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on both an S? and a T? topology using BRST cohomology considerations. Matrix integrals
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1 Introduction

Being 0+ 0 systems, matrix integrals are of a more finite nature than large N quantum field
theories traditionally explored in holography. In this work we explore, discuss and review
in detail a particular class of matrix integrals, known as multicritical matrix integrals
(MMI) [1, 2]. MMI are built out of a single Hermitian N x N matrix organised in an
even polynomial of order 2m with (m — 1) free parameters (couplings). Despite being
constructed from a single matrix, MMI admit (m — 1) distinct critical exponents in the
leading order planar expansion, which are encoded in the non-analytic behaviour of the
matrix integral as a function of its couplings. In the large N limit and upon tuning the
couplings to a set of special values, MMI are conjectured to be dual to the series (2m—1,2)
of minimal models [25, 26] — which we denote by Ma,,_1 2 — on a fluctuating background.
This can be described by coupling Ma,,—12 to two-dimensional quantum gravity, where
the theory of quantum gravity at hand upon fixing the Weyl gauge is given by Liouville
theory [44]. In part, our work extends to general m the analysis and approach of [2] which
dealt specifically with the case m = 3.

For m > 2, Map,—12 is a non-unitary two-dimensional CFT consisting of (m — 1) dis-
tinct Virasoro primaries, each accompanied with an infinite tower of Virasoro descendants.
The conformal dimensions of the Virasoro primaries are increasingly negative, with the
highest being the vanishing conformal dimension of the identity operator. While the norm
of the Virasoro primaries of Ma,,_1 2 is positive, the norm of the Virasoro descendants is
negative, leading to the non-unitarity of the models. We note that the non-unitary minimal
models May,,—12 are related to integrable lattice models. The Lee-Yang singularity [32]
characterising the zeroes of the partition function of the Ising model in an imaginary mag-
netic field in the thermodynamic limit has been identified with M52 [28]. On the other
side M7 has been conjectured [33] to correspond to the tricritical phase (the crossing
point of the three lowest energy levels) of a generalisation of the Ising model with three
state classical variables, known as the Blume-Capel model [34, 35].

As explored extensively throughout this work, an important piece of evidence in es-
tablishing the conjectured duality between MMI and Liouville theory coupled to May,—12
is the matching of critical exponents between MMI and the continuum theory. We uncover
the relation between the continuum theory on an S? topology and the explicit form of the
MMI through its (finite) coupling dependence in the leading order planar expansion, as
well as its perturbative multi-vertex expansion.

A more expansive and in some ways orthogonal direction has been pursued in [45-49].
The authors compare correlation functions of integrated operators (correlation numbers)
to analogous quantities in the matrix integral. In our analysis of the partition function of
the continuum theory we are turning on a single operator at finite coupling of the minimal
model, the calculation of correlation numbers involves turning on multiple operators with
an infinitesimal coupling.

MMI have also made an appearance, see e.g. [52, 53], in the context of JT gravity [50,
51]. In that context the continuum theory is studied on manifolds with boundary as
compared to our analysis on S? and more generally on compact Riemann surfaces.



One of the key motivations of our work is the existence of a semiclassical limit exhibited
by Liouville theory coupled to Mag,,—1 2. This is the large m limit, and was first observed
in [40]. Specifically, upon fixing the area of the physical metric, restricting to an S
topology, and turning on only the identity operator of Mas,,_12 one finds a round two-
sphere geometry as the saddle point solution. This is the geometry of Euclidean two-
dimensional de Sitter space. Two-dimensional de Sitter space supports finiteness [68-70],
and its conjectured entropy is finite [71, 72].

Outline. In section 3 and 4 we study the diagrammatic expansion of MMI, providing new
combinatorial expressions for Feynman diagrams whose vertices emanate an arbitrary even
number of edges. As an example there are 2431808210570487155130338252485706694713
0848479697356952042944229424332116879409838986729881600000000000000000 diagrams
consisting of fifteen distinct vertices emanating an even number between four and thirty-
two edges. We provide a concrete framework identifying each of the (m —1) distinct planar
critical exponents of the MMI in section 5. Geometrically these critical exponents are living
on distinct fine-tuned “hypersurfaces” in coupling space. We match the critical exponents
of the MMI to those of the continuum theory of Liouville theory coupled to Ma;,—12 in
section 6. This matching comes with an important subtlety. Whereas for unitary minimal
models the identification of critical exponents in the matrix integral with critical exponents
of the emergent large N continuum theory uses the KPZ relation [41-43], the minimal
models at hand are non-unitary and require a generalisation of the KPZ formula [2, 7].
In section 7 we consider the operator content of Ma,,_12 on a fluctuating background.
On a fluctuating background the number of operators of the Moy, _12 is subject to the
Virasoro constraints. Gauge fixing to the Weyl gauge further introduces the bc-ghost
system. Initiated by work of Lian-Zuckerman (LZ) [59] and subsequent work [60—62] it was
observed that the resulting BRST cohomology admits an infinite number of operators with
non-vanishing ghost number and matter and Liouville descendants. The infinite set of LZ
operators is still much smaller than the infinite tower of Virasoro descendants arising for
each primary operator of My,;,—12 on a fixed sphere. As a consequence of the Riemann-
Roch theorem we do however infer that LZ operators do not lead to additional critical
exponents on an S? topology. This may render the non-unitarity of May,,—12 on S? less
severe. On the other hand the LZ operators contribute to the torus partition function [56—
58], which we match to the leading non-planar result of the MMI. We observe that the
partition function on S? dominates (in absolute value) over the partition function on 72
only for a sufficiently large cosmological constant A, whereas for small A > 0, the partition
function on 72 dominates. We do not yet have a clear understanding of this phenomenon
but it would be interesting to explore its consequences for the Hartle-Hawking picture [54,
55]. Some more open questions we present in section 8.

2 Multicritical matrix integrals

In [2, 6, 7] it has been conjectured that a certain class of matrix integrals — known as mul-
ticritical matrix integrals [1] — in the large N limit and upon tuning certain couplings are



dual to two-dimensional quantum gravity coupled to Ma,,_1 2. We explore this conjecture
by drawing explicit connections between the (m — 1) primaries of May,,_1 2 and properties
of the multicritical matrix integral.

We consider the matrix integral

ME@) = [ aM]e N0 (2.1)

known as the m'" multicritical matrix integral, in the planar large N limit. M is a Hermi-
tian N x N matrix and the measure factor is given by

[dM]EHdMJJHdReM[JHdImM[J. (2.2)
J 1<J 1<J

For V,,(M, ) we choose the even, order 2m polynomial

m
1
‘%MLM:EZZWMFK a;=1, (2.3)
n=1
with a = (a2, ..., ) € R™™L We will denote the set of numbers a as the couplings of

the polynomial (2.3). We highlight that the number of free parameters a is equal to the
number of primaries of Ma;,—1 2.

Upon diagonalization of M, we can analyse the planar contribution of (2.1) in the large
N limit using a saddle point approximation. This reduces the exponent of (2.1) to

m 1 @ m @ m
S vl =5 [ ARV <2 [Tl e los(),  (2.)
0

2 —a ext

where we assumed that the eigenvalues A € spec(M) are distributed in the interval [—a, a]
(m)

oxt (A, @) is the eigenvalue density obtained as the solution of

and p,

a (m)
)

Vi a)=2
Na)=2] dp——"

(2.5)

The prime indicates a derivative with respect to A\. For more details we refer to [16, 19, 20].
Another important quantity is the resolvent [4]

1
z—Ar’

N
Ra(2) = %Tr (+Ty — M)~! = ]t; 2 e /M) (2.6)

Sending N — oo the sum can be replaced by an integral, where each eigenvalue is weighted
by its average density

lim Ry(z) =R(z) = ’ d,uﬂ. (2.7)

N—oo —a Z— W
For a higher order even polynomial it is convenient to express the resolvent as [8-11]
_ (rdx 2V (z) V22 —a?

RG) = | (2.8)




From the definition of the resolvent (2.7) one obtains its large z scaling R(z) ~ 1/z reduc-
ing (2.8) to the condition®
“dz 2V'(z)

Y
For the polynomial V,,(M, ) (2.3), (2.10) implies

1= (2.10)

TL

0=Npn(a)=1 Z:: . 1/2) u=a’. (2.11)

B(n,1/2) denotes the beta function. We will call the condition N,,(e) = 0 the normal-
isation condition for our matrix integral. For a particular choice of o we can turn the
normalisation condition into

(u—4m)™ =0, (2.12)

in other words u = 4m is an m'™ order zero. The values of a leading to this behaviour can
be easily obtained by recursively solving the discriminant of N,,(a) =0 [1, 14]:

alm = (_1)n+1 (Z) «427:)”3(”’ 1/2), 2<n<m. (2.13)

Finally we define the expectation value of the loop operator Wy [8-11], which is related to
the resolvent (2.7) through a Laplace transform

(W) = aad)\pext()\)e’\e, R(z) = /0 Ay et (2.14)

We use (2.9) to obtain the large z expansion of the resolvent for the multicritical matrix
integrals (2.3):

apun
Rm(Z’O‘)ZM(k) - IZ 2n + k) B(n,1/2) (2.15)

k>0

Using (2.14), we relate the large z expansion of the latter to the small ¢ expansion of the
loop operator. For small £ we find

. £2n m\ aku"+k
(Wi (a)) = < ) =Y o, (216
‘ > nzzo (2n)!4n \ n kz::l 2(n+k)B(k,1/2) %‘6 “ o
where we defined k
m n+
(m) _ agpu” 2.1
o’ (e) = ; 2(n+k)B(k,1/2) 210

'To evaluate (2.10) the following integral identity is useful:

Y dﬁ xQn /Z2 _ y2 _ 1 y2 dA Anfl (2 9)
o TR—x? [fy2 g2 " 2B(n,1/2) A '




Figure 1. Extremal eigenvalue density for & = . and m = 2,3 and m = 12 (purple dotted, teal,
orange dashed). At the edges the eigenvalue distribution scales as 3/2,5/2 and 23/2 respectively.

As a final remark we note that evaluating (2.7) close to the real axis z = x 4 ie we obtain
the important relations

1

o (R(x —i€e) — R(x +i€)), resy: V'(x) = R(x—ie)+R(x+ie). (2.18)

resq @ p(x) =

Combining res, with the definition of the resolvent (2.7) and the integral identity (2.9) we
obtain the extremal eigenvalue density for V,,,(\, a)

Pl (2, 0) =

1 3
220 (,1—n;'1 — u2> Vu— 22
z

2 2’

21\'—‘

(n, 1/2)

n

(n, 1/2

(n _ 1) (1 - :Q)k Vi—2, (219

1
T -

where we used that the hypergeometric oFj(a,b;c;z) can be written as a polynomial as
soon as either a or b become non-positive integers. At the multicritical point a., =
(aé?, . ,afﬁ? 2) (2.13) and close to the boundary of the eigenvalue interval where u =

(m

ext) (2, ap) o (4m— 22)2m=1)/2 generalising the well-known

4m (2.12) the density scales as p
exponent 3/2 [4] in the quartic m = 2 model (see figure 1).

Using (2.16) we obtain the planar on-shell action (2.4) for arbitrary m:

U anpu"” 1
— =1 log2. 2.2
S[Pext g +Z WIBn.1/2) 2 ogu + log (2.20)

At the critical point we find

m 1 1
S [p™ (N, )] = = Hom — 5 log4m + log 2, (2.21)

ext 9
where H,, denotes the n'® harmonic number. The subscript ¢ indicates that we zoom into
criticality (2.13). At large m (2.21) scales as

Boy,

. m 1 1
n}gnoo Sc[p((ext)(Av ac)] = 5(7 + log2) + Sm Z W ) (2.22)
k=1

where 7 denotes the Euler-Mascheroni constant and By, the k™ Bernoulli number.



3 Planar diagrams with a single vertex

In this section we discuss the diagrammatic expansion of the matrix integral (2.1). We
expand the normalisation condition (2.11) and the planar on-shell action (2.20) for small
couplings a. For the m = 2 model with a single coupling this was first explored by [4]. To
account for the two indices of the matrix M one uses the 't Hooft double line notation [3].
We will denote the resulting diagrams as ribbon diagrams. Whereas for the m = 2 model
one only encounters ribbon diagrams whose vertices emanate four edges, for the multi-
critical matrix integrals (2.3) we have to deal with vertices emanating an arbitrary even
number of edges [16].

3.1 An m = 2 refresher

Before delving into the multi-coupling perturbation theory we quickly review the m = 2
case. For more details we refer to [20]. For m = 2 we have the polynomial (2.3)

1 1
VQ(M, CVQ) = §M2 + ZOCQM4 . (31)

Normalisation of the eigenvalue density implies the vanishing of AMa(asg) in (2.11) with

solutions uf ) given by

WP 22 T Tk, (3.2)

30&2 30&2
(2 ;

Of the two solutions, only uy” is well-behaved near ap = 0. The other solution u( ) exhibits

a pole at ag = 0, and is ordinarily discarded. Nonetheless, it is worth noting that knowledge
(2 (2)

that (3.2) exhibits a non-analytic behaviour close to g = —1/12 which we recognise as

(2)

the m = 2 multicritical point (2.13). For ag < a5 . the normalisation condition has no real

of the residue of the pole at as is sufficient to reconstruct wu} ) from u.”’. We also note

solution.
We now discuss the m = 2 model from a perturbative perspective in small ay. For

g > ag g we obtain the small ap expansion of uf)

3@2 2k o 1 Q2
u+ _42 Py <k> 4 F1< ,1:2; a@)). (3.3)

2.c

Inspecting the above expression, one recognises the Catalan numbers

@ _ 1 2k 4
G k+1<k> (34

(2)

Further to this, we see that the critical value ay . = —1/12 controls the radius of conver-

gence of the power series. At large k, the summand in (3.3) goes as ~ k_3/2(ag/a§2)k.
This behaviour encodes the fact that there is a square root non-analyticity in the solution

(2)

uy’ and as we shall soon see, it is intimately related to the growth of planar diagrams.
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Figure 2. Propagator and quartic vertex.
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Defining F5  (a2) = —log My’ (a2)/ M’ (0) we obtain for small oy [4]

0 0 2k—1)! 1 3 a
f2( )(a2) = *’;(*1)k(3a2)km = 500 3fy [ 1,1, 5;2,4; a§) . (3.5)

]-"2(0) (a2) is the generating function of the connected planar bubble diagrams generated by

the matrix integral with a quartic interaction. From a small g expansion of

_ﬂrzoo(—l)k asN\* k
Mﬁ)(a2):AN2[dM]e 3 TrM kz:% - ( Z ) (Tenst), (3.6)

we can read off the propagator and quartic vertex (figure 2)
Explicitly the propagator is given by

_N 1
2[dM]e 2TrM2M[JMKL:f(5[L(5KJ. (3.7)

(M Mjp) = M3 (0) / N

RN
]-"2(0) (4ag) counts planar diagrams with four edges emanating from each vertex, with the
shift cy — 4 accounting for the 1/4 weighting each vertex. We have

FO(4az) = 205 — 1802 + 28803 + ... . (3.8)

The summand in (3.5) scales as ~ k~7/2(ao/ agzg)k at large k. This behaviour encodes the
growth of discrete Riemann surfaces with a fixed number of vertices k [5].

3.2 Binomial matrix integrals
We discuss the polynomials [16-18]

- 1

1
VM, ) = =M?* + —a, M*". (3.9)

2 2n

For n = 2 the above polynomial is equal to the m = 2 multicritical polynomial (3.1)
discussed in the last section. By setting all of the couplings but «,, to zero in (2.19) we
obtain the normalisation condition

~ . 1 Qan n

For o, = vy ¢, where

- . 2n -1
e =~ (= V"B 1), 2<n <, (3.11)




(3.10) has a second order zero at u = 4n/(n — 1), whereas for any other non-vanishing
value of the coupling @&, (3.10) has n distinct solutions. We further note that

ol < @S2, Jane > [al™], m>3. (3.12)

For small «, only one of the solutions of (3.10) can be uniformly approximated by a
perturbative expansion which is a power series in the coupling a,.

To obtain the leading expression in the perturbative expansion (3.10) we set a,, = 0,
however this prevents us from obtaining the other n — 1 solutions. Solutions which cannot
be obtained in a perturbative expansion when setting the perturbation parameter to zero
are discussed within the field of singular perturbation theory.

Singular perturbation theory. To recover the perturbative expansion of the n — 1
solutions of (3.10) singular for a,, — 0 we start by rescaling u — a;,"u, v € Ry. For the
case at hand (3.10) we obtain the rescaled equation
1 1
0=qa, —— S 3.13
T 4T nBn, 1/2) " u (3:.13)
For small o, and 0 < v < 1/(n—1) or v > 1/(n — 1) (3.13) we only obtain the trivial
solution v = 0. We are left with two special points v € {0,1/(n — 1)}, where we find a
non-trivial solution for u. The perturbative solution for v = 0 is the regular solution uﬁn).z
A superscript indicates that u solves (3.10). For v =1/(n — 1) we obtain

1 1
_ L n 14
0= " B (3.14)

solved by the n — 1 roots of unity

) jriae) (nB(n, 1/2)) =

U =€ n-
1,....n—1 2an

te€{0,...,n—2}. (3.15)

We then obtain the n distinct perturbative expressions

WV =4 - 4( _11>an+0(ai),

_1
W =T (nB(nl/Q)> T o(ae), refo..n-2),

200, n—1
(3.16)

approximating all n solutions of (3.10).
(n)

To discuss the perturbative analysis of (3.10) we take the regular solution wu, ’. Its
small «,, expansion reads

00 1 k

(3.17)

2Here and hereafter we introduce the subscript * to indicate the solution regular at the origin in coupling
space.



where we defined &y, . in (3.11) and

(n) _ 1 nk
= Nl
Ci (n—l)k:—l—l(k:)’ (3.18)

are known as Pfaff-Fuss-Catalan numbers generalising the Catalan numbers (3.4) for n = 2.
For large k the summand in (3.17) scales as

~ k3/2¢~ k=D logn—1) 5k (3.19)

Note that the exponent 3/2 is universal for all binomial matrix integrals. Introducing

EO (av,) analogously to ]-"2(0) (a2) and using (3.17) we obtain the perturbative o, expansion

= k! (n—1)k+2)!
112t n=2 2n=1
— ) n n n n
=—C% a1 By ot et G (3.20)
e R n—l  _2n ,

Since &, = Ozé?g and using C§2) = 2, (3.20) reduces to (3.5) for n = 2. For large k the

summand of this expression scales universally as

N k—7/2e—k(n—1)10g(n—1)5¢;]z. (3.21)

4 Planar diagrams with multiple vertices

In this section we consider the diagrammatic multi-vertex expansion of the multicritical
matrix integrals (2.3). We discuss the m = 3 and m = 4 (2.3) cases in some detail
since the normalisation condition (2.11) for these matrix integrals is a cubic and a quartic
polynomial whose roots admit explicit expressions. For m > 5 the normalisation condition
is a quintic or higher polynomial, and in general not solvable by radicals. The general m
case can be dealt with from a perturbative perspective by employing the Lagrange inversion
theorem [16].

4.1 m = 3 analysis

The normalisation condition N3(ae, a3) = 0 is the cubic equation (2.11)

1 3 5
1-— Yl EQQUQ — 3—2a3u3 =0, (4.1)
whose general solutions can be expressed as
(@ _ 32 (—3 Ao ¢ tTH3 r1/3) 0=1,2,3 4.2
Uy 1503 16a2+ 0<g +C€ ) y Ly ( . )

~10 -



Here, ¢, = e2™(=1)/3 ig a third root of unity and we have defined

3
Do = (303 — 10a3), (4.3)
27
T (a3 - pasas — 5003) , (4.4)
1

r=. <A1 +y a2 - 4Ag> . (4.5)

We further define
D3 = A? —4A3 = 675 ( 9(12az + 1)a3 4 20(27as + 2)asz + 2700a§) . (4.6)

4194304

Expanding D3 at small ag, we identify e = —1/12 as a special value, corresponding to
aéi):. Expanding D3 at small as reveals ag = —2/135 as a special value, corresponding to

a3 (3.11). Near both (ag,a3) = (—1/12,0) and (a2, a3) = (0,—2/135), where D3 = 0,
A; remains non-vanishing such that the non-analytic behaviour of the solutions uf’) near
these points is that of a square root. On the other hand, expanding D3 near ag = —1/9
reveals ag = 1/270 as a special value, the multicritical point (2.13). At ag = —1/9 we have
that A; = (135a3 — 1)(270ci3 — 1)/55296, which vanishes for ozg?g. This implies that the
non-analytic behaviour of ugg) near the multicritical point is that of a cubic root.

Single-variable perturbation theory. We start by discussing the normalisation con-

dition (4.1) along the path yig) in coupling space [14]

3 2 st
Yx oot [O, 1] — R y t— ( (3) 2) s (47)
Qs t

leading to the rescaled normalisation condition

1 (3) D ()23
=1-- . 4.
0 il 16 )t 320437075 u (4.8)

Of all paths, the path ’y£3) is special in that upon rescaling u — u/t, t~! takes the role of
an overall pre-factor for V3(M, a) (2.3). The solution of (4.8) regular for ¢ € [0, 1] reads

u@z%(l—(l 1/3) 122 (klf)l)tk‘ (4.9)

At large k the summand scales as ~ k~4/3, different from the ~ k=3/2 for m = 2 (3.3).
Note that (4.9) converges for |t| < 1.

Two-variable perturbation theory. The solution of AN3(a2,a3) = 0 regular near the
origin in coupling space is

-1 k1+ko ko 2
)4 2: ) Hgﬂh+$<%r+k1

10a3)*2 (30) ¥ . 4.10
+m+%w ko! 2@+m>(a”(“” (410)

k1,k2=0

- 11 -



Performing the substitution k = k1 + 2ke, n = k1 4+ ko we find the single sum expression

2 1 1 2
_4f2( 0043) T )3F2 (1,k¢,1+k;2k 1*6; 9Q2>- (4.11)

3 2+k 2’ 2" 4003

Along the path Vﬁg) we recover (4.9), as shown in appendix E. Equation (4.11) provides

a perturbative expansion regular for small couplings as and a3. Depending on the range
of the couplings (4.11) arises from a different solution (4.2) of the normalisation condition
Ns(ag, a3) = 0. Switching for simplicity to polar coordinates (ag,a3) = (1 cos @, rsin ¢),
we observe that the function

B3(T7 qb) = ul(rv ¢)@(ﬂ- - ¢) + U3(T‘, ¢)@(¢ - 7T) 3 (412)
is well behaved and real near the origin.
On-shell action for m = 3. We define

Mg\?;) (0427043)

.7:(0)(042,043) = —log
’ MP(0,0)

(4.13)

Using (2.20) for m = 3 and the regular solution (4.10) we obtain the small ag, a3 expansion

0) s i, (10a3)k2 (3kg — 1)!
= — —1 2
73 (02, 05) kZH( U (2ks + 2)!

ko! kq! (ng + k1 + 2)'

=0k1= 1
It is convenient to perform again the substitution k& = k1 + 2ks, n = k1 + ko leading to

(0) 20&3) 1 . _ l_ﬁ k- 9a2
J—" (0127053 \/>2<30(2 ]{,‘F(3—|—k‘) 3F2 1, k?,k,2 2,1 2 40 . (415)

Evaluating (4.15) at the multicritical point ag’g =-1/9, 04:()32 = 1/270 (2.13) we recover the

value of the on-shell action at criticality (2.21). Note that in the definition of .7-"350) (2, i)
in (4.13) we subtract the Gaussian term which evaluates to 3/4. In appendix E we show
that the summand scales as ~ k~19/3, which differs from the ~ k~7/2 encountered in (3.5).

]-"?EO) (4ag, 6cr3) counts planar diagrams with four or six edges emanating from each vertex
FS 4y, 6a3) = 20 + bag — 1802 — 3002 — 14dasas + . .. . (4.16)

To see some of these coefficients explicitly we expand the exponential in (2.1)

0 k1+ko k1 ko
(3) o _ N2 (—1) 1 asN 043N 4 k1 6 ko
MY (g, a3) = /N2 [dM]e 2 > . ; (e ) (TrM )
R kika=0 12

(4.17)
leading to the graphical representation of the propagator, the quartic and the sextic vertex.
In figure 3 we show the propagators and vertices for the cubic matrix integral, whereas

in figure 4 we show the diagrams contributing to O(agas) in (4.16).

- 12 —
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J— =~ N .%HJLIL(NELO‘QN’ >< ~ tagN.
A N

Figure 3. Propagator, quartic and sextic vertex.

48(12043 24()42(13 24(12()43 48(12(13

Figure 4. Diagrams combining vertices with four and six edges emanating. Each line represents a
thick double line. The number below each diagrams counts the number of diagrams including the
symmetry factor.

4.2 m = 4 analysis
The normalisation condition Ny(a) = 0 is the quartic equation (2.11)

1 3 o 5 4 35
0=1—--u— 2agu? — >asu® — o> 418
41T 76N T 3 MY T g5t (4.18)

(4)

admitting four solutions u, ;, £ = 1,2 whose properties we discuss in appendix B.

Single-variable perturbation theory. Along the path fy£4)
agfg t

A0SR, e ol e (4.19)
ol

the regular solution of (4.18) reads

NONS ? (1 —(1- t)1/4) — 16 i(—l)k <k14/r41>tk’ (4.20)
k=0

converging for |[t| < 1. At large k the summand scales as ~ k—5/4 as compared to ~ k=4/3

for m = 3 (4.9) and ~ k~3/2 for m = 2 (3.3) and the binomial matrix integrals (3.19).

Three-variable perturbation theory. Solving (4.18) and expanding the regular solu-
tion for as, a3 and a4 close to zero we obtain

o0 (_1)k1+k2+k3

(4)
Uy =4 E
pnoamo (L + F1 5 20+ 3k0)

(350:4)%3 (1003)%2 (302 )™

TTF24%s (k) + 5) T178, (ko + 5) <4k3 + 3ko + 2Ky

. (4.21
(ko + k3)! k3! 3k3 + 2k + k3 > ( )

~13 -



Performing the substitution k = k1 + 2ko + 3ks, n = k1 + ko + ks, | = ko + k3

> Z <7a4) (3?233)”I‘(2+k)£8—t1lz)—;g)+k—n)

k=0n=0

x 3Fy [ 1,—n, —k + '1+1(—k:+ ),1 ( k+n); 5o (4.22)
3142 9 n7 n72 2 n, 21a2a4 . .

We conjecture

k )

I'l+k+n)
Z_: T+ HI(+ )T+ k—n)
x 3F) (1,—n,—k+n;;+;(—k+n),1+;(—k+n);g> - j?r(k:l—fll)' (4.23)

According to this conjecture (4.22) reduces to (4.20) along 7£4). Equation (4.22) provides

a perturbative expansion regular for small couplings a. Depending on the range of the
couplings it arises from a different solution (B.1) of the normalisation condition Ny(ax) = 0,
as we elucidate further in appendix B.

On-shell action for m = 4. We define

M%) (062, asg, 064)

Fi(az, a3,04) = —log (4.24)
M(0,0,0)
Using (2.20) for m = 4 and (4.22) we obtain the small oy, a3, iy expansion
> 35ay)ks (4kg —1)!
]:(0) ,as, - _ —1)ks (
1 (a2, 03, 4) kgzzl( Tl (ks £ 2)1
B i i (1)t (35004)%3 (10ai3)*2 (4k3 + 3ko — 1)!
K3=0 kg1 k3! ko! (3k3+2]{72+2)!
i i (1)t (3504)%2 (1003)*2 (3vg)*t (4kz + 3k + 2k1 — 1)!
ks gm0 b —1 k3! ko! k! (3k53+2k’2+k‘1+2)! '
(4.25)
Along 7£4) and using (4.20) we obtain
Jim FiO ()] @ ~ /2 (4.26)

]_-io) (4davg, 63, 8ary) counts planar diagrams with four, six or eight edges emanating from
each vertex

FO (40, 603, 8cus) = 200 + Bag + 14ay — 1802 — 300a2 — 490002
— 1443 — 560204 — 24003y + 20160000 cvgcrg + ... . (4.27)

We obtain a graphical representation of the eight-order vertex (figure 5) following the steps
n (4.17).
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Figure 5. Eight-order vertex.

4.3 m > 5 analysis

For general m > 5 we cannot solve the normalisation condition (2.11) by radicals. Instead
we conjecture generalisations of (4.10) and (4.21) for the normalisation condition and the
expressions (4.14) and (4.25) for the on-shell action relying on numerical results.

Single-variable perturbation theory. We start by parametrising a path connecting
the origin in coupling space to the multicritical point

A 0,1 5 R e : . (4.28)

This leads to the regular solution of N, () =0

W™ = 4;” (1-@=-tm) = 4mz (;ﬁ’i)tk (4.29)

convergent for |t| < 1. For large k the summand scales as ~ I'(1 4+ 1/m)k= 1= m.

Multi-variable perturbation theory. For general small couplings o the perturbative
expansion of the regular solution reads

Sy i (—1)krtthm ﬁ 20-1) Mot ok bk,
’ ki,yeooskm—1=0 (1+k1++(m_l)km_1) (=92 -1 ¢ k1++(m_1)km_1

Hlscgz—il-...—}—kmfl(k +8) Hks-‘r Ak 1(k)2+$) N H];Zfl (km,2+s)
(kz-l—...—f—km,l)! (kg—i—...-l—km,l)! (kmfl)!

(4.30)
The above expression accounts for mixing of the couplings. Note that if we set all but one
of the couplings (e.g. ay) to zero (4.30) reduces to (3.17). We conjecture that this reduces
to (4.29) along the path vim). Similarly to the case m = 3 and m = 4 we believe that
also for m > 5 there exists a smooth function which leads to (4.30) when approached from
different directions in coupling space.

We note that we can also express (4.30) in terms of incomplete exponential Bell poly-
nomials [23]. Using the Lagrange inversion theorem (for an introduction see e.g. [22]) to
solve the normalisation condition perturbatively (2.11) we obtain

4k k—1

01.(0) 7 3 po_ k41
Z o Z Vi-14 (fh---,fkfz), Jr _4k!2(k+1)B(k:+1,1/2)’ (4.31)
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where f, = 0 for k > m; k) = k(k+1)---(k + £ — 1) denotes the rising factorial and

Ynk(x1,...,2y_k+1) are the incomplete exponential Bell polynomials, defined recursively
through
B n! x J1 x2>j2 < Tp_ ki1 >jnk+1
yn,k(xla'"’x”_kﬂ)_Zj1!j2!-~jn—k+1! (1!> (2! (n—k+1)! .
(4.32)

The summation is over all sequences ji, j2,- .. jn_k+1 Of non-negative integers subject to
the conditions

tjet. . Fink =k, j1+2j+3js+...+(n—k+1)jppt1=n. (4.33)

The Bell polynomial encodes information on the partitions of a set. YV, p(x1,...,Tn—k+1)
tells us how many partitions with block size between 1 and (n—k+1) a set with n elements
can have when divided into k blocks. As an example

Vio(w1, 22, 3) = 305 + daq 23, (4.34)

reflects that the set y = {y1, y2, y3,y4} can be divided into blocks of size 2 in two different
ways. We can have 3 mutually, non-overlapping subsets, each consisting of a block of size
two. Additionally we have 4 different ways to break y into a size 1 block and a size 3 block.

On-shell action for general m. We define

(m)

F (@) = —log M](VT)(Q) : (4.35)
My (0)
Using (2.20) and (4.30) we obtain the perturbative expansion
00 2m—1 km—1
Oy Sy (Cn)am) T Gk 1)
F' (@) ) Z—l( ) k1! ((m = 1Dkm_1 +2)!
m—1=—

e (Ce)" (Sjstati+ 1ty 1)

_ i i (_1>km71+km—2 H -

P S j=m—1 j-1! (S ks +2)!
, kj_
s sy ) )
ko,.oskm—1=0k1=1 Jj=2 kj_l! ( ;nzjl jkj +2>'

(4.36)
Assuming that all but one of the couplings is very small the above reduces to (3.20). Along
’Y»Em) (4.28) and using (4.29) we obtain

. ES
Jim FO L (@)l ow ~ (4.37)
Upon shifting ay — 20y, £ = 2,...,m, .F,g?)(a) (4.35) counts planar diagrams with vertices
emanating 4, ...,2m edges. As an example we infer that .7:1(8)(04) contains the term

46549055536250157437879915371089100800000000c2 3 s x5 gy g xg vy (4.38)
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Figure 6. Vertices with four to twelve edges emanating. FEach line represents a thick line.
The number below each diagram enumerates the number of such diagrams as counted by
F (4ag, . .., 2may,) for m > 6.

which counts diagrams with nine distinct vertices emanating an even number between four
and twenty edges. After this shift the terms linear in the couplings have coefficients given
by the Catalan numbers C,E?) with k = 2,...,m. In figure 6 we illustrate diagrams with a
single vertex emanating four to twelve edges.

Finally we remark that combining (4.31) with the on-shell action (2.20) one can obtain

(0)

an expression of Fp,’ () in terms of the incomplete exponential Bell polynomials (4.32).
Our expression (4.36) unpacks this result.

5 Non-analytic behaviour of multicritical matrix integrals

In this section, we uncover the non-analytic behaviour of the planar on-shell action (2.20)
as a function of its couplings near the multicritical point (2.13).

An m = 2 refresher. For m = 2 the polynomial (2.3) reduces to the quartic polynomial
1 1
VQ(M,@Q) = §M2—|—ZO¢2M4. (5.1)

From (2.8) it is straightforward to obtain the resolvent and using res, (2.18) we find the
eigenvalue distribution (2.5):

1 1
Ra(z,a0) = 5‘/2/(2:,()42) - 1(2 + o + 2002%)V 22 — i,

1
,oggc(z, ag) = E(Q + aou 4 2092°)Vu — 22, u=a’. (5.2)

Combining the above leads to the planar on-shell action (2.20)

2
apu" 1
Slosa (A az2)] Z onwl? + Z WIBn 1y 2osutles2,  (53)

with w'?) defined in (2.17). Using usr) (3.2) this implies

24 2

where the subscript n.a. indicates the leading non-analyticity. The leading non-analytic

1 4
FO (a5) = = —Liogare—18e2 + %\/&5/2 + 03, (5.4)

behaviour, encoded in the critical exponent 5/2, characterises the particular universality
class associated to the m = 2 (5.1) and binomial matrix integrals (3.9) and is intimately
related to the exponent 7/2 we observed in (3.5) at large k.
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5.1 Critical exponents for m = 3

For m = 3 we have

1 1 1
Va(M, az, o3) = 5M2 + Za2M4 + gagMG . (5.5)

The resolvent and the eigenvalue density are given by

1 1
Rs(z, a9, a3) = §V3’(z, g, as) — 6 (8 + duas + 3ulas + 22(8a2 +duag) + 8a324> 22—,

pg’()t (z,9,a3) = % (8 + duay + 3ulaz + 2% (8ag + 4uas) + 8a3z4) Vu—2z2.

" (5.6)
For the m = 3 multicritical matrix integral, in contradistinction to the m = 2 model (5.1),
we obtain two different non-analyticities — one along a fine-tuned path, another one along

a generic path in coupling space.

Fine-tuned path. Normalising the above eigenvalue density we obtain the normalisation
condition N3(ag,a3) = 0 (4.1) whose solutions we discussed in (4.2). Recall that the
discriminant (4.6)

675 .2
4194304 3

vanishes at the multicritical point. More generally D3 vanishes for

D (—9(12a2 +1)a3 +20(27as + 2)as + 2700a§) : (5.7)

1 1
0[37:|: e ag?z — —€ j: 763/2 s ag = a27c + €. (58)

and we restrict € > 0. Solving N3(a§,a3+) = 0 we find u = 12 + # ¢'/2 + O(¢?), with the
three solutions 12 = +£36 and 23 = 72. WLOG we focus on £ = £36. Expanding the
on-shell action leads to a leading non-analyticity of the form

19 1 9 9 243
Fia b 0s2) = 15— slog3+ toek o2 21O, (59)

The constant term is the action at criticality (2.21) for m = 3 with the Gaussian piece,
which is equal to 3/4, subtracted. The critical exponent is given by 3/2, which differs
from the 5/2 critical exponent of the m = 2 model (5.4). Note that had we not kept the
solution a3 4 to order (’)(63/ 2) we would have not obtained the correct leading non-analytic
behaviour in (5.9).

Generic path. Further to this, one can uncover another critical exponent by zooming
into criticality while adding a linear deformation to one of the couplings. This leads to the
ansatz

(a2, a3) = (a5),a8),  u=12—36-10"/3¢"/3 1+ 108 - 1023/ — 3240¢ + O(?). (5.10)
The solution u is expanded up to order O(e) to avoid the appearance of spurious non-

analyticities. Expanding the action around (5.10) we find

19 1 112
Fina (08, a5) = 4% — 5 log3+ ge — 2065506 + ﬁm”%m +0(?).  (511)
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The critical exponent is given by 7/3, which again differs from the 5/2 critical exponent
of the m = 2 model.

We believe that there are no other critical exponents near the multicritical point for
m = 3 in the leading order planar expansion.

5.2 Critical exponents for general m

Since for m > 4 the normalisation condition is a higher order polynomial, we now outline
a perturbative approach for the fine-tuned path.

Fine-tuned path. We would like to deform the couplings near the multicritical point
o, (2.13) in the following manner

a“=oa.+se, u=4dm+x, (5.12)

where z and € are small parameters, and s = (s2, ..., 5,) € R™~!. Expanding the normal-
isation condition (2.11) we find

Nin(a) = (—L)m - eni? %; (Z) (LJ;L)Z +0(é%). (5.13)

For those s satisfying

HD =0, +=1,....m—2, (5.14)
1

J

where ) (hypersurfaces) are defined as

G)_ g1 N~ @m)" (n—=2)
HY) =m n%;l%B(n’l/Q) <j1 5, =0, (5.15)

the coefficients of z* in (5.13) with 0 < ¢ < 7/ — 1 vanish. The proof of this can be
found in appendix C. Consequently on (5.14), the solutions of N, () = 0 in = will scale
as €/(m="") " To indicate that the deformations s are living on (5.14) we introduce an
additional superscript to the normalisation condition N /)(a) and f,(,ffﬁ_a.(a), where ' €
{1,...,m—2}.

We are thus led to the following ansatz
1
a‘=a.+se, u=4dm+gem—, TR, (5.16)
giving rise to the normalisation condition

~ ~m!
zm z"

(4m)m 47

N () = | (-1)"

m2 »Hq(qa;/ﬂ)] e + O (677,7+r1/> ) (5.17)

We refer to appendix C for a proof of (5.17). Recalling the discussion near (5.9) for m = 3,
to ensure that we obtain the correct non-analytic behaviour for ]:7(7?,)11,3_ (o), we must expand
one of the couplings to subleading order. For p € {2,...,m} arbitrary we take

1
Uty = ar(:Tz)#p + Spp €, ag = agz) +spe+ 5, u=dm+zemn . (5.18)
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Figure 7. We zoom into the critical point o, and then start moving into special directions to
recover the different non-analyticities.

Graphically this is explained in figure 7. For 8 < m/(m — ') the last term gives additional
contributions spoiling the ¢”/(m="") non-analyticity. For 8 > m/(m — ') the leading non-
analyticity is unaffected. For § =m/(m — ') we are led to

D iae oy lpm B ag ey (4mP | <m*j>
Nm (an5ép’ap) ( 1) (4m)m 4r’m Hm 2pB(p,1/2) € +O € .

(5.19)

It can be checked that adding subleading corrections to more than one of the «, does not
lead to additional non-analyticities.
We now determine the non-analytic behaviour of fq(T?’)n,a,(a) once we move away from
the critical point (5.16). Using 5 =m/(m — ') in (5.18) we are led to
B E e () } -
(A4m)m 47 ~ 2pB(p,1/2)

(4m)P m!p! ( m+1)

+ Sem— 7" +O em—r ,
2p°B(p,1/2) (m+p)!

(5.20)

is an Z-independent expression whose explicit form we present in ap-

Y, lcym

S5k (@) = 85 [s,e, ) — 5

where S ,)[s €, €]

pendix D. Taking & = &, to be a solution of the normalisation condition Ny, « ( Oyt of ») =0

at order €™/ (m="") we finally obtain for ' =1,2,...,m — 2
FO (o, ) Sir )[see]+3 (4m)” mip! Gem— r’+(’)(€;:+rl) 2<p<m
mm.a. \Cnp, 4 2p23(p, 1/2) (m+p)‘ ’ P> .

(5.21)
In summary for the m* multicritical matrix integral (2.3) we have so far obtained (m — 2)
distinct critical exponents given by m/(m — r’), ' =1,2,...,m — 2.
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Example m = 3. Let us take
(g, 03) = (a5,05), uw=124+z, O0<e<l1. (5.22)

The parameter z is itself small and fixed in terms of sz, s3, and € through N3(a) = 0. For
generic values of sy and s3, expanding the normalisation condition N3(a) = 0 for small e
leads to the following three solutions

x=36ze/3(sy+10s3)1 /3, 23 =-1. (5.23)

We thus recover the non-analytic behaviour observed in (5.10).
For the finely tuned combination ”Hgl) = s9+10s3 = 0 (5.15), we find the leading order
behaviour

x = £36+/3s2€, (5.24)

recovering the non-analytic behaviour observed in (5.19). To obtain the subleading /2
dependence in (5.22), we must add a subleading piece 5€?, B > 1 to one of the couplings.
WLOG we take a3. Expanding the normalisation condition we infer that only g = 3/2 is
consistent with the perturbative expansion. Our ansatz becomes (5.18)

(3) B

1
ah =y, +s2€, = ag‘?z ~ 1552 +363% ) u=12+ze/2. (5.25)

Adding further subleading terms will not change the leading non-analytic behaviour. Set-
ting s = 1 and § = £1/5 we recover (5.8). Expanding Nél)(ag,ag) for small €, we

find (5.19)

1 9
NiP(af, 0f) = (—1728:33 + 752 - 2705) S+ 0. (5.26)

Evaluating the action in a perturbative expansion along (5.25), we obtain (5.21)

fé?gla.(ag, ozg) = % — % log 3+ %826 — %Hg (_Tl28j3 + ZSQi“ — 27()5) /2 4+ 25 S/2 4 0(62) ,

(5.27)
recovering (5.9) for sy = 1 and § = £1/5. From the above expression we infer that
for vanishing § the coefficient multiplying the leading non-analyticity vanishes, since its
solution in & = 7, agrees with the solution of the leading order term in (5.26). The
non-analytic behaviour in (5.27) is robust against other deformations of the ansatz (5.25).

Generic path for general m. In addition to the (m — 2) critical exponents in (5.21)
the matrix integrals (2.1) exhibit one more multicritical exponent.
To obtain (5.4) for m = 2 we observed the reaction of the action when allowing as to

(2)

slightly deviate from its critical value o . (2.13). We can generalise this for the polynomials
Vi (M, ) for m > 3. Here we observe the reaction of the action when allowing one arbitrary
coupling to deviate away from the multicritical point. In other words we consider

(m) (m)

a2:0¢272, ey Q1 = Qg am:a%rfg—i—e, D<ex 1, (5.28)

where WLOG «,, deviates away from its critical value a,(g? 2 The leading reaction of the

1/m

normalisation condition away from its critical value 4m is of the form e easily extracted
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from (5.13).3 To avoid spurious critical exponents in Ff,?,)n,a, (), we need to expand the
solution to the normalisation condition to order O(e). In addition to (5.28) we take the
following ansatz* for u

2m
u = 4m + Ae'/™ 4 Z Coe/™ 4+ 0 (e(QmH)/m) . (5.29)
(=2

The coeflicients {fl, Cg} € C we obtain by comparing coefficients of equal powers of € in
the normalisation condition. The coefficients A are given by

1/m
5 . 4m)2m
A — gimn/m _ (@m)™ =1,...,m. .
e <2mB(m,1/2) , nm=1,...,m (5.30)

Upon choosing one A™ the Cy for 2 < ¢ < 2m — 1 are fixed uniquely. WLOG we choose
A(m) and find

2m 4/m
2m —1
— l, 0 L/m (2m+1)/m
u=4m ;:0( 1)*m ( ) ) e+ 0 (e ) . (5.31)

The leading non-analyticity is thus given by

2

m m € m 3 1 2
Fiha 0oy af) = Slplid (V@) = 5+ Bret o€ + B3 40 (),
(5.32)

2m+3 (o, _ 1\ T/™
B3 = m( " ) c?. (5.33)

with (3 given by

22m+1)\m—1 "

Cg) are the Catalan numbers (3.4). On the other side 51 and (2 are e-independent expres-
sions in m. From (5.32) we infer the leading non-analyticity 2 + 1/m which is intimately
related to the critical exponent (4.29) observed for large k in the perturbative expansion.

Example m = 3. For the multicritical matrix integral with m = 3 we make the ansatz

,C

6
agzaég agzaég)—i-e, u:12—0—1‘161/34-20[6@/3—0—0(67/3). (5.34)
(=2
Expanding the normalisation condition N3(ag.c,a§) =0 (2.11) we obtain to leading order

A = 3667/3 5 103, n=1,2,3. (5.35)

Choosing A®) and repeating (5.34) after including subleading corrections in the normali-
sation condition we obtain the ansatz

6
u=123 (-1)8 (10)/me + 0 (€73). (5.36)
/=0

3Comparing (5.12) to our ansatz (5.28) we set s, =0, n <m — 1 and s, = 1.
4We would obtain the right critical exponent already if we stopped at linear order in e. However the
coefficient is affected by terms up to order O(€?).
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Expanding the action around (5.36) we obtain

19 1 9
F .(aé?ﬁ,aé) =103 log3 + e - 6075¢2 +

We observe the leading critical exponent 7/3.

4927075 < (10)/37/3 1 0 (68/3) . (5.37)

General remarks. It is worth noting that only e and €2 appear at orders lower than
the leading non-analytic behaviour of s [pg:?()\, af)] (5.20). This is a consequence of our
particular choice of deformation (5.15). For m prime the full set of critical exponents are
elements of Q1 /Z. For non-prime m some of the critical exponents are integers. Whether
or not we should refer to these integers as critical exponents is a subtle matter.> A point of
concern for integer critical exponents is that they may be sensitive to analytic redefinitions

of the couplings. For m =4, k = 2 and WLOG taking p = 2 we have

1 560 1 1
— 16+7€l/? =477 2 -9 - _
i 6+ze/°, ao 8+ 3 sqe+0€e”, as 160 8546, «u 8960—1-546 (5.38)
and (5.21) reduces to
8
Sk a)] = 8Ps e, ) = 2o + 0 (2, (5.39)
where
S s, e,62 = S.[pl) (A, )] + 160s4¢ — 14336052€2 . (5.40)
If s4 and 9§ obey
8
=0 - 14336053 = 0, (5.41)

we can cancel the integer critical exponent 2.

Furthermore we note that the matrix integral (2.3) admits (m — 1) distinct critical
exponents only upon considering deformations away from the multicritical point. The only
other critical exponent is that of a square root non-analyticity in the normalisation condi-
tion leading to .7-"75%,&(&) ~ €3/2 which occurs on surfaces connecting the m'" polynomial
Vin(M, @) to a binomial matrix integral V, (M, ), n < m (3.9).

Summary. Insummary, the set of (m—1) critical exponents for the m™ multicritical ma-
trix integral (2.3) are given by m/(m — '), v’ =1,...,m—2 (5.21) and 2 4+ 1/m (5.32).

6 Critical exponents in the continuum picture

In section 5 we uncovered a set of non-analyticities arising from the deformation of multi-
critical matrix integrals (2.3) slightly away from the multicritical point (2.13). We showed
that the m'™ multicritical matrix integral has (m — 1) distinct non-analyticities (5.21)
and (5.32). In this section we will uncover the same non-analyticities within the contin-
uum picture of Ma,,_12 coupled to two-dimensional quantum gravity.

°It can often happen that when a critical exponent is naively integer valued there is in fact a logarithmic
dependence on the coupling. Logarithmic behaviour is also present for the critical exponent of a two-matrix
model [12] whose continuum description has been argued to be the free fermion coupled to two-dimensional
gravity. It is relatively straightforward to prove that our integer valued critical exponents are indeed integers
exhibiting no logarithmic dependence on the coupling.
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6.1 A minimal model refresher

Minimal models are two-dimensional CFTs characterised by two coprime integers (p,p’)
with p,p’ > 2 and WLOG we assume p > p'.% We will denote the (p,p’) minimal model by
My, . The central charge of M, is given by

_N\2
PP =1 _ 6(p7/p) . (6.1)
pp

Each M,y has a finite number of conformal primaries O, s whose (holomorphic) conformal
dimension is given by

(rp' —sp)* = (p —P)°

Bre = App/

, o r=1,....p—1, s=1,....p—1. (6.2)

These obey
Ar,s = Apfr,p’fs = ATer,erp’ ) (63)

such that the number of distinct conformal primaries is given by n, ,y = (p —1)(p' — 1) /2.
The identity operator I of vanishing conformal dimension is always present and given by
01,1 = Op_1py—1. The anti-holomorphic conformal dimensions are denoted by Ans and
take the same values as (6.2).

The simplest minimal model is M3 2, which is a two-dimensional CFT with central
charge ¢®2) = 0 and the unique operator I, of vanishing conformal dimension.

(Non)-unitary minimal models. It will prove useful to distinguish between unitary
and non-unitary minimal models. In addition to a positive definite inner product, unitary
minimal models have positive central charge and non-negative conformal dimensions. As
shown in [26], the unitary models are given by the series My, 11, with m > 2. Unitary
minimal models have 1,41, = m(m — 1)/2 primaries.

Non-unitary minimal models have negative central charge. Although the highest weight
states have positive norm, their Virasoro descendants have negative norm. The simplest

example of a non-unitary minimal model is M5 2, the Yang-Lee model with 52 = —922 /5.
M52 has two conformal primaries of holomorphic conformal dimension Aj; = 0 and
Ag1 =—1/5.

In what follows we will focus on Moy,_12 with m > 2. The general expression for
their central charge is
3(3 —2m)?

2m-12) _ 1 _
2m —1

cl (6.4)
The number of conformal primaries is ngy,—1,2 = (m—1), and their holomorphic dimensions
are given by
(2m —1—2r)% — (2m — 3)?
A'r’,l = )
8(2m —1)

r=1,...,m—1. (6.5)

5Tn addition to the original work [25], an excellent resource discussing their detailed properties is given
by [29, 30].
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The conformal dimensions are increasingly negative for increasing r, and the lowest weight
primary Omin = Op,—1,1 has holomorphic conformal dimension

(m—1)(m—2)
Amin = .
2(1— 2m) (6.6)
From (6.4) and (6.6) we infer the large m expansions
22 — _6m 416+ ..., Amin:—%+g+.... (6.7)

Although ¢(?"=12) grows at large m, it has been argued [24, 63] that a better measure of
the number of degrees of freedom is captured by

3
1—2m’

cgfm—l,z) = c2m=12) _ oA 14 (6.8)

We note that cgfm_l’Q) < 1 goes to one in the large m limit.

6.2 Critical exponents

To compute critical exponents associated to a given conformal field theory, we consider
the partition function of the theory deformed by a small amount of a particular conformal
primary Oa. We first discuss critical exponents for CF'Ts on a fixed background, and then
proceed to a fluctuating background.

2d CFT on a fixed flat background. From the perspective of a path-integral, we
would like to compute

Za,f] = / [Dd)eScrrl@l-Aa [d20a  \ R (6.9)

where ¢ denotes the size of the flat square on which the CFT resides. The conformal
primary Oa has dimension (A, A) and for simplicity we take A = A. The dimensionful
scales of the problem are the volume of space £2, the ultraviolet length scale £, < ¢, and
the coupling Ap whose holomorphic scaling dimension is Ay = A — 1. Following the line
of argumentation from the scaling hypothesis Z[Aa,4] = Z[g~*Aa,qf], ¢ € RT [31] we
would like the UV independent part of log Z[Aa, ¢] to be extensive in the volume. Given
that Z[Aa, /| is dimensionless, we must have

log Z[Aa, 0] = NP(Aa)Y2, va=1/(1-A). (6.10)
N is a normalisation constant independent of Ax. Notice that the critical exponent asso-

ciated to the identity operator is simply vg = 1. Furthermore, for A > 1, corresponding
to an irrelevant On, the critical exponent would be negative.
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2d CFT on a fluctuating background. We now consider a two-dimensional CFT with
central charge ¢, < 1 coupled to two-dimensional gravity. Integrating over all metrics
renders the extensivity condition of the scaling hypothesis somewhat subtle. In the Weyl
gauge the two-dimensional metric is chosen to be g;; = e%“’gij. The problem then maps to
studying the matter CF'T with central charge cy,, trivially coupled to a Liouville CFT with
central charge ¢, = 26 — ¢y, and the be-ghost system with central charge ¢, = —26 [44].
The Liouville action is given by [44]

SuleA) = o [ oG (790000 + QRlgle + AmA ™), (6.11)

where g;; is taken to be the round metric on 52 such that R[gij] =2 and A > 0 is the
cosmological constant. Moreover, @ = b+ 1/b with [19-21, 36]

V25 —cm — V1 —cm /25 —cm
b= T N (6.12)

The residual gauge invariance in the Weyl gauge enforces that all operators of the combined

theory are spinless primaries with conformal dimension A = 1. In the trivial ghost sector
this is achieved by dressing the matter primaries of weight Ay, by a Liouville operator of
weight Ap =1 — Ap.

Unitary 2d CFT on a fluctuating background. We now specify to a unitary two-
dimensional CFT with ¢, € (0,1). The simplest critical exponent corresponds to the
matter identity whose coupling is A. The partition function of interest is”

Z[A] = / [Dyple Sl = AQ/Y, (6.13)

We indicate the partition function on a fluctuating background by Z. A simple derivation
of the above follows from performing a shift in ¢ [42, 43]. Due to the Liouville dressing, the
critical exponent of the identity is no longer simply given by vg =1 (6.10), but rather [41]

25 — ¢y

Varay = Q/b = %2\/(1 —em) (25— em) + —— (6.14)

The critical exponent for Vg, informs us how to modify the scaling behaviour of length
upon coupling to gravity. On a fixed background the total scaling dimension of a length
scale is minus one, whereas now we must take it to be Vgay/2. Vgray is also known as the
string scusceptibility.

Now, rather than the identity we consider turning on a matter conformal primary Ox.
The partition function of interest, in the Weyl gauge, becomes

2] = [Pl SeleAD-ScrrloAs [avgeaeos, (6.15)

"On a genus h surface there is also a topological term proportional to e’X, where ¥ is the coupling
governing the genus expansion, see e.g. [20]. As we are working on a fixed topology throughout this section
we will drop this term.
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where we set A = 0 since we are interested in turning on Oa alone. We further have

V25— —V24A+ 1 -y
oA = ,
A 26

which ensures that the matter operator is dressed appropriately. We note that b = oa—g.

(6.16)

Upon shifting ¢ — ¢ — (log Aa) /20, [42, 43] and noting that the path-integration measure
over ¢ is invariant under such shifts, it is straightforward to deduce

Zal =N ()78, (6.17)
where A is a Ax independent normalisation. For more details we refer to [20].

Mo _1,2 on a fluctuating background. For non-unitary models with ¢, <0, further
care must be taken due to the presence of operators with negative conformal dimension.
Our main interest is in Ma;,—1 2, whose most relevant operator Op,;n has negative conformal
dimension Api, (6.6). The lowest weight operator replaces the identity in that all other
operators are ‘irrelevant’ with respect to Opin. Thus, in the non-unitary case we might be
inclined [2, 7] to replace (6.13) with

Z[Amin] = /[DSO] [D(I)}e_SL[SOVA:O]_SCFT[qﬂ_Amin fd2$\/‘5620min¢omin’ (618)

where oyin = o, (6.16). Using similar techniques to those discussed previously one finds

Z[Amin] = (Amin)Q/omirl . (6.19)
In effect, one is replacing oa—g with oa, . (6.13). Note that

Q/0min=2+1/m. (6.20)

Turning on other operators O,.; while setting Apin = 0 leads to

Q/oa,
2D ) =N (Aa,) T QJoa,, = (14 2m)/(r + 1), (6.21)
where r = 1,2,...,m — 2. Finally we note the useful relation
Omin/0A,, =m/(1+1), r=1,...,m—2. (6.22)

Summary. In summary, we obtain (m — 1) critical exponents: turning on the operator
of lowest conformal dimension we obtain 2 + 1/m (6.20). Turning on any of the other
(m — 2) operators we obtain the critical exponents m /(1 + ), r=1,...,m — 2 (6.22).

A fixed “area” perspective. In order to compare to the perturbative discussion of
section 4 it proves instructive to consider the gravitational path integrals with a constraint
fixing the total area of space to a fixed value v. This can be achieved by inserting a J-
function inside of the gravitational path-integral (6.9). For two-dimensional conformal field
theories with ¢, < 1, we have

Zarea[V] = Ny~ 17Q/b y o—vA /d2$ G = . (6.23)
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where A is independent of v and A. Integrating Z,,ea[v] against v, we recover Z[A] (6.13).
For ¢, = 0, we note that 14 Q/b = 7/2, the value observed in (3.5). For ¢y, = (2~ 12)
in (6.4), we find instead 1 + @Q/b = 3/2+m. Let us now consider those non-unitary
minimal models whose lowest weight operator Op;y is different from the identity. We can
also consider fixing

/d2$\/§ O\in €270 = ) . (6.24)

This leads to the following partition function
Zmin|v] = N 017 Q/Fmin e =0Amin (6.25)

For the Lee-Yang model M52 with 52 = —22/5 we have 1 + Q/omin = 10/3. For
general Mgy, —12 we have 1 + Q/omin = (3 +1/m).

6.3 Comparison to matrix integrals

At this stage it behooves us to compare our results to those of the multicritical matrix
integrals. We take inspiration from 't Hooft’s diagrammatic picture [3], whereby the per-
turbative diagrams of the matrix integrals correspond to discretised Riemann surfaces.
Care must be taken in identifying the appropriate quantities between the matrix integrals
and the continuum picture.

Ms32 on a fluctuating background. Let us begin by discussing the simplest case,
namely m = 2. In this case the matrix diagrammatics (3.5) indicates that the dependence
on the number of vertices k goes as ~ k*7/2(a2/a§?2)*’“ at large k. One is motivated to
identify the number of vertices, k, with the area of the surface in the continuum picture.
Both are extensive quantities sensitive to the total number of points on the surface. In do-
ing so, one finds a match between the behaviour of the fixed area partition function (6.23)
and the matrix diagrammatics. This suggests that the identification of k in the matrix
diagrammatics and v in the continuum is indeed sensible.® Going from the diagrammat-
ics to the critical exponent is simply a matter of integrating (summing) over v (k), and
identifying A o (g — ag?z)

Mo —1,2 on a fluctuating background. We would like to compare the asymptotics
at large vertex number from the multicritical matrix diagrammatics to the continuum
picture. Part of the issue is that there are multiple couplings, and consequently multiple
paths in coupling space to reach the multicritical point. Along the path (4.28) which
simultaneously tunes several couplings, the growth of vertices goes as ~ k—(3+1/m)¢k (4.37).
Recalling (6.25) and noting that for general m, 1+ Q/omin = (3 + 1/m), we find evidence
that such a tuning corresponds to fixing the extensive quantity (6.24), rather than the
area (6.23). The remaining task is to identify Ap,, and the additional (m — 2) couplings
Aa,; from the perspective of the multicritical matrix integral. This is precisely the problem

8 Although we do not discuss it here, this identification continues to be sensible for those matrix integrals
argued to describe the unitary minimal models coupled to gravity. As an explicit example, the My 3 model

—10/3

on a fluctuating background was studied in [12], leading to the fixed area behaviour ~ v which agrees

with the prediction from the corresponding two-matrix model.

~ 98 —



of non-analyticities solved in section 5. The non-analyticities found in the m' multicritical

matrix integral correspond to the values Q/omin (6.20) and owin/oa,,, 7 = 1,...,m —
2 (6.22) arising from My, 12 on a fluctuating background. We thus identify Api, = €
in (5.32), Aa,, = emin/@ and 7 = m —r — 1 in (5.21). We observe that omin/Q is
independent of r. Further to this, our hypersurface equation (5.15) provides the detailed

relation between the matrix deformation and the corresponding matter primary.

7 Remarks on a Hilbert space

In this section we remark on the Hilbert space of May,,_12 coupled to two-dimensional
gravity, and its manifestation from the matrix integral perspective.

7.1 S2? considerations

On a fixed background, Mas,,_12 has a finite number of primaries equal to ng;,—12 =
(m — 1), each accompanied by an infinite tower of descendants. On a fluctuating back-
ground these operators must satisfy constraints arising from the diffeomorphism invariance.
Additionally we need to consider the contribution from the Liouville and be-ghost sector.

Concretely we must identify the set of BRST invariant operators. This was examined
in early work of Lian-Zuckerman (LZ) [59] and subsequent work [60-62]. Under the as-
sumption that the Liouville sector can be treated as a linear dilaton theory, it was noted
that the BRST cohomology comprises of an infinite collection of operators. In particular
LZ operators have a non-trivial ghost number and generally contain matter and Liouville
descendants. Though also infinite, this infinity is far smaller than the infinite operator
content of the matter theory on a fixed background arising from the Virasoro descendants.
The origin of these operators is intimately connected to the presence of null operators in
the Liouville sector [38]° and the matter sector. In conformal gauge ds? = ?¢(*?)dzdz
the LZ operators are given by

Ry () = OFL(b,c,0,05t) © O;4(6,8, 0, B;1) ® Opy ® 27127, (7.1)

where t € Z and + denote the particular LZ operator. The holomorphic conformal dimen-
sions of these operators are given by

AYL(t) + Ay +012(Q —o1z) =0, (7.2)

where Q = b+ b~! and LZ operators are graded by the ghost number. The LZ weights for
Mop,—1,2 are given by
AVEL(t) = Aps(t) = Ay — 1, (7.3)

where A, () are given by [27]

(4(2m — D)t +2r £ (2m — 1))% — (2m — 3)?
8(2m — 1) '

Arx(t) = (7.4)

9Indeed, one can always find primary operators in Liouville theory with central charge ¢y, = 26—c(?™~ 12
whose conformal dimension lies on one of the values in the Kac table, and hence admit null states in their
Verma module. The null operators are themselves primary.
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The anti-holomorphic conformal dimension has to be equal to the holomorphic conformal
dimension. The argument ¢ is related to the ghost number, whereas the subscript +
indicates whether the ghost number is even (+) or odd (—).

Example Mg 2. For Ms, the LZ operators with ghost number (ny,n.) = (0,0) and
(ny,ne) = (0, 2) respecetively associated to the matter primary Oy are [60, 62]

RIZ(0) =1,  RYA(0) = c(2)0%c(2)(2)0%E(2) ® 2%, (7.5)

with o1z = 0 and 017 = @ respectively. The operators (7.5) have non-trivial ghost number
as compared to the vertex-operators considered in section 6 whose BRST invariant form
takes O}% (b, ¢,p, ®;0) = ¢ and O~ (b, ¢, ¢, ®;0) = ¢ and orz = b. On the other side the
LZ operators with lowest ghost number (ny,n.) = (1,1) associated to the matter primary
0171 for M3,2 is

RYZ(~1) = (b(z)c(z) — b 10p(2, z)) (E(z)z(z) — b 1Dy (2, z)) ® e~b(=:2) (7.6)

where combining (6.12) with ¢(®2) (6.7) we have b = /2/3. Besides the operator (7.6)
there exists another operator le%r(—l) with o7z = 2/b. To show the BRST invariance of
these operators, it is useful to recall the (holomorphic) BRST current [64]

1 3
JBRSTch@+§:cT9:+§82c, (7.7)
where T% and TY are the Liouville and ghost stress tensor respectively
T? = —(09)* + Qd*p, T9 =: (db)c: 20 (: bc:). (7.8)

In particular we find [60]
) 3 3., -
SRYL (<1) = 00 (5 221 + L) (5 220+ Do) 900 (1)

where L, L,, are the Virasoro generators, satisfying

dz

c 2miz

~ dz ~
Ly = T2, L, = }{ CF nbape(z), (7.10)
C

2miz
In other words the BRST variation leads to a null operator.

We note that we consider the stress tensor of the Liouville action arising when assuming
it is a linear dilaton theory. This is justified when calculating the critical exponents (6.18)
for which we set the cosmological constant to zero. The BRST transformation of a LZ
operator can produce null operators in the matter or Liouville sector [60], which must
subsequently be set to zero.

One may ask whether the LZ operators contribute additional critical exponents for the
theory on S2. By the Riemann-Roch theorem, non-vanishing be-correlation functions on a
compact Riemann surface with Euler characteristic x require [64]

3
Me =T = 5X - (7.11)
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For S? we have y = 2. Given that LZ operators have a non-trivial ghost number, generically
different from n. — np = 3, we expect no new critical exponents from the LZ operators on
an S? topology.

Assuming that some form of the operator-state correspondence holds for S? we are
thus led to conclude that the associated Hilbert space is finite-dimensional. This might be
related to observations on de Sitter space [68, 69].

Contrarily to S? the torus T2 has Euler characteristic y = 0. As a consequence of the
Riemann-Roch theorem (7.11) we thus infer that the LZ operators contribute to the torus
partition function.

7.2 T? considerations

On the cylinder, the Hilbert space Hp2 lives on spatial S! constant time slices. States
|W) € Hpe in the trivial ghost sector living on these spatial slices are subject to the
Virasoro constraints

(Lg"t 4 Lot 2) W) =0, (Lgot - Egot) W) =0, (7.12)

where Lt and L't are the Virasoro generators for the matter and Liouville sector. The
first equation in (7.12) is what replaces the Hamiltonian constraint in canonical quantum
gravity [65, 66], while the second replaces the spatial diffeomorphism constraint. The above
equations are the state analog of the constraint that vertex operators with trivial ghost
contribution must have A = Ar + A, 1 =1 and A = A. Other states in Hpz, as first
pointed out by Lian-Zuckerman [59], may also include non-trivial ghost excitations.

One way to characterise Hrp2 is through the torus partition function [56-58|. For fixed
modular parameter 7 = 7 4 72 the states in the BRST cohomology contribute

m—1
1 (96_1_p(2m—1,2) _ALZ _ALZ
Zﬁxed[7_2] _ (qq) 51 (26 1—c ) Z Z ((qq)AT"+(t)+AT’1 + (qq)Arﬁ(t)JrA’"’l) ’ (713)
r=1 teZ

where ¢ = €?™™ and we used (7.4). The overall shift encodes the Casimir energy from
the ghost, Liouville and matter sector. The 7i-independence of Zgyeq[m2] is due to the
diffeomorphism constraint (7.12).

What remains to be done is integrate over the modular parameter 7, and the zero
modes of the Liouville sector

d?r
T[Amin] = 10g Amin / 37/2 Zﬁxed [7_2] . (714)
F Ty

F is the fundamental domain of the modular group. The power of 7 is fixed by modular
invariance and stems from the various zero modes in the be-ghost and Liouville sector.
The logarithm in A stems from the volume of the Liouville zero mode, and essentially
encodes the fact that the Liouville interaction imposes a cutoff in the Liouville field space.
Evaluating 7 [Amin] leads to [56, 57]

2m — 2
48m

T[Amin] = log Amin - (7.15)
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Comparing to the first non-planar contribution of the matrix integral as presented in ap-
pendix A we see that under the identification Api, = € the results agree (A.12). In this

th

way the LZ states appear in the leading non-planar contribution of the m"™ multicritical

matrix integral.

8 Discussion and open questions

We summarise some open questions and speculative remarks.

Large m and Euclidean dS3. In [40] it has been observed that upon coupling Moy, 1 2
to gravity whilst fixing the area v and turning on only the identity operator of May,_12
exhibits a saddle point solution in the large m limit. This saddle point solution is the round
metric on S?, which is Euclidean dS,;. Motivated by this, this work provides the basis
to understand this observation from the matrix integral point of view. Recalling (5.21)
for ' = m — 2 we recover Zamolodchikov’s continuum critical exponent from a matrix
integral perspective. In the large m limit and upon tuning the couplings to the multicritical
point (2.13) the polynomial V,,(\, ) (2.3) reduces to'” [14]

lim Vi, (\, o) = 1A22F2 (1,1;3,2;A2> : (8.1)

m—00 2 2 4

Moreover the width of the eigenvalue distribution (2.19) scales with m and so becomes
unbounded in the large m limit. We further remark that the most fine-tuned path where
we switch on all the hypersurfaces and s € Hg) U...U 7—[,(7?_2) (5.15) corresponds to the
identity operator in the continuum theory.

As postulated in [72], the logarithm of the Euclidean gravitational path-integral on a
compact manifold for theories admitting a sphere saddle gives a semiclassical expansion of
the entropy of the corresponding de Sitter solution. The presence of a semiclassical limit
allows one to interpret the details of its expansion in terms of the classical saddle. The
fixed area partition function on a genus h = 0 surface (6.23) for large negative ¢, can be
written as 25

c 6
log Zarea[v] = 20 + <én % o + .. ) log

where vg is a reference area. As noted in [20], to leading order the logarithmic term

v
— 8.2
. (52)

resembles an entanglement entropy for a two-dimensional CFT with central charge ¢y, [73—
75], with the subleading corrections corresponding to contributions stemming from the CFT
being coupled to dynamical gravity. Moreover from the matrix perspective 29 = log N2
suggesting that the size N of the matrix also has an entropic interpretation.

Non-unitarity & torus Hilbert space. As a consequence of the Riemann-Roch the-
orem (7.11) the LZ operators contribute on 72. In particular this implies that we have
to deal with descendants of the Virasoro primaries of Mag,,—12. These are negative norm
operators. The consequences of the non-unitarity from both the point of view of the MMI
and the point of view of the continuum theory remain to be explored.

10We would like to acknowledge Jorge Russo for useful discussions.
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Diagrammatics & critical exponents. To evaluate the double sum (4.15), capturing
the diagrammatic expansion of the m = 3 model, we introduced the path fyig) (4.7) in
coupling space. This allowed us to explicitly determine the radius of convergence and for
m > 3 using 'yim) (4.28) we observed the critical exponent f,gg,)n,a,(a)] (my ~ €2/ (4.37),
However introducing the single parameter ¢ € [0, 1] connecting the orivéin in coupling space
to the multicritical point prevents from observing the other (m — 2) critical exponents
m/(m —r'),r =1,...,m—2, from a diagrammatic perspective. It would be interesting
to uncover these.

Disk topology. In [36-39] Liouville theory was studied on the disk topology. Upon
taking the semiclassical limit & — 0 the Liouville action admits a saddle point solution for
. From the perspective of the physical metric g;; = e%“"gij this can be interpreted as the
hyperbolic metric on the Poincaré disk (the Euclidean AdS, black hole)

1 1
ds? 5 (dp2 + p2d92) . pelo1). (8.3)

—owh?A (1 - p?)
Since coupling Moy, 1,2 to gravity implies b = /2/(2m — 1) (6.12) this semiclassical limit
corresponds to a large m limit. It would be interesting to explore relations between this
saddle and recent discussions on JT gravity and matrix integrals [52].

For Dirichlet boundary conditions ¢ diverges at the boundary of the disk and the
relation to matrix integrals was studied in [13]. It would be interesting to generalise this
to the multicritical case. For Neumann boundary conditions one needs to further add the
boundary term

Shdy = / duv'h (QKQO + ABeb@> , (8.4)
g1 2

to the bulk action, where h is the induced metric on S' and K is the extrinsic curvature
at the boundary. The comparison to the matrix integral uses either the resolvent R(z) or
the loop operator Wy [8-11]. The boundary cosmological constant Ap is connected to z.
For multicritical matrix integrals R(z) is given by (2.15), W} is given by (2.16).

Hartle-Hawking & topology. As a final remark, it is interesting to note that the par-
tition function Z[A] on S? only dominates (in absolute value) over the partition function
T[A] on T? for sufficiently large A, while for small enough A > 0, the T2 partition function
dominates. This is also true for higher genus partition functions. It would be interesting
to understand if this has any consequences for the Hartle-Hawking picture [54, 55]. Fur-
ther to this, being matrix integrals rather than matrix path integrals there is no a priori
indication for the existence of Hilbert space from the matrix integral perspective. It would
be interesting to uncover a Lorentzian picture directly from the matrix integral [67].
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A Non-planar contribution

To compare to the log-divergence in (7.15) we need to go beyond the planar approximation
of the large N limit of F,,,(a) (4.35). Whereas the planar contribution is obtained from a
large N saddle point approximation, to find non-planar contributions one needs to make
use of other techniques. We will use the method of orthogonal polynomials [15]. We will
only provide minimalistic details, for a more detailed explanation of this method we refer
for example to [20]. Two polynomials are said to be orthogonal with respect to a weight
function w(x) if they satisfy

orthoy : /dx w(x) pp(T)pm(x) = hpbmp - (A1)
In addition to (A.1), orthogonal polynomials satisfy the three-term recurrence relation

orthop 1 xpn(x) = Appn(x) + Sp pry1(x) + Ry pr—1(x) for n>0,
zpo(x) = Ao po(z) + Sop1(z), (A.2)

where A,,, S,, and R, are some real constants. Focusing on monic polynomials

n—1
Pa(A) =N+ aiN, n=0,...,N—1, (A.3)
=0
we obtain [15]
1 1. ho(a) 1 N‘1< n) R, (a)
— Fpla) = —=1 - 1—— )1 , Ad
Nz7m(@) =~ loe g G an::l N) °® R, (0) (A-4)

where we highlight the coupling dependency of h,, (A.1) and R,, (A.2) explicitly.

Example m = 3. Using (A.1) and (A.2) for w(z) = e V¥3(%:%) we obtain [20]

% = Bul@)[1+ a2 (Ruri(@) + Ru(@) + Rua (@)
+ a3(2Rp11(e) + 2Ry (@) Ry—1 (@) + Ryy1 (@) Ry—1 (@) + Ry—1(a) Ry—z ()

+ R2(a) + B2, (@) + R2_ () + Ruy1() Rupa()] (A5)

Let us now define the variables ¢ = 1/N and x = ne. In the large N limit, x is well
approximated by a continuous parameter. In view of this, it is convenient to set r(x, ) =
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R, (). We note that r(x, ) is also a function of N, but we suppress this dependence for
notational simplicity. We can rewrite (A.5) as

r=r(r,a)+ar(r,a)r(z+e,a)+r(r,a)+r(z—¢e,a)l+ as [2’/‘(:13, a)r(z + € a)
+2r(z, @)r(z —€,) + r(z + €, a)r(z — ¢, @) + r(z — €, a)r(z — 26, a) + r(z, a)?
+r(r—e0)? +r(z+ea)+r(x+ea)r(z+ 2, a)} . (A.6)

It follows from (A.6) that r(z, o) is symmetric under ¢ <+ —¢ and we can expand it in even
powers of €
r(z,0) = ro(z, @) + 2 ra(z, ) + et ry(z, ) + - - - . (A.7)

To obtain the first non-planar contribution we only need ro(x, @) and ro(x, &) which we
easily infer from (A.6) by comparing powers of e.
An equation similar to (A.6) can be obtained for m > 3 upon choosing w(z) =

e NVm(.@) "y > 4 (A.1). Our final ingredient will be the Euler-Maclaurin formula

p—1
Zf( ) / dz f(x @) + Z (Bz,;! N12nf(x)(2n_1)|(l)+RN' (A8)

In the above, f(x) is a 2p times continuously differentiable function, Ry is a remainder
term scaling as O(1/N?"*1) and the By, denote the Bernoulli numbers. Applying the
Euler-Maclaurin formula to

r(z, o)

f @)= (1 —2)log ", (A.9)

and expanding (A.4) in inverse powers of N, we find

! r,a) 1 hy(a) r(z, o)
— [ dz(1— ) 2 — lim log
/0 w1 —a)log ===~ log 3 "o + 2N -

b (1— )1 T(fvaa))(l)l
oz (L= #)log—

0

(A.10)

up to order O(1/N*) corrections. Expanding all three terms in (A.7) and evaluating hq(a)
for small o we find up to powers of order O(1/N?)

%J / dz (1 - z) log (Z )
dz (1 ro(x, a) 1 1 1 ro(z, o) Ok 3
/ z(1—x) ro(z, )-l—ﬁ(—x)og } O—Zozg
(A.11)

Note that we encounter an ambiguity in choosing ro(z, &) since it is the solution of an m™

order polynomial. We pick the solution yielding the on-shell value (2.21) when evaluating
the O(NY) integral along ’yim). Evaluating the second line in the above expression is in
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general difficult however to get the coefficient of the log-divergence we only care about the
first integral. To further simplify our analysis we zoom into the multicritical point . (2.13).
The non-analytic behaviour of (A.11) occurring for @ = e close to the upper boundary,
equals the non-analyticity observed upon considering small deformations away from the
multicritical point only after evaluating the integral. We obtain for m = 3 and m =4

1 1
fﬁ,lﬁ.a.(ac) = 15 log¢, fi Lo (o) = Tgloses e<1, (A.12)
where the subscript indicates the leading non-analyticity. For general m > 3 one finds [6]
2m — 2
(1) -
‘Fm,n.a. (ac) 2Um loge, e<1, (Alg)

and the coefficient of the log agrees with the coefficient of the log of the torus partition func-
tion (7.15) of the continuum theory. For m = 2 and the generalisations thereof discussed
in section 3.1 on the other side we obtain

~ 1
ff;’)rl'a.(ac) =51 loge, e<x1. (A.14)
As a final remark we note that .7-}(,} )(4oz2, .+, 2mayy,) counts leading non-planar diagrams.

More explicitly it counts diagrams whose vertices are emanating four or 2m edges and
which can fit on a surface of genus one. As an example, a perturbative analysis of (A.11)
using ro(z, @) and r2(z, ) for m = 3 easily reveals

FSY 4z, 6ai3) = ag + 10a3 — 3002 — 240002 — 6000203 + . . . . (A.15)

B Solutions of Ny(a) =0

In this section, we discuss the solutions of the normalisation condition (4.18) for the

m = 4 case:
O \/ : ¢ @ _ 203 \/ >
S St )-482—2p+ L =B st /48221 (B1
Uig = T, TIEGY AT S A g = mo S Gy 45T 2 S (B.1)
where ( 2) ( )
2414004 — ot 64(503 — 21asazay + 4902
24502 171503
In the above, we have defined
1 2 256 Ag
S=,-Zp_ 22 =0 B.3
2\/ 37" 10504 (Q+ Q)’ (B:3)
sl A1+ \/A% —4A8
Q= 5 : (B.4)
Ao = = (302 — 10(as + 14a)) (B.5)
0 = 355 (303 — 10(as + 1daw)), :
A = _ 2 (2(04% — 5ana3 — 5003) + 350(1 + 8042)) (B.6)
4096 3 ’
_ 1 2 3
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Much of our interest lies in a solution of MV;(a) = 0 that is regular in a small neighbourhood
Ng around the origin of coupling space o« = 0. To analyse the problem, we can consider
approaching a = 0 uniformly in all directions, and exploring the behaviour of the various
solutions throughout Ng. An exhaustive analysis reveals that one must keep track of the
various signs of v and the special combination (a3+14ay). The term (a3 + 14ay) is already
revealed in the form of Ay and can be seen to carry through into the more involved building
blocks such as @ and S. For instance, near g we have

8x71/3 oy

33513 \1/3 43 (B.8)
o (—aq) "+ O(a*?), ay <0.

, 1/3

We find the following combination of solutions to be smooth near Rg

Bi(e) = uf, (O441+ 6 4y +0F_, +01 L)+

us? (@___ +O,, +O6 . +O, +O0-_, + @;_+) , (B.9)

where we have introduced the notation

Opapsps = O(p2012)O(p33)O(pacs) , (B.10)
Of,psps = O(p202)O(p303)O(p10a)O(p(as + 14day)) . (B.11)

Further properties of Ng(a) = 0. The solutions (B.1) also reveal additional in-
formation. For instance, expanding the discriminant Dy (B.7) at small ay and ag, we
identify as = —27/8960 as the special value dy. in (3.11). Similarly, expanding the
discriminant D4 at small a3 and a4, we identify g = —1/12 as the special value agz
in (2.13). Finally expanding for small ay and a4 reveals ag = —2/135 as the special
value @z (3.11). Near (ag,as,aq) = (0,0,—27/8960), (a2, a3, cq) = (0,—2/135,0) as well
as (ag,as3,a4) = (—1/12,0,0), Ay remains non-vanishing such that the non-analytic be-
haviour of the solutions u(* is that of a square root. Expanding the discriminant D, near
ag = —1/8, reveals az = 1/160 as a special value, which we recognise as a:(fg, one of the
multicritical couplings (2.13). At (a2,a3) = (—1/8,1/160) we further have that A; = 0,
while Dy goes as (1 + 8960ay4)? revealing the third multicritical value ay = —1/8960.
Also, at (az,a3) = (—1/8,1/160) we observe that @Q in (B.4) goes as (1 + 8960cy)"/2,
and p in (B.2) goes as (1 4+ 8960ay). Expanding away from the multicritical point re-
veals distinct non-analytic behaviour in the solutions of Ny(a) = 0. For instance, fixing
(a2,a3) = (—1/8,1/160) and deviating slightly away from a4 = —1/8960, we uncover a
fourth root non-analyticity.

C Non-analyticities: normalisation condition

In this appendix we prove the following.

Claim 1. For )
a‘=a.+se, u=4m+Ten, TR, (C.1)
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(5.15) the normalisation

with s living on HY UHD . UHE) = 0,7 =1,...
condition (2.11) reduces to (5.17)
~m ! m
= [(— )" (4:;)”1 ? -m2H H)] em + 0 (em+r1 ) . (C.2)
& oG =

Proof. Plugging (5.16) with s constraint to live on the hypersurface 7—[( JUH

0 into the normalisation condition (2.11) and expanding for small € we obtain
~ Y4 P

) 7 +1> mTL Sy, .

Em T Z <2nB (n, 1/2) Z (E) (4m o
(C.3)

N () = (1)
We apply a recursive argument by showing that the sum multiplying the term #*~1, k > 3
vanishes for s constraint to
HE2 DD DA = (C.4)
For ¢ = k — 1 we have (C.2)
- 4" ( n > (4m)k-1 4n ( n )
Z m"s, = Sg—1+ Z Py m" sy
£« 2nB(n,1/2) 1 2(k—1)B(k—1,1/2) < 2nB(n,1/2) \k 1
nk-2 & 4n n n—2 0 (4m)*
~ 2nB(n,1/2) <<k - 1) (k: - 3)) T = Bk 12)
it B(n, 1/2) -1 k—3
HED & 4n n n—2 n—2 "
- 223 2y \\k—1) " \k—3) 2\ko2)) ™
nipr 2nB(n:1/2) \\k = - -
= Z —_— m"s, =My .
it 2nB(n,1/2) \k—1
(C.5)
A superscript over an equality sign means that we are using the condition s € 7—[7(%). For
f =1 the sum already vanishes on ’H,(i) U ”HST%) = 0. For ¢ = 0 it vanishes on 7—[7(711) =0. If
the directions s now lives on
,r/
U #HY =0, (C.6)
j=1
(C.3) all terms of order O(z"), k < 7’ vanish and we obtain (C.2)
D Non-analyticities: action
In this appendix we prove the following
1
u=4m+ Ten—" . (D.1)

Claim 2. Along
Aoty = O‘S:z)#p + Snp af, = ag;") tspetsemr,
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and using (5.19) we obtain

m*H e€m—r’

/ 1 zm i ’ dm)P | _m
(") — s 21— g 1™ _ 290"+ \F)
Sm [pext ()‘ o )] Sm [S’ €€ ] 2 m ( ) (4m)m 4»,J m QPB(p, 1/2) 5‘|

(4m)P mlp! _m mtl
22 B(p.1/2) (m )¢ o (), (D

where

S48, e,%) = Sepll) (A, exe)]

m

(4m)™ i L (m\ (4m) 1 k m\ (4m)"
te Z4n2B(n 1/2)° 2:: n—l—k( ) B(k, 1/2 S’“+Z D 4n2(n+k)<k> B(n,1/2)""

n>2
m

Sn s (4m)ntE
Y An2B(n, 1/2) 2(n+ k) B(k, 1/2)

(D.3)
evaluated on (5.14). The action Sc[péﬁ)()\, a.)| at criticality was defined in (2.21).

Proof. To proof (D.2) we split the on-shell action (2.20) into pieces and write out the series
expansion of the logarithm. This leads to

Sr(r]f) [pext(A)]
_nZ::l 4n +Z4n23n1/2 e Z4n23n1/2 ; (4m)* o
(D.4)
where (2.17)
m n+k
(m) (o) = agu” D5
= Z:: 2(n+ k)B(k, 1/2) (D-5)
and B(n,1/2) is the beta function
4n(n!)?
B(n,1/2) = . D.6
(/) = 100 D)
15t term. For the first term in the action (D.4) we find
" (2n)! (m) _ 1 (—1)m+Lt  gm )
- Qn " = —(H. m Hm
Z n Cnen =5 )+ (4m)m
n=1
n+k ”+kkz m\ (n —i— k a?g _t
n,k=10>m Tl k

m

4m)”+k 2'm7r/71
; 4n2Bn 1/2) (n+k) B(k,1/2) € +O<€ o ) (D7)
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where we used il), i2), i3) (D.14) and c2) (D.15) and H,, is the m'" harmonic number.
Additionally (D.7) contains a coupling and Z dependent part. Using (D.5) we obtain
along (D.1)

otk an ar  (Am)"* (n4+k\ &t L« an ar  (4m)"tE
2 2 4n2B(n,1/2) 2(n + k) B(k,1/2)< )(4m)2 = n%; 4n2B(n,1/2) 2(n+ k) B(k, 1/2)

n,k=1 ¢=0
N Emz ”f:k ar  (Am)"* (n4+k\ &t .
7677177‘
o 4nQB (n, 1/2) 2(n+k) B(k,1/2) (4m)t ’

(D.8)
where the case of the a’s in both sums equal to their critical value we already treated in
obtaining (D.7). For the other case using (2.13) we have

m n+k 4mk k ) - ij [

n,k=1 =1

n+1 (4m>k vk (m)  (4m)"
+ Z 4n(n—|—k {(_ " ( > B(k, 1/2)5’“+(_1)k+ n<1<;>3(n,1/2)5”]6

Sn sp (4m)nth

+nkzz 4n?B(n,1/2) 2(n+ k) B(k, 1/2) ©

(4m)~tF gt 42

m n+k s s
’ kZZ [ZI ( ) 4n2B(n,1/2) 2(n+k) B(k,1/2) (4m)t emr

(D.9)
Only the sums in the first line of (D.9) and the last sum could contribute to the leading non-
analyticity in (D.2). We treat the sums independently. For the second sum in the second
line we use that (D.15) vanishes for ¢ < m and the first non-vanishing term arises for £ = m

2m—r')/(m—r") )

proportional to el Since our leading non-analyticity grows us (’)(em/ (m”"'))7

r" =1,...,m — 2 the former is subleading with respect to the non-analyticity we are after.
For the first sum of the second line we show that for s € ’H%) U 7_[(2) LU ’H%) = 0 we have
1)ntl m) (4m)* (n + k:) izt 1
v = 0oy (41)
Z Z Sk 7 = H 7 ’H (D.10)
=i 24n n+k‘ ( B(k,1/2) l (4m) 4

We show (D.10) for £ =1 and ¢ = 2, for general ¢ > 2 the logic stays the same. For ¢ = 1/
it leads to the claimed result (D.2). For £ = 1 we have

nl (4) nl (4m)
Zzzm[ +<> B(k,1/2) ’“1 Zzzm +<> Bk, 1/2)""

n 1 k=2 k>2n 1
]. (4m m n+1 'H<1)

m H M ViGN D.11
4m B(2,1/2) z:: ( ) H (D-11)

For ¢ = 2 we have
)t (4m)* [n+k
4m2224nn—|—k< ) (k, 1/2)( 9 )k

B
ny 1 1)t 1 (n+k 2 n+ 2
_(4m) Bk1/2 ntk\ 2 ) knr2\ 2 J|*

\\/II
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ny 1 i (—1)n+! (m) (4m)* [ 1 (n+k> 2 <n+2>
(4m)? 4n n ) B(k,1/2) [n+k\ 2 E(n+2)\ 2

6(k—2) 1 (n+3 2 n+2
T2k \n+3l 2 ) T 3ma2\ 2 }S’“

1 &=t m) (dm)F 1 (k-2
- (4m)22 in <n>B(k,1/2)k:< 2 )'”“

n=1
k>3
1 & (—1)ntd (m) 5 (4m)k (k: — 2) 1 m?
_ 3 ) sk = ~HpmoH® . (D.12)
(4m)? = 2n n) i< 2kB(k,1/2)\ 2 2 42
Finally the last sum in (D.9). For any fixed ¢ it vanishes on HY UL UHETY = 0. We
start by showing this for £ = 1:
i sp (Am)"tF (n+k _ (4m)? i (4m)™s
= (n, 1/2) 2+ k) Bk, 1/2)\ 1 )~ B(2,1/2)” & 4n?B(n, 1/2)
T (4m)” (4m)F T (4m)” (4m)* (1 B 1)
+,§MZQ n2Bn 1/2) 2B(k,1/2)9 };MZQ n2Bn 1/2) B(k,1/2) \2 k&
Z 4n23(n 1/2) Z 2Bk 1/2)\ 1 )™ X< Hn

(D.13)
Now for s € 7—[(1) U H&f) we obtain non-analyticity O (em/(m_z)), i.e. K = 2. However

from (D.9) we infer a leading contribution of order O (6(2’”_3)/ (m=2))_ For m > 3 which is
the only case in which k& = 2 is allowed the exponent is therefore bigger than m/(m — 2)
and so we do not get a contribution violating O (em/ (m_2)) as a leading non-analyticity.
For ¢ > 1 the logic is the same.

Identities for harmonic numbers H,,.

n 1)tk m\ (n+k —1)mtl & (=)t 1
) S () - e () S

n,k=1 —~

m n+kk m 1

= g Ham = ). D.14
Z+k<)(k> g o = Hn) (D14
Congjectures.
A G (m) (m) (n + k:) 1
cl o,
) n,kzl = 2n(n+k)\n)\k ¢ ] (4m)*
. mom ()R g <m> (4m)" <n+ k:) 1 )
2) 1;17;2 4n(n + k) k B(n 1/2) /¢ (4m)£ et 0. (D.15)
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27d term. For the second term in (D.4) we start by rewriting the normalisation condi-
tion (2.11)

m

_ Ozn,icu”: —)™(4m) ™ (u — 4m)™ . D.16
3 g = (1" ) ) (016

Dividing both sides by 2u and integrating with respect to u and 1 > 0 we have

I & o™t ) m o (Y (u—dm)™
/ndu<2u 21417113@,1/2))_(_1) (4m) /nduzu : (D.17)

We then get

U et 1 v o1 u\™ 1 v U m\ ul?
log< /) - Zl4n2B(n,1/2) 5/ d“u(1_4m> 2 duz(_1)£<£>(4m)€

/=0
m
/
Z 57 ( ) log(u /n) . (D.18)
(=1
From this we conclude
m n m £+1 V4 m (_1)n+1 ~n n 1
Oy el m\ u T
Z n,c Z = Z em—F + —H,,. (D.19)
= 4n?B(n,1/2)  — (E) (dm)t = 2n  (4m)" 2

The # dependent term therefore exactly cancels the 4" term in (D.4).

34 term. For the third term in the on-shell action (D.4) we find for s € HYU. .. ,(;/),

following the same reasoning as in appendix C

m n m n ~r/+1 m” 12
SpU (4m) z ot (r'+1)
eZ—zeZ—sn—ki,e - ———H, . (D.20)
“= 4n?B(n, 1/2) —, 4n?B(n,1/2) (4m)r'+1 2(k+1)
Fine-tuning. We get the fine-tuning by realising that in the on-shell action (2.20) only
the first and second term are affected to order O(¢"™/(™=")) when fine-tuning az/f (D.1).
Clearly the only contribution of the second term scaling as §e™/ (m=7") ig

712::1 4n?B(n,1/2) 84]023(1), 1/2)

uu anu” (4m)P

em-7 + O <6m r'“) (D.21)

From the first term of the on-shell action (2.20) on the other side we get the contribution

(2p)! 3 . On,c (4m)n+p G n)! an c (4m)n+p e

( ) 4p22<n+p> B(n,1/2) g 4 2<n+p>B<p,1/2>)€
7) § i n+1 n (4m)17 3 i _1\n+1 m 1 6%

( nz::l ( )(n+p) B, 1/2) ;( 1 <n>4n(n+p)B(n,l/2))
B m!p! (4m) T (m\ (1)t _m
_< P2B( p,1/2 Ymtp) " (p,l/Z)Zl(n>4n(n+p))8€

( mlp! — (dm)P ) sers 4 (4m)P m

p2B( p,1/2 (m+p)!  4p2B(p,1/2) "4pB(p,1/2)

(D.22)
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E Hypergeometric functions

We collect some useful properties about (regularised, generalised) hypergeometric func-
tions. For |z| < 1, aj,as,b1 € C the hypergeometric function is defined by the power

series
o F (a1, 02313 2 i a2 ) 2ol b )b 1) = )
In particular for a; = as = by = 1 we obtain the geometric series
oFy (1,1;1;2) = Z " (E.2)

For a1,...ap,b1,...04 € Cand |z| < 1, (E.1) generalises to the generalised hypergeometric

function ) )
ai az -+ ap & a2
F, ;2| = —_ . E.3
”q[bl b2--~bq’z] ;:Obgm...bgn)n! (E3)
Finally we define the regularised hypergeometric
~ 1 ay ag -+ ap
F,=————,F o2 E.4
ptq F(bl)---F(bq)p q|f)1 by - - bq’Z] ( )

Normalisation condition m = 3. To prove the conjecture (4.11) we study

3) 20a3) 1 - 1k k903
) =4 By 1,k 14k-—2,1—2; E.
(a2, a3) fZ(Sag EESA R Ea = T S 10as ) (E.5)

along the path 7( ) (4.7). We start on the right hand side.

_ k3 k3 , _ k 391 k3
B(1,l-kkloo>-22)= 1 (1,1 —kkipo—=, 2P 22 (B
3 2<7 kaka 2a2 274) (ph;g)l*)13 Q(a kakap2 2, 2 274) ( 6)

Using the definition of the regularised hypergeometric function (E.4) we obtain

) k 3p1 k3 1
O S 1) R vy oy

S (3 KOk — 1),
X <1+gz_:1( 1) <4> e, (E—n—Sﬂ> (k_n_m)), (E.7)

n=0

where (k), is the falling factorial

(k)e = m : (E.8)
leading to
k=1 kL gyt T'(k+0)
k: + 1) & 3% IT(k—Or2+20— k)

ul® (as, a3)!7£3> 12 Z
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We are left to show for k > 1

(=D = gy Lk +0) v (1/3
12— — — =—-12(—-1 . E.1
I'(k+1) ;:;)( 3) 31T (k — OT(2+ 20 — k) (=1) k (E-10)
By writing out the fractional binomial coefficient we obtain
1/3 I(4/3) (-D* T
—12(=1)* = —12(—1)F =12~ TJ[(1-3n). (E11
(=1) ( k ) S RS eV 3FT (% + 1) nl;[O( 3n). (E.11)

The last product we write in terms of stirling numbers s (n, k) for the first kind. The Stir-
ling numbers s1(n, k) enumerate (—1)"* times the number of partitions of the symmetric
group S, with exactly k cycles. By definition, they are also the coefficients of the falling

factorial
n

@)p=z(z—D)(z—-2)---(x—n+1)= Z si(n, k)zk . (E.12)
k=0
Applying this to the product in (E.11) with 2 = 1/3 we find

k—1 k+1
[[(1-3n)=(1-3)(1-3%x2)(1-3x3)---(1-3(k—1))=>_ 3" s(k+1,n)
n=0 " n=0
=Y 3"si(k+1,k+1-n), (E.13)
n=0

where in going to the last line we substituted n — k — n + 1. We now define

Lkzzk:3”sl(k+1,k+1—n), szk!isn(_l)n<”+k>< " ) (E.14)

k _
= o 3 n k—n

We show that both expressions satisfy
Ly=(1-3k)Ly—1, Rr=1-3k)Rx—1, k>1. (E.15)
We start with L. Using the recursion relation for the Stirling numbers
si(k+1,n+1)=s1(k,n) —ksi(k,n+1), (E.16)

and s1(k,0) = 0 we find

k k k
Ly=) 3"s1(k+1k+1-n)=) 3"si(k,k—n)—k> 3"si(k,k+1—n)

n=0 n=0 n=0
k—1 k

= 3"s1(k,k—n)+3"s1(k,0) = k> 3"si(k,k+1—n)=(1—-3k)Lp_y. (E.17)
n=0 n=0

We now show the same recursion equation for R;. We have

A e N e AW AR A N G LA (=3 2
Rk:k!nzzog 3F ( n )(k—n) ~ (=1/3)! (_3”)!_ (—1/3)!F<k+3>
(E.18)
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which implies
1 (—3)F ( 4 ) 1 (-3)k ( 1 ) 1
Rpoy=——r2 (CgkVl=o 2 P hk)=—" Ry. (Bl
R Y Y A 3130 \ 37" 1 (B9
Since Ly = Ry and L1 = Ry so (E.15) completes the proof.

On-shell action m = 3. We now also rewrite the regularised hypergeometric appearing
in (4.15). Following the same logic as for the normalisation condition we have

k

i 1 k. k3 3n kD (k +n)
B(1,—kki———1-22) =S (1) E.
K 2(’ Mgy 2’4) nz::l( ) 2k /al(1+2n—kI(1—n+k)’ (E-20)

and consequently we can write F®)(ag, as) along 'y£3) as
S (CDF RS () TR+ 0)

JT"('?’) (a27a3) ’ (3) = — Z Z
s = 3T (k +3) & T(k— OT(3 + 20 — k)

(k+0tk.  (E.21)

Comparing to the normalisation condition (E.10) we thus indeed obtain the scal-
ing ~ k—10/3,
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