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ABSTRACT: The contribution of the CP violating three-gluon Weinberg operator,
%w fabeerpal GZVGZ 3Gy, to the atomic and nuclear EDMs is estimated using QCD sum
rules. After calculating the transition matrix element between the pion and the vacuum
through the Weinberg operator, we obtain the long-range CP-odd nuclear force by determin-
ing the isovector CP-odd pion-nucleon vertex, using chiral perturbation theory at NLO. The
EDMs of 19%9Hg, 129Xe, and ??°Ra atoms, as well as those of 2H and 3He nuclei are finally
given including comprehensive uncertainty analysis. While the leading contribution of the
199Hg EDM is given by the intrinsic nucleon EDM, that of '??Xe atom may be dominated
by the one-pion exchange CP-odd nuclear force generated by the Weinberg operator. From
current experimental data of the '’Hg atomic EDM, we obtain an upper limit on the
Weinberg operator magnitude of |w| < 4 x 1071°GeV~? if we assume that it is the only
source of CP violation at the scale p = 1TeV.

KeEyworbDs: CP Violation, Electric Dipole Moments, Specific QCD Phenomenology,
SMEFT

ARX1v EPRINT: 2203.06878

OPEN AccCESS, © The Authors.

Article funded by SCOAP®. https://doi.org/10.1007/JHEP06(2022)072


mailto:osamura.naohiro.j2@s.mail.nagoya-u.ac.jp
mailto:gubler@post.j-parc.jp
mailto:nyamanaka@kmi.nagoya-u.ac.jp
https://arxiv.org/abs/2203.06878
https://doi.org/10.1007/JHEP06(2022)072

Contents

1 Introduction 1
2 Formulation of the sum rules 4
3 OPE for the Weinberg operator correlator 6
4 Numerical sum rule analysis 7
5 Derivation of the atomic and nuclear EDMs 9
6 Conclusions 13
A Borel transforms 14
B Fourier transforms 14
C Details of the OPE calculation 16
D One-loop correction to gfrlz\),N 19

1 Introduction

The matter dominant Universe is a cosmologically important phenomenon which cannot be
explained by the standard model (SM). Indeed, a large CP violation is required to realize
the matter dominance according to Sakharov [1]. However, the CP violation of the SM does
not fulfill this criterion [2, 3] and hence the experimental search for new physics beyond the
SM is actively pursued.

The electric dipole moment (EDM) [4-14] is a CP-violating observable sensitive to new
physics which has been explored experimentally in various systems. The measurements
of the EDMs in atomic systems are especially attracting attention, thanks to their high
sensitivity [15-17], which can for certain regions of the parameter space, be higher than the
experimental constraints obtained by the LHC experiments. We also note that their SM
background is very small [18-22].

In practice one usually needs to integrate out new physics degrees of freedom to obtain
an effective theory relevant at hadronic scales, which includes CP violating terms such as

2 . .
S - i - ,
LSMEFT,CP = 329;’}2 0G, G — 5 > ditio" Fuysti — B > ditigeo™ G, T Y5
i=u,d,s,e, i=u,d,s

1 _ _
+ gwfabcﬁypaﬁGZuGgﬂqu + Z Cij (%‘1/%) (wji%%‘) I (1.1)
i,J



Figure 1. Two-loop level diagram contributing to the Weinberg operator generated in the two-Higgs
doublet model.

Here, we include only low dimension terms which give the leading contribution to low
energy observables. As for the diamagnetic atoms, the effect of the electron EDM is
suppressed due to the closed electron shell, and the CP violation of the quark-gluon sector
is important [7, 13, 23]. Contributions of the 6 term [24-27] and the quark EDM [28-34]
(second term in the above equation) to the nucleon EDM have already been extensively
analyzed in lattice QCD. The chromo-EDM (third term) is still difficult to handle on
the lattice, but has been studied using QCD sum rules and chiral effective field theory
(xEFT) [8, 35-43]. The purely gluonic CP-odd dimension-six Weinberg operator [44], is less
studied, but nevertheless important because it appears in many well-known models such as
the Higgs doublet model (as shown in figure 1) [44-61], supersymmetric models [62-75],
and other models [76-84]. It is also generated by the heavy quark sector CP violation via
renormalization group evolution [85-90]. The SM contribution to the Weinberg operator

1
Lw = [P GGGl (1.2)

is known to be unobservably small [91-93]. While the effect of the Weinberg operator to
the nucleon EDM has already been evaluated [66, 94-100], its contribution to the CP-odd
nuclear force, which is expected to be one of the leading effects to the atomic and nuclear
EDMs, is less known.

In YEFT, the leading contribution to the CP-odd nuclear force caused by the Weinberg
operator is the contact nucleon-nucleon interaction [55, 101, 102], which is expected to have
a small effect on the nuclear level CP violation due to the strong repulsion between nucleons.
Similarly, the long range CP-odd nucleon-nucleon interaction generated by the pion exchange
is also suppressed due to chiral symmetry. The long-range nucleon-nucleon interaction and
the contact one are depicted in the left and right plots of figure 2, respectively. Indeed,
the CP-odd pion-nucleon interaction, in contrast to the Weinberg operator, breaks chiral
symmetry, so that the matching between them brings a suppression of at least one light
quark mass factor. For these reasons, the contribution of the CP-odd nuclear forces has
never been seriously considered in the context of atomic EDM, and it was long thought that
the nucleon EDM is the leading process. However, a process generated by the pion-pole,
as depicted in figure 3, is potentially significant because it may be enhanced by the large
pion-nucleon sigma term. One also expects an enhancement of the CP-odd moments by the
many-body effect for heavy atoms and nuclei.



Figure 2. CP-odd nucleon-nucleon processes which induce nuclear level CP-odd moments. The left
diagram is the long range nuclear force. It is generated by combining the CP-even and the CP-odd
pion-nucleon interactions. The upper (lower) vertex represents the CP-even (CP-odd) interaction.
The right figure depicts the CP-odd contact nucleon-nucleon interaction.
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Figure 3. The leading order YEFT contribution to the isovector CP-odd 7N interaction through
the Weinberg operator.

Let us briefly mention here that the quark EDM and chromo-EDM are also generated at
low energy scales through the renormalization group running of the Weinberg operator even
if the latter is the sole source of CP-violation at high energy [62, 68, 103, 104]. However,
the quark EDM contribution is small at the hadron level [28-33] and the calculation of
the hadron matrix element of the chromo-EDM has a large theoretical uncertainty, some
studies even predicting a null contribution [8, 36, 105].

To investigate potentially significant effect mentioned above, we in this paper estimate
the contribution of the Weinberg operator to the isovector CP-odd pion-nucleon interaction.
To calculate the pion-vacuum transition matrix element <7r0 | Lw |0), we employ QCD
sum rules, which allow us to perform a relatively simple and analytic analysis based on
QCD [106-108]. In the future, it might be possible to compute this matrix element from
lattice QCD. However, this task is currently still difficult because of the computational cost
of treating gluonic operators on the lattice and their accurate renormalization, although
some first trials of such computation already exist [109, 110].

This paper is organized as follows. In section 2, we set up the QCD sum rules formalism
to compute the desired matrix element. The concrete calculation of the operator product
expansion (OPE) and the numerical analysis follow in sections 3 and 4. In section 5, we
derive the atomic and nuclear EDMs through hadron, nuclear and atomic level calculations,
with a particular focus on the relative magnitudes between our newly calculated CP-odd
nuclear force Weinberg operator contribution and that of the intrinsic nucleon EDM. The
paper is concluded in section 6. Calculational details are provided in the appendices.



2 Formulation of the sum rules

The goal of this and following two sections is the estimation of the Weinberg operator
matrix element between the contribution of a pion state and the non-perturbative QCD
vacuum |0),

<7r0 ‘ L \ 0> , (2.1)
which, as mentioned in the introduction, contributes to atomic and nuclear EDMs through
the isovector CP-odd pion-nucleon interaction. For this purpose, we will make use of the
sum rule method. At first sight, the most direct approach to extract this matrix element
would be to start from a correlator of Ly and the pionic operator iqysq. However, such an
estimation is challenging because it necessitates the computation of a three-loop diagram
at leading order in the OPE, which cannot be easily carried out using configuration space
techniques [111]. We will therefore follow a different strategy extracting the pion pole from
the correlation function of two Weinberg operators,

() = [ e (0] Ly (2) L (0)]0) (22)

rather than computing the matrix element directly. T here denotes the time ordering
product.

We will estimate the correlator of eq. (2.2) at large —¢? (the deep-Euclidean region)
using the OPE (see next section for details) and then analyze the spectral function, defined
as p(s) = LImlI(s) numerically in Secion 4. The dispersion relation is useful to relate the
correlator in the deep-Euclidean region to the spectral function at ¢? > 0, where it carries
information about all physical states that couple to the operator Ly (z),
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(2.3)

As it is not possible to extract detailed features of the spectral function from eq. (2.3) and
the (limited) OPE information available at large —q?, we here approximate the spectral
function to consist of a simple pion pole and a continuum structure above some effective
threshold sy, (for an alternative method making use of Bayesian statistics, see ref. [112]).
We furthermore assume that this continuum can be described by the OPE expression. We
hence have

Pphen(8) = A?ﬁ(s - m?r) + peont (5)0(s — stn)
9 5 1 (2.4)
= A0(s—m3)+ ;ImHopE(s)H(s — Sth)s

where A\, = <7r0 ‘ Lw | 0) is the quantity we seek to compute in this work. Note that the
matrix element of eq. (2.1) must be proportional to m, — mg = m_ due to the chiral
symmetry, and therefore is strongly suppressed. On the other hand, a pseudoscalar, glueball
state is expected to couple to the Weinberg operator and thus could contribute significantly
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Figure 4. Schematic illustration of the isospin-breaking part of the spectral function p(s;m_ # 0)
(thick black line). The blue line depicts the complete spectral function p(s) while the red one
indicates its isospin-symmetric part p(s;m_ = 0). w(1300) is the first excited state of the pion. The
m? differentiation causes only the isospin-breaking part to survive.

to the spectral function without any isospin suppression factor. Indeed, the correlator of
eq. (2.2) is usually used to study the properties of such a glueball state (see, for example,
refs. [113, 114]). Hence, to suppress the potentially large glueball contribution of the sum
rules, we will in this work make use of the smallness of the quark mass dependence of
this state, which is confirmed in recent lattice QCD calculations [115-118]. Specifically,
we will study the quark mass dependence of the correlator by expanding it up to the

second order in the up and down quark masses m, and mg and applying m? 822 . This
will strongly suppress the glueball contribution, while keeping the pion pole, for which
A2 is proportional to m2. More explicitly, in terms of the spectral function, p(s) can be
decomposed into two terms: p(s) = p(s;m— = 0) + p(s;m— # 0). The isospin-symmetric
part p(s;m_ = 0) does not include the pion pole because of Ay = (7% | Ly | 0) o< m_. Thus,
it at low energy only consists of a continuum spectrum beginning at the threshold 4m2 and
at higher energy of the glueball peak mentioned above. p(s;m_ = 0) furthermore will be
positive definite since it is contains physical states in the limit of exact isospin symmetry.
The isospin-breaking part p(s;m_ # 0), illustrated as a thick black line in figure 4, can be
obtained as p(s) — p(s;m— = 0) and does in contrast not need to be positive definite. As
will be explicitly demonstrated later, the leading order (perturbative) OPE term leads to a
negative high energy limit for p(s;m_ # 0).

Finally, to both improve the convergence of the OPE and suppress the relative contri-
butions of the higher energy states to the sum rules, we make use of the Borel transform,
which in this work is defined as

2\n
B [f(QQ)} = QQl,iLrgoo (7(2Q—>1)!
Q? /n=M?=const.

(~52) 7@, (2.)



where Q% = —¢?. After substituting eq. (2.4) into eq. (2.3), we obtain
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which gives the “phenomenological side” of the sum rules. The computation of the “theo-
retical side” will be discussed in the next section.

3 OPE for the Weinberg operator correlator

The OPE of the correlation function in eq. (2.2) can formally be expressed as

Hope(q) = i/d4$€_iq’” OIT [Lw (x)Lw (0)][0) =D Calg; 1) (0] Oa(p) |0y, (3.1)
d

where Oy stand for all local operators allowed by gauge invariance and vacuum symmetries
while Cy(q; ) represent their respective Wilson coefficients. p is the renormalization scale,
which should be chosen large enough such that a perturbative calculation of the Wilson
coefficient is possible [119]. Throughout this work, we will take p = 1GeV if not explicitly
stated otherwise. The Weinberg operator can for the purposes of the OPE calculation be
rewritten as

1
Lw = gru e PGy, GGl

= SR [2(0,4) (9,45)~ (0,A%) (0, A7) — (2,4%) (9,45)] (aAb) ++--.

3
(3.2)
A}, here stand for gluon fields and the ellipses indicate higher order contributions with
respect to the strong coupling constant.
As mentioned in the previous section, we are in this work only interested in the

m_-dependence of I1(¢?) and hence decompose Ilopg in the same way as the spectral
function. Specifically, we have

Hope(q®) = Hopr(¢®; m— = 0) + Hopr(g*; m— # 0), (3.3)
where the second term can be expanded using the OPE as
HOPE(QQ; m_ 7é 0) = Hloop(qz) + Hq(q2) + HG(QZ) + Hloop+G(q2)- (3.4)

The four terms on the right-hand side correspond to the four diagrams shown in figure 5.
Essential parts of the computation of the four terms in eq. (3.4) are provided in
appendix C. The results read

m- ag
Mioop(9°) = —w* 22 (¢ In (~*) (3.5)
m?2 B2hso
M%) = —w* = 5= (=) In (~¢*) , (3.6)
Mg (%) =0, )
Hloop+G(q2) =0,



Figure 5. The diagrams corresponding to Hjeop(q?), II;(¢?), Hg(¢?) and Hiep+c(q?) of eq. (3.4),
respectively. The crosses in the latter three diagrams represent the chiral condensate (0| gq |0}, and
the gluon condensate (0| a,G?|0). The two diagrams on the right, which both include a gluon
condensate contribution, vanish in the OPE calculation of this work.

where By is defined by the relation (0|au + dd|0) = —Bof2. The parameter hj in
eq. (3.6) is related to the difference between the up and down quark chiral condensates (see
egs. (C.17), (C.18)). Specifically, we have [120, 121]

<o ‘ i — Jd‘0>
4BE(my, —myg)

hs = — (3.9)

The m_ dependent part of the correlator is thus obtained as
HOPE((]2; m_ 7& 0) = Hloop(q2) + Hq(qQ) + HG(q2) + Hloop+G(q2)

2 2
9| miag N3 2 mZ Bohgas 232 _ 2 (

3.10)

which, after the Borel transform becomes

B |:HOPE(q2;m_ # 0)} = w? l— = (3.11)

4 Numerical sum rule analysis

Having estimated both phenomenological and theoretical sides of the correlator of eq. (2.2)
in sections 2 and 3, we can now proceed to the numerical analysis of the sum rules, which
after the Borel transform and the m? differentiation are obtained as

22 2 /072 1 [ e85/ M?

2 W/M — - . — 2,

]Wge m + - /Sth ds e Imllope(s;m— #0) =B [HOPE(q sm_ # 0)] . (41)
From the above equation and eqs. (3.10) and (3.11), the pion pole residue A2 can be
expressed as a function of the Borel mass M and the threshold parameter sqy,

O] Lw |m) [ = A%

2
_2m2 /M2 | TV=Qs o f 2t 6 4 252, + 83 0
bt [ [ (601 bt +901% +) - )
2 P2
m= B5hsa _ Sth
-0 2 (A (2M s+ 2M + 5},) 2M4}] :

(4.2)



Input parameters Values Ref.

s 0.483 £0.016 [122, 123]
—4(my, —mq)Bohs/f?  [0.014,0.02] [124]
M 135 MeV
My 2.91098 [125]
mq 6.070:53 [125]
Bof? (265MeV)? [125]

Table 1. Input parameters used in the numerical sum rule analysis. All are given at the renormal-
ization scale of = 1GeV.

In the numerical analysis of eq. (4.2), we employ the input parameters in table 1. For
the value range of the parameter hz, we have used the SU(2) estimate given in ref. [124].
The quark masses correspond to a renormalization scale of 1 GeV and were obtained by
running their values from the 2 GeV value given in the PDG to 1 GeV using a two-loop
renormalization group equation [125]. By, which is related to the quark condensate, similarly
given at the renormalization scale of 1 GeV, was obtained from the Gell-Mann-Oakes-Renner
relation and a renormalization group rescaling [125].

Let us here briefly discuss how to determine the parameter ranges of M and si,. For
the Borel mass M, one usually defines a so-called “Borel window”, within the various
approximations used to derive the sum rules are supposed to be valid. In our calculation,
the term involving the quark condensate turns out to have the largest contribution. As this
term has the largest mass dimension in the final OPE result of eq. (3.11) and the gluon
condensate terms vanish, it would in this work not make much sense to determine the
lower limit of the Borel window from the conventional condition of the OPE convergence.
We thus here consider only the upper limit, which can be fixed from the pole dominance
criterion often used in the QCD sum rule literature, and set the lower limit by hand. The

pole dominance criterion can be given as

L%e*mgr/Mz
M > 0.5, (4.3)

X ooz L 1 oo .o/
Ee mz /M —i—;fsth ds“5p—Imllopg(s;m— # 0)

which demands that the pion pole gives the dominant contribution to the phenomenological
side of the sum rules. The left-hand side of eq. (4.3) is shown in figure 6. We observe in this
plot that the pole contribution decreases with increasing Borel mass M in the low M region,
which is a typical behavior in conventional QCD sum rule calculations. For M = 0.8 GeV,
the ratio of eq. (4.3) starts to increase because of a cancellation in its denominator and does
not drop below 0.5 for too large values of the threshold parameter si,. We hence fix the
upper boundary of s, such that this ratio can fall below 0.5, which gives s{** = 0.82 GeV?2.
The lower limit of M is set up by hand as M2, = 0.25GeV?. The Borel window fixed in
this way is depicted as the blue shaded region in figure 7, where the colored curves show
the right-hand side of eq. (4.2) as functions of the Borel mass for different values of sy,.
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Figure 6. The left-hand side of eq. (4.3) as a function of the Borel mass M for different values of
the threshold parameter s;y,.
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Figure 7. )2 /w? as a function of the Borel mass M for various values of the threshold parameter sy,.
The blue shaded region shows the parameter space of M and s, used to estimate the range of A\2.

One can then see in this plot that the Borel window is no longer open for threshold
parameter values below si, = 0.5 GeV?, which thus fixes its lower boundary. All this then
leads to the following range of values for the desired matrix element:

(0] w | 7")] € w-[2.3,8.3] x 107°GeV", (4.4)
5 Derivation of the atomic and nuclear EDMs
The CP-odd effective Lagrangian needed in this work is

7 _
Lop= —id]vNU“FNV’V5N+]€7TO+mNA37r7T0(7T(2)+27l'+7T7)

+§7(T1]2[N7T0NN—C_’1WNNNNZ"}/5N, (51)



where we implicitly assume that the sum over N = n, p is taken. The first term of Lcp is
the intrinsic nucleon EDM. The Weinberg operator contribution to the neutron EDM is
given by [48, 49]
d, = 2CP [t + d)
my (5.2)
= w(20 £ 12)e MeV.

Here the first term corresponds to the chiral rotation of the neutron anomalous mag-

2
netic moment p, [66, 96], where mcp =— (N |L,| N) = _meg;f;:;O In (K) =w(—2.3+
IR

1.1)x1072GeV? was calculated using QCD sum rules with 50% error according to
ref. [60]. The second term stands for the irreducible term calculated in the quark model
(dﬁ}”) ~—bweMeV) [98]. We explicitly see from the above equation that the nucleon EDM
generated by w has no chiral suppression.

The second term of Lcp is the neutral pion tadpole, which we have calculated in the
previous section. Its coupling constant k is the matrix element studied in this paper,

k= (0| Lw |7°), (5:3)

which generates a neutral pion from the vacuum, and yields the isovector CP-odd pion-
nucleon interaction (the term with LE]SK, ) in combination with a pion-nucleon scattering
process (see figure 3). The coupling of the pion-nucleon scattering is given by the matrix

element
1 Oxr N

IE: e

where the first approximation is due to the partial conservation of the vector current,

(mN | Lqoep | TN) &~ — (N | mytiu + mgdd | N) ~ (5.4)

with fr = 93MeV. The low energy constant o,n appearing on the right-hand side of the
above equation is the pion-nucleon sigma term, and represents the contribution of the
current quark mass to the nucleon mass. Its value is still under debate, phenomenological
studies yielding o,n ~ 60MeV [126, 127] (see however ref. [128] for a smaller prediction),
whereas lattice QCD results point to a smaller value o,y ~ 30 MeV [28, 30, 129]. A recent
lattice QCD analysis is suggesting that this discrepancy may come from the contamination
of excited states with additional pions of the correlators computed on the lattice [130].
Combining the neutral pion generated by eq. (5.3) and the pion-nucleon scattering (5.4),
we obtain the isovector CP-odd pion-nucleon coupling as

(1 OxrN
G = (0] Lw | 70) T (5.5)
f2m

To estimate the theoretical uncertainty of the above LO YEFT, we will in the following
evaluate the NLO contribution to g,(f}, ~» Which is in fact generated by the one-loop diagram
given in figure 8, via the three-pion interaction (the term with As; in eq. (5.1)) [39, 102],
which is part of the linear chiral symmetry and CP breaking term of the chiral Lagrangian

43 4
EQCP = TI“[UA — UTA] = ﬂﬂ’o — L

7 3!—f37r0(7r§ +2n7 ) 4, (5.6)

~10 -



Figure 8. NLO correction to the isovector CP-odd pion-nucleon interaction. 7* may be a charged
or neutral pion.

where U = ¢V2M/f 7 with the meson matrix

([ m/V2  wt
M_< /e _WO/\&) (5.7)

Here we only considered the SU(2);, x SU(2)g subspace for simplicity. The matrix A = at,
expresses the explicit isospin breaking generated by the Weinberg operator. By matching
eq. (5.6) and the pion one-point interaction (5.3), we obtain

a =27 (0]Lwmo). (58)
i
The three-pion coupling generated by the Weinberg operator is then

(0] Luwmo0)
e

Evaluating the zero-momentum transfer limit of the one-loop diagram of figure 8, we

77"L]\[A37r = — (5.9)

obtain the NLO contribution to the isovector CP-odd pion-nucleon coupling as [131, 132]

2 2
_(1) _ 15gamn dgamsg
IrNNNLO = —MNAsy orf2 | Gdnfl (0] Lw|mo), (5.10)

where g4 = 1.27. The magnitude of the above NLO result amounts to about 20% of the
LO expression of eq. (5.5) (if we assume o,y = 60 MeV). This relatively large one-loop
correction is due to the factor 47 enhancement arising from the heavy baryon approximation.
Regarding the sign of eq. (5.10), this one-loop level contribution is constructive, in accordance
with refs. [131, 132] (for details, see appendix D).

The CP-odd pion-nucleon interaction (5.5) and (5.10) generates an isovector type
CP-odd nuclear force through the one-pion exchange. Its Hamiltonian is given by

é(l) S o - e M g A, . e MnT
H = 87T’I7’rnN (0'1T1z_0'27'2z) -V . — ggggg (01T1Z_0272z) -V . , (511)

where &; and 7;, (i = 1,2) are the spin and isospin operators acting on the i-th interacting
nucleon, respectively. The coordinate 7 is directed to nucleon 1, and V is the gradient

- 11 -



defined accordingly. Here we defined GSS) = —%gﬂ}w as commonly done in nuclear

level calculations.

The CP-odd nuclear force of eq. (5.11) polarizes the nucleus and leads to an observable
effect. As for atomic systems, the EDMs of atomic nuclei are not directly observable due
to the notorious Schiff’s screening phenomenon [133]. The residual CP-odd moment, the
nuclear Schiff moment S* (NSM), has to be evaluated using nuclear structure calculations.
This has been done using several methods [7, 13, 134-140]. Here we quote the most recent
results for 199Hg [138, 139], 129Xe [138, 140], and *2°Ra [135] nuclei:

SHe — 2.65d,, fm? — 0.075 GWe fm?, (5.12)
5Xe = 0.42d,, fm? + 0.041 GWe fm?, (5.13)
SR — _6.0GWe fm?, (5.14)

where we only display the contributions from the isovector CP-odd nuclear force and from
the intrinsic nucleon EDM, for which we estimate the relative error to be about 30%.
The contribution of the NSM to the atomic EDM has also been calculated within several
frameworks. We here quote the results of the latest calculations [141-143],

Hg B
die = —2.4 x 10717 ‘5;36 cm = —6.4 x 107%d,, + 1.8 x 107°GW e fm
e1m

(5.15)
= w(~1.3x 1072 £[0.71,4.4] x 107%) ¢ MeV,
Xe _
d*° =0.32 x 1077 S—3e cm = 1.3 x 10 °dy, + 1.3 x 105GV e fm
efm (5.16)

= w (27107 £1(0.52,3.2] x 107*) e MeV,

Ra B
= 63x 1077 2 gecm = 3.8 x 1073G(M e fm
e fm (5.17)

= w (£[1.5,9.3] x 1071} e MeV.

The atomic level calculations are in relatively good agreement among each other [7, 13, 144—
146]. Their error is therefore negligible in the error budget.

It is also interesting to inspect the EDM of light nuclei for which experimental mea-
surements are currently planned [147-149]. For the deuteron and the 3He nucleus, we
have [102]

dM =0.014GW e fm

(5.18)
= w (£[0.56, 3.4]) e MeV,
d’He = 0.88d, +0.010 G + [1,5] x 107*Cy GeV? e fm (5.19)

— w (18 £ [0.38,2.3] + [1, 10]) e MeV.

The nuclear level calculations for these light nuclei were performed by many groups [131, 150
155] and all are consistent, having errors of less than 10%. There are further results for
other nuclei which may have larger sensitivities to CP violation, but are not considered
here [102, 153, 154, 156—158]. We see that the deuteron EDM receives only contributions
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from the one-pion exchange CP-odd nuclear force, while the nucleon EDM and the contact

CP-odd nuclear force (the last term of eq. (5.1)) also contribute to the SHe EDM. The

coupling constant of the contact CP-odd nuclear force is given by C; = m%;cs =(3.1+
N

1.6) GeV~! which was obtained by chirally rotating the CP-even contact nuclear force, in a
similar way as eq. (5.2) [159], with Cs = —120.8 GeV~2 [160]. The coefficient of C; was
calculated by matching a smeared delta function with the CP-odd w-exchange nuclear
force [150, 153, 154], and has a wide uncertainty band, due to the poorly known two-nucleon
wavefunction near the origin. There is also a calculation within YEFT which yields a larger
coefficient [131], but we do not further examine it here because of its large uncertainty. It
has also recently been pointed out that the contact CP-odd nuclear force is required to
unitarize the CP-odd nucleon-nucleon scattering with one-pion exchange [161], but we do
not consider this effect in this work. We furthermore mention here that the coefficients of
C are not available for atomic EDMs.

Finally, let us derive an explicit constraint on the magnitude of the Weinberg operator
from the presently available experimental data, given by the EDM of Hg. According to
our analysis, the EDM of *9Hg is d"® = w (1 = 1GeV) (—1.3 4 0.96) x 10~2e MeV where
the central value is given only by the contribution of the intrinsic neutron EDM and the
error is obtained by the taking the quadrature of the theoretical uncertainty of the Weinberg
operator contribution of the neutron EDM (60%) [98], the error associated with the nuclear
level calculation (30%) [139], and the maximal value of the our Weinberg operator result
(the second term of (5.18)), which we consider here to be a systematic error. Combined
with the experimental result, ‘ng (eXp)) < 7.4 x 1073% cm [15], this leads to

lw(u = 1TeV)| < 4 x 1071°GeV 2, (5.20)

Here, we divided the experimental value by (—1.3 + 0.96) x 10~2e MeV, so as to obtain
an upper limit. Furthermore, w (u = 1TeV) = w(p = 1GeV)/0.3 is renormalized at
1TeV [68, 85, 103, 104, 162, 163]. It is interesting to compare this limit with that given
by the direct measurement of the neutron EDM. The current experimental constraint
|dn| < 1.8 x 1072%¢ cm [164] yields an upper limit of

|w (1= 1TeV)| < 4 x 107 °GeV 2, (5.21)

where we took into account the uncertainty band of eq. (5.2). We see that the EDM of
the 9Hg atom and that of the neutron provide comparable constraints on the Weinberg
operator, if we assume that it is the sole source of CP violation at the scale = 1TeV.

6 Conclusions

In this paper we calculated the pion-vacuum transition matrix element of the Weinberg
operator using QCD sum rules and then the isovector CP-odd pion-nucleon interaction
within yEFT at NLO. We finally derived relations between the Weinberg operator and
the EDMs of several atoms and nuclei which are of experimental interest. For the case of
atoms, the contribution of the nucleon-nucleon interaction was found to be of the same
order as that induced by the intrinsic nucleon EDM.
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Possible improvements of this work include a more accurate investigation of the OPE
convergence by taking into account condensates of higher dimension. Furthermore, using
the correlator of two Weinberg operators, it was not possible to determine the sign of the
matrix element studied in this work. Therefore, it will in the future become necessary to
study the correlator between a Weinberg operator and a pion interpolating field.

Nevertheless, our results suggest that, depending on the sign, the CP violation may
be enhanced in the '?Xe EDM through the new Weinberg operator contribution. This
experimental observable might therefore become crucial in the future determination of the
magnitude of the Weinberg operator.
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A Borel transforms

We define the Borel transform of a function f(Q?) with Q% = —¢? as

Blr@ = im D () e, (A1)
Q? /n=M?=const.

where the unphysical parameter M is called the Borel mass. Below, we provide specific
expressions for the Borel transforms used in this work.

(s +1Q2)k1 N (k_ll)! (]\iz)kes/M27 (A.2)

B(@)FlogQ?] = (~1) 1Tk + 1) (M?)*. (A.3)

Here, k € N1 and I'(z) denotes the Euler gamma function.

B Fourier transforms

In this paper, we need to consider Fourier transforms from momentum space to configuration
space and vice versa, which will in turn be discussed in this section, mostly following
appendix E of ref. [96]. We define the Fourier transform of a function f(p) to configuration

2 —€IR 442erR .
Ffp) = (;3‘]5) /We—mf(p), (B.1)

Space as

where the divergent integral is treated using dimensional regularization with d = 4 +
2¢ir. The reason for adopting this definition is to ensure the conservation of gauge
invariance throughout the calculation. The OPE is based on the division of scales, in which
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higher regions of momentum space can be treated perturbatively to compute the Wilson
coefficients [119]. Dimensional regularization provides the most economical renormalization
scheme to do this in a gauge invariant manner. Any IR-pole can hence be removed as it
should be considered to be part of the low momentum space regions and therefore can be
absorbed into the renormalization of the condensates.

For functions of the form 1/(p?)* and p#p”/(p?)*, a simple calculation leads to

1 'l M%sz TR P(2 - k + EIR) Nk—2
pu— —_ B.2
Pubv . . 1
]-"{ } = (10,)(i0,)F {} ) B.3
(p2)k ( M)( ) (pg)k ( )
where k € N;. The Fourier transforms of type (B.2) and (B.3) relevant for our article are
17 1
) R A I S (B.5)
L(p?)?] 1672 |er 4 ’ '
1 [ s
= S 41— MRT B.
7 2)3] 2. 8520 | en + n ( 4 ’ (B.6)
(1] i 9| 1 3 i
7 (p2)E] T 210 372 ( IR Ty < 4 (B.7)

In QCD sum rules, one often encounters ultraviolet divergent Fourier transforms of
functions f(z) from configuration space to momentum space. In this work, we define them as

2 eVE —€uv )
Flf@) = ("’%) [atreover p) (B.3)

and use again dimensional regularization in treating the UV divergences. For the functions
1/(2®)* and 2*2¥/(2%)* with k € N, we have

in? 2 e\ —k—ce¢
7| = 3 (—“U;f ) ety (my

(551 () Gl

The resultant expressions will in the calculations of this paper be either Borel transformed or

its imaginary part taken. As any polynomial of p? will vanish through the Borel transform,
and the imaginary part of the correlation function originates only from logarithms, we only
need to consider the log terms and can drop all polynomials in all practical calculations
of this paper. The following simplified formulas will therefore be sufficient:

Fora {(;)4] = 27532'3(—102)2111 (=) (B.11)
Fora { @)5] _ 21752.1'32(_]92)3111 (~5?). (B.12)
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C Details of the OPE calculation

The correlation function of eq. (3.1) can be expressed using the Weinberg operator of
eq. (3.2) as

TMopn(g) =i / dtweite g
X (01T [2(0,45) (9,45) ~ (9, A43) (9,45 ) — (9, A% ) (9,45)] (9248 ()
(2 (00 A%) (0, 45) — (0, A% ) (0545 ) — (0, A% ) (9, 45) | (9ar A%) (0)[0)
:,L'wQ/d4xeiq~x;fabCfa’b’c’

NN 1) ! ! NN 1) ! <! NN a1 ! !
% {46upaﬁeupaﬁguagua _2euaaﬁeupaﬁgupgua _2€Vpa5€upa6guagua

Zfabt:fa’b’c’ Vpaﬁ v p /5lg.“57 wo’

VN a1 N, VNS -1 ! ! VN a1 [N
_9evpaB via’a g gh'r _9ehraB Vp'a’s il i +evaaﬁ€l/ o' B g gt'e

tevoab o'’ B ghP gV’U’ L ehraB rolap i gu’p’ L ehraB et'o'al B i gv o }

% (0| T [(9,49) (00 AB) (9,45) (@) (9 AL) (Do AL (9, AS)(0)] | 0), (C.1)
where, we have omitted all higher order contributions with respect to the strong coupling
constant. The Wick contraction of the matrix element given in the last line of eq. (C.1)

yields six distinct terms, which can be related to each other by simple permutations. It is
hence sufficient to evaluate only one term, which we define as

gty (7)
= (00 525 (x — y)) (009 % (2 — ) ) (9570 5502 — ) ’y:o . (C.2)

where S’/‘jlb,(:n—y) stands for the gluon propagator. Other terms generated by the Wick contrac-

tion can be obtained by permutating the gauge and Lorentz indices in HZ%%Z:;L,V, o/ B! o ()

Gauge indices can be factored out as 6% from each gluon propagator. Eq. (C.1) can therefore
be simplified as,

Hopr(q) (C.3)
s ]. ANV,
.2 4 . iq-x abc pa’b’c
=jw” [ d*ze'?" =
fasinrkyos
« [4€Vpa66V’p’a’ﬁ’ gho gu’a’ _9eroaBvp'al B gupgu’o’ _9evpaB e pla B il gv o’
_Qev,oaﬁﬁr/’a’a’ﬁ’gwgu’p _9ehpaB V' p'a B q" gu o' 4 evoab o’ B’gupgu o

+evoaBel'p ’ﬁ’gupgv o' 4 epaf gv'a’a q" gu P ehpal cp'pla ﬂ’gwgv o }

X |:5aa (5bb 500 HuVO&ﬁpO’;M’V/O/ﬁ'p/U’ ($)+5aa (5bc 5Cb HMVOLﬁpO’;M'V’p’O”O/ﬂ’ ({E)
+6ab 6ba (Scc Huyaﬁpa;alﬂlulylplo.l (:1,’)+5ab 5bc 58(1 Huyaﬂpa;alﬁlp/a.lulyl ({L‘)
+69¢ 6% 5 waBpoiporarguv (€)+0% g 5 Wwappoipo'u'viarp (37)}

23 ; N
.2 4 . 1q-x vafBpo;u v o I
= 3 /d ze' T CH Prais e [HﬂuaﬁpU§u’y’a’5/p’U’ ([L‘) MVO(ﬁpO’;M/V/PIU/OCIﬁI(x)

—ILwagpo;a g/ v oot (z) Hlwapposalp oo v (z)

—wapoiporar s v () +wappoip ot uivalp (x)] )
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where Hﬂyaﬁpo—;#/yla/ﬂ/plo./(x) is defined as
abc;a’b’ ¢! _ caa sbb ced
Huuaﬁpa;,u/l/’a’ﬁ’p’a/ (33) =067 ¢ Huyaﬁpa;#/ylalﬂlplo./(x)7 (C4>
and
Crveppo;p'v'a o'’

!l ! ! !l ) /NN a1 ! !

— {4€Vpaﬁ€l/ plaB gHogh e — 9evoaB Vo' B gHPgt T — 9evPab o'l gogre
C5

7261’!70!,861/0'/0/[3/9#0'9/1«/# B QEHPQBEVIP/QIB/gVO'g,U/U/ + EVUQBEV/OJQIB/g)UJpg,LL/pI ( )

_|_€VUQB€M/P/0‘//8/9HP9V/U/ 1 eupa'geylglalﬂ/gygg‘u/pl n Eupaﬁeu/p/a/ﬁ/gyggylg/} '

For convenience of the later calculations, we expand the gluon propagator in terms of
condensates and other perturbative terms relevant for this work. As we are here especially
interested in the quark-mass dependent part of the correlator, it is necessary to take
into account the leading order quark loop insertion of the gluon propagator. The gluon
propagator can thus be expanded as

52 (z,y) = (S©)" (2—y)+ (50P)

puv

b ab

@)+ (5" @)+ (s9)" @), ()

a
pv pv %

where S©) (z — y) is the free gluon propagator, S1°°P)(z — y) its leading order perturbative
quark loop correction, S(©) (x,y) stands for the gluon condensate insertion and S (a) (x —y)
for the quark loop correction in which one of the quark propagator is replaced by the quark
condensate. The analytic form of these terms can be given as

ab 5(11) v
(5<o>)w (x—y) = ngy)? (C.7)
2
(S(loop)>:b/ (x_y) _ 7;’;3(1:28 5ab [3g,w1n (_ MIQR(Z_y)2> _2(1'—(yx)i(;);y)u‘| , (CS)

(S(q)):l; (2—y) = 555 (dg) 0 l5g“”(x—y)2+ (=59" (v—y)? +2(z—y)" (v —1)")
» In (W)] , (C.9)

ab "oy G2 u
(S(G))#V (Sﬂ,y):gjﬂy <273>6 b(gulV’gHV_gﬂlVgNV/)’ (ClO)

(59)"” (2—y) = 2% (gg) 5" [5g“”<x—y>2+ (~59" (z—y)*+ 2z —y)"(x—y)")

uv :26-3271'
2 (N2
«In (_Wﬂ | (C.11)

For obtaining S(1°°p) (x — y) we have expanded the full expression around the zero quark
mass limit and only kept the second order mg term, since the leading order term does not
contribute to the quark mass dependence and the first order term vanishes. Similarly, for
S(a) (x — y), the leading order m(q) term vanishes and we keep only the first non-vanishing
mg term.
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Let us here, as an example, show the explicit further steps needed to calculate the OPE
term corresponding to the left-most the diagram of figure 5. It can be written down as

, be; 1y !
( lOOp)ZVCa%pUC;;,L/V/O/ﬁlp/O'/ (x)
= (90 (1o yzet (z—y) ) - (9D (SO (z—) ) (a;@a(y)(S( Ve (@-y))|
y=0
1 bb! /
+ (o) afff (SO (w—y))- (50 (ST (v—y) ) - (9D s<0>>;z/<x—y>)\y:0
(:L" . z) 5(¥) 1 ¢(0) , (x) (loop) ‘
+ (00 (SO @) - (0007 (SO (=) ) - (570 (ST (a =) )|
=0 5bb 660 (Hloop),uuaﬁpa;,u’l/’a’,@’p/a’(x)v (012)
where
, mgas
(Migop) uwaBpoviar pror (¥) = Z 2716
u,d
Joor! Ta Ty Jop'  TpTpy 1
X {gﬁﬁ/gaa/ (;;ZC_ZL mGa ) ( ;Z —4 x6p ) |:(39H#/gl/u’_gﬂug#'lﬂ_gm/g/ﬂu)xg
T Ty Ty Tyt
F2(Guv @ T+ G T Ty F G v T T+ Gt TpTo + G Tu Ty _3gvv’xuxu/)g —8“’;6111'}
Juy!  T,T Gpo' LT 1
+gw/g(ro'/< ;LZ -4 ’;6” ) <;Z —4 ibp > [(39040/9@8/gaﬁga/ﬁ’gaﬁ/ga/ﬁ)xz
1 TaTo TRTH
+2(9apTar s +Jap Ta' 15+ Ja Tl +Jor TaTp T Jaa TaTy —39p5 Tala) 3~ Sw}
Jao!  TaTa'\ [ Guy  Tply 1
+g,3ﬁ’gw/’< ;Z —4 O‘;Ba > ( ;Z —4 ’;6“ ) |:(3gpp'gmf’_gpagp’U’_gpa’gp’U)xQ
Ty T T
+2(9po®p/ ot +Gpo' T To+ Gp/ o TpTo! + G o' T pTo+ Gpp To Lo —3gmfxpa:pr)g —8’12600} } .

(C.13)

Using egs. (C.5) and (C.13), {Oop(qQ), which denotes the contribution of these quark loop

diagrams to eq. (C.3), can then be computed as

Wioop(°)
— w23/d4xeiq~zCuvaﬁpo;u/l/’a’ﬁ’p’v/
X [(Hioop)MVGBPUW/V/‘X/ﬁ/ﬂ/J/ (z) — (Hioop)uuaﬁpa;u’u’p’ff’a’ﬁ/ (z)
_(H{oop)MVaﬂPWO//BIMIV/P/UI () + ( ioop)/ﬁ'/aﬁﬂg%a’ﬁ’ﬂ’g’ﬂ’”’ () (C.14)
*(H{oop)uvaﬂpa;p’o’a’ﬁ’u’w (z) + ( ioop)uuaﬁpv;p/a’u/u’a’ﬁ’ (x)}

9 mgas / Jhreit 6912

= iw 24_371.6 xlO
2
2Mg%s . 9.3 2
= —w 26q7T4 (—¢*)°In (—q ) .

~ 18 —



Taking into account the contributions of both u and d quarks, noting that

1
m2 +mi= - [(m+ +m_)?+ (my — m_)ﬂ

1 o (C.15)
= §(m+ + m—)a
where m4 = my + my and m_ = m, — my, and retaining only the m_-dependent part, we
have )
m-
Mioop(q?, m— # 0) = —wzﬁ(—f)gln (—QQ) : (C.16)

For the term involving the quark condensate, H(Q)(qz), chirality demands that it must
be proportional to -, ;mq (q@q) at leading non-vanishing order in the quark mass expansion.
The m_-dependence can be extracted from this expression as

> mg(Gq) = my (@) +mg <Jd>
g=d = mu((qg) — 2m_Bghs) + ma((qg) + 2m_Bihs) (C.17)
=my (qq) — 2m* B3hs,
where
(qq) = ((wu) + (dd)) /2,

<ﬂu B Jd> = _4(mu - md)thg. (0'18)

Numerically, we will use the values provided in ref. [124] (see table 1).

D One-loop correction to §,(,1]er

In this appendix we recapitulate the calculation of the NLO correction to gfrlj)v y induced by

the three-pion interaction of eq. (5.1). We assume the following chiral SU(3); x SU(3)r
invariant effective Lagrangian

2
Lo = Z”Tr(auUaﬂUT) + Tr[B(i§) — mp)B]

+ fTr[BW(gaﬂgf + £T0rE)B] + %TT[BWB@“&T +0reTe))

2
i _
+5(D+ F)Tr[Bry,ys (00T — €10r€) B)
i _
— 2(D ~ FYT( By Boree! - o°€ie)), (D.1)
where D + F = g4 = 1.27, and
i
& =exp (\/;f > , (D.2)
with U = £2. The meson field ¢ is defined by
w0 0 + +
ﬁ + % s . K
¢ = T I KOO (D.3)
_ 0 0
K K —2%
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and the baryon field B by

0 A0 +
B= D v R (D.4)
=— =0 _QLO
- - NG

We use the heavy baryon approximation where several simplifications occur. The
4-momentum of the nucleon can be split into two terms according to the scale separation
between the heavy baryon mass and the nonrelativistic spatial 3-momentum, namely
pu = myvy + ky,, where v is the velocity 4-vector of the nucleon. The baryon propagator is
approximated as

i TPy

~ D.5
p—mp+ie v-k+ie (D-5)

where Py = %(1 +14 ). The sign of the causal infinitesimal term (i€) controls the sign of the
final result.

The leading order meson-baryon interaction becomes

Lo = 3 (D4 F)Te| Bryns (€06 — €10%6) B
gA

T V2

Tr[B’y#’y5(8”¢)B] +-e-

ga | _ _ _ 1 _ 1 _
=7 i [mwma“ﬂﬂrnw%p@“w +ﬁmw5p8“7r0—\ﬁmm5p8“ﬂo +--
~ Y290\ ol gt S Hy 0+ S, Hy 0 — — 8, H 00|
fr V2 V2
(D.6)

where the ellipses denote irrelevant higher order terms as well as interactions involving
strangeness. The four-vector S¥ = %(0, &) is the Pauli-Lubanski spin vector.

The NLO correction to QS& n induced by the three-pion interaction of eq. (5.1) is then
given by

, L 2934/ d*k Hy(—ik-S)Py(ik - S)Hy

iMes = =2myBar e | i 2 —m22o kg i (D7)
2 4 [ . .

o g4 [ d*k Hy(—ik-S)P.(ik-S)Hy

iMoo = —bmyAsy 12 / et P —m2P-ktid (D.8)

where iM + and iM o are the contributions from the charged and neutral pion loops,
respectively (see figure 8).
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The loop integral can be transformed further, as

d*k Hy(S-k)Py(S-k)Hy
I= / 4 2 _ 2
(k2 — m2]2[v - k + i€]
d4k Hn(S-k)Hy
:/( ™ k2 = m2P[v - k + ie]
d4k Hykaks} (152, 8%+ {5, 57} ) Hy
_/ k2 — m22[v - k + i€
d4k Hykik;+6;;Hn
_/ k2—m2] [0k + ic]
k|2HyHy
4/ k‘Q—mQ] [ko + i€]
/ d4k7 |k]2HNHN[(Pr1nc1pal value) — imd (ko))
[k§ — [k[> — m2]?
—i d3k k|2HyHy

~ 8 o kP m2 P

We then shift the dimension to use dimensional regularization:

—i [ dk |k|°HyHy

8 J (2m)? [[k[> + mZ]?

- 1 4T (2 - g — 1) _

= - — HyHy. D.1
8 (4m)d22 T(2) m2 NN (D-10)

Taking the limit d — 3, we derive

—1 3 1 =
== ° _r(-Z)\m.HyH
8 2(4m)3/2 ( >m NN

I=

HyHy, (D.11)

where we used F(—%) = —\/4r.

The NLO correction to g,(f}, n induced by the three-pion interaction is thus obtained as

I 1534 m
- == A T )
f2 . mNBsn gy

gfrljsz,NLO = M+ + My = lomNA?nr (D.12)

which reproduces the formula of eq. (5.10).
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