple

hypergeometric series

FS(aba%aQ?Blv62763;71571171;'%73/7'2)
_ i (al)r(QQ)m+n(51)r(52)m(5 )n x"yma"

(Y1) r+man rlm!nl’

(A.13)

r,m,n=0
A relation between the hypergeometric Lauricella-Saran functions Fg and yet another

Lauricella-Saran function Fiy [51]

FS(Oél,042,042,51,62,,83;’}/1,’)’1,’)/1;1',y72)
B2
z

z
= ﬁFN <527041,Oé2,52 + B3, b1, B2 + B3; B2 + B3, 71,715 1 — y,%Z) ; (A.14)

where

FN(alu Qag, (3, 517/32>ﬁ1§’Y1,727723 x,Y, Z)

_ i (01)m (02)n(@3)p (1) mp(B2)n 2™ y" 2P (A.15)

m,p=0 (V0)m (Y2)n+p m! n! p!’
More relations between the Fg and Fy functions can be found in ref. [51].
The generalized Kampé de Fériet hypergeometric function S; in equation (5.27) is

defined by a double series

/ = (a)m—l-n(a/)m—l-n(/@)m ™ y"
S Y, 05X, y) = _— . A.
ot py i) = 3 (s T i T (216

The domain of convergence of this series ||+ |y| < 1. The analytic continuation formula
for the function S7, which was used in the derivation of eq. (5.27) reads [31]

Sl (CV,O/,/B 7> 5 z y)

D@L, (o R
“Th-ar@) Y F( Sra+l-mda+i-di-2 )
+£Ea_a)£((l( y) (,ﬁ,a—i—l—v,éa—l—l—a—z ;) (A.17)
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The function F3 can be reduced to the function F; by means of [39]

Fg(Oé,O/,B,ﬁ/,Oé + o/;x,y) = (1 - y)_ﬁ,Fl (O&)B’ﬁ/’a + O/;':E’ Zﬂl) ’ (A18)

A similar reduction formula takes place for the Appell function £}

_ a,b; w—z
Fy (a, 0,0, 0+ b5w,2) = (1—2)" %2 F bt 1 —z] . (A.19)
A.2.2 Integral representations
Euler’s integral representation of the hypergeometric Gauss function o F}
I'(v) ! B-1 -B-1 -

oF (a, 8,7, x :—/ duu 1—wu)” 1—wux) . A.20
@OV E =TG- B o S (420
>0, y—p>0. (A.21)

Euler’s integral representation of the Appell function Fj

/

R c) N SR
Fl(a,ﬁ,ﬁ,%%y)—w(,y_a)/o duu® (1= u)’ (1 = ua) P (1 —uy) 7
(A.22)

Euler’s integral representation of the Appell function Fj

I'(v)
r@ereE)r-0-p)

u>0, v>0 (1 —uz)*(1 — vy)>

F3 (ava,a675/77;$7y) =

Re(B) >0, Re(8)>0, Re(y—p-p")>0. (A.24)

An integral representation of the function S [31]

Sl (Oé, O/v 6a7’5;may)

B I'(v) 1 wu® (1 — w) L (o UL U
_I‘(a)F(’y—a)/o d (1—u) Fy (!, 8,1,0,1; ux, uy)
) ()T ()
@' (y—a)0(B)T (5 B)
/ du/ dou® WP N1 —w) O (1 = 0) PN (1 — wva — uy) (A.25)

In the derivation of eq. (6.21) the following integral representation of the Lauricella-
Saran function Fs was used [51]:

I'la)T'(y1 —«
( I)F((:yyll) I)Fs(a17027027611627/83;’717717’71;3773/)2)

1m—o 1(1 _ t)oz -1 \
- F — o ty, tz)dt. 26
/0 (1 —x+ tl’)ﬁl 1(0&2, 5275&71 131y, Z) ( )
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A.3 Differential relations for the Lauricella-Saran function Fg

In order to obtain a system of differential equations for the boundary function Cy(x,y, z)
in equation (6.17), we used the following differential relations for the Lauricella-Saran
function Fg:

20 —x)zx(z+y —zy)(z+ 2 — xz)(;?Fs(d)(l’yy? z)
X

d—3.
2

d.

2

1d
+y(d*4)(ﬂf2 — T Z)($ - 1)F1 (1515 57 271%2>

+ (dzy — dx — dy — 3zy + 3z 4+ 4y) (zz — z — 2)(z — 1) F D (z,y, 2),
0

iy ()
8y S (:U’ y7 z)

1.4=3. 1.

:x(l—y)gFll ’42' ’x] —z(d—3)2F1[2;l"z]
20 2

(- 1)@ey 2 -z 2y+ )FD 2y, 2)

1d

1
:$2(d—2)—$22F1 ’

1.
x +(1—x):nz(d—3)2F1l26’l.’z
29

21 =y)(y — 2)(z +y — xy)

2F§d) (z,9,2)

20 —2)(y—2)(z+ 2z — a:z)az

1.4=3. 1.
:m(Z—l)QFll ’d2 x| + z(d— 3)2F1[ d2 z]
2 2
+(z=1)(zz — 2 —2)FD(2,y,2) — 2(d — 2), (A.27)
where d—3 1 ddd
F(d) =F < 1,1,1,1 ) A.
s (a:,y,z) S 9 b 72 2 2 2 x,Y, ( 28)

These differential relations were derived by using series representation (A.13).
Solving the dimensional recurrence relation for the integral I id), we used the following
recurrence relation for the hypergeometric function Fg:

1
(= 3)eF 0,y ) = dFO (o, 2) — dF (L1, Gim ). (429)

Additionally, we provide here differential relations for the Appell function £}, which
were used to find a system of differential equations for the function Cy(z,y, 2)

6F1<d—37171 d—l;x’y> _ (o —dy—3u+4y) <d—3’1’1 d—l;x’y>

oz 2 27 2 2z(x — y) 2 27 2
(GO I - T N C ) VA
22(z — y) &1, 2z —y)(1 —x)’
o  (d—3 1d-1 1 d—3  1d—1
iy 1,= : - F 1,= -
ay 1( 2 "2 9 ’“’) 20z — y) 1( 2 ' 9 ’m’y>
(d_4) [%7?a] d—3
o1l Ty T Yl — (A30)
Q(x_y) d21a ( )\/

In order to obtain these relations, we used the series representation (A.11).
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A.4 Derivation of parametric representation of integrals with MNV

In order to derive a Feynman parametric representation of the integrals depending on the
MNV, we used the following parametric formula (see, for example, [52], p.632):

1
e A.31
D\D;...D, / / duy ... dn-y (A-31)

D(n) 72253, 2,

X
[anl e X1+ Dp_121 ... aﬁn_g(l :L'n_l)—i-. . .—&-Dl(l—l'l)}n

where D; are defined in (2.2). Shifting k; in order to remove the linear term and integrating
over k1 by means of

/ dk, 1 r(a-19)
[i Hr

=(=1)“ A.32
T T~V ST (A.32)
we obtain
I (md, ... m2; {si = mi — m?|k > i})

d_p
=(-1)"T (n— )/ dxy .. / dxp_127]~ 2;163 3 ap_o h2 (A.33)

where h,, are the polynomials of form
n—1 J
By, = m? — Z m - m]+1 H (A.34)
j=1 k=1

The integral representation (10.2) can be obtained from (A.33) by changing variables. To
our knowledge, such representation has not been found so far in the literature.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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