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1 Introduction

Charting the landscape of gravitational theories is a problem of key importance both to
achieve a better understanding of string theory as well as to clarify the basic consistency
requirements that gravitational theories should abide to. While the attention is often
restricted to massless fields of spin up to two, a generic feature of consistent gravitational
theories is the presence of infinite towers of massive fields of increasing spin.

In this work we focus on the leading electromagnetic coupling of massive excitations
which is the first non-minimal correction to the minimal coupling. The problem of under-
standing how to couple consistently such massive excitations has a long history starting
from Fierz and Pauli [1] who were the first to analyse consistent electromagnetic interac-
tions of massive spinning fields. The problem turned out to be more subtle than expected
since just introducing a minimal coupling was not a consistent solution. It was quickly re-
alised that minimal electromagnetic interactions must be supplemented by a non-minimal
coupling proportional to the Electromagnetic tensor Fµν and whose overall coupling con-
stant is usually expressed in terms of the electric charge q up to a numerical factor usually
referred to as gyromagnetic ratio g. The gyromagnetic ratio determines the intensity of
their magnetic moments in the interaction with external magnetic fields.

In the ‘50s, using the minimal coupling, Belinfante hypothesized that g had to be equal
to the inverse of the spin of the particle [2]. This relation gives the correct value for a Dirac
particle but it fails to give the correct tree level gyromagnetic ratio of the other higher spin
(HS) particles such as W-boson which turns out to be g = 2. This is expected since, as
mentioned above, the minimal coupling does not give rise to a consistent electromagnetic
interaction of the higher spin fields.

The value g = 2 naturally arises also from a number of different approaches which
include the study of the precession of a spin particle in a magnetic field [3], the high energy
behaviour of scattering amplitudes [4] and string theory [5–8] that suggest that the natural
value for this ratio is g = 2 (see also refs. [9, 10] for a review on the subject). Following
these results, in the 90s, Ferrara, Porrati and Telegdi proposed an electromagnetic coupling
which is consistent with the value g = 2 for all the elementary particles of arbitrary
spin [7]. The value g = 2 has also been recently clarified in the context of massive HS
interactions [11–13]. It turns out that consistent propagation on constant electromagnetic
backgrounds (in the absence of other fields) are possible only with g = 2. However, the
analysis in [12] left open the possibility of other values for g in more complicated theories
with additional fields. Similar analysis has also been performed by imposing causality and
no superluminal propagation in constant electromagnetic background leading to the same
value g = 2 [14–16]. Again, however more complicated cases with additional fields have
not been yet analysed from this perspective.

In fact, there are some exceptions to this natural value of the gyromagnetic factor.
In [17], it was shown that the massive spin-two particles, arising from compactification of
the five-dimensional Einstein-Hilbert action, have g = 1. The same value was obtained via
soft-theorem compactifications of d+ 1 dimensional theory to d dimension in [18]. The D0
branes in Type IIA theory, which are the KKmodes associated to the circle compactification
of D = 11 SUGRA, were also explicitly shown to have g = 1 in [19].
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In this draft, motivated by these results, we closely analyse the gyromagnetic factor
for massive string excitations with respect to the U(1) gauge fields arising from both the
Graviton and Kalb Ramond fields upon compactification. We clarify how the value g =
2 for open string states in 10 dimension is a simple consequence of conservation of the
corresponding vertex operator. For modes with vanishing winding charge, the g = 1 value
for closed string states, turns out to arise as a simple consequence of the structure of the
Graviton vertex operator that is written as a double-copy of open string vertex operators.
Thus, for all string excitations with a field theoretic interpretation, the value g = 1 simply
follows from the consistency of minimal coupling before the reduction.

More specifically, we shall consider the compactification of Bosonic, type II and Het-
erotic string theories on general toroidal backgrounds in the presence of the Graviton and
Kalb Ramond fields. We shall keep the internal components of these fields (which are
related to moduli) to non-zero but arbitrary constant values. Following the methods used
in [20–23] which determined the string Hamiltonians compactified on circles or in non triv-
ial exactly solvable magnetized backgrounds, we shall read the gyromagnetic ratios from
the expressions of interacting Hamiltonians which describe the interaction between gauge
fields and the massive HS fields under compactification. The same results will also be
obtained from an amplitude calculation performed by considering a momentum expansion
of the massless string vertex. The final result about the electromagnetic coupling of string
excitations to the first order in the field expansion and derivatives, can be written in terms
of the minimal coupling plus non-minimal terms proportional to the internal spin operators
SµνR;L, and it is invariant in form for all the string theories above considered. It turns out
to be:

V(A,B)ΦΦ '
〈

Φ
∣∣∣(paL + paR)Aa · p−

1
2F

A
µν;a(paLS

µν
R + paRS

µν
L )

+ (paL − paR)Ba · p−
1
2F

B
µν;a(paLS

µν
R − p

a
RS

µν
L )
∣∣∣Φ〉 (1.1)

where FA;B
µν; a are the field strengths of the gauge fields arising from the metric and Kalb-

Ramond compactification respectively, while paR;L are the compact momenta and p is the
momentum of the higher-spin states.

The states with field theoretic interpretation turn out to have g = 1 as mentioned
above. However, the compactification also gives rise to states characterized by Kaluza
Klein and Winding charges. These are the charges with respect to the gauge fields arising
due to the compactification of the Graviton and Kalb Ramond fields respectively. It turns
out that the vanishing of either of these charges corresponds to states with g = 1. On
the other hand, the general twisted sector states have gyromagnetic ratios which depends
upon the KK and Winding charges as well as spins. While these cannot be predicted by
analysing minimal gravitational coupling and its dimensional reduction, it is clear that
their pattern is also fixed by the double-copy structure of the graviton vertex operator.

One subtlety associated with the higher spin fields is regarding their symmetry prop-
erties. The general string states have mixed symmetry polarisation tensors which are
characterised by a generic Young Tableau diagram. However, in the literature, these states
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have not received much attention. Our analysis shall also be applicable to these states.
In particular, we give explicit results for the mixed symmetry states described by Young
tableau diagrams having two rows from first Regge trajectory of string spectrum. It turns
out that there is one gyromagnetic coupling (and hence a gyromagnetic ratio) associated
with each row of the Young Tableau diagram describing the corresponding string state.1

One of our main result is the following gyromagnetic factors

g
(a)
1 = 2

paL − paR
(`R − k)paL − (`L − k)paR

`R + `L − 2k , (1.2)

g
(a)
2 = 2

paL − paR
−(`R − k)paR + (`L − k)paL

`R + `L − 2k , (1.3)

for the mixed-symmetry states in the first Regge trajectory of closed string theories with
respect to the gauge boson obtained from compactification of the metric. In the above
expression, the `L and `R denote the left and right spins respectively. The state is repre-
sented by an Young diagram with `L + `R − k boxes in the first row and k boxes in the
second row (see figure 2). The first gyromagnetic factor coupling is associated to the first
row while the second to the second row.

The rest of the draft is organised as follows. In section 2, we discuss some generalities
about the gyromagnetic coupling and introduce some notations which will be useful in
our computations. In section 3, we compute the part of interacting Hamiltonian of the
compactified Bosonic, type II and Heterotic theories which encode the information about
the gyromagnetic ratios. In section 4, we shall directly compute the 3 point vertices
of gauge fields and the massive string states under the compactification using the string
amplitudes. In section 5, we shall read the g factor for some massive states using the results
of section 3 and 4. Finally, we shall conclude with some discussion in section 6. Details of
some computations will be given in appendices.

2 Some generalities about gyromagnetic factor(s)

In this section, we shall review the concept of gyromagnetic ratio. It will be convenient for
the purposes of the present draft to define the gyromagnetic ratio as a coupling constant
appearing in the effective action. In particular, considering the electromagnetic coupling of
a field Φ, at the lowest derivative order we can write down two type of couplings: minimal
coupling which defines the charge of the field Φ and it is therefore uniquely characterised by
this property and non-minimal couplings proportional to the Electromagnetic tensor Fµν

VAΦΦ ∼ iqAµ [Φ∗ · (∂µΦ)− (∂µΦ∗) · Φ] + iα

2 Fµν(Φµ · Φν) . (2.1)

Above we have been schematic with the “ · ” implying certain index contractions among
the field which in principle can have an arbitrary tableaux shape. We have also canonically
normalised the kinetic term as

L = Φ? · (� +m2)Φ , (2.2)
1For interesting instances of gyromagnetic ratios in the context of black holes in Type II and Heterotic

string theories, see [24, 25].
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assuming the index contraction is of weight 1 in the permutation of the various indices.
With these conventions one can define the gyromagnetic factor as

g ∼
∣∣∣∣αq
∣∣∣∣ . (2.3)

The ∼ in the above equation is present due to the possible factors coming from the index
contraction of the fields (such as Φµ · Φν) which is kept implicit at this stage. Note that
the gyromagnetic ratio is ill-defined if the charge q vanishes. However one can still define
the coupling α. The above definitions can then be related to the magnetic moment of a
particle in 4d. The main simplification is that in 4d all particles can be classified as to-
tally symmetric fields which implies the existence of a unique non-minimal electromagnetic
coupling of the type (2.1)

VN.M.
AΦΦ = iα

2 Fµν Φ∗µµ(s−1)Φν
µ(s−1) . (2.4)

Using a generating function notation Φ(u) = 1
s!Φµ(s)u

µ(s), where we have introduced the
totally symmetric product of u’s as uµ(s) = uµ1 · · ·uµs , the above equation can also be
equivalently written as

VN.M.
AΦΦ = iα

4 Fµν 〈Φ|Sµν |Φ〉 , (2.5)

where we have conveniently introduced the spin operator Sµνu = uµ∂νu−uν∂µu together with
the inner product defined as:

〈Φ1|Φ2〉 = exp (∂u1 · ∂u2) Φ1(u1)Φ2(u2)
∣∣∣
ui=0

. (2.6)

The manifest appearance of the spin operator clarifies the relation between the angular
momentum and the associated magnetic moment. E.g., for a classical massive electrically
charged particle with mass m and charge q, the magnitude of the magnetic moment µ and
the angular momentum L are related as (see, e.g. [26])

µ = α

2m L . (2.7)

Note that the above relation involves the orbital angular momentum L and does not involve
the spin angular momentum S since we are considering a classical particle. Considering
the generic dimensional case the story for totally symmetric representation is unchanged.
However, in d > 4 there exist more general representations of the Lorentz group and the
number of non-minimal electromagnetic couplings can increase. In particular we have as
many gyromagnetic factors as the number of rows of the fields. This also correspond to
the number of spin operators which is equal to the number of rows. For concreteness,
representing a generic mixed-symmetry field as a generating function in terms of auxiliary
vector variables ui

Φ(ui) = 1
s1! · · · sn!φµ1(s1)µ2(s2)...µn(sn)u

µ1(s1)
1 · · ·uµ1(sn)

n , (2.8)
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subject to the irreducibility conditions ui · ∂ui+kΦ = 0 for all i and k > 0, we can define
the spin-operators:2

Sµνui = uµi ∂
ν
ui − u

ν
i ∂

µ
ui . (2.9)

One is then naturally led to the following basis of gyromagnetic factors:

V(j)
AΦΦ = i

4α
(j) Fµν

〈
Φ|Sµνj |Φ

〉
. (2.10)

A natural generalisation of the totally-symmetric gyromagnetic factor to mixed symmetry
fields is obviously the one that involves the total spin operator

VAΦΦ = i

4αFµν
〈

Φ
∣∣∣ n∑
j=1

Sµνj︸ ︷︷ ︸
Sµν

∣∣∣Φ〉 . (2.11)

In the following we shall focus on extracting the above coefficients α(j) in string compact-
ifications.

2.1 Symbols in String Theory

In this work, we shall often need to translate results from String Theory to extract the
gyromagnetic factor. In order to do so, it is convenient to introduce a dictionary between
string calculations in terms of oscillators and the auxiliary variables ui introduced above.

While in bosonic string theory one works with states of the form

|φ〉 = N0 φµ1(s1)...µp(sp)µ̄1(s̄1)...µ̄q(s̄q) α
µ1(s1)
−n1 . . . α

µp(sp)
−np ᾱ

µ̄1(s̄1)
−n̄1 . . . ᾱ

µ̄q(s̄q)
−n̄q |0, 0̄, p〉 (2.12)

expressed in term of α-oscillators, it is often more convenient to work with auxiliary com-
muting variables wi sometime referred to as symbols of the oscillators. Performing this
step is actually extremely simple and can be obtained by replacing the α-oscillators α−n
with commuting variables wn as

|φ〉 → 1
s1! · · · sp!s̄1! · · · s̄p!

φµ1(s1)...µp(sp)µ̄1(s̄1)...µ̄q(s̄q)w
µ1(s1)
n1 . . . wµp(sp)

np w̄
µ̄1(s̄1)
n̄1 . . . w̄

µ̄q(s̄q)
n̄q

(2.13)

The operator product governing the α oscillators can then be implemented as a certain
differential operators on the symbols. For instance, the inner product then takes the
form (2.6) where u and ū should be considered as different variables. It is also important
to stress that the auxiliary variables wn are dummy variables and can be changed as needed.

In the following it will be useful to also remove the polarisation tensor replacing it
with a product of vector polarisations. Introducing the vector polarisations un and ūn one
then arrives to the following representation for the states in (2.12)

1
s1! · · · sp!s̄1! · · · s̄p!

(un1 · wn1)s1 . . . (unp · wnp)sp (ūn̄1 · w̄n̄1)s̄1 . . . (ūn̄q · w̄n̄q)s̄q . (2.14)

2The label ui in Sui will be replaced by a simple index i when no ambiguity can arise.
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Focusing on the first Regge trajectory we have only α−1 oscillators and the general closed
string operator reads:

φ`R+`L = N`R, `L (u · w)`R (u · w̄)`L . (2.15)

Here, however, we have a reducible representation. It turns out that using the same
auxiliary variables, we can also implement conveniently Young projections by working with
appropriate polynomials which implement the Young projection conditions. For instance,
mixed symmetry states associated to the Young-Tableaux shown in figure 2, are constructed
in appendix D, by starting from the states of the form in eq. (2.14). Here, we only write
the result

φ`L+`R−k,k = N`L+`R−k,k(u · w)`1−k(u · w̄)`2−k (u · w ū · w̄ − u · w̄ ū · w)k , (2.16)

with k an integer number k ≤ Min{`1, `2}. The expression of such states in terms of
oscillators is easily obtained from the mapping defined in equation (2.13).

In this work it will prove very convenient to work with the above polynomials in
contractions of the auxiliary variables in order to extract the gyromagnetic ratio from the
closed string amplitude. We would also like to stress that similar mappings can also be
defined for Heterotic or Type II theories.

3 Hamiltonian approach

String theories are naturally defined in the critical space-time dimensions where the con-
formal anomaly is vanishing. Their spectrum contains massless states identified with the
gauge bosons of the fundamental interactions and an infinite tower of massive higher spin
fields with mass proportional to the inverse of the string slope α′. They provide a quan-
tum description of the interactions of such massive high-spin particles with massless and
massive states and, therefore, are consistent higher spin theories with an infinite number
of fields.

Extracting interesting information about the string theory requires the compactifi-
cation of several spatial dimensions. In the compactification, the initial Lorentz group
SO(d−1, 1) is broken and new massless gauge-fields appear in the spectrum. These are the
d-dimensional massless tensor fields having one index transforming as a vector under the
unbroken SO(d −D − 1, 1) and the other ones pointing along the compact directions. In
the following, we shall focus on the U(1) gauge fields resulting from the compactification
of the metric and Kald-Ramond field and we shall compute the cubic interactions of such
gauge fields with the higher spin fields compactified on a generic torus TD. From these
cubic couplings, we can read the gyromagnetic ratios of the high-spin states charged with
respect to these U(1)-fields.

In this section, we shall follow the Hamiltonian approach which gives a convenient way
to extract the gyromagnetic coupling of massive string states [20]. In this method, we shall
compute the expectation value of the Hamiltonian describing the interaction between the
gauge fields and the world-sheet fields. This Hamiltonian, in the case of Bosonic string
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theory compactified on circles, was considered in [20]. We extend such a result to the
Bosonic, Type II and Heterotic string theories compactified on a generic D-dimensional
compact torus parametrized by the constant background components of the metric and
the antisymmetric tensor. Before moving further, we note that for comparing with the
standard expression of Hamiltonian containing the gyromagnetic coupling, it is convenient
to multiply the expression of the Hamiltonian with `/(2πα′m) and work with the following
rescaled Hamiltonian3 [20]

HI ≡
`

2πα′m HI , (3.1)

with m the mass of the string state and ` is defined both in eq. (3.2) and in the text after
eq. (4.1).

3.1 Details of compact toroidal background

The manifold on which we shall analyse the string theories are generic toroidal manifolds
TD. We shall denote with µ, ν = 0, . . . d − D − 1 the non compact directions, and with
i, j = 1, . . . D the compact ones. The d will be 26 for the Bosonic theory and 10 for the
superstring theories. Since torus is a flat manifold, we can parametrize it so that the metric
gij on it is constant and the compact coordinates Xi have the period 2π

√
α′, i.e.

Xi(τ, σ + `) = Xi(τ, σ) + 2π
√
α′ ni , ni ∈ Z (3.2)

Here, ` can be either π or 2π depending on the adopted conventions. In the above equation,
the more general boundary conditions are allowed for the compact directions because the
points Xi and Xi + 2π

√
α′ni describe the same point in space-time. In contrast, for the

non compact directions, the boundary conditions are

Xµ(τ, σ + `) = Xµ(τ, σ) (3.3)

Instead of gij , it is convenient to work with the standard Euclidean metric δab. This can
be done by introducing a constant vielbein eai on the torus via

gij = eai e
b
jδab (3.4)

With this, the boundary condition for the compact directions can be written as

Xa(τ, σ + `) = Xa(τ, σ) + 2π
√
α′La ; La =

D∑
i=1

nieai ; ni ∈ Z (3.5)

where,
Xa(σ, τ) = eaiX

i(σ, τ). (3.6)
3One way to see this is to note that the zero mode of the Hamiltonian in equation (3.18) contains the term

H0 = α′π
`
p̂2 + . . . with p̂µ being the momentum operator along the non compact directions. Evaluating its

expectation value for an external state having momenta (p0, ~p) with mass m and multiplying by `/(2πα′m)
gives the standard expression ~p2/2m of the energy of the free charged particle of mass m. This is also in
the agreement with the expressions in the non relativistic limit.
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The ei ≡ {eai } can be interpreted to be D linearly independent vectors which generate a
D dimensional lattice ΛD. The L ≡ {La} in (3.5) are lattice vectors, i.e., L ∈ ΛD. The
compactified torus can now be viewed as the quotient of RD by 2πΛD [27], i.e.:

TD = RD

2πΛD
(3.7)

We can also define a dual lattice by introducing vectors e∗i = {e∗ia } via:4

e∗ib e
a
i = δab ; eai e

∗j
a = δji ;

D∑
a=1

e∗ja e∗ia = gij (3.8)

We shall be mostly concerned with the zero modes of the compactified fields which corre-
spond to the massless fields in the lower dimension. For the metric, we express the general
compactification ansatz as

GMN =
(
gµν + gklA

k
µA

l
ν Aµj

Aiν gij

)
; GMN =

(
gµν −Aµj

−Aiν gij + gρσAiρA
j
σ

)
(3.9)

where we are assuming that all the quantities depend only on the non compact directions
Xµ of the space-time (since we are only interested in the zero-modes). Here Aiµ are vector
fields in the lower dimension. The gµν is the non compact space-time metric and gij are
the scalars in the lower dimensional theory. Their expectation values can be related to the
moduli of the compatified torus TD.The background values of gµν and gij will be used to
lower and raise the non compact and internal indices respectively.

Similarly, for the Kalb-Ramond field, we have

BMN =
(
Bµν Bµj
Biν Bij

)
, Bµi = −Biµ (3.10)

The Bµi denote set of another vector fields in the lower dimension. Bµν is an antisymmetric
2nd rank tensor field in the lower dimension. It will be taken to be vanishing in most of
our discussion. The Bij denote other set of scalar fields in the lower dimension. Again, the
expectation values of Bij can be related to the moduli of the compactified manifold TD.

The infinitesimal coordinate transformation along the compact directions Xi → Xi+ξi,
where ξ depends only on the non-compact coordinates, changes the vector field Aµi as

δAµi(Xµ) = gij∂µξ
i = ∂µξj ⇔ δAµa = ∂µξa ; Aµa = e∗ia Aµi (3.11)

This is a U(1) gauge transformation acting on the vector field Aµa. For our purposes, it
will be enough to take the field strength of this gauge field to be a constant,5 in which case,
we can write

Aµa = −1
2Fµν;aX

ν . (3.12)

4The identity (3.4) also gives e∗jc gije∗id =
∑D

a=1 e
a
i e
∗i
d δab e

b
je
∗j
c = δdc, showing that the D-vectors e∗a ≡

(e∗ia ) form an orthonormal basis.
5If the field strength is not constant, there will be α′ dependent corrections in (3.12) [20]. However, these

corrections do not contribute to the gyromagnetic ratio since the terms with higher orders in α′ correspond
to the higher derivative terms.

– 8 –



J
H
E
P
0
6
(
2
0
2
1
)
1
6
8

Similarly, the gauge transformation for the Kalb Ramond field is given by

δBMN = ∂MΛN − ∂NΛM (3.13)

Specializing this to a gauge parameter Λi depending only on the non compact coordinates
gives

δBµi = ∂µΛi (3.14)
This is also a U(1) gauge transformation for the gauge field Bµi. As above, we shall take
the field strength of this gauge field also to be a constant.

As mentioned above, the metric gij will be taken to have the constant expectation
value given by (3.4). For the other fields, we shall assume the following background values

gµν = ηµν ; Bµν = 0 ; Bij = const (3.15)

with ηµν the Minkowski (mostly plus) metric for the non compact directions.

3.2 Closed Bosonic strings on TD

The sigma model action in 26 dimensions in the presence of the space-time metric GMN (X)
and an antisymmetric tensor BMN (X) is given by [28]

S = − 1
4πα′

∫
d2σ

[
GMN (X) ηαβ∂αXM ∂βX

N +BMN (X)εαβ∂αXM ∂βX
N
]

(3.16)

where, the space-time indicesM,N run over 0, . . . d−1 with d = 26. The world-sheet metric
is given by ηαβ = (−1, 1) and our convention for the Levi civita tensor is ε01 = −ε01 = 1.
Also, σα ≡ (τ, σ).

The canonically conjugate momenta of XM is given by

ΠM = δL

δ∂0XM
= 1

2πα′
[
GMN ∂0X

N −BMN ∂σX
N
]

(3.17)

The Hamiltonian corresponding to (3.16) is computed to be

H =
∫ `

0
dσ
[
ΠM∂0X

M − L
]

= 1
2

∫ `

0
dσ

[
(2πα′)ΠMG

MNΠN + 2BMNG
MPΠP∂σX

N

+ 1
2πα′∂σX

M
(
GMN +GPQBPMBQN

)
∂σX

N
]

(3.18)

For analysing the gyromagnetic couplings of the massive string states with respect to
the gauge fields Aiµ and Bi

µ, we shall need the terms linear in the gauge fields in the
Hamiltonian describing the interaction between these gauge fields and the world-sheet fields
Xi and Xµ. This is easily obtained, for the background defined by (3.15), by substituting
the compactification ansatz (3.9) and (3.10) in the expression (3.18)

HI = − 1
2πα′

∫ `

0
dσ

[
Aµi

(
(2πα′)2ΠµΠi + (2πα′)BijΠµ∂σX

j − gµνgij∂σXν∂σX
j
)

+Bµi
(
−(2πα′)Πµ∂σX

i + (2πα′)Πi∂σX
µ +Bjkg

ki∂σX
µ∂σX

j
)]
(3.19)
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where,

Πµ ≡ Pµ + 1
2πα′

[
Aiµ∂0X

i −Bµi∂σXi −Bµν∂σXν
]
+O(A2, B2, AB) (3.20)

Πi ≡ Pi + 1
2πα′

[
Aiµ∂0X

µ +Bµi∂σX
µ
]
+O(A2, B2, AB) (3.21)

with
Pµ = 1

2πα′ gµν∂0X
ν , Pi = 1

2πα′
[
gij∂0X

j −Bij∂σXj
]
. (3.22)

In the Hamiltonian (3.19), being interested in the terms which are linear in the gauge fields,
we can replace Πµ,i with Pµ,i. Furthermore by explicitly evaluating these quantities on the
solution of the equations of motion given in equation (A.7), we find that all the dependence
on the moduli Bij disappears and we can express (3.19) as

HI = HA
I +HB

I (3.23)

where,

HA
I = 1

2πα′F
A
µρ; i

∫ `

0
dσX ρ

(
∂+X µ∂−Xi + ∂−X µ∂+X

i
)

HB
I = 1

2πα′F
B
µρ; i

∫ `

0
dσ X ρ

(
∂+X µ∂−Xi − ∂−X µ∂+X

i
)

(3.24)

The expectation value for HA
I which describes the interaction of the gauge field Aµi with

the world-sheet fields is computed to be

〈φ|HAI |φ〉 = − 1
2mFAµν; i

〈
φ
∣∣∣12Lµν (piR + piL

)︸ ︷︷ ︸
Qi

+piRS
µν
L + piLS

µν
R

∣∣∣φ〉 (3.25)

The pL and pR in the above expression denote the left and right momenta associated with
string compactification and are defined in equation (A.10). The Lµν denotes the orbital
angular momentum and Sµν = SµνL + SµνR denotes the spin angular momentum with

SµνR = −i
∞∑
n=1

1
n

(
αµ−nα

ν
n − αν−nαµn

)
, SµνL = −i

∞∑
n=1

1
n

(
α̃µ−nα̃

ν
n − α̃ν−nα̃µn

)
(3.26)

In the following we shall identify these two operators with the names “right” and “left”
spin operators. In equation (3.25), the Kaluza-Klein charges of the massive higher spin
states are given by6 [20]

Qa = 1
2πα′

∫ `

0
dσ∂τX

a = e∗ib (pR + pL)iδab (3.27)

6In ref. [18] the KK-charge, in the case Bij = 0, is taken equal to the compact momentum pz = n/R. In
eq. (3.27), when pR = pL, the charge is (pR + pL)ie∗ia = ni√

α′ e
∗i
a . The choice e∗ia = δia

√
α′
Ra

and eai = δai
Ra√
α′

matches the two charges and gives Xa ≡ Xa+2πRana which is the identification of the compact coordinates
used in the above reference.
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In a similar manner, for the gauge field Bµi, we find

〈φ|HBI |φ〉 = − 1
2mFBµν; i〈φ|

1
2L

µν (piR − piL)︸ ︷︷ ︸
Qi

−SµνR piL + SµνL piR|φ〉 (3.28)

with the winding charge of the U(1) field given by [20]:

Qa = 1
2πα′

∫ `

0
dσ∂σX

i eai = (pL − pR)i e∗ib δab (3.29)

We notice that higher spin states with pR = pL or pR = −pL have null charges Qa or Qa
respectively. From equations (3.25) and (3.28), we see that the gyromagnetic ratios of these
particles are g = 1 with respect to one gauge field. Note also that when this happens the
same massive field is uncharged with respect to the other gauge field being only coupled
non-minimally to it with a coupling proportional to the difference of the left and right spin
operators. Further comments about these special cases will be given in section 5.

It is worth noting that the expression (3.28) can be obtained from equation (3.25) by
exchanging the two gauge fields and changing the sign of the compact momentum piL. The
two charges, instead, are transformed into each other as (pL, pR)↔ (pL, −pR). In the case
Bij = 0, this transformation is the D-dimensional analogous of the R → 1/R-duality of
the string theory compactified on a circle of radius R [27].

3.3 Type II and Heterotic strings on TD

In this subsection, we consider the closed superstring theories and generalize the expression
of the interacting Hamiltonian of the bosonic string theory obtained in the previous sub-
section to bosonic and fermionic states of the superstring theories. We start by considering
the type II string theory compactified on the torus TD with D = 9−d. After this, we shall
extend this analysis to the Heterotic theory. Our approach will be exactly the same as in
the case of the bosonic string theory. Thus, the starting point is the action of the (1, 1) su-
persymmetric sigma model in 10 dimensions in a generic non constant background [29–31]
(see appendix A for details)

S = 1
4πα′

∫
d2σ

[
4GMN∂+X

M∂−X
N + 4BMN∂+X

M∂−X
N + 2iGMNψ

M
+ ∇̃−ψN+

+ 2iGMNψ
N
− ∇̃+ψ

M
− + 1

2R̃MNPQψ
M
+ ψN+ψ

P
−ψ

Q
−

]
(3.30)

where, the covariant derivatives ∇̃± are defined by

∇̃±ψM∓ = ∂±ψ
M
∓ + Γ̃M±PQψP∓ ∂±X

Q , Γ̃M±PQ = ΓMPQ ±
1
2H

M
PQ (3.31)

The Γ̃P±MN are the connections with a totally antisymmetric torsion. The R̃MNPQ are
given by

R̃MNPQ = RMNPQ + 1
2∇PHMNQ−

1
2∇QHMNP + 1

4HMRPH
R
QN −

1
4HMRQH

R
PN (3.32)
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The conjugate momenta for XM are computed to be

ΠM = 1
2πα′

[
GMN∂0X

N −BMN∂σX
N − SM

]
(3.33)

where,

SM = − i2GPQ
[
Γ̃P−NMψ

Q
+ψ

N
+ + Γ̃P+NMψ

Q
−ψ

N
−

]
(3.34)

The conjugate momenta corresponding to ψM± are given by

τM± = δL

δ∂0ψM±
= i

4πα′GMNψ
N
± (3.35)

The Hamiltonian is computed to be

H = 1
4πα′

∫ `

0
dσ

[
(2πα′)2GMNΠMΠN+2(2πα′)GMNΠMSN+2(2πα′)GMNΠMBNP∂σX

P

+2GMNBMP∂σX
PSN+GMNBMPBNQ∂σX

P∂σX
Q+GMNSMSN+GMN∂σX

M∂σX
N

−iGMN

(
ψN− ∂σψ

M
− −ψN+ ∂σψM+

)
+2TP∂σXP− 1

2R̃SMLPψ
S
+ψ

M
+ ψL−ψ

P
−

]
(3.36)

where, we have defined

TP ≡
i

2GPQ
(
Γ̃P−NMψ

Q
+ψ

N
+ − Γ̃P+NMψ

Q
−ψ

N
−

)
(3.37)

We can now compute the part of Hamiltonian which describes the interaction between
the string states and the gauge fields resulting from the compactification on TD. For
convenience, we organise them in two kind of terms: one in which strings interact with
the external gauge field and the other in which they interact with their field strength.
The terms describing the interaction of the world-sheet fields with only one gauge field are
given by

H1 = 1
2πα′

∫ `

0
dσ

[
Aµi

{
−(2πα′)2ΠµΠi − (2πα′)ΠµBi

j∂σX
j + ∂σX

i∂σX
µ

+ i

2
(
ψµ+∂σψ

i
+ − ψ

µ
−∂σψ

i
− + ψi+∂σψ

µ
+ − ψi−∂σψ

µ
−

)}
+Bµi

{
(2πα′)Πµ∂σX

i + (2πα′)Πi∂σX
µ + gijBjk∂σX

k∂σX
µ
}]

(3.38)

and the terms describing the interaction with the field strength are given by

H2 = − i4

∫ `

0
dσ

[
FAµν; i

{
ΠµΨνi

+ −ΠiΨµν
+ −

1
2πα′

(
Bi

j∂σX
jΨµν

+ + ∂σX
µΨνi
− − ∂σXiΨµν

−

)}
+ FBµν;i

{
−2ΠµΨνi

− −ΠiΨµν
− + 1

2πα′
(
−Bi

j∂σX
jΨµν
− + 2∂σXµΨνi

+ + ∂σX
iΨµν

+

)} ]
(3.39)

where, we defined ΨMN
± = ψM+ ψN+ ± ψM− ψN− .
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The expectation value of the interacting Hamiltonian between two generic string states
is given by

〈φ|HI |φ〉 = 〈φ|H1|φ〉+ 〈φ|H2|φ〉 (3.40)

We have divided equations (3.38) and (3.39) by the factor introduced in (3.1) to have the
canonical normalization. The state |φ〉 now also includes the fermionic oscillators along
with the bosonic ones.

The calculation of the first term is exactly identical to the calculation of the bosonic
case because the second line of (3.38) gives zero contribution when evaluated on the external
states. This can be seen by inserting the mode expansion for the fields and noting that
these terms change the level of the state and hence the inner product becomes zero. The
remaining terms in (3.38) are exactly identical to the Bosonic Hamiltonian.

Thus, we only need to focus on the second term of the above expression which involves
H2. As in the bosonic case, we can again replace the conjugate momenta Πm and Πµ by
Pm and Pµ respectively, given in (3.22), upto the linear order in the fields. Moreover, the
terms proportional to ψµ±ψm± give vanishing contribution since they change the level of the
states and the inner product vanishes due to orthogonality property. The expression can
then be expressed in the form

〈φ|H2|φ〉 = i

4πα′F
A
µν;i

∫ `

0
dσ
〈
φ
∣∣{∂−Xiψµ+ψ

ν
+ + ∂+X

iψµ−ψ
ν
−
}∣∣φ〉

+ i

4πα′F
B
µν;i

∫ `

0
dσ
〈
φ
∣∣{∂−Xiψµ+ψ

ν
+ − ∂+X

iψµ−ψ
ν
−
}∣∣φ〉 (3.41)

We now consider the case Bµi = 0. Using the mode expansions given earlier and performing
the σ-integration, we find

〈φ|HA2 |φ〉 = i

2mFAµν;m
∑

r∈Z+a

〈
φ
∣∣∣{pmR ψ̄µr ψ̄ν−r + pmL ψ

µ
r ψ

ν
−r

}∣∣∣φ〉
= − 1

4mFAaµν

〈
φ
∣∣∣{(pR + pL)a(Kµν

L +Kµν
R ) + (pL − pR)a(Kµν

R −K
µν
L )
}∣∣∣φ〉

(3.42)

where,

Kµν
L ≡ −

i

2[ψ̄µ0 , ψ̄ν0 ]δa,0 − i
∑

r∈N+a
(ψ̄µ−rψ̄νr − ψ̄ν−rψ̄µr )

)
Kµν
R ≡ −

i

2[ψµ0 , ψν0 ]δa,0 − i
∑

r∈N+a

(
ψµ−rψ

ν
r − ψν−rψµr

)
(3.43)

are the contribution to the angular momentum from the ψM± fields. This expression, when
added to 〈E|HA1 |E〉 changes the bosonic result by the replacement of SR,L given in eq. (3.26)
and now denoted with SBR,L with SR,L = SBR,L + KR,L, the spin operators in superstring
theory, giving

〈φ|HAI |φ〉 = − 1
4m(FA)aµν Qa

〈
φ
∣∣(Lµν + Sµν) + Qa

Qa
(SµνR − S

µν
L )
∣∣φ〉 (3.44)

where the charges are defined in equations (3.27) and (3.29).
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For the case of non zero Bµi, the calculation proceeds in the similar way. By looking
at (3.41), we find that the only difference in the calculation involving Bµi as compared
to Aµi is in the sign in front the second term containing ∂+X

m. This corresponds to the
replacement of pL with −pL and therefore in the exchange of Qa with Qa in the final
expression, giving

〈φ|HB2 |φ〉 = − 1
4mFAaµν

〈
φ
∣∣∣{(pR − pL)a(Kµν

L +Kµν
R ) + (pL + pR)a(Kµν

L −K
µν
R )
}∣∣∣φ〉 (3.45)

Again, when we add the contribution from H1, which is same as given in equation (3.28),
it changes the bosonic result by the replacement (SBR,L)µν → SµνR,L + Kµν

R,L, the spin op-
erators in supersymmetric theory. Finally, we turn to the SO(32) and E8 × E8 Heterotic
theories compactified on the torus TD. Again, we shall compute the Hamiltonian, giving
the interaction between string world sheet fields and the gauge fields. The starting point
will be the heterotic sigma model in ten dimensions in the presence of the background
fields GMN , BMN and the gauge field (AM )BC . The gauge group in the E8×E8 or SO(32)
models could be equivalently represented by fermionic or bosonic formulations. In the
following, we follow the former approach and start from an action containing 32 Majorana-
Weyl fermions λA− coupled to the background fields. The indices of λA− are lowered and
raised by the metric gAB. The sigma model action turns out to be [29, 31–33]

S = 1
4πα′

∫
d2σ

[
4GMN∂+X

M∂−X
N + 4BMN∂+X

M∂−X
N + 2iGMNψ

M
+ ∇̃−ψN+

+ 2igABλA−∇̂+λ
B
− + 1

2FMN ;CDψ
M
+ ψN+λ

C
−λ

D
−

]
(3.46)

where the ψ+ are left-moving fermions and ∇̃−ψN+ is defined in the same way as in the
type II case (see equation (A.32)) and

∇̂+λ
B
− = ∂+λ

B
− + (ÂM )BCλC−∂+X

M , (ÂM )BC = (AM )BC + 1
2g

BD∂MgDC (3.47)

The field strength for the gauge field (ÂM )BC is defined as

FMN ;CD = ∂M (ÂN )CD − ∂N (ÂM )CD + (ÂM )CB(ÂN )BD − (ÂN )CB(ÂM )BD (3.48)

The conjugate momenta for XM are given by

ΠM = 1
2πα′

[
GMN∂0X

N −BMN∂σX
N − SM

]
(3.49)

where, SM is now given by

SM = − i2GPQΓ̃P−NMψ
Q
+ψ

N
+ −

i

2gAB(ÂM )BCλA−λC− (3.50)

The conjugate momenta of ψM+ is same as in the case of type II superstrings. For the λA−,
we have

ΠA
− = δL

δ∂0λA−
= i

4πα′ gABλ
B
− (3.51)
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The Hamiltonian is computed to be

H = 1
4πα′

∫ `

0
dσ

[
(2πα′)2GMNΠMΠN+2(2πα′)GMNΠMSN+2(2πα′)GMNΠMBNP∂σX

P

+2GMNBMP∂σX
PSN+GMNBMPBNQ∂σX

P∂σX
Q+GMNSMSN+GMN∂σX

M∂σX
N

+iGMNψ
N
+ ∂σψ

M
+ +2TP∂σXP−igABλA−∂σλB−−

1
2FMN ;ABψ

M
+ ψN+λ

A
−λ

B
−

]
(3.52)

where,
TM ≡

i

2GPQΓ̃P−NMψ
Q
+ψ

N
+ −

i

2gAB(ÂM )BCλA−λC− (3.53)

For doing calculations, it is useful to note that the terms in the Hamiltonian (3.52) which
do not involve λA− are same as the corresponding terms in the type II Hamiltonian (3.36).

We can now simplify the interaction terms for the gauge fields Aµm, Bµm and (ÂM )BC .
We again organise them in two kind of terms. One in which strings interact with one
external gauge field and the other in which they interact with their field strength. They
are given by

H1 = 1
2πα′

∫ `

0
dσ

[
Aµi

{
−(2πα′)2ΠµΠi − (2πα′)ΠµBi

n∂σX
n + ∂σX

i∂σX
µ

+ i

2
(
ψµ+∂σψ

i
+ + ψi+∂σψ

µ
+

)}
+ (Âµ)CD

{
− i2(2πα′)ΠµλCD− − i

2∂σX
µλCD−

}
+Bµi

{
(2πα′)Πµ∂σX

i + (2πα′)Πi∂σX
µ + gijBjk∂σX

k∂σX
µ
}]

(3.54)

and,

H2 = − i4

∫ `

0
dσ

[
FAµν;i

{
Πµψνi+ −Πiψµν+ −

1
2πα′

(
Bi

j∂σX
jψµν+ + ∂σX

µψνi+ − ∂σXiψµν+

)}
+ FBµν;i

{
−2Πµψνi+ + Πmψµν+ + 1

2πα′
(
Bi

j∂σX
jψµν+ + 2∂σXµψνi+ − ∂σXiψµν+

)}
− i

2πα′Fµν;CDψ
µν
+ λCD−

]
(3.55)

We only focus on the gauge fields Aµi and Bµi and work with the rescaled Hamiltonian
introduced in equation (3.1). The expectation value of H1 between the two generic string
states is again exactly identical to the calculation of the bosonic case since the term involv-
ing the ψµ+ and λA− fields do not contribute. Thus, we need only to focus on the expectation
value of H2. We first consider the case Bµi = 0. In this case, by looking at the expressions,
we find that the calculation will be exactly identical to the type II case except that we
need to drop the terms involving ψM− . This gives

〈φ|HA2 |φ〉 = i`

2(2πα′)2m
FAµν;i

∫ `

0
dσ
〈
φ
∣∣∂−Xiψµ+ψ

ν
+
∣∣φ〉

= i

2mFAµν;i
∑

r∈Z+a

〈
φ
∣∣piRψ̄µr ψ̄ν−r∣∣φ〉

= − 1
2mFAµν;i

〈
φ
∣∣piRKµν

L

∣∣φ〉 (3.56)

where KL is defined in equation (3.43).
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Similarly, the calculation for non zero Bµi proceeds in the same way as type II case
except that we need to forget about the terms involving ψµ−. This gives

〈φ|HB2 |φ〉 = − 1
2mFBµν;i

〈
φ
∣∣piRKµν

L

∣∣φ〉 (3.57)

One point to note about the above results is that λA− are Lorentz singlets. Hence, they do
not contribute to the spin angular momentum which is reflected in the above expressions.

Finally by combining equations (3.56) and (3.57) with the contribution coming from
H1 as given in equations (3.25) and (3.28) respectively, we find that these expressions,
i.e. (3.25) and (3.28), are still valid in Heterotic sigma model but with the spin operators
replaced by the appropriate expressions.

4 String amplitudes

Gyromagnetic factors can be extracted also from string 3pt amplitudes. It turns out that
the value of the gyromagnetic factor is entirely encoded within the graviton vertex operator
which upon dimensional reduction produces a contribution to the effective string action
precisely of the type (2.10).

The fact that gyromagnetic factors are entirely encoded in the graviton vertex operator
show that consistent electromagnetic couplings are related to consistent minimal couplings
to gravity before compactification. Uniqueness of the minimal coupling to gravity than
translates into highly constrained gyromagnetic factors.

Therefore, in this section we compute the gyromagnetic ratios of arbitrary higher spin
states of the bosonic and superstring theories by computing three-point functions of massive
high spin states and U(1) gauge fields emerging from the compactification procedure. The
starting point is either the bosonic, superstring or heterotic string theories in the critical
dimensions, d = 26 or d = 10, compactified on the torus TD ≡ RD/2πΛD, with ΛD the
lattice introduced in section 3.2, to have models with realistic space-time dimensions.

4.1 Bosonic case

The compactification generates U(1)-gauge fields and we will focus on those coming from
the d-dimensional gravitons or the Kalb-Ramonds fields with one index extended along
the compact directions and the other one non compact. In bosonic string theory the
26-dimensional massless fields, graviton, dilaton and Kalb-Ramond, are described by the
vertex operator:

Vg(z, z̄) = εMN ∂zX
M
R (z) ∂z̄XN

L (z̄)e
√

α′
2 i pM (XM

R (z)+XM
L (z̄))

, (4.1)

with z = e2iπ
`

(τ−σ) and z̄ = e2iπ
`

(τ+σ). To make explicit the factorization properties of the
three point amplitudes in string theory, we decompose, as usual, the polarization of the
massless state εMN = εM × ε̄N and we define the left and right vertices as follows:

Vg(z) = εM∂zX
M
R (z) e

√
α′
2 i pMX

M
R (z)

, Vg(z̄) = ε̄M∂zX
M
L (z) e

√
α′
2 i pMX

M
L (z̄)

. (4.2)
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In the compactification procedure we require that all the components of the
d-dimensional massless state, remain massless at d − D-dimensions. This is achieved by
keeping the momentum carried by the vertex different from zero only along the non-compact
directions, i.e. pM = (pµ, 0). The massive high-spin states, instead, can carry momenta in
both compact and non-compact directions:7

pMR,L ≡
(
pµ

2 , p
a
R,L

)
; pL,R;a = 1

2
√
α′

[
ni +Bijm

j ± gijmj
]
e∗ia . (4.3)

In equation (4.1) one can now replace the expression of the field X(z) given by

XR(z) = q̂ − iα0 ln z + i
∑
n 6=0

αn
n
z−n, (4.4)

with α0 defined in eq. (A.12) and a similar expression for XL(z̄). Here q̂ represents the
coordinate of the string center of mass which acts on string states.

The amplitudes that we want to compute involves one gauge field described by the
vertex (4.1) and two identical high-spin states, of the level N = nR + nL. Here, nL,R are
the eigenvalues of the left and right-number operators. The 3-point function can then be
expressed in the factorized form

A3 = 2κd
( 2
α′

)
〈nR, p1;R|Vg(z = 1)|nR, p3;R〉 ∧ 〈nL, p1;L|Vg(z̄ = 1)|nL, p3:L〉. (4.5)

Here, we have already used the SL(2,C) invariance of the world-sheet CFT to fix the Koba-
Nielsen variables of the massive high-spin vertices to z = 0, ∞, while that of the massless
vertex is at the point z = z̄ = 1.

From the above expression (4.5) we shall now determine the gyromagnetic ratio of
the corresponding high-spin states. To this end it will be sufficient to consider an α′

expansion of the vertex operator. The leading orders in α′ are indeed sufficient to read off
the couplings (2.1).

Working at the level of the holomorphic part of the above correlator one then gets:

〈nR, p1R|Vg(z = 1)|nR, p3R〉

= ε
(2)
M

〈
nR, p1R

∣∣∣: ∂zXM
R (1)

(
1−

√
α′

2
∑
n 6=0

p2 · αn
n

)
:
∣∣∣nR, p3R + p2

〉
+O(
√
α′). (4.6)

Carrying out the algebra substituting the explicit expressions for ∂zXM
R (1) one the ar-

rives to:

〈nR, p1R|Vg(z = 1)|nR, p3R〉

= −i

√
α′

2
〈
nR, p1R

∣∣∣[ε(2)
M pM3R −

i

2(p2M ε
(2)
N − p2N ε

(2)
M )︸ ︷︷ ︸

FMN (p2)/2

ŜMN
R

]∣∣∣nR, p3R + p2
〉

+O(
√
α′), (4.7)

7In the case of the graviton vertex, one could introduce the same momentum notation adopted for the
higher spin states, by defining pR;L ≡ ( p2 , 0). In this case the exponential factor of the graviton vertex has
to be written in the form ei

√
2α(pR·XR+pL·XL).
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where we have introduced the right spin operator defined in eq. (3.26) and replaced the
momentum operator with its eigenvalue. We have also imposed the on-shell condition
ε(2) · p2 = 0. Similar expressions obviously hold in the left-sector and simply encode the
gyromagnetic factors of the open-string states!

From the above open-string correlators one can then recover the associated closed
string correlators simply by multiplication:

A(εε̄)ΦΦ = −α
′

2
〈

Φ
∣∣∣ [ε · p3;R −

1
2FMN (p2)ŜMN

R

] [
ε̄ · p3;L −

1
2 F̄M̄N̄ (p2)ŜM̄N̄

L

] ∣∣∣Φ〉 . (4.8)

The (d−D)-dimensional U(1)-gauge fields are obtained by considering polarization tensors
with mixed space time indices, one non-compact and the other compact. There exist two
possibilities:

Aµa ≡
1
2
(
εµε̄a + εaε̄µ

)
, (4.9)

Bµa ≡
1
2
(
εµε̄a − εaε̄µ

)
, (4.10)

with µ = 0 . . . d−D − 1 and a = 1, . . . D. In terms of these quantities eq. (4.8) becomes:8

A(A,B)ΦΦ = −α
′

2
〈

Φ
∣∣∣ (paL + paR)︸ ︷︷ ︸

Qa

Aa · p3 −
1
2F

A
µν;a(pa3LS

µν
R + pa3RS

µν
L )

+ (paL − paR)︸ ︷︷ ︸
Qa

Ba · p3 −
1
2F

B
µν;a(pa3LS

µν
R − p

a
3RS

µν
L )
∣∣∣Φ〉, (4.11)

where we have performed the replacements:

εµε̄a → Aµa +Bµa , ε̄µεa → Aµa −Bµa , (4.12)

and where we have focused on contribution to the minimal and gyromagnetic couplings so
that FAµν;a, FBµν;a are the field strengths in the momentum space of the gauge fields defined
in eq. (4.10), i.e.:

FAµν;a = i(p2µAνa − p2νAµa) , FBµν;a = i(p2µBνa − p2νBµa) . (4.13)

From eq. (4.11) one can read off the charges from the coefficient of the minimal coupling for
A and B respectively while the gyromagnetic factor is expressed in terms of the right and
left spin-operators therefore producing a particular combination of (2.10) with appropriate
coefficients α(j). This will require in particular to relate (depending on the representation
considered) SR and SL to the canonical spin operators Sj .

8Note that since the momentum p2 is entirely non-compact the only possible non-vanishing reduction of
FMN is Fµν .
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4.2 Superstring case

The bosonic case can be easily extended to closed superstring theory. The three-point
amplitude to be computed in superstring is the same as in the case of the bosonic theory.
The difference is that the two external high-spin states are now taken in superghost picture
(−1,−1) while the massless states is in the zero picture. The amplitude where the SL(2,C)
invariance has been fixed by choosing z1 =∞, z2 = 1 and z3 = 0 is:

A3 = 2κd
( 2
α′

)
ε
(2)
M 〈nR, p1R| :

[
∂zX

M
R −

√
α′

2 ip2,R · ψ−(1)ψM− (1)
]
e
i

√
α′
2 p2·XR(1) : |nR, p3R〉 ∧ L-sect.

(4.14)

The three point amplitude is now evaluated along the same lines of the bosonic calculation
focusing on each open string sector. The expansion of the exponential gives:

A3 = 2κd(−i)ε
(2)
M 〈nR, p1R| : p̂M − p2N

[ ∞∑
n=1

αM−nα
N
n − αN−nαMn
n

+ δa;0
1
2[ψM0 , ψN0 ]

+
∑

r∈Z+a
(ψM−r+a ψNr+a − ψN−r+a ψMr+a)

]
: |nR, p3R + p2〉 ∧ L-sect. +O(

√
α′)

= 2κd(−i)ε
(2)
M 〈nR, p1R|

[
pM3 − ip2N Ŝ

MN
R

]
|nR, p3R + p2〉 ∧ L-sect. +O(

√
α′) , (4.15)

with

ŜMN
R = −i

∞∑
n=1

αM−nα
N
n − αN−nαMn
n

− iδa;0
1
2[ψM0 , ψN0 ]− i

∑
r=1+a

(ψM−r+a ψNr+a − ψN−r+a ψMr+a) ,

(4.16)

where a = 0, 1/2 in the R and NS sector respectively.
The right correlator, given in eq. (4.15), formally coincides with that written in

eq. (4.7), the only difference is in the explicit form of the spin-operators which in the
superstring case depends on also fermionic oscillators entering the massive string vertices.
Therefore, the amplitude in superstring, to the leading order in the string slope, is formally
identical with the one computed in bosonic string theory.

Finally, the vertex operator of the massless state in Heterotic string, in one sector
is equal to the one of the superstring while in the other sector coincides with the one of
bosonic theory. The three-point amplitude, in Heterotic string with a massless vertex and
two massive high-spin states, to leading order in α′, can therefore be obtained by combining
the left and right correlators of the bosonic and superstring theories, respectively. This
amplitude turns out to be formally identical to the corresponding expressions found in the
bosonic and superstring models, the differences are, again, in the explicit realisation of
the spin-operators defined on each sector. Consequently, the gyromagnetic factor obtained
in the bosonic string case is still valid in these string models. These results, obtained
from amplitude calculations, are in agreement with those obtained from the hamiltonian
approach developed in the previous sections and confirm the universality of eqs. (3.25)
and (3.28) from which one can deduce the gyromagnetic ratios of higher-spin particles in
string theory.
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In the following section we shall consider a few examples with the aim of reducing the
combination of SR and SL appearing in (4.11) to the form (2.10) and extract the explicit
expressions for the gyromagnetic factors α(j).

5 Examples

This section is devoted to some explicit examples which involve the states of first Regge
trajectory of closed string theory. We shall focus both on totally symmetric fields and
hook-fields and extract the corresponding gyromagnetic ratios from (4.11).

5.1 pR = ±pL

In this special case, where the left and right compact momenta are equal modulo a sign,
corresponds to vanishing Kaluza Klein (pL = −pR) or Winding charges (pL = pR) defined in
equations (3.27) and (3.29) respectively. In these cases, the expressions of the gyromagnetic
ratios simplify considerably. This happens because, in these cases, the relevant interactions
depend on the combination S = SL+SR which allows us to read off the gyromagnetic ratio
for arbitrary elements of the spectrum regardless of the Young Tableaux representation.
The gyromagnetic factor in this case is g = 1. This generalises the results previously
obtained in different contexts for massive spin two particles [17–19].

5.2 Gravitational minimal coupling

It is interesting to compare the value g = 1 for the gyromagnetic ratio obtained in the
previous subsection with the value g = 2 which is obtained by requiring consistent HS
electromagnetic interactions in constant curvature backgrounds [12]. In this section, we
shall argue that the universal nature of g = 1 which is seen in the context of string com-
pactifications is a direct consequence of the uniqueness of gravitational minimal coupling.9

This clarifies the universality of g = 1 in the context of field theory compactifications. Such
universality will be lost when considering winding states and more general values of the
gyromagnetic factor are possible in these cases as we shall see.

To do so it is useful to analyse which couplings would give a contribution to the
gyromagnetic factor upon dimensional reduction. We can restrict to two derivative cou-
plings because these are the only couplings which upon dimensional reduction will produce

9Note that the Kalb-Ramond field can couple to the lowest order in derivatives with two derivative
interactions. In the case of totally symmetric fields one has for instance:

V(1)
Bφφ = BMN

(
∂Mφ

?
R(s)
) (
∂Nφ

R(s)) ,
V(2)
Bφφ = HMNL

(
∂Mφ

?
NR(s−1)

) (
φL

R(s−1)) .
While the first coupling gives minimal coupling upon compactification the second contributes to the gyro-
magnetic ratio. In String theory this coupling is fixed by the double-copy structure of the vertex operator.
This is required by T-duality relating the coupling of the Kalb-Ramond field to the coupling of the graviton.
Similar considerations can be made for more general representations including fermions. We thank Ashoke
Sen for discussions on this point.
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couplings with a single derivative. Using the classification of cubic couplings obtained
in [34–36] we then get three possible two derivative gravitational couplings:

(u2 · u3)s−2
[
(u1 · p23)2(u2 · u3)2 + βs u1 · p23 (u2 · p31u3 · u1 + u3 · p12u1 · u2)

+ γs (u2 · p31u3 · u1 + u3 · p12u1 · u2)2
]
. (5.1)

Their dimensional reduction then gives (focusing on the EM coupling):

2n
R

(u2 · u3)s−1
[
(u1 · p23)(u2 · u3) + βs

2 (u2 · p31u3 · u1 + u3 · p12u1 · u2)
]
, (5.2)

from which one recovers

g = βs
s
. (5.3)

The first observation is that it does not depend on γs which is the coefficient of the non-
minimal coupling proportional to the curvature R. The coupling proportional to γs does
not deform the abelian gauge symmetries and is therefore arbitrary in principle. The
second observation is that the induced gyromagnetic factor is given by (5.3) and one might
think that βs could be arbitrary! However the corresponding coupling deforms the gauge
transformations of the spin-s field! It must therefore be fixed by the requirement that the
induced gauge transformations match the Lie derivative if the HS field are consistently
coupled to gravity.

Evaluating the deformation of the gauge transformations using eq. (3.7) of [37] we ob-
tain:

1
s!u

µ1
3 · · ·u

µs
3 (δξΦ)µ1...µs

= 1
s! (u2 · u3)s−1

[
u1 · p2 (u2 · u3) + β

2 (−u2 · p1u3 · u1 + u3 · p1u1 · u2)
]

= 1
s! (u2 · u3)s−1

[
u1 · p2(u2 · u3) + β u3 · p1u1 · u2 −

β

2u
µ
2u

ν
3(p1,µu1,ν + p1,νu1,µ)

]
(5.4)

where the last term that we have set apart can be reabsorbed by a trivial field redefinition
being proportional to the symmetrized gradient of the gauge parameter. Starting instead
from the Lie derivative and considering the replacement (B.1) we get

1
s!u

µ1
3 · · ·u

µs
3 Lξφµ1...µs

= 1
s!u

µ1
3 · · ·u

µs
3

[
ξµ∂µφµ1...µs + s(∂(µ1ξ

ν)φν|µ2...µs)
]

→ 1
s!2u

µ1
3 · · ·u

µs
3 (LξΦ)µ1...µs

= 1
s!2 (u2 · u3)s−1

[
u1 · p2(u2 · u3) + s u3 · p1u1 · u2

]
(5.5)

Requiring that up to trivial redefinition the gauge transformation match among each other
forces then βs = s. Therefore, we have shown that g = 1 is a consequence of the uniqueness

– 21 –



J
H
E
P
0
6
(
2
0
2
1
)
1
6
8

of gravitational minimal coupling since the minimal coupling is the only coupling which
contributes to the gyromagnetic factor upon reduction on the circle. The overall factor
in the Lie derivative can be used to fix the overall normalisation of the cubic gravita-
tional coupling.

It is also straightforward to extract γs. We get γs = s
2 in all closed string theories

although γs cannot be fixed by requiring consistency of minimal coupling. It is interesting
to note that with this choice of γs the 2-derivative gravitational coupling of all closed string
theories takes the following simple form

(u2 · u3)s−2
[
u1 · p23 u2 · u3 + s

2 (u2 · p31u3 · u1 + u3 · p12u1 · u2)
]2
. (5.6)

If one considers on the other hand the interaction of open string states with the graviton,
one obtains γs = 0. It would be interesting to understand if these are the only possible
choices for γs in consistent theories of gravity.

5.3 Totally symmetric fields

The case of totally symmetric fields in the first Regge trajectory is the simplest. These are
described by Young Tableau diagrams having a single row. In this case, there exist a single
gyromagnetic ratio so that both SR and SL must contribute to the same structure (2.5).

To extract the gyromagnetic ratio, we can use the following identity〈
Φ
∣∣∣xSµνL + ySµνR

∣∣∣Φ〉
α

= 1
s

(x`L + y`R)
〈
Φ
∣∣Sµν ∣∣Φ〉

u
, (5.7)

which is derived in appendix D. This gives

α = 1
s

(x`L + y`R) , (5.8)

in terms of right and left spins. The gyromagnetic ratio is then obtained by dividing with
the charge associated to the corresponding gauge field

g
(a)
A = 2

paL + paR

paL`R + paR`L
`R + `L

, g
(a)
B = 2

paL − paR
paL`R − paR`L
`R + `L

. (5.9)

The above equation shows how for all states which satisfy level matching p2
L = p2

R, one
recovers g(a)

A,B = 1.10

5.4 Mixed-symmetry

The mixed symmetry case is more complicated in general but it is the generic case within
the string spectrum when compactifications to d > 4 are considered. We focus here on
the example of two row Young Tableaux which appear in the first Regge trajectory of the
closed bosonic string.

10Note that for the gauge field B technically the charge goes to zero but one can still define the gyro-
magnetic ratio in the limit. It is however possible to obtain values of the gyromagnetic ratio different from
one whenever level matching is not satisfied which happens for string states with non-trivial winding along
the compact directions.
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In this case, starting from the product of two totally symmetric representations of spin
`R and `L with `R ≥ `L, associated to the first Regge trajectory of the open string, one
has to project onto the irreducible component associated to the tableaux {`R + `L − k, k}.
To obtain the gyromagnetic ratio, we can make use of the identity11〈

Φ
∣∣∣xSµνL + ySµνR

∣∣∣Φ〉 =
〈
Φ
∣∣α1S

µν
1 + a2S

µν
2
∣∣Φ〉

u
, (5.10)

where on the left hand side we have the closed string-correlator and on the right-hand side
we used the inner-products among Young Tableaux as described in appendix D. Considering
the explicit projection on the two-row Young Tableaux we obtain

α1 = (`R − k)x+ (`L − k)y
`R + `L − 2 , α2 = (`R − k)y + (`L − k)x

`R + `L − 2 . (5.11)

We can then read off the gyromagnetic ratios for the gauge field Aaµ

g
(a)
1 = 2

paL + paR

(`R − k)paL + (`L − k)paR
`R + `L − 2k , (5.12)

g
(a)
2 = 2

paL + paR

(`R − k)paR + (`L − k)paL
`R + `L − 2k , (5.13)

as well as for the gauge field Ba
µ

g
(a)
1 = 2

paL − paR
(`R − k)paL − (`L − k)paR

`R + `L − 2k , (5.14)

g
(a)
2 = 2

paL − paR
−(`R − k)paR + (`L − k)paL

`R + `L − 2k . (5.15)

Similar expressions follow from for any mixed-symmetry representation in subleading Regge
trajectories.

6 Summary and discussion

In this work, we considered Bosonic, Type II and Heterotic string theories compactified
on a generic D dimensional torus in the presence of constant moduli. We focused on the
interaction between the U(1) gauge fields emerging from the dimensional reduction of the
Graviton and Kalb-Ramond fields with the massive HS string states. The d-dimensional
diffeomorphism invariance, broken by the compactification, gives rise to U(1) gauge sym-
metry to these vector fields. Massive HS string states carrying Kaluza-Klein and Winding
numbers are charged with respect to these gauge fields. The cubic couplings between these
massive HS fields and the field strengths of the gauge fields is, by definition, proportional
to the gyromagnetic ratios.

We have extracted these couplings in two different ways. We first considered the
non-linear sigma-models describing Bosonic, Type II and Heterotic theories in a general
compact toroidal background and computed the Hamiltonians giving the interaction be-
tween string and the two background gauge fields. We find an expression for the interaction

11Below, the inner products are of order one in the permutation of indices.
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hamiltonian, to leading order in the gauge field and derivatives expansion, which is univer-
sal, i.e. same for all the above three string theories, when expressed in terms of the charges
and spin operators of the corresponding theories. Expectation value of this hamiltonian,
evaluated between two generic physical string states, gives us the gyromagnetic ratios of
the corresponding higher-spin particles. The massive HS states having vanishing KK or
Winding charges turn out to have g = 1 and depend upon the spin and charges in the
general case. For states with mixed symmetry properties described by a generic Young
Tableau, there are multiple gyromagnetic couplings, with one per row of the Young dia-
gram. These gyromagnetic couplings were read by projecting onto the appropriate states
as described in appendix D.

Our results show how all values of the gyromagnetic factors in closed string theories
turn out to be a simple property of the structure of the graviton vertex operator. In-
terestingly we also point out how to obtain values of g different from one by turning on
winding charges. While our approach can be considered top-down, starting from a consis-
tent theory like string theory and deriving the value of the gyromagnetic factor, it would
be very interesting to investigate this problem from a bottom-up perspective by deriving
how these values of the gyromagnetic factor are consistent with basic principles. For field
theory modes this is indeed possible, as one can easily see that g = 1 is implied by minimal
coupling with gravity. It is tempting to think that a similar story should hold also for
modes with non-trivial winding, which however cannot be studied in field theory.

It would be interesting to shed some light on the universality of the expression giving
the gyromagnetic ratios in other examples such as flux compactifications and string theories
on orbifolds breaking partially or totally space-time supersymmetry. A similar analysis can
also be performed in principle in curved backgrounds like AdS or dS where one can use
the consistency of the boundary correlators to constraint the gyromagnetic factor also in
the context of Inflation. Furthermore, it would be interesting to study the connection of
these results to fundamental properties like causality directly at the level of the observables
focusing e.g. to the AdS and dS cases where causality can be mapped to concrete properties
of the dual CFT correlators along similar lines as in [38]. We leave this as well as other
interesting related questions for future work.
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A Some details of the Hamiltonian computation

A.1 Bosonic sigma model

The Bosonic sigma model in 26 dimensions in the presence of GMN andBMN is described by

S = − 1
4πα′

∫
d2σ

[
GMN (X) ηαβ∂αXM ∂βX

N +BMN (X)εαβ∂αXM ∂βX
N
]

(A.1)

This action is invariant under general coordinate transformations and changes by a total
derivative under the gauge transformation

δBMN = ∂MΛN − ∂NΛM (A.2)

The equation of motion of XM coming from the action (A.1) is

∂α∂
αXP + ΓPMN∂αX

M ∂αXN − 1
2H

P
MN ε

αβ∂αX
M ∂βX

N = 0 (A.3)

with ΓPMN denoting the Christoffel symbols and

HP
MN = GPRHRMN ; HMNP =

(
∂PBMN + ∂NBPM + ∂MBNP

)
(A.4)

The equation of motion (A.3) can be easily solved for the compactification described in
section 3.1. For the background (3.15) and at the linear order in the field strengths, only
the Γµνm components of the Christoffel symbols contribute and are given by

Γµνi = 1
2η

µσFAνσi (A.5)

Similarly, only the Hµνi = FBµνi components of the HMNP contribute. With these, the
equations of motion for Xi and Xµ become

∂α∂
αXi − 1

2g
ijFBµν;jε

αβ∂αX
µ∂βX

ν +O(F 2
A, F

2
B, F

AFB) = 0

∂α∂
αXµ − ηµνFAνσ;i∂αX

σ∂αXi − ηµνFBνσ;iε
αβ∂αX

σ∂βX
i +O(F 2

A, F
2
B, F

AFB) = 0 (A.6)

These equations can be solved iteratively in the field strengths FAµν and FBµν . We need the
solutions at the zeroth order in the field strengths. However, we note the structure of the
solution upto the linear order which can be obtained to be

Xi(τ, σ) = Xi
R(σ−) +Xi

L(σ+)− 1
2g

ijFBµν;j X
µ
R(σ−)Xν

L(σ+) +O(F 2
A, F

2
B, F

AFB)

Xµ(τ, σ) = Xµ
R(σ−) +Xµ

L(σ+) + 1
2η

µσFAσλ;iX
λ(τ, σ)Xi(τ, σ)

+ 1
2η

µσFBσν;i

(
Xν
L(σ+)Xi

R(σ−)−Xν
R(σ−)Xi

L(σ+)
)
+O(F 2

A, F
2
B, F

AFB) (A.7)

where σ± = τ±σ. The combinations Xi
R +Xi

L and Xµ
R +Xµ

L satisfy the Laplace equation.
In this work, we shall not use this more general solution since only the leading order terms
are required in the expression of the Hamiltonian which gives the interaction of the string
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with the external gauge fields. By imposing the boundary conditions, the leading order
terms can be expressed as

Xi
R(τ− σ) = 1

2x
i + 2πα′

`
gijpjR(τ− σ) + i

√
α′

2

∞∑
n=−∞
n 6=0

1
n
αin e

−2iπn(τ−σ)/` (A.8)

Xi
L(τ + σ) = 1

2x
i + 2πα′

`
gijpjL(τ + σ) + i

√
α′

2

∞∑
n=−∞
n 6=0

1
n
α̃in e

−2iπn(τ+σ)/` (A.9)

The left and right moving momenta in the above expression are given by [27, 39]

piL = 1
2
√
α′

[
ni + (Bik + gik)mk

]
, piR = 1

2
√
α′

[
ni + (Bik − gik)mk

]
(A.10)

The Xµ
R(τ− σ) and Xµ

L(τ+ σ) have the same structure as in (A.8) and (A.9) but with piL
and piR replaced by pµ/2 where pµ denotes the momenta of the state.

For computing the expectation value of the interacting hamiltonian, following expres-
sions will be useful (denoting X µ ≡ Xµ

R +Xµ
L)

∂+X
i
L = π

`

√
2α′

∑
n

α̃in e
−2πin(τ+σ)/` , ∂+X µ = π

`

√
2α′

∑
n

α̃µn e
−2πin(τ+σ)/`

∂−X
i
R = π

`

√
2α′

∑
n

αin e
−2πin(τ−σ)/` , ∂−X µ = π

`

√
2α′

∑
n

αµn e
−2πin(τ−σ)/` (A.11)

where, we defined

α̃i0 =
√

2α′piL , αi0 =
√

2α′piR , α̃µ0 = αµ0 =
√

2α′ p
µ

2 (A.12)

The Virasoro’s generators in the compactified theory and to leading order in the gauge
fields expansion are:

L0 = α′p2
R + α′

4 p
2 +N − 1 ; L̃0 = α′p2

L + α′

4 p
2 + Ñ − 1 :

where the number operators are given by N =
∑∞
n=1

[
gµνα

µ
−n α

ν
n + gijα

i
−n α

j
n

]
and with a

similar expression for the left modes of the closed string.The mass-shell condition turns
out to be:

α′

4 M
2 = α′gij pRi pRj +N − 1 = α′gij pLi pLj + Ñ − 1 (A.13)

which implies the following level matching condition:

N − Ñ = nimi (A.14)

We counclude this section by observing that the above details do not change the evaluation
of the left and right-moving string amplitudes. The only difference is that when consid-
ering non-trivial winding one should distinguish left and right momenta and perform the
reduction via the following replacements:

pMR →
(1

2p
µ, piR

)
, pML →

(1
2p

µ, piL

)
. (A.15)
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Focusing on the first Regge trajectory one can then use the open string generating func-
tion defined in (C.7), combine two such generating functions, one for left and another for
right moving part of the closed string correlator, and impose level matching (A.14) when
expanding the oscillators and obtaining the closed string amplitudes.

A.2 Type II sigma model

Superstring theory in a non-trivial background is described by the (1, 1)-supersymmetric
non-linear sigma model that realizes the embedding of the string world-sheet in a space-
time with a non-trivial metric GMN and an anti-symmetric tensor field BMN . The super-
conformal covariant action describing the supersymmetric sigma model in the superspace
notation is given by (see for example ref. [29])

SType II = 1
4πα′

∫
d2σdθ+dθ−

[
GMN (Φ)D+ΦMD−ΦN +BMN (Φ)D+ΦMD−ΦN

]
(A.16)

The world-sheet bosons XM and the Majorana fermions ψM are collected in the superfield

ΦM (σ, θ) = XM (σ) + θ̄ψM (σ) + 1
2 θ̄θF

M (σ) (A.17)

where FM (σ) are auxiliary fields with no dynamics and they will be eliminated by using
their equations of motion. The Grassmann coordinates θ are two-component Majorana
spinors and θ̄ = θtρ0. The components of the spinors are labelled with the indices A = −,+.
Hence,

ψM =
(
ψM−
ψM+

)
; θ =

(
θ−
θ+

)
(A.18)

Our convention for the gamma matrices are

ρ0 =
(

0 −i
i 0

)
; ρ1 =

(
0 i

i 0

)
(A.19)

Using these, we find

ΦM (σ, θ) = XM (σ)− iθ−ψM+ (σ) + iθ+ψ
M
− + iθ+θ−F

M (σ) (A.20)

The covariant derivative is defined by (A = −,+):

DA = ∂

∂θ̄A
− i(ραθ)A∂α =⇒

{
D− = −i ∂

∂θ+
− 2θ+∂−

D+ = i ∂
∂θ−

+ 2θ−∂+
(A.21)

Here, we have used the convention

∂± = 1
2(∂0 ± ∂1) ; ∂0 = ∂+ + ∂− ; ∂1 = ∂+ − ∂− (A.22)

We then have

D+ΦM = 2θ−∂+X
M + ψM+ + θ+F

M + 2iθ−θ+∂+ψ
M
−

D−ΦM = −2θ+∂−X
M + ψM− + θ−F

M + 2iθ+θ−∂−ψ
M
+ (A.23)
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and hence (noting that ψ± are Grassmann valued fields)

D+ΦM D−ΦN = θ−θ+
(
− 4∂+X

M∂−X
N − 2iψM+ ∂−ψ

N
+ − FMFN + 2i∂+ψ

M
− ψ

N
−

)
+ θ−

(
2∂+X

MψN− − ψM+ FN
)

+ θ+
(
2∂−XNψM+ + ψN−F

M
)

+ ψM+ ψN−

We can now simplify the two terms in the action. After some manipulation, they are
given by

GMN (Φ)D+ΦM D−ΦN = θ−θ+

[
−4GMN∂+X

M∂−X
N − 2iGMN

(
ψM+ ∇−ψN+ + ψN−∇+ψ

M
−

)
−GMNF

MFN − 2iGQNΓQPMψ
P
− ψ

M
+ FN + ∂P∂QGMN ψ

P
−ψ

Q
+ ψ

M
+ ψN−

]
and

BMN (Φ)D+ΦM D−ΦN = θ−θ+

[
BMN

(
− 4∂+X

M∂−X
N − 2iψM+ ∂−ψ

N
+ − 2iψN− ∂+ψ

M
−

)
+ 2i∂PBMN ψ

P
− ∂+X

MψN− + 2i∂PBMNψ
P
+∂−X

NψM+

− iHMNPψ
M
+ ψN−F

P + ∂P∂QBMNψ
P
−ψ

Q
+ψ

M
+ ψN−

]
(A.24)

where, we defined

∇−ψM+ = ∂−ψ
M
+ + ΓMPQ∂−XPψQ+ , ∇+ψ

M
− = ∂+ψ

M
− + ΓMPQ∂+X

PψQ− (A.25)

The equation of motion of the auxiliary field FM gives

FM = iΓMPQψP+ψ
Q
− + i

2G
MNHNSRψ

R
+ψ

S
− (A.26)

Using the above solution, the terms containing FM , in the action, can be simplified as

−GMNF
MFN − 2iGMNΓMRSψR+ψN−FS − iHMNPψ

M
+ ψN−F

P

=
[
GMNΓMPQΓNRS +HMPQΓMRS + 1

4H
T
PQHTRS

]
ψQ+ψ

S
+ψ

P
−ψ

R
− (A.27)

Now, we have

∂P∂QBMNψ
P
−ψ

Q
+ψ

M
+ ψN− +HMPQ ΓMLSψ

Q
+ψ

S
+ψ

P
−ψ

L
−

= 1
2
[
∂P
(
∂QBSL − ∂SBQL

)
− ΓMPSHQML − ΓMPQHMSL

]
ψQ+ψ

S
+ψ

P
−ψ

L
−

= 1
2∇PHQSLψ

Q
+ψ

S
+ψ

P
−ψ

L
− (A.28)

and

∂P∂QGMNψ
P
− ψ

Q
+ ψ

M
+ ψN− +GMNΓMPQΓNRSψ

Q
+ψ

S
+ψ

P
−ψ

R
−

= 1
2

[
1
2
(
∂L∂SGMP − ∂P∂SGML − ∂L∂MGSP + ∂P∂MGSL

)

+GQN
(
ΓNLSΓQPM − ΓNLMΓQPS

)]
ψS+ ψ

M
+ ψL− ψ

P
−

= −1
2RSMLPψ

S
+ ψ

M
+ ψL− ψ

P
− (A.29)
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We also have

−2iBMNψ
M
+ ∂−ψ

N
+ + 2i∂PBMNψ

P
+ψ

N
+ ∂−X

N = iHNPMψ
P
+ψ

M
+ ∂−X

N − i∂−(BMNψ
M
+ ψN+ )
(A.30)

and,

−2iBMNψ
N
− ∂+ψ

M
− + 2i∂PBMNψ

P
−ψ

N
− ∂+X

M = −iHNPMψ
P
−ψ

M
− ∂+X

N + i∂+(BMNψ
M
− ψ

N
− )

Using the above results and performing the grassmann integrals, the action can be written
as (ignoring the boundary terms)

S = 1
4πα′

∫
d2σ

[
4GMN∂+X

M∂−X
N + 4BMN∂+X

M∂−X
N + 2iGMNψ

M
+ ∇̃−ψN+

+ 2iGMNψ
N
− ∇̃+ψ

M
− + 1

2R̃MNPQψ
M
+ ψN+ψ

P
−ψ

Q
−

]
(A.31)

where, we defined

∇̃−ψM+ = ∂−ψ
M
+ +

(
ΓMPQ −

1
2H

M
PQ

)
ψP+ ∂−X

Q (A.32)

∇̃+ψ
M
− = ∂+ψ

M
− +

(
ΓMPQ + 1

2H
M
PQ

)
ψP− ∂+X

Q (A.33)

and,

R̃MNPQ = RMNPQ+ 1
2∇PHMNQ−

1
2∇QHMNP + 1

4HMRPH
R
QN −

1
4HMRQH

R
PN (A.34)

Upto the quadratic order, the action for the world-sheet field XM is exactly the same as in
the bosonic theory. Hence, upto the orders of our interest, the solutions of the equations
of motion for these fields are given by the same expressions as in the closed bosonic case.
For the ψM± fields, the equations of motion, instead, are given by

∂±ψ
N
∓ + Γ̃N± PQψP∓∂±XQ − i

4R̃
N
LSPψ

L
∓ψ

S
±ψ

P
± = 0 (A.35)

For our purposes, we need to only solve these at the lowest order, namely ∂∓ψ
M
± = 0.

Moreover, we only need the solution for the non compact directions which are given by

ψµ+ =

√
2πα′
`

∑
r∈Z+a

ψ̄µr e
−2iπr(τ+σ)/` , ψµ− =

√
2πα′
`

∑
r∈Z+a

ψµr e
−2iπr(τ−σ)/` (A.36)

where, a = 0 for R sector and a = 1
2 for the NS sector.

Below, we note some results which are useful in computing the Hamiltonian of the
compactified theory. In this case also, upto linear order in the fields, the Christoffel symbols
which contribute are same as in the bosonic case. Also, only Hµν i = FBµν, i contributes.
Hence, we have

Γ̃µ±νi = 1
2η

µσFAνσ, i ±
1
2η

µσFBσν, i , Γ̃i+νρ = ±1
2g

ijFBνρ, j
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Next, the SM defined in (3.34) are computed to be (using the notation ψMN
± = ψM± ψ

N
± )

Sµ = − i4F
A
µρ, i

(
ψρi+ + ψρi−

)
− i2F

B
ρµ, i

(
ψρi+ − ψ

ρi
−

)
(A.37)

and,
Si = − i4F

A
µρ, i

(
ψρµ+ + ψρµ−

)
+ i

4F
B
ρµ, i

(
ψρµ+ − ψ

ρµ
−

)
(A.38)

The TM defined in (3.37) have the similar expressions except that we need to change the
sign in front of ψMN

+ terms.

A.3 Heterotic sigma model

The Heterotic theory has world-sheet supersymmetry in the right moving sector. Con-
sequently, the Sigma model for the Heterotic string theory is described by the ac-
tion [32, 40, 41]

S = S1[Φ] + S2[Φ] + S3[Φ,Λ−] (A.39)

where,

S1[Φ] = 2
4πα′

∫
d2σdθ−GMN (Φ)D+ΦM∂−ΦN (A.40)

S2[Φ] = 2
4πα′

∫
d2σdθ−BMN (Φ)D+ΦM∂−ΦN (A.41)

S3[Φ, λ−] = − i

4πα′
∫
d2σdθ− gAB(Φ)ΛA−(D+ +A+(Φ))BCΛC− (A.42)

and,

ΦM (σ, θ−) = XM (σ)− iθ−ψM+ , D+ = i
∂

∂θ−
+ 2θ−∂+ (A.43)

ΛA−(σ, θ−) = λA− + θ−f
A(σ) , AB+C = (AM (Φ))BCD+ΦM (A.44)

ΛA− is anti-commuting. Moreover, only the antisymmetric part of the gauge field AM
contributes. Hence, we can take (AM )BC = −(AM )CB. We shall now do the component
expansion and express the action in terms of the physical component fields. For this, we
note that

D+ΦM = ψM+ + 2θ−∂+X
M , ∂−ΦN = ∂−X

N − iθ−∂−ψN+ (A.45)
GMN (Φ) = GMN (X)− iθ−ψP+∂PGMN , BMN (Φ) = BMN (X)− iθ−ψP+∂PBMN

gAB(Φ) = gAB(X)− iθ−ψM+ ∂MgAB , AM (Φ) = AM (X)− iθ−ψP+∂PAM

(A+)BC = (AM )BCψM+ + 2θ−(AM )BC∂+X
M − iθ−ψP+ψM+ (∂PAM )BC

gABΛA− = gABλ
A
− + θ−gABf

A − iθ−ψM+ λA−∂MgAB

D+ΛB− = ifB + 2θ−∂+λ
B
− (A.46)
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The three terms in the action can be expressed as

2
4πα′GMN (Φ)D+ΦM∂−ΦN

= 2
4πα′ θ−

[
2GMN∂+X

M∂−X
N + iGMNψ

M
+ ∂−ψ

N
+ − i∂PGMNψ

P
+ψ

M
+ ∂−X

N
]

(A.47)
2

4πα′BMN (Φ)D+ΦM∂−ΦN

= 2
4πα′ θ−

[
2BMN∂+X

M∂−X
N + iBMNψ

M
+ ∂−ψ

N
+ − i∂PBMNψ

P
+ψ

M
+ ∂−X

N
]

(A.48)

− i

4πα′ gABΛA−
[
D+ΛB− + (A+)BCΛC−

]
= − i

4πα′
[
−2gABλA−∂+λ

B
− + gABλ

A
−ψ

M
+ (AM )BCfC − 2gABλA−λC−(AM )BC∂+X

M

+ igABλ
A
−ψ

P
+ψ

M
+ λC−(∂PAM )BC + igABf

AfB + gAB(AM )BCψM+ λC−f
A

+ ψM+ λA−∂MgABf
B − iψM+ λA−ψ

N
+λ

C
−(AN )BC∂MgAB

]
(A.49)

Now, we have

2igABλA−∂+λ
B
− + 2igABλA−λC−(AM )BC∂+X

M = 2igABλA−∇̂+λ
B
−

where,

∇̂+λ
B
− = ∂+λ

B
− + (ÂM )BCλC−∂+X

M , (ÂM )BC = (AM )BC + 1
2g

BD∂MgDC (A.50)

The terms involving fA can be simplified as

− igABλA−ψM+ (AM )BCfC + gABf
AfB − igAB(AM )BCψM+ λC−f

A − iψM+ λA−∂MgABf
B

= −igABfA
[
ifB + 2(ÂM )BCψM+ λC−

]
(A.51)

The equation of motion of fA gives

fA = i(ÂM )ACψM+ λC− (A.52)

Substituting this solution in (A.51) gives

− igABfA
[
ifB + 2(ÂM )BCψM+ λC−

]
= −gAB(ÂM )AC(ÂN )BDψM+ ψN+λ

C
−λ

D
− (A.53)

Using the above results and equation (A.30), we can express the action as

S = 1
4πα′

∫
d2σ

[
4GMN∂+X

M∂−X
N + 4BMN∂+X

M∂−X
N + 2iGMNψ

M
+ ∇̃−ψN+

+ 2igABλA−∇̂+λ
B
− + 1

2FMN ;CDψ
M
+ ψN+λ

C
−λ

D
−

]
(A.54)

where ∇̃−ψN+ is defined in (A.32) and

FMN ;CD = ∂M (ÂN )CD − ∂N (ÂM )CD + (ÂM )CB(ÂN )BD − (ÂN )CB(ÂM )BD (A.55)
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For the compactification on TD, we again need the mode expansion of the world sheet
fields. At the quadratic order in the world-sheet fields, the equations of motion for the XM

are the same as in the bosonic and Type II theories. Hence, upto the orders of our interest,
we can use the same expressions for their mode expansion as obtained in these non-linear
sigma models. The equations of motion of the ψM+ , instead, are modified with respect to
the corresponding equation in the (1, 1) supersymmetric sigma model by terms containing
the background gauge field. However, in the following, we shall be only interested in the
solution of these equations to the zeroth order in the gauge field AM . Therefore, for ψM+
also, we can use the same mode expansion as in the type II theory. Finally, the equation
of motion for λB− fields are

∂+λ
B
−+(ÂM )BCλC−∂+X

M+ 1
2g

BD∂M (gCD)λC−∂+X
M− i2g

BAFMN ;ACψ
M
+ ψN+λ

C
− = 0 (A.56)

This shows that at the lowest order, λA− satisfies the same equation as ψM− in type II case.
Hence, the solution for these are also given by the same expressions as for ψM− .

We again use the same compactification ansatz for GMN and BMN as in the bosonic
and type II theory. Hence, the expression for the components of Γ̃M−NP are same as in the
case of type II theory. For SM defined in (3.50), we have (using the notation ψMN

+ = ψM+ ψN+
and λAB− = λA−λ

B
−)

Sµ = − i4Fµρ;iψ
ρi
+ −

i

2F
B
ρµ;iψ

ρi
+ −

i

2gAB(Âµ)BCλA−λC− (A.57)

and,
Si = − i4Fµρ;iψ

ρµ
+ + i

4F
B
ρµ;iψ

ρµ
+ −

i

2gAB(Âi)BCλA−λC− (A.58)

Again, the TM defined in (3.53) have the similar expressions except that we need to change
the sign in front of ψMN

+ terms.

B Generalities on higher spin states

In the following, it will be convenient to use the following spinning polarisations:

φµ1...µs(p) = 1
s! uµ1 . . . uµs , (B.1)

in terms of the transverse polarization vector uµ depending on the momentum p. Upon
using point splitting the above replacement allows to transform any spinning correlator into
a polynomial in the Lorentz invariant contractions of the vector polarisation ui associated
with each external leg.

Anticipating the results, we shall see that the general pattern of the super-string scat-
tering amplitude generating function can be given as

A = B exp(C) , (B.2)

where exp(C) is the same generating function entering the bosonic string case obtained
in [36], while B is overall polynomial in the polarisations whose form appears to be com-
pletely specified solely by the fermionic correlators entering the computation in the super-
string case.
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It is useful to write down in terms of the polarisations (B.1) various cubic couplings
which we shall extract from string theory. Focusing on the EM coupling of HS fields
which reads:

−ieAνφ∗µ1...µs

←→
∂ νφµ1...µs → e

s!2u1 · p23(u2 · u3)s , (B.3)

where we remind the reader that u3 · p3 = 0. Similar expression can be obtained for the
non-minimal Pauli coupling:

ig esF µνφ∗µµ2...µsφν
µ2...µs→− eg s

(s−1)!2 (pµ1uν1−pν1u
µ
1 )u2,µu3,ν(u2 ·u3)s−1 (B.4)

= eg s

2(s−1)!2 (u2 ·p31u1 ·u3+u3 ·p12u1 ·u2)(u2 ·u3)s−1 , (B.5)

where we introduced the gyromagnetic factor g. Similar polynomial expressions can be
obtained for any coupling by simply using (B.1).

Here, we also introduce the representation of the spin-operator on totally symmetric
states:

(SMN )M(s)
N(s) = 2isη(M1[Mδ

N ]
(N1

. . . δ
Ms)
Ns) (B.6)

where M(s) (and N(s)) denotes the completely symmetrized set of indices {M1 . . .Ms}
and we define

us2 · SMN · us3 ≡ u2M1 . . . u2Ms(SMN )(M1...Ms)
(N1...Ns) u

N1
3 . . . uNs3 = 2isu[M

2 u
N ]
3 (u2 · u3)s−1 (B.7)

So far, we have focused on higher spin states in open string theories. In closed string
theories, the polarization of the physical states can be obtained by the factorized product
of holomorphic (right) and antiholomorphic (left) sectors, in the following denoted with u
and ū respectively. Two spin operators, SµνR;L, can be introduced in such theories and their
action on the polarization of the higher spin states can be equivalently defined as:

SµνR = i

(
uµ

∂

∂uν
− uν ∂

∂uµ

)
; SµνR = i

(
ūµ

∂

∂ūν
− ūν ∂

∂ūµ

)
(B.8)

It is easily seen that:12

SµνR uµ1 . . . uµl = 2i
l∑

i=1
δ[ν
µiη

µ]aiδa1
µ1 . . . δ

ai−1
µi−1δ

ai+1
µi+1 . . . δ

al
µl
ua1 . . . ual

= 2iηa1[µ
l∑

i=1
δν]
µi

1
(l − 1)!

(
δa1

(µ1
. . . δai−1

µi−1 δ
ai+1
µi+1 . . . δ

al
µl)
)
ua1 . . . ual

= 2i lηa1[µδ
ν]
(µ1

. . . δalµl) ua1 . . . ual (B.9)

This coincides with eq. (B.6).
The completely symmetric closed string state is defined by the linear combination

φµ1...µlν1...νk = u(µ1 . . . uµl ūν1 . . . ūνl) (B.10)
12The notation is u(µ1 . . . uµl) = 1

l!
∑

perm.{1...l} uµ1 . . . uµl = uµ1 . . . uµl .
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The action of the spin operators on such states gives:

SµνR φµ1...µlν1...νk = 2 i l ηa1[µδ
ν]
(µ1

. . . δalµlδ
al+1
ν1 . . . δ

al+k
νk) ua1 . . . ual ūal+1 . . . ūal+k

SµνL φµ1...µlν1...νk = 2 i k ηal+1[µδ
ν]
(µ1

. . . δalµlδ
al+1
ν1 . . . δ

al+k
νk) ua1 . . . ual ūal+1 . . . ūal+k (B.11)

and

(SµνL + SµνR )φµ1...µlν1...νk = 2 i (l + k) η(a1[µδ
ν]
(µ1

. . . δalµlδ
al+1
ν1 . . . δ

al+k)
νk) ua1 . . . ual ūal+1 . . . ūal+k

(B.12)

With the introduction of the auxiliary vector variables (w, w̄), the totally symmetric state
can be represented in the compact form:

φk+l = Nl+k(u·w)l (u · w̄)k (B.13)

where the left and right polarizations are now identified to get a totally symmetric tensor.
Here Nl+k is an overall normalization factor that has to be fixed by requiring that the
amplitudes give canonically normalized kinetic terms.

In this representation of spinning particles, the actions of the SR and SL spin operators
defined in eqs. (B.12) are obtained by acting on the states with the operators:

SµνR = i

(
wµ

∂

∂wν
− wν ∂

∂wµ

)
; SµνL = i

(
w̄µ

∂

∂w̄ν
− w̄ν ∂

∂w̄µ

)
(B.14)

introduced in section 2.

C Summary of open string amplitudes for the bosonic states in the first
Regge trajectory

In this section we list the open bosonic three point amplitude in bosonic and super-string
in the non compact and compact background. Closed string amplitudes can be obtained
as appropriate squares of the open-string amplitudes.

C.1 Generating functions for vertex operators

Along the lines of [36] we can use the replacement (B.1) to construct vertex operator
generating functions bosonic string state and NS or R superstring states. Performing the
same replacement one can further resum in a single function all vertex operators with
different spins. The bosonic vertex operators after resummation in terms of the vector
polarisation (B.1) then reads13

V (kR, u) = exp
(
i∂X · u+ i

√
2α′kR ·X

)
, (C.1)

kR (and kL in the closed string) is the momentum of the string state and the label R is
irrelevant in open-string but in the closed string, where the vertices are the product of the

13In eq. (C.1), we have extracted from the string field X the overall normalization factor
√

2α′ to make
such a quantity dimensionless.
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right (or holomorphic) and left (antiholomorphic) sectors, denotes the right-momentum
of the particle. In non compact spaces, kR ≡ p and kR = kL ≡ p/2 in open and closed
string, respectively. In the compact toroidal background, instead, the momentum long the
compact directions is quantized being in the closed string equal to kR,L ≡ (p/2, pR,L) with
pR,L defined in eq. (A.10).

The NS first Regge trajectory generating function in the canonical picture with ghost
charge −1 can then be given as

V (−1)(kR, u) =: ψ · u e−φ exp
(
i∂X · u+ i

√
2α′kR ·X

)
: , (C.2)

where the dependence on the world-sheet coordinate is understood.
Similarly, one can construct a generating function of NS vertex operators in the non-

canonical picture with 0 ghost charge as

V (0)(kR, ξ) =:
{[

(∂ψ · u) +
√

2α′ kR · ψ
]

(ψ · u) + u · ∂u
}

exp
(
i∂X · u+ i

√
2α′kR ·X

)
: .

(C.3)

In the following we will use the vertex operator generating functions so far obtained in order
to compute superstring scattering amplitudes. Notice that the transversality condition for
the polarization tensors can be translated into a transversality condition for the polarisation
u that from now on will be projected on its transverse components. Moreover all vertex
generating functions are proportional to the same exponential factor

exp
(
i∂X · u+ i

√
2α′k ·X

)
. (C.4)

Finally, it is useful to comment on closed string vertex operators. The key observation
is that these can be obtained multiplying together holomorphic and anti-holomorphic open
string vertices in the corresponding pictures and imposing level matching:

V (n,m)(kR, kL, u, ū) = L
[
V (n)(kR, u)V (m)(kL, ū)

]
(C.5)

An explicit implementation of the level matching operation is given by:

L [f(u)g(ū)] = I0
(
2
√
λλ̄
)
f(λu)g(λ̄ū)

∣∣∣
λ=λ̄=0

. (C.6)

I0 is the Bessel function.
When imposing level matching the normalisation of the polarisation tensor is not

anymore the one given in (B.1). It is straightforward to fix this normalisation but it is not
necessary for the purposes of these notes.

C.2 Summary of open string amplitudes for the bosonic states in the first
Regge trajectory

In this section we just list the open bosonic three point amplitude in bosonic and super-
string in the non compact and compact background. Closed string amplitudes can be
obtained as appropriate squares of the open-string amplitudes.
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Bosonic generating function. The bosonic generating function of three point ampli-
tudes is obtained by evaluating the string correlator with three vertices defined in eq. (C.1).
This contains an explicit dependence on the tree level string Green function. However, three
point amplitudes, on-shell, don’t have any dependence on such quantities and we can write
the following expression for the generating function:

B(pi, ui) = e
u1·u2+u2·u3+u3·u1−

√
α′
2 (u1·p23+u2·p31+u3·p12) (C.7)

with pij = pi − pj and we have used the on-shell condition pi · ui = 0.

Superstring generating function. The superstring generating function of three point
amplitudes is instead obtained by evaluating the correlator with two vertices defined in
eq. (C.2) and one vertex given in eq. (C.3), one gets:

S(pi, ui) =
(
G− u1 · u2u3 · u1 − u2 · u3u1 · u2 − u3 · u1u2 · u3

)
(C.8)

× eu1·u2+u2·u3+u3·u1−
√

α′
2 (u1·p23+u2·p31+u3·p12)

where we have defined the YM combination

G =

√
α′

2 [u1 · u2 u3 · p12 + u2 · u3 u1 · p23 + u3 · u1 u2 · p31] (C.9)

Closed string amplitude can be obtained from products of open string amplitudes
enforcing level matching. We can obtain both closed bosonic, super and heterotic 3pt
amplitudes just implementing level matching when expanding the generating functions.

In order to obtain the dimensional reduction on the D-dimensional torus we write the
polarization tensor in the form u → (u, v) being u and v the non compact and compact
components, respectively. The amplitude in the compact space is obtained from the cor-
responding one in the non compact background by implementing dimensional reduction
rules. These in open string are:

ui · uj → ui · uj + vi · vj (C.10)
ui · pj → ui · pj + vi · pj (C.11)

plus cyclic, where pj = nj
R being nj the KK level and R the compactification length. The

corresponding rules in closed-string are defined in eq. (C.17).
In the following we shall extract the part of the coupling which involves one derivative

and compare it with (B.5) extracting the corresponding gyromagnetic factor g. This can
be obtained by taylor expanding the generating functions presented in this section. This
is straightforward using the series expansion of exponential.

Open bosonic string. The scattering amplitude with one massless state interacting
with two higher-spin states of the leading Regge-trajectory is obtained by expanding the
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exponential in eq. (C.7) and keeping the terms linear in photon polarization and of order
us1;2. The expression al leading order in the string slope turns out to be:

1
s! (u2 · u3)s−1

√
α′

2 [u1 · p23u2 · u3 + s(u2 · p31u3 · u1 + u3 · p12u1 · u2)]

1
s! (u2 · u3)s−1

√
α′

2
[
u1 · p23u2 · u3 − s(u1M p1N − u1N p1M )u[M

3 u
N ]
2

]
(C.12)

Here, u1 is the photon polarization while u2,3 are the polarizations of the massive particles.
Eq. (B.7) allows to write eq. (C.12) as follows:

1
s!

√
α′

2

[
u1 · p23(u2 · u3)s + i

2(u1M p1N − u1N p1M )us3 · SMN · us2
]

(C.13)

which is equivalent to g = 2. From an effective field theory approach to string amplitudes,
the first term of this equation comes from the kinetic term of the higher spin states min-
imally coupled with an abelian field. The normalization of the string vertices has to be
fine-tuned to get canonically normalized kinetic terms. We don’t write down explicitly such
normalization but it can be straightforward read from eq. (C.13). In terms of the physical
polarization defined in eq. (B.1) the three-point amplitude takes the form:

A3 ∼
[
u1p23φ2 · φ3 + 1

2FMNφ3a(s) (SMN )a(s)
b(s)φ

b(s)
2

]
(C.14)

with FMN defined in eq. (4.7).

Open superstring string. Similarly, the superstring amplitude involving one-massless
state and two higher spins of the leading Regge trajectory is:

1
(s− 1)!(u2 · u3)s−1

√
α′

2 [u1 · p23u2 · u3 + s(u2 · p31u3 · u1 + u3 · p12u1 · u2)] (C.15)

which is again and as expected to g = 2. This amplitude when written in terms of the
polarization of the higher spin states given in eq. (B.1) coincides, at the leading order in
the string slope, with eq. (C.14).

Closed strings after reduction on a torus TD. The closed amplitudes before the
compactification are the same in bosonic, superstring and heterotic string, therefore, being
equal to:

Acl.3 ∼
[
u1 · kR;23(u2 · u3)sR + i

2(u1M kR;1N − u1N kR;1M )usR3 · SMN
R · usR2

]
×
[
ū1 · kL;23(ū2 · ū3)sL + i

2(ū1M kL;1N − ū1N kL;1M ) ūsL3 · SMN
L · ūsL2

]
(C.16)
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The compactification is easily performed by implementing the reduction rules given in
eqs. (C.11). These correspond to the replacements

u1 ·kr,23 (u2 ·u3)sR→
(1

2u1 ·p23+v1 ·pR;23

)
(u2 ·u3+v2 ·v3)sR

(u1M kR;1N−u1N kR;1M )usR3 ·SMN
R ·usR2 → isR(u1µp1ν−u1νp1µ)u[µ

3 u
ν]
2 (u2 ·u3+v2 ·v3)sR−1

+2isRv1a p1ν (va3 uν2−uν3 va2)(u3 ·u2+v3 ·v2)sR−1

(C.17)

Similar relations hold for the antiholomorphic sector.
In the following, we consider in the amplitude only terms relevant for the determina-

tion of the gyromagnetic ratio of the massive fields with respect to the U(1)-gauge fields
described by the polarization tensors of the form ε

(1)
µa ≡ u1µ v̄1 a and ε(1)

aµ ≡ v1 a ū1µ. There-
fore, we ignore, in the reduction, terms like the last line of eq. (C.17) and those quadratic in
the non-compact momenta that correspond to couplings with two derivatives. The reduced
amplitude turns out to be:

Acl.3 ∼
[1

2
(
pµ23εµap

a
L;23 + paR;23εaµp

µ
23

)
(u2 · u3 + v2 · v3)sR(ū2 · ū3 + v̄2 · v̄3)sL

+ i

2sL(εaµp1ν − εaνp1µ) pR;23 ū
[µ
3 ū

ν]
2 (u2 · u3 + v2 · v3)sR (ū3 · ū2 + v̄2 · v̄3)sL−1

+ i

2sR(εµap1ν − ενap1µ) pL;23 u
[µ
3 u

ν]
2 (u2 · u3 + v2 · v3)sR−1 (ū3 · ū2 + v̄2 · v̄3)sL . . .

]
(C.18)

By introducing the U(1)-fields:

ενa = Aµa +Bµa ; εaµ = Aµa −Bµa (C.19)

with their field strength

FAµν;a = i(pµAν;a − pν Aµ;a) ; FBµν;a = i(pµBν;a − pν Bµ;a) (C.20)

the amplitudes is rewritten in the form:

Acl.3 ∼
[
(QaAa · p1 +QaBa · p1) (u2 · u3 + v2 · v3)sR(ū2 · ū3 + v̄2 · v̄3)sL

+ 1
2F

A
µν;a

(
paL;2 2i sRu[µ

3 u
ν]
2 (ū3 · ū2 + v̄2 · v̄3) + paR;2 2i sLū[µ

3 ū
ν]
2 (u3 · u2 + v2 · v3)

)
× (u2 · u3 + v2 · v3)sR−1 (ū3 · ū2 + v̄2 · v̄3)sL−1

+ 1
2F

B
µν;a

(
paL;2 2i sRu[µ

3 u
ν]
2 (ū3 · ū2 + v̄2 · v̄3)− paR;2 2i sLū[µ

3 ū
ν]
2 (u3 · u2 + v2 · v3)

)
× (u2 · u3 + v2 · v3)sR−1 (ū3 · ū2 + v̄2 · v̄3)sL−1 + . . .

]
(C.21)

being:

Q = pL;2 + pR;2 = −pL;3 − pR;3 ; Q = pL;2 − pR;2 = −pL;3 + pR;3 (C.22)

the charges of the two gauge fields.
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The binomial expansion allows to separate in the amplitude fields with different spin
with respect to the reduced d−D-Lorentz group,14 it gives:

(u2 · u3 + v2 · v3)sR(ū2 · ū3 + v̄2 · v̄3)sL = (v2 · v3)sR (v̄2 · v̄3)sL

+
[ sL∑
k=0

sR∑
l=1

+
sL∑
k=1

sR∑
l=0

]( sL
k

)( sR
l

)
(ū2 · ū3)k(u2 · u3)l(v̄2 · v̄3)sL−k(v2 · v3)sR−l (C.23)

We now define.
φ0

2 φ
0
3 = 1

Γ(sR + 1)Γ(sL + 1)(v2 · v3)sR (v̄2 · v̄3)sL (C.24)

and

φl+k2 · φl+k3 = (ū2 · ū3)k(u2 · u3)l

k! l!
(v̄2 · v̄3)sl−k(v2 · v3)sR−l

(sL − k)! (sR − l)!
(C.25)

Whit this definition of scalar product we get canonically normalized kinetic terms, being:

(u2 · u3 + v2 · v3)sR(ū2 · ū3 + v̄2 · v̄3)sL

= Γ(sR + 1)Γ(sL + 1)
[
φ0

2 φ
0
3 +

[ sL∑
k=0

sR∑
l=1

+
sL∑
k=1

sR∑
l=0

]
φk+l

2 · φk+l
3

]
(C.26)

In the same way:

2i sRu[µ
3 u

ν]
2 (u2 ·u3 +v2 ·v3)sR−1(ū3 · ū2 + v̄2 · v̄3)sL = 2i

sR−1∑
l=0

sL∑
k=0

sR (sR−1)!
(sR−1− l)! l!

sL!
(sL−k)!k!

×u[µ
3 u

ν]
2 (ū2 · ū3)k(u2 ·u3)l(v̄2 · v̄3)sL−k(v2 ·v3)sR−1−l =

sR∑
l=1

sL∑
k=0

( sL
k

)( sR
l

)
× 2 i l u[µ

3 u
ν]
2 (u2 ·u3)l−1(ū2 · ū3)k(v̄2 · v̄3)sL−k(v2 ·v3)sR−l

= Γ(sR+1)Γ(sL+1)
sR∑
l=1

sL∑
k=0

φl+k3 ·SµνR ·φ
l+k
2 (C.27)

Similar relation hold for SµνL . The amplitude can be written as:

Acl.3 ∼
sR∑
l=0

sL∑
k=0

[
(QaAa · p1 +QaBa · p1)φl+k2 · φl+k3

+ 1
2F

A
µν;a

(
paL;2φ

l+k
3 SµνR · φ

l+k
2 + paR;2φ

l+k
3 SµνL · φ

l+k
2

)
+ 1

2F
B
µν;a

(
paL;2φ

l+k
3 SµνR · φ

l+k
2 − paR;2φ

l+k
3 SµνL · φ

l+k
2

)
. . .

]
(C.28)

where we have used the identity:

φ0+k
3 SµνR · φ

0+k
2 = φl+0

3 SµνL · φ
l+0
2 = 0 (C.29)

14d = 10 or 26 in superstring and bosonic string, respectively. D can be taken arbitrary.
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Winding and KK-charges are related to the compact momenta by eq. (C.22). It is conve-
nient to rewrite the amplitude only in terms of the charges which are the physical quantities
of the theory

A3 ∼
sR∑
l=0

sL∑
k=0

{
(QaAa · p1 +QaBa · p1)φl+k2 · φl+k3

+ 1
4F

A
µν;aφ

l+k
3 ·

[
Qa (SµνR + SµνL ) +Qa (SµνR − S

µν
L )

]
· φl+k2

+ 1
4F

B
µν;aφ

l+k
3 ·

[
Qa (SµνR − S

µν
L ) +Qa (SµνR + SµνL )

]
· φl+k2 . . .

}
(C.30)

D Young Tableaux and polynomials

In this section, we shall give some details about the mixed-symmetry representations con-
sidered in this work. For simplicity, we shall work with projectors and in particular with
products of Kronecker-δ’s which we shall label conveniently as

δ
b1(s1)...bn(sn)
a1(s1)...an(sn) . (D.1)

Indices are appropriately projected onto a given mixed-symmetry representation. To each
of the above projector one can associate a polynomial built out of auxiliary variables ui
and wi which play the role of dummy variables associated to each set of totally symmetric
indices. For instance the totally symmetric projector, giving the Young diagram showed in
figure 1, reads

T`(u|w) = N`(u · w)` , (D.2)

where N` is a normalisation factor which can be fixed by requiring that the above projector
squares to itself under contraction of indices, namely

N 2
`

`! (∂w1 · ∂w2)`(u1 · w1)`(u2 · w2)` = N`(u1 · u2)` , (D.3)

implying

N` = 1
`! . (D.4)

It is convenient to normalise the contraction of indices for each set of totally symmetric
indices as: ∏

i

1
`i!

(∂wi · ∂w̄i)`i , (D.5)

and define the inner product

f(wi) ◦w g(wi) =
∑
`i

∏
i

1
`i!

(∂wi · ∂wi)`if(wi)g(w̄i)
∣∣∣
wi=w̄i=0

. (D.6)

– 40 –



J
H
E
P
0
6
(
2
0
2
1
)
1
6
8

`L + `R

Figure 1. Young diagram for totally symmetric fields.

Similar projectors can be constructed also for mixed-symmetry fields. For instance the
hook projector, associated with the Young diagram showed in figure 2, reads

T`,1(u1, u2|w1, w2) = N`,1(u1 · w1)`−1 (u1 · w1 u2 · w2 − u1 · w2w2 · w1) , (D.7)

where, the constant N`,1 can be fixed to be:

N`,1 = 1
`+ 1

1
(`− 1)! , (D.8)

by requiring that

T`,1(u1, u2|w1, w2) ◦w T`,1(w1, w2|v1, v2) = T`,1(u1, u2|v1, v2) . (D.9)

The irreducibility condition is manifestly satisfied and takes the form

u1 · ∂u2T`,1(u1, u2|w1, w2) = 0 = w1 · ∂w2T`,1(u1, u2|w1, w2) . (D.10)

Sometime, with some abuse of notation, it can be convenient to represent the above pro-
jectors using a Dirac notation like:

T`(u1|w1) = |u1〉` ` 〈w1| , (D.11)
T`,1(u1, u2|w1, w2) = |u1, u2〉`,1 `,1 〈w1, w2| . (D.12)

In this work we need to project the tensor product of two totally symmetric representation
into irreducible components to extract the corresponding gyromagnetic factors. This is
equivalent to decompose into irreducible components the polynomial (u1 · w1)`1(u2 · w2)`2
and in particular to find the contribution of a given representation to such inner-product.
Similar decomposition problems can be worked out more generally but they can be ad-
dressed similarly and for this reason will not be considered here.

To proceed, we need to define intertwiner operators projecting the tensor product of
two totally symmetric representations into the possible irreducible representation. Starting
from the tensor product of two totally symmetric states, the simplest intertwiner projects
onto the totally symmetric component. This gives

I`L+`R
`L,`R

(u, ū|w) = N `L+`R
`R,`L

(u · w)`L(ū · w)`R = (|u〉`L ⊗ |ū〉`R) `L+`R〈w| , (D.13)

whose normalization can be obtained by requiring

I`L+`R
`L,`R

(u1, u2|w) ◦u I`L+`R
`L,`R

(u1, u2|v) = T`L+`R(v|w) , (D.14)
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which gives

N `L+`R
`R,`L

=
√

1
`1!`2!(`1 + `2)! . (D.15)

With the above intertwiner operators, it is straightforward to evaluate the string inner
product

〈Φ|xSL + ySR |Φ〉α , (D.16)

expressing it in terms of the gyromagnetic factors introduced in section 2. To do this, it is
sufficient to evaluate the action of SL,R as

〈Φ|xS(u)
L + yS

(ū)
R |Φ〉α = I`L+`R

`L,`R
(w|u, ū) ◦u

[
(xS(u)

L + yS
(ū)
R )I`L+`R

`L,`R
(u, ū|v)

]
= T`1+`2(w|u) ◦u [αS(u)T`1+`2(u|v)]
= 〈Φ|αS |Φ〉u , (D.17)

where the coefficient α can be easily extracted to be

α = x`1 + y`2
`1 + `2

, (D.18)

which proves eq. (5.7).
To obtain the projection of the closed string states into mixed-symmetry components

it is again sufficient to derive the corresponding intertwiner operators. In the case of the
hook field, one has simply

I`L+`R−1,1
`L,`R

(u, ū|w1, w2) = N̄ `L+`R−1,1
`L,`R

(u · w1)`1−1(ū · w1)`2−1 (u · w1ū · w2 − u · w2ū · w1) .
(D.19)

The normalisation can again be obtained by requiring

I`L+`R−1,1
`L,`R

(u, ū|w1, w2) ◦u I`L+`R−1,1
`L,`R

(u, ū|v1, v2) = T`L+`R−1,1(w1, w2|v1, v2) , (D.20)

which gives

N `L+`R−1,1
`L,`R

= 1
`L + `R

√
1

(`L − 1)!(`R − 1)!(`L + `R − 2)! . (D.21)

It is now straightforward to evaluate the string-inner product on the intertwiner oper-
ator and rewrite it in terms of the canonical spin operators acting on the mixed symmetry
representation. The result reads

I(`L+`R−1,1)
`L,`R

(u, ū|w1, w2) ◦u
[
(xS(u)

L + yS
(ū)
R )I(`L+`R−1,1)

`L,`R
(u, ū|v1, v2)

]
= T`L+`R−1,1(u1, u2|w1, w2) ◦u

[
(α1S

(u1)
1 + α2S

(u2)
2 )T`L+`R−1,1(u1, u2|v1, v2)

]
, (D.22)

– 42 –



J
H
E
P
0
6
(
2
0
2
1
)
1
6
8

`1 + `2 − k

k

Figure 2. Young diagram with two rows.

where in the second line we used u1 and u2 instead of u and ū to indicate the mixed
symmetry dummy variables. The above calculation then gives

α1 = (`1 − 1)x+ (`2 − 1)y
`1 + `2 − 2 , (D.23)

α2 = (`1 − 1)y + (`2 − 1)x
`1 + `2 − 2 . (D.24)

These results can be generalised with some effort to the most general case. For example,
focusing on the first Regge trajectory of the closed string, we can consider the irreducible
projection into an arbitrary two row Yang tableaux of the type {`1 + `2 − k, k}. In this
generic case we have

T`,k = 1
(`− k)!k!(`− k + 2)k

(u1 · w1)`−k (u1 · w1 u2 · w2 − u1 · w2 u2 · w1)k , (D.25)

together with the intertwiner

I`1+`2−k,k
`L,`R

(u, ū|w1, w2) = 1
k!(`1 + `2 + 2− 2k)k

√
1

(`1 − k)!(`2 − k)!(`1 + `2 − 2k)!

× (u · w1)`1−k(ū · w1)`2−k (u · w1 ū · w2 − u · w2 ū · w1)k . (D.26)

With the above tensor, it is tedious but straightforward to evaluate the inner product
between closed string states as

I`1+`2−k,k
`L,`R

(u, ū|w1, w2) ◦u
[
(xS(u)

L + yS
(ū)
R )I`1+`2−k,k

`L,`R
(u, ū|v1, v2)

]
= T`1+`2−k,k(w1, w2|u1, u2) ◦u

[
(α1S

(u1)
1 + α2S

(u2)
2 )T`1+`2−k,k(v1, v2|u1, u2)

]
, (D.27)

so that one can find the value of the coefficients α1,2

α1 = x(`1 − k) + y(`2 − k)
`1 + `2 − 2k (D.28)

α2 = y(`1 − k) + x(`2 − k)
`1 + `2 − 2k , (D.29)

which is valid for any k, `1 and `2 for which a corresponding representation exists. This is
the result given in equation (5.11).
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The case of square tableaux needs to be addressed separately or through a limiting
procedure. With the above results in hand, we can obtain the gyromagnetic ratios for
arbitrary two row representations in the first Regge trajectory of the closed bosonic string.
Note that for k = 0, 1 the above results neatly reduce to the special cases discussed above.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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