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ABSTRACT: We consider string theory vacua with tadpoles for dynamical fields and un-
cover universal features of the resulting spacetime-dependent solutions. We argue that
the solutions can extend only a finite distance A away in the spacetime dimensions over
which the fields vary, scaling as A™ ~ 7T with the strength of the tadpole 7. We show
that naive singularities arising at this distance scale are physically replaced by ends of
spacetime, related to the cobordism defects of the swampland cobordism conjecture and
involving stringy ingredients like orientifold planes and branes, or exotic variants thereof.
We illustrate these phenomena in large classes of examples, including AdSs x 7! with
3-form fluxes, 10d massive ITA, M-theory on K3, the 10d non-supersymmetric USp(32)
strings, and type IIB compactifications with 3-form fluxes and/or magnetized D-branes.
We also describe a 6d string model whose tadpole triggers spontaneous compactification
to a semirealistic 3-family MSSM-like particle physics model.
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1 Introduction and conclusions

Supersymmetry breaking string vacua (including 10d non-supersymmetric strings) are
generically affected by tadpole sources for dynamical fields, unstabilizing the vacuum [1, 2].
We refer to them as dynamical tadpoles to distinguish them from topological tadpoles, such
as RR tadpoles, which lead to topological consistency conditions on the configuration (note
however that dynamical tadpoles were recently argued in [3] to relate to violation of swamp-
land constraints of quantum gravity theories). Simple realizations of dynamical tadpoles
arose in early models of supersymmetry breaking using antibranes in type II (orientifold)
compactifications [4-7], or in 10d non-supersymmetric string theories [8].



Dynamical tadpoles indicate the fact that equations of motion are not obeyed in the
proposed configuration, which should be modified to a spacetime-dependent solution (more
precisely, solution in which some fields do not preserve the maximal symmetry in the corre-
sponding spacetime dimension, but we stick to the former nomenclature), e.g. rolling down
the slope of the potential. This approach has been pursued in the literature (see e.g. [9-13]),
although the resulting configurations often contain metric singularities or strong coupling
regimes, which make their physical interpretation difficult.

In this work we present large classes of spacetime' dependent field configurations
sourced by dynamical tadpoles, which admit a simple and tractable smoothing out of such
singularities. Remarkably, these examples reveal a set of notable physical principles and
universal scaling behaviours. We argue that the presence of a dynamical tadpole implies
the appearance of ends of spacetime (or walls of nothing) at a finite spacetime distance,
which is (inversely) related to the strength of the tadpole. These ends of spacetime more-
over correspond to cobordism defects (or end of the world branes) of the theory implied by
the swampland cobordism conjecture [14, 15]. In most setups the cobordism defects end
up closing off the space into a compact geometry (possibly decorated with branes, fluxes
or other ingredients), thus triggering spontaneous compactification.

We can sum up the main features described above, and illustrated by our examples,
in two lessons:

Finite distance. In the presence of a dynamical tadpole controlled by an order parame-
ter T, the spacetime-dependent solution of the equations of motion cannot be extended to
spacetime distances beyond a critical value A scaling inversely proportional to T, with a
scaling relation

AT~ T (1.1)

In our examples, n = 1 or n = 2 for setups with an underlying AdS-like or Minkowski
vacuum, respectively.

Dynamical cobordism. The physical mechanism cutting off spacetime dimensions at
scales bounded by the A above, is a cobordism defect of the initial theory (including the
dynamical tadpole source).

To be precise, when there are multiple spacetime directions to be closed off, the actual
defect is the cobordism defect corresponding to circle or toroidal compactifications of the
initial theory, with suitable monodromies on non-trivial cycles. This is analogous to the
mechanism by which F-theory on half a P provides the cobordism defect for type IIB on
S! with SL(2,Z) monodromy [14] (see also [16]).

As explained, we present large classes of models illustrating these ideas, including (susy
and non-susy) 10d string theories and type II compactifications with D-branes, orientifold
planes, fluxes, etc. For simplicity, we present models based on toroidal examples (and
orbifolds and orientifolds thereof), although many of the key ideas easily extend to more

! Actually, we restrict to configurations of fields varying over spatial dimensions (rather than time); yet
we abuse language and often refer to them as spacetime-dependent.



general setups. This strongly suggests that they can apply to general string theory vacua.
Very remarkably, the tractability of the models allows to devise spontaneous compacti-
fication whose endpoint corresponds to some of the (supersymmetric extensions of the)
SM-like D-brane constructions in the literature. As will be clear, our examples can often
be regarded as novel reinterpretations of models in the literature.

Although our examples are often related to supersymmetric models, supersymmetry is
not a crucial ingredient in our discussion. Dynamical tadpoles correspond to sitting on the
slope of potentials, which, even in theories admitting supersymmetric vacua, correspond to
non-supersymmetric points in field space. On the other hand, supersymmetry of the final
spacetime-dependent configuration is a useful trick to guarantee that dynamical tadpoles
have been solved, but it is possible to build solutions with no supersymmetry but equally
solving tadpoles.

Our results shed new light on several features observed in specific examples of classical
solutions to dynamical tadpoles, and provide a deeper understanding of the appearance of
singularities, and the stringy mechanism smoothing them out and capping off dimensions
to yield dynamical compactification. In particular, we emphasize that our discussion unifies
several known phenomena and sheds new light on the strong coupling singularities of type
I’ in [17] and in heterotic M-theory [18] (and its lower bound on the 4d Newton’s constant).
There are several directions which we leave for future work, for instance:

o Asis clear from our explicit examples, many constructions of this kind can be obtained
via a reinterpretation of known compactifications. This strongly suggests that our
lessons have a general validity in string theory. It would be interesting to explore
the discussion of tadpoles, cobordism and spontaneous compactifications in general
setups beyond tori.

o A general consequence of (1.1) is a non-decoupling of scales between the geometric
scales controlling the order parameter of the dynamical tadpole and the geometric size
of the spontaneously compactified dimensions. This is reminiscent of the swampland
AdS distance conjecture [19]. It would be interesting to explore the generation of
hierarchies between the two scales, possibly based on discrete Zj gauge symmetries
as in [20].

e Our picture can be regarded as belonging to the rich field of swampland constraints
on quantum gravity [21] (see [22-24] for reviews). It would be interesting to study
the interplay with other swampland constraints. In particular, the relation between
the strength of the dynamical tadpole and the size of the spacetime dimensions is
tantalizingly reminiscent of the first condition on |[VV|/V of the de Sitter conjec-
ture [25-27], with 7 = |VV]| and if we interpret V as the inverse Hubble volume
and hence a measure of size or length scale in the spacetime dimensions. It would
be interesting to explore cosmological setups and a possible role of horizons as al-
ternative mechanisms to cut off spacetime. Also, the inequality admittedly works in
different directions in the two setups, thus suggesting they are not equivalent, but
complementary relations.



e It would be interesting to apply our ideas to the study of other setups in which
spacetime is effectively cut off, such as the capping off of the throat in near horizon
NS5-branes due to strong coupling effects, or the truncation in [28] of throats of the
euclidean wormholes in pure Einstein+axion theories [29].

« Finally, we have not discussed time-dependent backgrounds.? These are obviously
highly interesting, but their proper understanding is likely to require new ingredients,
such as end (or beginning) of time defects (possibly as generalization of the spacelike
S-branes [30, 31]).

Until we come back to these questions in future work, the present paper is organized
as follows. In section 2 we reinterpret the Klebanov-Strassler (KS) warped throat sup-
ported by 3-form fluxes as a template illustrating our two tadpole lessons. Section 2.1
explains that the introduction of RR 3-form flux in type IIB theory on AdSs x T%! pro-
duces a tadpole. The varying field configuration is the Klebanov-Tseytlin solution, which
leads to a metric singularity at a finite distance scaling as (1.1), as we show in section 2.2.
In section 2.3 we relate the KS smoothing of this singularity with cobordism defects. In
section 2.4 we extend the discussion to other warped throats. In section 3 we present a
similar discussion in toroidal compactifications with fluxes. Section 3.1 introduces a Tj
compactification with RR 3-form flux, whose tadpole backreacts producing singularites at
finite distance as we show in section 3.2. In section 3.3 we argue they are smoothed out by
capping off dimensions and triggering spontaneous compactification. In section 4 we build
examples in the context of magnetized D-branes. In section 4.1 we describe the tadpole
backreaction and its singularities, which are removed by spontaneous compactification in
section 4.2. In section 5 we turn to the dilaton tadpole of several 10d strings. In sec-
tion 5.1 we consider massive type ITA theory, where the running dilaton solutions produce
dynamical cobordisms by introduction of O8-planes as cobordism defects of the ITA theory,
eventually closely related to type I’ compactifications. In section 5.2 we discuss a similar
picture for M-theory on K3 with G4 flux, and a Horava-Witten wall as its cobordism defect.
In section 5.3 we consider the 10d non-supersymmetric USp(32) theory, in two different
approaches. In section 5.3.1 we build on the classical solution in [9] and discuss its singu-
larities in the light of the cobordism conjecture. In section 5.3.2 we describe an explicit
(and remarkably, supersymmetry preserving) configuration solving its tadpole via magne-
tization and spontaneous compactification on T®. In section 6 we discuss an interesting
application, describing a 6d model with tadpoles, which upon spontaneous compactifica-
tion reproduces a semi-realistic MSSM-like brane model. Finally, appendix A discusses the
violation of swampland constraints of type IIB on AdSs x T'%! when its tadpole is not duly
backreacted, in a new example of the mechanism in [3].

2 The fluxed conifold: KS solution as spontaneous cobordism

In this section we consider the question of dynamical tadpoles and their consequences in
a particular setup, based on the gravity dual of the field theory of D3-branes at a coni-

2For classical solutions of tadpoles involving time dependence, see e.g. [11].



fold singularity. The discussion is a reinterpretation, in terms useful for our purposes, of
the construction of the Klebanov-Tseytlin (KT) solution [32] and its deformed avatar, the
Klebanov-Strassler (KS) solution [33]. This reinterpretation however provides an illumi-
nating template to discuss dynamical tadpoles in other setups in later sections.

We consider type IIB on AdSs x T1!, where T1! is topologically S? x S3 [34]. This is
the near horizon geometry of D3-branes at the conifold singularity [34] (see also [35-37]),
which has been widely exploited in the context of holographic dualities. The vacuum is
characterized by the IIB string coupling e? = g, and the RR 5-form flux N. The model
has no scale separation, since the 7%! and AdSs have a common scale R, given by

R* =4ng,No'%. (2.1)

In any event, we will find useful to discuss the model, and its modifications, in terms of the
(KT) 5d effective theory introduced in [32]. This is an effective theory not in the Wilsonian
sense but in the sense of encoding the degrees of freedom surviving a consistent truncation.
In particular, it includes the dilaton ¢ (we take vanishing RR axion for simplicity), the
NSNS axion ® = [q» By and the T’ LI breathing mode ¢ (actually, stabilized by a potential
arising from the curvature and the 5-form flux), which in the Einstein frame enters the
metric as

ds?y = R? (6_5‘1 ds? + e3qd3?p1,1) . (2.2)

This approach proved useful in [38] in the discussion of the swampland distance conjec-
ture [39] in configurations with spacetime-dependent field configurations (see [19] for a
related subsequent development, and [40, 41]).

2.1 The 5d tadpole and its solution

Let us introduce M units of RR 3-form flux in the S, namely
F3 = ng y (23)

where ws is defined in eq. (27) in [33]. We do not need its explicit expression, it suffices
to say that it describes a constant field strength density over the S3. The introduction of
this flux sources a backreaction on the dilaton and the metric, namely a dynamical tadpole
for ¢ and ¢. In addition, as noticed in [38], it leads to an axion monodromy potential
for ® [42-45]. The situation is captured by the KT effective action (with small notation
changes) for the 5d scalars ¢, ® and ¢, collectively denoted by ¢

2 1 1
S5 =—— d°x \/=g5 LLR‘E’ - §Gab(s0)8<p“8<pb - Vi), (2.4)
5
with the kinetic terms and potential given by
1 |
Gab()0¢" 0" = 15(0q)" + 1(09)* + Je~*%(0®)?, (2.5)
1 1
V(p) = —be 8 + gM2 e~ 14 SV + M®)?e 200, (2.6)



Clearly gsM? is an order parameter of the corresponding dynamical tadpole. In the fol-
lowing we focus on the case® of N being a multiple of M.

Ignoring the backreaction of the dynamical tadpole (i.e. considering constant profiles
for the scalars over the 5d spacetime) is clearly incompatible with the equations of motion.
Furthermore, as argued in [3], it can lead to violations of swampland constraints. In
particular, since the introduction of F3 breaks supersymmetry, if the resulting configuration
was assumed to define a stable vacuum, it would violate the non-susy AdS conjecture [46];
also, as we discuss in appendix A, it potentially violates the Weak Gravity Conjecture [47].

Hence, we are forced to consider spacetime-dependent scalar profiles to solve the equa-
tions of motion. Actually, this problem was tackled in [33], with the scalars running with
7, as we now review in the interpretation in [38]. There is a non-trivial profile for the axion
®, given by

& = 3g,M log(r/r0) . (2.7)

This implies the cancellation of the dilaton tadpole, which can be kept constant e® = g,
as follows from its equation of motion from (2.5), (2.6)

Vo~ —e 5179(09)2 4 e 1o )12 (2.8)

2.2 Singularity at finite distance

The varying ® corresponds to the introduction of an NSNS 3-form flux in the configuration
H3 = —gs *6a I3 , (2.9)

where the 6d refers to 75! and the AdSs radial coordinate r, and the Hodge duality is
with the AdSs x T! metric. This is precisely such that the complexified flux combination
G3 = F3 — T7Hjs satisfies the imaginary self duality (ISD) constraint making it compatible
with 4d Poincaré invariance in the remaining 4d coordinates (and in fact, it also preserves
supersymmetry). The backreaction on the metric thus has the structure in [48, 49]. The
metric (2.2) takes the form

dsiy = Z_%nwdm“dx” + 72 (dr2 + 7“2d3?p1,1) , (2.10)
where Z obeys a Laplace equation in AdSjs, sourced by the fluxes, and reads

Z(r) = ﬁ (9sM)? log(r/ro) - (2.11)

The warp factor also enters in the RR 5-form flux, which decreases with r as
N(r) =/ Fs5 = gsM?log(r/ro) . (2.12)
S5

This matches nicely with the monodromy for the axion ® as it runs with = [38]. These
features (as well as some other upcoming ones) were nicely explained as the gravity dual
of a Seiberg duality cascade in [33].

3This implies that the configuration is uncharged under a discrete Zy; symmetry, measured by N mod
M, and associated to the redundancy generated by transformation ¢ — ¢+ 1, N — N — M, see footnote 5.



This 5d running solution in [32] solves the dynamical tadpole, but is not complete, as
it develops a metric singularity at » = rg. This is a physical singularity at finite distance in
spacetime, whose parametric dependence on the parameters of the initial model is as follows

T 1 T 1 1 dr
Aw) = [ 2e)idr ~ [ (9203 log(r/ro)]
0 0

N N
~R . 2.13
gs M? gsM? (2.13)

o

A=

~ (gsM)2 [log(r/re)]* = (g:N)

In the last equalities we used (2.12), (2.1). Hence, starting with an AdS; x T! theory
with N units of RR 5-form flux, the introduction of M units of RR 3-form flux leads
to a breakdown of the corresponding spacetime-dependent solution at a distance scaling
as A ~ M~2. Recalling that the dynamical tadpole is controlled by an order parameter
T = gsM?, this precisely matches the scaling relation (1.1) of the Finite Distance Lesson.

2.3 Dynamical cobordism and the KS solution

As is well known, the singularity in the KT solution is smoothed out in the KS solution [33].
This is given by a warped version of the deformed conifold metric, instead of the conical
conifold singularity, with warp factor again sourced by an ISD combination of RR 3-form
flux on S? and NSNS 3-form flux on S? times the radial coordinate. At large r the KS
solution asymptotes to the KT solution, but near r ~ rg, the solutions differ and the KT
singularity is replaced by the finite size S? of the deformed conifold.

Hence, the Finite Distance Lesson still applies even when the singularity is removed,
and the impossibility to extend the coordinate r to arbitrary distances is implemented by
a smooth physical end of spacetime. The purpose of this section is to highlight a novel
insight on the KS solution, as a non-trivial realization of the swampland cobordism conjec-
ture [14, 15]. The latter establishes that any consistent quantum gravity theory must be
trivial in (a suitably defined version of) cobordism. Namely in an initial theory given by an
n-dimensional internal compactification space (possibly decorated with additional ingredi-
ents, like branes or fluxes), there must exist configurations describing an (n+1)-dimensional
(possibly decorated) geometry whose boundary is the initial one. The latter describes an
end of the world defect (which we will refer to as the ‘cobordism defect’) for the spacetime
of the initial theory. Since the arguments about the swampland cobordism conjecture are
topological, there is no claim about the unprotected properties of the cobordism defect,
although in concrete examples it can preserve supersymmetry; for instance, in maximal
dimensions, the Horava-Witten boundary is the cobordism defect for 11d M-theory, and
similarly the O8-plane is the cobordism defect of type IIA theory.*

In our setup, the initial theory is AdSs x Th! with N units of RR 5-form flux and M
units of RR 3-form flux on S3. From the above discussion, it is clear that the KS solution

4Other 10d theories are conjectured to admit cobordism branes, but they cannot be supersymmetric and
their nature is expected to be fairly exotic, and remains largely unknown. We will come back to this point
in section 5.3.1.



is just the cobordism defect of this theory.® The remarkable feature is that the end of
spacetime is triggered dynamically by the requirement of solving the equations of motion
after the introduction of the RR 3-form flux, hence it is fair to dub it dynamical cobordism.
Hence, this is a very explicit illustration of the Dynamical Cobordism Lesson.

This powerful statement will be realized in many subsequent examples in later sections,
and will underlie the phenomenon of spontaneous compactification, when the cobordisms
close off the spacetime directions bounding them into a compact variety.

2.4 More general throats

A natural question is the extension of the above discussion to other AdSs x X5 vacua with
3-form fluxes. This question is closely related to the search for general classes of gravity
duals to Seiberg duality cascades and their infrared deformations, for which there is a
concrete answer if X5 is the real base of a non-compact toric CY threefold singularity Y,
which are very tractable using dimer diagrams [50, 51] (see [52] for a review).

From our perspective, the result in [53] is that the X5 compactification with 3-form
flux F3 admits a KS-like end of the world (cobordism defect®) if Yg admits a complex
deformation which replaces its conical singularity by a finite-size 3-cycle corresponding to
the homology dual of the class [F3]. In cobordism conjecture terms, in these configurations
the corresponding global symmetry is broken, and spacetime may close off without further
ado (as the axion monodromy due to the 3-form fluxes allows to eat up the RR 5-form
flux before reaching the end of the world). Such complex deformations are easily discussed
in terms of the web diagram for the toric threefold, as the splitting of the web diagram
into consistent sub-diagrams [53]. Simple examples include the deformation of the complex
cone over dPy to a smooth geometry, or the deformation of the complex cone over dP3 to
a conifold, or to a smooth geometry.

There are however singularities (or 3-form flux assignments), for which the complex
deformations are simply not available. One may then wonder about how our Dynamical
Cobordism lesson applies. The answer was provided in particular examples in [54-56]: the
infrared end of the throat contains an explicit system of fractional D-branes, which in the
language of the cobordism conjecture kill the corresponding cobordism classes, and allow
the spacetime to end. As noticed in these references, the system breaks supersymmetry,
and in [55] it was moreover noticed (as later revisited in [57]) to be unstable and lead to
a runaway behaviour for the field blowing up the singularity. Hence, this corresponds to
an additional dynamical tadpole, requiring additional spacetime dependence, to be solved.
Simple examples include the complex cone over dP1, and the generic YP? theories. We will
not enter the discussion of possible mechanisms to stabilize these models, since following [58]
they are likely to require asymptotic modifications of the warped throat ansatz (i.e. at all
positions in the radial direction, including the initial one).

SRecalling footnote 3, the case of N multiple of M implies the vanishing of a Zs charge, and allows the
cobordism defect to be purely geometrical; otherwise the cobordism defect ending spacetime must include
explicit D3-branes, which are the defect killing the corresponding cobordism class [14].

5We note in passing that the regions between different throats in the multi-throat configurations [53]
can be regarded as domain walls interpolating between two different, but bordant, type IIB vacua.



3 Type IIB fluxes and spontaneous compactification

In this section we construct an explicit 5d type IIB model with a tunable dynamical tadpole,
and describe the spacetime-dependent solution solving its equations of motion, which is in
fact supersymmetry preserving. The configuration displays dynamical cobordism resulting
in spontaneous compactification to 4d. The resulting model is a simple toroidal compacti-
fication with ISD NSNS and RR 3-form fluxes [48, 49], in particular it appeared in [59, 60].
With this perspective in hindsight, one can regard this section as a reinterpretation of
the latter flux compactification. Our emphasis is however in showing the interplay of the
dynamical tadpoles in the 5d theory and the consequences in the spacetime configuration
solving them.

3.1 The 5d tadpole and its solution

Consider type IIB on T, which for simplicity we consider split as T? x T2 x S!. We
label the coordinates of the T?’s as (x',y!) and (22, %?), with periodicity 1, and introduce
complex coordinates as z' = ! + 1yl 22

23 ~ 23 + 1 to parametrize the S'. For simplicity, we do not consider moduli deviating

= 22 + 1y%. We also use a periodic coordinate

from this rectangular structure,” and also take the T to have an overall radius R,
ds® = R?[(dz")* 4 (d2?)* + (dz®)?]. (3.1)

The result so far is a standard 5d supersymmetric T° compactification.
We introduce a non-trivial dynamical tadpole source by turning on an RR 3-form flux
(using conventions in [49])
Fy = (2r)%a/ N da* da? da? . (3.2)

The introduction of this flux does not lead to RR topological tadpoles, but induces dynam-
ical tadpoles for diverse fields. In the following we focus on the dynamics of the 5d light
fields R, 71, T2, the dilaton ¢ and the NSNS axion ® defined by

By = ®dyt dy? . (3.3)

The discussion of the dynamical tadpole is similar to the 71! example in section 2, so
we sketch the result. There is a dilaton tadpole, arising from the dimensional reduction of
the 10d kinetic term for the 3-form flux,

Vig= % e? (F3)?2. (3.4)

Since (F3)? is a constant source density, which does not integrate to zero over T?, there is
no solution for this Laplace equation if we assume the solution to be independent of the 5d
spacetime coordinates. One possibility would be to allow for 5d spacetime dependence of ¢
(at least in one extra coordinate, as in [9]). Here we consider a different possibility, which

"As usual, they can be removed in orbifold models, although we will not focus on this possibility.



is to let the NSNS axion ® acquire a dependence on one of the 5d coordinates, which we
denote by ¥, as follows

d = —(27)%/ ‘Z y = Hz=—(2m)% i\; dy* dy* dy . (3.5)
We have thus turned on NSNS 3-form field strength in the directions y', y? in T and the
5d spacetime coordinate y. Here the sign has been introduced for later convenience, and
t3 is a positive real parameter allowing to tune the field strength density, whose meaning
will become clear later on.

Including this new source, the dilaton equation of motion becomes

1

2., 1
v¢_12

¢ (Fa)* = e (Ha)?]. (3.6)
Hence, the spacetime-dependent profile (3.5) can cancel the right hand side and solve the
dilaton tadpole when

e (F3)? = (H3). (3.7)

We can thus keep the dilaton constant e® = g,. Taking for simplicity purely imaginary
71 = it; and 1o = itg, the condition (3.7) is simply

gs tl t2 t3 =1. (3.8)

In addition to the dilaton, the 3-form fluxes backreact on the metric and other fields,

which we discuss next.

3.2 The singularities

We now discuss the backreaction on the metric and other fields. For convenience, we use

1

the complex coordinates z', 2% and 22 = 3 + 4y. In terms of these, we can write the

combination
2m)* _ o
G3=F3 —TH3 = TO& N(dzl dzo dzg + dz1dZodzs + dz1dzodZs + d21d22d23) . (3.9)

Regarding T® x R; as a (non-compact) CY, this is a combination of (2,1) and (0,3)
components, which is thus ISD. There is a backreaction on the metric and RR 4-form of
the familiar black 3-brane kind. In particular, the metric includes a warp factor Z

ds? = Z 2y, datda” + Z% RY[dz'dz" + dz2dz? + d23dz?) (3.10)
where z* runs through the four Poincaré invariant spacetime coordinates. The warp factor

is determined by the Laplace equation

V27 = %Gg G = % (F3)?, (3.11)

with the tilde indicating the Laplacian is computed with respect to the unwarped, flat
metric, and in the last equation we used (3.7).

~10 -



Note that, since y parametrizes a non-compact dimension, there is no tadpole problem
in solving (3.11) i.e. we need not add background charge. One may then be tempted to
conclude that this provides a 5d spacetime-dependent configuration solving the 5d tadpole.
However, the solution is valid locally in y, but cannot be extended to arbitrary distances
in this direction. Since the local flux density in T® is constant, we can take Z to depend
only on® v, hence leading to a solution

d*z _ s Js

— W 6 (F3)2 = 7z = — E(F3)2 yQ, (312)

where we have set an integration constant to 1. The solution hits metric singularities at

.1

= ﬁgS(F?))Z’ (313)

Y

showing there is a maximal extent in the direction y. Let us introduce the quantity
T = % gs(F3)%, which controls the parametric dependence of the tadpole. Then, the dis-
tance between the singularities is
TR 2
A= Zidy = —=
—T-1/2 VST

with ¢t = v/Ty. We thus recover the scaling (1.1) with n = 2,

/01(1 —)idt, (3.14)

A2~ T. (3.15)

Hence the appearance of the singularities as a consequence of the dynamical tadpole is as
explained in the introduction.

3.3 Cobordism and spontaneous compactification

The appearance of singularities is a familiar phenomenon. In this section we argue that
they must be smoothed out, somewhat analogously to the KS solution in section 2. The fact
that it is possible follows from the swampland cobordism conjecture [14, 15|, namely there
must exist an appropriate cobordism defect closing off the extra dimension into nothing.
Since there are two singularities, the formerly non-compact dimension becomes compact,
in an explicit realization of spontaneous compactification.”

In the following, we directly describe the resulting geometry, which turns out to be a
familiar TO (orientifold) compactification with ISD 3-form fluxes. Consider type IIB theory
on T? x T? x T?, with

Fy = (27)%/ Ndz' dz? da®, Hs = (2r)%a’ N dy' dy? dy> . (3.16)

We use 2' = 2! + it;y’, hence the above defined t3 is the complex structure modulus for
the T? involving the newly compact dimension. For moduli satisfying (3.8) the TS flux
combination Gj is given by (3.9), which is ISD and indeed compatible with 4d Poincaré

8In fact, this is the leading behaviour at long distances, compared with the T® size scale R.
9Spontaneous compactification has been discussed in the context of dynamical tadpoles in [9].

- 11 -



invariance as usual. Notice that in this case, it is possible to achieve a large size for the
new compact dimension t3 > 1 by simply e.g. taking small gs. This corresponds to the
regime of small 5d tadpole, with the relation

t5? gl ~ T, (3.17)

in agreement with the maximal distance relation in the previous section.

Consistency, in the form of C4 RR tadpole cancellation, requires the introduction of
O3-planes at fixed points of the involution R : 2* — —z¢ (together with mobile D3-branes).
From the perspective of the 5d theory, the additional dimension is compactified on an inter-
val, with two end of the world defects given by the O3-planes, which constitute the cobor-
dism defects of the configuration (possibly decorated with explicit D3-branes if needed).

4 Solving dynamical tadpoles via magnetization

In this section we consider a further setup displaying dynamical tadpoles, based on com-
pactifications with magnetized D-branes [61-65]. In toroidal setups, these have been (ei-
ther directly or via their T-dual intersecting brane world picture) widely used to realize
semi-realistic particle physics models in string theory. In more general setups, magnetized
7-branes are a key ingredient in the F-theory realization of particle physics models [66-68].

4.1 Solving dynamical tadpoles of magnetized branes

We consider a simple illustrative example. Consider type IIB theory compactified on
T2 x T? (labelled 1 and 2, respectively) and mod out by QR (—1)L, where Ry : 23 — —21.
This introduces 4 O7;-planes spanning (T?)y and localized at the fixed points on (T?);.
We also have 32 D7-branes (as counted in the covering space), split as 16 D7-branes (taken
at generic points) and their 16 orientifold images. This model is related by T-duality on
(T?); to a type I toroidal compactification, but we proceed with the D7-brane picture.
We introduce M units of worldvolume magnetic flux along (T?)y for the U(1) of a

D7-brane!? 1

2ral Jop2

Fy=M. (4.1)

The orientifold requires we introduce —M units of flux on the image D7-brane.'! This also
ensures that there is no net induced Z-valued D5-brane charge in the model, and hence no
associated RR tadpole, in agreement with the fact that the RR 6-form is projected out. In
addition, there is a Zy K-theory charge [70] which is cancelled as long as M € 27Z.

The introduction of the worldvolume flux leads to breaking of supersymmetry. As
is familiar in the discussion of supersymmetries preserved by different branes [71], we
introduce the angle

0y = arctan(2ma’ F) = arctan (M), (4.2)

where F is the field strength and Y is the inverse of the T? area, in string units.

107f N the D7-branes are coincident, it is also possible to use the overall U(1) C U(N). We will stick to
the single D7-brane for the moment, but such generalization will arise in later examples.

"For simplicity we consider vanishing discrete NSNS 2-form flux [69], although such generalization will
arise in later examples.
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This non-supersymmetric configuration introduces dynamical tadpoles. For small 65,
the extra tension can be described in effective field theory as an FI term controlled by
0 [72-74). In fact, in [75] a similar parametrization was proposed for arbitrary angles. By
using the DBI action, the extra tension has the structure

VNi(\/W—l)- (4.3)

This leads to a tadpole for the dilaton and the (T?)s Kéhler modulus.

We now consider solving the tadpole by allowing for some spacetime-dependent back-
ground. Concretely, we allow for a non-trivial magnetic field —F on two of the non-compact
space coordinates, parametrized by the (for the moment, non-compact) coordinate z3. In
fact this leads to a configuration preserving supersymmetry since, defining the angle 63 in
analogy with (4.2), we satisfy the SU(2) rotation relation 03 + 62 = 0 [71]. In other words,
the field strength flux has the structure

Fy = F(dZQd?Q — ngd?g) , (44)

which is (1,1) and primitive (i.e. J A Fy = 0), which are the supersymmetry conditions for
a D-brane worldvolume flux.

Hence, it is straightforward to find spacetime-dependent solutions to the tadpole of
the higher-dimensional theory, at the price of breaking part of the symmetry of the lower-
dimensional spacetime. In the following we show that, as in earlier examples, this eventually
also leads to spontaneous compactification.

4.2 Backreaction and spontaneous compactification

The spacetime field strength we have just introduced couples to gravity and other fields,
so we need to discuss its backreaction.

In fact, this is a particular instance of earlier discussions, by considering the F-theory
lift of the D7-brane construction. This can be done very explicitly by taking the config-
uration near the SO(8)* weak coupling regime [76]. The configuration without magnetic
flux M = 0 simply lifts to F-theory on K3xT? x R?, where the (T?); (modulo the Zs
orientifold action) is the Py base of K3, and the T? and R? explicit factors correspond to
the directions zo and z3, respectively. As is familiar, the 24 degenerate fibers of the K3
elliptic fibration form 4 pairs, reproducing the 4 orientifold planes, and 16 D7-branes in
the orientifold quotient. Actually, the discussion below may be carried out for F-theory on
K3 at generic points in moduli space, even not close to the weak coupling point.

The introduction of magnetization for one 7-brane corresponds to the introduction of a
G4 flux along the local harmonic (1, 1)-form supported at an I; degeneration (or enhanced
versions thereof, for coincident objects), of the form

Gy = w9 A F(dZQdZQ — dZ3d§3) . (4.5)

This flux is self-dual, and in fact (2, 2) and primitive, which is the supersymmetry preserving
condition for 4-form fluxes in M/F-theory [48, 77]. The backreacted metric is described
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by a warp factor satisfying a Laplace equation sourced by the fluxes, similar to (3.11).
Considering the regime in which the warp factor is taken independent of the internal space
and depends only on the coordinates in the R? parametrized by z3, the constant flux
density leads to singularities at a maximal length scale A

A%~ F2, (4.6)

This is another instance of the universal relation (1.1) with 7 ~ F?, hence n = 2.

This is in complete analogy with earlier examples. Hence, we are led to propose
that the smoothing out of these singularities is provided by the compactification of the
corresponding coordinates, e.g. on a T?, with the addition of the necessary cobordism
defects, namely orientifold planes and D-branes.!?

To provide an explicit solution, we introduce the standard notation (see e.g. [63, 64])
of (n,m) for the wrapping numbers and the magnetic flux quanta on the (T?);’s for the
directions ¢ = 1,2,3. In this notation, the O7;-planes and unmagnetized D7;-branes
are associated to (0,1) x (1,0) x (1,0), while the magnetized D7;-branes'® correspond to
(0,1) x (1, M) x (1,—M), and (0,1) x (1,—M) x (1, M) for the orientifold images. In other
words, we require a flux quantization condition on (T?)3 as in (4.1), up to a sign flip.

Since now the last complex dimension is compact, there is an extra RR tadpole cancella-
tion condition, which requires the introduction of 16 O73-planes, wrapped on (T?2); x (T?),
and localized at fixed points in (T?);, namely with wrapping numbers (1,0) x (1,0) x (0, 1).
This introduces an extra orbifold action generated by (z1, z2,23) — (21, —22, —23), so the
model can be regarded as a (T-dual of a) magnetized version of the D9/D5-brane T*/Z
orientifolds in [78, 79]. Allowing for n additional mobile D73-branes (as counted in the
covering space, and arranged in orbifold and orientifold invariant sets), the RR tadpole
cancellation conditions is

2M? +n = 32. (4.7)

The supersymmetry condition is simply that the T? parameters satisfy x2 = x3.

From the perspective of the original 6d configuration, the tadpole in the initial T? x T2
configuration has triggered a spontaneous compactification. Since the additional O-planes
and D-branes required to cancel the new RR tadpoles are localized in 23, they can be
interpreted as the addition of I-branes to cancel the cobordism charge of the original model.

It should be possible to generalize the above kind of construction to global K3-fibered
CY threefolds with O7-planes. The local fibration in a small neighbourhood of a generic
point of the base provides a local 6d model essentially identical to our previous one. On

12To be precise, the cobordism defects of an S’ compactification of the model. This is analogous to
the mechanism by which F-theory on half a P; provides the cobordism defect for type IIB on S! with
SL(2,Z) monodromy [14] (see also [16]). In fact, since magnetized branes often lead to chiral theories in
the bulk, this extra circle compactification allows them to become non-chiral and admit an end of the world
describable at weak coupling, see the discussion below (5.14) in section 5.3. We will nevertheless abuse
language and refer as cobordism defect to the structures involved in the final spontaneous compactification
under discussion.

131f the magnetization is in the U(1) C U(N) of a stack of N coincident branes, see footnote 10, the
corresponding wrapping goes as (N, M).
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the other hand, the global geometry defining how the two extra dimensions compactify
would correspond to another possible spontaneous compactification, with the ingredients
required for the cancellation of the new RR tadpoles.

However, a general drawback of this class of models is that the scales of the compact
spaces in the directions 2 and 3 are of the same order.'* Thus, there is no separation of
scales, and no reliable regime in which the dynamics becomes that of a 6d model. This is

easily avoided in more involved models, as we will see in the examples in coming sections.

5 Solving tadpoles in 10d strings

In this section we consider dynamical tadpoles arising in several 10d string theories, and
confirm the general picture. We illustrate this with various examples, with superymmetry
(massive type ITA and M-theory on K3), and without it (non-supersymmetric 10d USp(32)
theory).

5.1 Massive ITA theory

We consider 10d massive type ITA theory [80]. This can be regarded as the usual type ITA
string theory in the presence of an additional RR 0-form field strength Fy = m. The string
frame effective action for the relevant fields is
1 1 1
Sio = —Q/dl%; V-G {62¢[R + 4(04)?] — 5(FO)2 - 2(F4)2} + Stop » (5.1)

2Ky

&
where Siop includes the Chern-Simons terms. In the Einstein frame Gg = e 2G, we have

Siom = % /dl% \/@{ {R - ;(8@2] - e%¢(F4)2} 52

Here we have used m to emphasize this quantity is constant. This theory is supersymmetric,
but at a given value of ¢, it has a tadpole controlled by

T ~ e3%m?. (5.3)

This is in particular why the massive ITA theory does not admit 10d maximally symmetric
solutions. In the following we discuss two different ways of solving it, leading to Minkowski
or AdS-like configurations.

5.1.1 Solution in 9d and type I’ as cobordism

To solve the tadpole (5.3) we can consider a well-known 1/2 BPS solution with the dilaton
depending on one coordinate z°. Since the flux m can be regarded as generated by a set
of m distant D8-branes, this is closely related to the solution in [81]. We describe it in

1411 the toroidal example, if the magnetization along (T?)s is on the overall U(1) C U(16) of 16 coincident
D7-branes, the magnetic field along 22 is F' ~ M /16; this weakened tadpole implies an increase of the critical
size of the spontaneously compactified dimensions by a factor of 4.
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conventions closer to [17], for later use. In the Einstein frame, the metric and dilaton
background have the structure

(Gr)un = Z(@0) T nun, € =2(2°)78, with Z(2°) ~B—ma®,  (5.4)

where B is some constant (in the picture of flux generated by distant D8-branes, it relates
to the D8-brane tensions). The solution hits a singularity at 7 = B/m. Starting at a
general position 27, the distance to the singularity is

B
A= /: Z(xg)i da?® ~ Z(m9)§ m " ~m e 19, (5.5)

where in the last equality we have traded the position for the value the dilaton takes there.
Recalling (5.3), this reproduces the Finite Distance scaling relation (1.1) with n = 2,

A2~ T. (5.6)

It is easy to propose the stringy mechanism capping off spacetime before or upon reach-
ing this singularity, according to the Dynamical Cobordism lesson. This should be the
cobordism defect of type ITA theory, which following [14] is an O8-plane, possibly with
D8-branes.

In fact, this picture is implicitly already present in [17], which studies type I’ theory,
namely type IIA on an interval, namely ITA on S' modded out by QR with R : 29 — —z9,
which introduces two O8 -planes which constitute the interval boundaries. There are 32
D8-branes (in the covering space), distributed on the interval, which act as domain walls
for the flux Fy = m, which is piecewise constant in the interval. The metric and the dilaton
profile are controlled by a piecewise linear function Z(2”). The location of the boundaries
at points of strong coupling was crucial to prevent contradiction with the appearance of
certain enhanced symmetries in the dual heterotic string (the role of strong coupling at
the boundaries for the enhancements was also emphasized from a different perspective
in [82, 83]). In our setup, we interpret the presence of (at least, one) O8-plane as the
cobordism defect triggered by the presence of a dynamical tadpole in the bulk theory.

5.1.2 A non-supersymmetric Freund-Rubin solution

We now consider for illustration a different mechanism to cancel the dynamical tadpole,
which in fact underlies the spontaneous compactification to (non-supersymmetric'®) AdS, x
S% in [80]). The idea is that, rather than solving for the dilaton directly, one can introduce
an additional flux Fy along three space dimensions and time (or its dual Fg on six space
dimensions) to balance off the dilaton sourced by Fy. This can be used to fix ¢ to a
constant, and following [80] leads to a scaling

Fy ~m?d(vol)y, (5.7)

15Thus, it should be unstable according to [46]. However, being at a maximum of a potential is sufficient
to avoid dynamical tadpoles, so the solution suffices for our present purposes.
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where d(vol)s is the volume form in the corresponding 4d. Using arguments familiar by
now, the constant Fj backreaction on the metric is encoded in a solution of the 4d Laplace
equation with a constant source, leading to a solution quadratic in the coordinates (to avoid
subtleties, we take solutions depending only on the space coordinates). This develops a
singularity at a distance scaling as

A2~ [Ey| 2 vm ™~ T (5.8)

where in comparison with (5.3) we have taken constant dilaton.
The singularities are avoided by an AdS, x S® compactification, whose curvature radius

2 in agreement with the above scaling. From our perspective, the compactification

isR~m
should be regarded as a dynamical cobordism (where the cobordism is actually that of the

10d theory on an S® (i.e. equator of S°)).

5.2 An aside on M-theory on K3

In this section we relate the above system to certain compactifications of M-theory and to
the Horava-Witten end of the world branes as its cobordism defect. Although the results
can be obtained by direct use of M-theory effective actions, we illustrate how they can be
recovered by applying simple dualities to the above system.

Consider the above massive IIA theory with mass parameter m, and compactify on
T*/Z5. This introduces O4-planes, and requires including 32 D4-branes in the configura-
tion, either as localized sources, or dissolved as instantons on the D8-branes. Actually this
can be considered as a simple model of K3 compactifications, where in the general K3 the
O4-plane charge is replaced by the contribution to the RR C5 tadpole arising from the CS
couplings of D8-branes and O8-planes to tr R.

We now perform a T-duality in all the directions of the T*/Zy (Fourier-Mukai trans-
form in the case of general K3). We obtain a similar model of type I" on T*/Zy, but
now with the tadpole being associated to the presence of m units of non-trivial flux of the
RR 4-form field-strength over T* (namely, K3). Also, the dilaton of the original picture
becomes related to the overall Kdhler modulus of K3. Finally, we lift the configuration
to M-theory by growing an extra S' and decompactifying it. We thus end up with a 7d
compactification of M-theory on K3, with m units of G4 flux,

G4 =m. (5.9)
K3

This leads to a dynamical tadpole, cancelled by the variation of the overall K&éhler modulus
(i.e. the K3 volume) along one the 7d space dimensions, which we denote by z!l. As in
previous sections, this will trigger a singularity at a finite distance in z'!, related to the
tadpole by A=2 ~ T. The singularity is avoided by the physical appearance of a cobordism
defect, which for M-theory is a Horava-Witten (HW) boundary [84]. This indeed can
support the degrees of freedom to kill the G4 flux, as follows. From [85], the 11d Gy is
sourced by the boundary as

dGy = 6(z) (tr F? — %tr R2> , (5.10)
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where §(x!!) is a bump 1-form for the HW brane, and F is the field-strength for the Eg
gauge fields in the boundary. Hence, the m units of G4 in the K3 compactification can be
absorbed by a HW boundary with an Fg bundle with instanton number 12 + m (the 12
coming from half the Euler characteristic of K3 [i; tr R? = 24).

The above discussion is closely related to the picture in [18], which discusses compact-
ification of HW theory (namely, M-theory on an interval with two HW boundaries) on K3
and on a CY threefold. It includes a K&hler modulus varying over the interval according
to a linear function'® and the appearance of a singularity at finite distance. In that case,
the HW brane was located at the strong coupling point, based on heuristic arguments, and
this led, in the CY3 case, to a lower bound on the value of the 4d Newton’s constant.

Our perspective remarkably explains that the location of the HW wall is not an arbi-
trary choice, but follows our physical principle of Dynamical Cobordism, and the bound
on the Newton’s constant is a consequence of that of Finite Distance!

5.3 Solving tadpoles in the non-supersymmetric 10d USp(32) theory

The previous examples were based on an underlying supersymmetric vacuum, on top of
which the dynamical tadpole is generated via the introduction of fluxes or other ingredients.
In this section we consider the opposite situation, in which the initial theory is strongly
non-supersymmetric and displays a dynamical tadpole from the start. In particular we
consider the non-supersymmetric 10d USp(32) theory constructed in [4], in two different
ways: first, we use our new insights to revisit the spacetime-dependent solution proposed
in [9] (see also [10] for other proposals); then we present a far more tractable solution
involving magnetization, which in fact provides a supersymmetric compactification of this
non-supersymmetric 10d string theory.

5.3.1 The Dudas-Mourad solution and cobordism

The non-supersymmetric 10d USp(32) theory in [4] is obtained as an 2 orientifold of type
IIB theory. The closed string sector is as in type I theory, except that the O9~-plane is
replace by an O97-plane. Cancellation of RR tadpoles requires the introduction of open
strings, which must be associated to 32 D9-branes. The closed string sector is a 10d N = 1
supergravity multiplet; the orientifold action on the D9-branes breaks supersymmetry,
resulting in an open string sector with USp(32) gauge bosons and gauginos in the two-index
antisymmetric representation. All anomalies cancel, a remarkable feat from the field theory
viewpoint, which is just a consequence of RR tadpole cancellation from the string viewpoint.

Although the RR tadpoles cancel, the NSNS tadpoles do not, implying that there is
no maximally symmetric 10d solution to the equations of motion. In particular there is a
dynamical dilaton tadpole of order the string scale, as follows from the terms in the 10d
(Einstein frame) action

Sp 1/&%@ {R— ;(aqb)ﬂ —Tgff/dlox\/ime% (5.11)

T oR2

16T the presence of explicit M5-branes, it is a piecewise linear function. It is straightforward to include
them in our cobordism description if wished, with explicit branes considered as part of the cobordism defect.
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where T is the (anti)D9-brane tension. The tadpole scales as T ~ T& gg/ ?, with the
dilaton dependence arising from the fact that the supersymmetry breaking arises from the
Moebius strip worldsheet topology, with y = 3/2.

Ref. [9] proposed solutions of this dynamical tadpole with 9d Poincaré invariance, an d
the dilaton varying over one spacetime dimension (see also [86, 87] for more recent, related
work). In the following we revisit the solution with dependence on one spatial coordinate
y, from the vantage point of our Lessons.

The 10d solution is, in the Einstein frame,

3 2
o= fozEyz + flog \«/any] + ¢,

b0 79aEy

ds? = |Japy|se 5 an:c“da; +|agpy| e e dy? (5.12)

where ap = 64k?Ty. There are two singularities, at ¥ = 0 and y — oo, which despite
appearances are separated by a finite distance

b0 QaEy 3¢0

N/ |Vamy| te e dy ~ e ag? | (5.13)

The fact that the solution has finite extent in the spatial dimension on which the fields

l\)\»—‘

vary is in agreement with the Finite Distance Lesson, and in fact satisfying its quantitative
bound (1.1)
A2~ T. (5.14)

We can now consider how the Dynamical Cobordism Lesson applies in the present
context. Following it, we expect the finite extent in the spatial dimensions to be physically
implemented via the cobordism defect corresponding to the 10d USp(32) theory. In general
the cobordism defect of bulk chiral 10d theories are expected to be non-supersymmetric,
and in fact rather exotic, as their worldvolume dynamics must gap a (non-anomalous) set of
chiral degrees of freedom. In fact, on general grounds they can be expected to involve strong
coupling.'” An end of the world defect imposes boundary conditions on bulk supergravity
fields, which at weak coupling should be at most linear in the fields, to be compatible with
the superposition principle. A typical example are boundary conditions that pair up bulk
fermions of opposite chiralities. However, the anomaly cancellation in the 10d USp(32)
theory involves fields of different spins, which cannot be gapped by this simple mechanism,
and should require strong coupling dynamics (a similar phenomenon in a different context
occurs in [88]).

This strong coupling fits nicely with the singularity at y — oo, but the singularity at
y = 0 lies at weak coupling. The simplest way out of this is to propose that the singularity
at y = 0 is actually smoothed out by perturbative string theory (namely, o/ corrections,
just like orbifold singularities are not singular in string theory), and does not turn into
an end of the world defect. Hence the solution (5.12) extends to y < 0, and, since the
background is even in y, develops a singularity at y — —oo. This is still at finite distance
A scaling as (5.14), and lies at strong coupling, thus allowing for the possibility that the
singularity is turned into the cobordism defect of the 10d USp(32) theory.

1"We are indebted to Miguel Montero for this argument, and for general discussions on this section.
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It would be interesting to explore this improved understanding of this solution to the
dilaton tadpole. Leaving this for future work, we turn to a more tractable solution in the
next section.

5.3.2 Solving the tadpole via magnetization

We now discuss a more tractable alternative to solve the dynamical tadpole via magneti-
zation, following section 4.

Stabilizing the tadpole via magnetization is, ultimately, equivalent to finding a com-
pactification (on a product of T?’s) which is free of tadpoles, for instance by demanding it
to be supersymmetric. Hence we need to construct a supersymmetric compactification of
the non-supersymmetric 10d USp(32) theory [4].

As explained above, the 10d model is constructed with an O9*-plane and 32 D9-branes.
Hence, we need to introduce worldvolume magnetic fields in different 2-planes, in such a
way that the corresponding angles add up to 0 mod 27. It is easy to convince oneself that
this requires magnetization in at least three complex planes, ultimately triggering a T? x
T2 x T? compactification. In order to preserve supersymmetry, we need the magnetization
to induce D5-brane charges, rather than D5-brane charge, hence we need the presence of
three independent kinds of negatively charged O5; -planes, where ¢ = 1,2,3 denotes the
T2 wrapped by the corresponding O5-plane. We are thus considering an orientifold of
TY/(Zy x Zs) with an O9F-plane, and 8 O5; -planes.!®

The wrapping numbers for the O-planes, and for one simple solution of all constraints
for the D9-branes (and their explicitly included orientifold image D9-branes), are

Object | No | (ng,my) | (nd,m3) | (nd,m3)
09t | 32 | (1,0 (1,0) (1,0)
057 | —32| (1,0) 0,1) | (0,-1)
05, | —32| (0,1) (1,0) | (0,-1)
05; | —32| (0,1) | (0,=1) | (1,0)

D9 | 16 | (=1,1) | (=1,1) | (=1,1)
DY | 16 | (=1,=1) | (=1,=1) | (=1,-1)

It obeys the RR tadpole conditions for the Z-valued D9- and D5-brane charges, and
the discrete Zs RR tadpole conditions for D3- and D7;-brane charges [70].
The supersymmetry condition determined by the O-plane wrappings is

Z arctan(—yx;) = 61 + 02 + 63 = 0 mod 27 . (5.15)

3
The model is in fact T-dual (in all T® directions) to that in section 5 of [59].
It is easy to see that the above condition forces at least one of the T? to have O(1) area
in o/ units. From our perspective, this a mere reflection of the fact that the 10d dynamical

18For such combinations of orientifold plane signs, see the analysis in [89], in particular its table 6. We
will not need its detailed construction for our purposes.
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tadpole to be canceled is of order the string scale, hence it agrees with the scaling A=2 ~ 7.
Happily, the use of an o exact configuration, which is moreover supersymmetric, makes
our solution reliable. This is an improvement over other approaches e.g. as in section 5.3.1.

Although we have discussed the compactification on (an orientifold of) T directly,
we would like to point out that it is easy to describe it as a sequence of T? spontaneous
compactifications, each eating up a fraction of the initial 10d tadpole until it is ultimately
cancelled upon reaching T%. However, this picture does not really correspond to a physical
situation, given the absence of decoupling of scales. This is true even in setups which
seemingly allow for one T? of parametrically large area. Indeed, consider for instance the
regime x3 ~ 2\ and x1,x2 ~ AL, for 0 < A < 1, which corresponds to 61,60y ~ 5+ A
63 ~ 7 — 2\, This corresponds to a compactification on substringy size (T?); x (T?)3 and
a parametrically large (T?)3. However, the fact that the (T?);, (T?)2 can be T-dualized
into large area geometries shows that there is not true decoupling of scales: in the original
picture, the small sizes imply that there are towers of light winding modes, whose scale is
comparable with the KK modes of (T?)3. Hence, the lack of decoupling is still present, as
expected from our general considerations in the introduction.

6 The SM from spontaneous compactification

In this section we explore an interesting application of the above mechanism, and provide
an explicit example of a 6d theory with brane-antibrane pairs, and a dynamical tadpole
triggering spontaneous compactification to a 4d (MS)SM-like particle physics model. Inter-
estingly, the complete chiral matter and electroweak sector, including the Higgs multiplets,
are generated as degrees of freedom on cobordism branes. Only the gluons are present in
some form in the original 6d models.

Consider the type IIB orientifold of T*/Zy with orientifold action  constructed in [78,
79], possibly with magnetization. To describe it, we introduce the notation in [69, 90] of
wrapping numbers (n’,, m’,), where n!, and m!, provide the wrapping number and magnetic
flux quantum of the D-brane a on the i T2, respectively. We consider the following stacks
of D-branes (and their orientifold images, not displayed explicitly)

Na (ng:mg) | (n3,m3)
Napa=6+2| (1,3) | (1,-3)
Np=4 | (1,-3) | (1,-9)
Ny, =4 | (1,-4) | (1,-3)
40 0,1) | (0,-1)

The 09- and O5-planes correspond to the wrapping numbers (1,0) x (1,0) and (0, 1) x
(0, —1) respectively. The stacks a and d are taken different and separated by Wilson lines,
but they can be discussed jointly for the time being. They correspond to 8 D9-branes
with worldvolume magnetic fluxes 72 units of D5-brane charge. The stacks h; and ho
correspond to 8 additional D9-branes, with 96 with units of induced D5-branes charge.
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The addition of 40 explicit D5-branes leads to RR tadpole cancellation (once orientifold
images are included). In terms of the wrapping numbers, we have

ZNanini =16, Z Nom2m? = —16. (6.1)
« o

The model is far from supersymmetric due to the presence of D5-D5 pairs, and in fact
has a decay channel to supersymmetric model by their annihilation. On the other hand,
even at the top of the tachyon potential, the theory is not at a critical point of its potential
due to dynamical tadpole for the closed string moduli, namely the area moduli of the T?’s.
In other words, the excess tension depends on these, as they enter the angles determining
the deviation from the supersymmetry condition

1 2
arctan <7::1QX1> + arctan (7320‘)(2> =0. (6.2)

« «

For instance, we can make the stacks a, d supersymmetric, by choosing

X1 = X2, (6.3)

but the D-branes h; and hy break supersymmetry. Hence, there is a dynamical tadpole
associated to the excess tension of these latter objects.

The dynamical tadpole can be solved by introducing magnetization along two of the
6d spacetime dimensions. The backreaction of this extra flux forces these two dimensions
to be compactified on a T2, with the addition of cobordism I-branes [15], which in general
includes orientifold planes and D-branes, as in the examples above. We take these extra
branes to be arranged in two new stacks b and c¢. Overall, we end up with an orientifold of
TS /(Zo x Zs), with D-brane stacks and topological numbers given by

Na (na,mq) | (ng,ma) | (ng,my)
Nera=6+2| (1,3) | (1,-3) | (1,0)
Ny =2 (0,1) (1,0) (0,1)
N, = (-1,0) | (0,-1) | (0,1)
Np, =2 (1,-3) (1,—4) (2,-1)
Ny, = (1,-4) | (1,-3) | (2.-1)
40 0,1) | (0,-1) | (0,1)

Z Nanlnind =16, Z Nonlm2m? =16,
«
Z Nomin2m? =16, Z Nomim?Znd = —16. (6.4)
«
This corresponds to O9-planes along (1,0) x (1,0) x (1,0), and O5-planes along (0,1) x

(0,—1) x (1,0), as already present in the 6d theory, and cobordism O5-planes along (0,1) x
(1,0) x (0,1) and (1,0) x (0,1) x (0,1).
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The model still contains only 3 stacks of D-branes with non-trivial angles, so that they
are just enough to fix the 2 parameters y; of the T?’s. The O-planes fix the supersymmetry
condition signs to

1 2 3
m m m
arctan (1&)(1) + arctan <20‘X2> — arctan <3O‘X3> =0. (6.5)

Using the branes above, we get

Ldxq

XL 6.6
1—12y2 (6.6)

X1=X2, X3=
The regime of large (T?)3 corresponds to small 3, which is also attained for small y;.
Note that in this context the last condition x; ~ x3 encodes the relation between the 6d
tadpole and the inverse area of the spontaneously compactified T2.

The model is, up to exchange of directions in the T® and overall sign flips, precisely
one of the examples of 4d MSSM-like constructions in [59, 60]. The gauge group is U(3), x
USp(2)p x U(1), x U(1)4, where we break the naive USp(2). by Wilson lines or shifting off
the O-plane for the corresponding D5-branes. Taking into account the massive U(1)’s due
to BF couplings, this reproduces the SM gauge group. In addition, open strings between
the different brane stacks reproduce a 3-family (MS)SM chiral matter content, and the
MSSM Higgs doublet pair. Hence, we have described the spontaneous compactification of
a 6d model to a semi-realistic MSSM-like 4d theory.

A fun fact worth emphasizing is that most of the SM spectrum is absent in the original
6d model, and arises only after the spontaneous compactification. In particular, all the
MSSM matter and Higgs chiral multiplets, as well as the electroweak gauge sector, arise
from open string sectors involving the b and ¢ branes, which arises as cobordism branes.
It is remarkable that cobordism entails that spontaneous compactification implies not just
the removal of spacetime dimensions, but also the dynamical appearance of novel degrees
of freedom. It is tantalizing to speculate on the potential implications of these realizations
in cosmological or other dynamical setups.
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A Dynamical tadpoles and swampland constraints

In this appendix we use the model in section 2 to illustrate the result in [3] that, in
theories with a dynamical tadpole which is not duly backreacted on the field configuration,
the mistreatment can show up as violations of swampland constraints.
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We consider type IIB theory on AdSs x 71! and introduce M units of RR 3-form flux.
In the coordinates in [33, 34], it reads

1
F3 = §M[sin 91 (COS 92d91d¢)1d¢2 + d91d¢1d¢) + sin 02(COS 91d92d¢1d¢)2 — d92d¢2d1/))] .

It has constant coefficients in terms of fiinf-bein 1-forms ¢° in [33] F3 = %M a°(gtg® +
g%g%), hence its kinetic term |F3|? is constant over the T'! geometry. This acts as a
constant background source for e.g. the Laplace equation for the dilaton, which has no
solution over the compact 71! geometry. This inconsistency of the equations of motion,
assuming no backreaction on the underlying geometry, signals the dynamical tadpole in
the configuration. In the following we will argue that it moreover can lead to violation of
the Weak Gravity Conjecture [47].

For concreteness we focus on the simplest set of states, corresponding to 5d BPS
particle states in the original theory (M = 0), with the BPS bound corresponding to
the WGC bound, for the gauge interaction associated to the KK U(1) dual to the U(1)g
symmetry of the dual CFT. For small R-charge n < N, these particle states are dual to
chiral primary single-trace mesonic operators of the SU(N)? theory, e.g. tr (A1 By ... A1 By);
in the AdS side, they correspond to KK gravitons with momentum n on the S'. For very
large R-charge, the KK gravitons polarize due to Myers’ effect [91] into giant gravitons [92],
and their dual operators are determinant or sub-determinant operators [93]. Note that on
T! we have D3-branes wrapped on homologically trivial 3-cycles (but sustained as BPS
states by their motion on S'), hence they are different from (di)baryonic operators, which
correspond to D3-branes wrapped on the non-trivial S [94].

Our strategy is to consider these states in the presence of F3, but still keeping the
geometry as AdSs x TH! (i.e. with no backreaction of the dynamical tadpole), and show
that the interaction of F3 makes these states non-BPS, hence violating the WGC bound.
This analysis will be quite feasible in the giant graviton regime 1 < n ~ N, by using the
wrapped D3-brane worldvolume action. Admittedly, proving a full violation of the WGC
would require showing the violation of the BPS condition for all values of n; we nevertheless
consider the large n result as a compelling indication that the WGC is indeed violated in
this configuration, thus making its inconsistency manifest.

Supersymmetric 3-cycles for D3-branes are easily obtained from holomorphic 4-cycles
in the underlying CY threefold [95, 96] (see also [97]). Describing the conifold as z'2? —
232* = 0, any holomorphic function of these coordinates f(x,,z,w) = 0 defines a holo-
morphic 4-cycle corresponding to a giant graviton D3-branes, i.e. wrapped on a trivial'®
3-cycle in T1. We focus on a simple class of D3-branes studied in detail in [98]. They
are defined by the 4-cycle 2! = /1 — a2, with a € [0,1] being a real constant, encoding
the size of the 3-cycle (with @ = 0,1 corresponding to the pointlike KK graviton and the
maximal giant graviton, respectively). We will follow the analysis in [98] with the inclusion
of the effect of F3 on the D3-brane probe.

19Di-baryonic D3-branes are on the other hand associated to non-Cartier divisors in the conifold, i.e.
4-cycles which can be defined in terms of the a;, b; homogeneous coordinates of the linear sigma model,
but cannot be expressed as a single equation f(zz) =0.
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It is convenient to change to new coordinates {x1, x2, X3, @, '}

— Ll _
I N (V) paee SRS
X2 = 3(¢ + 301 — ¢2) 9 , 0 0 (A.1)
| y:% with u = cos 5 cos 3
X3 = 5(¢ — ¢1+ 32) o

These are adapted to the D3-brane embedding, which simply reads

1

o’ =t, o' = v (doubly-covered), o2 = xa2, 0= 3.

The double covering is very manifest for the maximal giant graviton, o = 1, 2! = 0. It cor-
responds to the defining equation 232* = 0, which splits in two components, corresponding
to two (oppositely oriented) copies of the non-trivial?’® S3. The double covering remains
even for non-maximal giants, even though they correspond to irreducible 4-cycles.

The RR 3-form field strength in these coordinates is
F5 = M([a12 dx1 A dxa + a13 dx1 A dxs + aszs dxa A dys] A da

+ [vi2 dx1 A dxa + v13 dxa A dxs + vaz dx2 A dxs] Adv), (42
with
a1g = %a(l + 11:52) V12 = :F%%V;Z?*C)
a3 = %Oé(—li 11:32) U13:$%%V;8_6)
agz = Jo(£2) Vg3 = —%ﬁz_c)

where we have introduced ¢ = 1 — /1 — o?v2. We can fix a gauge and find the RR 2-form

Cy = M (c12dx1 N dxz2 + c13dx1 A dxs + casdxa A dxs) , (A.3)
with
C12 = —%(—oﬂ F 2 11,?'20)
13 = _%(QQ -2 1’;/%)
Co3 = %(QQVI;—%)
Its pullback on the D3-brane worldvolume is
P[C5] = Mx1(c12dt A dxa + c13dt A dxs) + Measdxa A dxs . (A.4)

We can now compute the effect of this background on the D3-brane by using its world-
volume action. This is easy in the S-dual frame, in which the RR 2-form couples to the
D3-brane just like the NSNS 2-form in the original DBI+CS D3-brane action.?! After
integrating over o, X3, this reads

42
525131314-5032697r /dtL,

(A.5)

1

with L= / dv 2 (= Ty\/~ det (P[Gl,w + P[Calw) + psR'enta )
0

20Tn terms of the linear sigma model coordinates we have z' = a1b1, 22 = agba, 2° = aiby, 2* = azby,
and the two components correspond to a1 = 0 and b; = 0, which are non-Cartier divisors.

21Related to this, one can check that the above background is neither pure gauge on the D3, nor cannot
be removed by a change in the worldvolume gauge field strength flux.
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where the factor of 2 of the double-covering of v has been added, and the last term arises
from the CS coupling to the RR 4-form as in [98].

We are interested in focusing on the angular momentum of the state P, = 687)‘51 conju-
gate to the angular coordinate 1. This reads

o § 1 \/?;Agz/ NT3(X1)
P =3 /0 v <\/Ngu(B — A(X1)?)

+ 9meaps N) , (A.6)
with
1
A= %{—4 M?[(2(1 — a*v?)c — a*v?)c] — 3nN(a? — 1)v*c*} = Aya M? + AxN,
v

618114 {4M2 [(4— a21/2)c2 — 20421/20]
v

B =

+ aN[2a*v* + (@®v? — 2¢)(—3a?V* — 3v% + 8)]}
= BM2M2 + ByN.
(A.7)

In the last equalities we have highlighted the parametric dependence on N and M.
Despite the fact that we have not managed to find a closed form for the result, since
M <« N we can find an expansion for the integrand in the form

n:p()(avVaXl)N—i_pQ(avVle) M2+O(M4)’ (AS)

where the coeflicient functions are computable, but we will not need their explicit expres-
sions.

The coeflicient py is the survivor for the M = 0 case, and leads to an integer momentum.
On the other hand, the subleading correction ps produces a momentum which is not integer.
This already signals a problem, since (as the geometry is considered undeformed even
after introducing F3) the gauge coupling of the KK U(1) is as in the M = 0 case, hence
charges under it should be integer in the same units. Hence one can directly claim that
the assumption of ignoring the dynamical tadpole backreaction lead to violation of charge
quantization, in contradiction with common lore for consistency with quantum gravity [99].

The above discussion however seems to contradict the fact that any quantum exci-
tation on a periodic S! direction must have quantized momentum to have a well-defined
wavefunction. In fact, an alternative interpretation of the above mismatch is that the D3-
brane probe computation assumes a well-defined worldvolume embedding, in particular
well-defined (hence classical) trajectories for the 5d particle. It is only for BPS states in
supersymmetric vacua that such a computation is guaranteed to end up producing quan-
tized momenta. The fact that our holomorphic embedding ansatz fails to do so is just a
reflection that the actual integer-quantized states are not described by holomorphic equa-
tions. Since the latter condition is the one ensuring the match between the particle mass
and charge, it is clear that non-holomorphic embeddings will produce larger masses for the
same charge, hence violating the BPS/WGC bound.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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