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1 Introduction

Supergravity theories with N extended supersymmetry admit different ultra-violet comple-
tions in string theory. For N ≥ 5, all the massless fields are in the graviton super-multiplet
and there is no lower-spin ‘matter’ super-multiplet. The two-derivative action is then
uniquely determined by supersymmetry and the scalar fields are moduli that parametrise
a symmetric space G/K [1]. There is a unique string theory ultra-violet completion of
(ungauged) maximal N = 8 supergravity in four dimensions.1 This theory has been very
useful in understanding dualities and non-perturbative effects in string theory [4, 5], in-
cluding D-brane and NS-five-brane instantons. Supersymmetry and U-duality give very
stringent constraints on the low-energy effective action [6–25], whose exact couplings are
known up to fourteen-derivative terms [26–36]. Such results offer an invaluable window
into the non-perturbative regime of string theory, like supersymmetric D-branes and their
bound states. Similar results have been obtained for theories with sixteen supercharges, i.e.
N = 4 in four dimensions [37–42]. Another interesting example is N = 6 supersymmetry in
four dimensions. Such theories provide the simplest examples of compactifications on T-
folds [43], and can therefore be used to study D-branes and NS-five-branes on non-geometric
backgrounds. One may wonder: how many independent string theories give (ungauged)
N = 6 supergravity at low energy? What is their group of U-duality symmetries as an
arithmetic subgroup of the non-compact global SO∗(12) symmetry group? Can one deter-
mine supersymmetry protected couplings exactly using constraints from supersymmetry
and U-duality? What is the spectrum of supersymmetric D-branes in these theories?

The first construction of a string theory with N = 6 supersymmetry was proposed by
Ferrara and Kounnas in [44] as a model of free fermions. This model can also be formulated
as an asymmetric orbifold of (T 2× T 4)/Z2 in which Z2 acts on the left moving sector of T 4

as for the K3 orbifold conformal field theory and as a shift on one additional circle in T 2.
1The issue of its non-perturbative completion was addressed in [2, 3].
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The D-branes and the four-graviton amplitude have been analysed in [45, 46]. In this paper
we refine this analysis, with particular emphasis on the dependence on the NS-NS moduli
(internal metric and B-field)2 of the couplings and their automorphic symmetry under the
T-duality group. We also demonstrate that there is a similar string theory defined as an
asymmetric orbifold of (T 2 × T 4)/Z3. The obvious generalisation to Z4 and Z6 orbifold
theories does not work, contrary to naive expectations. Another string theory with N = 6
supersymmetry was identified in [48] as an asymmetric orbifold in which Z3 acts on the left
moving sector of T 6 as for the corresponding Calabi-Yau orbifold conformal field theory.
We find that this theory has exactly the same (perturbative) spectrum as the (T 2× T 4)/Z3
and therefore conclude that they are dual to each other. It seems therefore that there are
only two inequivalent string theories with N = 6 supersymmetry.

The bosonic sector of N = 6 supergravity is identical to the bosonic sector of the N = 2
supergravity theory associated to the Jordan algebra of Hermitian three by three matrices
over the quaternions [49].3 In particular the scalar fields parametrise the special Kähler
symmetric space SO∗(12)/U(6), whose coordinates can be defined as complexified 3× 3
Hermitian matrices T over the quaternions. The duality symmetry acts on this space by
linear fractional transformations and the theory of modular forms on SO∗(12)/U(6) involves
the choice of a discrete ring over the quaternions admitting prime factorisation [51, 52]. We
find that the relevant ring for the Z2 orbifold theory is the ring H(2) of Hurwitz quaternions
isomorphic to the D4 root lattice, while the relevant ring for the Z3 orbifold theory is the
ring H(3) of Eisenstein quaternions (obtained through the Cayley-Dickson construction
from a pair of Eisenstein integers) isomorphic to the A2 ⊕A2 root lattice.

Following the discussion of [32] for the four-graviton amplitude in the maximally super-
symmetric theory, the type II superstring four-graviton amplitude for the ZK asymmetric
orbifolds with K = 2, 3 can be decomposed at low energy as

Mtype II(T, s, t, u) =Msugra
type II(T, s, t, u, µ) +MWilson

type II(T, s, t, u, µ) (1.1)

where µ is a regulating mass scale. As usual we factor out (2π)4δ(∑a ka) of the amplitude.
The analytic termMWilson

type II is interpreted as defining the Wilsonian effective action obtained
by integrating out all the massive fields in string theory, whereas the first componentMsugra

type II

is not analytic in the Mandelstam variables and corresponds to the supergravity amplitude
computed with the Wilsonian effective action. The former expands in the Mandelstam
variables as

iMWilson
type II = π

210 g
8
4α
′4 ∑
m,n,p∈N

E(m,n,p)(T )
(
g2
4 α
′

4

)m+2n+3p

× (s2+t2+u2)n(s3+t3+u3)p(smts8 + tmtt8 + umtu8)t8R4 (1.2)
2The NS-NS moduli are the internal metric and B fields preserved by the orbifold that parametrise

the Grassmannian SO(2, 6)/(SO(2)× SO(6)) and the axio-dilaton that parametrise SL(2)/SO(2). We will
sometimes call the Grassmannian coordinates ‘Narain moduli’ [47]. The perturbative amplitudes only depend
on the dilaton and the Narain moduli, while the NS-NS axion and the R-R moduli do not contribute due to
shift symmetries resulting from their ‘axionic’ nature.

3The string version of the ‘magic’ N = 2 supergravity associated to the octonionic algebra with E7(−25)

global symmetry was constructed in [50].
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where we included the Weyl rescaling to Einstein frame that involves the four-dimensional
effective string coupling constant

g2
4 = K(2π)6α′3

V (T 6) g 2
s (1.3)

with gs the string coupling constant in ten dimensions and V (T 6) the volume of the six-torus,
so much so that the volume of the orbifold is V (T 6/ZK) = V (T 6)/K. Denoting by Rs and
R̃s the dimensionless radii of T 2 one finds that

g4 = 2√
RsR̃s

gs . (1.4)

The gravitational coupling κ is given in these conventions by

κ2 = πα′g2
4 . (1.5)

The effective couplings E(m,n,p)(T ) are U-duality invariant functions of the moduli. For
maximal supersymmetry, only the terms with m = 0 appear in the low energy expansion and

t8 = ts8 + tt8 + tu8 (1.6)

is the Lorentz invariant tensor, ubiquitous in 4-point amplitudes [53], while tr8 for r = s,
t and u are the projections to the respective channels defined in equation (3.73). The
non-analytic component expands similarly as

Msugra
type II(T, s, t, u, µ) = − i

24κ
2t8t8R

4 1
stu

+ κ4M1-loop
sugra (s, t, u, µ) + κ6M2-loop

sugra (s, t, u, µ) + . . .

(1.7)
The onset of moduli dependence appears at order α′5 with the supergravity form-factor
of the E(0,0,0)(T )R4 supersymmetric completion. The fiducial scale µ is introduced to keep
track of the ambiguity in the split (1.1) associated to the presence of logarithmic divergences
in the supergravity amplitudes and form factors. Its counterpart in the Wilsonian action
gives an ambiguity in the definition of some couplings E(m,n,p)(T ) in terms of lower order
ones, in which case we write E(m,n,p)(T, µ). There is no ultra-violet divergence in N = 6
supergravity up to four-loop included [54], and comparison with N = 4 and 5 suggests
that the five-loop amplitude should be finite as well [55–57]. We will find however that the
E(0,0,0)(T )R4 form factor diverges at one-loop.

In N = 6 supergravity in four dimensions, there are two super-multiplets of 4-point
amplitudes, the U(1) preserving super-multiplet of the four-graviton amplitude and the U(1)
violating super-multiplet of the two-graviphoton (of negative helicities) two-graviton (of
positive helicities) amplitude. There is a similar analytic component of this two-graviphoton
two-graviton amplitude and factorising out the helicity structure for simplicity one has

iAWilson
type II = πg6

4α
′3 ∑
m,n∈N

F(m,n)(T )
(
g2
4 α
′

4

)2m+3n
(s2+t2+u2)m(s3+t3+u3)n , (1.8)

where the permutation symmetry in the Mandelstam variables follows by supersymmetry.
The effective couplings F(m,n)(T ) are U(1) weight 2 modular forms of the U-duality group.
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The perturbative expansions ofMWilson
type II andAWilson

type II are obtained from the expansion of the
string amplitude in α′ before integration over the genus h moduli space of Riemann surfaces
with four punctures. Although the string theory amplitude is finite, these couplings must
then be regularised in order to tame the supergravity divergences due to the massless fields.

In the maximally supersymmetric theory, E(0,0,0)(φ), E(0,1,0)(φ), E(0,0,1)(φ, µ) are protected
by supersymmetry and only receive perturbative corrections in string theory up to one, two
and three-loop respectively. They have been the subject of extensive studies and have been
determined as automorphic functions of E7(Z) in [12, 18, 19, 34, 36].

Similarly we demonstrate that F(0,0)(T ), E(0,0,0)(T ), F(1,0)(T ) and E(1,0,0)(T, µ) are pro-
tected by supersymmetry in N = 6 supergravity. The first two only receive perturbative
corrections in string theory up to one loop, and the last two up to two loops. Moreover
F(1,0)(T ) = detDE(1,0,0)(T, µ) by supersymmetry, where detD is an SU(6) invariant third
order differential operator defined in (3.50).4

The main purpose of this paper is to compute the one-loop contribution to these four
BPS protected couplings F(0,0)(T ), E(0,0,0)(T ), F(1,0)(T ) and E(1,0,0)(T ) in the ZK orbifold
theory for K = 2 and 3. Using ‘chiral’ factorisation of the one-loop intergrands and relying
on the results of [58] for 4-point open-string amplitudes of gauge bosons in supersymmetric
D-brane worlds, we derive rather compact expressions for the 4-graviton and 2-graviton
2-graviphoton amplitudes. We then find that the one-loop four-point amplitudes can be
simplified by partly unfolding the genus one modular domain to the fundamental domain of
the congruent subgroup Γ0(K) ⊂ SL(2,Z). In this form they can be written as integrals of
Γ0(K) modular forms times the partition function for the Narain lattice F2(K) defined as

F2(2) = II1,1 ⊕ II1,1[2]⊕D4 , F2(3) = II1,1 ⊕ II1,1[3]⊕A2 ⊕A2 , (1.9)

where II1,1[K] is the Lorentzian circle Narain lattice with a momentum m ∈ KZ. Therefore
the symmetries of the four-point one-loop amplitude are the automorphisms Aut(F2(K)) of
the lattice F2(K). We also find that the character valued partition function that determines
the perturbative spectrum in string theory5 [60] can be written in terms of the Narain
partition function of F2(K) and its dual lattice F2(K)∗, such that the group Aut(F2(K))
is a symmetry of the full perturbative spectrum of the theory. In particular we find that for
each charge of vanishing norm in F2(K) there is a single massive spin two 1/2 BPS super-
multiplets and for each charge of vanishing norm in F2(K)∗ r F2(K) there are respectively
two and one massive spin three-half 1/2 BPS super-multiplets for K = 2 and 3. The true
perturbative symmetry of these string theories may only be a proper subgroup of the group
of automorphisms Aut(F2(K)), but for brevity we will nevertheless refer to Aut(F2(K)) as
the T-duality group.

The perturbative T-duality group Aut(F2(K)) will be identified as a group of 4× 4
symplectic matrices over the quaternions H(K) that we call ΓD4

0∗(α), where α is a prime
in H(K) of norm square K. In this notation D4 refers to SO(2, 6) and not to the lattice
H(2). For brevity we write ΓD4

0∗(α) for both K = 2 and 3 such that ΓD4
0 (α) ⊂ H(K), is the

4In many respects F(0,0)(T ), E(0,0,0)(T ), and E(1,0,0)(T, µ) are respectively analogues of E(0,0,0)(φ), E(0,1,0)(φ)
and E(0,0,1)(φ, µ) in the maximally supersymmetric theory.

5Similar techniques apply to theories with higher spin fields [59].
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subgroup with a lower left two by two matrix divisible by α in H(K). We will moreover
conjecture that the U-duality group is defined similarly as ΓD6

0∗(α) = Aut(F3(K)) for the
lattice of non-perturbative states

F3(K) = KF2(K)∗ ⊕ [H(K)⊕H(K)⊕ αH(K)⊕ αH(K)]⊕ F2(K) (1.10)

where the middle component H(K)2 ⊕ (αH(K))2 is the lattice of D-brane R-R charges
and KF2(K)∗ the lattice of NS5-branes and KK(6,1)-branes. Here KK(6,1) refers to the
Kaluza-Klein monopole brane wrapping T 6 with a Taub-NUT fibration along one circle in
T 6 [61]. We will identify these lattices as the set of brane charges invariant under the ZK

orbifold action, while non-perturbative states will generally be in

F∗3(K) = F2(K)⊕ [ 1
αH(K)⊕ 1

αH(K)⊕H(K)⊕H(K)]⊕ F∗2(K) . (1.11)

Because of the asymmetric action of ZK on T 4, the D-branes are necessarily bound states of
branes wrapping a cycle and its Poincaré dual in T 4 [45]. The D-brane states of the orbifold
theory therefore preserve at most one third of the supersymmetries, i.e. eight supercharges.

We shall argue in particular that NS5-branes instantons have integer charges as a
winding number over T 6/ZK . Assuming T-duality and some minimal assumptions about
the non-perturbative symmetry we shall identify the non-perturbative coupling F(0,0) as a
the theta series

F(0,0) = −π3 detT2
∑

q∈H(K)2⊕ 1
α
H(K)

e2πiq†Tq . (1.12)

This is the unique rank one theta series invariant under the conjectured U-duality group
ΓD6

0∗(α). This 1/2 BPS protected coupling does not receive corrections from D-instantons,
consistently with the property that there is no 1/2 BPS (Euclidean) D-brane.

The organisation of the paper is as follows. In section 2 we review asymmetric orbifolds
that allow for string embeddings of N = 6 supergravity. We prove that only K = 2, 3 give
rise to perturbatively consistent models in D = 4, 5 while K = 4, 6 don’t, contrary to what
one would have naively expected. We study the perturbative BPS states and emphasise the
role of Hurwitz quarternions in the definition of the BPS charges and the T-duality group.
We then turn our attention on supersymmetry constraints on threshold corrections to the
low-energy effective action in section 3 and prove non-renormalisation theorems in string
theory for the threshold corrections to the R4, D2R4 and F̄2R2 couplings. In section 4,
we compute the one-loop threshold corrections to these couplings. In order to achieve our
goals, we exploit chiral factorisation of the integrands and rely on the results of [58] for
4-point open-string amplitudes of vector bosons at one-loop in vacuum configurations with
(unoriented) intersecting and magnetised D-branes preserving N ≤ 4 supersymmetry in
D = 4. In section 4.5 we rewrite the perturbative F̄2R2 coupling as a rank one theta series
and conjecture its nonpertubative completion (1.12). We discuss in more detail the D-brane
and NS5-brane instantons in section 5. We conclude with a discussion of our results and an
anticipation of forthcoming papers on the non-perturbative R4, D2R4 couplings.

Several appendices contains technical details on Hurwitz quaternions, helicity super-
traces, elliptic functions, Eisenstein series, one-loop computations in string theory, matching
of normalisations with supergravity and equivalence with another orbifold theory.
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2 N = 6 supergravity in diverse dimensions

Maximal supergravity with 32 supercharges (i.e. N = 8 in D = 4) can be defined in any
dimensionD ≤ 11. It is the low energy effective theory of either M-theory on R1,D−1×T 11−D

or type IIA/B string theory on R1,D−1×T 10−D. In D = 10 type IIA and IIB are respectively
the non-chiral (NL,NR) = (1, 1) and chiral (NL,NR) = (2, 0) supergravity theory. The
consistency of (NL,NR) = (2, 0) supergravity inherited from type IIB string theory relies
on gravitational anomaly cancellation [62].

The maximal number of supercharges below 32 is 24 (i.e. N = 6 in D = 4). The classical
theory can be defined in D = 6 dimensions with (NL,NR) = (1, 2) as the consistent trunca-
tion of maximal supergravity corresponding to the subgroup SU(2)L×Z2 SU(2)R×SO(1, 5) ⊂
SO(5, 5), where one sets to zero all the fields with a non-trivial SU(2)L weight. The SU(2)L
singlet sector can be understood as the untwisted sector of the orbifold by a discrete
subgroup ZK ⊂ SU(2)L that can be realised as an asymmetric ZK orbifold of T 4 in type
II string theory. The (NL,NR) = (1, 2) supergravity theory is plagued by gravitational
anomalies and is inconsistent at the quantum level in six dimensions. String theory ‘cures’
the problem thanks to the presence of a gravitino multiplet in the twisted sector of the
asymmetric ZK orbifold leading to supersymmetry enhancement and to maximal non-chiral
(NL,NR) = (2, 2) supergravity. Only in dimension D ≤ 5, one can define a freely acting orb-
ifold with the common asymmetric action of ZK on T 4 and a shift on an additional circle S1.

The theory in five dimensions is N = 3 supergravity6 and includes: one graviton, 6
gravitini, 15 vectors (after dualizing all massless 2-forms), 10 dilatini and 14 scalars. The
latter parameterize the non-compact symmetric spaceMD=5

N=6 = SU∗(6)/Sp(3).7
The N = 6 theory in four dimensions can be obtained by dimensional reduction from

D = 5, the massless content is: one graviton, 6 gravitini, 16 vectors, 26 dilatini and 30 scalars.
The latter parameterize the non-compact symmetric space MD=4

N=6 = SO∗(12)/U(6) [63].
Quite remarkablyMD=4

N=6 is a special Kähler manifold, which allows N = 6 supergravity
to have the same bosonic sector as a peculiar N = 2 supergravity coupled to 15 vector
multiplets [49].

Further reduction to D = 3 produces a (non-propagating) graviton, 6 (non-propagating)
gravitini, 64 dilatini and 64 scalars (after dualizing all 17 vectors). The latter parameter-
ize the non-compact quaternionic-Kähler symmetric space MD=3

N=6 = E7(−5)/(SU(2) ×Z2

Spin(12)).

2.1 String theory on (freely acting) asymmetric orbifolds

Due to the large amount of supersymmetry, only Type II strings admit perturbative
vacuum configurations with N = 6 supersymmetry [44]. The easiest way to achieve the
breaking of N = 8 to N = 6 is to rely on asymmetric orbifolds [64, 65] that preserve
all supercharges in one sector (say R-moving) and break half of them in the other sector
(say L-moving). One can accomplish the task with a combination of ‘asymmetric’ twists

6Here as above, in D = 6 and D = 10, we count the number of super-symmetries in terms of the relevant
spinorial representation in D = 5 with 8 real (4 complex) components.

7We write Sp(3) = USp(6) the subgroup of SU(6) preserving a symplectic form.
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τL,R and shifts σL,R [66, 67]. In the simplest Z2 case, τL reflects 4 internal Left-moving
coordinates τLXi

L = −Xi
L as well as their (world-sheet) fermionic partners τLΨi

L = −Ψi
L,

while σ acts ‘geometrically’ by an order 2 shift on another (compact circle) direction:
σX = X + π

√
α′R̃s where 2π

√
α′R̃s is the periodicity.8 In this way the twisted sector does

not contribute new massless states and supersymmetry is broken from N = 4 = 2L + 2R
(maximal) to N = 3 = 1L + 2R in D = 5. The resulting construction is the simplest possible
(supersymmetric) T-fold [43]. This construction straightforwardly generalises to D = 4 or
D = 3 by compactification on additional circles.

For later use, let us describe the construction in more details, relying on the characters
of SO(2n) current algebra at level one

O2n = ϑn3 + ϑn4
2ηn , V2n = ϑn3 − ϑn4

2ηn , S2n = ϑn2 + inϑn1
2ηn , C2n = ϑn2 − inϑn1

2ηn , (2.1)

where ϑα are Jacobi (elliptic) theta functions and η is the Dedekind function.
One defines the weight (d/2, d/2) modular form Z associated to a partition function Z

via an integral

Z = Tr[(−1)F ] =
∫ 1

2

− 1
2

dτ1 Z , (2.2)

that implements the level-matching condition.9
The Type II one-loop partition functions on T d then compactly read10

ZIIA = V 8 − C8
η8

V8 − S8
η8 ΛIId,d , ZIIB = V 8 − S8

η8
V8 − S8
η8 ΛIId,d , (2.3)

where one identifies the contribution from the fermions Q = V8 − S8 and Q′ = V8 − C8 as
the supersymmetric characters in D = 10, whereby SO(8) acts as the little group. Here
ΛIId,d is the Narain partition function for the Lorentzian lattice IId,d.

The Z2 breaking of supersymmetry in D = 6 is achieved on the fermionic component
via [68, 69]

Q=V8−S8 =V4O4+O4V4−S4S4−C4C4→V4O4−O4V4−S4S4+C4C4 =Qo−Qv , (2.4)

with the ‘untwisted’ supersymmetric characters given by

Qo = V4O4 − S4S4 , Qv = O4V4 − C4C4 . (2.5)

Performing an S-modular transformation (τ → −1/τ) on Qo produces two ‘twisted’ super-
symmetric characters

Qs = O4S4 − C4O4 , Qc = V4C4 − S4V4 , (2.6)

while Qs accommodates massless states, Qc doesn’t.
8In general σ can act in a non L-R symmetric fashion, compatibly with modular invariance. All these

cases are however related by the T-duality of the original theory and can be obtained by field redefinitions. It
will be convenient to consider a geometric shift for which the Narain moduli are all in the untwisted sector.

9The vacuum energy would be Veff ∝
∫
F d

2ττ
d
2−2

2 Z.
10Here we do not include the divergent D-dimensional zero mode contribution.
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As already mentioned, in D = 6 the twisted sector produces two gravitini multiplets
that enhance supersymmetry back to 32 supercharges, i.e. (NL,NR) = (2, 2). In D ≤ 5
one can prevent the appearance of twisted massless states by introducing the order 2 ‘shift’
σ defined above. In particular starting with T 4+d = T 4 × T d with d = 6−D and T 4 the
maximal torus of SO(8) = D4, one can immediately determine the invariant lattice and the
perturbative charge lattice of the model.

Other possibilities may be envisaged to break N = 8 to N = 6 in D < 6 that rely on
other asymmetric ZK orbifolds with K = 3, 4, 6, that act on the supersymmetric character
Q according to

Q →
K−1∑
k=0

ωkQk with ω = e
2πi
K . (2.7)

For this purpose one further decomposes the second SO(4) current algebra character into
SU(2)× SU(2)′ characters as

Q = V4χ0χ
′
0 +O4χ 1

2
χ′1

2
− S4χ 1

2
χ′0 − C4χ0χ

′
1
2

= Vχ′0 +Hχ′1
2
, (2.8)

where one identifies the vector multiplet super-character V = V4χ0 − S4χ1/2, the (half)
hypermultiplet super-character H = O4χ1/2 − C4χ0, and SU(2) as the R-symmetry group.
The orbifold acts on the SU(2)′ characters χ′s only. For instance for K = 3 the Z3 orbifold
acts on the SU(2)′ characters as

χ′0 → ξ0 + ω̄ξ+4 + ωξ−4, χ′1/2 → ωξ+2 + ω̄ξ−2 + ξ6 , (2.9)

where ξp are the characters of a free boson with radius R =
√

6α′ and Q0 = Vξ0 +Hξ6,
Q1 = Hξ2 + Vξ−4 and Q2 = Hξ−2 + Vξ+4. Starting from the boson partition function on
T 4 at the SU(3)× SU(3) symmetric point

ΛII4,4
η2η̄2 =

(
|χ[00]|2 + |χ[10]|2 + |χ[01]|2

)2
, (2.10)

and acting with Z3 only on the Left-movers one finds

ΛII4,4
η2η̄2 →

(
|χ[00]|2 + ω|χ[10]|2 + ω̄|χ[01]|2

)2
. (2.11)

In general one may consider a subgroup ZK ⊂ SU(2) acting on T 4. Consistency of the
asymmetric orbifold requires that the number of ‘chiral’ fixed points Nf = 4 sin(π/K)2 be
an integer, which is the case only for K = 2, 3, 4, 6. For K = 4 one starts with the maximal
torus of SU(2)4. For K = 6 from SU(3)1 × SU(3)2, with the second SU(3) current algebra
at level 2. The lattices for K = 2, 3, 4, 6 are therefore D4, A2 ⊕ A2, A1 ⊕ A1 ⊕ A1 ⊕ A1
and A2 ⊕ A2[2], respectively. Quite remarkably, these lattices can be realised as integral
quaternions and admit in this way a non-abelian ring structure. We will therefore denote
these lattices as H(K), following the definition (A.18). The ring H(2), that we will often
abreviate as H, is the ring of Hurwitz quaternions, H(3) is a generalisation of the Eisenstein
integers that we call the Eisenstein quaternions, while H(4) and H(6) are subrings of the
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Hurwitz quaternions. This is consistent with the property that the duality group in N = 6
is naturally defined over the quaternions, and the T-duality group is a theta congruent
subgroup of SL(2,H(K)) and Sp(4,H(K)) in five and four dimensions.

Yet the condition that Nf be an integer is not enough for the asymmetric orbifold to be
consistent, and one needs to check that the number of bosonic ground states in the twisted
sectors be an integer too [64, 65]. Indeed, the twisted sectors of the asymmetric orbifold are
only defined abstractly by modular invariance, and one must verify that this construction
can be realised on a Hilbert space. The number of bosonic ground states is determined by
Nf =

√
det(1− g) (where g is the L-R symmetric extension of the twist τL) divided by the

square root of the index |Λ∗/Λ| of the τL invariant lattice Λ ⊂ II4,4 [64, 65]. For the ZK

asymmetric orbifold discussed above, Λ = H(K) and |H(K)∗/H(K)| = K2. One obtains√
det(1− g)

|H(K)∗/H(K)| = 4 sin(π/K)2

K
=

K=2,3,4,6
{2, 1, 1

2 ,
1
6} (2.12)

and the asymmetric orbifold is only consistent for K = 2 and 3. We will find more explicitly
below that 4 sin2(π/K)/K is the number of massive 1/2 BPS gravitini multiplets for a
given charge of vanishing norm in the Narain lattice in the first twisted sector. To this end
we will now turn our attention onto the identification and counting of (perturbative) BPS
states via character-valued partition functions and helicity super-traces [27, 28, 60].

2.2 Character-valued partition functions and helicity super-traces

Thanks to Jacobi aequatio satis abstrusa, the 10-D super-characters Q and Q′ vanish, which
implies equal number of bosons and fermions at each mass level and ensures the absence
of tachyons [53]. As a consequence, the one-loop contribution to the vacuum energy is
zero, which guarantees quantum stability of flat ten-dimensional space-time and of toroidal
compactifications thereof. Actually supersymmetry is more powerful in that also 1-, 2-
and 3-point amplitudes are zero for massless external states both in Type IIA and B as
well as in Type I and Heterotic strings. The first non-trivial amplitude with only massless
external states at one-loop is a 4-point amplitude. In type II, the prototypical case is
the 4-graviton amplitude. After partial supersymmetry breaking, lower-point amplitudes
with (non-conserved) complex momenta are non-zero but some are still protected. The
easiest way to identify the special amplitudes and derive the associated (on-shell) effective
action is to introduce the concept of ‘character valued partition functions’ and helicity
super-traces [27, 28, 60].

Recalling that the (Left-moving) Lorentz generators are given by

JMN = ΨMΨN +XM∂XN −XN∂XM (2.13)

one can consider including a coupling to the zero-modes of JMN in the Cartan subalgebra,
i.e. replace Z = Tr[(−)F ] with Z = Tr[(−)F ∏a e

2πivaJa ]. For the theory in four dimensions,
we only need to include the zero mode J3 = J12 in the four-dimensional little group and
that does not act on the compact bosons, so we consider Z = Tr[(−)F e2πivJ3 ]. In practice,
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this amounts to including a fugacity in the partition function. Writing the maximally
supersymmetric Left-mover partition function as a sum over spin structures

V8 − S8
η8 = 1

2
[ϑ3(0)4

η12 − ϑ4(0)4

η12 − ϑ2(0)4

η12 − ϑ1(0)4

η12

]
, (2.14)

and including the fugacity produces for each spin structure α = 1, 2, 3, 4,11

ϑα(0)4

η12 → 2sinπvϑα(v)
ϑ1(v)

ϑα(0)3

η9 = sinπvϑ′1(0)
πϑ1(v)

ϑα(v)
η3

ϑα(0)3

η9 = ξ(v)ϑα(v)ϑα(0)3

η12 (2.15)

where
ξ(v) = sin πv ϑ′1(0)

πϑ1(v) . (2.16)

Summing over the spin structures with the help of Riemann identities yields

V8 − S8
η8 → ξ(v)

2

(
ϑ3(v)ϑ3(0)3

η12 − ϑ4(v)ϑ4(0)3

η12 − ϑ2(v)ϑ2(0)3

η12 − ϑ1(v)ϑ1(0)3

η12

)

=
ξ(v)ϑ1(v2 )4

η12 , (2.17)

that correctly reproduces the (vanishing) partition function in the limit v → 0, using
ϑ′1(0) = 2πη3.

Taking derivatives with respect to v and then setting it to zero one brings down powers
of J3 and obtains what are known as helicity super-traces, denoted by Bn. Indeed recall that
the four Cartan generators of SO(8) represent the ‘helicities’ in the four planes transverse
to the light-cone in ten dimensions, and J3 determines the four-dimensional helicity. For
massive states in four dimensions J3 is the Cartan generator of the SU(2) little group. In
five dimensions one must distinguish the Left- and Right-mover J3L,R that define the Cartan
generators of the SU(2)L × SU(2)R little group of massive states. One defines accordingly
the ‘character-valued’ partition function Z(v, v̄) and introduces the differential operators

H = 1
2πi

∂

∂v
, H̄ = − 1

2πi
∂

∂v̄
, (2.18)

such that
B2n = (H+ H̄)2nZ(v, v̄)|v=v̄=0 . (2.19)

The helicity supertrace is then defined by implementing the level matching condition as

B2n = Tr
[
(−1)2J3J 2n

3

]
=
∫ 1

2

− 1
2

dτ1 B2n . (2.20)

11In general one would have

ϑα(0)4

η12 →
∏
a

2 sin πva
ϑα(va)
ϑ1(va) =

∏
a

ϑα(va)
η3

sinπvaϑ′1(0)
πϑ1(va) =

∏
a

ξ(va)ϑα(va)
η3

where ξ(va) = sin πvaϑ′1(0)/πϑ1(va).
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B2n+1 = 0 by CPT symmetry. By construction B0 = 0 in all supersymmetric theories with
a supersymmetric ground state, since BPS multiplets have the same number of bosonic
and fermionic degrees of freedom. For N extended supersymmetry with N even in four
dimensions, one finds that B2n = 0 for 2n < N , and BN only receives contributions from
1/2 BPS states in the theory. The non-BPS long supermultiplets only contribute to B2n for
n ≥ N , and the helicity supertraces for N/2 ≤ n < N are BPS protected observables of the
theory. The corresponding ‘modular forms’ B2n are associated to BPS protected threshold
corrections.

In particular the leading one-loop R4 type supersymmetry invariant in the low-energy
effective action of Type II strings in D = 10 and in toroidal compactifications is associated
to the helicity super-trace B8, the D4R4 to B12 and the D6R4 to B14.12

2.3 The asymmetric orbifold helicity supertraces

The ‘character-valued’ partition function can be obtained similarly for the Type II asym-
metric ZK orbifolds. We will concentrate on the relevant theories with K = 2, 3, although
the first part of this section applies to the ‘inconsistent’ cases of K = 4, 6, too.

The contribution from the bosonic zero modes in the untwisted sector with the insertion
of (τL, σ)r ∈ ZK for r = 1 to K − 1 gives the Narain lattice partition function

ΛII2,2⊕H(K)[0r ] = ΛII2,2⊕H(K)
[
e

2πirm̃
K

]
=

∑
m,n,m̃,ñ∈Z

∑
q∈H(K)

e
2πirm̃
K eπiτpL(m,n,m̃,ñ,q)2−πiτ̄pR(m,n,m̃,ñ,q)2 (2.21)

where m̃ is the momentum along the circle on which σ acts as a geometric shift σX =
X+ 2π

K

√
α′R̃s. There is no loss of generality in choosing the geometric shift along a particular

circle in T 2 since the other cases could be obtained by T-duality.
Since the current J3 does not act on the fields affected by the orbifold, the contribution

from the Left-mover oscillators in each spin structure α is modified as in (2.15) as

4 sin2(πrK )
ϑα(0)2ϑα( rK )2

ϑ1( rK )2η6 → 4 sin2(πrK )
ξ(v)ϑα(v2 )ϑα(0)ϑα( rK )2

ϑ1( rK )2η6 (2.22)

and they recombine accordingly as in (2.17)

ξ(v)
2

(
ϑ3(v2 )ϑ3(0)ϑ3( rK )2

ϑ1( rK )2η6 −
ϑ4(v2 )ϑ4(0)ϑ4( rK )2

ϑ1( rK )2η6 −
ϑ2(v2 )ϑ2(0)ϑ2( rK )2

ϑ1( rK )2η6 −
ϑ1(v2 )ϑ1(0)ϑ1( rK )2

ϑ1( rK )2η6

)

=
ξ(v)ϑ1(v2 )2ϑ1(v2 + r

K )ϑ1(v2−
r
K )

ϑ1( rK )2η6 , (2.23)

in such a way that the total contribution from the untwisted sector with insertion of
(τL, σ)r ∈ ZK is

4 sin2(πrK )
ξ(v)ϑ1(v2 )2ϑ1(v2 + r

K )ϑ1(v2 −
r
K )

ϑ1( rK )2η6
ξ(v)ϑ1(v2 )4

η12 ΛII2,2⊕H(K)[0r ] . (2.24)

12Similarly the one-loop F 4 supersymmetry invariant in Type I and Heterotic strings is related to B4 and
D2F 4 to B6 [38, 40–42].
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As usual the twisted sector is determined by modular invariance. We define the contribution
from the bosonic zero modes for the twisted sector s 6= 0 mod K dividing r as13

ΛII2,2⊕H(K)[sr] = − 1
K

∑
m,n,m̃∈Z
ñ∈Z+ s

K

∑
q∈H(K)∗

e
2πirm̃
K
−2πir|q|2eπiτpL(m,n,m̃,ñ,q)2−πiτ̄pR(m,n,m̃,ñ,q)2

(2.25)

where we included the factor of − 1
K appearing in the Poisson summation over H(K) in the

definition in such a way that

ΛII2,2⊕H(K)[0s](− 1
τ ,−

1
τ̄ ) = τ τ̄3ΛII2,2⊕H(K)[-s0 ](τ, τ̄) . (2.26)

The complete ‘character-valued’ partition function can finally be written with these defini-
tions as

ZZK
D=4(v, v̄) = ξ(v)

K

ξ(v)ϑ1(v/2)4

η(τ)12

[
ϑ1(v2 )4

η(τ)12 ΛII6,6

+
∑

r,smodK
(r,s) 6=(0,0)

4sin2
(
πgcd(r,s)

K

)
ϑ1(v2 )2ϑ1(v2 + r+sτ

K )ϑ1(v2−
r+sτ
K )

ϑ1( r+sτK )2η(τ)6 ΛII2,2⊕H(K)[sr]
]

(2.27)

with the sum over r and s from 0 to K − 1 excluding r = s = 0. Recall that we have fixed
the external four-dimensional momenta to zero.

Setting iπv = iπv̄ = log(y) with y the fugacity for the angular momentum J3, one can
define the partition function as a trace over the Hilbert space of perturbative string states as

ZZK
D=4(y) = Tr[e2πiτL0−2πiτ̄ L̄0(−y)2J3 ] =

∫ 1
2

− 1
2

dτ1ZZK
D=4(v, v̄) , (2.28)

where the integral over τ1 implements level matching, as above. The partition function
ZZK
D=4(y) expands as a sum over k

6 -BPS supermultiplets ψ ∈ Ek/6j of highest spin j + 3− k
2

with k = 1, 2, 3 and k = 0 fo non-BPS states as

ZZK
D=4(y) =

∑
j∈N/2

(−1)2j y
2j+1−y−2j−1

y−y−1 (2.29)

×
[
−
(
y

1
2−y−

1
2
)6 ∑

ψ∈E1/2
j

e−πτ2α
′M2

ψ+
(
y

1
2−y−

1
2
)8 ∑
ψ∈E1/3

j

e−πτ2α
′M2

ψ

−
(
y

1
2−y−

1
2
)10 ∑

ψ∈E1/6
j

e−πτ2α
′M2

ψ+
(
y

1
2−y−

1
2
)12∑

ψ∈E0
j

e−πτ2α
′M2

ψ

]
,

13For K = 2, 3 this includes all s 6= 0 mod K, while this excludes (r, s) = (1, 2) and (3, 2) for K = 4 and
(r, s) = (1, 2), (3, 2), (5, 2), (1, 3), (2, 3), (4, 3), (5, 3), (1, 4), (3, 4), (5, 4) for K = 6.
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where Mψ is the mass of the supermultiplet ψ. The large τ2 expansion of (2.27) (not
expanding the lattice partition functions) is determined by

ξ(v)ϑ1(v2 )4

η(τ)12
ξ(v)ϑ1(v2 )2ϑ1(v2 + u)ϑ1(v2 − u)

ϑ1(u)2η(τ)6

= (1− ζy)(1− ζy−1)
(1− ζ)2

(
y

1
2 − y−

1
2
)6 (

1 +
(
y

1
2 − y−

1
2
)4
e−2πiτ̄ + . . .

)
×
(

1− (1− ζy)(1− ζy−1)
ζ

(
y

1
2 − y−

1
2
)2
e2πiτ + . . .

)
(2.30)

where ζ = e2πiu for u = r+sτ
K . This exhibits that the corresponding constant term determines

the spectrum of 1/2 BPS supermultiplets, the holomorphic part the spectrum of 1/3 BPS
supermultiplets, the anti-holomorphic part the spectrum of 1/6 BPS supermultiplets while
the generic terms determine the spectrum of non-BPS supermultiplets. This is consistent
with the BPS black hole solitons in supergravity [70]. The 1/2 BPS black holes have a rank
one electromagnetic charge that is a vector Q with Q2 = 0 in the perturbative Narain lattice.
The 1/3 BPS black holes have a rank two electromagnetic charge that is a vector Q with
Q2 < 0 in the perturbative Narain lattice, consistently with the level matching condition
in the Left-moving sector. The 1/6 BPS black holes with an electromagnetic charge in the
perturbative Narain lattice can only be rank two, with a vector Q with Q2 > 0, consistently
with the level matching condition in the Right-moving sector.

Using (2.27) and (2.30) one obtains the partition function for 1/2 BPS states

Z
1
2 -BPS
D=4 (y) =

(
y

1
2 − y−

1
2
)6 ∫ 1

2

− 1
2

dτ1

[
(y + y−1)

∑
m,n,m̃,ñ∈Z

∑
q∈H(K)

eπiτpL(Q)2−πiτ̄pR(Q)2

−
( ∑
m,n,ñ∈Z
m̃∈KZ+1

+
∑

m,n,ñ∈Z
m̃∈KZ−1

) ∑
q∈H(K)

eπiτpL(Q)2−πiτ̄pR(Q)2

−
4 sin2( πK )

K

∑
m,n,m̃∈Z
ñ∈Z+ 1

K

∑
q∈H(K)

eπiτpL(Q)2−πiτ̄pR(Q)2

+
K−1∑
s=2

K∑
r=0

4 sin2(πgcd(r,s)
K

)
K

ΛII2,2⊕H(K)[sr]
]
. (2.31)

The first two lines correspond to the untwisted sector, with one spin two 1/2 BPS super-
multiplet for each null charge Q ∈ II2,2 ⊕H(K) with m̃ = 0 mod K, and one spin three
half 1/2 BPS supermultiplet for each null charge Q ∈ II2,2 ⊕H(K) with m̃ = ±1 mod K
(two supermultiplets for K = 2). For the first twisted sector, one gets for each charge of
vanishing norm with ñ ∈ Z + 1

K and q ∈ H(K)∗, 4 sin(π/K)2/K massive spin three half
1/2 BPS supermultiplets. This confirms that (2.12) must be an integer and therefore that
the asymmetric orbifold theory is only consistent for K = 2, 3.

From now on we will therefore consider K = 2, 3 only. In these cases (2.27) simplifies
because sin2(πgcd(r, s)/K) = sin2(π/K) for all non-zero r and s. In order to make the
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physical lattice of charges manifest, it is convenient to write the Lorentzian lattice partition
function as a sum over orbits

ΛII6,6 = 4 sin2( πK )
(

ΛII2,2⊕H(K)
℘( 1

K )
4π2 −

1
K

K−1∑
r=0

ΛII2,2⊕H(K)∗ [e2πir|q|2 ]
℘( r−τK )

4π2

)
. (2.32)

Using identity (C.18) one gets

ξ(v)ϑ1(v2 )2ϑ1(v2 + r+sτ
K )ϑ1(v2 −

r+sτ
K )

ϑ1( r+sτK )2η(τ)6 =
ξ(v)ϑ1(v2 )4

η(τ)12
℘( r+sτK )− ℘(v2 )

4π2 . (2.33)

The symmetries of the Weierstrass function imply that the distinct values of ℘( r+sτK ) reduce
to ℘( 1

K ) and ℘( τ+r
K ) for r = 0 to K − 1. Moreover using

ΛII2,2⊕H(K) −
1
K

K−1∑
r=0

ΛII2,2⊕H(K)∗ [e2πir|q|2 ] = 0 , (2.34)

the ‘character-valued’ partition function (2.27) can be rewritten as

ZZK
D=4(v, v̄) = 4 sin2( πK )

∣∣∣∣∣ξ(v)ϑ1(v/2)4

η(τ)12

∣∣∣∣∣
2[
℘( 1

K )− ℘(v2 )
4π2

1
K

K−1∑
r=0

ΛII2,2⊕H(K)[e
2πirm̃
K ]

− 1
K2

K−1∑
r=0

℘( τ+r
K )− ℘(v2 )

4π2 ΛII1,1⊕II1,1[ 1
K

]⊕H(K)∗ [e
πirQ2 ]

]
, (2.35)

where

ΛII1,1⊕II1,1[ 1
K

]⊕H(K)∗ [e
πirQ2 ] =

K−1∑
s=0

∑
m,n,m̃∈Z
ñ∈Z+ s

K

∑
q∈H(K)∗

eπi(τ+r)pL(m,n,m̃,ñ,q)2−πi(τ̄+r)pR(m,n,m̃,ñ,q)2
.

(2.36)
One finally arrives to the very compact expression for the character-valued partition function

ZZK
D=4(y) = 4sin2( πK )

∫ 1
2

− 1
2

dτ1
ξ(v)ϑ1(v2 )4

η(τ)12
ξ(v)ϑ1(v2 )2ϑ1(v2+ 1

K )ϑ1(v2−
1
K )

ϑ1( 1
K )2η(τ)6 ΛII1,1⊕II1,1[K]⊕H(K)

−
4sin2( πK )

K2

∫ K
2

−K2
dτ1

ξ(v)ϑ1(v2 )4

η(τ)12
ξ(v)ϑ1(v2 )2ϑ1(v2+ τ

K )ϑ1(v2−
τ
K )

ϑ1( τK )2η(τ)6 ΛII1,1⊕II1,1[ 1
K

]⊕H(K)∗ ,

(2.37)

where we have traded the sum over r from 0 to K − 1 with the extension of the integration
domain of τ1 and used (2.33) reversely. The main advantage of this formula is that it makes
manifest that the physical lattice of bosonic zero modes is the lattice F2(K)∗ dual to

F2(K) = II1,1 ⊕ II1,1[K]⊕H(K) . (2.38)

Therefore one finds that the spectrum of supermultiplets with a given charge Q ∈ F2(K)∗
depends only of its norm squareQ2 and the property that it lies or not in the sublattice F2(K).
All the charges in F2(K) correspond to states in the untwisted sector, but charges Q ∈
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F2(K)∗ rF2(K) are in the twisted sector if and only if ñ is not an integer. However, (2.37)
exhibits that the physical distinction between states relies on the condition of being or not
in F2(K) and we will therefore sometimes refer by abuse of language to all the states with
charge Q ∈ F2(K)∗ r F2(K) as twisted states, including the ones with ñ an integer.

In particular the constant term in the large τ2 expansion (not expanding the lattice
partition function) gives the partition function of 1/2 BPS supermultiplets

Z
1
2 -BPS
D=4 (y) =

(
y

1
2 − y−

1
2
)6 (

y + y−1
) ∑
Q∈F2(K)
Q2=0

e−2πτ2pR(Q)2

−
4 sin2( πK )

K

(
y

1
2 − y−

1
2
)6 ∑
Q∈F2(K)∗rF2(K)

Q2=0

e−2πτ2pR(Q)2
. (2.39)

One has therefore a single spin two 1/2 BPS supermultiplet for each untwisted charge
Q ∈ F2(K) with Q2 = 0, including the massless gravity multiplet for Q = 0, and respectively
two (for Z2) and one (for Z3) spin three half 1/2 BPS supermultiplets for each ‘twisted’
charge Q ∈ F2(K)∗ r F2(K) with Q2 = 0. Note that an N = 8 spin two 1/2 BPS
supermultiplet decomposes into one N = 6 spin two 1/2 BPS multiplet and two spin
three half 1/2 BPS multiplets, so we understand that the two spin three half 1/2 BPS
supermultiplets are in the single ‘twisted sector’ for K = 2, and each spin three half 1/2
BPS multiplet is in one of the two (conjugate) ‘twisted sectors’ for K = 3.

The character valued partition function (2.37) is not protected in that it receives
contribution from all kinds of supermultiplets. Yet the helicity supertraces

BZK
2n =

∫ 1
2

− 1
2

dτ1 BZK2n =
∫ 1

2

− 1
2

dτ1 (H+ H̄)2nZZK
D=4(v, v̄)|v=v̄=0 , (2.40)

with n ≤ 5 are protected in that they only receive contribution from short BPS multiplets.
So far as the perturbative threshold contributions are concerned, due to the splitting

between Left- and Right-movers on the word-sheet, we are interested in the decomposition
of BPS representations of (space-time) N = 6 supersymmetry into (NL,NR) = (2, 4). To
this end we introduce the notations

〈(H+ H̄)2n〉u = (H+ H̄)2n
(

4 sin2( πK )
ξ(v)ϑ1(v2 )2ϑ1(v2+u)ϑ1(v2−u)

ϑ1(u)2η(τ)6
ξ(v)ϑ1(v2 )4

η(τ)12

)∣∣∣∣∣
v=v̄=0

,

〈H2n〉uL = H2n
(

4 sin2( πK )
ξ(v)ϑ1(v2 )2ϑ1(v2+u)ϑ1(v2−u)

ϑ1(u)2η(τ)6

)∣∣∣∣∣
v=0

,

〈H̄2n〉uR = H̄2n
(
ξ(v)ϑ1(v2 )4

η(τ)12

)∣∣∣∣∣
v̄=0

, (2.41)

where u = (r − sτ)/K accounts for the sector and

BZK2n = 〈(H+ H̄)2n〉 1
K

ΛF2(K) −
1
K2

K−1∑
r=0
〈(H+ H̄)2n〉τ+r

K
ΛF2(K)∗

[
eπirQ

2]
. (2.42)
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In particular, 〈H0〉uL = 0 and 〈H̄0〉uR = 〈H̄2〉uR = 0 and one obtains that

BZK0 = BZK2 = BZK4 = 0 . (2.43)

The first non-vanishing contribution is 1/2 BPS protected with

〈(H+ H̄)6〉u = 15〈H2〉uL〈H̄4〉uR = 45
4 × 4 sin2( πK ) , (2.44)

and preserves (NL,NR) = (1, 2) supersymmetry. The 1/3 BPS protected contribution

〈(H+ H̄)8〉u = 28〈H2〉uL〈H̄6〉uR + 70〈H4〉uL〈H̄4〉uR

= 28× 4 sin2( πK )1
2 ×

15
8 + 70× 4 sin2( πK )

(3℘(u)
8π2 + 1

4

)
× 3

2

= 315
2 × 4 sin2( πK )

(
℘(u)
4π2 + 1

3

)
(2.45)

preserves (NL,NR) = (0, 2) supersymmetry. The insertion of four Left-moving currents and
four Right-moving currents gives the 1/3 BPS R4 coupling, and indeed we will find that
the holomorphic modular form ℘( 1

K ) determines this coupling in the low-energy effective
action.

The 1/6 BPS protected contribution is

〈(H+ H̄)10〉u = 45〈H2〉uL〈H̄8〉uR + 210〈H4〉uL〈H̄6〉uR + 210〈H6〉uL〈H̄4〉uR

= 45× 4 sin2( πK )1
2 ×

21
32(E4 + 2) + 210× 4 sin2( πK )

(3℘(u)
8π2 + 1

4

)
× 15

8

+ 210× 4 sin2( πK ) 3
32

(
E4 + 5℘(u)

π2 + 1
)
× 3

2

= 945
64 × 4 sin2( πK )

(
E4 + 2E4 + 20℘(u)

π2 + 32
3

)
(2.46)

where the first (anti-holomorphic) term preserves (NL,NR) = (1, 0) supersymmetry, while
the two other (holomorphic) terms preserve (NL,NR) = (0, 2) supersymmetry.

Substituting these expressions in (2.42) one obtains the helicity supertraces

BZK
6 = 45

4 × 4 sin2( πK )
(∫ 1

2

− 1
2

dτ1 ΛF2(K) −
1
K2

∫ K
2

−K2
dτ1 ΛF2(K)∗

)
(2.47)

BZK
8 = 315

8 × 4 sin2( πK )
(∫ 1

2

− 1
2

dτ1 ΛF2(K)

(4
3 +

℘( 1
K )
π2

)

− 1
K2

∫ K
2

−K2
dτ1 ΛF2(K)∗

(4
3 +

℘( τK )
π2

))

BZK
10 = 945

64 × 4 sin2( πK )
[∫ 1

2

− 1
2

dτ1 ΛF2(K)

(
32
3 +E4(−τ̄)+2E4(τ)+

20℘( 1
K )

π2

)

− 1
K2

∫ K
2

−K2
dτ1 ΛF2(K)∗

(
32
3 +E4(−τ̄)+2E4(τ)+

20℘( τK )
π2

)]
.
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To interpret these helicity supertraces as counting BPS supermultiplets up to sign, it is
useful to decompose them as a sum over supermultiplets using (2.29)

BZK
6 = −45

4
∑
j∈N/2

(−1)2j(2j + 1)
∑
ψ∈E1/2

j

e−πτ2 α
′M2
ψ , (2.48)

BZK
8 = 315

8
∑
j∈N/2

(−1)2j(2j + 1)
(
−2(2j + 1)2 + 1

3
∑
ψ∈E1/2

j

e−πτ2 α
′M2
ψ + 4

∑
ψ∈E1/3

j

e−πτ2 α
′M2
ψ

)
,

BZK
10 = 945

64
∑
j∈N/2

(−1)2j(2j + 1)
(
−6(2j + 1)4 + 10(2j + 1)2 + 5

3
∑
ψ∈E1/2

j

e−πτ2 α
′M2
ψ

+ 40
(
(2j + 1)2 + 1

) ∑
ψ∈E1/3

j

e−πτ2 α
′M2
ψ − 240

∑
ψ∈E1/6

j

e−πτ2 α
′M2
ψ

)
.

The explicit formulae one obtains from these equations are displayed in appendix B. We
will find that BZK6 is associated to the 1/2 BPS protected F2R2 coupling, BZK8 to the 1/3
BPS protected R4 coupling, and BZK10 to the 1/6 BPS protected D2R4 coupling.

2.4 Preliminaries on U-duality

As suggested by the coset structure G/K of the scalar manifolds, N = 6 supergravity admits
global non-compact symmetries G acting linearly on the vector (field-strengths) and non-
linearly on the scalars. As usual the fermions transform under R-symmetry (isotropy group
K) that acts by local transformations on the coset representative V ∈ G. More specifically
for D = 4, one has the coset representative (VA,VijA, V̄klA, V̄A) in the Majorana-Weyl
representation of Spin∗(12) that transforms as

VA(x)→ detk(x)VB(x)gBA , VijA(x)→ ki
k(x)kj l(x)VklB(x)gBA , (2.49)

with gBA ∈ Spin∗(12) a constant 32 × 32 real matrix and kij(x) ∈ U(6) a 6 × 6 complex
matrix. The sixteen vector fields field strengths and their dual define thirty-two field
strengths transforming as

FAµν(x)→ g−1A
BF

B
µν(x) , (2.50)

while the Weyl fermions transform under U(6) as

ψµαi(x)→ ki
j(x)ψµαj(x) ,

χαijk(x)→ ki
l(x)kjp(x)kkq(x)χαlpq(x) , λαi(x)→ detk(x)−1ki

j(x)λαj(x) . (2.51)

The Spin∗(12) invariant symplectic form ωAB is normalised such that

ωAB = iV̄AVB + i

2VijAV̄
ij
B −

i

2 V̄
ij
AVijB − iVAV̄B , (2.52)

ωABVAV̄B = i , ωABVAV̄ ijB = 0 , ωABVijAV̄klB = −2iδklij , ωABVijAVklB = 0 .
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One decomposes as usual the Maurer-Cartan form into QH ∈ u(6) and P in the coset
component such that

dVA = (QH)kkV + 1
2P

ijVijA

dVijA = −2(QH)k [iVj]kA + 1
4εijklpqP

klV̄pqA + P̄ijV̄A (2.53)

and P ij is holomorphic in the fifteen complex scalar fields TM , i.e.

P ij = PM
ijdTM , P̄ij = PM̄ijdT̄

M̄ . (2.54)

Due to charge quantisation and to the absence of continuous symmetries in (su-
per)gravity, only a discrete U-duality subgroup of SO∗(12) may survive as an exact sym-
metry of the quantum theory, such as string theory. The U-duality group is defined as
the non-perturbative duality symmetry of string theory and the T-duality group as the
perturbative symmetry. In this paper we determine the T-duality group as the symmetry
of the four-point one-loop amplitudes and of the character valued partition function that
counts states for a given charge in the Narain lattice F2(K)∗. The T-duality group defined
in this way does not preserve the untwisted sector, and mixes twisted states with untwisted
states with charge Q ∈ F2(K)∗ r F2(K). It is possible that the true T-duality group
is restricted to the automorphisms of the perturbative lattice preserving the untwisted
sector, if for example the scattering of massive twisted states differs from the scattering of
unwtisted states with a charge in F2(K)∗ r F2(K). We may nevertheless conjecture that
this is indeed the T-duality group, i.e. the symmetry of the complete perturbative theory,
and for simplicity we shall refer to the group of automorphisms of F2(K) as the T-duality
group in the following.

We shall start with the five-dimensional theory, with global non-compact symme-
try SU∗(6). The computation of (2.35) applies directly to five dimensions with F2(K)
replaced by

M2(K) = II1,1[K]⊕H(K) . (2.55)

The perturbative states with bosonic zero modes Q ∈M2(K) are untwisted and the other
states with Q ∈M2(K)∗ rM2(K) contribute in the same way to the four-point one-loop
amplitudes and of the character valued partition function. The T-duality group in five
dimensions as defined above is therefore the group of automorphisms of the lattice M2(K).
To determine this group of automorphisms it is convenient to define M2(K) as the set
of Hermitian two by two matrices over the integral quaternions H(K) with a top left
component m̃ = 0 mod K, i.e.

Q =
(
m̃ q

q∗ ñ

)
∈M2(K) with ñ ∈ Z , m̃ ∈ KZ , q ∈ H(K) . (2.56)

Then Q2 = 2 detQ and the action of SO(1, 5) on this charge is defined as

Q→ γ†Qγ , (2.57)
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where γ = (ac bd) is a two by two matrix over the quaternions of unit modulus determinant∣∣ad− aca−1b
∣∣ = 1. The condition that the lattice M2(K) is preserved implies that a, d ∈

H(K), b ∈ 1
αH(K) and c ∈ αH(K) where α is a quaternion of norm square |α|2 = K in

H(K). For both K = 2, 3, α is defined uniquely up to left multiplication by a unit u ∈ H(K)
(with |u|2 = 1). αH(K) is therefore a two-sided ideal in H(K) and H(K)∗ = 1

αH(K). We
denote this arithmetic group ΓA3

0∗(α) and will refer to it as the T-duality group of the K = 2,
3 asymmetric orbifold theories in five dimensions.14

In four dimensions the group of automorphisms of F2(K) is defined similarly (up
to a similarity transformation) as the subgroup ΓD4

0∗(α) of symplectic matrices (ACBD) with
A,B,C,D two by two rational matrices over H(K) such that

D†A−B†C = 1 , D†B = B†D , A†C = C†A , (2.58)

that is generated by the group ΓD4
0 (α) ⊂ Sp(4,H(K)) of integral matrices (ACBD) with C = 0

mod α and the symplectic group element

γF =


0 0 − 1

α∗ 0
0 0 0 − 1

α∗

α 0 0 0
0 α 0 0

 . (2.59)

This additional generator γF is not an element of the original T-duality group O(6, 6,Z) ⊃
Sp(4,H(K)) prior to the orbifold and is similar to the Fricke duality introduced in [71].
We shall refer accordingly to ΓD4

0∗(α) as the T-duality group of the K = 2, 3 asymmetric
orbifold theories in four dimensions.

We will find strong evidence in [72] that the U-duality group in five dimensions is defined
similarly as ΓA5

0∗(α): the group preserving αH(K) ⊕ αH(K) ⊕ H(K) by left action, and
which is related to SL(3,H(K)) by similarity transformation. The U-duality group in four
dimensions will be conjectured to be ΓD6

0∗(α), the group generated by ΓD6
0 (α) ⊂ Sp(6,H(K))

and γF ∈ ΓD4
0∗(α) ⊂ ΓD6

0∗(α), where (ACBD) ∈ ΓD6
0 (α) is such that C = 0 mod α as a three by

three matrix. This is the group of automorphisms of the 32-dimensional lattice

F3(K) = KF2(K)∗ ⊕ [H(K)⊕H(K)⊕ αH(K)⊕ αH(K)]⊕ F2(K) (2.60)

in the Majorana-Weyl spinor representation of Spin∗(12) of ‘untwisted states’ in the sense
explained below (2.38). We will find strong evidence that one-half BPS states are associated
to rank one charges Γ in

F∗3(K) = F2(K)⊕ [ 1
αH(K)⊕ 1

αH(K)⊕H(K)⊕H(K)]⊕ F∗2(K) (2.61)

for which the projection Γ× Γ to the adjoint representation of so∗(12) vanishes. For each
Γ ∈ F3(K) there is one spin two supermultiplet and for each Γ ∈ F∗3(K) r F3(K) there are

2
K−1 spin three half supermultiplets.

14It is related to SL(2,H(K)) by a similarity transformation, but the notation indicates that it is generated
from ΓA3

0 (α) ⊂ SL(2,H(K)) with c = 0 mod α and γF = (0
α

1/α
0 ).
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One may then consider the decomposition of the spectrum under T-duality and U-
duality orbits. Perturbative one-half BPS states have a charge Q ∈ F∗2 of vanishing norm.
We will show in appendix F.3 that such charges are either in the ΓD4

0∗(α) orbit of a charge
with only non-zero component the momentum m̃ = gcdF∗2(Q) along the twisted circle or
with only non-zero component the momentum m = gcdF2(Q) along the additional circle. A
charge associated to a spin 3/2 supermultiplet in F∗2 rF2 is therefore in the ΓD4

0∗(α) orbit of
a Kaluza-Klein mumentum charge along the twisted circle, with mass

√
α′M(Q) = |m̃|

R̃s
. (2.62)

For R̃s >> 1 there are 4
K−1 gravitino supermultiplets with the minimal mass 1/R̃s for

m̃ = ±1. The two derivative low energy effective theory truncated to the massless graviton
supermultiplet and two such gravitino supermultiplets should be the corresponding Cremmer-
Scherk-Schwarz gauging of N = 8 supergravity [73]. This gauged supergravity theory may
be a consistent truncation, but it is not a good effective theory since there are also massive
spin two supermuliplets for each Kaluza-Klein momentum of mass |m̃|

R̃s
with m̃ = 0 mod K

and massive spin three-half supermuliplets for each Kaluza-Klein momentum of mass |m̃|
R̃s

with m̃ 6= 0 mod K that are of the same order. For K = 2 there are moreover four gravitino
supermultiplets with the same minimal mass. The analysis for the non-perturbative one-half
BPS states is very similar, and all the rank one charges Γ ∈ F∗3(K) r F3(K) are in the
ΓD6

0∗(α) orbit of a perturbative Kaluza-Klein charge along the twisted circle.

3 Low-energy effective action and threshold corrections

Different N = 6 realisations such as the K = 2 and K = 3 asymmetric orbifold theories
considered in this paper give rise to different low-energy effective actions, notwithstanding
the uniqueness of the 2-derivative action. Comparison is easier for special couplings that are
BPS-saturated and whose dependence on the scalar fields is tightly constrained by differential
equations and U-duality. Once again the prototypical example is the R4 term in Type IIB,
whose threshold function is the real analytic Eisenstein series E 3

2 ,0
(S) of the SL(2,Z) S-

duality group [7]. Supersymmetry constrains this threshold function to be an eigen-function
of the Laplace operator on the upper-complex half plane with eigenvalue 3

4 [11], which
together with SL(2,Z) invariance determines the function uniquely up to normalisation [10].
The maximal supergravity R4 threshold function is more generally understood in dimension
D ≥ 3 to be associated to the minimal automorphic representation of the (split real form)
exceptional group E11−D [15, 34], which is unique for D ≤ 6. This analysis extends to
higher derivative couplings and the D4R4 threshold function is associated to the next
to minimal automorphic representation [19]. The fact that these threshold functions are
attached to small automorphic representations follows from differential equations implied
by supersymmetry [20, 21, 24], which can be derived in four dimensions by classifying all
the linearised supersymmetry invariants using the techniques developed in [74, 75]. In this
section we extend this analysis to the BPS protected couplings of N = 6 supergravity.
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3.1 Supersymmetry constraints

The field content of D = 4 N = 6 supergravity includes fifteen complex scalar fields
TM parametrising the special Kähler symmetric space SO∗(12)/U(6), where U(6) is the
R-symmetry group, the metric field gµν of Weyl tensor Cαβγδ, six Rarita-Schwinger fields
ψµαi of field strength ραβγi in the fundamental of U(6), sixteen vector fields and their
Gaillard-Zumino duals transforming together as a 32-dimensional Majorana-Weyl spinor
AAµ of Spin∗(12), and twenty plus six Weyl spinors χαijk and λiα. One defines as usual the
scalar dressed Gaillard-Zumino field strengths

Fαβij = 1
2σ

ab
αβea

µeb
νVijAFAµν , Fαβ = 1

2σ
ab
αβea

µeb
ν V̄AFAµν , (3.1)

where V(T, T̄ ) = (V̄A, V̄ ijA,VijA,VA) define the coset representative in the Spin∗(12)
Majorana-Weyl spinor representation. The N = 6 supermultiplet decomposes accord-
ing to the increasing U(1) weight15 from w = 0, 1

6 ,
1
3 ,

1
2 ,

2
3 ,

5
6 , 1 as

Cαβγδ , ραβγi , Fαβij , χαijk , PM
ijdTM , λ̄iα̇ , F̄α̇β̇ , (3.2)

and its CPT conjugate. In the linearised approximation, one can identify the linearised
complex superfield W ij

PM
ijdTM ≈ dW ij , (3.3)

which defines the ultra-short supersymmetry representation determined by the action of
the superspace derivative as [76]

Di
αW

jk = 1
2ε

ijkpqrχαpqr ,

Di
αχβjkl = 3δi[jFαβkl] ,

Di
αFβγjk = 2δi[jραβγk] ,

Di
αρβγδj = δijCαβγδ .

D̄α̇iW
jk = δ

[j
i λ̄

k]
α̇ ,

D̄α̇iλ̄
j

β̇
= δji F̄α̇β̇ , (3.4)

We will need to define differential operators on the symmetric space SO∗(12)/U(6). The
moduli space metric is by construction

2GMN̄dT
MdT̄ N̄ = tr12PP̄ = 1

4tr32PP̄ , (3.5)

with components
GMN̄ = PM

ijP̄N̄ij (3.6)

and we define the covariant derivative

Dij = P̄N̄ijG
MN̄ (∂M +QM ) , D̄ij = PM

ijGMN̄ (∂̄M̄ +QM̄ ) , (3.7)

where QMi
j defined in (2.53) acts on U(6) tensors in the corresponding representation.

These covariant derivatives acting on a U(6) scalar function f(T, T̄ ) satisfy the commutation
relation

[Dij , D̄kl]Dpq f(T, T̄ ) = 2δklj][pDq][i f(T, T̄ ) . (3.8)
15Here we call ‘weight’ the charge with respect to U(1) ⊂ U(6) R-symmetry/isotropy group.
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BPS degree Polynomial SU(6) L R

(2, 4) Wn, n ≥ 4 [0, n, 0, 0, 0] n −n
3

(2, 2) WnW̄m, n ≥ 2, m ≥ 2 [0, n, 0,m, 0] n+m m−n
3

(1, 1) Wn+kW̄m+k, k ≥ 2, [k, n, 0,m, k] n+m+ 2k m−n
3

(2, 0) WnW̄m+2k, n ≥ 2, k ≥ 2 [0, n+ k, 0,m, 0] n+m+ 2k m+2k−n
3

Table 1. Short multiplets from polynomials in the superfield W .

The superspace derivative of a function of the scalars gives

Di
αE(T, T̄ ) =

(1
2ε

ijkpqrχαpqrDjk + λα jD̄ij
)
E(T, T̄ ) . (3.9)

One classifies the BPS protected couplings using superconformal representations of
SU(2, 2|6) according to [74]. The superfield W ij defines an ultra-short representation of the
superconformal algebra su(2, 2|6) with the dilatation weight L[W ij ] = 1 and the R-symmetry
weight R[W ij ] = −1

3 , with the convention that R[Di
α] = −1

6 and L[Di
α] = 1

2 [77].16 The
BPS protected couplings are the top components of short multiplets, which must be Lorentz
invariant but not necessarily U(6) invariants. The polynomials in W ij defining short
multiplets with a Lorentz invariant top component are represented in table 1. A BPS
multiplet has (p, q) degree if the chiral primary is annihilated by Di

α for i = 1 to p and
D̄αj for j = 7 − q to 6, preserving therefore a fraction p+q

12 of the supersymmetries. The
(p, q) BPS short multiplets are conveniently represented in harmonic superspace using the
harmonic variables in U(6)/(U(p)×U(6− p− q)×U(q)) [78]. The (2, 2) BPS primary with
n = m = 2 defines the R4 linearised invariant while the (1, 1) primary with n = m = 0 and
k = 2 defines the D2R4 linearised invariant [54]. The representations with m, n, k generic
allow to determine the differential equations satisfied by the threshold function as in [24].

We will see that each of these (p, q) BPS degrees corresponds to an automorphic
representation of Spin∗(12). Functions and tensors on the symmetric space that are eigen
functions of all Casimir operators, i.e. the three independent invariant operators

∆ = 2D̄ijDij , ∆× = 1
32ε

ijklpqεrstupqD̄rsD̄tuDijDkl ,

∆det = 1
482 ε

ijklpqεrstuvwD̄rsD̄tuD̄vwDijDklDpq , (3.10)

for Spin∗(12), are associated to nilpotent orbits of Spin∗(12). To be more precise, the
variety associated to their annihilator in the universal enveloping algebra (realised as
differential operators) is the closure of a union of nilpotent orbits [79]. In particular the
differential equations implied by supersymmetry correspond to small nilpotent orbits. In
general, a nilpotent orbit of the complex simple Lie algebra g is determined by its normal
sl2 triple such than the semi-simple element h ∈ sl2 is an integral weight that defines

16The SU(2, 2|6) R-charge is not the U(1) R-charge of the super-Poincaré algebra, but we have instead
the U(1) weight w = −2R− h where h is the helicity of the field.
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R 0

F̄2R2 Λ2 + w

R4 Λ2 + Λ4

D2R4, F̄2kR4 2Λ2 − w

D2R4 2Λ1 + 2Λ5

0-

-
-
-

-

-

-

18
20
28

30

32
34

dim

Figure 1. Closure Hasse diagram of the small nilpotent orbits of SO(12,C). The normal triple
Dynkin label is given in Bourbaki convention for the fundamental weights Λi = A−1ijαj of SU(6)
and w the U(1) weight.

a Z grading of the Lie algebra: g = ⊕nmax
n=−nmax g

(n), and the nilpotent element e ∈ sl2 is
generic in g(2), i.e. its G(0) orbit is open in g(2) for the Zariski topology.17 The dimension
of the nilpotent orbit G · e is dim(g(1)) + 2∑nmax

n=2 dim(g(n)) and is always even, because
G · e is a symplectic variety. The space of functions / tensors associated to the nilpotent
orbit corresponds to a quantification of the Zariski closure G · e of G · e, and can be
represented in principle by functions supported on the Lagrangian subspace of dimension
dGK = 1

2dim(g(1)) +∑nmax
n=2 dim(g(n)). The tensors we are interested in for the string theory

low-energy effective action are automorphic forms invariant under the U-duality group,
and the associated representations are called automorphic representations. One defines the
Gelfand-Kirillov dimension dGK of the associated automorphic representation, which defines
the dimension of its Fourier support. The relation between BPS couplings and nilpotent
orbits of SO∗(12) is summarised in figure 1, where the white dotes are nilpotent orbits of
SO(12,C) that do not intersect with so∗(12) and are therefore irrelevant. The lines between
two nilpotent orbits mean that the smaller orbit is in the Zariski closure of the bigger
one [79]. The Dynkin label is related to the BPS degree so that U(p)×U(6−p− q)×U(q) is
the stabiliser of the Cartan representative of the normal triple in U(6) and the U(1) weight
coefficient is such that the G-analytic superfields are of weight 2.

3.2 (2,4) BPS F̄2R2 type invariant

To describe the class of supersymmetry invariants obtained from the (2, 4) chiral primaries
in table 1, it is convenient to introduce the associated harmonic superspace, with harmonic
variables ur̂ i for r̂ = 1, 2 and uri for r = 3, 4, 5, 6 parametrising U(6)/(U(2) × U(4)).
The details of this construction can be found in [78]. In practice the harmonic variables

17Zariski topology is defined in such a way that the closed sets are solutions to algebraic equations. The
closure of a nilpotent orbit is the set of Lie algebra elements that satisfy the same algebraic equations, e.g.
they have the same nilpotency degree in all irreducible representation.
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simply allow to restrict the set of indices to define the corresponding short multiplets. The
G-analytic superfield W 12 = u1

iu
2
jW

ij satisfies

Dr̂
αW

12 = 0 , D̄α̇rW
12 = 0 . (3.11)

The chiral primaries are therefore all the harmonics of (W 12)n, that combine into the
irreducible representation [0, n, 0, 0, 0] of SU(6). The top-component can be shown to
include the graviphoton-graviton coupling

[Dr
α]8[D̄α̇r̂]4(W 12)4+n ∼ (W 12)nF̄α̇β̇F̄

α̇β̇CαβγδC
αβγδ + . . . (3.12)

which is the only term with two Weyl tensors. This coupling is therefore determined by
the amplitude with two gravitons of polarisation +2 and two graviphotons of polarisation
−1 (in the convention in which all particles are incoming). Following the same analysis as
in [20, 21, 24], one deduces that the non-linear supersymmetric density L(2,4)[Θ] must be
determined by a form Θ(T, T̄ ) of U(1) weight 2 such that

L(2,4)[Θ] = L(0)
(2,4)+DijΘ(T )L(1)ij

(2,4) +DijDklΘ(T )L(2)ij,kl
(2,4) +· · ·+DijDkl · · · DpqΘ(T )L(8)ij,kl,...,pq

(2,4) ,

(3.13)
where L(n)

(2,4) are Spin∗(12) invariant densities that do not depend explicitly on the scalar
fields TM and transform in the [0, n, 0, 0, 0] irreducible representation of SU(6). More
precisely, L(n)

(2,4) are functions of Ĉ, ρ̂, F̂ , P̂ , χ, λ and their super-covariant derivatives, as well
as the naked gravitino fields that only appear in wedge products. They are determined in
the linearised approximation by the linearised invariant as

[Dr
α]8[D̄α̇r̂]4(W 12)4+n = (W 12)nL(0)

(2,4)lin+n(W 12)n−1L(1)12
(2,4)lin+n(n−1)(W 12)n−2L(2)12,12

(2,4)lin + . . .
(3.14)

For example

L(0)
(2,4) ∼ ˆ̄F 2Ĉ2 + . . . , L(8)[0,8,0,0,0]

(2,4) ∼ λ̄4
[0,2,0,0,0]χ

8
[0,6,0,0,0] . (3.15)

More schematically, we shall write (3.13) as

L(2,4)[Θ] =
8∑

n=0

(
DnΘ(T )

)
|[0,0,0,n,0] L

[0,n,0,0,0]
(2,4) . (3.16)

The fact that the supersymmetry invariant expands in this way implies that the derivative
expansion of the form Θ(T ) must only involve these specific irreducible representations, i.e.

D̄ijΘ(T ) = 0 , εijklpqDklDpqΘ(T ) = 0 . (3.17)

Note that Θ(T ) is a form of U(1) weight 2, so its covariant derivative involves the Kähler
connexion, and Θ(T )

det(T−T̄ ) is a holomorphic function of T . For a form Θw of generic weight w
one has

[Dij , D̄kl]Θw = w

2 δ
kl
ijΘw , [Dij , D̄kl]DpqΘw = 2δklj][pDq][iΘw + w

2 δ
kl
ijDpqΘw , (3.18)
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therefore
D̄klD[ijDpq]Θw −D[ijDpq]D̄klΘw = (2− w)δkl[ijDpq]Θw , (3.19)

and equation (3.17) is only consistent for w = 2. This is indeed the U(1) weight of Θ(T ),
since the field strength F̄ has U(1) weight w = −1.

The Spin∗(12) representation associated to the differential equation (3.17) is the unique
representation attached to the minimal nilpotent orbit of so∗(12). The minimal nilpotent
orbit is represented by an element of degree 2 in the Heisenberg parabolic decomposition

so∗(12) = 1(−2) ⊕ (2,8)(−1) ⊕
(
gl1 ⊕ su(2)⊕ so∗(8)

)(0) ⊕ (2,8)(1) ⊕ 1(2) , (3.20)

and is of dimension 18. One can understand this from the property that a Lie algebra
element in the coset component so(12,C) 	 gl(6,C) parametrised by a complex element
(W̄ij ,W

ij) with only W 12 6= 0 is in the complex minimal nilpotent orbit of so(12,C). The
Cartan element of u(6,C) defining the normal triple parametrising this orbit, i.e. Λ2 + w in
Bourbaki convention,18 defines the harmonic coset space as its semi-simple U(6) orbit.

The Gelfand-Kirillov dimension of the minimal automorphic representation is 9 = 18/2,
and corresponds to holomorphic forms of T with Fourier expansion

Θ2 = − i
8 det(T − T̄ )

∑
Q∈L⊂R15

Q×Q=0

c̃(Q)e2πiQMTM (3.21)

where Q is in the minimal SU∗(6) obit inside the real antisymmetric rank two tensor
representation of dimension 9, and c̃(Q) are constants. Supersymmetry allows for the sum
to be replaced by an integral, but the axion shift symmetry of string theory implies that Q
only takes value in a lattice L inside R15.

3.3 (2,2) BPS R4 type invariant

The R4 type invariant can be defined in the linearised approximation from the (2,2) chiral
primaries in table 1. It is convenient to introduce the associated harmonic superspace,
with harmonic variables ur̂ i for r̂ = 1, 2, uř i for ř = 3, 4 and uri for r = 5, 6 parametrising
U(6)/(U(2)×U(2)×U(2)). The associated G-analytic superfields W 12 = u1

iu
2
jW

ij and
W̄56 = ui5u

j
6W̄ij satisfy

Dr̂
αW

12 = 0 , D̄α̇rW
12 = 0 , Dr̂

αW̄56 = 0 , D̄α̇rW̄56 = 0 . (3.22)

The chiral primaries are therefore all the harmonics of (W 12)n(W̄56)m, that combine into
the irreducible representation [0, n, 0,m, 0] of SU(6). The top-component can be shown to
include the R4 Bell-Robinson square term

[Dř
α]4[Dr

α]4[D̄α̇r̂]4[D̄α̇ř]4(W 12)2+n(W̄56)2+m ∼ (W 12)n(W̄56)mC2C̄2 + . . . (3.23)
18We define the fundamental weights of SU(6) such that

∑
i
niΛi is the highest weight for the representation

of Dynkin label [n1, n2, n3, n4, n5], with [1, 0, 0, 0, 0] = 6, [0, 1, 0, 0, 0] = 15, [0, 0, 1, 0, 0] = 20, etc. We define
the fundamental weights of SO∗(12) such that Λ1 is the highest weight for the vector representation, Λ2 the
adjoint, Λ5 the pseudo-real Weyl spinor and Λ6 the real Weyl spinor.
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As in the previous section, one therefore concludes that the non-linear invariant is determined
by a function E(T, T̄ ), and expands schematically as

L(2,2)[E ] =
10∑

n,m=0
0≤n+m≤12

(
DnD̄mE(T, T̄ )

)
|[0,m,0,n,0]L

[0,n,0,m,0]
(2,2) (3.24)

where for example

L[0,0,0,0,0]
(2,2) ∼ C2C̄2 + . . . , (3.25)

L[0,6,0,6,0]
(2,2) ∼ χ8 [0,0,0,6,0]χ̄8 [0,6,0,0,0] , L[0,2,0,10,0]

(2,2) ∼ λ̄4 [0,0,0,2,0]χ8 [0,0,0,6,0]χ̄4 [0,2,0,2,0] .

The restriction to the irreducible U(6) representations appearing in the supersymmetry
invariant implies the differential equations

εijklpqDklDpqE = 0 , DikD̄jkE = 1
6δ

j
iDklD̄

klE , εijklpqD̄klD̄pqE = 0 . (3.26)

Using the commutation relations (3.8) one finds that

D[ijD̄lpDk]pE = D̄lpD[ijDkp]E −
3
2δ

l
[kDij]E . (3.27)

Using then (3.26) one gets
∆E = 2DijD̄ijE = −18E . (3.28)

The function E(2,2) defining the R4 type invariant therefore satisfies the equations

εijklpqDklDpqE(2,2) = 0 , DikD̄jkE(2,2) = −3
2δ

j
i E(2,2) , εijklpqD̄klD̄pqE(2,2) = 0 . (3.29)

This implies in particular

∆×E(2,2) = 0 , ∆detE(2,2) = 0 , (3.30)

where ∆× and ∆det were defined in (3.10). The associated representation is attached to the
next to minimal nilpotent orbit of dimension 28 that is represented by an element of degree
2 in the parabolic decomposition

so∗(12) = (6,1)(−2) ⊕ (4,4)(−1) ⊕
(
gl1 ⊕ su∗(4)⊕ so∗(4)

)(0) ⊕ (4,4)(1) ⊕ (6,1)(2) . (3.31)

The Gelfand-Kirillov dimension of the next to minimal automorphic representation is
therefore 14. The complex element (W̄ij ,W

ij) with only W̄56 andW 12 non-zero parametrises
a generic complex vector in the (6,1)(2).

3.4 (1,1) BPS D2R4 type invariants

A D2R4 type invariant can be defined in the linearised approximation from the (1,1) chiral
primaries in table 1. It is convenient to introduce the associated harmonic superspace, with
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harmonic variables u1
i, uri for r = 2, 3, 4, 5 and u6

i parametrising U(6)/(U(1)×U(4)×U(1)).
The associated G-analytic superfields W 1r = u1

iu
r
jW

ij and W̄r6 = uiru
j
6W̄ij satisfy

D1
αW

1r = 0 , D̄α̇6W
1r = 0 , D1

αW̄r6 = 0 , D̄α̇6W̄r6 = 0 . (3.32)

In this case the measure can be defined in the non-linear theory [57], and one finds that
the class of supersymmetry invariants defined in this section can be identify with the set
of non-linear G-analytic integrands. It will nonetheless be more convenient to use the
linearised analysis. The chiral primaries are all the harmonics of (W 1r)n(W̄6s)m(W 1tW̄6t)k
with k ≥ 2, that combine into the irreducible representation [k, n, 0,m, k] of SU(6). The
top-component can be shown to include the D2R4 term19

[Dr
α]8[D6

α]2[D̄α̇1]2[D̄α̇r]8(W 1r)n(W̄s6)m(W 1tW̄6t)2+k

∼ (W 1r)n(W̄s6)m(W 1tW̄6t)k∇C2∇C̄2 + . . . (3.33)

One therefore concludes as in the previous section that the non-linear invariant is determined
by a function E(T, T̄ ), and expands schematically as

L(1,1)[E ] =
∑
n,m,k

0≤n+m+2k≤16

(
Dn+kD̄m+kE(T, T̄ )

)
|[k,m,0,n,k]L

[k,n,0,m,k]
(1,1) (3.34)

where for example

L[0,0,0,0,0]
(1,1) ∼ ∇C2∇C̄2 + . . . , L[2,4,0,8,2]

(1,1) ∼ λ2
[0,0,0,0,2]χ

8
[0,0,0,6,0]χ̄

10
[2,4,0,2,0] . (3.35)

The restriction of the U(6) irreducible representations appearing in the supersymmetry
invariant implies the differential equations

εijklpqDklDpqE = 0 , εijklpqD̄klD̄pqE = 0 . (3.36)

These constraints fix the eigenvalues of ∆× and ∆det to be zero. The eigenvalue of the Laplace
operator is determined by supersymmetry, but does not follow directly from representation
theory via (3.36). We shall find indirectly that E satisfies the equation

∆E = 2DijD̄ijE = −18E . (3.37)

In principle this condition could be worked out explicitly using the same method as in [11, 20].
The associated representation is attached to the nilpotent orbit of dimension 34 and is

represented by a generic element of degree 2 in the Heisenberg parabolic decomposition

so∗(12) = 1(−4) ⊕ (2,8)(−2) ⊕
(
gl1 ⊕ su(2)⊕ so∗(8)

)(0) ⊕ (2,8)(2) ⊕ 1(4) . (3.38)
19The only terms that contribute to the four graviton in the linearised approximation are where

[Dr
α]8[D6

α]2[D̄α̇1]2[D̄α̇r]8(W 1rW̄6r)2

∼ [Dr1
α ]4D6

αD̄α̇s1W
1r[Dr2

α ]4D6
αD̄α̇s2W

1s[D̄α̇1][D̄α̇s1 ]3W̄r6[D̄α̇1][D̄α̇s2 ]3W̄s6

∼ ∂C∂CC̄C̄.
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The Gelfand-Kirillov dimension of the associated automorphic representations is therefore
17. There is a one-parameter family of such representations determined by the eigen-value
of the SO∗(12)/U(6) Laplacian that corresponds to the maximal parabolic character of the
GL(1) factor, i.e. g−2s

4 with g4 the effective string coupling in our parametrisation.
As for the D6R4 correction in type IIB theory [17], one expects that D2R4 will get

a contribution depending quadratically in the F̄ 2C2 threshold function Θ in the N = 6
supergravity effective action. This is consistent with power counting, as F̄ 2C2 has dimension
2 + 4 and D2R4 dimension 2 + 8. Moreover one can check that this is consistent with the
automorphic representation of Gelfand-Kirillov dimension 17 as (3.17) implies

εijklpqDklDpq
(
Θ(T )Θ̄(T̄ )

)
= 0 , εijklpqD̄klD̄pq

(
Θ(T )Θ̄(T̄ )

)
= 0 , (3.39)

consistently with (3.36). We conjecture therefore that the Wilsonian effective action at this
order includes a term in E(1,1)(T, T̄ )D2R4 with the function E(1,1)(T, T̄ ) satisfying to

εijklpqDklDpqE(1,1) = 0 , εijklpqD̄klD̄pqE(1,1) = 0 , 2DijD̄ijE(1,1) = −18E(1,1) −Θ(T )Θ̄(T̄ ) .
(3.40)

We shall further argue in [72] that such a source term is indeed present in perturbative
string theory. It originates from the singularity of the two-loop amplitude integrand at the
separating degeneration locus, as for the D6R4 threshold function in N = 8 [80] and D2F4

in N = 4 [42].

3.5 (2,0) BPS F2kR4 and D2R4 type invariants

The class of supersymmetry invariants one can construct from the (2, 0) chiral primaries in
table 1 is conveniently described using the associated harmonic superspace, with harmonic
variables ur̂ i for r̂ = 1, 2 and uri for r = 3, 4, 5, 6 parametrising U(6)/(U(2)×U(4)). The
G-analytic superfields W 12 = u1

iu
2
jW

ij and W̄rs = uiru
j
sW̄ij satisfy

Dr̂
αW

12 = 0 , Dr̂
αW̄rs = 0 . (3.41)

The chiral primaries are therefore all the harmonics of (W 12)n(1
2ε
rstuW̄rsW̄tu)k(W̄rs)m with

n ≥ 2 and k ≥ 2, that combine into the irreducible representation [0, n+ k, 0,m, 0] of SU(6).
The top-component includes the graviphoton-graviton coupling

[Dr
α]8[D̄α̇i]12(W 12)2+n(1

2ε
rstuW̄rsW̄tu)k+2(W̄rs)m

∼ (W 12)n(1
2ε
rstuW̄rsW̄tu)k(W̄rs)m(F̄ 12)2C2C̄2 + . . . (3.42)

where the indices of (W̄rs)m are all meant to be uncontracted and projected to the traceless
component. The linearised analysis therefore suggests that the non-linear supersymmetry
invariant takes the form

L(2,0)[Eij,kl] =
∑
n,m,k

(
DnD̄m+2kEij,kl(T, T̄ )

)
|[0,m,0,2+n+2k,0]L

[0,2+n+2k,0,m,0]
(2,0) (3.43)

where Eij,kl(T, T̄ ) is a form of U(1) weight 2
3 in the [0, 0, 0, 2, 0] of SU(6) satisfying to

εijrstuDrsDtuEkl,pq = 0 , DirD̄jrEkl,pq = 1
6δ

j
iDrsD̄

rsEij,kl . (3.44)
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However, this linearised invariant only contributes to six and higher point amplitudes whereas
we expect the non-linear supersymmetry invariant to contribute to four-point amplitude.
Although it is always possible to linearised a non-linear supersymmetry invariant, one
cannot neglect the possibility that a given non-linear invariant produce different types of
linearised invariant in the linear approximation. This is precisely the situation encountered
in N = 8 supergravity for the (2, 0)-BPS D6R4 type invariant [24].

The weight of Eij,kl(T, T̄ ) is compatible with the requirement that

Eij,kl(T, T̄ ) =
(
εijpqrsDkl + εklpqrsDij − 2εpqrs[ijDkl]

)
D̄pqD̄rsE(T, T̄ ) , (3.45)

and we cannot neglect the possibility that there be other linearised invariants in the
expansion of the non-linear invariant in derivatives of E(T, T̄ ). To construct these linearised
invariants one can use the (2, 2) harmonic superspace introduced in section 3.3, which is by
construction consistent with the (2, 0)-BPS condition. The first natural candidate is

[Dř
α]4[Dr

α]4[D̄α̇r̂]4[D̄α̇ř]4(W 12)2+n(W̄56)m(∂W̄56 · ∂W̄56) ∼ (W 12)n(W̄56)mC2(∇C̄)2 + . . .

(3.46)
which is compatible with the gradient expansion∑

n,m

(
DnD̄mE(T, T̄ )

)
|[0,m,0,n,0]L

[0,n,0,m,0]
(1,1) (3.47)

such that L[0,0,0,0,0]
(1,1) ∼ C2(∇C̄)2 plus supersymmetric completion. Up to integration by

part, these densities are the same as in (3.33) for k = 0. Another natural candidate is

[Dř
α]4[Dr

α]4[D̄α̇r̂]4[D̄α̇ř]4(W 12)2+n(W̄56)m(F56F56) ∼ (W 12)n(W̄56)mC2(∇F̄ )2 + . . .

(3.48)

which is of U(1) weight 2. It is therefore compatible with the gradient expansion∑
n,m

(
DnD̄m detDE(T, T̄ )

)
|[0,m,0,n,0]L

[0,n,0,m,0]
(1,1)+2 (3.49)

where
detDE(T, T̄ ) = 1

48ε
ijklpqDijDklDpq E(T, T̄ ) (3.50)

and L[0,0,0,0,0]
(1,1)+2 ∼ C2(∇F̄)2 plus supersymmetric completion. There is no other available

candidate (2, 2) harmonic superspace integral. We expect therefore the complete invariant
to expand in all these structures with

L(2,0)+(0,2)[E ] =
∑
n,m,k

(
Dn+1D̄m+2k+2E(T, T̄ )

)
|[0,m,0,2+n+2k+2,0]L

[0,2+n+2k,0,m,0]
(2,0)

+
∑
n,m

(
DnD̄mE(T, T̄ )

)
|[0,m,0,n,0]L

[0,n,0,m,0]
(1,1)

+
∑
n,m

(
DnD̄m detDE(T, T̄ )

)
|[0,m,0,n,0]L

[0,n,0,m,0]
(1,1)+2

+
∑
n,m

(
DnD̄m detD̄ E(T, T̄ )

)
|[0,m,0,n,0]L

[0,n,0,m,0]
(1,1)−2

+
∑
n,m,k

(
D̄n+1Dm+2k+2E(T, T̄ )

)
|[0,2+n+2k+2,0,m,0]L

[0,m,0,2+n+2k,0]
(0,2) , (3.51)
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where L[0,m,0,2+n+2k,0]
(0,2) is the complex conjugate of L[0,2+n+2k,0,m,0]

(2,0) and L[0,n,0,m,0]
(1,1)−2 the

complex conjugate of L[0,m,0,n,0]
(1,1)+2 .

Using the constraints (3.44) on (3.45) one concludes that the real function E(T, T̄ ) must
satisfy the constraint

εijrstuεklpqvwDrsDtuD̄pqD̄vwE(T, T̄ ) = 0 , DikD̄jkE(T, T̄ ) = −3
2δ

j
i E(T, T̄ ) , (3.52)

and in particular the three Casimir operators give (3.10)

∆E(T, T̄ ) = −18E(T, T̄ ) , ∆×E(T, T̄ ) = 0 , ∆detE(T, T̄ ) = 0 . (3.53)

Note that the structure in (3.48) must necessarily be present, because one does not find
any solution E(T, T̄ ) to these equations such that detDE(T, T̄ ) = 0 without satisfying
moreover (3.26) as for the (2, 2)-BPS invariant.

The existence of this invariant will be confirmed by the one-loop amplitude computation
in string theory. The associated representation is attached to the nilpotent orbit of dimension
30 that is realised by an element of degree 2 in the abelian parabolic decomposition

so∗(12) = 15(−2) ⊕
(
gl1 ⊕ su∗(6)

)(0) ⊕ 15(2) . (3.54)

The Gelfand-Kirillov dimension of the associated automorphic representations is therefore 15.
There is a one-parameter family of such representations fixed by the eigenvalue of the

SO∗(12)/U(6) Laplace operator that is represented by the maximal parabolic character
associated to the GL(1) factor, i.e. R3s in our conventions for R the circle radius.

According to this structure we find that E(T, T̄ ) appears in the four-graviton amplitude
E(1,0,0) at order s, while detDE(T, T̄ ) appears in the two-graviphoton two-graviton amplitude
at order s2.

This class of supersymmetry invariants generalises to higher derivative couplings by
including the additional G-analytic superfields F̄ 12

α̇β̇
= u1

iu
2
jF̄

ij

α̇β̇
satisfying to

Dr̂
αF̄

12
α̇β̇

= 0 . (3.55)

The chiral primaries are in one-to-one correspondance with the harmonics of20

(W 12)n(1
2ε
rstuW̄rsW̄tu)k(W̄rs)m(F̄ 12)2` , (3.56)

that combine into the irreducible representation [0, n + k + 2`, 0,m, 0] of SU(6). The
top-component includes the graviphoton-graviton coupling

[Dr
α]8[D̄α̇i]12(W 12)2+n(1

2ε
rstuW̄rsW̄tu)k+2(W̄rs)m(F̄ 12)2`−2

∼ (W 12)n(1
2ε
rstuW̄rsW̄tu)k(W̄rs)m(F̄ 12)2`C2C̄2 + . . . (3.57)

20The conformal primaries can be obtained as [Srα̇]8(W 12)n( 1
2ε
rstuW̄rsW̄tu)k−2(W̄rs)m(F̄ 12)2`+4 with the

special supersymmetry Srα̇ = uriS
i
α̇. They only differ from (3.56), by a total superspace derivative and

therefore define the same supersymmetry invariants.
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The linearised analysis therefore suggests that the non-linear supersymmetry invariant takes
the form

L(`)
(2,0)[E122` ] =

∑
n,m,k

(
DnD̄m+2kE122`(T, T̄ )

)
|[0,m,0,2`+n+2k,0]L

[0,2`+n+2k,0,m,0]
(2,0) (3.58)

where E122`(T, T̄ ) is a form of U(1) weight w = 2`/3 in the [0, 0, 0, 2`, 0] of SU(6) satisfying to

εijrstuDrsDtuE122` = 0 , DirD̄jrE122` = 1
6δ

j
iDrsD̄

rsE122` . (3.59)

It is associated to a discrete series representation attached to the same nilpotent orbit
corresponding to the maximal parabolic character R6+3`.

3.6 BPS invariants in five dimensions

In five dimensions the linearised superfields do not define superconformal multiplets and
linearised supersymmetry invariants cannot all be written as superspace integrals of ap-
propriate G-analytic integrands. To classify five-dimensional supersymmetry invariants
one must instead rely on the four-dimensional ones, and check if they consistently lift to
five dimensions. In particular one finds that there is no 1/2 BPS F2R2 invariant in five
dimensions, whereas the R4 and D2R4 type invariants consistently lift. In this subsection
we introduce the linearised superfield in five dimensions to determine the structure of the
four-graviton amplitude for generic polarisations.

The fourteen real scalar fields φM parametrise the symmetric space SU∗(6)/Sp(3) and
one defines the coset Maurer-Cartan form

PM
ijdφM , (3.60)

in the real antisymmetric symplectic traceless representation of Sp(3), with i = 1 to 6 and
for the symplectic form Ωij satisfying ΩikΩjk = δij

P ∗Mij = ΩikΩjlPM
kl , ΩijPM

ij = 0 . (3.61)

The N = 3 supermultiplet (N = 6 in D = 4) involves the supercovariant fields

PM
ijdφM , χijkα , λiα , F ijαβ , Fαβ , ρiαβγ , Cαβγδ , (3.62)

where α = 1 to 4 are Sp(1, 1) = Spin(1, 4) indices that are symmetrised, while all the Sp(3)
indices are antisymmetrised and symplectic-traceless. One defines the fifteen field strengths
and the Weyl tensor using Spin(1, 4) gamma matrices as

F ijαβ = 1
2γ

ab
αβea

µeb
νV ijIJF IJµν , Fαβ = 1

2γ
ab
αβea

µeb
νVIJF IJµν ,

Cαβγδ = 1
4γ

ab
(αβγ

cd
γδ)ea

µeb
νec

σec
ρRµνσρ . (3.63)

In the linearised approximation, one can identify the real and symplectic-traceless linearised
superfield W ij

PM
ijdφM ≈ dW ij , (3.64)

– 31 –



J
H
E
P
0
6
(
2
0
2
2
)
0
8
8

which defines the ultra-short supersymmetry representation that is acted on by the super-
space derivative according to

Di
αW

jk = χijkα + 2Ωi[jλk]
α + 1

3Ωjkλiα .

Di
αχ

jkl
β = 3Ωi[j

(
F
kl]
αβ − i∂αβW

kl]
)
− 3

2Ω[kl
(
F
j]i
αβ − i∂αβW

j]i
)
,

Di
αλ

j
β = ΩijFαβ + 1

2F
ij
αβ + 3i

2 ∂αβW
ij , (3.65)

where we define ∂αβ = 1
2γ

a
αβ∂a. To describe the linearised invariants relevant to the

four-graviton amplitude it is convenient to introduce the 1/3 BPS harmonic variables
(uri, ur̂ i, uri) ∈ Sp(3)/(U(2)× Sp(1)) with r = 1, 2 and r̂ = 3, 4 that satisfy

Ωijuriu
s
j = 0 , Ωijuriusj = 2δrs , Ωijuriu

ŝ
j = 0 , Ωijur̂ iu

ŝ
j = εr̂ŝ . (3.66)

One then has the two G-analytic superfields W 12 = u1
iu

2
jW

ij and F 12
αβ = u1

iu
2
jF

ij
αβ,

satisfying Dr
αW

12 = DαF
12
βγ = 0 and one can define the measure

[D16] = [Dr̂
α]8[Drα]8 . (3.67)

From the four-dimensional analysis we know that the four-point R4 invariant is unique, and
it can be realised in five dimensions as

[D16](W 12)4 ∼
4∏

a=1
εαaβaγaδaCα1α2α3α4Cβ1β2β3β4Cγ1γ2γ3γ4Cδ1δ2δ3δ4 + · · · = 1

256 t8t8R
4 + . . .

(3.68)
where we introduce the standard t8 tensor

t8F
4 = 24tr5F

4 − 6(tr5F
2)2 = −96tr4F

4 + 48(tr4F
2)2 , (3.69)

with the notation21

tr5F
2 =FabF

ba , tr5F
4 =FabF

bcFcdF
da , tr4F

2 =Fα
βFβ

α , tr4F
4 =FαβF

βγFγδF
δα .

(3.70)
We also know from the four-dimensional analysis that there is a unique linearised D2R4

invariant, that can be written in five dimensions as

[D16](W 12)2F 12
αβF

αβ12

∼
4∏

a=1
εαaβaγaδa∂ε1(α1Cα2α3α4ε2∂

(ε1
(β1Cβ2β3β4)

ε2)Cγ1γ2γ3γ4Cδ1δ2δ3δ4 + . . .

= 1
3072 t

(s)
8 t8∂aR∂

aRR2 + . . . (3.71)

where one uses integration by part in the last step, and the t(s)8 tensor is defined as22

t
(s)
8 F 2

1 F
2

2 = 8tr5F1F2F1F2−4(tr5F1F2)2+2tr5F
2

1 tr5F
2

2 = −32tr4F
2

1 F
2

2 +16tr4F
2

1 tr4F
2

2 .

(3.72)
21One raises Sp(1, 1) indices with the symplectic form as Fαβ = FαγΩγβ and εαβγδ = 3Ω[αβΩγδ].
22(t(s)8 )a1a2b1b2c1c2d1d2 is antisymmetric under the permutations of a1a2, b1b2, c1c2 and d1d2 and symmetric

under the permutations of the pairs (a1a2) and (b1b2) and the pairs (c1c2) and (d1d2). Therefore it is
determined by its contraction with two independent rank two tensors F1ab and F2ab.
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For the amplitude it is convenient to introduce the three permutations of the tensor t(s)8

t
(s)
8 (F1F2F3F4) = t

(t)
8 (F3F1F2F4) = t

(u)
8 (F2F3F1F4) (3.73)

= 4tr5F1F3F2F4 + 4tr5F2F3F1F4 − 2tr5F1F3tr5F2F4

− 2tr5F2F3tr5F1F4 + 2tr5F1F2tr5F3F4

that satisfy t8 = t
(s)
8 + t

(t)
8 + t

(u)
8 . The notation is justified because for four-dimensional

polarisations, t(s)8 F1F2F3F4 vanishes if F1 and F2 do not have the same helicity. This
structure of the supersymmetry invariant agrees with the six-dimensional four-graviton
amplitude [81] reduced to five dimensions.

3.7 Consequences for string perturbation theory

The solutions to the differential equations implied by supersymmetry derived in this section
severely constrain possible perturbative corrections. We shall find in particular that the BPS
saturated couplings can only receive corrections at specific loop orders in string perturbation
theory. In this subsection we analyse these equations for the perturbative threshold functions
that only depend on the 13 NS-NS moduli, excluding the axion dual to the external Kalb-
Ramond two-form. These include the dilaton defining the effective string coupling g4, and
the Narain lattice moduli tm, t̄m̄ that parametrise SO(2, 6)/(SO(2)× SO(6)), corresponding
to the internal components of the metric and B-field that survive the orbifold projection.
We define the tangent frame differential operator on the Narain lattice moduli space

Dab = P̄n̄ abG
mn̄(∂m +Qm), D̄ab = Pm

abGmn̄(∂̄n̄ +Qn̄) , (3.74)

as for SO∗(12)/U(6) in (3.7), where a = 1, 2, 3, 4 of SU(4). The Laplace operator decomposes
as

2DijD̄ijEper(g4, t, t̄) =
(1

4g4
∂

∂g4

(
g4
∂

∂g4
+ 18

)
+ 2DabD̄ab

)
Eper(g4, t, t̄) . (3.75)

By gauge invariance, the non-perturbative couplings only depend on the R-R moduli C and
the axio-dilaton axion b through periodic functions. Expanding in Fourier series, the Laplace
equation on a function of type EQ(g4, t, t̄)e2πiQC is then exponentially suppressed in |V (Q)|

g4
at

weak coupling, and equivalently Ek(g4, t, t̄, C)e2πikb is exponentially suppressed in |k|
g2
4
. One

interprets physically that the former correspond to Euclidean Dp-brane instantons [7, 37, 82,
83] and the latter to Euclidean NS5 brane instantons. It follows in particular that the pertur-
bative couplings do not depend on the R-R and the external Kalb-Ramond two-form axions.

The relevant components of (3.36) are

εabcdDabDcdEper(g4, t, t̄) = 0 , Dab
(
g4
∂

∂g4
+ 4

)
Eper(g4, t, t̄) = 0 , (3.76)

whereas the relevant components of (3.52) are

εefghε
abcdD̄ef D̄ghDabDcdEper(g4, t, t̄) = 0 ,

(
DacD̄bc + 1

4δ
b
a g4

∂

∂g4
+ 3

2δ
b
a

)
Eper(g4, t, t̄) = 0 .

(3.77)
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One obtains directly that the 1/2 BPS threshold function Θ(T ) can only receive
corrections at one-loop, and that the one-loop contribution is in the minimal automorphic
representation of SO(2, 6) of Gelfand-Kirillov dimension 5, i.e. must be a (linear combination
of) rank one theta series θ(t) of the form

θ(t) = −1
4 det(t− t̄)

∑
Q∈L∗1,5

(Q,Q)=0

c̃(Q)e2πiQntn . (3.78)

Here we have introduced the notation Lp,q for a lattice of signature (p, q) and L∗p,q for its
dual. For supersymmetry Lp,q could be any discrete set of vectors, but it will turn out to
be the lattice of perturbative untwisted states in string theory. To make this relation more
explicit we anticipate that the Narain lattice partition function

ΓΛ2,6 = τ 3
2

∑
Q∈L2,6

eiπτpL(Q)2−iπτ̄pR(Q)2 (3.79)

is a modular form of weight −2 for a congruent subgroup Γ ∈ SL(2,Z).
The (2,2) BPS equation solved by the R4 threshold function satisfies both (3.76)

and (3.77). The second equation in (3.76) gives

g4
4 E

per
(2,2) = f0(g4) + f1,2(t, t̄) (3.80)

while the second in (3.77) then implies that f0(g4) = c0/g
2
4 for a constant c0. The function

f1,2(t, t̄) must moreover satisfy

εabcdDabDcdf1,2(t, t̄) = 0 ,
(
DacD̄bc + 1

2δ
b
a

)
f1,2(t, t̄) = 0 . (3.81)

The second implies that f1,2(t, t̄) is a genus one theta lift consistently with string perturbation
theory, while the first requires that the seed ϕ0,2(τ) be a holomorphic function of the torus
modulus τ , so that

g4
4 E

per
(2,2) = c0

g2
4

+
∫
H+/Γ

d2τ

τ 2
2
ϕ0,2(τ)ΓL2,6 . (3.82)

As a consequence the R4 correction is therefore one-loop exact in string theory as it only
receives contributions at tree-level and one-loop.

For the D2R4 threshold function we must distinguish the two supersymmetry invariants
that correspond to distinct automorphic representations. The (2,0)-BPS invariant must
be a solution of (3.77). The second equation implies that all perturbative terms can be
written as genus one theta lifts, and the first

εefghε
abcdD̄ef D̄ghDabDcd

∫
H+/Γ

d2τ

τ 2
2
ϕi,2(τ, τ̄)ΓL2,6 = 4

∫
H+/Γ

d2τ

τ 2
2

∆(∆−2)ϕi,2(τ, τ̄)ΓL2,6 = 0

(3.83)
that the seeds ϕi,2 must satisfy

∆(∆− 2)ϕi,2(τ, τ̄) = 0 . (3.84)
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Using moreover

2DabD̄ab
∫
H+/Γ

d2τ

τ 2
2
ϕi,2(τ, τ̄)ΓL2,6 = 2

∫
H+/Γ

d2τ

τ 2
2

(∆− 2)ϕi,2(τ, τ̄)ΓL2,6 , (3.85)

one fixes the Laplace eigenvalue of the Narain lattice moduli space function and therefore
the possible powers of the string coupling using again (3.77). This gives

g6
4 E

per
(2,0) =

∫
H+/Γ

d2τ

τ 2
2
ϕ1,2(τ, τ̄)ΓL2,6 + g2

4

∫
H+/Γ

d2τ

τ 2
2
ϕ̃0,2(τ)ΓL2,6 (3.86)

with
∆ϕ1,2(τ, τ̄) = 2ϕ1,2(τ, τ̄) , (3.87)

and ϕ̃0,2(τ) harmonic. However, the derivation of these differential equations is based
on the local Lagrangian while the effective action includes logarithmic divergences in the
split of the amplitude into the supergravity amplitude and its analytic component in the
Mandelstam variable. We will find in [72] that the differential equation is modified and
reads

∆ϕ̃0,2(τ) = −1
4ϕ0,2(τ) , (3.88)

where ϕ0,2(τ) is the seed for the one-loop threshold function (3.82). The first term in (3.86)
is indeed a genus one correction while the second will be part of the regularised genus two
Narain lattice theta lift.

The (1,1)-BPS invariant solves instead the differential equations (3.76). Using the
second one, one obtains

g6
4 E

per
(1,1) = f2(g4) + g2

4 f2,2(t, t̄) (3.89)

while the Laplace eigenvalue equation (3.40) gives

f2(g4) = c−2
g6
4

+ c1 , (3.90)

and (
2DabD̄ab + 4

)
f2,2(t, t̄) = −θ(t)θ(t) . (3.91)

The coefficient c−2 must vanish for consistency with string perturbation theory, c1 is a
constant and f2,2 can be realised as a sum of a genus one and a genus two Narain lattice
theta lift that we write as

f2,2 =
∫
H+

2/Γ

d6Ω
det Ω 3

2
ϕ2(Ω)Γ2-loop

L2,6
−
∫
H+/Γ

d2τ

τ 2
2
ϕ̃0,2(τ)ΓL2,6 , (3.92)

with Ω = Ω1 + iΩ2 the period matrix of the genus two surface and ϕ2(Ω) a weight two
modular form. Here we anticipate that the total two-loop contribution is the Narain lattice
theta lift with seed function ϕ2(Ω). This modular form satisfies differential equations that
are discussed in detail in [72]. We conclude therefore that

g6
4 E

per
(1,1) = c1 + g2

4

(∫
H+

2/Γ

d6Ω
det Ω 3

2
ϕ2(Ω)Γ2-loop

L2,6
−
∫
H+/Γ

d2τ

τ 2
2
ϕ̃0,2(τ)ΓL2,6

)
. (3.93)
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The quadratic source to the Poisson equation (3.40) corrects the Laplace equation for f2,2,
consistently with the property that the genus 2 integrand ϕ2(Ω) should be singular at the
separating degeneration locus.23 The two-loop correction is discussed in more detail in [72].
The D2R4 correction is therefore two-loop exact in string theory.

The complete one-loop D2R4 threshold function is the sum of (3.86) and (3.93). As
we shall see one must take into account that the D2R4 threshold function diverges as
a worldsheet moduli space integral and must therefore be regularised. This is due to
the logarithmic divergence of the supergravity

∫
R4 form factor at one-loop that affects∫

D2R4 form factor. This is consistent with supersymmetry because E(2,2) is a solution
to the differential equations satisfied by E(2,0) and E(1,1). Defining a cutoff τ2 ≤ L in the
fundamental domain F = H+/SL(2,Z) one obtains the regulated integral∫

H+/Γ,L

d2τ

τ 2
2
ϕ1,2(τ, τ̄)ΓL2,6 = c0

2π log L
µ

+
∫
H+/Γ,µ

d2τ

τ 2
2
ϕ1,2(τ, τ̄)ΓL2,6 (3.94)

where c0 is the coefficient of the R4 threshold function (3.82). We find therefore that the
constant c1 in (3.93) can be reabsorbed in a redefinition of the renormalisation scale µ.
By consistency, one must find the same behaviour at two-loop. In this case this is the
non-separating degeneration limit of the genus two surface that diverges and the appropriate
cut-off integral defined in [72] diverges in∫
H+

2/Γ,L

d6Ω
det Ω 3

2
ϕ2(Ω)Γ2-loop

L2,6
= 1

2π log L
µ

∫
H+/Γ

d2τ

τ 2
2
ϕ0,2(τ)ΓL2,6 +

∫
H+

2/Γ,µ

d6Ω
det Ω 3

2
ϕ2(Ω)Γ2-loop

L2,6
.

(3.95)
To conclude we briefly describe the higher derivative BPS protected threshold functions.

The F̄2`R4 couplings realised as (2,0) BPS invariants give rise to solutions of the form

g4+2`
4 E (`)per

(2,0) ∼ f1,2+`(t, t̄) + g4`−2
4 f1,3−`(t, t̄) (3.96)

where f1,2+` can be realised as a genus 1 Narain lattice theta lift and f1,3−` should correspond
to a specific ‘genus 2` Narain lattice theta lifts’, consistently with string perturbation theory.

4 Perturbative results in string theory: tree level and one-loop

As we have just seen, N = 6 supersymmetry constrains the perturbative contributions to
the higher derivative terms R4 and F2R2 to be one-loop exact and D2R4 to be two-loop
exact in string theory. Aim of the present section is to extract the perturbative threshold
functions, that depend only on the NS-NS moduli (the dilaton, internal metric and B-field
excluding the axion dual to the external B-field) from one-loop string amplitudes and show
that they perfectly match the expectations based on N = 6 supersymmetry and the ensuing
T-duality. Non-perturbative corrections, that involve D-brane and NS5 instantons and

23The fact that c−2 = 0 in string theory implies that E(1,1) satisfy an inhomogeneous differential equation
like (3.40), because the automorphic homogeneous solution would necessarily have c−2 6= 0. This situation
is identical to the one for the D6R4 threshold function in type IIB, for which the homogeneous solution
E4,0(S) is compatible with supersymmetry but not with perturbation theory [17].
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thus introduce a dependence on the R-R moduli and the external B-field axion, are tightly
constrained by the full U-duality group.

After writing down the relevant vertex operators for the graviton and (one of) the gravi-
photons, we will exploit ‘chiral’ factorisation to reduce the computation to the computation
in each of the two sectors (L- and R-movers) that in turn are the same as those for open
strings [58]. The correct normalisation of the vertex operators can be derived using tree-level
amplitudes, factorisation and the field-theory limit as well as the embedding of the ‘trivial’
contribution (r = s = 0) in N = 8 supersymmetric compactifications on tori, rather than
on asymmetric orbifolds.

We will keep the discussion as general as possible so that it can be easily adapted to
the two relevant asymmetric orbifold cases: Z2 and Z3. In fact the (open string) formulae
are valid much more generally [58, 85]

4.1 Vertex operators

The vertex operators (VO’s) for the graviton (NS-NS sector) in the canonical (−1,−1)
super-ghost picture reads

W (−1,−1) = e−ϕ−ϕ̃ ψµhµνψ̃
νei

k
2 (X+X̃) (4.1)

with kµL = kµR = kµ/2, while in the non-canonical (0,0) super-ghost picture it reads

W (0,0) = hµν(∂Xµ + i
kρ
2 ψ

ρψµ)(∂̄X̃ν + ikσ2 ψ̃
σψ̃ν)ei

k
2 (X+X̃) (4.2)

The normalizations of the vertex operators on the sphere as well as on the torus can be
fixed by studying the field-theory limit using 3- and 4-graviton amplitudes from supergravity,
that in 4-D read

Mtree
sugra(1−, 2−, 3+) = κ

〈12〉6
〈23〉2〈31〉2 (4.3)

Mtree
sugra(1−, 2−, 3+, 4+) = −i κ2 〈12〉4[34]4

stu
(4.4)

where κ =
√

8πG, with G the Newton constant and the 3-pt function is defined with
complex momenta.

Moreover it is very convenient to exploit chiral factorisation and relate closed-string
graviton or gravi-photon amplitudes to open-string gauge boson amplitudes. At tree-level
Kawai-Lewellen-Tye (KLT) have gone so far as writing the former as squares of the latter [84],
pioneering the so-called double-copy construction. At one-loop and beyond, so far nobody
has been able to generalise KLT relations for the integrals but at least the ‘integrands’ can
be related.

To this end one writes the (physical) polarization tensors for gravitons in terms of
photon polarization vectors

h(2σ)
µν = aLµa

R
ν → rµνρσ = fLµνf

R
ρσ (4.5)

where rµνρσ denotes the linearised Riemann tensor that on-shell coincides with the Weyl
tensor. This will prove useful in order to process and re-cycle open string amplitudes at
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one-loop with (partially) broken supersymmetry [58] in the present context. A similar story
applies to the graviphotons, as we will see later on.

4.2 ‘Chiral’ factorisation: closed-strings from open-strings at one-loop

Exploiting ‘factorization’ of world-sheet correlation functions in closed-string amplitudes
one has

M4 = 1
K

0,K−1∑
r,s

∫
d2τ

τ2
2

∏
i

d2zi
τ2

Γ̃[rs](τ, τ̄)ΠKN(s, t)GL
4 [rs](τ, zi)GR

4 [rs](τ̄ , z̄i) (4.6)

where

ΠKN(s, t) = exp

−α′2 ∑
a>b

ka·kb G(zab)

 (4.7)

is the one-loop Koba-Nielsen factor and Γ̃[rs](τ, τ̄) is a (modified) lattice sum (with two
momentum insertions when gravi-photons are inserted).

According to [85] the (un-)normalised one-loop amplitude for binary scattering of vector
bosons with helicity24 [−−++] in (unoriented) D-brane worlds preserving N supersymmetry
in D = 4 reads

A[−−++]
N = CA〈12〉2[34]2

∫ ∞
0

dT

T

∫ iT/2

0
dziΠA(s, t)

×
(
4FN + EN [Y(z12)+Y(z34)−Y(z13)−Y(z24)−Y(z14)−Y(z23)]

)
(4.8)

where τA = iT/2, ΠA(s, t) = exp[−2α′∑a>b ka · kbGA(zab)] denotes the 1-loop (open-string)
Koba-Nielsen factor and GA the free-boson propagator on the annulus (C.30), while

FN = 1
4
∑
α

cαe
2
α−1Zα , EN = −1

2
∑
α

cαeα−1Zα (4.9)

where Zα is the (unintegrated) partition function in the spin structure α = 1, 2, 3, 4, the
signs cα

c3 = 1 , c2 = c4 = c1 = −1 , (4.10)

are dictated by the GSO projection [53] and −eα−1 are the values of Weierstrass function
at the non-zero half periods (C.15).25

Last but not least
Y(z) = 2S(z)2 − 2℘(z) (4.11)

is an ubiquitous combination that has no singularity. Henceforth we will often write for
short zij , Yij , Sij and ℘ij instead of zi−zj , Y(zi−zj), S(zi−zj) and ℘(zi−zj), respectively.

The maximal helicity violating (MHV) kinematic factor is given by

t8f1f2f3f4 = 4(f1f2f3f4) + 4(f1f2f4f3) + 4(f1f3f2f4)
+ 4(f1f3f4f2) + 4(f1f4f1f2) + 4(f1f4f2f1)
− 2(f1f2)(f3f4)− 2(f1f3)(f4f2)− 2(f1f4)(f2f3) (4.12)

24As usual we consider all momenta as in-coming.
25Note that in [58] the eα where defined as one-half the standard ones that we use here.
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where fµν = kµaν − kνaµ and (. . .) = Tr(. . .) denotes the trace over 4-vector indices.
Choosing for definiteness [−−++] helicities one has

t8f
−
1 f
−
2 f

+
3 f

+
4 = 4(f−1 f−2 )(f+

3 f
+
4 ) = 4〈12〉2[34]2 (4.13)

since (f−1,2f+
3,4) = 0, while (f−1 f−2 ) = −〈12〉2 and (f+

3 f
+
4 ) = −[34]2.

Let us first focus on the R-mover part. Since the orbifold projection only acts by a
shift on the lattice of the R-movers, i.e. preserves all four space-time supersymmetries, only
terms with 4 fermion bilinears contribute in the terminology of [85]. After summing over
spin structures one simply gets

E4 = 0 , F4 = CA
(2π)4Λ(6)

4K (4.14)

therefore, dropping the lattice and Koba-Nielsen factor, one simply has

G[−−++]
R [rs] = 〈12〉2[34]2 (4.15)

Similarly for the L-movers we have

G[−−++]
L [00] = 〈12〉2[34]2 (4.16)

in the trivial ‘untwisted’ sector.
In the non-trivial [01] L-mover sector and its ‘modular orbit’, the orbifold projection

breaks 1/2 of the original four space-time supersymmetries, thus preserving N = 2 super-
symmetry. The relevant (open-string) functions then are

E2 = CA
(2π)2Λ(2)I(4)

4K , F2 = −1
2E2 ℘(u) (4.17)

with u = ur,s = (r τ − s)/K, depending on the orbifold group (K = 2, 3) and the ‘sector’
r, s = 0, . . .K − 1, while Λ(d) and I(6−d) denote the relevant lattice sums and ‘intersections’,
that eventually get replaced by Γ[01] and NL

fp the number of ‘chiral’ fixed points.
For completeness let us briefly describe how to derive (4.8) in the N = 2 case of

interest here. More details can be found in [58] or in appendix D. Given the form of the
vector boson vertex operators, in principle there are five kinds of terms. Those of the form
〈∂X3ψψ〉 or 〈∂X4〉, that involve contractions of only one world-sheet fermion bilinear or
none, vanish thanks to ‘normal ordering’ of the fermionic current or after summing over the
spin structures, because of (residual) space-time supersymmetry. In ‘our’ case, with the
given choice of helicities [−−++], the terms with 3 fermion bilinears 〈∂X(ψψ)3〉 vanishes
too, since (f−1 f−2 f+

3,4) = 0 and (f−1,2f+
3 f

+
4 ) = 0.

Only three contributions then survive: two from connected and disconnected contrac-
tions of four fermion bilinears 〈(ψψ)4〉conn and 〈(ψψ)4〉disc = 〈(ψψ)2〉〈(ψψ)2〉 and one from
the contraction of 2 fermion bilinears 〈(ψψ)2∂X2〉. Retracing the steps in [85], in light of
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the simplifications found in [58], one finds

GL
4-bil,conn[rs] =−

∑
conn

(f1f2f3f4)
(
E [rs](℘13+℘24+ω123ω341+ω234ω412)+4F [rs]

)
(4.18)

GL
4-bil,disc[rs] =

∑
disc

(f1f2)(f3f4)
(
−1

2E [rs](℘12+℘34)+F [rs]
)

(4.19)

GL
2-bil[rs] =

∑
pairs

(f3f4)E [rs]a1·P1a2·P2 (4.20)

where26 E [rs] = 1 and F [rs] = −℘(ur,s)/2 and

Pi =
∑
j 6=i

kjSij , Sij = −∂iGij , ωijk = Sij + Sjk + Ski . (4.21)

Note that the terms with a−1 a−2 and a+
3 a

+
4 have been set to zero, thanks to the freedom of

choosing the ‘reference’ spinors to be the same for polarizations with the same helicity.
In appendix D we manipulate the above contributions from the correlators and obtain

G(4)
L = 〈12〉2[34]2 E [rs]

[
℘(ur,s) + 1

8(Y12 + Y34 − Y13 − Y14 − Y23 − Y24)
]
. (4.22)

Let us notice that this expression first obtained in [58] matches precisely the one
obtained in [81], notwithstanding the different approach used there (relaxing momentum
conservation at 4-points).27

Combining L- and R-movers one finds28

M1-loop
type II(1−,2−,3+,4+) (4.23)

= i
α′4g 4

4

27K
〈12〉4[34]4

∫
F

d2τ

τ 2
2

4∏
a=1

∫
Σ

d2za
τ2

τ2δ
(2)(z4)e−

α′
2
∑

a>b
G(za−zb)ka·kb

×
(

4π2ΓII6,6 +
∑

r,smodK
(r,s) 6=(0,0)

(2sin π
K )2ΓII2,2⊕H(K)[sr]

(
℘( r+sτK )+ 1

8
(
Y12+Y34−Y13−Y14−Y23−Y24

)))

where ΓL[sr] = τ3
2 ΛL[sr] is the Narain partition function associated to the lattice L, with

ΛL[sr] defined in (2.21) and (2.25). The normalisation has been fixed such that it reproduces
the supergravity one-loop amplitude [86] in the tropical limit, see appendix G. Using the
property that Y(z) and G(z) are modular invariant and applying the same reasoning as in
section 2.3, one can write the amplitude as an integral over the Γ0(K) fundamental domain

M1-loop
type II(1−, 2−, 3+, 4+) = i

α′ 4g 4
4 (2 sin π

K )2

27 〈12〉4[34]4
∫
FK

d2τ

τ 2
2

ΓII1,1⊕II1,1[K]⊕H(K)

×
4∏

a=1

∫
Σ

d2za
τ2

τ2δ
(2)(z4)e−

α′
2
∑

a>b
G(za−zb)ka·kb

×
(
℘( 1

K ) + 1
8
(
Y12 + Y34 − Y13 − Y14 − Y23 − Y24

))
. (4.24)

26Having stripped off the lattice sum and the Koba-Nielsen factor, E [rs] = 1 and F [rs] are only kept for
easier comparison with the open-string formulae in [58].

27This is easily checked using X23,4
s12s23

+ X24,3
s12s13

= −f (2)
34 − f

(2)
24 − f

(2)
23 , see (4.40) in [81].

28This amplitude was first analysed for the Z2 orbifold in [46].
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Albeit the explicit dependence in the dilaton field through g 4
4 , this amplitude only depends

on the Narain moduli through the Narain partition function of the lattice (2.38)

ΓII1,1⊕II1,1[K]⊕H(K)(t, t̄) = ΓF2(K)(t, t̄) = τ3
2

∑
Q∈F2(K)

eπiτpL(Q)2−πiτ̄pR(Q)2
. (4.25)

This expression is manifestly invariant under the automorphism group of the perturbative
lattice (1.9). This is the starting point for the low-energy expansion and extraction of the
lowest higher-derivative terms a.k.a. threshold corrections.

4.3 R4 and D2R4 couplings

In this section we discuss the R4 and D2R4 couplings, by which we mean their respective
completions to supersymmetry invariants discussed in sections 3.3 and 3.5. In N = 6
supergravity, obtained as asymmetric orbifolds of tori, tree-level scattering amplitudes
of untwisted states such as gravitons or graviphotons are identical to the corresponding
amplitudes in the parent N = 8 theory. This implies that the tree-level effective action for
the massless field is the truncation of the maximally supersymmetric tree-level effective
action to the fields of N = 6 supergravity.

This implies that the R4 term receives a tree-level contribution with a ‘famous’ 2ζ(3)
coefficient, while no such a term appears for D2R4 (since s+ t+u = 0) nor for F2R2 (since
this violates the continuous SO(2, 6) symmetry at tree-level).

The situation changes at one-loop where even ‘projections’ of the untwisted sector
(s = 0, r 6= 0) contribute to the threshold functions for other higher-derivative couplings. In
particular the one-loop threshold corrections to R4 and D2R4 couplings can be extracted
from the 4-graviton amplitude (4.24) computed above. The expansion of (4.24) gives

M1-loop W
type II,L(1−, 2−, 3+, 4+) (4.26)

= i
α′ 4g 4

4 (2 sin π
K )2

27 〈12〉4[34]4
∫
FLK

d2τ

τ 2
2

ΓII1,1⊕II1,1[K]⊕H(K)

4∏
a=1

∫
Σ

d2za
τ2

τ2δ
(2)(z4)

×
( ∞∑
n=0

(α′4 )n

n!
(
(G12 + G34)s+ (G14 + G23)t+ (G13 + G24)u

)n)

×
(
℘( 1

K ) + 1
8
(
Y12 + Y34 − Y13 − Y14 − Y23 − Y24

))
= i

α′ 4g 4
4 (2 sin π

K )2

27 〈12〉4[34]4
∫
FLK

d2τ

τ 2
2

ΓII1,1⊕II1,1[K]⊕H(K)

×
(
℘( 1

K ) + α′s

8

∫
Σ

d2z

τ2
G(z)Y(z) +O(α′2)

)

where one peruses s + t + u = 0, (E.1) and (E.4) to simplify the elliptic integrals. Here
L >> 1 is a cutoff of the fundamental domain FLK = ∪γ∈PSL(2,Z)/Γ0(K)FL

∣∣
γ
with FL the

component of the standard fundamental domain with τ2 < L. The coupling is then defined
by the ‘renormalised’ coupling in which one subtracts the divergence in L. When the
divergence is power-low this renormalisation is unambiguous, and we shall simply drop the
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dependence in L. In our convention this gives the R4 perturbative coupling

g4
4 E

pert
(0,0,0) = 2ζ(3)

g2
4

+
(2 sin π

K )2

2π

∫
FK

d2τ

τ 2
2
℘( 1

K )ΓII1,1⊕II1,1[K]⊕H(K) , (4.27)

where we define
(2 sin π

K )2

2π

∫
FK

d2τ

τ 2
2
℘( 1

K )ΓII1,1⊕II1,1[K]⊕H(K)

= lim
L→∞

(
(2 sin π

K )2

2π

∫
FLK

d2τ

τ 2
2
℘( 1

K )ΓII1,1⊕II1,1[K]⊕H(K) −
5π
6 L2

)
. (4.28)

Note that the divergent term in L does not depend on K, which follows from the property
that it matches by construction the corresponding divergence of the supergravity amplitude
in Schwinger parameter space regularisation. In practice one can simply forget about this
divergence because supersymmetry Ward identities (3.81) do not allow for the freedom of
adding a constant.

For K = 2 we have
(2 sin π

2 )2

2π ℘(1
2) = 4π

3 ΛD4 = 4π
3
(
2E2(2τ)− E2(τ)

)
, (4.29)

and for K = 3
(2 sin π

3 )2

2π ℘(1
3) = 3π

2 ΛA2⊕A2 = 3π
4
(
3E2(3τ)− E2(τ)

)
. (4.30)

As required by supersymmetry (3.82), we verify that ℘( 1
K ) is a holomorphic modular form.

Moreover ℘( 1
K ) is precisely the holomorphic modular form that appears in the helicity

supertrace BZK
8 in (2.47), consistently with the property that only BPS states preserving

at least one-third of the supersymmetries contribute to the R4 coupling.
The D2R4 coupling involves the integral

1
4π

∫
Σ

d2z

τ2
G(z)Y(z) = −π

2

45E1,2(τ, τ̄) , (4.31)

that we compute in appendix E.2, with the definition (C.8) for the weight 2 non-holomorphic
Eisenstein series E1,2. The corresponding coupling at one-loop is therefore

E 1-loop(1,0,0) = −(2 sin π
K )2π

2

45

∫
FK

d2τ

τ 2
2
E1,2(τ, τ̄)ΓII1,1⊕II1,1[K]⊕H(K) (4.32)

= lim
L→∞

(
−(2 sin π

K )2π
2

45

∫
FLK

d2τ

τ 2
2
E1,2(τ, τ̄)ΓII1,1⊕II1,1[K]⊕H(K) + 2π2

135L
2 − ζ(3)

π
logL

)
.

The power low divergence depends on the choice of regulator and is not physically relevant,
but the logarithmic divergence corresponds to the supergravity form factor logarithmic
divergence

M4
[
t8t8R4(k = 0)

]1-loop
∼ κ2

8π2 logLM4
[
t8(sts8 + ttt8 + utu8)R4(k = 0)

]tree
, (4.33)

that affects the Callan-Symanzik equation independently of the renormalisation scheme.
We confirm in particular the logarithmic divergence anticipated in (3.95), and the non-
holomorphic Eisenstein series E1,2 indeed verifies the Laplace equation (3.87).
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4.4 F̄2R2 at one-loop

In the following, we will focus on the two-graviphoton two-graviton amplitude corresponding
to the 1/2 BPS supersymmetry invariant described in section 3.2. This amplitude vanishes
in N = 8 and therefore does not receive contributions from the trivial orbifold sector
(r, s) = (0, 0).

The graviphoton vertex in the (0, 0) superghost picture reads

V (0,0)
a = aµ

(
∂X5+i6 + i

kρ
2 ψ

ρψ5+i6
) (
∂̄X̃µ + ikσ2 ψ̃

σψ̃µ
)
ei
k
2 (X+X̃) , (4.34)

with the convention that X5+i6 = X5+iX6
√

2 . For a negative polarisation, this is the gravipho-
ton F̄α̇β̇ of U(1) weight w = 1, while for a positive polarisation this is the component Fαβ56
of the 15 graviphotons Fαβij of U(1) weight w = −1

3 in (3.2).29 The ‘charge’ conservation
associated to the rotation in the plan 56 implies that there is no contribution at tree-level.
Also at one-loop terms with one or two insertions of ψ5+i6 vanish

〈∂X5+i6k2ψψ
5+i6k3ψψ

µ3k4ψψ
µ4〉 = 0 , 〈k1ψψ

5+i6k2ψψ
5+i6k3ψψ

µ3k4ψψ
µ4〉 = 0

(4.35)

since there is no way to contract ψ5+i6. More generally there is no contraction between
bilinear in fermions kψψ5+i6, and two fermion bilinears only produce the term [85]〈

∂X5+i6∂X5+i6k3ρψ
ρψµ3k4σψ

σψµ4
〉

= p5+i6
L p5+i6

L

(
k3 · k4η

µ3µ4 − kµ4
3 kµ3

4
)
Sα(z3 − z4)2

(4.36)

for even spin structures, where p5+i6
L denotes the zero-mode momentum component

p5+i6
L = pL5(Q) + ipL6(Q)√

2
, (4.37)

for the charge Q in the perturbative lattice. The Lorentz structure eventually boils down
to (fL3 fL4 ).

For the odd spin structure we need the (−1, 0) superghost picture vertex operator

V (−1,0)
a = aµψ

5+i6e−ϕ
(
∂̄X̃µ + ikσ2 ψ̃

σψ̃µ
)
ei
k
2 (X+X̃) , (4.38)

and the picture changing operator

P (1)
L = GMN∂X

MψNeϕ + . . . . (4.39)

This gives the non-zero contribution〈
∂XM (z0)GMNψ

N (z0)ψ5+i6(z1)∂X5+i6(z2)f3ψψ(z3)f4ψψ(z4)
〉

= i(p5+i6
L )2εµνσρf3µνf4σρ

(4.40)
29Note that i = 5, 6 correspond to the indices of the R-symmetry SU(6) ⊃ S(U(4)×U(2)), while I = 5, 6 in

XI and ψI correspond to the indices of SO(6) ⊃ SO(4)×SO(2) where SO(4) of T 4 is broken by the orbifold.
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where the six fermions give the six-dimensional Levi-Civita tensor and the bosons the
zero mode. Here we have not been careful with the normalisation, but one knows from
supersymmetry that the correct combination is(

p5+i6
L

)2 (
fL3 f

L
4 + i

2εf
L
3 f

L
4

)
(4.41)

such that only the positive helicity amplitude is non zero.30

The complete amplitude eventually combines the right and left sectors to give the
kinematic factor for the [−−++] helicities(

fL3 f
L
4 + i

2εf
L
3 f

L
4

)
× t8fR1 fR2 fR3 fR4 = −8〈12〉2[34]4 (4.42)

corresponding to F̄2R2, while it vanishes for the helicities [+ + −−], as required by
supersymmetry. Factorising out this kinematic structure, one obtain the scalar amplitude

A1-loop
type II = −iπα′3

∫
FK

d2τ

τ 2
2

4∏
a=1

∫
Σ

d2za
τ2

τ2δ
(2)(z4)e−

α′
2
∑

a>b
G(za−zb)ka·kb

×
(

8π(2 sin π
K )2 1

K

∑
r,smodK

(r,s) 6=(0,0)

ΓII2,2⊕H(K)[sr][(p5+i6
L )2]

)
. (4.43)

Once again one can simplify this amplitude as an integral over the Γ0(K) fundamental
domain

A1-loop
type II = −i8π2(2 sin π

K )2α′3
∫
FK

d2τ

τ 2
2

3∏
a=1

∫
Σ

d2za
τ2

e−
α′
2
∑

a>b
G(za−zb)ka·kbΓF2(K)

[
(p5+i6
L )2

]
,

(4.44)
where

ΓF2(K)
[
(p5+i6
L )2

]
= τ3

2
∑

Q∈F2(K)

(pL5(Q) + ipL6(Q))2

2 eiπτpL(Q)2−iπτ̄pR(Q)2
. (4.45)

From this expression one deduces directly the 1/2 BPS coupling

F 1-loop
(0,0) = 8π(2 sin π

K )2
∫
FK

d2τ

τ 2
2

ΓF2(K)
[
(p5+i6
L )2

]
. (4.46)

Note that there is no need to regularise the integral over FK in this case since the corre-
sponding supergravity amplitude vanishes and the integral converges. At the next order in
α′2 one gets the integral ∫

Σ

d2z

τ2
G(z)2 = π2

45E2,0(τ, τ̄) , (4.47)

where E2,0 is the real analytic Eisenstein series (C.8). The corresponding coupling is

F 1-loop
(1,0) = 4π3

45 (2 sin π
K )2

∫
FK

d2τ

τ 2
2
E2,0(τ, τ̄) ΓF2(K)

[
(p5+i6
L )2

]
. (4.48)

30The corresponding open-string amplitude is a correction to the N = 2 prepotential, and the holomorphic
part only couples to the positive helicity in the effective Lagrangian Re[F ′′(φ)(F 2 + i

2εF
2)].

– 44 –



J
H
E
P
0
6
(
2
0
2
2
)
0
8
8

This coupling is related to E(1,0,0) by supersymmetry as explained in section 3.5. Applying
the SO(2, 6) invariant operator detD of U(1) weight two to E(1,0,0) one obtains the coupling
F 1-loop

(1,0) as follows

εabcdDabDcdE 1-loop(1,0,0)

= −
π2(2 sin π

K )2

45

∫
FK

d2τ

τ 2
2
E1,2(τ, τ̄) τ3

2
∑

Q∈F2(K)
εabcdDabDcdeπiτpL(Q)2−πiτ̄pR(Q)2

= −
4π3(2 sin π

K )2

45

∫
FK

d2τ

τ 2
2
E1,2(τ, τ̄) τ4

2
∑

Q∈F2(K)
(p5+i6
L )2(2πτ2p

2
R − 3

)
eπiτpL(Q)2−πiτ̄pR(Q)2

= −
4π3(2 sin π

K )2

45

∫
FK
d2τE1,2(τ, τ̄) 2i∂̄τ

(
τ3

2
∑

Q∈F2(K)
(p5+i6
L )2eπiτpL(Q)2−πiτ̄pR(Q)2

)

= −
4π3(2 sin π

K )2

45

∫
FK

d2τ

τ 2
2
E2,0(τ, τ̄) τ3

2
∑

Q∈F2(K)
eπiτpL(Q)2−πiτ̄pR(Q)2

= −F 1-loop
(1,0) . (4.49)

Note that we did not take care of the regularisation of E 1-loop(1,0,0) in this computation because
all divergent terms cancel thanks to the insertion of the left momentum pL.

4.5 Minimal theta series

In this section we prove that the F̄2R2 coupling F 1-loop
(0,0) can be written as a rank one

theta series for SO(2, 6) defined as the group of four by four symplectic matrices over the
quaternions [51]. For K = 2 and 3 one finds

F 1-loop
(0,0)

= 4πK
K − 1

∫
FK

d2τ

τ 2
2
τ 3

2
∑

Q∈F2(K)

(pL5(Q) + ipL6(Q))2

2 eiπτpL(Q)2−iπτ̄pR(Q)2

= 2πKRs

K − 1

∫
FK

d2τ

τ 2
2
τ

5
2

2
∑

(m,n)∈Z2

e
− π
τ2
R2

s |m+nτ |2

×
∑

Q∈M2(K)
e2πim(Q+ 1

2na)·a
(
pL5(Q+na)2− 1

4πτ2
+
√

2Rs(m+τ̄n)
τ2

pL5(Q+na)+R2
s (m+τ̄n)2

2τ 2
2

)
× eiπτpL(Q+na)2−iτ̄pR(Q+na)2

= 2πKRs

K − 1

∫
FK

d2τ

τ 2
2
τ

5
2

2
∑

Q∈M2(K)

(
pL5(Q)2 − 1

4πτ2

)
eiπτpL(Q)2−iτ̄pR(Q)2

+ 4πKRs

K − 1

∫ ∞
0
dτ2τ

1
2

2

∫ 1
2

− 1
2

dτ1
∑
m≥1

∑
Q∈M2(K)

(
pL5(Q)2− 1

4πτ2
+
√

2Rsm
τ2

pL5(Q)+ (Rsm)2

2τ 2
2

)
× e−

π
τ2

(Rsm)2+iπτpL(Q)2−iτ̄pR(Q)2+2πimQ·a

− 4πRs

K(K − 1)

∫ ∞
0
dτ2τ

1
2

2

∫ K

−K
dτ1

∑
m≥1

∑
Q∈M2(K)∗

(
pL5(Q)2− 1

4πτ2
+
√

2Rsm
τ2

pL5(Q)+ (Rsm)2

2τ 2
2

)
× e−

π
τ2

(Rsm)2+iπτpL(Q)2−iτ̄pR(Q)2+2πimQ·a
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= −πR
2
s

3 + 4πKR2
s

K − 1

′∑
Q∈M2(K)
Q2=0

( ∑
d≥1

Q
d
∈M2(K)

d

)(
1 + pL5(Q)
|pL5(Q)|

)
e−2πRs

√
2pL5(Q)2+2πiQ·a

− 4πR2
s

K − 1

′∑
Q∈M2(K)∗
Q2=0

( ∑
d≥1

Q
d
∈M2(K)∗

d

)(
1 + pL5(Q)
|pL5(Q)|

)
e−2πRs

√
2pL5(Q)2+2πiQ·a

= −πR
2
s

3

(
1− 24

K − 1
∑

Q∈M2(K)∗
Q2=0

pL5(Q)>0

(
K

∑
d≥1

Q
d
∈M2(K)

d−
∑
d≥1

Q
d
∈M2(K)∗

d

)
e−2πRs

√
2pL5(Q)+2πiQ·a

)
. (4.50)

In the first step we used Poisson summation formula. In the second we used the orbit
method to unfold the domain of integration, with the two orbits of Γ0(K) of doublet
(m,n) ∈ Z2 depending of the congruence of n/gcd(m,n) modulo K. In the third step we
used integration by part to show that the first term vanishes and to simplify the two others
using that the insertion of pL5(Q)2 − 1

4πτ2 can be written as the derivative 1
iπ (∂τ + i

4τ2 ). In
the last step we absorbed m in Q and carried out the integrals.

The condition pL5(Q) > 0 is moduli independent because pL5(Q) 6= 0 for all Narain
moduli. For Q defined as a two by two Hermitian matrix Q =

(m q
q∗ n

)
over the quaternions

H(K) as in (F.19), Q2 = 2 detQ = 0 implies that mn = |q|2 ≥ 0 and pL5(Q) > 0 reduces to
the condition that trQ = m+n > 0. Equivalently one can write that Q ≥ 0 as a matrix. One
can therefore conclude that only 1/2 BPS states of a given orientation, i.e. both m and n pos-
itive, contribute to this coupling, and the complex conjugate coupling will get contributions
from the 1/2 BPS states with the opposite orientation, with m and n both negative.

Using the parametrisation of SO∗(8)/U(4) = SO(2, 6)/SO(2) × SO(6) in terms of a
complex Hermitian matrix over the quaternions t = a+ iRsv

†v, one finds

− 2πRs
√

2pL5(Q) + 2πiQ · a = 2πitrQ(a+ iRsv
†v) = 2πitrQt , (4.51)

and the perturbative threshold function can be written as

F 1-loop
(0,0) = −π det[t2]

3

(
1 + 24

K − 1
∑

Q∈M2(K)∗
Q>0, Q×Q=0

( ∑
d≥1

Q
d
∈M2(K)∗

d−
∑
d≥1

Q
Kd
∈M2(K)∗

Kd

)
e2πitr tQ

)
,

= −π det[t2]
3

(
1 + 24

K − 1
∑

Q∈M2(K)∗
Q>0, Q×Q=0

( ∑
d≥1

d 6=0 modK
Q
d
∈M2(K)∗

d

)
e2πitr tQ

)
(4.52)

where we used that a matrix Q ∈ M2(K) satisfying detQ = 0 must be in KM∗2 because
detQ = mn − |q|2 = 0 implies q ∈ αH(K) for m = 0 mod K. One can always write a
degenerate Hermitian matrix as

Q =
(
m q

q∗ n

)
=
(
q1
q2

)
(q∗1, q∗2) , (4.53)
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with q1 ∈ H(K) and q2 ∈ 1
αH(K). The greatest common divisor of Q in M2(K)∗ is the

norm square |gcrd(q1, αq2)|2 of the greatest common right divisor gcrd(q1, αq2) in H(K).
The measure factor simply counts the number of quaternions in H(K) with norm square
p = |gcrd(q1, αq2)|2 such that

F 1-loop
(0,0) = −π det[t2]

3
∑

q∈H(K)⊕ 1
α
H(K)

e2πiq†tq . (4.54)

This rank one theta series is in the minimal automorphic representation of SO(2, 6) [51]
and is manifestly invariant under the T-duality group ΓD4

0∗(α).
By supersymmetry, the non-perturbative coupling must be a linear combination of rank

one theta series of SO∗(12) defined as the group of six by six symplectic matrices over the
quaternions. We will argue that the non-perturbative coupling is the theta series

Θ2 = −π det[T2]
3

∑
q∈H(K)2⊕ 1

α
H(K)

e2πiq†Tq , (4.55)

with

T = T1 + iRV −1V −1† =
(
b+ c̃†c+ cc̃† + i

g 2
4

+ c†tc c̃† + c†t

c̃+ tc t

)
, (4.56)

in terms of the NS-NS moduli t, the axio-dilaton b+ i
g2
4
and the Ramond-Ramond moduli

(c, c̃). The perturbative expansion of Θ2 rescaled to the string frame gives

g 2
4 Θ2 = −det[t2]

24

( ∑
q∈H(K)⊕ 1

α
H(K)

e2πiq†tq +
′∑

p∈H(K)

∑
q∈H(K)⊕ 1

α
H(K)

(4.57)

× e
−2π |p|

2

g 2
4

+2πi|p|2(b+c̃†c+cc̃†+c†tc)+2πi
(

q†(c̃+tc)p+p∗(c̃†+c†t)q
)
+2πiq†tq

)
,

which is by construction consistent with the perturbative computation. The corrections
for q = 0 and p 6= 0 can be interpreted as Euclidean NS5 brane instantons with the NS5
charge k = |p|2 and the action

SNS5 = 2πk
g2
4
− 2πikb = 2π

g2
s

√
GR̃sk

K
− 2πi k

K
B5678910 , (4.58)

where G is the metric on T 4 at the symmetric point, i.e. one-half the Cartan matrix of D4
or A2 ⊕ A2, and R̃s is the radius of the twisted circle S1

t . The Euclidean NS5 brane can
therefore be interpreted as wrapping k times the six-torus T 6/ZK and k must be an integer.
As one may have expected, the instanton measure depends explicitly on the divisibility of k
by K, since the number of p ∈ H(K) with |p|2 = k gives the instanton measure

µ(k) = 24
K − 1

∑
d|k

d 6=0 modK

d . (4.59)
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The perturbative coupling allows in principle the possibility that there be an additional
contribution for p ∈ αH(K). However, the same coupling in the S-dual frame would then
have non-perturbative corrections with p ∈ 1

KH(K) and therefore an NS5 charge k ∈ Z/K2,
whereas we expect the coupling F(0,0) in the S-dual frame to have Euclidean NS5 branes
with charge k ∈ Z/K. This is the situation one observes for NS5 instanton corrections in
CHL orbifolds of the heterotic string [37, 39, 87, 88] and the dual orbifold of the type II
string on T 2 ×K3 [42].31

Note that this coupling does not receive corrections associated to Euclidean D-brane
with vanishing NS5 charge. This is consistent with the property that there is no 1/2
BPS Euclidean Brane in the asymmetric orbifold theory and the only 1/2 BPS instantons
necessarily carry a non-zero NS5 charge [46].

Using the Poisson summation formula one obtains that Θ2 is invariant under the theta
congruent subgroup ΓD6

0 (α) ⊂ Sp(6,H(K)) of symplectic matrices with a lower-triangular
matrix C = 0 mod α after conjugation by σ36, the symplectic matrix that exchange the
third and the sixth component, i.e. g ∈ ΓD6

0 (α) is of the form

g=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 −1 0 0 0


(
A B

C D

)


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0


,

(
D† −B†

−C† A†

)(
A B

C D

)
=
(

1 0
0 1

)

(4.60)
with A,B,D three by three matrices over H(K) and C over αH(K). It is moreover invariant
under the Fricke transformation γF (F.43)

t→ −
( 1
α∗ 0
0 α

)
t−1
( 1
α 0
0 α∗

)
, c̃→

( 1
α∗ 0
0 α

)
c , c→ −

(
α 0
0 1

α∗

)
c̃ ,

b→ b+ c†c̃+ c̃†c , g4 → g4 , (4.61)

using Poisson summation over
(α−1 0

0 α∗
)
q ∈ 1

αH(K)⊕H(K) with

Θ2 →
det t
det t̄ Θ2 , (4.62)

with

det t = det


 0 0 0

0 α 0
0 0 1

α∗

T +

 1 0 0
0 0 0
0 0 0


 . (4.63)

We define the Fricke theta group ΓD6
0∗(α) as the group generated by ΓD6

0 (α) and the Fricke
transformation γF. Θ2 is the unique rank one theta series consistent with the congruent
subgroup symmetry ΓD6

0∗(α) that we conjecture to be the U-duality group of the theory. We
shall find further evidence for this proposal by looking at the non-perturbative coupling
E(0,0,0) and E(1,0,0) in [72].

31The NS5 instanton measure of the R2 coupling in heterotic CHL orbifolds µ(k) = 24
K+1

(∑
d|k d +∑

Kd|kKd
)
is indeed similar to the one we find here.
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4.6 Large radius expansions of R4 and D2R4 couplings

In order to write the one-loop couplings more explicitly one can perform an expansion at
large radius Rs, with Rs the radius of the circle untouched by the orbifold action that goes
to infinity. From (F.60) one finds

E 1-loop(0,0) = π3

27R
4
s +Rs

(2 sin π
K )2

2π

∫
FK

d2τ

τ 2
2
℘( 1

K )ΓM2(K)

+ Rs

3(K − 1)

′∑
Q∈M∗2(K)
detQ=0

( ∑
Q/d∈M∗2(K)

d3 +K2 ∑
Q/d∈M2(K)

d3
)

× 1 + 2πRsM(Q)
M(Q)3 e−2πRsM(Q)M(Q)+2πi(Q,B)

+ 8Rs

(K − 1)2

∑
Q∈M∗2(K)
detQ<0

( ∑
Q/d∈M∗2(K)

d3 ∑
`|K detQ

d2
` 6=0 modK

`+K2 ∑
Q/d∈M2(K)

d3 ∑
`|detQ

d2
` 6=0 modK

`

)

× 1 + 2πRsM(Q)
M(Q)3 e−2πRsM(Q)+2πi(Q,B) , (4.64)

whereM(Q) =
√

2pR(Q)2 and M2(K) is the lattice II1,1[2] ⊕H(K). The factor in π3

27R
4
s

comes from the Kaluza-Klein tower of massive spin two supermultiplets and therefore does
not depend on K. The holomorphicity of ℘( 1

K ) ensures that there is no contributions from
1/6 BPS world-sheet instantons with detQ > 0. The measure factor for 1/3 BPS charges
can be written in terms of the degeneracy d( 1

3 )
j (Q) of 1/3 BPS states of charge Q and spin

j + 2 according to (B.3), (B.4), (B.11) and (B.12)

4
(K − 1)2

( ∑
Q/d∈M∗2(K)

d3 ∑
`|K detQ

d2
6̀=0 modK

`+K2 ∑
Q/d∈M2(K)

d3 ∑
`|detQ

d2
6̀=0 modK

`

)

=
∑
d∈N

Q/d∈M∗2(K)

d3 ∑
j∈N

2

(−1)2j(2j + 1)d( 1
3 )
j (Q/d) (4.65)

which allows for the standard interpretation of instantons as solitons on the Euclidean time
circle [89].

Equivalently one can take the expansion at large twisted radius R̃s,

E 1-loop(0,0) = π3

27K2 R̃s
4 + 2πR̃s

∫
F

d2τ

τ 2
2

ΓII6,6

+ R̃s

3K2(K − 1)

′∑
Q∈ 1

2M
0
2(K)

detQ=0

( ∑
Q/d∈ 1

2M
0
2(K)

d3 +K2 ∑
Q/d∈M0∗

2 (K)
d3
)

× 1 + 2πR̃sM(Q)
M(Q)3 e−2πR̃sM(Q)+2πi(Q,B̃)
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+ 8R̃s

K2(K − 1)2

∑
Q∈ 1

2M
0
2(K)

detQ<0

( ∑
Q/d∈ 1

2M
0
2(K)

d3 ∑
`|K

2 detQ
d2

`6=0 modK

`+K2 ∑
Q/d∈M0∗

2 (K)
d3 ∑

`|K detQ
d2

6̀=0 modK

`

)

× 1 + 2πR̃sM(Q)
M(Q)3 e−2πRsM(Q)+2πi(Q,B̃) , (4.66)

where M0
2(K) = II1,1 ⊕H(K). The term linear in R̃s is the maximally supersymmetric R4

coupling restricted to the N = 6 Narain moduli. Quite reassuringly for consistency, one
gets back the maximally supersymmetric theory at R̃s →∞. The factor in π3

27K2 R̃s
4 comes

from the Kaluza-Klein tower of massive spin two and spin three-half supermultiplets, which
mass spectrum depends on the orbifold order K. The world-sheet instantons are again at
most 1/3 BPS, but they cannot be interpreted as string solitons in this case.

The D2R4 coupling expands similarly at large Rs using (F.61)

E 1-loop(1,0,0)

= −8π5R6
s

42525 −
2ζ(3)
π

logRs −Rs
π2

45(2 sin π
K )2

∫
FK

d2τ

τ 2
2
E1,2(τ)ΓM2(K)

− 16π2

45(K − 1)R
7
2s
∑

Q∈M∗2(K)
Q2=0

(
K

∑
Q/d∈M2(K)

d5 −
∑

Q/d∈M∗2(K)
d5
)
K 5

2
(2πRsM(Q))

M(Q) 5
2

e2πi(Q,B)

+ 4ζ(3)
π(K − 1)

∑
Q∈M∗2(K)
Q2=0

(
K

∑
Q/d∈M2(K)

d−1 −
∑

Q/d∈M∗2(K)
d−1

)
e−2πRsM(Q)+2πi(Q,B)

+ 2
π(K − 1)

∑
Q∈M∗2(K)

detQ>0
detQ=0 modK

(
K

∑
Q/d∈M2(K)

d5σ3(detQ
d2 )−

∑
Q/d∈M∗2(K)

d5σ3(detQ
d2 )

)
e−2πRsM(Q)+2πi(Q,B)

detQ3

+ 1
2π(K − 1)

∑
Q∈M∗2(K)

detQ<0
detQ=0 modK

(
K

∑
Q/d∈M2(K)

d5σ3(detQ
−d2 )−

∑
Q/d∈M∗2(K)

d5σ3(detQ
−d2 )

)
e−2πRsM(Q)+2πi(Q,B)

− detQ3

×
(

1− 4πRs detQ
M(Q)

(
1− detQ
M(Q)

)
+ 2π2R2

s detQ2

M(Q)2

)
. (4.67)

The first two terms come from the Kaluza-Klein tower of massive spin two supermultiplets
and do not depend onK. The logarithmic term is of course related to the divergence in (4.32).
The third term is the coupling in five dimensions. As expected we have contributions from
both 1/3 BPS world-sheet instantons with detQ < 0 and 1/6 BPS world-sheet instantons
with detQ > 0. The 1/6 BPS world-sheet instantons measure is related to the degeneracy
d

( 1
6 )
j (Q) of 1/6 BPS states of charge Q and spin j + 5

2 according to (B.7), (B.8), (B.15)
and (B.16)

−4
K − 1

(
K

∑
Q/d∈M2(K)

d5σ3(detQ
d2 )−

∑
Q/d∈M∗2(K)

d5σ3(detQ
d2 )

)
=

∑
d∈N

Q/d∈M∗2(K)

d5 ∑
j∈N

2

(−1)2j(2j + 1)d( 1
6 )
j (Q/d)

(4.68)
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and the 1/3 BPS world-sheet instantons measure is related to the degeneracy d( 1
3 )
j (Q) of

1/3 BPS states of charge Q and spin j + 2 according to (B.5), (B.6), (B.13) and (B.14)

6
K − 1

(
K

∑
Q/d∈M2(K)

d5σ3(detQ
d2 )−

∑
Q/d∈M∗2(K)

d5σ3(detQ
d2 )

)

=
∑
d∈N

Q/d∈M∗2(K)

d5 ∑
j∈N

2

(−1)2j(2j + 1)j(j + 1)d( 1
6 )
j (Q/d) (4.69)

that appears in the helicity supertrace BZK
10 in (2.48). This can be understood from the

relations
E4 = 2i

3
(
∂τ − i

τ2

)
E1,2 , E4 = − 1

12
(
∂̄τ + i

τ2

)
∂̄τ
(
τ2

2 ∂̄τE1,2
)

(4.70)

and so the perturbative coupling (4.32) is directly related to the 1/6 BPS helicity supertrace
BZK

10 in (2.47), consistently with the property that only BPS states preserving at least
one-sixth of the supersymmetries contribute to the D2R4 coupling.

5 BPS branes in the asymmetric orbifold

In standard toroidal compactifications ‘physical’ D-brane charges (R-R charges) transform
in spinorial representations of the T-duality group. For instance on R1,3×T 6 they transform
in the 32 Majorana-Weyl spinor representation of Spin(6, 6) that combines with the NS-NS
charges in the (2,12) of SL(2) × SO(6, 6) to produce the 56 of E7(7). The first SO(6, 6)
vector of charges corresponds to the momentum and winding of the perturbative string
along T 6, while the second corresponds to the NS5 and KK(6,1) charges. Similarly on
R1,4 × T 5, after dualizing all antisymmetric tensors to vectors, they transform in the 16
Majorana-Weyl spinor representation of Spin(5, 5) that combines with the NS-NS charges
for the perturbative string in the 10 and for the NS5 charge in the singlet to produce
the 27 of E6(6). Finally on R1,5 × T 5 they transform in the 8S Majorana-Weyl spinor
representation of Spin(4, 4) that combines with the NS-NS charges in the 8V to produce
the 16 of Spin(5, 5).

Euclidean D-branes transform similarly in the spinor representation of opposite chirality
since they can be thought of as the ‘physical’ D-branes of the formal T-dual along Euclidean
time [82, 83].

In the asymmetric orbifold case the continuous ‘T-duality’ group SO(6, 6) is broken
to SO(2, 6) ∼ SO∗(8) in D = 4 dimensions and from SO(5, 5) to SO(1, 5) in D = 5.
Decomposing T 6 = T 2

t × T 4
a yields SO(6, 6) ⊃ SO(2, 6) × SU(2)1 ×Z2 SU(2)2 with 32 →

(8S ,22) + (8C ,21) in D = 4. Decomposing T 5 = S1
t × T 4

a yields SO(5, 5) ⊃ SO(1, 5) ×
SU(2)1 ×Z2 SU(2)2 with 16→ (4,22) + (4̄,21) in D = 5.

For Type IIB on S1 × S1
t × T 4

a , the ‘physical’ D-branes, that couple to the 16 ‘gravi-
photons’ in the R-R sector (8 ‘electric’ and 8 ‘magnetic’ dual), are given by bound-states of
D1-, D3- and D5-branes. They only preserve 8 out of the 32 original supercharges and are
thus 1/3 BPS in N = 6 supergravity [46].
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When the asymmetric Z2 orbifold acts as a reflection on the left-movers on T 4
a and

a shift of S1
t one finds: two bound-states of D1 on S1 ⊂ T 2

t with D5 on S1 × T 4
a , four

bound-states of D1 on S1 ⊂ T 4
a with D3 on dual T 3

⊥ ⊂ T 4
a , four bound-states of D3

on T 2 × S1 ⊂ T 2
t × T 4

a with D5 on T 2 × T 3
⊥ ⊂ T 2

t × T 4
a , three bound-states of D3 on

S1 × T 2 ⊂ T 2
t × T 4

a with D3 on S1 × T 2
⊥ ⊂ T 2

t × T 4
a . Altogether they transform in the

(8S ,22) of Spin(2, 6)× SU(2)1 × SU(2)2, while (8C ,21) is projected out by the orbifold, as
we will discuss more in detail below.

The low-energy excitations can be described in terms of open strings. For a bound-state
of N D-branes and as many (N ′ = N) ‘images’ under the asymmetric orbifold action, open
strings starting and ending on the D-branes of the same kind give rise to N = 4 vector
multiplets in the adjoint of U(N) while open string starting on the D-brane of one kind and
ending on their images give rise to N = 2 hypermultiplets in the bi-fundamental. Due to the
orbifold identification N = N ′, the latter end up in the adjoint of the diagonal group and
the two N = 4 vector multiplets are to be identified. In the end one has an N = 4 vector
multiplet, equivalent to an N = 2 vector multiplet and a hypermultiplet in the adjoint,
coupled to an additional adjoint hypermultiplet for ‘regular’ branes of this kind. Moreover
one expects to have ‘fractional’ branes wrapping only half of the circle acted on by the shift.
The main new feature with respect to the ‘regular’ branes is that they also couple to twisted
RR fields. Since in the asymmetric orbifolds we consider twisted RR fields are all massive
due to the shift, ‘fractional’ branes do not seem to require a different low-energy description.
The only macroscopic difference with respect to regular branes is their tension that affects
the value of the gauge coupling and the strength of the self-interactions among open strings.

A similar analysis applies to the Z3 case. Each brane has two images with N ′ = N ′′ = N .
In addition the three N = 4 vector multiplets that are identified with one another, there
are three hyper-multiplets in the bi-fundamentals that are also identified with one another.
One gets in the end an N = 2 vector multiplet and two adjoint hypermultiplets for ‘regular’
branes of this kind, as for Z2.

The Euclidean D-branes (instantons) in the Type IIB frame are in one-to-one corre-
spondence with the ‘physical’ D-branes in the Type IIA description.

According to [46] one has schematically the following bound states of Euclidean branes
in five dimensions that are invariant under the Z2 orbifold action:

[1] D(−1) + D3T 4
a
, [4] D1S1

t×S1
a

+ D3S1
t×T 3

a⊥
, [3] D1T 2

a
+ D1T 2

a⊥
. (5.1)

We shall explain in the following section that these eight fundamental bound states generate
a spinor representation of Spin(1, 5) ∼ SL(2,H(R)) with the structure of 1

αH⊕H. In four
dimensions the Euclidean D-brane can moreover wrap the additional circle and we have
similarly

[1] D1T 2
t

+ D5T 2
t ×T 4

a
, [4] D1S1×S1

a
+ D3S1×T 3

a⊥
, [3] D3T 2

t ×T 2
a

+ D3T 2
t ×T 2

a⊥
. (5.2)

5.1 Euclidean branes at the D4 symmetric point

Le us discuss the asymmetric orbifold projection of the T 4 Narain lattice in some more
details. For the string zero modes of momentum ~m and winding number ~n along T 4, we
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have the left and right projections

pL(~m,~n)2 = 1
2G
−1(~m+ (G+B)~n, ~m+ (G+B)~n) ,

pR(~m,~n)2 = 1
2G
−1(~m+ (−G+B)~n, ~m+ (−G+B)~n) . (5.3)

A D4 symmetric point is obtained at32

G = 1
2A =


1 −1

2 0 0
−1

2 1 −1
2 −

1
2

0 −1
2 1 0

0 −1
2 0 1

 , B =


0 1

2 0 0
−1

2 0 1
2

1
2

0 −1
2 0 0

0 −1
2 0 0

 , (5.4)

where A is the D4 Cartan matrix and G+B ∈ SL(4,Z). The condition pL(~m,~n) = 0 can
be solved for integral coefficients ~m = −(G+B)~n, and

pR(−(G+B)~n, ~n)2 = A(~n, ~n) . (5.5)

The projected zero modes are therefore in the D4 lattice.
The asymmetric orbifold projection, i.e. the O(4, 4) reflection pL → −pL, can be lifted

to a Spin(4, 4) reflection by choosing −1 ∈ SU(2) ⊂ Spin(4, 4). We choose −1 ∈ SU(2)1,
with the convention for the three trial fundamental representations

pL ∈ (21,22) , pR ∈ (23,24) ,
pSL ∈ (21,23) , pSR ∈ (22,24) ,
pCL ∈ (21,24) , pCR ∈ (22,23) , (5.6)

under SU(2)1×SU(2)2×SU(2)3×SU(2)4 ⊂ Spin(4, 4), so that the orbifold reflection for the
spinor representations is pSL → −pSL and pCL → −pCL for the positive and negative chirality
Majorana-Weyl spinors. Note that the ‘left projections’ pSL and pCL are not associated in
any way to the left mover strings. We use the notation left and right simply because these
left projections do transform under −1 ∈ SU(2)1 of the Z2 orbifold action while the right
projections are invariant.

The Euclidean D-brane charges along T 4 are the D(-1) charge q ∈ Z, the D1 charge
Qab ∈ ∧2Z4, and the D3 brane charge p ∈ Z, with the ‘left’ and ‘right’ projections

pSL(q,Q, p)2 = 1
2|G| 12

(
q − 1

2tr[BQ]− 1
4tr[B?B]p− |G|

1
2 p
)2

− 1
4tr

[
(Q+B?p) ·

(
|G|−

1
2G(Q+B?p)G+ (Q+B?p)?

)]
pSR(q,Q, p)2 = 1

2|G| 12

(
q − 1

2tr[BQ]− 1
4tr[B?B]p+ |G|

1
2 p
)2

− 1
4tr

[
(Q+B?p) ·

(
|G|−

1
2G(Q+B?p)G− (Q+B?p)?

)]
, (5.7)

32Recall that we define the left and right mementa without dimensions, such that they appear as
eπiτp

2
L−πiτ̄p

2
R in the Narain partition function.
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where |G| = detG and B?
ab = 1

2εabcdB
cd. The Z2 orbifold condition pSL(q,Q, p) = 0 can

be solved for integral coefficients at the D4 symmetric point and for the appropriate
parametrisation

q = q1 + q2 + q4 , Q =


0 −q2 −

∑4
i=1 qi −q1 − q2 −

∑4
i=1 qi

q2 +∑4
i=1 qi 0 q3 −q1

q1 + q2 −q3 0 q2∑4
i=1 qi q1 −q2 0

 , p = q4 ,

(5.8)
one obtains

pSR(q)2 = 2A−1(~q, ~q) . (5.9)

This shows that the branes localised in the twisted circle, combining a brane and its image
under the Z2 action, have R-R charges in H. Note that the image of a single D(-1) brane
under Z2 is not exactly a single D3 wrapping T 4 as suggested in (5.1), because the metric
G is not Euclidean (Gij 6= δij) and the B-field is not zero.

The Euclidean D-brane charges for brane wrapping both the twisted circle S1 and
cycles in T 4 are the D1 charges ~q ∈ Z4 and the D3 charges ~p ∈ Z4, with the left and right
projections

pCL (~q, ~p)2 = 1
2|G| 12

G
(
~q −

(
|G|

1
2G−1 +B?

)
~p, ~q −

(
|G|

1
2G−1 +B?

)
~p
)
,

pCR(~q, ~p)2 = 1
2|G| 12

G
(
~q +

(
|G|

1
2G−1 −B?

)
~p, ~q +

(
|G|

1
2G−1 −B?

)
~p
)
. (5.10)

The solution to pCL (~q, ~p) = 0 is integral at the D4 symmetric point and for the appropriate
parametrisation

q1 = −
4∑
i=1

p′i , q2 = −p′2 , q3 = p′1 + p′2, q4 = p′2 + p′4 ,

p1 = −
3∑
i=1

p′i , p2 = −p′2 − p′3 , p3 = −p′3 , p4 = p′4 , (5.11)

one has
pCR(p′)2 = 2A−1(~p ′, ~p ′) . (5.12)

The lattice of invariant R-R charges can therefore be defined as integral quaternions in H.
We shall now argue that there are also ‘fractional branes’ with R-R charges in 1

αH.
The quaternion ring structure is preserved by the γ-matrix product(

~q

~p

)
=
(

Q q1

−p1 Q?

)(
~m

~n

)
(5.13)

whose norm is one-half the product of the even norms. We found that the ‘geometric’
Euclidean D-brane charges introduced in [45] can be parametrised in terms of Hurwitz
quaternions p̃, p in H such that pCR(p̃)2 = 2|p̃|2 and pSR(p)2 = 2|p|2. With the parametrisation
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of a D4 lattice vector with a Hurwitz quaternions q ∈ H, with norm pR(q)2 = 2|q|2, one
finds that the γ-matrix product reduces to the quaternion product

p→ qp̃ . (5.14)

For a twisted state the string charge q ∈ 1
αH, and this product suggests that p must

generally be valued in 1
αH. This is indeed required by the T-duality ΓA3

0∗(α) transformation

(m, q, n)→ (m, q + bm, n+ b∗q + q∗b+ |b|2m) , (p̃, p)→ (p̃, p+ bp̃) , (5.15)

for b ∈ 1
αH. We find evidence that ΓA3

0∗(α) is a symmetry of the non-perturbative couplings,
and therefore that 1/3 BPS ‘fractional branes’ with p ∈ 1

αH exist.
The dimensionless action of the Euclidean D-brane instanton in five dimensions reads33

SD = 4π
g5

√
R̃s|p|2 + R̃s

−1|p̃− a∗p|2 = 2π
gs

√
R̃s

2|p|2 + |p̃− a∗p|2 , (5.16)

where R̃s is the radius modulus in string length, such that the twisted circle radius is
R(S1

t ) = R̃s
√
α′. At vanishing Wilson line a = 0, we find therefore that the smallest tension

for brane wrapped over the twisted circle with p̃ = 0 and p = 1
α is π

√
2R̃s
gs

, whereas one has
2π
gs

for the branes localised on two image points on the twisted torus with p̃ = 1 and p = 0.
In an asymmetric orbifold such that G,B ∼ 1 as in (5.4) (i.e. a ‘string-size’ torus) one

also expects to have ‘non-geometric’ (fractional) branes [90, 91] that admit a consistent
CFT description in terms of boundary states and string amplitudes on the disk with mixed
boundary conditions [92, 93] but lack a simple ‘large volume’ (supergravity) limit. The
non-perturbative corrections (4.57) indeed also include Euclidean D-branes with p ∈ 1

αH,
for which the minimal tension is π

√
2R̃s
gs

. Note that this is not the result one would obtain
from the naive expectation that ‘fractional’ branes in the asymmetric orbifold correspond
to branes wrapping only half of the twisted circle, because their charges would then be
half so as to give p ∈ 1

2H and a minimal tension of πR̃s
gs

. This factor of 1√
2 (instead of

1
2) between the minimal tensions of non-geometrical fractional branes and geometrical
ones is reminiscent of the analysis in [90] for a similar asymmetric orbifold of the bosonic
string. The lack of a clear geometric interpretation of these fractional branes was stressed
in [90, 91] in connection with the peculiar value of the mass-shift in the low-lying open
string spectrum.34 One may be able nonetheless to interpret them as branes wrapping only
half of the twisted circle with the additional requirement that |p|2 ∈ N, which should follow
from consistency of the boundary states in string theory. This issue deserves further study.

The same reasoning applies to the four-dimensional theory. The Euclidean D-brane
wrapping both T 2

t and cycles in T 4
a are the D1 charge q ∈ Z, the D3 chargeQ ∈ ∧2Z4, and the

D5 brane charge p ∈ Z, with the same left and right projections as in (5.7). One concludes
that the corresponding Euclidean brane charges p are valued in 1

αH. The Euclidean D-branes
wrapping the additional (untwisted) circle S1 and cycles in the asymmetric orbifolded T 4 are

33We use 1
g2
5

= |G|
1
2 R̃s

2g2
s

= R̃s
4g2

s
at the D4 symmetric point.

34The latter suggests an interpretation in terms of a ‘small’ angle as in [94].
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the D1 charges ~q ∈ Z4 and the D3 charges ~p ∈ Z4, with the same left and right projections
as in (5.10) and the corresponding R-R charges are valued in H.

This concludes the determination of the Euclidean D-brane charge lattice ( 1
αH)2 ⊕H2.

We have done the same analysis for the Z3 orbifold at the A2 ⊕A2 symmetric point

G = 1
2A =


1 −1

2 0 0
−1

2 1 0 0
0 0 1 −1

2
0 0 −1

2 1

 , B =


0 1

2 0 0
−1

2 0 0 0
0 0 0 1

2
0 0 −1

2 0

 , (5.17)

and one concludes in the same way that the D-brane charges are valued in ( 1
αH(3))2⊕H(3)2.

The expansion of the non-perturbative F̄2R2 coupling in (4.57) is consistent with this
definition, since the R-R charges appearing in the Fourier expansion are indeed valued in
( 1
αH(K))2 ⊕H(K)2. In [72] we will determine the non-perturbative R4 coupling assuming
the existence of a non-trivial U-duality group including the ‘small’ T-duality group ΓD4

0 (α)
and a minimal congruent subgroup ΓD6

1 (α) ⊂ Sp(6,H(K)).35 This automorphic function
indeed turns out to be invariant under the full T-duality group ΓD4

0∗(α) and admits D-brane
instanton corrections with R-R charges in ( 1

αH(K))2 ⊕H(K)2.
The construction of the low energy effective theory for such Euclidean D-brane instantons

is rather subtle in general. Consider for simplicity a ‘bound state’ of Euclidean D-branes
wrapping cycles in T 4, which is invariant under the orbifold Z2 action and preserves eight
supersymmeries. Its R-R charge satisfies then (5.8). Fixing moreover q1 = q2 = 0 without
loss of generality, one gets the configuration36

N
(
D(−1) + D3

)
+N ′D123 + (N +N ′)

(
D141 + D121

)
(5.18)

with the number of intersections

N2 +N ′(N +N ′) . (5.19)

Before the orbifold projection, this configuration is T-dual to37

N1D112 +N2D134 (5.20)

with
gcd(N,N ′) = gcd(N1, N2) , N2 +N ′(N +N ′) = N1N2 . (5.21)

Starting from the original brane configuration (5.18), tachyon condensation should lead to
a brane recombination [95, 96] such that the field content of the corresponding low energy
effective theory consists in a U(N1)×U(N2) N = 4 vector multiplet and a bi-fundamental
hyper-multiplet. For N ′ = 0 one has N1 = N2 = N and the Z2 orbifold action should
act on the gauge theory by exchange of the two types of Chan-Paton labels such that

35ΓD6
1 (α) is the subgroup of elements g = 1 mod α in Sp(6,H(K)).

36The ‘extra’ Euclidean D-strings are due to the off-diagonal components of the metric and B-field.
37Any vector Q in II4,4 is in the O(4, 4,Z) orbit of a canonical vector with the same gcd(Q) and the same

invariant norm (Q,Q) equal twice the number of intersections.
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the orbifolded theory is a U(N) gauge theory including one N = 2 vector multiplet and
two adjoint hypermultiplets. The same is true for N ′ = −N , that corresponds to taking
Euclidean D-strings with opposite orientation, but generically N1 6= N2 and one must a
priori analyse tachyon condensation in the orbifolded theory to derive the corresponding low
energy effective gauge theory. Even for N ′ = 0 or −N , it would be important to derive the
low energy effective theory from first principle as in [95, 96], but we expect the argument
above to apply, at least for N odd (or N not divisible by K in general).

5.2 NS5 and KK(6,1)

The solitonic branes on R1,3 × T 6 involve NS5 branes wrapping a five-cycle in T 6 and
KK(6,1) branes that wrap T 6 with a Taub-NUT fibration along one circle in T 6. For the
ZK orbifold, one may distinguish two cases. If the NS5 five-cycle only wraps a three-cycle in
T 4

a , then its image under the T-duality reflection on T 4
a is a KK(6,1) brane with a fibration

along the dual circle in T 4
a , so we have schematically

[4] NS5T 2
t ×T 3

a
+ KK(6, 1)T 6,S1

a⊥
. (5.22)

On the contrary if the NS5 brane wraps entirely T 4
a , it is mapped to itself under T-duality,

and so is a KK(6,1) brane with a fibration along T 2
t , so we have schematically

[2] NS5S1
t×T 4

a
, [2] KK(6, 1)T 6,S1

t
. (5.23)

Such solitonic branes invariant under the orbifold action must wrap K times T 4
a and have

therefore charges divisible by K. Only the KK(6,1) brane with a fibration along the twisted
circle can have integer charge because the Taub-NUT charge can be fractional since the peri-
odicity of the twisted circle is effectively divided by K. This is consistent with the property
that solitonic branes invariant under the orbifold ZK action generally have charges in

KF2(K)∗ = KII1,1 ⊕ II1,1[K]⊕ αH(K) . (5.24)

With the same argument, NS5 Euclidean branes must wrap a multiple of K times T 5

to be invariant under the ZK orbifold action. One expects to have fractional NS5 Euclidean
branes wrapping only T 5/ZK . Writing the tension for an NS5 brane wrapping k times
T 5/ZK (i.e. k

K times T 5) one gets

2πk
g2
4

= 2π
g2

s

√
GR̃sk

K
. (5.25)

This justifies that k must be integer for the non-perturbative coupling F(0,0).

6 Summary and conclusions

Let us try and summarise our results, draw some conlcusions and indicate some lines for
future investigation.

We have shown how to embed N = 6 supergravity in string theory using asymmetric
orbifolds, thus proving that only K = 2, 3 produce consistent models in D = 4, 5 while
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K = 4, 6 don’t, contrary to naive expectation.38 We have then discussed how supersymmetry
constrains the lowest higher-derivative corrections to the low-energy effective action. Relying
on chiral factorisation of the integrands and on the results of [58] for 4-point amplitudes of
open-string vector bosons at one-loop in (unoriented) D-branes configurations with N ≤ 4
supersymmetry in D = 4 we have computed the one-loop threshold corrections to R4, D2R4

and F̄2R2 couplings. We have determine the T-duality group ΓD4
0∗(α) of symmetries of the

one-loop perturbative coupling and of the spectrum of the theory.
Assuming that there is a non-trivial U-duality group and that the symmetry of the

perturbative coupling is a symmetry of the non-perturbative theory we have been able
to determine a unique non-pertubative F̄2R2 coupling consistent with supersymmetry
and the expected D-brane and NS5-brane instanton corrections. This conjecture will be
strengthen in [72], in which the non-perturbative R4 coupling will be determined upon
similar assumptions.

These non-perturbative couplings provide a precise prediction for the spectrum of
1/3 BPS D-branes and their instanton analogues, as well as the corresponding integration
measures (fluctuation determinants). But this approach is largely based on symmetries
and the very rigid structure of Hurwitz quaternions. It would be interesting to explicitly
construct the set of 1/3 BPS D-branes as boundary states of the conformal field theory,
derive precisely the corresponding low-energy effective theories and compute their partition
functions. A first analysis suggests that the effective theory for N such D-branes is U(N)
N = 2 superYang-Mills coupled to two adjoint hypermultiplets when the R-R charge q is
such that |gcrd(q)|2 = N2 for an integer N not divisible by the orbifold order K.

Another point that might be worth confirming is the uniqueness of string models with
N = 6 supersymmetry. We have been able to exclude asymmetric orbifolds with K = 4, 6
and in fact higher K as well as to prove that two known consistent constructions with
K = 3 are indeed equivalent in that the full perturbative (massless and massive) spectra
exactly coincide. The extension of these results to N = 5 supersymmetry, for which there is
no massless matter supermultiplet (except for gravitini that would enhance supersymmetry)
may also be worth pursuing.
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38At the classical level N = 6 supergravity can be defined also in D = 6 (which enjoys N = (2, 1)
local supersymmetry) but it is inconsistent at the quantum level due to chiral anomalies. Consistent
asymmetric orbifolds in string theory include massless gravitino multiplets in the twisted sectors that
enhance supersymmetry to N = 8 (i.e. N = (2, 2) non-chiral supersymmetry in D = 6).
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A Hurwitz quaternions and generalisations

One can identify the root lattice D4 with the set of Hurwitz quaternions that we write
H(2) = H. To distinguish the quaternions imaginary units from the complex imaginary i,
we write them ei, with the quaternion algebra

eiej = −δij + εij
kek . (A.1)

The Hurwitz quaternions is the ring over Z generated by the unit norm quaternions

1 , u1 = e1 , u2 = e2 , u3 = −1 + e1 + e2 + e3
2 . (A.2)

One verifies easily that the bilinear form

(q, p) = q∗p+ p∗q , (A.3)

with 1∗ = 1, e∗i = −ei defines the D4 Cartan matrix η for the simple roots (A.2), so that
H defined as the set of vectors q = n0 + niui with nµ ∈ Z can be identified with the D4
lattice with the even norm

ηµν = u∗µuν + u∗νuµ =


2 0 0 −1
0 2 0 −1
0 0 2 −1
−1 −1 −1 2

 . (A.4)

It follows that
∑
q∈H

e2πiτ |q|2 = 2E2(2τ)− E2(τ) = 1 + 24
∞∑
n=1

∑
d|n

d 6=0 mod 2

d e2πinτ = η4O8 = 2π2

3 ℘(1
2) , (A.5)

can be identified with the D4 Siegel-Narain theta series.
The ring H defines a maximal order as a ring of integers in H(Q) = Q[1, e1, e2, e3].

Importantly for us, there is a notion of prime decomposition in H [51]. The 24 unit norm
Hurwitz quaternions u satisfying |u|2 = 1 are invertible of inverse u∗. So all Hurwitz
quaternions are left and right divisible by any unit norm Hurwitz quaternion. They are ±1,
±ei and ±1±e1±e2±e3

2 and they form the order 24 finite group SL(1,H) = H×, which is also
called the binary tetrahedral subgroup of SU(2), the double cover of the alternative group
on four elements Alt4 ∈ SO(3).

There are also 24 Hurwitz quaternions of norm 2: ±1± ei and ±ei± ej for i 6= j. They
are all related by SL(1,H) and we shall write α = 1 + e1 for the representative of the unique
element of norm square two in H/H×.

One can define the notion of left and right divisibility by a Hurwitz quaternion and
we write respectively gcrd(q) and gcld(q) the greatest common right and left divisor of
some vector of quaternions q. It is only fixed up to right and left multiplication by a
unit norm Hurwitz quaternion. One says that a Hurwitz quaternion is prime if it is only
divisible by unit norm Hurwitz quaternions or by itself multiplied by a unit norm Hurwitz
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quaternion. Any Hurwitz quaternion not divisible by an integer N 6= 1 admits a unique
ordered factorisation in primes in H/H×. Each real prime factor of N 6= 1 admits however
an ambiguous prime factorisation in all quaternions p of norm square N . The prime
factorisation is induced by norm factorisation, i.e. for any element q ∈ H such that |q|2 is
divisible by n in N+, there exists a left (respectively right) divisor p of q in H of norm
square |p|2 = n.

One defines the Hurwitz zeta function

ζH(s) =
′∑

q∈H
|q|−2s = 24

∞∑
n=1

∑
d|n

d 6=0 mod 2

d n−s = 24(1− 21−s)ζ(s)ζ(s− 1) . (A.6)

One will also be interested in divisor sums over the quaternions∑
p|q∈H

|p|2s =
∑
p∈H

p−1q∈H

|p|2s =
∑
p∈H

qp−1∈H

|p|2s . (A.7)

This sum can be simplified by decomposing q over the real primes p dividing |q|2

|q|2 =
∏

p
pnp , q =

∏
p
$pnp ,ap , (A.8)

by realising that the divisor sum is Eulerian, i.e. is the product over real primes p dividing
|q|2 of the formula obtained for $pnp ,ap , up to the overall factor of 24 counting the unite
norm quaternions in H×. The formula is trivial for the powers of 2 because αn is the unique
element in H/H× of norm square 2n and

∑
p|αn∈H

|p|2s = 24
n∑
k=0
|αk|2s = 24

∑
d|2n

ds . (A.9)

For a prime p 6= 2 one writes a quaternion pn$pm,a of norm square p2n+m with $pm,a not
divisible by p. By construction $pm,a admits a unique decomposition in prime quaternions
up to left multiplication by H×, and so its divisor sum simplifies to

∑
p|$pm,a∈H

|p|2s = 24
m∑
k=0

psk = 24
∑
d|pm

ds . (A.10)

A generic left divisor of pn$pm,a can be written as $pk,bp
l$pr,a where k+ l ≤ n, r ≤ m and

$pr,a divides $pm,a, and the index b runs over σ1(pk) (the sigma divisor sum) independent
values for the independent quaternions of norm square pk up to left multiplication by H×.
This expression is however redundant because $pk,b can include powers of p and possibly
$pr,a. To enumerate them one considers the increasing norm square

$pk,b , 0 ≤ k ≤ n , 1 ≤ |$pk,b|2 ≤ pn ,

$pn,b$pk,a , 1 ≤ k ≤ m, pn+1 ≤ |$pn,b$pk,a|2 ≤ pn+m ,

$pk,bp
n−k$pm,a , 0 ≤ k ≤ n− 1 , pn+m+1 ≤ |$pk,bp

n−k$pm,a|2 ≤ p2n+m . (A.11)
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This decomposition is unique because the factor of $pk,a can always be absorbed in $pk,b

for a norm square less than pn, and the factor of pk can always be absorbed in $pn,b$pk,a

for a norm square less than pn+m. As a result one obtains

∑
p|pn$pm,a∈H

|p|2s = 24
(

n∑
k=0

1− pk+1

1− p
psk + 1− pn+1

1− p

m∑
k=1

ps(n+k) +
n−1∑
k=0

1− pk+1

1− p
ps(2n−k+m)

)

= 24
n∑
k=0

2n+m−2k∑
l=0

pk(s+1)+ls = 24
∑
d|pn

ds+1σs
(

p2n+m

d2

)
. (A.12)

In this way we obtain that for a general quaternion q ∈ H∑
p|q∈H

|p|2s = 24
∑
d|q

d 6=0 mod 2

ds+1σs( |q|
2

d2 ) . (A.13)

Any Hurwitz quaternion of even norm square is both left and right divisible by α, and
we can therefore define the principal two-sided ideal αH = Hα of Hurwitz quaternions
divisible by α. Left and right divisibility are not equivalent for other non-real prime Hurwitz
quaternions, and the only two-sided ideals in H are

αNH , NH , (A.14)

for any N ∈ N+.
One can define the general linear group GL(n,H) over the Hurwitz quaternions as

the set of invertible n by n matrices and the special linear group SL(n,H) as the set of
n by n matrices with unit Dieudonné determinant. The Dieudonné determinant is the
homomorphism GL(n,H)→ R+ that is defined as the norm of the product of the diagonal
components for an upper triangular (respectively lower triangular) n by n matrix over the
quaternions. For example for n = 2

γ =
(
a b

c d

)
, (A.15)

the real determinant det γ = 1 is

det γ =
∣∣ad− aca−1b

∣∣ , (A.16)

if a 6= 0, and det γ = |c b| otherwise. Extended over the real quaternions x = x0 + xiei
with xµ ∈ R, that we write H(R), one has the isomorphism SL(n,H(R)) ∼= SU∗(2n). For
n = 2 SU∗(4) = Spin(1, 5). Because αH is a two-sided ideal one can define the congruent
subgroup ΓA3

0 (α) ⊂ SL(2,H) of matrices γ with c ∈ αH, which will be identified as (part of)
the T-duality group in five dimensions.

One can also define the symplectic group Sp(2n,H) as the set of 2n by 2n matrices γ
over the Hurwitz quaternions with

γ =
(
A B

C D

)
,

(
D† −B†

−C† A†

)(
A B

C D

)
=
(

1 0
0 1

)
. (A.17)
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Extended over the reals one has the isomorphism Sp(2n,H(R)) ∼= SO∗(4n), with a symplectic
vector in H2n corresponding to a pseudo-real vector of SO∗(4n). For n = 2 its double cover
is Spin∗(8) = Spin(2, 6). Because αH is a two-sided ideal one can define the congruent
subgroup ΓD4

0 (α) ⊂ Sp(4,H) of matrices γ with C a two by two matrix in αH, that will be
identified as (part of) the T-duality group in four dimensions.

Quaternions orders for ZK orbifolds with K = 2, 3, 4, 6. These properties
generalise for other rings of quaternions over Z. The ones relevant for the ZK orbifold
theories with K = 2, 3, 4 and 6 are

H = H(2) = Z
[
1, e1, e2,

1 + e1 + e2 + e3
2

]
,

H(3) = Z
[
1, e1,

e1 +
√

3 e2
2 ,

1 +
√

3 e3
2

]
,

H(4) = Z
[
1, e1, e2, e3

]
,

H(6) = Z
[
1, e1 − e2, e2 − e3,

1 + e1 + e2 + e3
2

]
. (A.18)

One straightforwardly checks that they define rings over Z by computing the multiplication
table of the generators. The ring H(K) = Z[1, u1, u2, u3] defines an even lattice with bilinear
form ηµν defined as

q∗p+ p∗q = ηµνn
µmν , (A.19)

for
q = n0 + niui , p = m0 +miui , (A.20)

with coefficients nµ and mµ in Z. One identifies H(K) with the lattices

H(2) =D4 , H(3) =A2⊕A2 , H(4) =A1⊕A1⊕A1⊕A1 , H(6) =A2⊕A2[2] , (A.21)

where A2[2] is the lattice with bilinear form twice the Cartan matrix of A2. One defines the
reduced discriminant of H(K) as

√
det η = K ∈ N+. Both H(4) and H(6) are non-maximal

orders inside the Hurwitz quaternions, while H(3) is the unique maximal order of reduced
discriminant

√
det η = 3 [52].

These four rings have the property that factorisation in H(K) is induced by norm
factorisation [97], i.e. the property for any element q ∈ H(K) such that |q|2 is divisible
by n in N+, there exists a left (respectively right) divisor p of q in H(K) of norm square
|p|2 = n. This property implies that the discrete groups SL(n,H(K)) and Sp(2n,H(K))
satisfy arithmetic properties that are essential for the definition of modular forms [51].
According to [97] there are only twelve rings of quaternions over Z that define Euclidean
lattice with this property of factorised induced by norm factorisation. Among them, only
the four above are relevant to orbifold theories.

The Siegel-Narain partition function

ΛH(K)(τ) =
∑

q∈H(K)
e2πiτ |q|2 (A.22)
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can be written in terms of the weight two Eisenstein series E2(τ) as

ΛH(2)(τ) = 2E2(2τ)− E2(τ) = 1 + 24
∞∑
n=1

(∑
d|n
2/| d

d
)
e2πinτ = η4O8 ,

ΛH(3)(τ) = 1
2
(
3E2(3τ)− E2(τ)

)
= 1 + 12

∞∑
n=1

(∑
d|n
3/| d

d
)
e2πinτ = η4χ

SU(3)
0 χ

SU(3)
0

ΛH(4)(τ) = 1
3
(
4E2(4τ)− E2(τ)

)
= 1 + 8

∞∑
n=1

(∑
d|n
4/| d

d
)
e2πinτ

ΛH(6)(τ) = 1
4
(
6E2(6τ)− 3E2(3τ) + 2E2(2τ)− E2(τ)

)
, (A.23)

which shows explicitly that they are weight 2 modular forms with respect to the congruent
subgroup Γ0(K) ⊂ SL(2,Z). One can extract the number of quaternions of norm square
|q|2 = n in H(K) from these formula.

By construction, all the elements of norm square one are invertible so one defines the
group H(K)× = SL(1,H(K)) of unit quaternions in H(K). They are given by

H(2)× = Z2 n Alt4 ⊃ Z2 , H(3)× = Alt4 ⊃ Z3 , H(4)× = Q8 ⊃ Z4 , H(6)× = Z6 ,

(A.24)
where we write Altn for the alternating group to avoid confusion with the Cartan notation
An, and Q8 is the order eight quaternion group. The fact that ZK ⊂ H(K)× ensures that
the cyclic group of order K acts through the left multiplication in H(K) on the lattice
H(K)×. This distinguishes the four rings of quaternions listed here in the twelve rings with
factorisation induced by norm factorisation.39 This action allows to define the asymmetric
orbifold action ZK ⊂ SU(2) ⊂ SO(4) on T 4.

For each of these quaternion rings one can define principal two-sided ideals for non-real
quaternions of norm square dividing K. These two-sided ideal determine the possible
congruent subgroups of SL(n,H(K)) and Sp(2n,H(K)).

In H(3) the only element of norm square 3 in H(3)/H(3)× is α =
√

3 e1. One has the
principal two-sided ideal αH(3) and the dual lattice can be identified with the elements in
1
αH(3). The zeta function can be defined as

ζH(3)(s) =
′∑

q∈H(3)
|q|−2s = 12(1− 31−s)ζ(s)ζ(s− 1) , (A.25)

and the divisor sum simplifies to∑
p|q∈H(3)

|p|2s = 12
∑
d|q

d 6=0 mod 3

ds+1σs( |q|
2

d2 ) . (A.26)

39The eight others also define K-modular lattices for K = 5, 6, 7, 10, 12, 13, 22, but do not admit a ZK

automorphism defined by the left multiplication by unites.
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In H(4) there are three elements of norm square 2 in H(4)/H(4)×, that one chooses
as 1 + ei, and three elements of norm square 4 in H(4)/H(4)×, that one represents as 2,
1 + e1 + e2 + e3 and its conjugate. One has the three principal two-sided ideals (1 + ei)H(4)
that all include the principal ideal 2H(4). The dual lattice can be identified with 1

2H(4).
In H(6) there is only one element of norm square 2 in H(6)/H(6)×, that one chooses

as e2 − e3, and seven elements of norm square 3 in H(6)/H(6)×. Among the seven, only
e1 + e2 + e3 defines a two-sided ideal. There are seven elements of norm square 6 in
H(6)/H(6)×, but only α = 2e1 − e2 − e3 defines a two sided ideal, which is included in the
two ideal defined above. The two-sided ideals are therefore

(e2 − e3)NH(6) , (e1 + e2 + e3)NH(6) , αNH(6) = (2e1 − e2 − e3)NH(6) . (A.27)

The dual lattice can be identified with 1
αH(6).

B Explicit helicity supertraces and BPS states indices

In this appendix we give the helicity supertraces for the Z2 and Z3 orbifold theories and
derive from it the supersymmetry protected BPS indices.

B.1 Z2 case

The lattice of zero modes is F2(2)∗ with

F2(2) = II1,1 ⊕ II1,1[2]⊕D4 , (B.1)

and

BZ2
6 = 45

4

(
4
∫ 1

2

− 1
2

dτ1 ΛII1,1⊕II1,1[2]⊕D4 −
∫ 1

−1
dτ1 ΛII1,1⊕II1,1[ 1

2 ]⊕D∗4

)
,

BZ2
8 = 315

8

(
8
3

∫ 1
2

− 1
2

dτ1 ΛII1,1⊕II1,1[2]⊕D4

(
2 + 2E2(2τ)− E2(τ)

)
− 1

3

∫ 1

−1
dτ1 ΛII1,1⊕II1,1[ 1

2 ]⊕D∗4

(
4− 2E2(τ) + E2( τ2 )

))
, (B.2)

which is consistent with the property that for each untwisted charge Q ∈ F2(2) with
Q2 = 0 there is a single 1/2 BPS spin two supermultiplet, and two 1/2 BPS spin three half
supermultiplets for each twisted charge Q ∈ F2(2)∗ r F2(2) with Q2 = 0.

Let us define d( k6 )
j (Q) as the number of supermultiplets ψ ∈ Ek/6j with zero mode

Q ∈ F2(2)∗. The comparison of BZ2
8 with (2.48) gives for the untwisted charge Q ∈ F2(2)

with Q2 < 0 ∑
j∈N/2

(−1)2j(2j + 1)d( 1
3 )
j (Q) = 20

∑
d|Q

2
2

d=1 mod 2

d , (B.3)

and for the twisted states Q ∈ F2(2)∗ r F2(2) with Q2 < 0∑
j∈N/2

(−1)2j(2j + 1)d( 1
3 )
j (Q) = 4

∑
d|Q2

d=1 mod 2

d . (B.4)
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For the 1/3 BPS states BZ2
10 gives for the untwisted charge Q ∈ F2(2) with Q2 < 0

∑
j∈N/2

(−1)2j(2j + 1)j(j + 1)d( 1
3 )
j (Q) = 6

∑
2d|Q2

d3 , (B.5)

and for the twisted states Q ∈ F2(2)∗ r F2(2) with Q2 < 0

∑
j∈N/2

(−1)2j(2j + 1)j(j + 1)d( 1
3 )
j (Q) = −6

∑
2d|Q2

d3 , (B.6)

and therefore vanishes if Q2 is odd.
The states with charge Q ∈ F2(2)∗ with Q2 > 0 are 1/6 BPS, and one obtains from

the term in E4(−τ̄) in BZ2
10∑
j∈N/2

(−1)2j(2j + 1)d( 1
6 )
j (Q) = −2

∑
2d|Q2

d3 , (B.7)

for untwisted charges and
∑
j∈N/2

(−1)2j(2j + 1)d( 1
6 )
j (Q) = 2

∑
2d|Q2

d3 , (B.8)

for twisted charges, and therefore vanishes if Q2 is odd.

B.2 Z3 case

In this case
F2(3) = II1,1 ⊕ II1,1[3]⊕A2 ⊕A2 , (B.9)

and there is only one massless graviton multiplet at Q = 0, with d
( 1
2 )

1
2

= 1, one spin 2
multiplet for each untwisted charge and one spin 3/2 multiplet for each twisted charge.
This is indeed consistent with B6 and B8

B6 = 45
4

(
3
∫ 1

2

− 1
2

dτ1 ΛII1,1⊕II1,1[3]⊕H(3) −
1
3

∫ 3
2

− 3
2

dτ1 ΛII1,1⊕II1,1[ 1
3 ]⊕ 1

α
H(3)

)
,

B8 = 315
8

(∫ 1
2

− 1
2

dτ1 ΛII1,1⊕II1,1[3]⊕H(3)

(
4 + 33E2(3τ)− E2(τ)

2

)

− 1
9

∫ 3
2

− 3
2

dτ1 ΛII1,1⊕II1,1[ 1
3 ]⊕ 1

α
H(3)

(
4−

3E2(τ)− E2( τ3 )
2

))
. (B.10)

For the 1/3 BPS states, the expansion of B8 gives for the untwisted charge Q ∈ F2(3)
with Q2 < 0 ∑

j∈N/2
(−1)2j(2j + 1)d( 1

3 )
j (Q) = 10

∑
d|Q

2
2

3/| d

d , (B.11)
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and for the twisted states Q ∈ F2(3)∗ r F2(3) with Q2 < 0∑
j∈N/2

(−1)2j(2j + 1)d( 1
3 )
j (Q) =

∑
d| 3Q

2
2

3/| d

d . (B.12)

For the same states B10 gives for the untwisted charge Q ∈ F2(3) with Q2 < 0∑
j∈N/2

(−1)2j(2j + 1)j(j + 1)d( 1
3 )
j (Q) = 6

∑
d|Q2

2

d3 , (B.13)

and for the twisted states Q ∈ F2(3)∗ r F2(3) with Q2 < 0 and Q2/2 ∈ N∑
j∈N/2

(−1)2j(2j + 1)j(j + 1)d( 1
3 )
j (Q) = −3

∑
d|Q2

2

d3 , (B.14)

and zero if Q2/2 is fractional, i.e. if 3Q2/2 = ±1 mod 3.
The states with charge Q ∈ F2(3)∗ with Q2 > 0 are 1/6 BPS according to supergravity

black hole solutions, and one has then from B10 for Q ∈ F2(3) with Q2 > 0∑
j∈N/2

(−1)2j(2j + 1)d( 1
6 )
j (Q) = −2

∑
d|Q2

2

d3 , (B.15)

and for Q ∈ F2(3)∗ r F2(3) with Q2 > 0 and Q2/2 ∈ N∑
j∈N/2

(−1)2j(2j + 1)d( 1
6 )
j (Q) =

∑
d|Q2

2

d3 , (B.16)

and zero if Q2/2 is fractional.

C Elliptic functions and other useful formulae

In this appendix we recall the definitions of some elliptic functions and their properties
that are useful in the calculation of helicity supertraces in section 2.3 and the worldsheet
integrals in section 4.

We start from the Jacobi elliptic ϑ(z|τ) functions. They are solutions of the heat
equation on the torus (∂2

z − 4πi∂τ )ϑ(z|τ) = 0

ϑ[αβ](z|τ) =
∑
k∈Z

q(k−α)2/2e2πi(z−β)(k−α) . (C.1)

We will denote ∂zf by f ′. For our purposes, we are interested in four particular ϑ functions

ϑ[1/21/2](z|τ) = ϑ1(z|τ) = 2q1/8 sin(πz)
∞∏
n=1

(1− qn)(1− e2πizqn)(1− e−2πizqn) , (C.2)

ϑ[1/20 ](z|τ) = ϑ2(z|τ) = 2q1/8 cos(πz)
∞∏
n=1

(1− qn)(1 + e2πizqn)(1 + e−2πizqn) , (C.3)

ϑ[00](z|τ) = ϑ3(z|τ) =
∞∏
n=1

(1− qn)(1 + e2πizqn−1/2)(1 + e−2πizqn−1/2) , (C.4)

ϑ[ 0
1/2](z|τ) = ϑ4(z|τ) =

∞∏
n=1

(1− qn)(1− e2πizqn−1/2)(1− e−2πizqn−1/2) . (C.5)
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It is useful to notice that ϑ′1(0|τ) = 2πη(τ)3, where η(τ) is the Dedekind function

η(τ) = q
1
24

∞∏
k=1

(1− qk) . (C.6)

Another relevant function is the Weierstrass function

℘(z|τ) = 4πi∂τ log η(τ)− ∂2
z log ϑ1(z|τ) = −ϑ

′′
1(z)
ϑ1(z) + [ϑ′1(z)]2

ϑ1(z)2 + 1
3
ϑ′′′1 (0)
ϑ′1(0)

= 1
z2 +

∑
m,n

′
[ 1

(z + n+mτ)2 −
1

(n+mτ)2

] (C.7)

where the primed sum means that the term (m,n) = (0, 0) is excluded.
We also consider general Eisenstein series

Es,w(τ) = 1
2ζ(2s+ w)

∑
m,n

′ τ s2
|mτ + n|2s(mτ + n)w (C.8)

where E0,w(τ) = Ew(τ) are the holomorphic Eisenstein series for w ≥ 4 integer and Es,0(τ)
the real analytic Eisenstein series. The series Es,2(τ) satisfy the identity

Es,2(τ) = 2i
s+ 1∂τEs+1,0(τ) (C.9)

We also use the following relations40

E1+ε,0(τ) = 3
πε

+ 72 log(AGK)− 6 log(4π)
π

+ Ê1,0(τ) +O(ε) , Ê0,2(τ) = 2i∂τ Ê1,0(τ)
(C.10)

where Ê0,2 is the standard quasi-holomorphic Eisenstein series Ê2. More explicitly we have

Ê1,0(τ) = − 3
π

log(τ2|η(τ)|4) , Ê0,2(τ) = Ê2(τ) = −6i
π
∂τ log[τ2η

2(τ)] . (C.11)

The q expansion of Ê0,2 and E1,2 can be recasted in the form

Ê0,2 = 1− 24
∞∑
n=1

qn

1− qn −
3
πτ2

, (C.12)

E1,2 = τ2 −
45

2π3τ 2
2

∞∑
n=1

1
n3

1− qnq̄n
(1− qn)(1− q̄n) −

180
π

∞∑
n=1

1
n

qn(1 + qn)
(1− qn)3 −

90
π2τ2

∞∑
n=1

1
n2

qn

(1− qn)2

The Weierstrass function satisfies the identity

(℘′)2 = 4℘3 − 4
3π

4E4(τ)℘− 8
27π

6E6(τ) = 4(℘− e1)(℘− e2)(℘− e3) , (C.13)

where −ei are the values of the Weierstrass function at the half-periods

e1 = −℘(1
2) , e2 = −℘(1+τ

2 ) , e2 = −℘( τ2 ) . (C.14)
40With AGK the Glaisher-Kinkelin constant with logAGK = 1

12 − ζ
′(−1).
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The functions ei are related to the Jacobi functions by the identity

ei(τ) = 4πi∂τ log ϑi+1(0|τ)
η(τ) , (C.15)

and satisfy

e2
i = −iπ∂τei + 4πiei∂τ log η + 2π4

9 E4(τ) . (C.16)

Deriving (C.13) with respect to z we can write the second derivative of ℘ in terms of ℘ itself

℘′′(z) = 6℘2(z)− 2π4

3 E4(τ) . (C.17)

We will also use the following relation between Weierstrass and Jacobi functions [99, 100]

℘(z1)− ℘(z2) = 4π2η(τ)6ϑ1(z1 + z2)ϑ1(z2 − z1)
ϑ1(z1)2ϑ1(z2)2 . (C.18)

For the purpose of computing the helicity supertraces, it is also useful to express
derivatives of ϑ1 in terms of the first derivative of ϑ1 and the Weierstrass function using (C.7)

ϑ′′1(z) = ϑ′1(z)2

ϑ1(z) + ϑ
(3)
1 (0)

3ϑ′1(0)ϑ1(z)− ϑ1(z)℘(z) (C.19)

ϑ
(3)
1 (z) = ϑ′1(z)3

ϑ1(z)2 + ϑ
(3)
1 (0)
ϑ′1(0) ϑ

′
1(z)− ϑ1(z)℘′(z)− 3℘(z)ϑ′1(z) (C.20)

ϑ
(4)
1 (z) = ϑ′1(z)4

ϑ1(z)3 + 2ϑ(3)
1 (0)
ϑ′1(0)

ϑ′1(z)2

ϑ1(z) + ϑ
(3)
1 (0)2

3ϑ′1(0)2 ϑ1(z)− ϑ1(z)℘′′(z)− 4ϑ′1(z)℘′(z)

− 6℘(z)ϑ′1(z)2

ϑ1(z) − 2ϑ(3)
1 (0)
ϑ′1(0) ϑ1(z)℘(z) + 3ϑ1(z)℘(z)2 (C.21)

and also

ϑ′1(0) = 2πη3 , ϑ
(3)
1 (0) = −π3E2η

3 , ϑ
(5)
1 (0) = 10

3 π
5E2

2η
3 − 4

3π
5E4η

3 (C.22)

In section 2 we define
ξ(v) = sin πv

π

ϑ′1(0)
ϑ1(v) (C.23)

which is an even function satisfying ξ(0) = 1. One shows that its first two non-vanishing
derivatives give

ξ′′(0) =−1
3

[
ϑ′′′1 (0)
ϑ′1(0) +π2

]
= π2

3 (E2−1) , (C.24)

ξ(4)(0) = π4

5 + 2π2

3
ϑ′′′1 (0)
ϑ′1(0) +2

3

[
ϑ′′′1 (0)
ϑ′1(0)

]2

−1
5
ϑ

(5)
1 (0)
ϑ′1(0) = π4

15(3−10E2+2E4+5E2
2) . (C.25)

Let us now give some formulae about the torus propagator, defined as

G(z1, z2|τ) = G(z12|τ) = − log
∣∣∣∣ϑ1(z12|τ)
ϑ′1(0|τ)

∣∣∣∣2 + 2π Im2z12
Imτ . (C.26)
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It will be convenient to consider the Green function without zero mode as in [98]

G(z|τ) = G(z|τ)− 2 log 2π|η(τ)|2 = − log
∣∣∣∣ϑ1(z|τ)
η(τ)

∣∣∣∣2 + 2π Im2z

Imτ , (C.27)

which admits the regularised Fourier expansion

Gε(z|τ) = 1
π

∑
m,n

′ τ1+ε
2

|mτ − n|2+2ε e
2πi(mx+ny) , (C.28)

such that G(z|τ) = limε→0 Gε(z|τ). We will often refer to the torus propagator as the one
without the zero mode, since the zero mode drops out from the Koba-Nielsen factor by
momentum conservation.

In section 4 we also mention the annulus propagator GA, which is defined from the
torus propagator as

GA(z1, z2|τA) = 1
2[G(z1, z2|τA)+G(z1, 1−z̄2|τA)+G(1−z̄1, z2|τA)+G(1−z̄1, 1−z̄2|τA)]

(C.29)
where τA = iT/2 and it reduces to

GA(z1, z2|τA) = −4 log ϑ1(z12|τ)
ϑ′1(0|τ) + 4π Im2z12

Imτ (C.30)

where we used that the annulus can be obtained from the torus from the involution z̃ = 1−z.
In the one-loop amplitude we meet the function Y(z|τ) defined as

Y(z|τ) = −2[℘(z|τ)− (∂zG)2(z|τ)] (C.31)
= 2(∂zG)2(z|τ)− 2∂2

zG(z|τ)− 4πi∂τ log[τ2 η
2(τ)]

where in the latter equation we used the identity

℘(z|τ)− ∂2
zG(z|τ) = 4πi∂τ log[η(τ)√τ2] . (C.32)

Using the definition of the torus propagator and the heat equation for ϑ1, the function Y
can be written in a form in which the absence of double pole is manifest

Y(z|τ) = 8πi
[
∂τ log ϑ1(z|τ)

η(τ) + Imz
τ2

∂z log ϑ1(z|τ) + iπ
Im2z

τ2
2

]
(C.33)

since the terms [ϑ′1(z)]2, which should yield the double pole, cancel.
One defines the Szegö kernel as

Sα(z1, z2; τ) = Sα(z12) =


S(z12) = −∂z1G(z12) if α = 1,
ϑα(z12)ϑ′1(0)
ϑ1(z12)ϑα(0) if α > 1.

(C.34)

When α > 1 the Szegö kernel satisfies the identities

S2
i+1(z) = ℘(z) + ei (C.35)

Si+1(z12)Si+1(z23) = Si+1(z13)ω123 − ∂z1Si+1(z13) (C.36)
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where

ω123 = S(z12) + S(z23) + S(z31) = ∂z1 log ϑ1(z12)+∂z2 log ϑ1(z23)+∂z3 log ϑ1(z31) . (C.37)

A variant of Fay’s trisecant identity gives

Ω123 ≡ S(z12)S(z23) + S(z23)S(z31) + S(z31)S(z12) = −1
4 (Y(z12) + Y(z23) + Y(z31)) .

(C.38)

D Details on the 1-loop open string amplitude

In this appendix with simplify the one-loop correlators (4.18), (4.19), (4.20) for a choice of
polarisations [−−++] such that

a−1 · a
−
2 = a+

3 · a
+
4 = k2 · a+

3 = k2 · a+
4 = k3 · a−1 = k3 · a−2 = 0 . (D.1)

One can then simplify GL
2-bil[rs] in (4.20) as

a1·P1 a2·P2 = 1
4(f1f2)(2S2

12 + Ω123 + Ω412) . (D.2)

We then compute the field strength traces using spinor-helicity formalism, obtaining that
the only non vanishing traces of f ’s are

(f1f2f3f4) = (f1f3f2f4) = (f1f3f4f2) = 1
4(f1f2)(f3f4) = 1

4〈12〉2[34]2 . (D.3)

GL
4-bil,conn[rs] in (4.18) can be simplified using the Fay trisecant identity (C.38) and

ω123ω341 +ω124ω431 +ω132ω241 +ω234ω412 +ω243ω312 +ω324ω413 = −
∑
i<j

S2
ij−

∑
i

Ωi , (D.4)

where we introduced for short Ωi = Ωi+1,i+2,i+3. Finally we can write almost all the
contributions in terms of Y functions

GL
4-bil,conn[rs] = −3〈12〉2[34]2F [rs] (D.5)

GL
4-bil,disc[rs] = 〈12〉2[34]2

[
F [rs]−

1
2E [rs](℘12 + ℘34)

]
(D.6)

GL
2-bil[rs] = 〈12〉2[34]2E [rs]

1
2S

2
12 + 1

2S
2
34 −

1
8
∑
i<j

Yij

 (D.7)

Combining the three contributions the double poles cancel and using that
F [rs] = −1

2℘(ur,s)E [rs], we finally get (4.22).

E Elliptic integrals

In this section we compute the relevant integrals that appear in section 4.

– 70 –



J
H
E
P
0
6
(
2
0
2
2
)
0
8
8

E.1 Few simple integrals

We start with vanishing integrals. Using the Fourier expansion of the propagator (C.28) it
is straightforward to prove that the integral of G and its derivatives vanish∫

d2z

τ2
G(z|τ) = 0 ,

∫
d2z

τ2
∂kzG(z|τ) = 0 . (E.1)

One can also prove that the integral of Y vanishes using (C.31). The integral of ℘ can be
computed using the identity (C.32)∫

d2z

τ2
℘(z|τ) = 4πi ∂τ log[η(τ)√τ2] = −π

2

6 Ê2(τ) . (E.2)

The integral of (∂zG)2 can be performed using the Fourier expansion (C.28)∫
d2z

τ2
(∂zGε)2 =

∑
m,n

′ ∑
m′,n′

′
∫ 1

0
dx

∫ 1

0
dy

e2πi[(m+m′)x+(n+n′)y] τ2ε
2

(mτ−n)(m′τ−n′)|mτ−n|2ε|m′τ−n′|2ε

= −τ2ε
2
∑
m,n

′ 1
(mτ−n)2|mτ−n|4ε

= −2ζ(2 + 4ε)E2ε,2(τ)

=
ε→0
−π

2

3 Ê2(τ) . (E.3)

Combining these results with (C.31) we get∫
d2z

τ2
Y(z|τ) = 0 . (E.4)

E.2 The integral of G(z)Y(z)

In this section we compute the integral (4.31)

I(τ) ≡
∫
d2z

τ2
G(z)Y(z) . (E.5)

Using (C.33) one finds that I(τ) converges, and it will be convenient to use

I(τ) =
∫
d2z

τ2
G(z)

[
−8π2 Im2z

τ2
2

+ 8πi∂τ log ϑ1(z)
η

+ 8πi Imz
τ2

∂z log ϑ1(z)
]
, (E.6)

which is manifestly free of double pole divergence. We then write ∂z log ϑ1 and ∂τ log ϑ1/η

as q-expansions

∂z log ϑ1(z|τ) = −iπ − 2πie2πiz

1− e2πiz − 2πi
∞∑
`=1

q`

1− q`
(
e2πi`z − e−2πi`z

)
(E.7)

∂τ log ϑ1(z|τ)
η(τ) = πi

6 − 2πi
∞∑
`=1

q`

(1− q`)2 (e2πiz` + e−2πiz`) (E.8)

Considering that the integral of G vanishes and also that∫
d2z

τ2
G(z)Im(z) =

∫
d2z

τ2
G(1 + τ − z)Im(1 + τ − z) = −

∫
d2z

τ2
G(z)Im(z) = 0 (E.9)
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when we insert the expansions (E.7) and (E.8) in (E.6) we get

I(τ) = 16π2
∫
dx dy G(x, y)

{ ∞∑
`=1

q`

(1−q`)2 (e2πiz`+e−2πiz`) +
∞∑
`=1

yq`

1−q` (e
2πi`z−e−2πi`z)+

+ y e2πiz

1−e2πiz −
y2

2

}
= 16π2[I(1)(τ) + I(2)(τ) + I(3)(τ) + I(4)(τ)] .

(E.10)
We compute the contributions I(i) separately using the Fourier expansion of the propagator
in (C.28), where we set ε = 0 directly because all the integrals converge. We first compute
the following integrals∫

d2z

τ2
G(z)e2πiz` = τ2

2π2i

∑
n∈Z

q` − 1
|n+ `τ |2(n+ `τ)∫

d2z

τ2
G(z) y e2πiz` = τ2

2π2i

∑
n∈Z

[
q`

|n+ `τ |2(n+ `τ) + 1− q`
2πi|n+ `τ |2(n+ `τ)2

] (E.11)

Using the above formulae we can easily compute I(1)(τ) and I(2)(τ) obtaining

I(1)(τ) + I(2)(τ) = τ2
2π2i

∞∑
`=1

∑
n∈Z

[
− q`

|n+ `τ |2(n+ `τ) + 1 + q`

2πi|n+ `τ |2(n+ `τ)2

]
. (E.12)

The third term can be computed similarly to (E.11) expanding the denominator 1− e2πiz

I(3)(τ) = τ2
2π2i

∞∑
`=1

∑
n∈Z

[
q`

|n+ `τ |2(n+ `τ) + 1− q`
2πi|n+ `τ |2(n+ `τ)2

]
. (E.13)

The last integral reads

I(4)(τ) = −1
2

∫
dx dy G(x, y) y2 = τ2

π(2πi)2

∑
n 6=0

1
|n+ 0τ |2(n+ 0τ)2 . (E.14)

Combining all the I(i) we get an Eisenstein series
4∑
i=1
I(i)(τ) = − 1

4π3

∑
`,n

′ τ2
|n+ `τ |2(n+ `τ)2 = − π

180E1,2(τ) (E.15)

and finally the result

I(τ) = −4π3

45 E1,2(τ) . (E.16)

F Lattices and Eisenstein series

In this appendix we shall derive some properties of the SL(2,H) and Sp(4,H) real analytic
Eisenstein series that appear as one-loop couplings defined as Siegel-Narain theta lifts. The
discrete groups and their congruent subgroups are identified as automorphism groups of even
lattices. For simplicity we consider only the Hurwitz quaternions, but the formulae extend
straightforwardly to the Eisenstein quaternionsH(3). All computations and proofs are indeed
valid for K = 3. In this section we write R for the radius Rs or R̃s in string units for short.

– 72 –



J
H
E
P
0
6
(
2
0
2
2
)
0
8
8

F.1 SL(2,H) as O(II1,1 ⊕D4)

A pseudo-real Weyl spinor of Spin(1, 5), or equivalently a real SU(2) doublet of Weyl
spinor of Spin(1, 5), can be realised as a doublet of quaternions through the homomorphism
Spin(1, 5) = SU∗(4) = SL(2,H(R)). A vector of SO(1, 5) is then a Hermitian two by two
matrix over the quaternions.

The even lattice II1,1 ⊕D4 can be realised in this way as the set the Hermitian two by
two matrix over the Hurwitz quaternions

Q =
(
m q

q∗ n

)
∈M0

2 with n ∈ Z , m ∈ Z , q ∈ H . (F.1)

The even bilinear form is (Q,Q) = 2 detQ = 2mn − 2|q|2. The automorphism group of
M0

2 = II1,1 ⊕D4 is SL(2,H)/Z2, with the transformation

Q→ γ†Qγ . (F.2)

Any vector Q of vanishing norm factorises in two spinors as Q = qq† for a two-vector q of
Hurwitz quaternions. One can always find γ ∈ SL(2,H) for detQ = 0 such that

γQ =
(

gcd(Q) 0
0 0

)
(F.3)

and γq = (gcrd(q), 0) with |gcrd(q)|2 = gcd(Q). The property of factorisation induced by
norm factorisation summarised in (A.23) implies that for a given gcd(Q) ∈ N there are

24
∑

d|gcd(Q)
2/| d

d (F.4)

distinct gcrd(q) ∈ H such that |gcrd(q)|2 = gcd(Q). For a homogeneous function of degree
−s, f(λQ) = λ−sf(Q), one has therefore the factorisation

′∑
q∈H2

f(qq†) =
′∑

Q∈M0
2

detQ=0

(
24

∑
d|gcd(Q)

2/| d

d

)
f(Q) = ζH(s)

2ζ(s)

′∑
Q∈M0

2
detQ=0

f(Q) (F.5)

where ζH(s) is the zeta function over the Hurwitz quaternions (A.6). It is convenient to
introduce complete zeta functions satisfying functional relations. One defines the completed
Riemann zeta function as

ξ(s) = π−
s
2 Γ( s2)ζ(s) , (F.6)

and we introduce the completed zeta function over the Hurwitz quaternions as

ξH(s) = (
√

2π)−sΓ(s)ζH(s) . (F.7)

It satisfies the functional identity ξH(2 − s) = ξH(s) and is a meromorphic function of s
with simple poles at s = 0, 2 of residues −1 and 1. Its zero’s are located on the two lines
Re[s] = 1

2 and Re[s] = 3
2 according to Riemann hypothesis.41

41There is the generalisation ξH(K)(s) =
(
K
4

) s
2 π−sΓ(s)ζH(K)(s).
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The perturbative lattice is II1,1[2]⊕D4, it is defined by the set of Hermitian two by
two matrices over the Hurwitz quaternions with

Q =
(
m q

q∗ n

)
∈M1

2 with n ∈ Z , m ∈ 2Z , q ∈ H , (F.8)

that we write M2 or M2(2) in the main text. We also introduce notations for the dual
lattices

Q =
(
m q

q∗ n

)
∈M2

2 = 2M1∗
2 with n ∈ Z , m ∈ 2Z , q ∈ αH , (F.9)

Q =
(
m q

q∗ n

)
∈M3

2 = 2M∗2 with n ∈ 2Z , m ∈ 2Z , q ∈ αH , (F.10)

with α any Hurwitz quaternion of norm square 2, e.g. α = 1+e1. Checking the representation
on M1

2, one finds that the congruent subgroup of ΓA3
0 (α) ⊂ SL(2,H) preserving II1,1[2]⊕D4

is defined as
γ =

(
a b

c d

)
∈ SL(2,H) , c = 0 modα . (F.11)

As explained in appendix A, this condition is consistent with the group multiplication
because αH is a two-sided ideal and both bc and ca are in αH. The automorphism group
of the lattice II1,1[2]⊕D4 is in fact the conjugate SL(2,H) group

γ =
(
a b

c d

)
∈
(

1 0
0 α

)
SL(2,H)

(
1 0
0 1

α

)
, c ∈ αH , b ∈ 1

α
H . (F.12)

We write this group ΓA3
0∗(α), as the group generated by ΓA3

0 (α) and the element
(

0 − 1
α

α 0

)
.

The integral spinors of ΓA3
0 (α) are the vectors in αH⊕H, and (F.5) generalises to

′∑
q∈αH⊕H

f(qq†) = ζH(s)
2ζ(s)

′∑
Q∈M1

2
detQ=0

f(Q) . (F.13)

F.2 SL(2,H) Eisenstein series

One defines the SL(2,H) Eisenstein series for Re[s] > 4 as the absolutely convergent sums

Esl2H
αH⊕H,s = 1

ζH(s)

′∑
q∈αH⊕H

|v−1†(q)|−2s , Esl2H
H2,s = 1

ζH(s)

′∑
q∈H⊕H

|v−1†(q)|−2s , (F.14)

with the zeta function over the Hurwitz quaternions (A.6). By construction Esl2H
H2,s is

invariant under SL(2,H), while Esl2H
αH⊕H,s is invariant under the congruent subgroup ΓA3

0 (α).
The Eisenstein series have analytic continuations to meromorphic functions of s ∈ C, with
poles at s 6= 4 and a countable set of points on the lines Re[s] = 1

2 and 3
2 corresponding

to the non-trivial zeros of the Riemann zeta function. They are normalised such that
Esl2H
αH⊕H,0 = Esl2H

H2,0 = 1.
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Writing

|v−1†(q)|2 = R−1|q + ap|2 +R|p|2 , (F.15)

for R ∈ R+ and a ∈ H(R), one finds the relation42

Esl2H
αH⊕H,s(R

2, a) = 2−
s
2Esl2H

H2,s(R
2/2, α−1a) . (F.16)

Using Poisson summation formula one computes that

Esl2H
αH⊕H,s = 2−sRs + ξH(s− 2)

4ξH(s) R4−s (F.17)

+ 2−
s
2

24R2

ξH(s)

′∑
q∈H

∑
d|q

d=1 mod 2

(
ds−1

|q|s−2σs−2
(
|q|2
d2

))
Ks−2(2πR|q|)eiπ(q∗a+a∗q)

where one uses (A.13). In this form the analytic continuation is manifest and this asymptotic
expansion is absolutely convergent for almost all s. It satisfies that 2 s2 ξH(s)Esl2H

αH⊕H,s is
symmetric under s→ 4− s.

The same function is obtained by the Siegel-Narain theta series

∫
F2

d2τ

τ 2
2
E s−3

2 ,2(τ)ΓII1,1[2]⊕D4 = (2− 2s)ξ(s)Esl2H
αH⊕H,s . (F.18)

The even quadratic form is then defined as (Q,Q) = 2 detQ and

pL(Q) = 1√
2

(
m+ q∗a+ a∗q + |a|2n

R
+Rn

)
,

pR(Q)2 = 1
2

(
m+ q∗a+ a∗q + |a|2n

R
−Rn

)2

+ 2|q + an|2 . (F.19)

One computes the Fourier expansion using the Rankin-Selberg unfolding method, the
formula
∫ ∞

0

1
4π√τ2x

e
− π
τ2
x−π2 τ2x

(
πτ2xK s

2
(πτ2x2 )+

(
πτ2x−s+1

)
K s−2

2
(πτ2x2 )

)
=Ks−2(2πx) , (F.20)

and the property that the regularised integral of the product of two SL(2,Z) Eisenstein
series vanishes [101]. Recall that

∫
F2

d2τ
τ 2
2

must be regularised to take into account the
split of the one-loop string amplitude in the sum of the Wilsonian effective action and the
non-analytic component of the amplitude.

42This is the same analogy as for the Eisenstein series Es,w( τ2 ) for the sum over m ∈ 2Z.
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For Re[s] > 4 one can unfold the domain F2 using the Poincaré sum expression for
E s−3

2 ,2(τ) ∫
F2

d2τ

τ 2
2
E s−3

2 ,2(τ)ΓII1,1[2]⊕D4

= π−
s
2 Γ( s2)

( ′∑
Q∈II1,1[2]⊕D4

Q2=0

1
(2pR(Q)2) s2

− 1
2

′∑
Q∈II1,1[ 1

2 ]⊕D∗4
Q2=0

1
(2pR(Q)2) s2

)

= π−
s
2 Γ( s2)(1− 2s−1)

′∑
Q∈M2

2
detQ=0

1(
tr(v−1†Qv−1)2) s2

= (2− 2s)ξ(s) 1
ζH(s)

′∑
q∈αH⊕H

1
|v−1†(q)|2s . (F.21)

In this last step we use the property that any Q ∈ M1
2 with detQ = 0 belongs to M2

2,
and any such Q factorises into Q = qq†, with q of right greatest common divisor over H
a Hurwitz quaternion gcrd(q) of norm square |gcrd(q)|2 = gcd(Q), see equation (F.13).
Applying the same steps one computes that∫

F2

d2τ

τ 2
2
E s−3

2 ,2(2τ)ΓII1,1[2]⊕D4 = 0 , (F.22)

for Re[s] > 4, and therefore for all s by analytic continuation. This is a consequence of the
transformation property of the Siegel-Narain theta series under inversion τ → − 1

τ .
The lattice II1,1 ⊕D4 can be identified in the same way as M0

2 and one obtains that∫
F2

d2τ

τ 2
2
E s−3

2 ,2(2τ)ΓII1,1⊕D4 = 2
1−s

2 (2s−1 − 1)ξ(s)Esl2H
H2,s , (F.23)

while ∫
F2

d2τ

τ 2
2
E s−3

2 ,2(τ)ΓII1,1⊕D4 = 0 . (F.24)

This equation is true for any SL(2,Z) modular form of weight two, and is ensures that
the large twisted circle limit of the orbifold theory amplitude gives back the maximally
supersymmetric amplitude.

One can also relate these Eisenstein series to Poincaré sums. An element (q, p) ∈ αH⊕H
divided on the left by its left greatest common divisor d ∈ H is in the orbit of (0, d) if
d−1q ∈ αH, and in the orbit of (d, 0) if d−1q /∈ αH. Using this one obtains that

Esl2H
αH⊕H,s =

∑
γ∈ΓA3

0 (α)/P1

Rs|γ + 2−s
∑

γ∈ΓA3
0 (α)/P̄1

Rs

(R2 + |a|2)s
∣∣∣∣
γ

,

Esl2H
H2,s =

∑
γ∈ΓA3

0 (α)/P1

Rs|γ +
∑

γ∈ΓA3
0 (α)/P̄1

Rs

(R2 + |a|2)s
∣∣∣∣
γ

, (F.25)

where RT = R
R2+|a|2 is the T-dual radius and P1 (respectively P̄1) is the parabolic stabiliser

of (1, 0) (respectively (0, 1)) in ΓA3
0 (α).
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F.3 ΓD4
0 (α) ⊂ Sp(4,H) as O(II1,1 ⊕ II1,1[2]⊕D4)

Before to define Eisenstein series, we will describe the three fundamental representations of
Spin(2, 6) and the corresponding discrete representations of the double cover of Sp(4,H).
For short we will use the same notation Sp(4,H) for the double cover.

One defines g ∈ Sp(4,H) from the two by two matrices A, B, C and D over H such that

g =
(
A B

C D

)
,

(
D† −B†

−C† A†

)(
A B

C D

)
=
(

1 0
0 1

)
. (F.26)

A symplectic vector k of Sp(4,H) is a Weyl spinor of Spin(2, 6) that can be defined as a real
SU(2) doublet of Weyl spinors. We write the vector k ∈ H4 as a doublet k = (q,p) of vector
q and p in H2, consistently with the decomposition of g in two by two matrices introduced
above. The Weyl spinor representation admits the pure imaginary invariant bilinear form

k†ωk = q†p− p†q ∈ Im[H] (F.27)

that corresponds to the SU(2) triplet of SO∗(8) singlets obtained by applying the SO∗(8) bi-
linear form to the SU(2) doublet of vectors in the real representation (2,8) of SU(2)×SO∗(8).

The negative chirality spinor k̃ transforms in a representation of a trial SO∗(8) ⊂
Spin(2, 6). The algebraic relation between the two representations can only be written
algebraically for the block diagonal matrix and the upper and lower triangular matrices
separately, as(

A 0
0 A−1†

)
→
(
A−1† 0

0 A

)
,

(
1 B

0 1

)
→
(

1 B̃

0 1

)
,

(
1 0
C 1

)
→
(

1 0
C̃ 1

)
,

(F.28)
with B and C Hermitian and the tilde involution defined for Q =

(m̃ q
q∗ ñ

)
as

Q̃ ≡
(

ñ −q
−q∗ m̃

)
. (F.29)

There is no algebraic relation for the general matrix
(A B
C D

)
because the two representations

are defined for distinct double covers of the adjoint group Sp(4,H)/Z2. The tilde involution
satisfies

QQ̃ = Q̃Q = detQ1 , (F.30)

and
Q→ A−1†QA−1 , Q̃→ AQ̃A† , (F.31)

for A ∈ SL(2,H), which ensures that (F.28) is locally a homomorphism.
One defines the SO(2, 6) vector Q in

F0
2 = Z⊕M0

2 ⊕Z = II2,2 ⊕D4 (F.32)

with Q ∈M0
2 transforming as above under SL(2,H) and the two integers m, n, such that

the unipotent elements act on Q = (n,Q,m) as

(n,Q,m)→
(
n,Q+B̃n,m−trBQ−detBn

)
, (n,Q,m)→

(
n+trCQ̃−detCm,Q−Cm,m

)
.

(F.33)
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This action is consistent with the action of Gamma matrices acting on Dirac spinors (k, k̃)
as the matrix

Γ(Q) =


0 0 Q̃ m

0 0 n −Q
Q m 0 0
n −Q̃ 0 0

 , (F.34)

which satisfies {
Γ(Q),Γ(Q′)

}
= (Q,Q′)1 , (F.35)

for the bilinear form
(Q,Q) = 2(mn+ detQ) . (F.36)

As proved in [51], a null symplectic vector k ∈ H4 satisfying k†ωk = 0 is in the Sp(4,H)
orbit of a canonical symplectic vector γk = (gcrd(k), 0, 0, 0) where gcrd(k) is the greatest
right divisor of k. For any null vector Q ∈ F0

2, there exists a null symplectic vector k such
that Q · k = 0. Using the constraint on γk one obtains that

γQ =
(

0,
(

0 0
0 n

)
,m

)
, (F.37)

and using then the γk Levi stabiliser SL(2,Z) ⊂ Sp(2,H) n (H2 ⊕Z)
1 0 0 0
0 a 0 b

0 0 1 0
0 c 0 d




1 −q∗ k + q∗p −p∗

0 1 −p 0
0 0 1 0
0 0 q 1

 (F.38)

on γQ one obtains that there exists γ′ such that

γ′Q =
(

0,
(

0 0
0 0

)
, gcd(Q)

)
. (F.39)

We define the theta congruent subgroup ΓD4
0 (α) ⊂ Sp(4,H) such that43

g =


∗ ∗ ∗ ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ ∗ ∗ ∗

 mod α . (F.40)

It is conjugate to the congruent subgroup with C = 0 mod α, but it will be more convenient
to use this basis in which the block diagonal subgroup of parameter A is the five-dimensional
(restricted) T-duality group ΓA3

0 (α) ⊂ SL(2,H).
One defines then the sublattices

F1
2 = F2 = Z⊕M1

2 ⊕Z = II1,1 ⊕ II1,1[2]⊕D4 ,

F2
2 = 2F∗2 = 2Z⊕M2

2 ⊕ 2Z = 2II1,1 ⊕ II1,1[2]⊕ 2D∗4 (F.41)
43Here the ∗ state for any Hurwitz quaternion, just like one would write (ac bd) = (∗0∗∗) mod N for the

standard congruent subgroup Γ0(N) ⊂ SL(2,Z).
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and
F3

2 = 2F0∗
2 = 2Z⊕M3

2 ⊕ 2Z = 2II2,2 ⊕ 2D∗4 . (F.42)

The lattice F0
2 and its dual are invariant under Sp(4,H), while F1

2 = F2 and its dual are
invariant under the congruent subgroup ΓD4

0 (α) ⊂ Sp(4,H). The ΓD4
0 (α) symplectic vector

can be defined in H4, H2 ⊕ (αH)2 or (αH)4.
One can moreover define a Fricke duality of the lattice F2, because it is 2-modular, i.e.

that its dual is
√

2 times F2 up to an irrational rotation in SO(2, 6) [71]. This reflects into
the rational symplectic matrix

γF =


0 0 − 1

α∗ 0
0 0 0 −α
α 0 0 0
0 1

α∗ 0 0

 ∈ Sp(4,H(Q)) (F.43)

that preserves H2 ⊕ (αH)2 and that acts on Q as
m̃ q m 0
q∗ ñ 0 m

n 0 −ñ q

0 n q∗ −m̃

→


0 0 −α∗ 0
0 0 0 − 1

α
1
α 0 0 0
0 α∗ 0 0



m̃ q m 0
q∗ ñ 0 m

n 0 −ñ q

0 n q∗ −m̃




0 0 − 1
α∗ 0

0 0 0 −α
α 0 0 0
0 1

α∗ 0 0



=


2ñ −α−1qα n 0

−(α−1qα)∗ m̃
2 0 n

m 0 − m̃
2 −α−1qα

0 m −(α−1qα)∗ −2ñ

 . (F.44)

Note that q → p−1qp is an automorphism of H for p = α, but not for a Hurwitz quaternion
of norm |p|2 > 2 [51]. This rational symplectic transformation is an automorphism of F1

2
and F2

2, as well as the symplectic module H2 ⊕ (αH)2. Although γF /∈ Sp(4,H). One
checks that γFΓD4

0 (α)γF = ΓD4
0 (α) and we define the Fricke theta group ΓD4

0∗(α) as the group
generated by ΓD4

0 (α) and γF. We find that the T-duality group of the theory is the Fricke
theta group ΓD4

0∗(α).
Fricke duality acts on the projective coordinates44

t = B + iRv−1v−1† =
(

b1 + iRR̃−1 β + iRR̃−1a

β∗ + iRR̃−1a∗ b2 + iR(R̃+ R̃−1|a|2)

)
(F.45)

as

t→ −
( 1
α∗ 0
0 α

)
t−1
( 1
α 0
0 α∗

)
. (F.46)

44In terms of the torus complex structure U and Kähler modulus T one has

t =
(

U b+ Ua

b∗ + Ua∗ T + U |a|2

)
.
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There are two orbits for the ΓD4
0 (α) symplectic vector. Either kgcrd(k)−1 = (a11,a12,

c11, c12) with a12 and c11 in αH and k = γ(gcrd(k),0,0,0), or kgcrd(k)−1 = (a21,a22, c21, c22)
with a22 and c21 not both in αH and k = γ(0,gcrd(k),0,0).

Once again, any null vector Q in F1
2 will satisfy Q · k = 0 for some k. Using the two

different orbits for k one finds then the two possibilities for Q

Q = γ

(
0,
(

0 0
0 n

)
,m

)
, Q = γ

(
0,
(
n 0
0 0

)
,m

)
. (F.47)

In the first case the Levi stabiliser is Γ0(2) ⊂ ΓD2
0 (α) n (H2 ⊕Z) and there are two orbits,

m = 0 and n = 0. In the second the Levi stabiliser is Γ0(2) ⊂ ΓD2
0 (α) n (H⊕ (αH)⊕ 2Z),45


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1




1 0 0 p

q∗ 1 p∗ k + q∗p

0 0 1 −q
0 0 0 1

 (F.48)

and there are also two orbits. The two orbits with n = 0 and m 6= 0 are the same ΓD4
0 (α)

orbit, as can be checked using the subgroup Γ0(2)× Γ0(2) acting on the four real integers
in Q. The two orbits with m = 0 and n 6= 0 are related by γF. We conclude that there are
two ΓD4

0∗(α) orbits for null vectors in F1
2 and F2

2.
The lattice of perturbative charges is F∗2 = 1

2F
2
2 and F2 = F1

2. The same analysis
generalises straightforwardly to K = 3 and one obtains that there are two ΓD4

0∗(α) orbits of
vector of vanishing norm in F∗2(K),

Q = γ

(
0,
(

0 0
0 0

)
,m

)
, Q = γ

(
0,
(
m 0
0 0

)
, 0
)
. (F.49)

In the first case Q must be in F2(K), while in the second Q ∈ F2(K) if and only if m = 0
mod K.

F.4 Sp(4,H) and ΓD4
0 (α) Eisenstein series

One can now describe Eisenstein series for Fk2 with k = 0, 1, 2, 3. We define the Eisenstein
series as the convergent sum for Re[s] > 3

E
sp4H

Fk2 ,s
= 1

2ζ(2s)

′∑
Q∈Fk2

(Q,Q)=0

1
|V (Q)|2s , (F.50)

and as meromorphic functions of s on C by analytic continuations with a pole at the
real value s = 3. They are normalised to 1 at s = 0. The definition of |V (Q)|2 and the

45We use the notation ΓA2n -1
0 (α) ⊂ SL(n,H) for n ≥ 2, for n = 1 SL(1,H) is the order 24 finite group

of unite Hurwitz quaternions and there is no congruent subgroup. We use ΓD2n
0 (α) ⊂ Sp(2n,H) for n ≥ 1

in the same way and for n = 1 Sp(2,H) = SL(1,H) × SL(2,Z) while ΓD2
0 (α) = SL(1,H) × Γ0(2), where

Γ0(2) ⊂ SL(2,Z).
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II1,1 ⊕ II1,1[2]⊕D4 bilinear form are

|V (Q)|2 = R−2(m− trBQ− detBn)2 + tr(v−1†(Q+ B̃)v−1)2 +R2n2

(Q,Q) = 2mn+ 2 detQ , (F.51)

where R is the circle radius, v parametrises the five-dimensional NS moduli (i.e. the twisted
circle radius and the Wilson line along T 4), while B parametrises NS axions. We will also
use the notations

(Q,Q) = 2 detQ , G(Q,Q) = tr(v−1†Qv−1)2 . (F.52)

These Eisenstein series are related to the Siegel-Narain theta lifts

∫
F2

d2τ

τ 2
2
Es−2,2(2τ)ΓII1,1⊕II1,1[2]⊕D4 = 2s−1ξ(2s)Esp4H

F1
2,s
− 2sξ(2s)Esp4H

F2
2,s

,∫
F2

d2τ

τ 2
2
Es−2,2(τ)ΓII1,1⊕II1,1[2]⊕D4 = 2ξ(2s)Esp4H

F1
2,s
− 22sξ(2s)Esp4H

F2
2,s

,∫
F2

d2τ

τ 2
2
Es−2,2(2τ)ΓII2,2⊕D4 = 2s−1ξ(2s)Esp4H

F0
2,s
− 2s+1ξ(2s)Esp4H

F3
2,s

,∫
F2

d2τ

τ 2
2
Es−2,2(τ)ΓII2,2⊕D4 = 2ξ(2s)Esp4H

F0
2,s
− 22s+1ξ(2s)Esp4H

F3
2,s

. (F.53)

Using the Rankin-Selberg unfolding method one can compute the large radius limit
of the Siegel-Narain theta lifts. One obtains in this way that the last function vanishes
identically

∫
F2

d2τ

τ 2
2
Es−2,2(τ)ΓII2,2⊕D4 = 0 . (F.54)

This is due to the property that any null vector in F3
2 must be in 2F0

2, so that

E
sp4H
F3

2,s
= 2−2sE

sp4H
F0

2,s
. (F.55)

It will nonetheless be useful to define the sublattice F3
2 for the non-perturbative comple-

tion [72].
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For the lattice F1
2 one computes using Rankin-Selberg unfolding method that∫

F2

d2τ

τ 2
2
Es,2(2τ)ΓII1,1⊕II1,1[2]⊕D4 (F.56)

= (2s+1 − 2−s−2)ξ(2s+ 4)R2s+4 + (2s−1 − 2−s) s

s+ 1
ξ(2s+ 1)ξ(2s− 1)

ξ(2s+ 2) R2−2s

− Rs+
5
2

22s+1

∑
Q∈II1,1[ 1

2 ]⊕D∗4
Q2=0

e2πi(Q,B) ∑
d−1Q∈II1,1[ 1

2 ]⊕D∗4
d=1 mod 2

d2s+3
Ks+ 3

2
(2πR

√
2pR(Q)2)√

2pR(Q)2s+
3
2

+ 22s+1sξ(2s+ 1)
(s+ 1)ξ(2s+ 2)R

3
2−s

∑
Q∈II1,1[ 1

2 ]⊕D∗4
Q2=0

e2πi(Q,B) ∑
d−1Q∈II1,1[ 1

2 ]⊕D∗4
d=1 mod 2

d1−2s
Ks− 1

2
(2πR

√
2pR(Q)2)√

2pR(Q)2
1
2−s

− R

2ξ(2s+ 2)
∑

Q∈II1,1[ 1
2 ]⊕D∗4

Q2 6=0

e2πi(Q,B) ∑
d−1Q∈II1,1[ 1

2 ]⊕D∗4
d=1 mod 2

d2s+3σ2s+1(|Q2

d2 |)
|Q2|s

×
∫ ∞

0
dt
√
tWs,2(πQ2t)e−

π
t
R2−πtG(Q,Q)

where

Ws,2(2πx) = 1
(s+ 1)

√
|x|

(
(s+ 1− 2πx)Ks+ 1

2
(2π|x|)− 2π|x|Ks+ 3

2
(2π|x|)

)
(F.57)

is defined such that

Es,2(τ) = τ s2−
s

s+1
ξ(2s+1)
ξ(2s+2)τ

−1−s
2 + 2

ξ(2s+2)

′∑
n∈Z

σ2s+1(|n|)
|n|s

Ws,2(2πnτ2)e2πiτ1 . (F.58)

The same computation for Es,2(τ) gives∫
F2

d2τ

τ 2
2
Es,2(τ)ΓII1,1⊕II1,1[2]⊕D4 (F.59)

= ξ(2s+ 4)R2s+4 − s

s+ 1
ξ(2s+ 1)ξ(2s− 1)

ξ(2s+ 2) R2−2s +R

∫
F2

d2τ

τ 2
2
Es,2(τ)ΓII1,1[2]⊕D4

+ 2s+1Rs+
5
2

∑
Q∈II1,1[ 1

2 ]⊕D∗4
Q2=0

e2πi(Q,B) ∑
d−1Q∈II1,1[ 1

2 ]⊕D∗4

(−1)
2n
d d2s+3

Ks+ 3
2
(2πR

√
2pR(Q)2)√

2pR(Q)2s+
3
2

− 2s+1sξ(2s+ 1)
(s+ 1)ξ(2s+ 2)R

3
2−s

∑
Q∈II1,1[ 1

2 ]⊕D∗4
Q2=0

e2πi(Q,B) ∑
d−1Q∈II1,1[ 1

2 ]⊕D∗4

(−1)
2n
d d1−2s

Ks− 1
2
(2πR

√
2pR(Q)2)√

2pR(Q)2
1
2−s

+ 2s+1R

ξ(2s+ 2)
∑

Q∈II1,1[ 1
2 ]⊕D∗4

Q2 6=0

e2πi(Q,B) ∑
d−1Q∈II1,1[ 1

2 ]⊕D∗4
Q2

d2
=0 mod 2

(−1) 2n
d d2s+3σ2s+1(| Q2

2d2 |)
|Q2|s

×
∫ ∞

0
dt
√
tWs,2(πQ2t)e−

π
t
R2−πtG(Q,Q)

where Q =
(m q
q∗ n

)
with n ∈ Z

2 and q ∈ H and 2n = 1 mod 2 if q /∈ αH.
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One can use these formulae in the limit s→ 0 to obtain the large radius expansion of
the one-loop R4 threshold function, but in practice it is more convenient to use directly the
Rankin-Selberg unfolding method and the Fourier expansion of the holomorphic modular
form 2E2(2τ)− E2(τ). One obtains

4π
3

∫
F2

d2τ

τ 2
2

(
2E2(2τ)− E2(τ)

)
ΓII1,1⊕II1,1[2]⊕D4

= π3

27R
4 − 4π

3 R

∫
F2

d2τ

τ 2
2
Ê2(τ)ΓII1,1[2]⊕D4

+ R

3

′∑
Q∈II1,1[ 1

2 ]⊕D∗4
Q2=0

( ∑
Q/d∈II1,1[ 1

2 ]⊕D∗4

d3 + 4
∑

Q/d∈II1,1[2]⊕D4

d3
)

× 1 + 2πR
√

2pR(Q)2√
2pR(Q)23 e−2πR

√
2pR(Q)2+2πi(Q,B)

+ 8R
∑

Q∈II1,1[ 1
2 ]⊕D∗4

Q2<0

( ∑
Q/d∈II1,1[ 1

2 ]⊕D∗4

d3 ∑
`|Q

2

d2
`=1 mod 2

`+ 4
∑

Q/d∈II1,1[2]⊕D4

d3 ∑
`| Q

2

2d2
`=1 mod 2

`

)

× 1 + 2πR
√

2pR(Q)2√
2pR(Q)23 e−2πR

√
2pR(Q)2+2πi(Q,B) (F.60)

For the one-loop D2R4 threshold function we need the limit s→ 1. The limit diverges
and the regularised limit gives

lim
s→1

(∫
F2

d2τ

τ 2
2
Es,2(τ)ΓII1,1⊕II1,1[2]⊕D4 + s

s+ 1
ξ(2s+ 1)ξ(2s− 1)

ξ(2s+ 2)

)
(F.61)

= 2π3

945R
6 + 45ζ(3)

2π3 logR+R

∫
F2

d2τ

τ 2
2
E1,2(τ)ΓII1,1[2]⊕D4

+ 4R
7
2

∑
Q∈II1,1[ 1

2 ]⊕D∗4
Q2=0

e2πi(Q,B) ∑
d−1Q∈II1,1[ 1

2 ]⊕D∗4

(−1)
2n
d d5

K 5
2
(2πR

√
2pR(Q)2)√

2pR(Q)2
5
2

− 45ζ(3)
π3

∑
Q∈II1,1[ 1

2 ]⊕D∗4
Q2=0

∑
d−1Q∈II1,1[ 1

2 ]⊕D∗4

(−1)
2n
d d−1 e−2πR

√
2pR(Q)2+2πi(Q,B)

− 180
π3

∑
Q∈II1,1[ 1

2 ]⊕D∗4
Q2>0

∑
d−1Q∈II1,1[ 1

2 ]⊕D∗4
Q2

d2
=0 mod 2

(−1) 2n
d d5σ3( Q2

2d2 )
Q6 e−2πR

√
2pL(Q)2+2πi(Q,B)

− 180
π3

∑
Q∈II1,1[ 1

2 ]⊕D∗4
Q2<0

∑
d−1Q∈II1,1[ 1

2 ]⊕D∗4
Q2

d2
=0 mod 2

(−1) 2n
d d5σ3(− Q2

2d2 )
−Q6 e−2πR

√
2pR(Q)2+2πi(Q,B)

×
(

1− 2πRQ2√
2pR(Q)2

(
1− Q2

4pR(Q)2

)
+ π2R2Q4

pR(Q)2

)
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As a final comment we will relate the Eisenstein series defined as constrained lattice
sums to Poincaré sums associated to the three ΓD4

0 (α) orbit of null vectors in F0
2 and F1

2.
We denote them O1 for the orbit of the momentum along the S1, O2 for the winding along
the twisted S1 and O3 for the momentum along the twisted S1, and respectively R, R̃T and
R̃ for the associated radius. These orbits are discrete cosets of ΓD4

0 (α)

O1 = ΓD4
0 (α)/(ΓA3

0 (α)nM1
2) , O2 = ΓD4

0 (α)/(SL(2,H)nM0
2) , O3 = ΓD4

0 (α)/(SL(2,H)nM3
2) ,

(F.62)
by the corresponding stabilisers

ΓA3
0 (α) nM1

2 : g =


a11 a12 b11 b12
a21 a22 b21 b22
0 0 d11 d12
0 0 d21 d22

 ,

SL(2,H) nM0
2 : g =


a11 b12 b11 a12

0 d22 d21 0
0 d12 d11 0
a21 b22 b21 a22

 ,

SL(2,H) nM3
2 : g =


d11 0 0 d12
b21 a22 a21 b22
b21 a12 a11 b12
d21 0 0 d22

 , (F.63)

with D = A−1† and A−1B Hermitian. One has in this way

E
sp4H
F0

2,s
=
∑
γ∈O1

R2s +
∑
γ∈O2

R̃2s
T +

∑
γ∈O3

R̃2s

E
sp4H
F1

2,s
=
∑
γ∈O1

R2s +
∑
γ∈O2

R̃2s
T + 2−2s ∑

γ∈O3

R̃2s

E
sp4H
F2

2,s
= 2−2s ∑

γ∈O1

R2s +
∑
γ∈O2

R̃2s
T + 2−2s ∑

γ∈O3

R̃2s . (F.64)

The relation can be used to define the Poincaré sums in function of the constrained lattice
sums for almost all s. The limit s→ 0 is singular, and the Poincaré sums are not constant
at s = 0. Instead, they depend individually on the regularised Eisenstein series at s = 3.
Nevertheless, the sum of the three Poincaré sums tends to one as s→ 0. More generally,
for any three coefficients ci(s) function of s with ci(s) = 1 +O(s) at s = 0, one has

lim
s→0

c1(s)
∑
γ∈O1

R2s + c2(s)
∑
γ∈O2

R̃2s
T + c3(s)

∑
γ∈O3

R̃2s

 = 1 . (F.65)
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G Supergravity one-loop amplitude

The tree-level supergravity four-graviton amplitude is46

Mtree
sugra(1−, 2−, 3+, 4+) = −iκ2〈12〉4[34]4 1

stu
= −i κ

2

210 t8t8R
4 64
stu

. (G.1)

It is the low energy limit of the string theory amplitude

Mtree
type II(1−, 2−, 3+, 4+) = i

211
(2π)7α′7g 2

D

(2π
√
α′)10−D

t8t8R4 Γ(−α′s
4 )Γ(−α′t

4 )Γ(−α′u
4 )

Γ(1 + α′s
4 )Γ(1 + α′t

4 )Γ(1 + α′u
4 )

(G.2)

with the identification [17]
1
2α
′D−2

2 (2π)D−3g 2
D = κ2 , (G.3)

in D dimensions.
The one-loop supergravity N = 6 amplitude in D = 4 − 2ε dimensions takes the

form [86]

M1-loop
sugra (1−, 2−, 3+, 4+)

= −iκ4〈12〉4[34]4
(
I4(s, t) + I4(t, u) + I4(u, s)− 1

s2
D − 2
D − 3

(
tu

2 I4(t, u) + tI3(t) + uI3(u)
)

+ 1
su

D − 4
D − 3

(
st

2 I4(s, t) + sI3(s) + tI3(t)
)

+ 1
st

D − 4
D − 3

(
su

2 I4(s, u) + sI3(s) + uI3(u)
))

(G.4)

where

I4(s, t) =
∫

dDp

(2π)D
1

p2(p− k1)2(p− k1 − k2)2(p+ k4)2

I3(s) =
∫

dDp

(2π)D
1

p2(p− k1 − k2)2(p+ k4)2 (G.5)

are the integral over the Euclidean momentum p. The first line is the N = 8 supergravity
amplitude and the two others line remove the contribution from the two additional gravitini
multiplets. In Schwinger parameter space one obtains after some integrations by part
−1
u

1
D − 3

(
st

2 I4(s, t) + sI3(s) + tI3(t)
)

= 1
24(2π)D−4

∫ ∞
0
dτ2 τ

3−D2
2

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1 e

πτ2[(x2−x1)(1−x3)s+x1(x3−x2)t]

×
(

1
D − 3

st

s+ t

(1
2 − 1 + x3 − x1

)
+ 2
D − 6

(
(x2 − x1)(1− x3)s+ x1(x3 − x2)t

))

= 1
24(2π)D−4

∫ ∞
0
dτ2 τ

3−D2
2

1
πτ2

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1 e

πτ2[(x2−x1)(1−x3)s+x1(x3−x2)t] (G.6)

46We use the vielbein convention for κ commonly used in string theory amplitudes that is κ = κh
2 with

the metric κh used in field theory amplitudes [86]. Moreover we use the mostly plus signature for the
Minkowski metric. We use otherwise the amplitude normalisation, that differs from the standard string
theory normalisation by a factor of 4.
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where one recognises the box integral in D + 2 = 6− 2ε dimensions as is used in [86]. After
several integrations by part, one obtains the representation of the amplitude

iM1-loop
sugra (1−, 2−, 3+, 4+)

= κ4

24(2π)D−4 〈12〉4[34]4
∫ ∞

0
dτ2 τ

3−D2
2

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1

×
((

1− (1− x1 + x2 − x3)(x1 − x2 + x3)
2

)
eπτ2[(x2−x1)(1−x3)t+x1(x3−x2)u]

+
(

1− (1− x1 + x2 − x3)(x1 − x2 + x3)
2 − 2(x2 − x1)(1− x3)

)

×
(
eπτ2[(x2−x1)(1−x3)s+x1(x3−x2)t] + eπτ2[(x2−x1)(1−x3)s+x1(x3−x2)u]

))
(G.7)

which is more appropriate for comparison with the string theory amplitude. In particular
the dependence in the dimension D is only in the power of (2π)2τ2, and this formula is also
valid in D = 5− 2ε for four-dimensional polarisations.

We will now find that this matches the one-loop string theory amplitude (4.24) at low
energy, fixing in this way the normalisation. For this purpose we consider the tropical
limit [102], such that za ∼ τya and τ ∼ iτ2 with τ2 >> 1 and 0 ≤ ya ≤ 1. Using (C.31), one
computes the tropical limits47

G(za−zb) ∼ 2πτ2
(1

6−|ya−yb|+(ya−yb)2) , Y(za−zb) ∼ −8π2(1
6−|ya−yb|+(ya−yb)2) .

(G.8)
The tropical limit is obtained up to exponentially suppressed term in e−πτ2 at ya 6= yb.
Using then (4.29) and (4.30) one shows that

∑
γ∈PSL(2,Z)/Γ0(K)

(2 sin π
K )2℘( 1

K )ΓII1,1⊕II1,1[K]⊕H(K) (G.9)

∼
K=2

2π2

3 τ3
2

(
5

∑
Q∈II1,1⊕II1,1[2]⊕H

Q2=0

+
∑

Q∈II1,1⊕II1,1[ 1
2 ]⊕ 1

α
HrII1,1⊕II1,1[2]⊕H

Q2=0

)
e−2πτ2pR(Q)2

∼
K=3

2π2

3 τ3
2

(
5

∑
Q∈II1,1⊕II1,1[3]⊕H(3)

Q2=0

+ 1
2

∑
Q∈II1,1⊕II1,1[ 1

3 ]⊕ 1
α
H(3)rII1,1⊕II1,1[3]⊕H(3)
Q2=0

)
e−2πτ2pR(Q)2

47We have for z = x+ iτ2y

G(z) = 2πτ2( 1
6 + y2)− log

(
|eπτ2y−iπx−e−πτ2y+iπx|2

)
+O(e−2πτ2 ) ,

Y(z) = −8π2
(

1
6 − y

eπτ2y−iπx+e−πτ2y+iπx

eπτ2y−iπx−e−πτ2y+iπx + y2
)

+O(e−2πτ2 ) .
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and

1
2

∑
γ∈PSL(2,Z)/Γ0(K)

(2 sin π
K )2ΓII1,1⊕II1,1[K]⊕H(K) (G.10)

∼
K=2

τ3
2

( ∑
Q∈II1,1⊕II1,1[2]⊕H

Q2=0

−
∑

Q∈II1,1⊕II1,1[ 1
2 ]⊕ 1

α
HrII1,1⊕II1,1[2]⊕H

Q2=0

)
e−2πτ2pR(Q)2

∼
K=3

τ3
2

( ∑
Q∈II1,1⊕II1,1[3]⊕H(3)

Q2=0

− 1
2

∑
Q∈II1,1⊕II1,1[ 1

3 ]⊕ 1
α
H(3)rII1,1⊕II1,1[3]⊕H(3)
Q2=0

)
e−2πτ2pR(Q)2

,

which gives the supergravity limit, including the Kaluza-Klein tower of spin two and spin
three-half supermultiplets. Keeping only the massless graviton multiplet with Q = 0, one gets

iM1-loop
type II(1−, 2−, 3+, 4+) (G.11)

∼ α′ 2+D
2 g 4

D (2π)D−4

28 〈12〉4[34]4
∫ ∞

0
dτ2τ

3−D2
2

4∏
a=1

∫ 1

0
dyaδ(y4) e−

α′
2
∑

a>b
G(za−zb)ka·kb

×
(

20π2

3 + 1
8
(
Y(z12) + Y(z34)− Y(z13)− Y(z14)− Y(z23)− Y(z24)

))

= α′ 2+D
2 g 4

D (2π)D−2

26 〈12〉4[34]4
∫ ∞

0
dτ2 τ

3−D2
2

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1

×
((

1− (1− x1 + x2 − x3)(x1 − x2 + x3)
2

)
eπτ2α

′[(x2−x1)(1−x3)t+x1(x3−x2)u]

+
(

1− (1− x1 + x2 − x3)(x1 − x2 + x3)
2 − 2(x2 − x1)(1− x3)

)

×
(
eπτ2α

′[(x2−x1)(1−x3)s+x1(x3−x2)t] + eπτ2α
′[(x2−x1)(1−x3)s+x1(x3−x2)u]

))

consistently with the supergravity amplitude using (G.3). In the computation we have
decomposed the integral over the three ya variables into the 6 ordered integrals, that give
two times the three integrals with the orders 0 ≤ y1 ≤ y2 ≤ y3, 0 ≤ y2 ≤ y3 ≤ y1 and
0 ≤ y3 ≤ y1 ≤ y2. This gives in total two times the three corresponding integrals over
0 ≤ x1 ≤ x2 ≤ x3 ≤ 1 with the three respective changes of variables

y1 = 1− x3 , y2 = 1− x2 , y3 = 1− x1 , (G.12)
y1 = 1− x1 , y2 = 1− x3 , y3 = 1− x2 , (G.13)
y1 = x2 , y2 = x3 , y3 = x1 . (G.14)

Note as a cross check that the contribution from the one-half BPS states in (G.9) and (G.10)
gives also the expected contribution from spin two and spin three-half supermultiplets in
supergravity.
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H The Dabholkar-Harvey Z3 orbifold

In this appendix we discuss another string theory construction of N = 6 supergravity
introduced in [48], which is defined as the asymmetric Z3 orbifold acting on T 6 at the
A2 ⊕ A2 ⊕ A2 symmetric point. The untwisted sector breaks supersymmetry down to
N = 5, but the twisted sector includes one massless N = 5 gravitino multiplet. We want
to argue that this theory is identical to the Z3 orbifold theory introduced in section 2
at the point in Narain moduli space where the left and right projections of the lattice
II1,1 ⊕ II1,1[3]⊕A2 ⊕A2 factorise into the left A2 lattice and the right A2 ⊕A2 ⊕A2 lattice,
i.e. at zero Wilson lines and for the metric G and B field on T 2

G =
(

3 −3
2

−3
2 1

)
, B =

(
0 −3

2
3
2 0

)
. (H.1)

We will show that the spectrum of the two theories are identical. Using [58], one obtains
for the character valued partition function with the insertion of the Z3 generator g

ϑ3(v)ϑ3(1
3)2ϑ3(−2

3)−∑α=1,2,4 ϑα(v)ϑα(1
3)2ϑα(−2

3)
2η(τ)3ϑ1(1

3)3 = −
ϑ1(v2 )ϑ1(v2 −

1
3)3

η(τ)3ϑ1(1
3)3 , (H.2)

and the same with 1
3 replaced by −1

3 for the insertion of g−1, such that the character valued
partition function is

ZZ3
D=4(v, v̄) = ξ(v)

3
ξ(v)ϑ1(v2 )4

η(τ)12

[
ϑ1(v2 )4

η(τ)12 ΛII6,6 +(2sin π
3 )3ϑ1(v2 )

(
ϑ1(1

3−
v
2 )3−ϑ1(1

3 + v
2 )3)

η(τ)3ϑ1(1
3)3 Λ 3

A2

− i√
27

(2sin π
3 )3

2∑
r=0

(
ϑ1(v2 )

(
ϑ1( τ3−

v
2 )3−ϑ1( τ3 + v

2 )3)
η(τ)3ϑ1( τ3 )3 Λ 3

A∗2

)∣∣∣
τ→τ+r

]
(H.3)

where the last line is the contribution from the twisted sectors that is obtained by modular
transformations. As in 2.3, it is convenient to decompose the Lorentzian lattice partition
function as a sum over orbits

ΛII6,6 =
∑

γ∈PSL(2,Z)/Γ0(3)

((
Λ 3
A2 −

1
8(ΛA∗2 − ΛA2)3)Λ3

A2

)∣∣∣
γ

(H.4)

where the seed can be identified as

Λ 3
A2 −

1
8(ΛA∗2 − ΛA2)3 = (2 sin π

3 )3 η(τ)9

ϑ1(1
3)3 . (H.5)

With the help of this formula one can rewrite the character valued partition function as

ZZ3
D=4(v, v̄) =

√
3
ξ(v)ϑ1(v2 )4

η(τ)12

[
ξ(v)ϑ1(v2 )

(
ϑ1(v2 )3+ϑ1(1

3−
v
2 )3−ϑ1(1

3 + v
2 )3)

η(τ)3ϑ1(1
3)3 Λ 3

A2

− i√
27

2∑
r=0

(ξ(v)ϑ1(v2 )
(
ϑ1(v2 )3+ϑ1( τ3−

v
2 )3−ϑ1( τ3 + v

2 )3)
η(τ)3ϑ1( τ3 )3 Λ 3

A∗2

)∣∣∣
τ→τ+r

]
. (H.6)
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Using then the theta function identity

ϑ′1(0)
(
ϑ1(z)3 − ϑ1(z + 1

3)3 − ϑ1(z − 1
3)3
)

= 6ϑ′1(1
3)ϑ1(z)ϑ1(z + 1

3)ϑ1(z − 1
3) , (H.7)

and √
3
π

ϑ′1(1
3)

ϑ1(1
3)

= ΛA2 , (H.8)

one finds that

√
3
ϑ1(v2 )

(
ϑ1(v2 )3 + ϑ1(1

3 −
v
2 )3 − ϑ1(1

3 + v
2 )3)

η(τ)3ϑ1(1
3)3 = 3

ϑ1(v2 )2ϑ1(v2 + 1
3)ϑ1(v2 −

1
3)

η(τ)6ϑ1(1
3)2 ΛA2 . (H.9)

Because the twisted sector is obtained by modular transformations, we conclude that

ZZ3
D=4(y) = 3

∫ 1
2

− 1
2

dτ1
ξ(v)ϑ1(v2 )4

η(τ)12
ξ(v)ϑ1(v2 )2ϑ1(v2+1

3)ϑ1(v2−
1
3)

ϑ1(1
3)2η(τ)6 ΛA2Λ 3

A2 (H.10)

− 1
3

∫ 3
2

− 3
2

dτ1
ξ(v)ϑ1(v2 )4

η(τ)12
ξ(v)ϑ1(v2 )2ϑ1(v2+ τ

3 )ϑ1(v2−
τ
3 )

ϑ1( τ3 )2η(τ)6 ΛA∗2Λ 3
A∗2
,

as in (2.37) at the point (H.1) in Narain moduli space where

ΛII1,1⊕II1,1[3]⊕H(3) = ΛA2Λ 3
A2 . (H.11)

This proves that the two theories have the same perturbative spectrum, which provides
strong evidence that the Dabholkar-Harvey Z3 orbifold theory is just a particular example
of the Z3 orbifold theory analysed in this paper.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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