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1 Introduction

In comparison with Feynman diagrams, on-shell recursion relations provide a more efficient
approach to construct higher-point tree-level amplitudes from lower-point amplitudes. It
was first motivated by Britto-Cachazo-Feng-Witten (BCFW) recursion relations [1, 2] in
the calculation of gluon scattering, and other versions of recursion relations were proposed
to study the amplitudes in gauge theories [3, 4], gravity theories [5], supersymmetric the-
ories [6, 7], scalar effective field theories [8] and more general theories [9, 10]. They based
on the same idea, namely using complex deformation of the external momenta and calcu-
lating the residues of deformed amplitudes in the complex plane, to collect the information
of factorized lower-point amplitudes.

Contrary to massless particles, the momenta of massive particles cannot be written as
a direct product of two spinors. To analyze amplitudes with massive particles, the method
of decomposing the massive momenta into two light-like vectors was developed [11–15].
However, this formalism is not the most convenient for specific calculation of amplitudes,
since it’s not little-group covariant. Recently, Arkani-Hamed, Huang and Huang [16] in-
troduced a new method by regarding the massive particle as a representation of its little
group. In this notation, both amplitudes and complex shifts are simplified into a little-
group covariant form. There have been some efforts in constructing massive BCFW shift
in the massless-massive case [17, 18] and massive-massive case [19, 20] afterwards.

After considering little-group invariance, the on-shell constructibility of amplitudes
with massive particles was investigated [20]. Various multi-line shifts were used to estimate
the large-z behavior of amplitudes with all particles massive, where z is the shift parameter.
Although people prefer using three and more line shifts to investigate the constructibility,
two-line shifts are more convenient in the computation of amplitudes.

In this work, we take the little-group covariant spinor helicity formalism and regard
different spin states from one massive external leg as a whole, so these states should be
deformed by a same shift. In the case that all particles are massless, some researches [21, 22]
proved that in a gauge theory coupled to scalars and fermions, any massless amplitude
with at least one gluon is two-line constructible, which is a strong conclusion. We want to
examine whether the amplitude with both massless and massive particles is also two-line
constructible.

The present paper is organized as follows. In section 2 we review the basic idea of
recursion relations and construct all possible two and three-line shifts for both massive and
massless particles. Assuming the coupling is dimensionless, we evaluate the Feynman rule
in a diagrammatic way in section 3 and discuss why gauge-fixing is not enough to improve
the behavior of amplitude in the large-z limit. In section 4 we evaluate n-point massive
amplitudes with at least one massless vector boson in the large-z limit. We find that these
amplitudes vanish in the large-z limit except for the all vector amplitudes, which can have
a cancellation among different channels. In section 5, we give the relation between such a
cancellation and the group structure of massive vectors, and explore why this cancellation
fails in the amplitudes without massless particles. Finally, section 6 presents our conclusion
and discussion. Appendix A gives our conventions. Appendix B explicitly calculates the
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large-z behavior of polarization vectors in the center-of-mass frame. Appendix C gives an
example of evaluating the diagrammatic expressions.

2 Recursion relations for all masses

For completeness, we review the general complex shift for An, a tree-level amplitude with
n massless particles. For each external particle, we shift their momentum vector pi by
complex-valued vector ri,

p̂µi = pµi + zrµi , (2.1)

where i = 1, 2, . . . , n. Now we restrict these shift vectors ri by three conditions,∑
i

rµi = 0, (2.2)

ri · rj = 0, (2.3)

pi · ri = 0. (2.4)

These three conditions (2.2)–(2.4) respectively guarantee that (a) momentum con-
servation holds for shifted momenta, (b) shifted momenta are still on-shell, (c) shifted
propagators are linear in z. We can construct a complex function Ân(z)/z, whose residue
at z = 0 is the unshifted amplitude An. Then Cauchy’s theorem tells us,

An = −
∑
zI

Resz=zI
Ân(z)
z

+Bn, (2.5)

where the boundary term Bn is the residue at infinity. The first term on the right-hand
side can factorize into two on-shell subamplitudes when the momentum PI of the internal
line goes on-shell,

− Resz=zI
Ân(z)
z

= ÂL(zI)
1
P 2
I

ÂR(zI). (2.6)

Now we consider massive amplitudes. The three conditions (2.2)–(2.4) still keep the
shifted momenta on-shell p̂2

i = p2
i = m2. To generalize formula (2.5) into the massive case,

we add a new term which corresponds to massive on-shell propagators,

An = −
∑
zI

Resz=zI
Ân(z)
z
−
∑
zJ

Resz=zJ
Ân(z)
z

+Bn. (2.7)

At a zJ -pole one of massive internal particles goes on-shell. We use little-group covariant
spinors [16] to describe massive particles, so the two subamplitudes ÂL and ÂR have little-
group indices and should be contracted,

− Resz=zJ
Ân(z)
z

= εJ1
(J ′1
εJ2
J ′2
· · · εJnJ ′n)ÂL,J1J2···Jn(zJ) 1

P 2
J

Â
J ′1J
′
2···J

′
n

R (zJ), (2.8)

where the lower indices in the parenthesis means symmetrization of these indices. Here
we only write the little-group indices related to the internal momentum PJ and neglect
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other little-group indices. If the boundary term Bn = 0, the n-point on-shell amplitude
An will be completely determined in lower-point on-shell amplitudes and this recursive
formula (2.7) becomes an on-shell recursion relation under a valid shift.

Before we discuss whether amplitudes vanish in the large-z limit, we should construct
complex shifts for the composition of all masses. In this section, we will solve equa-
tions (2.2)–(2.4) to give all possible shift vectors r in two and three-line shifts. Since
massless shifts have been well studied, their generalizations in the massive case will be
based on these massless shifts.

2.1 Shifting massless particles

In spinor-helicity formalism, which is briefly reviewed in appendix A, we write massless
amplitudes in terms of two kinds of Weyl spinor |p]α and |p〉α̇. They are two inequivalent
fundamental representations of SL(2,C). Both of them can be shifted, we refer to the
former as holomorphic shift and the latter as anti-holomorphic shift.

Since the massive particles takes little-group representation into account, the three
conditions (2.2)–(2.4) may not be valid in the massive case. We review some specific
massless amplitude recursion relations to translate the three conditions (2.2)–(2.4) into
massless spinor-helicity variables. Although all shift-vectors ri could be non-trivial ri 6= 0,
two or three-line shifts are enough to construct amplitudes in many applications. Let’s
start from these few-line shifts.

1) Two-line shift. Since the shifted momentum is linear in z, we can’t use holomorphic
and anti-holomorphic shifts simultaneously for one particle. Otherwise, the momentum
conservation condition would be violated. When we shift two external lines i and j, there
are two choices. We choose holomorphic shift for particle i and anti-holomorphic shift for
particle j,

|̂i] = |i] + z|j], |ĵ〉 = |j〉 − z|i〉. (2.9)

We call this a [i, j〉-shift. The shift-vector ri = −rj = r, so momentum conservation
condition (2.2) is automatically satisfied. The shift vector is

2rµ = 〈i|γµ|j], (2.10)

so conditions (2.3) and (2.4) lead to

2r2 = 〈ii〉[jj], 2r · pi = 〈i|pi|j], 2r · pj = 〈i|pj |j]. (2.11)

We find that 〈ii〉 = [jj] = 0 is responsible for the condition (2.3). Weyl equations pj |j] =
pi|i〉 = 0 are responsible for condition (2.4).

2) Risager-type three-line shift. In Risager-type, all the shifted external lines are
holomorphic shifts. The shifted spinors are

|̂i] = |i] + z〈jk〉|X], |ĵ] = |j] + z〈ki〉|X], |k̂] = |k] + z〈ij〉|X], (2.12)
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where |X] is an arbitrary reference spinor. Here we ignore the dimension analysis for
convenience.1 The shift vectors are

2rµi = 〈jk〉〈i|γµ|X], 2rµj = 〈ki〉〈j|γµ|X], 2rµk = 〈ij〉〈k|γµ|X]. (2.13)

Using Schouten identity 〈ki〉〈j| + 〈ki〉〈j| + 〈ij〉〈k| = 0, we easily verify condition (2.2)
ri + rj + rk = 0. We find that [XX] = 0 ensures condition (2.3), and that Weyl equations
pi|i〉 = pj |j〉 = pk|k〉 = 0 are responsible for condition (2.4).

3) BCFW-type three-line shift

In BCFW-type, only one shifted external line is anti-holomorphic shift, the other
shifted external lines are holomorphic shifts. The shifted spinors are,

|̂i] = |i] + z〈jX〉|k], |ĵ] = |j] + z〈Xi〉|k], |k̂〉 = |k〉+ z〈ij〉|X〉, (2.14)

where |X〉 is an arbitrary reference spinor. The shift vectors are

2rµi = 〈jX〉〈i|γµ|k], 2rµj = 〈Xi〉〈j|γµ|k], 2rµk = 〈ij〉〈X|γµ|k]. (2.15)

We use Schouten identity to verify condition (2.2),
∑
i ri = 0. We find that [kk] = 0

ensures condition (2.3) and Weyl equations pi|i〉 = pj |j〉 = pk|k] = 0 are responsible for
condition (2.4).

So far all possible two and three-line shifts in the massless case are presented. Since
Risager and BCFW-type shifts are the only two distinct classes of recursion relations [10],
the analysis of four and more-line shifts are just generalizations of three-line shifts. They are
sufficient for analyzing mixed or massive recursion relations. We find that the antisymmetry
of brackets 〈· · · 〉 and [· · · ] ensure condition (2.3), and the equation of motion for massless
particles is responsible for condition (2.4).

2.2 Shifting mixed particles

Now let’s think about how to satisfy the three conditions when massive particles are taken
into account. The massive spinor-helicity variables |pI ]α and |pI〉α̇ are not only fundamen-
tal representations of Lorentz group SO(3, 1), but also fundamental representations of little
group SU(2)LG. We write them as (1

2 ; 1
2 , 0) and (1

2 ; 0, 1
2), which are the representations of

SU(2)LG × SO(3, 1). In the massive case, the antisymmetric brackets

[iI iI′ ] = −〈iI iI′〉 = m2
i ε
II′ 6= 0 (2.16)

and massive Dirac equation
p|pI ] = −m|pI〉 6= 0 (2.17)

are different from the massless case. Therefore, conditions (2.3) and (2.4) wouldn’t be
satisfied automatically in the massive case. For example, we can give up condition (2.4)

1Actually The mass dimension of 〈jk〉, 〈ki〉 and 〈ij〉 is 1. In order to ensure the dimensionless z, we
should write the shifts as |̂i] = |i] + zc〈jk〉|X], |ĵ] = |j] + zc〈ki〉|X] and |k̂] = |k] + zc〈ij〉|X], where the
mass dimension of constant c is −1. Since we only want to discuss the large-z behavior, we ignore such
constants, which will not change the result of our following analysis.
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for massive particles and construct a shift, where masses are no longer invariants. The
validity of this kind of shifts was examined numerically for the amplitudes with graviton
and scalar bosons [23]. Here we try to satisfy all conditions.

The key point is to use some variables to contract the little-group index or Weyl-spinor
index of massive spinors. For example, we can introduce an unknown variable ηI , which
is the representation (1

2 ; 0, 0). We use ηI to contract the little-group index of |iI ], so the
inner product ηI |iI ] gives the antisymmetric bracket

ηI [iI iI
′ ]ηI′ = m2

i ηIε
II′ηI′ = 0, (2.18)

which ensures condition (2.3). Another way is to introduce |Y ] and contract the Weyl-
spinor index of |iI ], which has been used in ref. [20].

Our strategy is the former one. First, we take massless shifts in section 2.1 and re-
place the massless variables |p]α and |p〉α̇ with the massive spinor-helicity variables |pI ]α
and |pI〉α̇ for massive particles, while the spinor part of the shifts remain as massless
shifts. Then we introduce some unknown variables with little-group indices (ηI , ζJ , ξL,
etc.), whose number equals the number of massive shifted external legs. With the shifts
which have been replaced multiplied by or contracted with these unknown variables, con-
dition (2.3) must be satisfied. Since the above manipulation is based on massless shifts,
condition (2.2) is still satisfied. Finally, we use the last condition (2.4) to determine these
unknown variables.

2.2.1 Two-line shifts for mixed particles

Let’s consider two-line shifts for massive particle i and massless particle j. There are two
ways to shift them. We can choose the [i, j〉-shift: the massless line i is shifted holomorphi-
cally, while the massive line j is shifted anti-holomorphically. We introduce one unknown
ζJ , so the shifted spinors are

|̂i] = |i] + z|jJ ]ζJ , |̂jJ〉 = |jJ〉 − z|i〉ζJ . (2.19)

The shift vector is 2rµ = 〈i|γµ|jJ ]ζJ . It is orthogonal to the massless momentum pi
because of the Weyl equation 〈i|pi = 0. Condition (2.4) leads to

2pj · r = 〈i|pj |jJ ]ζJ = mj〈ijJ〉ζJ = 0. (2.20)

The solution is ζJ = 〈ijJ〉. We substitute the solution into eq. (2.19), so the explicit form
of [i, j〉-shift is

|̂i] = |i] + z|jJ ]〈ijJ〉, |̂jJ〉 = |jJ〉 − z|i〉〈ijJ〉. (2.21)

Another choice is the [j, i〉-shift: the massless line i uses holomorphic shift, the massive
line j uses anti-holomorphic shift. For real-valued momenta, angle and square spinors are
not independent. For massless particles, we have (|i〉)∗ = [i| and (|i])∗ = 〈i|. For the
massive particle j, the complex conjugation of massive spinors lowers the little indices:
(|jJ〉)∗ = [jJ | and (|jJ ])∗ = 〈jJ |. Therefore, the [j, i〉-shift can be implemented from the
complex conjugate of [i, j〉-shift,

|̂jJ ] = |jJ ] + z|i][ijJ ], |̂i〉 = |i〉 − z|jJ〉[ijJ ]. (2.22)
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2.2.2 Three-line Risager type shifts for mixed particles

We take massless shift (2.12) and choose one or two shifted particles to be massive. Since
all shifts are holomorphic shifts in Risager type, each shift vector must be rµ ∝ 〈· · · |γµ|X].
Condition (2.3) is satisfied, because ri · rj ∝ [XX] = 0.

1) One massive and two massless. Let particle i be massive particle and particles j
and k be massless particles. We introduce one unknown ηI , so the shifted spinors are

|̂iI ] = |iI ] + zηI〈jk〉|X], |ĵ] = |j] + zηI〈kiI〉|X], |k̂] = |k] + zηI〈iIj〉|X]. (2.23)

The shift vectors are

2rµi = ηI〈jk〉〈iI |γµ|X], 2rµj = ηI〈kiI〉〈j|γµ|X], 2rµk = ηI〈iIj〉〈k|γµ|X], (2.24)

so condition (2.4) leads to

2pi · ri = ηI〈jk〉〈iI |pi|X] = miη
I〈jk〉[iIX] = 0. (2.25)

The solution is ηI = [iIX].

2) Two massive and one massless. Let particles i and j be massive particles and
particle k be massless particle. We introduce two unknowns ηI and ζJ , so the shifted
spinors are

|̂iI ] = |iI ] + zηIζJ〈jJk〉|X],

|̂jJ ] = |jJ ] + zηIζJ〈kiI〉|X],

|k̂] = |k] + zηIζJ〈iIjJ〉|X].

(2.26)

The shift vectors are
2rµi = ηIζJ〈jJk〉〈iI |γµ|X],

2rµj = ηIζJ〈kiI〉〈jJ |γµ|X],

2rµk = ηIζJ〈iIjJ〉〈k|γµ|X],

(2.27)

so condition (2.4) leads to

2pi · ri = ηIζJ〈jJk〉〈iI |pi|X] = miη
IζJ〈jJk〉[iIX] = 0,

2pj · rj = ηIζJ〈kiI〉〈jJ |pj |X] = mjη
IζJ〈kiI〉[jJX] = 0.

(2.28)

The shift vectors should be non-trivial, so ζJ〈jJk〉 6= 0, ηIζJ〈kiI〉 6= 0. The only solutions
are ηI = [iIX], ζJ = [jJX].

2.2.3 Three-line BCFW type shifts for mixed particles

We take massless shift (2.14) and choose one or two shifted particles to be massive. If
particle k is massive, each shift vector in this type of shifts must be rµ ∝ 〈· · · |γµ|kK ]ξK .
Condition (2.3) is satisfied, because ri · rj ∝ [kKkK′ ]ξKξK′ = εKK

′
ξKξK′ = 0. If particle

k is massless, condition (2.3) is also satisfied for the same reason as the case of massless
three-line BCFW type shifts.

– 7 –
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2) One massive and two massless. Since BCFW type recursion relations use holo-
morphic and anti-holomorphic shift, there are two kinds of compositions. The first kind
is that the massive particle uses holomorphic shift. Let particle i be massive particle
and particles j and k be massless particle. We introduce one unknown ηI , so the shifted
spinors are

|̂iI ] = |iI ] + zηI〈jX〉|k], |ĵ] = |j] + zηI〈XiI〉|k], |k̂〉 = |k〉+ zηI〈iIj〉|X〉. (2.29)

The shift vectors are

2rµi = ηI〈jX〉〈iI |γµ|k], 2rµj = ηI〈XiI〉〈j|γµ|k], 2rµk = ηI〈iIj〉〈X|γµ|k], (2.30)

so condition (2.4) leads to

2pi · ri = ηI〈Xj〉〈iI |pi|k] = miη
I〈Xj〉[iIk] = 0. (2.31)

The solution is ηI = [iIk].
The second kind is that the massive particle uses anti-holomorphic shift. Let particle k

be massive particle and particles i and j be massless particles. We introduce one unknown
ξK , so the shifted spinors are

|̂i] = |i] + zξK〈jX〉|kK ], |ĵ] = |j] + zξK〈Xi〉|kK ], |k̂K〉 = |kK〉 − zξK〈ij〉|X〉.
(2.32)

The shift vectors are

2rµi = ξK〈jX〉〈i|γµ|kK ], 2rµj = ξK〈Xi〉〈j|γµ|kK ], 2rµk = ξK〈ij〉〈X|γµ|kK ],
(2.33)

so condition (2.4) leads to

2pk · rk = ξK〈ij〉〈X|pk|kK ] = −mkξK〈ij〉〈XkK〉 = 0. (2.34)

The solution is ξK = 〈XkK〉.

2) Two massive and one massless .
Let particles i and j be massive particles and particle k be massless particle. We

introduce two unknowns ηI and ζJ , so the shifted spinors are

|̂iI ] = |iI ] + zηIζJ〈jJX〉|k]

|̂jJ ] = |jJ ] + zηIζJ〈XiI〉|k]

|k̂〉 = |k〉+ zηIζJ〈iIjJ〉|X〉.

(2.35)

The shift vectors are
2rµi = ηIζJ〈jJX〉〈iI |γµ|k],

2rµj = ηIζJ〈XiI〉〈jJ |γµ|k],

2rµk = ηIζJ〈iIjJ〉〈X|γµ|k],

(2.36)
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so condition (2.4) leads to

2pi · ri = ηIζJ〈jJX〉〈iI |pi|k] = miη
IζJ〈jJX〉[iIk] = 0,

2pj · rj = ηIζJ〈XiI〉〈jJ |pj |k] = mjη
IζJ〈XiI〉[jJk] = 0.

(2.37)

The solutions are ηI = [iIk], ζJ = [jJk].
Let particles i and k be massive particles and particle j be massless particle. We

introduce two unknowns ηI and ξK , so the shifted spinors are

|̂iI ] = |iI ] + zηIξK〈jX〉|kK ],

|ĵ] = |j] + zηIξK〈XiI〉|kK ],

|k̂K〉 = |kK〉 − zηIξK〈iIj〉|X〉.

(2.38)

The shift vectors are
2rµi = ηIξK〈jX〉〈iI |γµ|kK ],
2rµj = ηIξK〈XiI〉〈j|γµ|kK ],

2rµk = ηIξK〈iIj〉〈X|γµ|kK ],
(2.39)

so condition (2.4) leads to

2pi · ri = ηIξK〈jX〉〈iI |pi|kK ] = miη
IξK〈jX〉[iIkK ] = 0,

2pk · rk = ηIξK〈iIj〉〈X|pk|kK ] = mjη
IξK〈iIj〉〈XkK〉 = 0.

(2.40)

The solutions are ηI = [iI |pk|X〉, ξK = [kKX]. The solutions become more complicated.

2.3 Shifting massive particles

The all-massive recursion relations have been worked out to study the constructibility of all-
massive amplitudes in spontaneously broken gauge theories [20]. Now we want to reproduce
these massive shifts with our method. Similarly, we introduce n unknown variables for n-
line shifts and then solve eq. (2.4) for these unknown variables.

2.3.1 Two-line shift for massive particles

Unfortunately, we can’t construct consistent massive BCFW shift for two massive lines as
simply as what we do in last subsection. We don’t have a natural choice of massless spinors
to contract with Weyl-spinor index, since two external lines are both massive particles. It
means that the general form of two-line shift doesn’t exist. We must choose a specific
spinor or reference frame to write down a particular shift. For example, we can only shift
one of the helicity states instead of both [19, 20] in a special frame.

Now we still introduce two unknowns ηI and ζJ in [i, j〉-shift, so the shifted spinors are

|̂iI ] = |iI ] + zηIζJ |jJ ], |̂jJ〉 = |jJ〉+ zηIζJ |iI〉. (2.41)

The shift vectors are 2rµi = −2rµj = ηIζJ〈iI |γµ|jJ ], so condition (2.4) leads to

2pi · ri = ηIζJ〈iI |pi|jJ ] = miη
IζJ [iIjJ ] = 0,

2pj · rj = −ηIζJ〈iI |pj |jJ ] = mjη
IζJ〈iIjJ〉 = 0.

(2.42)
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The tensor ηIζJ has three degrees of freedom, since its determinant is zero. Two equations
are not enough to determine all degrees of freedom, so we should choose ηI and ηJ from
other information. The massive momenta of two particles can be written as different linear
combinations of two null vectors li and lj :

pi = li + αjlj ,

pj = lj + αili,
(2.43)

where αi and αj are coefficient. We choose ηI = [ljiI ]/[ljli], ζJ = 〈jJ li〉/〈ljli〉. We can
verify condition (2.4),

ηIζJ [iIjJ ] = − [ljiI ][iI |pj |li〉
[ljli]〈ljli〉

= − [ljiI ][iI lj ]
[ljli]

= 0,

ηIζJ〈iIjJ〉 = [lj |pi|jJ〉〈jJ li〉
[ljli]〈ljli〉

= 〈lijJ〉〈j
J li〉

〈ljli〉
= 0.

(2.44)

Now the shift can be written as

|̂iI ] = |iI ]− z [ljiI ]
[ljli]

|lj ], |̂jJ〉 = |jJ〉+ z
〈jJ li〉
〈ljli〉

|li〉. (2.45)

2.3.2 Three-line Risage-type shifts for massive particles

We introduce three unknowns ηI , ζJ and ξK . Since they are all massive, there is a permu-
tation symmetry between these shifted lines. The shifted spinors are

|̂iI ] = |iI ] + zηIζJξK〈jJkK〉|X],

|̂jJ ] = |jJ ] + zηIζJξK〈kK iI〉|X],

|k̂K ] = |kK ] + zηIζJξK〈iIjJ〉|X].

(2.46)

The shift vectors are
2rµi = ηIζJξK〈jJkK〉〈iI |γµ|X],

2rµj = ηIζJξK〈kK iI〉〈jJ |γµ|X],

2rµk = ηIζJξK〈iIjJ〉〈kK |γµ|X],

(2.47)

so condition (2.4) leads to

2pi · ri = ηIζJξK〈jJkK〉〈iI |pi|X] = miη
IζJξK〈jJkK〉[iIX] = 0,

2pj · rj = ηIζJξK〈kK iI〉〈jJ |pj |X] = mjη
IζJξK〈kK iI〉[jJX] = 0,

2pk · rk = ηIζJξK〈iIjJ〉〈kK |pk|X] = mkη
IζJξK〈iIjJ〉[kKX] = 0.

(2.48)

The solutions are simple, ηI = [iIX], ζJ = [jJX], ξK = [kKX].
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2.3.3 Three-line BCFW-type shifts for massive particles
We introduce three unknowns ηI , ζJ and ξK , so the shifted spinors are

|̂iI ] = |iI ] + zηIζJξK〈jJX〉|kK ],

|̂jJ ] = |jJ ] + zηIζJξK〈XiI〉|kK ],

|k̂K〉 = |kK〉 − zηIζJξK〈iIjJ〉|X〉.

(2.49)

The shift vectors are
2rµi = ηIζJξK〈jJX〉〈iI |γµ|kK ],

2rµj = ηIζJξK〈XiI〉〈jJ |γµ|kK ],

2rµk = ηIζJξK〈iIjJ〉〈X|γµ|kK ],

(2.50)

so condition (2.4) leads to

2pi · ri = ηIζJξK〈jJX〉〈iI |pi|kK ] = miη
IζJξK〈jJX〉[iIkK ] = 0,

2pj · rj = ηIζJξK〈XiI〉〈jJ |pj |kK ] = mjη
IζJξK〈XiI〉[jJkK ] = 0,

2pk · rk = ηIζJξK〈iIjJ〉〈X|pk|kK ] = −mkη
IζJξK〈iIjJ〉〈XkK〉 = 0.

(2.51)

We can choose ηI = [iIkK ]ξK , ζJ = [jJkK ]ξK , ξK = 〈XkK〉. However, it isn’t the
final solution. After substituting ξK = 〈XkK〉, we get the final result: ηI = [iI |pk|X〉,
ζJ = [jJ |pk|X〉.

2.4 Explicit form of three-line shifts

In previous discussions, we figured out solutions for all two and three-line shifts. To simplify
the expressions of these shifts, we define some new Weyl spinors,

|km〉 = pm|k],

|Xm〉 = pm|X],

|Xm,n〉 = pm|Xn] = pmpn|X〉,

(2.52)

where pm and pn correspond to massive particles. The simplified expressions of three-line
shifts are shown in table 1, in which the massive spinor helicity variables are denoted in
BOLD notation. Now we can write down massless three-line shifts (2.12) and (2.14) and
use replacements listed in table 1 to rederive three-line shifts for all masses.

Furthermore, the notation |Xm,n〉 is not necessary in the expressions. We can rewrite
|Xm,n〉 and |X〉 in terms of |Y ] = |Xn],

|Xm,n〉 = pm|Xn] = pm|Y 〉 = |Ym〉,

|X〉 = pnpn|X〉
m2
n

= pn|Y ]
m2
n

= |Yn〉
m2
n

.
(2.53)

For example, we set |Y ] = |Xk]. The all-massive BCFW-type three-line shifts reduce to

|̂i] = |i] + z〈YkYj〉[iY ]|Y ],

|̂j] = |j] + z〈YiYk〉[jY ]|Y ],

|k̂〉 = |k〉+ z〈YjYi〉〈kX〉|Yk〉.

(2.54)

This expression coincides with [20].
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External Legs Type Shifted Spinors Shift-Vectors Replacement

1 massive
2 massless

Risager
|̂i] = |i] + z〈jk〉[iX]|X]
|ĵ] = |j] + z〈kXi〉|X]
|k̂] = |k] + z〈Xij〉|X]

rµi = 〈jk〉〈Xi|γµ|X]
rµj = 〈kXi〉〈j|γµ|X]
rµk = 〈Xij〉〈k|γµ|X]

|i〉 → |Xi〉

BCFW

|̂i] = |i] + z〈Xj〉[ik]|k]
|ĵ] = |j] + z〈kiX〉|k]
|k̂〉 = |k〉+ z〈jki〉|X〉

rµi = 〈Xj〉〈ki|γµ|k]
rµj = 〈kiX〉〈j|γµ|k]
rµk = 〈jki〉〈X|γµ|k]

|i〉 → |ki〉

|̂i] = |i] + z〈Xj〉|Xk]
|ĵ] = |j] + z〈iX〉|Xk]
|k̂〉 = |k〉+ z〈ji〉〈kX〉|X〉

rµi = 〈Xj〉〈i|γµ|Xk]
rµj = 〈iX〉〈j|γµ|Xk]
rµk = 〈ji〉〈X|γµ|Xk]

|k]→ |Xk]

2 massive
1 massless

Risager
|̂i] = |i] + z〈Xjk〉[iX]|X]
|̂j] = |j] + z〈kXi〉[jX]|X]
|k̂] = |k] + z〈XiXj〉|X]

rµi = 〈Xjk〉〈Xi|γµ|X]
rµj = 〈kXi〉〈Xj |γµ|X]
rµk = 〈XiXj〉〈k|γµ|X]

|i〉 → |Xi〉
|j〉 → |Xj〉

BCFW

|̂i] = |i] + z〈Xkj〉[ik]|k]
|̂j] = |j] + z〈kiX〉[jk]|k]
|k̂〉 = |k〉+ z〈kjki〉|X〉

rµi = 〈Xkj〉〈ki|γµ|k]
rµj = 〈kiX〉〈kj |γµ|k]
rµk = 〈kjki〉〈X|γµ|k]

|i〉 → |ki〉
|j〉 → |kj〉

|̂i] = |i] + z〈Xj〉[iXk]|Xk]
|ĵ] = |j] + z〈Xk,iX〉|Xk]
|k̂〉 = |k〉+ z〈jXk,i〉〈kX〉|X〉

rµi = 〈Xj〉〈Xk,i|γµ|Xk]
rµj = 〈Xk,iX〉〈j|γµ|Xk]
rµk = 〈jXk,i〉〈X|γµ|Xk]

|i〉 → |Xk,i〉
|k]→ |Xk]

3 massive
Risager

|̂i] = |i] + z〈XjXk〉[iX]|X]
|̂j] = |j] + z〈XkXi〉[jX]|X]
|k̂] = |k] + z〈XiXj〉[kX]|X]

rµi = 〈XjXk〉〈Xi|γµ|X]
rµj = 〈XkXi〉〈Xj |γµ|X]
rµk = 〈XiXj〉〈Xk|γµ|X]

|i〉 → |Xi〉
|j〉 → |Xj〉
|k〉 → |Xk〉

BCFW
|̂i] = |i] + z〈XXk,j〉[iXk]|Xk]
|̂j] = |j] + z〈Xk,iX〉[jXk]|Xk]
|k̂〉 = |k〉+ z〈Xk,jXk,i〉〈kX〉|X〉

rµi = 〈XXk,j〉〈Xk,i|γµ|Xk]
rµj = 〈Xk,iX〉〈Xk,j |γµ|Xk]
rµk = 〈Xk,jXk,i〉〈X|γµ|Xk]

|i〉 → |Xk,i〉
|j〉 → |Xk,j〉
|k]→ |Xk]

Table 1. Three-line shifts for all masses, where the little-group indices are suppressed.

3 Feynman rules in the large-z limit

There is no general constructive method to give an expression of the contribution Bn in
eq. (2.7), so the recursion relations hold as long as A(z → ∞) = 0. To investigate the
validity of recursion relations, there are many works on the large-z behavior of tree-level
massless amplitudes in various shifts [9, 10, 21, 22]. In refs. [21, 22] the authors focused
on the BCFW recursion relations and used background field method to show that, in a
theory of spin ≤ 1, any massless amplitudes with at least one gluon is constructible. We
want to examine whether this argument is applicable to the massive case, so the steps in
their proof should be carefully reconsidered.

We label two external particles of massless amplitudes An by 1 and 2. Their momenta
are chosen to be deformed,

p̂1 = p1 + zr, p̂2 = p2 − zr, (3.1)

which corresponds to eq. (2.9). In the background field method, the large-z behavior of

– 12 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
7

particle massless massive
scalar ´
fermion ˆ

vector boson˜¨
Table 2. Propagators.

amplitudes An(z) have a nice physical interpretation. We take particles 1 and 2 to be
incoming and outgoing, so this process can be interpreted as a hard particle shooting
through a soft background. In the hard limit z → ∞, the z-independent soft physics is
treated as a classical background, while the large-z behavior of amplitudes is completely
determined by the hard fluctuations.

Now, let’s discuss the z-dependent propagators, vertices and external legs separately.
We will see differences in the case when hard fluctuations correspond to massive particles.

3.1 Hard propagators

The first problem is how massive propagators scale at large-z. Both massive fermions
and scalar propagators scale as the same as massless propagators, while a massive vector
propagator goes as O(z):

Πµν =
gµν − p̂µp̂ν

m2

p̂2 −m2 =
gµν − (pµ+zrµ)(pν+zrν)

m2

p2 + 2zp · r −m2
z→∞= −z rµrν

2m2p · r
. (3.2)

Notice that a massless vector propagator goes as O(1/z), so we should distinguish
massless and massive vectors in the following discussion. As in table 2, we use single and
double wavy lines to make a distinction between massless and massive vectors propagators.

Here we introduce a diagrammatic expression to represent the numerator in
propagator (3.2):

gµν − p̂µp̂ν

m2 ≡ µ ν + 1
m2

µ p̂ p̂ ν , (3.3)

where the line segment and the letters attached with it, which are either indices or mo-
mentum p̂, compose a representation of Lorentz group. The first diagram represents a
symmetric tensor gµν , in which the line segment connects two Lorentz indices. The sec-
ond diagram represents two Lorentz vectors, where the line segments connect the shifted
momentum p̂ to Lorentz indices.

Furthermore, Einstein summation also has a diagrammatic representation,

∑
µ

p µ µ p = p p = p2 = m2, (3.4)

where two same indices are equivalent to a line segment. Therefore, the first diagram
reduces to a line segment with two momenta p attached to it, which represents Lorentz
scalar p2.
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3.2 External polarizations

External spinors are constructed in the little-group notation,

ūI(p) =
(
[pI | 〈pI |

)
, vI(p) =

(
|pI ]
|pI〉

)
, (3.5)

where the little-group indices I = 1, 2 characterize two different solutions of the Dirac
equation.

For massive vector bosons, the polarization vectors transform under the
three-dimensional tensor representation of the little group,

εI1I2µ (p) = − 1√
2m

[
pI1 |γµ|pI2

〉
. (3.6)

However, this little-group covariant expression is not convenient when we are talking about
amplitudes in the large-z limit. Usually we don’t choose the rest frame of massive particles
as a reference system, since any shift should include more than one external leg. It implies
that we can choose the spin axis along the 3-momentum direction and write down the spin
state for massive vector particles in terms of εI1I2 :

ε+i = ε11(pi), ε0i = 1
2
(
ε12(pi) + ε21(pi)

)
, ε−i = −ε22(pi), (3.7)

where we ignore Lorentz indices.

3.2.1 [1, 2〉-shift

To consider two-line shifts, we take particles 1 and 2 to be massless and massive respectively.
Particle 1 is always a gauge boson, while particle 2 can be any massive particle whose spin
≤ 1. Since the large-z behavior is independent of the reference system, we can choose the
center-of-mass frame of the particles for simplicity. The momenta of particle 1 and 2 and
shift vectors become

pµ1 = (1, 0, 0, 1), pµ2 =
(√

m2 + 1, 0, 0,−1
)
, rµ = (0,−1,−i, 0), (3.8)

where the 3-momenta are normalized. The shift vector r is basically the same as the
polarization vectors for the real momentum p1.

In pure Yang-Mills theory, the shift vector r is enough to construct the polarization
vectors. We add a new vector p̄2 to give the longitudinal polarization, whose spatial
components point opposite to the direction of spatial components of p2. Similarly, we
construct a new null vector p̄1. The expressions of p̄1 and p̄2 are,

p̄µ1 = (1, 0, 0,−1), p̄µ2 =
(
1, 0, 0,−

√
m2 + 1

)
. (3.9)

We choose [1,2〉-shift (2.21). The shifted polarization vectors of particle 1 are

ε̂+1 = r∗ + zp̄1, ε̂−1 = r, (3.10)
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which are the same as in the all-massless case. They should stay orthogonal to momentum
p̂1 and their product (ε+1 ε

−
1 ) is maintained. The Ward identity is still valid for complexified

amplitudes:
p̂µ1 Âµ (z) = (pµ1 + zrµ) Âµ(z) = 0. (3.11)

Therefore, we can use it to replace the negative polarization,

ε̂−1 → −
1
z
p1. (3.12)

If particle 2 is a vector boson, we choose the z axis as the spin direction, and the
shifted external polarizations are

ε̂+2 = r, ε̂−2 = r∗ − zCp1, ε̂02 = p̄2
m
− z r

m
, (3.13)

where C = 2/(
√
m2 + 1 + 1). Since we focus on the large-z behavior of amplitudes, the

overall factor 1/m in the expression of ε̂02 can be ignored. The polarizations are modified
appropriately to remain normalized to unity and orthogonal to p̂2. What’s more, the lon-
gitudinal polarization should be orthogonal to other two transverse polarizations. A more
detailed discussion is performed in appendix B. Using Goldstone boson equivalence theo-
rem, the scaling behaviour of massive vector bosons can also be improved [20]. However,
this improvement changes type of particles, so we don’t apply it in the following analysis.

If particle 2 is a fermion, we need the shifted Dirac spinors,

ˆ̄uJ2 = ūJ2 − zū−1 〈12J〉, v̂J2 = vJ2 − zv−1 〈12J〉. (3.14)

Although particle 1 is a gauge boson, we still use ū−1 = 〈1| and v−1 = |1〉 for consistency.

3.2.2 [1, 2〉-shift

Particles 1 and 2 have equal mass. The momenta of them become

pµ1 =
(√

m2 + 1, 0, 0, 1
)
, pµ2 =

(√
m2 + 1, 0, 0,−1

)
. (3.15)

We set the shift vector r to be the same as in eq. (3.8). Now both p1 and p2 are time-like
vectors, we need two vectors p̄1 and p̄2 to give the longitudinal polarizations,

p̄µ1 =
(
1, 0, 0,

√
m2 + 1

)
, p̄µ2 =

(
1, 0, 0,−

√
m2 + 1

)
. (3.16)

Here we only discuss the case that both particles 1 and 2 are massive vector bosons. The
shifted external legs of massive vectors are

ε̂+1 = r∗ + zC2 p2 + p̄2
2 , ε̂−1 = r, ε̂01 = p̄1

m
+ z

r

m
,

ε̂+2 = r, ε̂−2 = r∗ − zC2 p1 + p̄1
2 , ε̂02 = p̄2

m
− z r

m
,

(3.17)

where C = 2/(
√
m2 + 1 + 1). In the high energy limit, C → 1, p̄1 → p1 and p̄2 → p2.

Therefore, eqs. (3.10) and (3.13) become the high energy limit of eq. (3.17).
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(̋a) (̊b)

Figure 1. V V V vertices with massive vectors.

3.3 O(z) vertices

Along the hard fluctuation, the spin of the hard particle may be changed by z-dependent
vertices which involve soft background fields. Since we are discussing renormalizable field
theory, the z-dependent vertices from derivative interactions must be linear in z. In massless
gauge theory, they are eliminated by choosing appropriate light-cone and Rξ gauges [21, 24].
However, the massive vector bosons don’t have such degrees of freedom to eliminate these
z-dependence. In renormalizable field theory, there are two classes of O(z) vertices that
cannot be eliminated by gauge fixing in the massive case: triple vector coupling (V V V ) and
Vector-Vector-Scalar (V SS) interaction. For simplicity, we only consider massive vector
bosons that have equal mass.

Since all on-shell 3-point amplitudes in the Standard Model have been figured out [25],
we can translate them into the Feynman rules to find out the vertices. Then we deform
these vertices to give their z-dependence explicitly.

There are two kinds of possible V V V amplitudes (see figure 1). Since V V V ampli-
tude has three vector external legs, the vertex should be a order-3 Lorentz tensor V µνλ

k,p,q,
which refers to V attached with three line segments in the diagrammatic expression. One
kind of vertex includes two massive vectors and one massless vector. Its diagrammatic
representations are

εI1I2i V εJ1J1
jV

ε+k

=
√

2
m
x〈ij〉2, εI1I2i V εJ1J1

jV

ε−k

=
√

2
m

1
x

[ij]2,
(3.18)

where the x factor is introduced by [16], which carries +1 helicity. The vertex γW+W− in
the Standard Model belongs to this kind of vertex.

Another kind of amplitude includes three massive vectors. Its diagrammatic represen-
tation is

εI1I2i V εJ1J1
jV

εK1K1
k

= [ij]〈jk〉[ki] + 〈ij〉[jk]〈ki〉√
2m2 + [ij][jk]〈ki〉+ 〈ij〉〈jk〉[ki]√

2m2

+ 〈ij〉[jk][ki] + [ij]〈jk〉〈ki〉√
2m2 .

(3.19)

There is no such vertex in the Standard Model, because W and Z bosons have different
masses.
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ˇ
Figure 2. V SS vertex with massive vector.

Now we give the expression for the V V V vertex V µνλ
k,p,q,

V µνλ
k,p,q ≡ µ V λV

ν

= gµν(p− k)λ + gνλ(q − p)µ + gλµ(k − q)ν ,
(3.20)

where k + p + q = 0. It is easy to check this expression by dotting it into vector boson
polarizations. This manipulation will give the amplitudes in eqs. (3.18) and (3.19) again.
We can use shifted momenta k + zr and q − zr instead of k and q to deform this vertex.
Diagrammatically, shifted vertex is represented as

µ V̂ λV̂

ν

= V̂ µνλ
k+zr,p,q−zr = V µνλ

k,p,q + zRµνλ = µ V λV

ν

+ z × µ R λR

ν

,
(3.21)

where Rµνλ = (−gµνrλ − gνλrµ + 2gλµrν). In the diagram, the three lines correspond to
three Lorentz indices of the vertex. Two horizontal lines represent hard fluctuations, so the
momenta they carry should be shifted (e.g. k + zr and q − zr in eq. (3.21)).

Next, V SS amplitude (see figure 2) will give a simpler vertex. Since the only one
external vector boson contributes one Lorentz index, the vertex must be a Lorentz vector.
Suppose the momenta of scalar bosons are p and q, the vertex V µ

p,q will be

V µ = (p− q)µ. (3.22)

This vertex can be realized in various BSM models, such as 2HDM, MSSM and the simplest
Little Higgs model [26, 27]. In the last case, there is a Higgs-Goldstone mixing term in the
non-linear Lagrangian.

Notice that the V SS vertex seems to be a substructure of V V V vertex. Diagrammat-
ically, this means

µ V λV

ν

= µ λ
V

ν

+ µ

ν

V λ + λ

ν

µ V . (3.23)

Therefore, the large-z behavior of V SS vertex is contained in V V V vertex.

4 Large-z behavior of n-point amplitudes

For massless amplitudes, appropriate gauges eliminate all large-z contributions from deriva-
tive interactions except in the so-called “unique diagrams”. Therefore, the large-z behavior
of amplitudes depends on the number of hard propagators. If there are more hard bo-
son propagators, the amplitudes will be suppressed by higher powers of z. As for hard
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fermion propagators, the contribution can be simplified by using anti-commuted gamma
matrices and /r/r = r2 = 0. At last, the hard polarizations are dotted into the sum of all
contributions.

In the massive case, we have seen that the O(z) vertices are not eliminated completely,
so the diagrams with hard vector propagators cannot be ignored. Thus, the large-z behavior
in the massive case should be evaluated directly instead of estimated.

One may wonder if the Goldstone boson equivalence theorem [28, 29] is useful in the
complex deformation. In the high energy limit, this theorem treats the longitudinal modes
of vector bosons as Goldstone bosons to simplify calculations. However, the large-z limit
is not exactly the same as the high energy limit. Actually, it has been used in amplitudes
under the all-line shift [9], but there are also many cases where it doesn’t work. Consider
the following amplitude in the large-z limit with particles 1 and 2 shifted:

˘1 2

3

=¯1 2

3

×
(

1 +O
(
m2

Φ
E2

))
. (4.1)

where mΦ is the mass of scalar bosons and E is the energy of particle 3. Particle 3 is
unshifted, so m2

Φ
E2 is no longer a negligible quantity. If we insist on applying this expansion,

we should sum over the contributions from infinite terms. Thus, we won’t use the Goldstone
boson equivalence theorem in our analysis.

4.1 n-point vector boson scattering amplitudes

In the massive case, the large-z behavior of amplitudes depends on massive vector bosons,
so we can first consider vector boson scattering. Besides particle 1, we set all particles to
be massive. The massive vector propagator (3.2) has two terms. The first term connects
vertices while the second term splits the diagram in two. Therefore, the amplitudes can be
split into two parts,

Ân = ÂCn + ÂDn , (4.2)

where ÂCn and ÂDn correspond to the connected and disconnected diagrammatic expressions
respectively.

When a hard particle shoots through a soft background, it will interact with the
classical field more than once. The soft physics is parameterized by currents Bµj , so the
amplitude ÂCn becomes

ÂCn =Nµ3B
µ3
3 +

n∑
i=4

∑
σ∈Si−2

Nσ(µ3µ4···µi)∏i−1
j=3Dσ(j)

i∏
j=3

B
µj
i , (4.3)

where the second sum is over all permutations of the labels (3, 4, . . . , i). Here Dj is the
denominator of shifted propagators. After permutation, it becomes

Dσ(j) =

p̂1 +
j∑

k=3
pσ(k)

2

−m2 = 2z
j∑

k=3
pσ(k) · r +O(1). (4.4)
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˙1 2

Figure 3. The diagrams without hard propagators. The blob represents the soft background.

¸1 2

(a)
˛1 2

(b)

Figure 4. The diagrams that give the leading contributions in the large-z limit. The blobs
correspond to soft backgrounds.

The first term in eq. (4.3) corresponds to the diagram without hard propagators (see
figure 3). Since the hard particle interacts with the classical field only once, the large-z
behavior of the numerator should be given by a Lorentz vector Nµ3 . Inserting polariza-
tions (3.13) and (3.12), it becomes

N−,+µ3 = ε̂−1 V̂ ε̂+2V̂

µ

= −p1 R rR

µ

+O
(1
z

)
→ O

(1
z

)
,

N−,−µ3 = ε̂−1 V̂ ε̂−2V̂

µ

= zC p1 R p1R

µ

−

(
p1 R r∗R

µ

− C p1 V p1V

µ )
+O

(1
z

)
= [(r∗r) + C(p1p2)]pµ1 −O

(1
z

)
→ O

(1
z

)
,

N−,0µ3 = ε̂−1 V̂ ε̂02V̂

µ

= z p1 R rR

µ

−

(
p1 R p̄2R

µ

− p1 V rV

µ )
+O

(1
z

)
= −2 [(p1p̄2)− (p1p2)] rµ +O

(1
z

)
→ O

(1
z

)
.

(4.5)

The leading diagrams are equal to zero. We used (r∗r)+C(p1p2) = 0 and (p1p̄2) = (p1p2) to
cancel the subleading diagrams in N−,+µ3 and N−,0µ3 . It shows that the first term in eq. (4.3)
vanishes in the large-z limit.

As for the second term in eq. (4.3), the large-z behavior is given by a Lorentz tensor
Nσ(µ3µ4···µi). Since this term includes more than three external particles, 4-vertices should
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be considered. We use a tensor V µνσρ
4 to represent a 4-vertex. Since there are three ways

to contract four polarization vectors, the diagrammatic expression of a 4-vertex should be

V µνσρ
4 ≡ µ V νV

σ

V

ρ

= cαg
µρgνσ + cβg

µσgνρ + cγg
µνgσρ,

(4.6)

where cα, cβ and cγ are arbitrary coefficients. If we use one O(1) 4-vertex instead of
two O(z) 3-vertices, one O(z−1) propagator will decrease. Basically, the more 4-vertices
diagrammatic expressions have, the lower order they are. The Lorentz tensor Nσ(µ3µ4···µi)
can be expanded as

Nσ(µ3µ4···µi) = N
(0)
σ(µ3µ4···µi) +

i−1∑
k=3

Dσ(k)N
(1),σ(k)
σ(µ3···µi) + · · · , (4.7)

where the superscript (n) is the number of 4-vertices. Only the first two terms N0 and N1
(see figure 4) give the same contributions in ÂCn . Their diagrammatic expressions are

N
(0)
µ3µ4···µi = ε̂1 V̂ V̂ . . . V̂ ε̂2V̂

µ3

V̂

µ4

V̂

µi

, (4.8)

N
(1),k
µ3···µi =

ε̂1 V̂ · · · V · · · V̂ ε̂2V̂

µ3 µk

V

µk+1

V̂

µi

, (4.9)

where the script k denotes the position of the 4-vertex. Now we also evaluate these con-
nected diagrammatic expressions in specific helicity and spin states.

N
(0),−,+
µ3µ4···µi = zi−3 p1 R R . . . R rR

µ3

R

µ4

R

µi

+O
(
zi−4

)
, (4.10)

N
(0),−,−
µ3µ4···µi = zi−2C p1 R R . . . R p1R

µ3

R

µ4

R

µi

− zi−3

[
p1 R R . . . R r∗R

µ3

R

µ4

R

µi

− C

(
p1 V R . . . R p1V

µ3

R

µ4

R

µi

+ p1 R V . . . R p1R

µ3

V

µ4

R

µi

+ · · · (4.11)

+ p1 R R . . . V p1R

µ3

R

µ4

V

µi )]
+O

(
zi−4

)
,

N
(0),−,0
µ3µ4···µi = zi−2C p1 R R . . . R rR

µ3

R

µ4

R

µi

− zi−3

[
p1 R R . . . R p̄2R

µ3

R

µ4

R

µi

− C

(
p1 V R . . . R rV

µ3

R

µ4

R

µi

+ p1 R V . . . R rR

µ3

V

µ4

R

µi

+ · · · (4.12)

+ p1 R R . . . V rR

µ3

R

µ4

V

µi )]
+O

(
zi−4

)
.
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The leading diagrammatic expressions of N (0) vanish, because r2 = (p1r) = 0. These
numerators have simple tensor structures,

N
(0),−,−
µ3···µi = zi−3C

i−1∑
a=3

i∑
b=a+1

 i∑
j=3

αa,bj (pjr)

 p1µap1µb
∏
l 6=a,b

rµl +O
(
zi−4

)
,

N
(0),−,0
µ3···µi = zi−3

i−1∑
a=3

 i∑
j=3

αaj (pjr)

 p1µa
∏
l 6=a

rµl +O
(
zi−4

)
,

(4.13)

where αa,bj and αaj are coefficients. In the subleading diagrammatic expressions of N (0),−,−

and N (0),−,0, r∗ and p̄2 only appear in the right end of these diagrams. We find that they
have i− 2 Lorentz indices and i vectors, so there must be an inner product of two vectors.
Since r2 = (p1r) = (p1r

∗) = (p̄2r) = 0, this inner product should be

p1 R R . . . R r∗R

µ3

R

µ4

R

µi

∝ (r∗r), p1 R R . . . R p̄2R

µ3

R

µ4

R

µi

∝ (p1p̄2).
(4.14)

The complete result of these expressions is given in eq. (C.1). Then we use (r∗r)+C(p1p2) =
0 and (p1p2) = (p1p̄2) to eliminate r∗ and p̄2. Eq. (4.13) also shows that p1 should have
free indices.

The leading diagrams of N (0) always vanish, but this is not true for N (1).

N
(1),k,−,+
µ3···µi = zi−5 p1 R · · · V · · · R rR

µ3 µk

V

µk+1

R

µi

+O
(
zi−6

)
, (4.15)

N
(1),k,−,−
µ3···µi = zi−4C p1 R · · · V · · · R p1R

µ3 µk

V

µk+1

R

µi

+O
(
zi−5

)
= zi−4C

i−1∑
a=3

i∑
b=a+1

βa,bj pµa1 pµb1
∏
k 6=a,b

rµk +O
(
zi−5

)
, (4.16)

N
(1),k,−,0
µ3···µi = zi−4 p1 R · · · V · · · R rR

µ3 µk

V

µk+1

R

µi

+O
(
zi−5

)
= zi−4

i−1∑
a=3

βaj p
µa
1
∏
k 6=a

rµk +O
(
zi−5

)
, (4.17)

where βa,bj and βaj are coefficients. Besides these coefficients, we find that the leading
contributions from N (0) and N (1) have same tensor structures.

Since the large-z behavior of the denominator in the second term of eq. (4.3) is
i−1∏
j=3

Dσ(j) = (2z)i−3
i−1∏
j=3

r · j∑
k=3

pk

+O
(
zi−4

)
, (4.18)

For polarization (h1, s2) = (−,−) and (−, 0), N (0) and N (1) give boundary terms in the
large-z limit. Therefore, the large-z behavior of the connected part is

ÂCn → O(1), n > 3. (4.19)
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The disconnected diagrammatic expressions in ÂDn have more complicated structures
than in ÂCn . Since the second term in vector propagators disconnects the diagrammatic
expressions, ÂDn should have at least one hard propagator,

ÂDn =
∑

σ∈Si−2

n∑
i=4

Uσ(µ3···µi)∏i−1
j=3Dσ(j)

i∏
j=3

B
µj
i , (4.20)

where Uµ3···µi consists of three classes of Lorentz tensors, L,M and R.

Uµ3···µi =
∑

3≤l<i
Lµ3···µlRµ(l+1)···µi

+
i−4∑
m=1

∑
3≤l1<l2<···<lm+1<i

Lµ3···µl1

(
m∏
a=1
Mµ(la+1)···µl(a+1)

)
Rµ(l(m+1)+1)···µi ,

(4.21)

where L includes particle 1 and R includes particle 2. In analogy to Nµ3 , Lorentz vectors
Lµ3 ,Mµl and Rµi don’t include 4-vertices,

Lµ3 = ε̂1 V̂ P̂V̂

µ3

= p2
3ε̂1µ3 − (p3ε̂1)p3µ3 → O

(
z−1

)
,

Mµl = P̂ V̂ P̂V̂

µl

= z
(
p2
l rµl − (plr)plµl

)
+O(1)→ O(z),

R+
µi = P̂ V̂ ε̂+2V̂

µi

→ O(1),

R0
µi = P̂ V̂ ε̂02V̂

µi

= −2z2rµir ·
i∑

j=3
pj +O(z)→ O(z),

R−µi = P̂ V̂ ε̂−2V̂

µi

= −2z2p1µir ·
i∑

j=3
pj +O(z)→ O(z),

(4.22)

where the superscript of Rµi denotes the polarization of particle 2. When L,M andR have
more than one Lorentz index, these tensors can be expanded in the number of 4-vertices as

Lµa···µb = L(0)
µa···µb +

b−1∑
k=a

DkL
(1),k
µa···µb + · · · ,

Mµa···µb =M(0)
µa···µb +

b−1∑
k=a

DkM
(1),k
µa···µb + · · · ,

Rµa···µb = R(0)
µa···µb +

b−1∑
k=a

DkR
(1),k
µa···µb + · · · .

(4.23)
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The diagrammatic expressions of L(0),M(0) and R(0) are

L(0)
µ3···µl = ε̂−1 V̂ · · · V̂ P̂V̂

µ3

V̂

µl

= N−,0µ3···µl +O
(
zl−4

)
, (4.24)

M(0)
µ(la+1)···µl(a+1)

= P̂ V̂ · · · V̂ P̂V̂

µ(la+1)

V̂

µl(a+1)

= −2zla+1−la+1
la+1−1∑
k=la+1

k∑
j=3

(pjr)
∏
l

rµl +O
(
zla+1−la

)
, (4.25)

R(0),s2
µl+1···µi = P̂ V̂ · · · V̂ ε̂s22V̂

µl+1

V̂

µi

→ O
(
zi−l+1

)
. (4.26)

We find that L(0) gives the same contribution as N (0) in the leading order. Since the order
ofR(0),+ in z is lower than the other polarizations, we ignore R(0),+ in the following section.
Here eq. (4.26) is valid when s2 = 0 or +1.

The diagrammatic expressions of L(1),M(1) and R(1) are

L(1),k
µ3···µl = ε̂1 V̂ · · · V · · · V̂ P̂V̂

µ3 µk

V

µk+1

V̂

µl

= N
(1),k
µ3···µl +O

(
zl−5

)
, (4.27)

M(1),k
µ(la+1)···µl(a+1)

= P̂ V̂ · · · V · · · V̂ P̂V̂

µ(la+1) µk

V

µk+1

V̂

µl(a+1)

→ O
(
zla+1−la

)
, (4.28)

R(1),k
µl+1···µi = P̂ V̂ · · · V · · · V̂ ε̂2V̂

µl+1 µk

V

µk+1

V̂

µi

→ O
(
zi−l

)
. (4.29)

Combining the previous calculations, we find that the terms in Uµ3···µi with more M
generally give higher-order contributions. For example, consider

Mµa···µb = O
(
zb−a+2

)
. (4.30)

We use twoM instead of it and find

Mµa···µcMµc+1···µb = O
(
zc−a+2

)
O
(
zb−c+1

)
= O

(
zb−a+3

)
. (4.31)

However, this rule doesn’t work when L,M and R have only one Lorentz index. Consider
Mµaµa+1 , eq. (4.30) reduces to O(z3), which gives the higher-order contribution than

MµaMµa+1 = O(z)O(z) = O
(
z2
)
. (4.32)

Therefore, the terms that have the most tensors with two Lorentz indices give the leading
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‚1 2‹1 2

Figure 5. An example of two diagrams with hard scalar propagators.

contributions. When i > 4,

Uµ3···µi =

Lµ3

(∏i−3
a=4Mµaµa+1

)
Rµi−1µi + · · · , i = odd,

Lµ3µ4

(∏i−3
a=5Mµaµa+1

)
Rµi−1µi + · · · , i = even,

=

O
(
z−1) (O (z3)) i−5

2 O
(
z3) , i = odd,

O(z)
(
O(z3)

) i−6
2 O(z3), i = even,

=

O
(
z

3
2 i−

11
2
)
, i = odd,

O
(
z

3
2 i−5

)
, i = even.

(4.33)

When i = 4,
Uµ3µ4 = Lµ3Rµ4 = O

(
z−1

)
O(z) = O(1). (4.34)

Substituting into eq. (4.20), we get

ÂDn →

O
(
z−1) , n = 4,

O
(
zbi/2c−2

)
, n > 4,

(4.35)

where b· · · c is the floor function. It shows that the disconnected part doesn’t vanish
when n > 4.

4.2 Hard scalars and fermions

As we showed in section 3.3, the contributions from V SS vertices are included in vector
scattering amplitudes. Consider a diagrammatic expression in which two V V V vertices
are connected. Using eq. (3.23), this expression can be expanded to

µ1 V V µ2V

µ3

V

µ4

=

µ3 µ4

µ1 V V µ2 +

µ3

µ2µ1 V
V

µ4

+ · · · , (4.36)

where V µ1V µ2 can be understood as two V SS vertices, which correspond to the diagrams
shown in figure 5. However, there is no gµ3µ4 in the explicit expressions (4.13) and p1
should contract with index µ3 or µ4. It means that the contributions from V SS vertices
vanish in the large-z limit.

As discussed in refs. [21, 22], the contributions from hard fermion propagators reduce
to γµj/rγµk , which can be viewed as a O(1) vertex. If we insert it into the vector amplitudes,
the amplitudes will give lower-order contributions. We only need to evaluate the leading
diagrammatic expressions of these contributions. Since

rµaγ
µa/rγµb = γµa/rγµbrµb = 0, p1µaγ

µa/rγµbpµb = 0, (4.37)
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the leading diagrams vanish. Therefore, the hard fermion propagators improve the large-z
behavior.

If particle 2 is a massive fermion, the polarization of particle 2 should be changed.
According to eq. (3.14), the shift spinor of particle 2 factorizes in terms of a Weyl spinor
v−1 and a little-group spinor ξI = 〈12J〉. Therefore, the leading diagram in the large-z limit
can also factorize into a product of ξI and the leading diagram in the massless case. Using

/rv−1 = p2|1〉〈11〉 = 0 (4.38)

and the Weyl equation /p1v
−
1 = 0, it is easy to check that the leading diagrams are equal

to zero. Similarly, we can make the same conclusion on disconnected diagrams.

5 Cancellation and Jacobi identity

Since the amplitude with at least one gluon can be well recursed in the massless theory,
we have reason to believe that this argument can be generalized into the massive theory.
In last section, we evaluated all amplitudes with at least one massless vector boson in the
large-z limit. We found that they all vanish except in the vector scattering amplitudes.

Fortunately, the non-vanishing terms from N
(0)
µ3···µi and N

(1)
k,µ3···µi have similar structures

in the large-z limit, so there can be a cancellation among them.

5.1 Cancellation in 4-point amplitudes

In the case of 4-point amplitudes, eq. (4.35) showed that the disconnected part ÂD4 vanishes,
so we just consider the connected part ÂC4 . Since the s-channel amplitude N (0)

µ3 B
µ3
3 vanishes,

the total amplitude becomes

ÂC4 =

N (0)
µ3µ4

D3
+
N

(0)
σ3(µ3µ4)
Dσ3(3)

+N (1),3
µ3µ4

Bµ3
4 Bµ4

4 → O
(
z−1

)
, (5.1)

where Bµ3
4 = εµ3

3 , Bµ4
4 = εµ4

4 . The permutation σ3 = (3 4) only exchanges particles 3 and 4.
Up until now, we haven’t considered the group structure. Actually, the three-vector

amplitudes (3.18) and (3.19) are not complete. We should introduce an antisymmetric
tensor fabc to maintain Bose symmetry, so

µ1 V µ3V

µ2

→ fa1a2a3V µ1µ2µ3
k,p,q .

(5.2)

When s2 = −1, the diagrammatic expressions N (0) and N (1) reduce to

N (0),−,−
µ3µ4 = −2ctCzp1µ3p1µ4(p3r) +O(1),

N
(0),−,−
σ3(µ3µ4) = 2cuCzp1µ3p1µ4(p4r) +O(1),

N (1),3,−,−
µ3µ4 = (cα + cβ)Cp1µ3p1µ4 +O

(
z−1

)
,

(5.3)
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where color factors ct = fa1a3bf ba4a2 , −cu = fa1a4bf ba3a2 . Substituting eq. (5.3) into
eq. (5.1), we derive a condition between color factors and 4-vertex coefficients, i.e. cα+cβ =
ct− cu. Notice that, the particles 3 and 4 are vector bosons too. We can use the [1, 3〉 and
[1, 4〉-shifts or their BOLD version to give extra conditions to validate eq. (5.1). The full
conditions which ensure that the cancellation happens are

cα + cβ = ct − cu
cα + cγ = cu − cs
cβ + cγ = cs − ct,

(5.4)

where cs = fa1a2ef ea3a4 .
This linear system has one unique solution, so the 4-vertex are determined by the

constructibility of A−,−total. 
cα = ct − cs
cβ = cs − cu
cγ = cu − ct,

(5.5)

When s2 = 0, the diagrammatic expressions N (0) and N (1) reduce to

N (0),−,0
µ3µ4 = −2ctz(2rµ3p1µ4 − p1µ3rµ4)(p3r) +O

(
z−1

)
,

N
(0),−,0
σ3(µ3µ4) = −2cuz(2rµ4p1µ3 − p1µ4rµ3)(p4r) +O

(
z−1

)
,

N (1),3,−,0
µ3µ4 = cαrµ3p1µ4 + cβp1µ3rµ4 +O

(
z−1

)
.

(5.6)

Substituting eq. (5.6) into eq. (5.1) again, we derive another condition between color factor
and 4-vertex coefficient, {

cα = 2ct + cu

cβ = −ct − 2cu
→ cs + ct + cu = 0. (5.7)

Finally, we derive the Jacobi identity in group theory. This implies that the constructibility
of A−,−total and A−,0total can reconstruct a group structure in the massive amplitude. On the
other hand, we can actually use recursion relations to construct the massive amplitude
with gauge bosons. For example, the n-point amplitude involving 2 massive vector bosons
and n−2 gluons has been explicitly constructed in ref. [30] under a massless-massive shift.

5.2 Cancellation in n-point amplitudes

In section 5.1, we determined the coefficients of 4-vertex,

µ1 V µ2V

µ3

V

µ4

→(fa1a3ef ea4a2 − fa1a2ef ea3a4)gµ1µ4gµ2µ3

+ (fa1a2ef ea3a4 + fa1a4ef ea3a2)gµ1µ3gµ2µ4

− (fa1a4ef ea3a2 + fa1a3ef ea4a2)gµ1µ2gµ3µ4 ,

(5.8)

and found that there is a cancellation in 4-point amplitudes, which is related to the group
structure of massive vector bosons. Will this cancellation work on n-point amplitudes?
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In the large-z limit, the leading term in the denominator is a product of

dj =
j∑

k=3
(pkr), j = 3, 4, · · · , i− 1. (5.9)

In eq. (4.13), we have shown that there are some inner products (pkr), which don’t occur
in N (1). Therefore, we invert eq. (5.9) to give (pjr) in terms of dk,

(pjr) =


dj , j = 3,
dj − dj−1, 3 < j < i,

− dj−1, j = i.

(5.10)

Now we choose a basis {dk} and consider the decomposition of N (0),

N
(0)
µ3···µi =

i−1∑
k=3

dkN
(0),k
µ3···µi . (5.11)

After the decomposition, we collect the contributions from N (0) and N (1) that have same
tensor structures, and define a new tensor

Nk
µ3···µi = 1

2
(
N

(0),k
µ3···µi +N

(0),σk(k)
σk(µ3···µi) +N

(1),k
µ3···µi

)
. (5.12)

where the permutation σk = (k k+1) is an element of symmetric group Si−2 and the factor
1/2 is introduced to avoid double counting. Appendix C gives an example that explicitly
evaluates this tensor and corresponding diagrammatic expressions.

In Nk, the p1 from ε1 only contracts with the index µk or µk+1. This structure is
contained in an antisymmetric tensor

Pk,k+1 = p1µkrµk+1 − rµkp1µk+1 . (5.13)

Now the Nk in specific polarizations becomes

Nk,−,−
µ3···µi = zi−3C

2 (c1 − c2 + c3)Pk,k+1 ∑
j 6=k,k+1

F i,j,kp1µj
∏

l 6=j,k,k+1
rµl +O

(
zi−4

)
, (5.14)

Nk,−,0
µ3···µi = zi−3(c1 − c2 + c3)Pk,k+12k−4 ∏

j 6=k,k+1
rµj +O

(
zi−4

)
, (5.15)

where F i,j,k is

F i,j,k =
{

2i−4+j−k, 1 ≤ j < k,

2i−3+k−j , k + 1 < j ≤ i.
(5.16)

The color factors in eqs. (5.14) and (5.15) are

c1 = fa1a3b1 · · · f bk−2akbk−1f bk−1ak+1bk · · · f b1ana2 ,

c2 = fa1a3b1 · · · f bk−2ak+1bk−1f bk−1akbk · · · f b1ana2 ,

c3 = fa1a3b1 · · · (f bk−2ebkfakeak+1) · · · f b1ana2 .

(5.17)
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If these factors have a cancellation

c1 − c2 + c3 = 0, (5.18)

the large-z behavior of connected diagrammatic expressions will be improved,

Nk
µ3···µi → O

(
zi−4

)
. (5.19)

Using Nk and eq. (4.4), we can rewrite the leading contribution of ÂCn ,

ÂCn =
n∑
i=4

∑
σ∈Si−2

∑i−1
k=3 dσ(k)N

σ(k)
σ(µ3···µi)

(2z)i−3∏i−1
j=3 σ(dj)

i∏
j=3

B
µj
i +O(z−1). (5.20)

After the cancellation, we find that ÂCn vanishes in the large-z limit.
We can also decompose the disconnected diagrammatic expressions

Lµ3···µl =
l−1∑
k=3

dkLkµ3···µl ,

Mµ(l1+1)···µl2 =
l2−1∑

k=l1+1
dkMk

µ(l1+1)···µl2
,

Rµl+1···µi =
i−1∑
k=l+1

dkRkµl+1···µi ,

(5.21)

where

Lkµ3···µl = 1
2
(
L(0),k
µ3···µl − L

(0),σ(k)
σk(µ3···µl) + L(1),k

µ3···µl

)
,

Mk
µ(l1+1)···µl2

= 1
2

(
M(0),k

µ(l1+1)···µl2 −M
(0),σk(k)
σk(µ(l1+1)···µl2 ) +M(1),k

µ(l1+1)···µl2

)
,

Rkµl+1···µi = 1
2
(
R(0),k
µl+1···µi −R

(0),σk(k)
σk(µl+1···µi) +R(1),k

µl+1···µi

)
.

(5.22)

They are the analog of Nk. Since L gives the same leading contributions as N−,0, we don’t
need to evaluate it again. As we showed in eq. (4.25), M(0) has simple tensor structure
and will cancelM(1) directly. The last expression R gives

Rk,0µl+1···µi = O
(
zi−l

)
,

Rk,−µl+1···µi = 1
2(c1 − c2 + c3)Pk,k+1 ∏

j 6=k,k+1
rµj +O

(
zi−l

)
,

(5.23)

where the p1 in Pk,k+1 comes from ε−2 . When s2 = 0, we use r instead of p1, so Pk,k+1

gives zero.
After the cancellation (c1 − c2 + c3) = 0, we summarize the large-z behavior of the

tensor L,M and R with one and more than one Lorentz index,

Lµ3···µl → O
(
zl−4

)
, Mµ(la+1)···µl(a+1)

→ O
(
zla+1−la

)
, Rµl+1···µi → O

(
zi−l

)
.

(5.24)
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s1\s2 −1 0 1
−1 O(z) O(1) O(z−1)
0 O(z2) O(z) O(1)
1 O(z3) O(z2) O(z)

Table 3. The large-z behavior of amplitudes with particles 1 and 2 in different spin states. s1 and
s2 are spin projections of particles 1 and 2 in the z direction.

We use these building blocks to calculate the two terms in eq. (4.21),

Lµ3···µlRµl+1···µi → O(zl−4)O
(
zi−l

)
= O

(
zi−4

)
, (5.25)

Lµ3···µl1

(
m∏
a=1

Mµ(la+1)···µl(a+1)

)
Rµ(l(m+1)+1)···µi

→ O(zl1−4)
(

m∏
a=1
O(zla+1−la)

)
O(zi−lm+1) = O(zi−4). (5.26)

It shows that the large-z behavior of disconnected diagrammatic expressions are also im-
proved. Therefore, the disconnected part vanishes in the large-z limit.

5.3 4-point all-massive amplitudes

One may wonder whether the above cancellation happens in the amplitude with all vectors
massive. Consider a 4-point amplitude under the [1,2〉-shifts, both Higgs exchange and
vector exchange diagrams will contribute,

Atotal = AV +AHiggs ∝ [csA6a + (ct + cu)A6b]. (5.27)

Table 3 shows the large-z behavior of the amplitude in different spin states. We find
that only t and u-channel AHiggs amplitudes will give the same order as shown in table 3.
Suppose the coupling of massive vectors and Higgs is m, the leading contribution is

AHiggs = −m2
(
ct

(ε̂1ε3)(ε4ε̂2)
2(p3r)

+ cu
(ε̂1ε4)(ε3ε̂2)

2(p4r)

)
+ · · · . (5.28)

Then we consider AV . Since particle 1 is no longer a massless gauge boson, ε1 → −p1/z

cannot be used in calculations. We take (s1, s2) = (−,−) as an example and substitute
polarizations (3.17) into the shifted amplitude, and the numerator becomes

N (0),−,−
µ3µ4 = −z3 r R R p̃1R

µ3

R

µ4

+ z2

[
r R R r∗R

µ3

R

µ4

−

(
r R V p̃1R

µ3

V

µ4

+ r V R p̃1V

µ3

R

µ4
)]

+O(z).

(5.29)

The leading diagram is still equal to zero. However, the subleading diagram will contribute
a new term proportional to p2

1, which cannot be canceled with the contribution from the
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(a)
“1 2

(b)

Figure 6. Amplitudes with hard particles replaced by Goldstone bosons.

4-vertex or the s-channel. Similarly, the subleading diagrams with particles 1 and 2 in
other spin states may contribute non-vanishing terms.

Combining these two contributions, we get

A−,+total = −1
z

2(p1p2) +m2

2 Ã+O
(
z−2

)
,

A−,0total = 2(p1p2)− 2(p1p̄2) +m2

2 Ã+O
(
z−1

)
,

A−,−total = zC(p1p̃1)Ã+O(1),

A0,0
total = z

2(p1p2) + 2(p̄1p̄2)− 2(p1p̄2)− 2(p̄1p2) +m2

2 Ã+O(1),

A0,−
total = z2C[(p1p̃1)− (p̄1p̃1)]Ã+O(z),

A+,−
total = −z3C2(p̃1p̃2)Ã+O

(
z2
)
,

(5.30)

where p̃1 = C(p1 + p̄1)/2 and p̃2 = C(p2 + p̄2)/2. Interestingly, all the leading contributions
in eq. (5.30) are proportional to Ã, which also contribute to the amplitudes with hard
particles replaced by Goldstone bosons (see figure 6).

After the replacement, the amplitude becomes

AGoldstone = zÃ+O(1), (5.31)

where

Ã = 4cs
(p4ε3)(rε4)− (p3ε4)(rε3) + (p3r)(ε3ε4)

s−m2 + 2(ct + cu)(rε3)(rε4)
(p3r)

. (5.32)

It implies that the 4-point amplitudes with all vectors massive have some structure
other than gauge structure, which can be described by introducing scalar bosons. In the
high energy limit, this structure concentrates on the longitudinal mode of massive vectors
and becomes what is called Goldstone boson equivalence theorem. In two-line complex
deformations, this structure appears in all polarization compositions.

There have been some works [31, 32] on how to compute the boundary term Bn system-
atically. If we want to use these methods to evaluate the boundary term in the amplitude
with all vectors massive, it must be more complicated than the massless case.
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6 Conclusions and discussions

We have constructed the complete two and three-line shifts for all masses and provided
a method to construct general multi-line shifts. These various shifts may be useful in
investigating massive amplitude structures. For example, soft ε-shift [10] and BCFW shifts
can be combined to give a two-parameter shift [33], which is useful to explore soft theorems
in the massless case. Although there have been some effort to construct soft recursions
in the massive case [34], our research provides a possibility to construct other useful soft
shifts in the future.

The validity of massless-massive BCFW shifts have been examined in the n-point
amplitudes in this paper. For a theory of spin ≤ 1, any amplitude with at least one massless
gauge boson can be recursive constructed. Furthermore, we can use constructibility to
derive the group structure for the amplitude with massless and massive vectors. Since
gluon amplitudes also have group structures, the massless gauge boson can be naturally
viewed as the transverse component of a massive vector boson in the higher energy limit.
For the amplitude with all vectors massive, we found that not only longitudinal mode
but also transverse mode of massive vectors contribute similar amplitude structures as
Goldstone bosons in the large-z limit. Conversely, we can set the massive amplitudes
proportional to the amplitudes replaced by Goldstone in the large-z limit, so that we can
determine the coupling of Higgs and massive vectors.

Though the masses of vector bosons are equal in our analysis, the conclusion can be
generalized to amplitudes in more general theories, e.g. the Standard Model and some BSM
models. Since we can set up a specific gauge group and vacuum expectation value (VEV),
vector bosons will have different masses after symmetry breaking. This manipulation only
changes the coefficients in amplitudes in the large-z limit, so our result is still valid. The
success of generalization in this paper encourages us to consider more general cases in
massive amplitudes. It is interesting to see whether our analysis can be generalized to
theories of spin ≤ 2 when massive particles are included.
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A Massless and massive spinor-helicity formalism

For a massless particle, whose momentum is

pµ = (E,E sin θ cosφ,E sin θ sinφ,E cos θ). (A.1)

The momentum multiplied by gamma matrices factorizes into a product of two-component
Weyl spinors,

pαβ̇ = pµσ
µ

αβ̇
= |p]α〈p|β̇ . (A.2)

– 31 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
7

We choose the explicit form of these variables to be

|p〉α̇ =
√

2E
(
c

s

)
, 〈p|α̇ =

√
2E

(
−s c

)
, (A.3)

|p]α =
√

2E
(
−s∗

c

)
, [p|α =

√
2E

(
c s∗

)
, (A.4)

where c = cos(θ/2), s = sin(θ/2) exp(iφ). All Lorentz invariant structures can be expressed
in terms of these variables:

〈ij〉 = 〈i|α̇|j〉α̇ = εα̇β̇〈i|α̇〈j|β̇ ,

[ij] = [i|α|j]α = εαβ [i|α[j|β ,
(A.5)

where
εαβ = εα̇β̇ = −εαβ = −εα̇β̇ =

(
0 1
−1 0

)
. (A.6)

Furthermore, Lorentz vectors can also be denoted by angle-square brackets:

〈i|γµ|j] = 〈i|α̇σ̄µα̇β |j]β = [j|ασ̄µ
αβ̇
|i〉β̇ = [j|γµ|i〉. (A.7)

If i = j, it reduces to 〈i|γµ|i] = 2pµi .
Now consider a massive particle whose momentum is

pµ = (E, p sin θ cosφ, p sin θ sinφ, p cos θ). (A.8)

The massive spinor variables of this particle are

|pI ]α =
(
−
√
E + ps∗

√
E − pc√

E + pc
√
E − ps

)
,

|pI〉α̇ =
(√

E − ps∗ −
√
E + pc

−
√
E − pc −

√
E + ps

)
.

(A.9)

where I = 1, 2 is little-group index. Here our conventions are different from [16, 25]. In
the high energy limit, these spinor variables reduce to eq. (A.4). Contracting Weyl-spinor
indices, we obtain

〈pIpJ〉 = mεIJ ,

[pIpJ ] = −mεIJ .
(A.10)

where
εIJ = −εIJ =

(
0 1
−1 0

)
. (A.11)

Contracting little-group indices, we obtain

pαβ̇ = |pI ]α〈pI |β̇ ,

pα̇β = |pI〉α̇[pI |β .
(A.12)
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B Spinors in the two particles center-of-mass frame

We take particles 1 and 2 to be massless and massive respectively, and choose the center-
of-mass frame of these particles. The momenta of these particles become

p1 = (p, 0, 0, p), p2 = (E, 0, 0,−p). (B.1)

We define a null vector p̄µ1 = (p, 0, 0,−p), so 〈1̄1〉 = [11̄] = −2p. The massive spinors
can be expanded by the spinor from p1 and p̄1,

|21] =
√
E + p

(
1
0

)
=
√
E + p

2p |1̄], |22] = −
√
E − p

(
0
1

)
= −

√
E − p

2p |1],

|22〉 =
√
E + p

(
0
1

)
= −

√
E + p

2p |1̄〉, |21〉 = −
√
E − p

(
1
0

)
= −

√
E − p

2p |1〉.
(B.2)

In the high energy limit, |21] and |22〉 exist while |22] and |21〉 vanish, so [221] = 〈211〉 = 0,
〈221〉 = −

√
2p(E + p).

Now we consider the [1,2〉 shift (2.21) and rescale it,

|1̂] = |1] + z|2I ] 〈2I1〉
E + p

, |2̂I〉 = |2I〉 − z|1〉 〈2
I1〉

E + p
. (B.3)

The shifted spinors can also be written as the linear combinations of spinors from
p1 and p̄1,

|1̂] = |1]− z|21] 〈2
21〉

E + p
= |1] + z|1̄],

|2̂2〉 = |22〉 − z|1〉 〈2
21〉

E + p
= −

√
E + p

2p |1̄〉+ z

√
2p

E + p
|1〉,

|2̂1〉 = |21〉 − z|1〉 〈2
11〉

E + p
= −

√
E − p

2p |1〉,

(B.4)

where we used |2I ]〈2I | = −|21]〈22|+ |22]〈21|.
Now the accurate expressions of the shifted momenta are

p̂1 = p1 + zpr, p̂2 = p2 − zpr, (B.5)

where the shift-vector is

rµ = 〈1|γ
µ|2I ]〈2I1〉

2p(E + p) = −〈1|γ
µ|21]〈221〉

2p(E + p) = 〈1|γ
µ|1̄]

2p = (0,−1,−i, 0) (B.6)

Since we want to discuss the large-z behavior, the normalization of polarization vectors
is unnecessary. The polarization vectors of particle 1 and 2 are

εµ+(p̂1) = 〈q|γ
µ|1̂]
〈q1〉 , εµ−(p̂1) = 〈1|γ

µ|q]
[1̂q]

,

εµ+(p̂2) = −〈2̂
1|γµ|21]
m

, εµ−(p̂2) = 〈2̂
2|γµ|22]
m

,

εµ0 (p̂2) = −〈2̂
1|γµ|22] + 〈2̂2|γµ|21]

2m .

(B.7)
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We choose the reference vector q = p̄1, and these polarization vectors reduce to

εµ+(p̂1) = 〈1̄|γ
µ|1]
〈1̄1〉

+ z
〈1̄|γµ|1̄]
〈1̄1〉

= 〈1̄|γ
µ|1]

2p + z
〈1̄|γµ|1̄]

2p = r∗µ + z
p̄µ1
p
,

εµ−(p̂1) = 〈1|γµ|1̄]
[11̄]− z[1̄1̄]

= 〈1|γ
µ|1̄]

2p = rµ,

εµ+(p̂2) = 〈1|γ
µ|1̄]

2p = rµ,

εµ−(p̂2) = 〈1̄|γ
µ|1]

2p − z 〈1|γ
µ|1]

E + p
= r∗µ − z 2pµ1

E + p
,

εµ0 (p̂2) = (E + p)〈1̄|γµ|1̄]− (E − p)〈1|γµ|1]
4mp − z 〈1|γ

µ|1̄]
2m = p̄µ2

m
− z p

m
rµ,

(B.8)

where p̄2 = (p, 0, 0,−E) characterizes the longitudinal polarization of particle 2. If we set
p = 1, eq. (B.8) becomes eqs. (3.10) and (3.13).

C Diagrammatic expressions

In section 4, we expand amplitude A(z) at z =∞. There are many diagrammatic expres-
sions corresponding to different contributions in this expansion. Consider the amplitudes
with vector bosons. Since we set particle 1 to have negative helicity, the leftmost vector in
these diagrammatic expressions must be p1.

Consider N (0), which includes only 3-vertices. Suppose the rightmost vector is k, the
leading contribution is

p1 R R . . . R kR

µ3

R

µ4

R

µi

= c

2i−2(p1k)
i∏

j=3
rµj −

i∑
l=3

2l−3(rk)p1µl
∏
j 6=l

rµj

 , (C.1)

where c corresponds to the color factor. When k = r or p1, it vanishes and refers to the
leading diagram. When k = p̄2 or r∗, it corresponds to a subleading diagram.

For N−,0 and N−,+, the subleading diagrams will give the non-vanish terms. We take
N−,0µ3µ4µ5 as an example. First consider the diagram with only 3-vertices

N (0),−,0
µ3µ4µ5 = z2

(
p1 V R R rV

µ3

R

µ4

R

µ5

+ p1 R V R rR

µ3

V

µ4

R

µ5

+ p1 R R V rR

µ3

R

µ4

V

µ5

− p1 R R R p̄2R

µ3

R

µ4

R

µ5
)

+O(z).

(C.2)

Evaluating these diagrammatic expressions, we get

N (0),−,0
µ3µ4µ5 = c1

[
− p1µ3rµ4rµ5(5(p3r) + 3(p4r) + (p5r))

− 2rµ3p1µ4rµ5((p3r) + 3(p4r) + (p5r))

+ 4rµ3rµ4p1µ5((p3r) + (p4r)− (p5r))
]
.

(C.3)
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Then we consider the diagram with one 4-vertex.

N (1),3,−,0
µ3µ4µ5 = z p1 V R r

µ3

V

µ4

R

µ5

+O(1),
(C.4)

N (1),4,−,0
µ3µ4µ5 = z p1 V R rR

µ3µ4

V

µ5

+O(1).
(C.5)

Evaluating these diagrammatic expressions, we get

N (1),3,−,0
µ3µ4µ5 = 2(c1 − c3)rµ3rµ4p1µ5 + 2(c3 + c2)rµ3p1µ4rµ5 + (−c2 − c1)p1µ3rµ4rµ5 , (C.6)

N (1),4,−,0
µ3µ4µ5 = (c1 − c3)rµ3p1µ4rµ5 + (c3 + c2)p1µ3rµ4rµ5 . (C.7)

We do the decomposition and give the components

N3,−,0
µ3µ4µ5 = 1

2(c1 − c2 + c3)(p1µ3rµ4 − rµ3p1µ4)rµ5 , (C.8)

N4,−,0,
µ3µ4µ5 = 1

2(c1 − c2 + c3)rµ3(p1µ4rµ5 − rµ4p1µ5). (C.9)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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