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1 Introduction

The duality covariant formulation of gauged supergravities in various dimensions [1–4]
(see [5, 6] for reviews), based on the notion of the embedding tensor [7–9], has provided a
valuable tool for discovering new superstring/M-theory compactifications and their duality
connections. A consistent truncation of the low-lying modes of superstring/M-theory, in
certain compactifications to D-dimensions, is captured by the an effective D-dimensional
extended supergravity theory whose Lagrangian typically exhibits characteristic minimal
couplings, associated with a gauge group G, Yukawa terms and a scalar potential. All
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these features of the effective low-energy description depend on general characteristics of
the higher-dimensional background, such as the geometry of the internal manifold Mint
and various kinds of fluxes which are present in the solution. Interestingly they can be
all encoded in a single object called the embedding tensor. This tensor is formally covari-
ant with respect to the on-shell global symmetry group G (sometimes referred to as the
duality group) of the corresponding ungauged version of the same theory, namely of a D-
dimensional supergravity with the same amount of supersymmetry and field content but no
minimal couplings. Although the presence of minimal couplings typically breaks G, formal
G-invariance of the field equations and the Bianchi identities are preserved, provided the
embedding tensor is transformed together with all the other fields.

As far as maximal supergravities are concerned, the on-shell global symmetry group
is of exceptional type G = E11−D. In these cases a direct relation between certain gauged
models and superstring/M-theory can be established within the framework of Exceptional
Field Theory (ExFT) [10–13]. The latter provides a manifestly E11−D-covariant descrip-
tion of 11-dimensional and Type-II supergravities and shows how to embed certain D-
dimensional gauged supergravities within the higher-dimensional ones, as consistent trun-
cations, through a generalized Scherk-Schwarz ansatz [14]. Recently, this framework has
also proven to be very useful in performing Kaluza-Klein spectrometry for those compacti-
fications fitting into the generalized Scherk-Schwarz ansatz [15, 16]. As a key simplification,
the construction only relies on the scalar harmonics, corresponding to the maximally sym-
metric point of the lower dimensional supergravity.

Over the last ten years or so, new classes of gaugings were found in four-dimensions,
which involved, in a standard symplectic frame, magnetic components of the embedding
tensor (dyonic gaugings) [17–19]. While some of these models are constructed by gauging
a same simple gauge group of the form SO(p, q) in different frames, others involve non-
semisimple gauge groups and have the general form [SO(p, q) × SO(p′, q′)] n N , with N

being a subgroup generated by nilpotent generators. The dyonic nature of the latter
gaugings (i.e. the non-vanishing magnetic components of the embedding tensor) is encoded
in a deformation parameter c which if non-vanishing can always be set to a fixed value
by field redefinitions, e.g. c = 1. All these gaugings generalize their electric simple and
semi-simple counterparts [20, 21] (the non-semisimple gaugings, for c = 0, reduce to the
electric CSO(p, q, r) gaugings).

As was shown in a series of works, the non-semisimple dyonic gaugings can be embed-
ded in Type II supergravity. For example, the dyonic ISO(7)-model was shown to be a
consistent truncation of massive Type IIA supergravity [22] on a background of the form
AdS4×S6 [23–28]. The general embedding of the models featuring non-semisimple dyonic
gaugings within Type II supergravities was derived, employing the ExFT framework, in [29].

Here we are interested in the four-dimensional maximal supergravity with dyonic
gauging

G = [SO(6)× SO(1, 1)] nR12 , (1.1)

which features AdS4 vacua with N = 0, 1, 2 and 4 supersymmetries [29–32]. Some of these
were lifted to Type IIB S-folds of Janus solutions, which have a spacetime geometry of
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the form AdS4 × S1 × S5, with S5 being a deformed five-sphere. These backgrounds are
characterized by a monodromy MS1 around the non-contractible S1 with radius T

2π , with
MS1 a hyperbolic element of the SL(2,Z)IIB duality group. In other words, these solutions
feature different local geometric descriptions patched together by a non-perturbative Type
IIB S-duality transformation. They can also be constructed as suitable quotients of Janus-
like solutions in Type IIB [33, 34].

The N = 4 vacuum with SO(4) residual gauge symmetry was found in [30] and uplifted
to Type IIB theory in [29]. The N = 0, 1 vacua were discovered in [31]. The N = 0
vacuum with symmetry SU(4) and the N = 1 one with symmetry SU(3) were uplifted, in
the same work, to ten-dimensional S-folds of type IIB. In [32], a new family of N = 2 U(1)2

symmetric vacua was found. The vacua of this family are labeled by a continuous, non-
compact parameter χ.1 At χ = 0 the residual gauge symmetry is enhanced to SU(2)×U(1)
and the type IIB uplift at this particular value was found in the same work.

The corresponding S-fold solutions are conjectured to be holographically dual to in-
terface super-Yang Mills theories in D = 3. Interesting examples are given in [37], where
a class of S-fold N = 4 AdS4 ×K6 solutions with compact K6 internal manifold is given.
Following the authors, these solutions can be obtained as quotients of known non-compact
ones, with the quotient defined by an SL(2,Z)IIB action on the latter. Furthermore, by
translating this procedure on the corresponding N = 4 CFT3 Janus-type theories [38, 39],
they were able to find strong candidates for their SCFT3 duals.

Let us now summarize and briefly discuss the results of the present paper. By employ-
ing the ExFT methods, we perform a Kaluza-Klein analysis on the U(1)2-symmetric N = 2
family of vacua found in [32]. We perform their uplift to Type IIB S-fold solutions of the
whole 1-parameter N = 2 family. In particular, we give χ a geometrical interpretation as a
10-dimensional metric modulus. We find that the dependence on χ of the type IIB solution
can be interpreted as a global twist in the internal geometry, and, in particular, involving
a squashed S3 submanifold of the deformed S5, which is fibered over S1. This fibration
involves a non-trivial twist of the points of S3, as we move around S1, which depends on χ.

The way this occurs can be understood as follows. Let us denote by η the compact
S1 coordinate, in the interval [0, T ), and by α, β γ the three angular coordinates of the
deformed S3. For χ = 0, a generic point of the latter manifold, is described by the SU(2)
group element g(α, β, γ). The metric of the internal manifold features an SU(2) isometry
group acting from the left while the squashing of S3 breaks the SU(2)′ isometry which, in
the round S3, would act from the right on the same element, to a U(1)′ subgroup of it. For
χ 6= 0 the fibration of S3 over S1 is affected by redefining the SU(2) element describing a
point in S3 as follows:

g(α, β, γ) → g(α′, β′, γ′) = h(η) · g(α, β, γ) , h(η) ≡
(

cos(χη) sin(χη)
− sin(χη) cos(χη)

)
. (1.2)

1In fact this family of vacua will feature at least two moduli fields, as the conformal manifold ought to
be complex. The supergravity moduli fields are expected to be a subset of the four scalar massless modes
found in [32]. Recently a 2-parameter extension of the N = 2 vacua studied here was constructed in [35, 36].
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Locally this change can be reabsorbed in a reparametrization of S3 × S1 {α, β, γ, η} →
{α′, β′, γ′, η′}, where η′ = η and α′, β′, γ′ are defined by the matrix equation in (1.2).

In fact, as we shall prove, the D = 10 S-fold solutions corresponding to the χ 6= 0
vacua are locally related to the one associated with the χ = 0 vacuum by the above
reparametrization, although globally different. In particular, χ only enters through the
dependence of the fields on the point of the squashed S3 and thus does not affect the
axion-dilaton field.

Note that the matrix h(η) in (1.2) induces a non-trivial monodromy h(T ) as η → η+T
which breaks the SU(2) internal isometry of the χ = 0 solution, to the U(1) subgroup
commuting with h(T ). From the expression of h(η) it follows that for χ = 2π

kT , with k

positive integer, the monodromy matrix h(T ), acting on g(α, β, γ) from the left, generates
the Zk cyclic group and, if k = 1, 2, the SU(2) isometry is unbroken.2

We are also able to relate χ with a complex structure modulus associated with the
internal submanifold S3×S1. Indeed, writing S3 as a Hopf fibration of a circle over S2 and
combining the circular fibre with the external S1 into a 2-torus T 2, the manifold S3 × S1

can be written as a toroidal fibration over S2. We show that χ defines the real part of
the modular parameter of the toroidal fiber T 2 and, due to the invariance of the complex
structure of the torus under a Dehn twist, χ has period 2π

T .
All these global properties of the D = 10 background, associated with the χ parameter,

cannot be seen from the four-dimensional supergravity perspective, but are apparent from
the analysis of the Kaluza-Klein spectrum of these vacua, which we perform. At the special
values χ = πm

T , m ∈ Z, two vectors in the full KK spectrum, but outside the supergravity
truncation, become massless, thus enhancing U(1)2 to SU(2)×U(1)′. This corresponds to
a space invaders scenario [40, 41]. Moreover, for vacua related by the shift χ→ χ+ 2π

T , the
entire Kaluza-Klein spectrum is identical, although differently distributed over the S1×S5

KK levels along the lines described in [42],3 while for χ = π
T , the Kaluza-Klein spectrum

differs. This is consistent with the fact, outlined above, that the internal Z2-monodromy
generated by h(T ), for χ = π

T , is non-trivial, while still commuting with SU(2).
As far as the dual 3-dimensional theory is concerned, we can still rely on the construc-

tions put forward in [43], building on [37]. One of these possibilities involves the strong
coupling regime of the T[U(N)] theory by Gaiotto-Witten [44] in which the U(N)×U(N)
global symmetry is gauged by a U(N) N = 2 vector multiplet, so as to preserve N = 2
supersymmetry in the IR limit. The parameter χ would parametrize a further exactly
marginal deformation of this N = 2 model, thus defining a direction in the conformal
manifold of the dual theory. Our analysis, unveiling the compact nature of χ, sheds some
light on the global properties of the conformal manifold.

The paper is organized as follows. In section 2, after a brief description of the gauged
four-dimensional supergravity under consideration, we review the general features of the
1-parameter family of N = 2 vacua and give the corresponding supermultiplet structure
of the supergravity fields. In section 4, we perform the Kaluza-Klein analysis on the

2For k = 2 the SU(2) group commutes with Z2, since Z2 is its center.
3More precisely, this shift in χ can be reabsorbed in a redefinition of the Kaluza-Klein level n on S1.
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same vacua giving the bosonic mass spectrum up to level 3 and general mass formulae. In
section 5, using the ExFT approach, we uplift the family of N = 2 vacua to S-fold solutions
in Type IIB supergravity, we elaborate on the geometric interpretation of χ. We conclude
with a final discussion.

2 The gauged D = 4 supergravity

In this section we describe the general structure of the four-dimensional supergravity we
shall be working in.

Maximal supergravity in four dimensions only describes a gravitational multiplet con-
sisting of the graviton, 8 gravitini, 28 vector fields, 56 spin-1/2 fields and 70 scalars span-
ning the scalar manifold E7(7)/SU(8). The on-shell global symmetry group of the un-
gauged model is E7(7) which acts as an electric-magnetic duality group on the 28 vector
fields strengths and their magnetic duals. This duality action is defined by the symplectic
56-dimensional representation of E7(7). We shall be working in the symplectic frame in
which the off-shell global symmetry group is SL(8,R) ⊂ E7(7) (SL(8,R)-symplectic frame).
If A,B = 1, . . . , 8 label the fundamental 8-dimensional representation of this group, the
28 electric vector fields A[AB]

µ and their magnetic counterparts A[AB]µ,4 are labeled by
the antisymmetric couple [AB]. These fields are conveniently described by a symplectic
56-component vector AMµ , M = 1, . . . , 56, of the form: AMµ = (A[AB]

µ , A[AB]µ).5 The gen-
erators of E7(7) consist of the SL(8,R) generators tAB and generators tABCD = t[ABCD] in
the representation 70 of the same group.

The gauged theory with gauge group G is obtained by promoting G, subgroup of
E7(7), from a global symmetry group to a local symmetry one according to a well-defined
procedure which ensures the N = 8 supersymmetry of the resulting model. This procedure
implies the introduction of additional terms in the Lagrangian, which include a scalar
potential, and in the supersymmetry transformation laws of the fermion fields [2, 20].

In the symplectic-covariant formulation of the gauging procedure, the gauge algebra
is described by a 56-component symplectic vector of generators XM , M = 1, . . . , 56, each
represented by a matrix (XM )NP in the symplectic 56-dimensional representation of the
E7(7) generators:

XMN
PCQP = XMQ

PCNP , (2.1)

where CNP is the antisymmetric 56×56 symplectic invariant matrix and XMN
P ≡ (XM )NP

is formally an E7(7)-tensor encoding all information about the embedding of the gauge
algebra within the global symmetry one. It is therefore also called the embedding tensor.
All the additional terms, required by the gauging procedure, in the Lagrangian (Yukawa
terms and scalar potential) and in the supersymmetry transformation laws are expressed
in terms of XMN

P .

4They are required for a manifest duality covariant formulation.
5For the SL(8,R) ⊂ E7(7) indices we use the notation that contraction over an antisymmetric couple

[AB] should be multiplied times a factor 1/2: VM WM = 1
2 (V[AB]W

[AB] + V [AB]W[AB]).
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The gauge connection is defined as follows:

Ωg µ ≡ g AMµ XM = g

2
(
A[AB]
µ X[AB] +A[AB]µX

[AB]
)
, (2.2)

where g is the gauge coupling. Besides A[AB]µ, also a set of antisymmetric 2-forms Baµν ,
a = 1, . . . , 133, transforming in the adjoint representation of E7(7), has to be introduced.
This is a redundant description of the field content which is required when we gauge a
group G using vector fields which are not electric in the symplectic frame of the original
ungauged Lagrangian.

A set of linear and quadratic constraints on XMN
P guarantee the consistency of the

gauging and in particular the existence of a symplectic frame in which the vector fields
gauging G are electric.

The scalar potential in terms of the embedding tensor reads:

V (φ) = g2

672 M
MN

(
MPQMRS XMP

RXNQ
S + 7 Tr(XM XN )

)
. (2.3)

The symplectic, symmetric matrix MMN (φ) is defined in terms of the coset representative
V(φ)MN of the scalar manifold in the representation 56 of E7(7) as follows:

MMN (φ) ≡ V(φ)MAV(φ)NA ∈
E7(7)
SU(8) , (2.4)

where here and in the following we denote by A, B = 1, . . . , 56 the SU(8) indices labeling
the 28 + 28 representation and summation over A, in the above formula, is understood.
In (2.3) MMN describes the inverse matrix of MMN . The gauging procedure requires
XNM

P to transform in the 912 representation of E7(7) (linear constraint) and to satisfy
quadratic constraints which express the invariance of it under the action of the gauge group.

We shall consider the gauged model in which the gauge group has the
form [17, 29, 31, 32]:

G = [SO(6)× SO(1, 1)] nR12 . (2.5)

In the SL(8,R)-symplectic frame the embedding tensor XMN
P of the gauging reads:

X[AB], [CD]
[EF ] = −X[AB]

[EF ]
[CD] = 8 δ[E

[AθB][Cδ
F ]
D] ,

X [AB]
[CD]

[EF ] = −X [AB] [EF ]
[CD] = 8 δ[A

[Cξ
B][Eδ

F ]
D] ,

(2.6)

where
θAB = diag(1, 1, 1, 1, 1, 0, 0, 1) , ξAB = diag(0, 0, 0, 0, 0, 1,−1, 0) . (2.7)

Note that the “magnetic” vectors A[AB]µ are involved in the gauge connection.
In our discussion about this model, we shall follow, unless stated otherwise, the no-

tations of [32]. The model features anti-de Sitter vacua with supersymmetry N = 0, 1, 2
and 4. We shall focus below on the N = 2 class of vacua, compute the (bosonic) Kaluza-
Klein spectrum on them and eventually provide their uplift to D = 10. Following [32], the
vacua we are interested in can all be described within a Z3

2-invariant sector [26, 45] which
describes an N = 1 supergravity coupled to seven chiral multiplets with complex scalars
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zi = −χi + i e−ϕi , i : 1, . . . , 7. The coset representative, in a suitable basis of the E7(7)
generators, is chosen to be:

V = exp
( 7∑
i=1

χiei

)
· exp

( 7∑
i=1

ϕihi

)
∈
[ SL(2)

SO(2)

]7
⊂

E7(7)
SU(8) , (2.8)

where the generators hi, ei satisfy the relations [hi, ej ] = δij ej , [ei, (ej)t] = 2δij hi. They
are related to the generators gχi , gϕi in [32] as follows: hi = gϕi/4, ei = −12 gχi .

2.1 The N = 2 vacua

We shall focus our discussion to the N = 2 vacua, defined by the following expectation
values for the scalars zi:

z1 = −z3 = −χ+ i√
2
, z2 = z4 = z6 = i , z5 = z7 = 1√

2
(1 + i) . (2.9)

This family of vacua is parametrized by a continuous parameter χ. From a low energyD = 4
supergravity perspective, this parameter takes values in R. It describes an SU(2) × U(1)-
invariant vacuum only when χ = 0. In general, for χ 6= 0, the vacuum posses a U(1)2

residual gauge symmetry. As we shall see, this picture is strongly modified when considering
the whole KK spectra of these backgrounds, or, equivalently, the corresponding D = 10
solution. This analysis will show that χ is in fact periodic of period 2π/T .

2.1.1 U(1)2 symmetric vacua

In this case, there must be a massless gravity multiplet. It contains two gravitini with
m2 = 1 (massless in the corrected sense, where all masses are normalized in units of
1/L =

√
−V0/3 = g) and one massless vector. Hence, only one massless vector multiplet

must be considered with the other vectors being massive. Furthermore, they must come
in pairs with opposite R-charges in order to fit into u(1)R representations. The remaining
fields live in pairs of matter multiplets. The spectrum is organized into the following
OSp(2|4) supermultiplets

A1Ā1[1](0)
2 ⊕ LĀ1

[1
2
](1)

5
2
⊕ A1L̄

[1
2
](−1)

5
2

⊕ 4× LL̄
[1

2
]0

1
2 +
√

2+χ2 ⊕A2Ā2[0](0)
1

⊕ LB̄1[0](2)
2 ⊕B1L̄[0](−2)

2 ⊕ 2× LL̄[0](0)
1
2 + 1

2

√
1+16χ2

⊕ 2× LL̄[0](0)
1
2 + 1

2
√

17 .
(2.10)

We refer to appendix A for notation and details on these multiplets.

2.1.2 SU(2)×U(1) symmetric vaccum

At the supergravity level, when χ = 0, some of the long multiplets in (2.10) reach the
unitarity bound and the following branching rule applies

LL̄[0](0)
1
2 + 1

2

√
1+16χ2

χ→0−→ A2Ā2[0](0)
1 ⊕ LB̄1[0](2)

2 ⊕B1L̄[0](−2)
2 . (2.11)

The resulting shortened multiplets join their copies in (2.10) to combine into an SU(2)
vector. In particular, two massive vectors become massless and join into the gauge vectors
of the enhanced SU(2) symmetry.
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3 Embedding the model in ExFT

In this section, we shall use the framework of E7(7)-exceptional field theory (ExFT) [11]
to uplift the one-parameter N = 2 family of vacua to D = 10 backgrounds of Type IIB
supergravity. ExFT is a reformulation of 10-/11-dimensional supergravity, which unifies
the metric and flux degrees of freedom within a manifestly E7(7) covariant formulation. Its
bosonic field content {

gµν ,MMN ,AµM
}
, µ = 0, . . . , 3 ,

M = 1, . . . , 56 ,
(3.1)

contains an external and an internal metric gµν , MMN , respectively, with the latter
parametrizing the coset space E7(7)/SU(8), together with vector fields, AµM , transforming
in the 56 of the group E7(7).

E7(7)-ExFT is defined on an extended spacetime spanned by the four-dimensional co-
ordinates xµ, µ = 0, 1, 2, 3, and 56 internal ones YM , M = 1, . . . , 56, in the representation
56 of E7(7), subject to section constraints which are satisfied if the fields are restricted to
the original D = 11 or IIB coordinates. The IIB diffeomorphisms and gauge symmetries
combine into generalized diffeomorphisms on this extended spacetime. In order to perform
the uplift of AdS4 vacua, we only need the fields gµν(x, Y ) and the generalized metric
MMN (x, Y ) of the theory, the vector and tensor fields being consistently set to zero in
this background. These fields are related to their counterparts gµν(x), MMN (φ(x)) of the
four-dimensional supergravity described in section 2, using the generalized Scherk-Schwarz
ansatz [14]:

gµν(x, Y ) = ρ(Y )−2 gµν(x) ,
MMN (x, Y ) = UM

K(Y )UNL(Y )MKL(φ(x)) ,
(3.2)

where the twist matrix UMN (Y ) is associated with the gauging of the lower dimensional
theory and defines the embedding of the latter within the ExFT. The relationship between
UM

N (Y ) and the constant embedding tensor XMN
P (2.6) in the four-dimensional theory is:

U−1
M
RU−1

N
Q∂R UQ

P
∣∣∣
912

= ρ

7 XMN
P , (3.3)

with the scalar function ρ = ρ(Y ) from (3.2). Equivalently, this condition is expressed
as [46]

LUMUN = XMN
P UP , (3.4)

via the action of generalized diffeomorphisms, where the UM denote the generalized (56-
dimensional) vectors

(UM )N = ρ−1(U−1)MN , (3.5)

given by the columns of the inverse twist matrix.
In our case, the twist matrix UM

N (Y ) is an element of the SL(8,R) subgroup of
E7(7) and, in the symplectic basis of the 56 representation in which SL(8,R) is diagonally
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embedded, reads:

UM
N (Y ) =

(
U[AB]

[CD](Y ) 0
0 U [EF ]

[GH](Y ) = U−1
[GH]

[EF ](Y )

)
, (3.6)

where the 28 × 28 matrix U[AB]
[CD](Y ) is expressed in terms of the 8 × 8 one UAB(Y ),

which describes the same SL(8,R) element in the representation 8, as follows:

U[AB]
[CD] = 2U[A

[C UB]
D] . (3.7)

To embed Type IIB supergravity in ExFT we need the branching of the relevant
E7(7) representations with respect to the subgroup SL(6,R)×SL(2,R)IIB×SO(1, 1), where
SL(2,R)IIB is the global symmetry group of the Type-IIB:

56 → (6′,1)−2 + (6,2)−1 + (20,1)0 + (6′,2)+1 + (6,1)+2 , (3.8)

the subscript being the SO(1, 1)-grading. Correspondingly YM splits as follows:

YM → ym , yαm , ymnp , y
αm , ym , (3.9)

where m,n, p = 1, . . . , 6 and α = 1, 2 labels the components of an SL(2,R)IIB doublet.
Restricting the ExFT fields to the ym coordinates only, the section constraints are satisfied
and the field equations of ExFT reduce to those of Type IIB supergravity. To identify the
above components of YM with the components of the same vector in the basis Y [AB], Y[AB]
it is necessary to further split the SL(6,R) representations with respect to its SL(5,R) ×
SO(1, 1) subgroup, so that yi, i = 1, . . . , 5, are identified with Y [i8] while y6, to be denoted
by ỹ, is identified with Y[67], and we can write (ym) = (yi, ỹ). We refer to [29] and [31, 32]
for the detailed correspondence between the quantities in the decomposition (3.9) and the
components Y [AB], Y[AB].6 The explicit form of (the inverse of) UAB(ym) is given in [29].

To express the components of the matrix MMN (x, y), y ≡ (ym), in terms of D = 10
fields we further need the decomposition of the 133 of E7(7), which branches as follows

133→ (1,2)+3 + (15′,1)+2 + (15,2)+1 + (35 + 1,1)0 + (1,3)0

+ (15′,2)−1 + (15,1)−2 + (1,2)−3 , (3.10)

with the E7(7) generators splitting accordingly into

{tα , tmnpq , tαmn , tmn , tαβ , tαmn , tmnpq , tα} . (3.11)

Next we writeMMN (x, y) in (3.2) as

M(x, y) = VIIB(x, y) · VIIB(x, y)t ,

where VIIB(x, y) is a representative of the coset E7(7)/SU(8) in the solvable gauge which is
appropriate to the Type IIB theory [47, 48]:

VIIB(x, y) = et
αBα · e

1
24 t

mnpq Cmnpq · e
1
2 t
αmn Bαmn · V2 · V6 , (3.12)

6As opposed to the notations used in [32], here we label by an upper (or lower) index m a vector
transforming in the 6′ (or 6) representation of SL(6,R).
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where Bα are the scalars dual in D = 4 to Bαµν , Cmnpq are the internal components of
the 4-form, Bαmn are the internal components of the 2-forms, V6 is the representative of
GL(6,R)/SO(6) and V2 that of SL(2,R)IIB/SO(2), depending on the D = 10 axion C0 and
dilaton φ fields. In our notations the doublet of ten dimensional 2-forms Bα

(2) is defined in
terms of the NS-NS and R-R fields B(2), C(2) as follows: Bα

(2) = εαβ Bβ (2) = (B(2), C(2)).7

After having computed the matrix M(x, y) on the N = 2 vacua, the internal metric
Gmn(y), the internal components of the 2-forms Bα

mn = εαβ Bβmn, and the internal compo-
nents of the 4-form Cmnpq in the D = 10 solution, can be computed as follows [29, 31, 32]:

Gmn = G
1
2Mmn ,

Bα
mn = G

1
2Gmpε

αβMp
βn ,

Cmnpq −
3
2εαβB

α
m[nB

β
pq] = −G

1
2GmrMr

npq ,

mαβ = 1
6G

(
MmnMαmβm +Mm

αnMn
βm

)
, (3.13)

where G ≡ det(Gmn). The matrixmαβ is an element of SL(2,R)IIB/SO(2) and is defined as:

mαβ ≡ (V2 · V t2)αβ = 1
Im(τ)

(
|τ |2 −Re(τ)
−Re(τ) 1

)
, (3.14)

where τ ≡ C0 + i e−φ. In next section we shall perform the Kaluza-Klein analysis on the
N = 2 vacua and in section 5, using the above formulas, we shall give the corresponding
class of one-parameter D = 10 solutions.

4 The N = 2 Kaluza-Klein spectrum from ExFT

4.1 ExFT spectroscopy

The ExFT formulation of supergravity not only provides a powerful tool for uplifting
lower-dimensional solutions, but also for computing the Kaluza-Klein spectra around the
resulting higher-dimensional backgrounds. The formalism has been set up in [15, 16] and
here we briefly review the relevant formulas. As a general structure, the Kaluza-Klein
fluctuations around such a background are expressed as a product of the modes of the
consistent truncation (3.2) captured by the U matrix, with a complete basis of functions
on the compactification manifold. In the case at hand, the basis of functions {YΣ} can be
chosen to be a tensor product of the scalar harmonics on the round S5 with a standard
Fourier expansion on S1. More precisely, we can use the following basis for harmonics

YΣ =
{
Yσ ⊗ Y(n)

}
, (4.1)

where
Yσ = {Ya, Ya1a2 , . . . , Ya1...an , . . .} , ai = 1, . . . , 6 , (4.2)

7In our conventions ε12 = ε12 = +1.
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are the sphere harmonics on S5 constructed as traceless symmetric products Ya1...an =
Y((a1 . . .Yan)), in terms of the fundamental harmonics, Ya, on S5, which satisfy YaYa =
1, and

Y(n) = exp
(2π i n

T
η

)
, (4.3)

are the S1 harmonics with periodicity η = η+T of the S1 coordinate η . The harmonics are
related to the twist matrices from (3.2) by a linear action of generalized diffeomorphisms

LUMY
Σ = −TMΣ

Ω YΩ , (4.4)

with gauge parameters (3.5), see [15, 16] for details. For the following, we simply note that
this relation defines a set of constant matrices (TM )Σ

Ω, satisfying the algebra

[TM , TN ] = XMN
P TP , (4.5)

which realizes the embedding tensor XMN
P as structure constants. For the specific twist

matrix UMN (Y ) defined above, the matrices (TM )Σ
Ω acting on the harmonics (4.1) have

the following non-zero entries

TABc1...cnd1...,dn = 2n t[A((c1tB]((d1
δc2d2

. . . δ
cn))
dn)) , T 67,(n)

(m) = 2π i n
T

δ
(n)
(m) , (4.6)

where the matrix

tA
c =


δA,c A ≤ 5
δA−2,c A = 8

0 A = 6, 7
, (4.7)

takes care of the embedding of the harmonics into the basis used to define UMN (Y ).
The fluctuation Ansatz of the ExFT fields (3.1) around an AdS4 vacuum extends the

Ansatz for the consistent truncation (3.2) and is given by [15, 16]

gµν(x, y) = ρ−2
(
g̊µν(x) +

∑
Σ
YΣ hµν,Σ(x)

)
,

AµM (x, y) = ρ−1 (U−1)AM
∑
Σ
YΣAµ

A,Σ(x) ,

MMN (x, y) = UM
AUN

B
(
δAB + PAB,I

∑
Σ
YΣjI,Σ(x)

)
,

(4.8)

where the Kaluza-Klein fluctuations for the metric, vector fields and scalars are labeled
by hµν,Σ(x), AµA,Σ, and jI,Σ ∈ e7(7) 	 su(8), respectively. The twist matrix UMA appear-
ing in (4.8) is obtained from the twist matrix from (3.2) upon dressing with the scalar
matrix of the four-dimensional supergravity, VMA ∈ E7(7)/SU(8), evaluated at the scalar
configuration specifying the N = 2 vacuum as

UM
A(y) = UM

N (y)VNA . (4.9)

The scalar fluctuations in (4.8) moreover appear under projection PAB,I , with I = 1, . . . , 70,
over the non-compact E7(7)-generators resulting from the expansion of the group element
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MMN on the 70-dimensional coset space E7(7)/SU(8). The normalization of PAB,I is
not relevant since it drops out of the mass matrix when normalized relative to the scalar
kinetic term.

Evaluating the ExFT field equations from [11] with the fluctuation Ansatz (4.8) induces
the mass matrices for the bosonic Kaluza-Klein spectrum which are expressed in terms of
the embedding tensor XMN

P from (2.6), and the matrices T from (4.4), (4.6), both dressed
by the scalar vielbein VMA as

XAB
C = (V−1)AM (V−1)BN XMN

P VPC ,
TAΣ

Ω = (V−1)AM TMΣ
Ω .

(4.10)

The mass matrices are obtained by linearizing the ExFT field equations with the fluctuation
ansatz (4.8) [15, 16], and we give them in compact form as

M(spin-2)
ΣΩ = −(TATA)ΣΩ ,

M(vector)
AΣ,BΩ = (ΠΠT )AΣ,BΩ ,

M(scalar)
IΣ,JΩ =M(0)

IJ δΣΩ + δIJ M
(spin-2)
ΣΩ +NIJC TC,ΣΩ −

1
6(ΠTΠ)IΣ,JΩ .

(4.11)

The tensors appearing in these expressions are given by

ΠAΣ,IΩ = δΣΩXAC
D PCD,I − 12PAD,I TDΩΣ ,

NIJC =− 4
(
XCA

B + 12XAB
C
)
PAD [IPBDJ ] ,

M(0)
IJ = 1

7
(
7XAE

FXBF
E +XAE

FXBE
F +XEA

FXEB
F +XEF

AXEF
B
)
PAD,I PBD,J

+ 2
7
(
XAC

EXBD
E −XAE

CXBE
D −XEA

CXEB
D
)
PAB,I PCD,J . (4.12)

In particular, the matrixM(0)
IJ is the mass matrix derived from the scalar potential of D = 4

supergravity, describing the masses of the 70 scalars at the lowest Kaluza-Klein level. The
corresponding mass formulas for the fermionic sector have been worked out in [49].

4.2 The Kaluza-Klein spectrum around the N = 2 backgrounds

Before applying the ExFT technology to the family of N = 2 vacua of interest, let us first
work out to which extent the structure of the spectrum is constrained from the representa-
tion structure of the underlying supergroup OSp(N|4). The generic supermultiplet of this
group is of long type

LL̄[J ](R)
∆ , J = 0, 1

2 , 1 , (4.13)

with J referring to the Lorentz spin of the highest weight state (HWS), such that its
different values in (4.13) correspond to the long vector, gravitino, and graviton multi-
plets, respectively. Labels ∆, and R refer to the conformal dimensions and the U(1)R
R-symmetry charge of the HWS, respectively. Unitarity implies a lower bound for the
conformal dimension

∆ ≥ 1 + |R|+ J . (4.14)
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When the bound is saturated, the long multiplet decomposes into shortened multiplets.
We refer to appendix A for notation and details on these multiplets and the shortening
patterns.

The presence of an S1 factor in our backgrounds implies that all masses continuously
depend on the inverse circle radius. Only at generic values of the radius, the spectrum thus
necessarily assembles into long multiplets (4.13). At specific values of the inverse radius
(and in particular for the zero modes on the circle) some of the long multiplets fall to the
unitarity bound (4.14) and decompose into shortened multiplets.

To make the results explicit, let us recall the character/partition function of the long
multiplets (4.13), given by

Z
LL̄[0](R)

∆
= Z0[∆, R]

≡ t∆uR
(

1−
√
t

√
z

u

)(
1−
√
t

1√
z u

)(
1−
√
t
√
z u
)(

1−
√
t
u√
z

)
,

Z
LL̄[ 1

2 ](R)
∆

= Z 1
2
[∆, R]

≡ −t∆uR
(√

z + 1√
z

)(
1−
√
t

√
z

u

)(
1−
√
t

1√
z u

)(
1−
√
t
√
z u
)(

1−
√
t
u√
z

)
,

Z
LL̄[1](R)

∆
= Z1[∆, R]

≡ t∆uR
(
z + 1 + 1

z

)(
1−
√
t

√
z

u

)(
1−
√
t

1√
z u

)(
1−
√
t
√
z u
)(

1−
√
t
u√
z

)
.

(4.15)

cf. appendix A. Here, exponents of t, u, and z count the conformal dimension, R-charge,
and Lorentz spin, respectively. Following the above discussion, the partition function for
the full Kaluza-Klein spectrum can thus be written in the form

ZKK = ν0 Z0[0, 0] + ν1/2 Z 1
2
[0, 0] + ν1 Z1[0, 0] , (4.16)

with the characters ν0, ν1/2, ν1, carrying the HWS of the long multiplets.
Except for the masses, the remaining quantum numbers of the spectrum can be inferred

from the fluctuation ansatz (4.8), upon multiplying the fields of N = 8 supergravity with
the tower of scalar harmonics. To this end, let us note that the U(2) symmetry, preserved
at the χ = 0 vacuum, is embedded into the SO(6) part of the gauge group, such that the
gravitini decompose as

8s −→ 2× [0]+1 + 2× [0]−1 + 2×
[1

2
]
0 ,

i.e. ν8 = 2u+ 2
u

+ 2
√
x+ 2√

x
,

(4.17)

where x counts the U(1) ⊂ SU(2) charges. From this, the U(2) representation content of
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the full N = 8 supergravity multiplet can be deduced as

graviton : 28 : 1 ,
gravitini : 28 : 8s ,
vectors : 28 : 8s ∧ 8s ,

spin-1
2 fermions : 56 : 8s ∧ 8s ∧ 8s ,

scalars : 70 : 8s ∧ 8s ∧ 8s ∧ 8s .

(4.18)

The S5 sphere harmonics in turn decompose as

6 −→ 2× [0]0 +
[1

2
]
+1 +

[1
2
]
−1 ,

i.e. ν6 = 2 +
√
xu+ u√

x
+ 1√

xu
+
√
x

u
,

(4.19)

under U(2). The full Kaluza-Klein spectrum then is obtained by multiplying (4.18) with the
symmetric tower of S5 harmonics (4.19) and the tower of S1 harmonics, the latter amount-
ing to a standard Fourier expansion. Comparing the result to the general form (4.16),
we may read off the characters νJ except for the conformal dimensions, i.e. setting t = 1,
and find

ν0
∣∣
t=1 =

(1− q2)
(
x+ 3 + 1

x

)
(1− q)2

(
1− q

√
x
u

)(
1− q 1√

xu

)(
1− q

√
xu
)(

1− q u√
x

) 1 + s

1− s ,

ν1/2
∣∣
t=1 =

2 (1− q2)
(√

x+ 1√
x

)
(1− q)2

(
1− q

√
x
u

)(
1− q 1√

xu

)(
1− q

√
xu
)(

1− q u√
x

) 1 + s

1− s ,

ν1
∣∣
t=1 = 1− q2

(1− q)2
(
1− q

√
x
u

)(
1− q 1√

xu

)(
1− q

√
xu
)(

1− q u√
x

) 1 + s

1− s .

(4.20)

Here, exponents of q, s, count levels for the S5 and the S1 harmonics, respectively. The S1

factor 1+s
1−s simply encodes the fact that at S1-level n > 0 the harmonics (Fourier modes)

are complex.
Representation theory alone thus determines the Kaluza-Klein spectrum to be of the

form (4.16), (4.20). The last and central information which completes this spectrum is the
assignment of conformal dimensions/masses to all the states. It is at this step, that the
ExFT technology described in the previous subsection becomes relevant. After evaluating
the mass matrices (4.11) for the spin-2, the vector and the scalar fields, respectively, we
can extract a general formula for the conformal dimensions ∆ of the HWS of the super-
multiplets, counted by (4.20), as

∆ = 1
2 +

√
17
4 + 1

2R
2 − J(J + 1)− 2k(k + 1) + `(`+ 4) + 4

(
πn

T
− jχ

)2

for a HWS of type q` sn uR xj zJ and SU(2) spin k .

(4.21)
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The conformal dimensions inside the multiplets then follow from the multiplet struc-
ture (4.15). Combining (4.16), (4.20), and (4.21) thus produces the full Kaluza-Klein
spectrum. We stress again, that for some multiplets, the conformal dimensions determined
from (4.21) may saturate the unitarity bound (4.14), such that the corresponding long
multiplets appearing in the expansion (4.16) split into shortened multiplets.

The mass formula (4.21) explicitly shows that a non-vanishing χ 6= 0 breaks SU(2)
by terms proportional to the U(1) ⊂ SU(2) charge. Moreover, it exhibits and interesting
interplay between the χ-dependence and the S1-level n: all masses receive correction terms
proportional to (

πn

T
− jχ

)2
. (4.22)

In particular, this allows to deduce that the full mass spectrum is mapped onto itself under
shifts χ → χ + 2π

T . Indeed, upon switching on χ, the SU(2) representations at a given
S1-level n break up into their U(1) constituents which then at χ = 2π

T recombine (over
various levels) into a copy of the original SU(2) representations. More precisely, a state of
SU(2) spin k at level n and generic value of the deformation parameter χ breaks up into
the 2k + 1 states of U(1) charge

j ∈ {−k,−k + 1, . . . , k} , (4.23)

with conformal dimensions ∆χ given by (4.21), thus deformed by contributions in (4.22).
For χ = 2π

T on the other hand, every level ñ in the range

ñ ∈ {|n− k|, |n− k + 1|, . . . , n+ k} , (4.24)

carries a state of conformal dimension ∆0 which recombine into a spin k representation of
a (newly enhanced) SU(2) symmetry. As an illustration, figure 1 depicts the spectrum of
spin-2 masses at fixed S5-level ` = 3. It shows the breaking and recombining of the spin-2
states as a function of the deformation parameter χ running from 0 to 2π

T . The spectra at
the two endpoints χ = 0 and χ = 2π

T are identical.
It is also instructive to illustrate this pattern at the lowest S5-level ` = 0. At this level,

the spectrum combines into supermultiplets

4× LL̄[0](0)
1
2 +
√

17
4 + 4π2n2

T2

⊕ 2× LL̄[0](0)
1
2 +
√

1
4 +( 2πn

T
±2χ)2

⊕ 2× LL̄[0](0)
1
2 +
√

1
4 + 4π2n2

T2

⊕ 4× LL̄
[1

2
](0)

1
2 +
√

2+( 2πn
T
±χ)2

⊕ 2× LL̄[1](0)
1
2 +
√

9
4 + 4π2n2

T2

,
(4.25)

for S1-level n > 0, accompanied by (2.10) at level n = 0 . At χ = 0, some of the confor-
mal dimensions in (4.25) degenerate with the corresponding supermultiplets joining into
irreducible SU(2) representations of spin [1] and [1

2 ], respectively. At level 0, this more-
over induces the multiplet shortening (2.11) with the two arising massless vector multiplets
A2Ā2[0](0)

1 manifesting the symmetry enhancement U(1)→ SU(2), as discussed in the pre-
vious section. In contrast, at χ = 2π

T , those additional massless vector multiplets arise
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Figure 1. Spin-2 masses at level ` = 3, as a function of χ. L denotes the AdS4 radius.

from multiplet shortening of the second multiplet in (4.25) at level n = 2. This is an ex-
plicit realisation of a (bosonic version of the) space invader scenario encountered in other
compactifications [40], in which massive fields from higher Kaluza-Klein levels turn into
massless gauge fields.

However, the structure of the spectrum (4.25) shows an even more remarkable struc-
ture at the intermediate value χ = π

T . At this value, multiplet shortening of the second
multiplet in (4.25) now at level n = 1 gives rise to two additional massless vector multi-
plets which reveal another SU(2) symmetry enhancement at this point. In contrast with
the symmetry enhancement at χ = 2π

T , the full Kaluza-Klein spectrum at this intermediate
point is different from the one at χ = 0. A closer look at the χ-dependence (4.22) of the
masses shows that under χ → χ + π

T , the spectrum of states of integer SU(2) spin maps
into itself whereas the states of half-integer SU(2) spin acquire different masses. This is
also visible in figure 1 with the degeneracies due to the symmetry enhancement to an in-
equivalent spectrum at the intermediate point χ = π

T . It is worth pointing out that the
truncation of the level 0 spectrum (2.10) to integer SU(2) spin amounts to truncating the
four-dimensional N = 8 supergravity to a half-maximal N = 4 theory.

In section 5, we will discuss the higher-dimensional origin responsible for these patterns.

4.2.1 Symmetries of the Kaluza-Klein spectrum

Inspection of the Kaluza-Klein spectrum shows the following two symmetries:

χ→ χ+ 2π
T
, n→ n+ 2j , (4.26)

χ→ −χ , j → −j . (4.27)
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The above symmetries combine into a reflection symmetry of the spectrum in the χ = π/T

vertical line:

χ→ 2π
T
− χ , n→ n− 2j , j → −j , (4.28)

which is manifest in figure 1.
Later in section 5.1, we will give a characterization of the symmetries (4.26) and (4.27)

in terms of the geometric properties of an elliptic fibration within the internal manifold. In
this construction χ will be identified with the real part of the complex structure modulus
of a torus fibered over S2. The symmetry (4.26) will then be interpreted as the Dehn
twist, see subsection 5.1.1 on the fiber, which can be reabsorbed in a globally well defined
reparametrization of the deformed S3, while (4.27) as the effect of a parity transformation
on the same fiber, see subsection 5.4.1.

4.3 Multiplet shortening

As discussed above, at χ = 0, the symmetry enhances according to U(1)2 → U(2). At the
same time, at these values, the conformal dimensions (4.21) of several supermultiplets hit
the unitarity bound (4.14) and the generic long multiplets split up into shortened multiplets
according to the patterns reviewed in appendix A. Explicitly, combining the saturation of
the unitarity bound

∆ = 1 + |R|+ J , (4.29)

with the formula (4.21) translates into the condition

8 + 2`(`+ 4) = (|r|+ 2J)(|r|+ 2J + 2) + 4k(k + 1) . (4.30)

Combining this with the bounds derived from the specific characters (4.20), we conclude
that multiplet shortening appears for the multiplets whose HWS charges satisfy

|R| = ` , k = 1 + 1
2`− J . (4.31)

This reveals six series of long multiplets which sit on the unitarity bound and each decom-
pose into semi-short multiplets according to (A.3)

[
`
2
]
⊗ LL̄[1](±`)`+2 −→

[
`
2
]
⊗


LĀ1[1](`)`+2 + LĀ1

[1
2
](`+1)
`+5/2

A1L̄[1](−`)`+2 +A1L̄
[1

2
](−`−1)
`+5/2

,

[
`+1

2
]
⊗ LL̄

[1
2
](±`)
`+ 3

2
−→

[
`+1

2
]
⊗


LĀ1

[1
2
](`)
`+ 3

2
+ LĀ2[0](`+1)

`+2

A1L̄
[1

2
](−`)
`+ 3

2
+A2L̄[0](−`−1)

`+2

,

[ `+2
2 ]⊗ LL̄[0](±`)`+1 −→ [ `+2

2 ]⊗


LĀ2[0](`)`+1 + LB̄1[0](`+2)

`+2

A2L̄[0](−`)`+1 +B1L̄[0](−`−2)
`+2

,

(4.32)

at level ` > 0.
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Similar multiplet shortening occurs at χ = π
T . More remarkably, multiplet shortening

in fact happens at every value of χ that is a rational multiple of 2π
T . More precisely, at

χ = p

q

2π
T
, p, q ∈ N , (4.33)

shortening occurs for the multiplets whose HWS have U(1) charge

j = q n

2 p ∈
1
2N . (4.34)

These multiplets appear at S1 levels n that are integer multiples of p, i.e. n = mp with
m ∈ N. We stress however, that the resulting shortened multiplets are not necessarily
protected, as they can potentially recombine again into the original long multiplets. It
remains an open question to what extent they can be recovered in the dual conformal
field theory.

5 The Type IIB uplift of the 1-parameter N = 2 vacua

Just as in the χ = 0 case, the D = 10 dimensional solution corresponding to the 1-
parameter family of N = 2 vacua has the geometry of AdS4 × S5 × S1, where S5 denotes
here a deformed five-sphere. As we shall see this family is locally related to the χ = 0
solution by a coordinate transformation involving the coordinates of S1 and a squashed S3

within S5.

5.1 Geometry of the internal space

We locally parametrize S5 by coordinates θ, ϕ, α, β, γ and S1 by the coordinate η, with
the following ranges

0 ≤ η < T , 0 ≤ θ ≤ π

2 , 0 ≤ ϕ < 2π , 0 ≤ α ≤ 2π , 0 ≤ β ≤ π , 0 ≤ γ + π

2 < 4π . (5.1)

The coordinates θ, ϕ parametrize an S2 within S5, while α, β, γ parametrize an S3 within
the same manifold.

We begin by describing the internal geometry for the χ = 0 solution, before explaining
how it is modified when χ 6= 0. To understand the effect of χ 6= 0, it is sufficient to focus
on S3 and S1. In the full solution, discussed in section 5.2, the S3 is fibred over S2 in such
a way that, for χ = 0, only an SU(2)×U(1)′ ⊂ SU(2)× SU(2)′ isometry of S3 remains.

Hence it is convenient to describe S3 using the isomorphism SU(2) ' S3, given by

g(α, β, γ) ≡
(
z1 z2
−z̄2 z̄1

)
=

 e
1
2 i (α+γ+π/2) cos

(
β
2

)
e

1
2 i (−α+γ+π/2) sin

(
β
2

)
−e−

1
2 i (−α+γ+π/2) sin

(
β
2

)
e−

1
2 i (α+γ+π/2) cos

(
β
2

) , (5.2)

where z1, z2 satisfy |z1|2 + |z2|2 = 1 and define the embedding of S3 in C2. The map
from (5.1) to the ym coordinates in (3.9) is

y1

cos θ = Re(z1) , y4

cos θ = Im(z1) , y5

cos θ = Re(z2) , (5.3)
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and
y2 = cosφ sin θ , y3 = sinφ sin θ , ỹ = sinh η . (5.4)

For χ = 0, we can express the squashed S3 metric in terms of the left-invariant 1-forms σi,
i = 1, . . . , 3, defined as

g−1dg =
3∑
i=1

σi(iσi) , (5.5)

where σi are the three Pauli matrices. The σi satisfy the Maurer-Cartan equations

dσi − εijk σj ∧ σk = 0 , (5.6)

with εijk = ±1 the structure constants of SU(2). Evaluating the Maurer-Cartan forms in
terms of the coordinates (5.1), we find

σ1 = 1
2(dγ cos(α) sin(β)− dβ sin(α)) , σ2 = 1

2(dβ cos(α) + dγ sin(α) sin(β)) ,

σ3 = 1
2(dα+ dγ cos(β)) .

(5.7)

The dependence of the internal metric and the other fields, in the χ = 0 solution,
on the point in S3 is expressed in terms of σi and thus the solution features an SU(2)
symmetry group acting from the left on g(α, β, γ) and thus leaving σi invariant. Due to
the squashing of the S3 geometry, only a U(1)′ subgroup of the SU(2)′ group acting on
g(α, β, γ) from the right is a symmetry of the χ = 0 solution. In fact the group U(1)′

coincides with the N = 2 R-symmetry group, previously denoted by U(1)R.
For χ 6= 0 the solution features a fibration of S3 over S1 in which a point of S1 is

associated with an S3 parametrized by coordinates (α′, β′, γ′) which define the following
SU(2)-element

g(α′, β′, γ′) = ĝ(α, β, γ, η) ≡ h(η) · g (α, β, γ) , (5.8)

where
h(η) ≡

(
cos(ηχ) sin(ηχ)
− sin(ηχ) cos(ηχ)

)
∈ SU(2) . (5.9)

The relation (5.8) defines the transition function on the S3 fiber when changing chart on S1

and introduces a monodromy on the same fiber as η → η+T , represented by the left action
of the element h(T ) = h(η)−1h(η+T ) in SU(2). Then, the total space of the 4-dimensional
fiber-bundle, with fiber S3 and base S1, is given by the quotient space S3× [0, T ]/ ∼ where
the identification ∼ is defined as follows

[g (α, β, γ) , η = 0] ∼ [h(T ) · g (α, β, γ) , η = T ] . (5.10)

The presence of this monodromy further breaks the SU(2) isometry, that the squashed
S3 has for χ = 0, to the subgroup of SU(2) commuting with h(T ). In general, this
subgroup is given by U(1), while the isometry U(1)′ coming from the right-action remains
of course unbroken by h(T ). The values χ = 2π

kT are particularly interesting since then
the element h(T ) generates the cyclic group Zk. For k = 1, the quotient is trivial so that

– 19 –



J
H
E
P
0
6
(
2
0
2
1
)
1
1
1

four-dimensional manifold, like the χ = 0 case, is a direct product of S3×S1 with isometry
group SU(2). This will be further clarified in section 5.1.1, where we show that for k = 1,
i.e. χ = 2π

T , the solution is equivalent to the χ = 0 one.
For k = 2, namely χ = π

T , the twist commutes with all of SU(2) since the Z2 group
it generates is the center of SU(2). Thus for k = 1, 2 the U(1) isometry is enhanced to
SU(2). This explains the symmetry enhancement, for those special values of χ, observed
in section 4 by inspection of the Kaluza-Klein spectrum.

Concerning the geometric description of the internal space, we observe that locally
h(η) in (5.8) can be absorbed into a coordinate transformation:

{α, β, γ, η} → {α′(α, β, γ, η), β′(α, β, γ, η), γ′(α, β, γ, η), η′ = η} , (5.11)

where α′(α, β, γ, η), β′(α, β, γ, η), γ′(α, β, γ, η) are defined by the solution to the matrix
equation

g(α′, β′, γ′) = ĝ(α, β, γ, η) . (5.12)

Therefore, we can express the χ 6= 0 solution by computing the new left-invariant 1-forms
σ̂i associated with ĝ(α, β, γ, η) or, equivalently, g(α′, β′, γ′), as

ĝ−1dĝ =
3∑
i=1

σ̂i(iσi) . (5.13)

We find

σ̂1 ≡ σ1 + χ (− cos(α) cos(β) cos(γ) + sin(α) sin(γ))dη ,
σ̂2 ≡ σ2 − χ (sin(α) cos(β) cos(γ) + cos(α) sin(γ))dη ,
σ̂3 ≡ σ3 + χ cos(γ) sin(β)dη .

(5.14)

As we will show, the D = 10 background for χ 6= 0 can be obtained from the χ = 0 solution
given in [32] through the replacement

σi → σ̂i . (5.15)

However, it is important to emphasise that the local coordinate redefinition (5.11) is not
globally well-defined and therefore does not define a diffeomorphism, except for the case
χ = 2π

T , as shown clearly in section 5.1.1. Hence, χ amounts to a physical modulus of the
D = 10 solution with periodicity 2π

T .

5.1.1 χ as a complex structure modulus

The parameter χ can also be interpreted as a complex structure modulus on M4 ∼ S3 ×
S1, which gives another perspective on its geometric role and most clearly elucidates its
periodicity χ ∈ [0, 2π

T ). For this, it is best to view S3 as the Hopf fibration, such that the
Hopf fibre and S1 combine into an elliptic fibration over S2. As we will now show, χ forms
part of the complex structure modulus of the T 2 fibre.
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We begin by considering a different, yet equivalent, parametrization of S3 with coor-
dinates (Φ, ξ, ψ),8 defined by

g(α, β, γ) = g

(
0, π2 , π

)
· g(Φ, ξ, ψ) . (5.16)

A point in the four-dimensional total space that we are considering is now given by

p = (ĝ(Φ, ξ, ψ, η), η) , (5.17)

with
ĝ(Φ, ξ, ψ, η) ≡ h(η) · g

(
0, π2 , π

)
· g(Φ, ξ, ψ) ∈ SU(2) . (5.18)

The projection map π : M4 → S2 is essentially given by the usual Hopf map

π : (ζ1, ζ2) 7→ r =
(
Re(2ζ1ζ̄2), Im(2ζ1ζ̄2), |ζ1|2 − |ζ2|2

)
, (5.19)

with (
ζ1 ζ2
−ζ̄2 ζ̄1

)
= g

(
0, π2 , π

)−1
· ĝ(Φ, ξ, ψ, η) . (5.20)

It is straightforward to check that r defined by (5.19) satisfies r ∈ S2 ⊂ R3 since r · r = 1
and that ψ and η are projected out in (5.19). Thus, ψ and η provide local coordinates on
the T 2 fibre.

We can now read off the complex structure on the elliptic fibre, for example by studying
the connection 1-forms on M4. These are given by the right-invariant 1-forms

ωψ = dψ − 2χdη + cos ξ dΦ ,

ωη = dη .
(5.21)

Thus, the local holomorphic coordinate on the elliptic fibre is given by

u = ψ + τ̂ η , (5.22)

with τ̂ = i− 2χ defining the complex structure and the periodicity of u given by

u ∼ u+ 4π ∼ u+ τ̂ T . (5.23)

Moreover, the σ̂i now read

σ̂1 = 1
2(sin(ξ) cos(Φ)(dψ − 2χdη)− dξ sin(Φ)) ,

σ̂2 = 1
2(sin(ξ) sin(Φ)(dψ − 2χdη) + dξ cos(Φ)) ,

σ̂3 = 1
2(cos(ξ)(dψ − 2χdη) + dΦ) ,

(5.24)

8Their ranges are the same as the (α, β, γ) ones.
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or in terms of the complex coordinate u

σ̂1 = 1
4(sin(ξ) cos(Φ)(du+ dū)− 2dξ sin(Φ)) ,

σ̂2 = 1
4(sin(ξ) sin(Φ)(du+ dū) + 2dξ cos(Φ)) ,

σ̂3 = 1
4(cos(ξ)(du+ dū) + dΦ) ,

(5.25)

where there is no explicit dependence on χ. Thus, it is clear that χ only affects the complex
structure of the T 2 fibre.

The complex structure τ̂ = i − 2χ now makes the periodicity of χ clear. First, recall
that ψ has periodicity 4π whereas η has periodicity T . Let us thus rescale ψ → ψ′ = ψ

4π
and η = η′ = η

T which have standard periodicities

ψ′ ∼ ψ′ + 1 , η′ ∼ η′ + 1 . (5.26)

The local holomorphic coordinate, u, is given in terms of these by

u = 4π
(
ψ′ + τ η′

)
, (5.27)

with the complex structure
τ = i

4π −
χT

2π . (5.28)

It is now clear that χ → χ + 2π
T just corresponds to a Dehn twist, τ → τ − 1, and can be

reabsorbed by a globally well-defined reparametrization. Thus, χ has periodicity 2π
T .

5.2 The metric

The spacetime metric has the following form

ds2 = 1
2 ∆−1

(
ds2

AdS4 + ds2
6

)
, (5.29)

where
∆ ≡ (6− 2 cos(2θ))−

1
4 . (5.30)

The internal metric ds2
6 has the following form

ds2
6 = ds2

S2 + ds2
S3×S1 , (5.31)

where

ds2
S2 = dθ2 + sin2(θ) dϕ2 , ds2

S3×S1 = cos2(θ)
(
σ̂2

2 + 8 ∆4 (σ̂2
1 + σ̂2

3)
)

+ dη2 , (5.32)

and, for a fixed θ, S3 × S1 denotes the twisted product described in the previous section.
Note that the squashing of the S3, arising from the different factors multiplying the σ̂i,
breaks the SU(2) × SU(2)′ symmetry of the round S3 to SU(2) × U(1)′, with the U(1)′

rotating σ̂1 with σ̂3. As discussed in section 5.1, when χ 6= 0, the SU(2) is also broken
to U(1). Finally, the symmetries of S2 are broken by the dependence on θ and ϕ of the
solution.
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5.3 The 2-forms, the 4-form, the dilaton and the axion

As mentioned earlier, the expressions of the 2-forms and the 4-forms are the same as in
the χ = 0 case, given in [32], aside from the replacement σi → σ̂i as in (5.15).

Thus, in the notation of [32], we can write,

Bα
(2) = A(η)αβ bβ(2) , (5.33)

where
A(η)αβ ≡

(
cosh(η) sinh(η)
sinh(η) cosh(η)

)
, (5.34)

is an SL(2,R)IIB twist and

b1
(2) = 1√

2
cos (θ)

[(
cos (φ) dθ + 1

2 sin (2θ) d(cos (φ))
)
∧ σ̂2 + cos (φ) 4 sin(2θ)

6−2 cos(2θ) σ̂1∧ σ̂3

]
,

b2
(2) = − 1√

2
cos (θ)

[(
sin (φ) dθ + 1

2 sin (2θ) d(sin (φ))
)
∧ σ̂2 + sin (φ) 4 sin(2θ)

6−2 cos(2θ) σ̂1∧ σ̂3

]
.

(5.35)

The self-dual 5-form field strength reads:

F̃5 ≡ dC(4) + 1
2εαβB

α
(2) ∧H

β
(3) = (1 + ?)4∆4 sin (θ) cos3 (θ)

[
3 dθ ∧ dφ ∧ σ̂1 ∧ σ̂2 ∧ σ̂3

− dη ∧
(

cos(2θ) dθ − 1
2 sin (2θ) sin (2φ) dφ

)
∧ σ̂1 ∧ σ̂2 ∧ σ̂3

]
, (5.36)

where Hβ
(3) = dBα

(2).
Finally, the axion and the dilaton fields are encoded in the matrix mαβ in (3.14) which,

in our solution, reads
mαβ =

(
A−1(η)

)σ
α

(
A−1(η)

)γ
β mσγ , (5.37)

where

mσγ = 2 ∆2

 sin2(θ) cos2(φ) + 1 −1
2 sin2(θ) sin(2φ)

−1
2 sin2(θ) sin(2φ) sin2(θ) sin2(φ) + 1

 . (5.38)

Note that the axion-dilato system is the same as in the χ = 0 solution. This is due to the
fact that the extra dependence on η when χ 6= 0 is entirely induced by the matrix h(η)
in (5.8), and only affects those fields which depend on the point in S3.

As mentioned earlier, the explicit dependence of the axion and dilaton on the coordi-
nates θ, ϕ mean that the isometries of S2 are not a symmetry of the whole solution, while
U(1)2 = U(1)×U(1)′ is. This is true for all values of χ. For the special values of χ

χ = mπ

T
, m ∈ Z , (5.39)

the twist in the local product of S3 × S1 is either trivial (m even) or Z2 (m odd), as
discussed at the end of subsection 5.1, and the symmetry of the solution is enhanced to
U(2) = SU(2) × U(1)′. Moreover, when m is even, the solution is equivalent to χ = 0, so
that we should identify χ as a periodic modulus χ ∼ χ+ 2π

T .
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The dependence on η through the SL(2,R)IIB-twist matrix A(η)αβ of the two-forms
and the axio-dilaton system is the same as in the χ = 0 case, so we can apply to this family
of solutions the same discussion about the corresponding SL(2,R)IIB-monodromy matrix
MS1 made in [32]. As η → η + T the twist matrix A induces a monodromy

MS1 ≡ A−1(η) ·A(η + T ) =
(

cosh(T ) sinh(T )
sinh(T ) cosh(T )

)
. (5.40)

By generalizing the twist matrix and suitably choosing the value of T [32], one can construct
backgrounds in which the monodromy has the form MS1 = −S T k ∈ SL(2,Z)IIB, thus
defining a family of S-fold solutions of Type IIB theory.

5.4 The χ-twist in the Kaluza-Klein spectrum

As we have seen in section 5.1, a non-vanishing value of χ induces an extra dependence
on η of those fields which, in the χ = 0 solution, were non-trivial functions of the point
of S3, due to the fibration of the latter over S1. We can use this feature to determine the
χ-dependence on the full Kaluza-Klein tower of states. To do so, it is easiest to consider
the background underformed, i.e. as for χ = 0, and instead modify the Kaluza-Klein states’
dependence on η. Thus, fields transforming in the SU(2) representation [k], now acquire
an η-dependence through the [k]-representation of the SU(2)-element h(η) given in (5.9).
The corresponding twist matrix has eigenvalues

e2 i jχ η , with j = −k, −k + 1, . . . , k − 1, k . (5.41)

As an example, consider the three vector fields Aiµ, which, for χ = 0, gauge the SU(2)
isometry group. For χ = 0, these transform as the right-invariant Killing vectors Ki,
defining the infinitesimal left-translations on g(α, β, γ). Indeed these vectors, on a group
manifold, are defined as:

g−1 · ti · g = Ki
`σs` ts , (5.42)

where ti are SU(2) generators, with i = 1, 2, 3, and we have written the left-invariant
1-forms σi as σi = σi` dx

`, xi ≡ (α, β, γ).
When χ 6= 0, the vector fields are modified. Transforming g by the twist:

g(α, β, γ)→ ĝ(α, β, γ, η) = h(η) · g(α, β, γ) , (5.43)

where h(η) is the 2× 2 twist matrix given in (5.9), we find

ĝ−1 · ti · ĝ = g−1 · h−1 · ti · h · g = hi
` (K`

kσsk ts) = K̂i
`σs` ts . (5.44)

Here hij denotes the adjoint action of h:

h−1 · ti · h ≡ hijtj . (5.45)

Therefore, as expected, the Killing vectors, and therefore Aiµ, transform in the k = 1
representation acted on by the 3× 3 matrix hi`(η). The twisted vectors Â(0)

i
µ, at KK level

n = 0 on S1, therefore now have a η-dependence due to the twist

Â(0)
i
µ(x, η) = hi`(η)A`µ(x) . (5.46)
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This additional η dependence makes two of the vectors massive. As a result, SU(2) is
broken at level n = 0. Similarly, the corresponding vectors at level n on S1 have an
η-dependence of the form

Â(n)
i
µ(x, η) = hi`(η)A`µ(x)e

2iπn η
T , Â(n)

i
µ(x, η)∗ = hi`(η)A`µ(x)e−

2iπn η
T . (5.47)

We can now see that when χ = pπ/T , with p ∈ Z, the SU(2) symmetry is restored.
Two of the eigenvalues of ∂/∂η on these vectors are now

±
(

2i χ− 2iπn
T

)
= ±

(2i π p
T
− 2iπn

T

)
, (5.48)

which vanish for n = p. These correspond to the two gauge vectors at level n > 0 which
become massless for these values of χ and enhance the U(1), seen at S1 KK level n = 0,
back to SU(2). This is a bosonic version of the space invaders scenario [40, 41], where
higher Kaluza-Klein modes become massless.

In general, on a field Φ[k]
(n), in S

1 KK level n and in the [k]-representation of SU(2), the
operator ∂/∂η will have eigenvalues

± 2i
(
j χ− πn

T

)
, j = −k, −k + 1, . . . , k − 1, k , (5.49)

where j can easily be identified with the U(1) ⊂ SU(2) charge. The same conclusion
can be reached by thinking of χ as part of the complex structure modulus of an elliptic
fibration over S2, as in section 5.1.1. Now a field obtains an additional η-dependence by
the replacement of the Hopf fibre coordinate ψ → ψ− 2χη. As above, the ψ-dependence is
determined by the field’s U(1) ⊂ SU(2) charge, so that the field’s eigenvalues under ∂/∂η
are again given by (5.49). This explains the dependence on χ of the KK spectrum, as noted
in section 4, see eq. (4.22).

5.4.1 Summarizing the symmetries in χ and their geometrical interpretation

Let us now summarize the understanding, which we have gained from the geometric de-
scription of the internal manifold, of the symmetries (4.26), (4.27) of the Kaluza-Klein
spectrum. The former amounts to a Dehn twist of the toroidal fiber over S2 which can be
undone by a globally well defined reparametrization of the fiber. In particular for χ = 2π/T
the elliptic fibration is globally S3 × S1 where S3 denotes the deformed three-sphere with
isometry SU(2)×U(1), and thus the U(1)2 symmetry is enhanced to SU(2)×U(1).

As far as (4.27) is concerned, the transformation χ → −χ corresponds to a transfor-
mation τ → −τ̄ in of the complex structure modulus of the toroidal fiber. This amounts
in turn to a reflection in the imaginary axis of the torus, seen as a complex manifold, since
it implies u → −ū as we also transform ψ → −ψ. It is not an invariance of the complex
manifold itself, since it changes its orientation, but rather a parity transformation with
respect to which the higher dimensional theory is invariant.9 Note that a change ψ → −ψ
amounts, in the Kaluza-Klein modes, to changing the sign of the corresponding j quantum
number, as in (4.27).

9For a discussion of parity symmetry in extended supergravities see [6].
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5.5 More general N = 2 AdS4

The analysis of the Kaluza-Klein spectrum and of the internal space also suggests that a
larger class of N = 2 AdS4 S-fold vacua, which share many features with the family studied
in the previous sections, can be obtained by performing a quotient on the latter solutions.
However, we do not expect these new backgrounds to be vacua of the N = 8 supergravity.

Recall that the family of N = 2 AdS4 vacua analysed here have an internal space, that
is locally of the form S3 × S2 × S1, with the S3 non-trivially fibred over S1 when χ 6= 0.
We can obtain N = 2 AdS4 vacua with similar properties by replacing the S3 by the Lens
space S3/Zk, with k ∈ Z+.

Since the quotient does not break the U(1)R R-symmetry, the resulting AdS4 vacua
are still N = 2 supersymmetric. On the other hand, the Zk quotient projects out various
states, thus reducing the KK spectrum and isometries. In particular, at Kaluza-Klein
level 0, only the states corresponding to 4-dimensional N = 4 supergravity survive the
projection. This includes the modulus χ. For k = 2, the vacua seem to admit a consistent
truncation with 6 vector multiplets, while for k ≥ 3, the vacua seem to admit a consistent
truncation with 4 vector multiplets. These truncations can, in principle, be constructed
by performing the Zk quotient on the twist matrices (4.9) and assembling the invariant
objects into a half-maximal structure [50].

Finally, the Zk quotient, for k ≥ 3, breaks the isometries of the background, for all χ,
to U(1)×U(1)′, while the Z2 quotient preserves the SU(2)×U(1)′ isometry at χ = 0. The
periodicity of the modulus χ is also affected by the quotient. For a Zk quotient, it is now
given by χ ∼ χ+ 2π

kT . This can be seen by noticing that for this value of χ, the monodromy
matrix h(T ) ∈ Zk now acts trivially on S3/Zk. The same conclusion can be reached by
looking at the complex structure of the T 2 fibration over S2 as in 5.1.1, where the Hopf
fibre of S3/Zk and the S1 parametrized by η make up the T 2 fibre. Since the Hopf fibre
now has periodicity 4π

k , the shift χ→ χ+ 2π
kT corresponds to a Dehn twist.

6 Discussion

In this paper, we studied the one-parameter family of N = 2 AdS4 vacua of [SO(6) ×
SO(1, 1)] n R12 gauged supergravity [32]. These uplift to 10-dimensional S-fold vacua of
IIB supergravity of local form AdS4×S5×S1. As the S1 circle is traversed, the background
undergoes an SL(2,Z) S-duality transformation. From the 4-dimensional perspective, the
real parameter χ, labeling the AdS4 vacua, is non-compact with only one special point,
χ = 0, corresponding to a vacuum with SU(2) × U(1)R symmetry, while all other vacua
with χ 6= 0 only have U(1)×U(1)R symmetry in four dimensions.

We show that these features are in fact just four-dimensional artefacts and misrepresent
the global properties of the conformal manifold of the dual CFT. In 10 dimensions, the
parameter χ instead has periodicity equal to the inverse S1 radius, 2π

T . By computing
the full Kaluza-Klein spectrum of the N = 2 AdS4 vacua as a function of χ, we showed
explicitly that as χ → χ + 2π

T the whole spectrum gets mapped to itself. However, what
used to be modes of the 4-dimensional gauged supergravity now appear in the higher KK
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modes with non-zero S1 level. This follows because the modulus χ remarkably only appears
in the formula for the conformal dimension (4.21) through the combination(

πn

T
− j χ

)2
, (6.1)

for a field of U(1) ⊂ SU(2) charge j and S1 KK level n.
Another interesting characteristic of the Kaluza-Klein spectrum arises when χ = π

T the
AdS4 vacuum again has enhanced SU(2) × U(1)R symmetry in 10 dimensions. The extra
massless vector fields again come from higher KK modes, in a bosonic analogue of the space
invader scenario [40]. However, this vacuum is truly distinct from that corresponding to
χ = 0, with their Kaluza-Klein spectra differing. In particular, equation (4.21) shows that
the masses of KK states of integer SU(2) spin are left invariant under χ → χ + π

T , while
those of half-integer SU(2) spin change under this shift.

Using the consistent truncation of [29] to uplift the family N = 2 AdS4 vacua to 10
dimensions, we were able to explain these features geometrically. In 10 dimensions, the
modulus χ appears as a local coordinate transformation, which fails to be globally well-
defined unless χ = 2π

T . In particular, χ induces a fibration of S3 ⊂ S5 over the S1 with
monodromy

h(T ) =
(

cos(χT ) sin(χT )
− sin(χT ) cos(χT )

)
, (6.2)

making explicit the periodicity of χ ∈ [0, 2π
T ). The monodromy h(T ) breaks the SU(2)

isometry to its commutant with h(T ) which, for generic values of χ, is given by U(1).
However, when χ = π

kT , with k ∈ Z, h(T ) ⊂ Zk. This explains the special features
observed when χ = π

T , since now h(T ) = −1, preserves all of SU(2) and leaves invariant
all SU(2) integer-spin states.

Moreover, we show that the background remains invariant under the shift of the pa-
rameter χ→ χ+ 2π

T . This can be seen in a particularly clear way by writing the background
as a T 2-fibration over S2, which is further warped over S2. As we showed, the parameter
χ then appears as a complex structure modulus of the T 2-fibre and a shift χ → χ + 2π

T

corresponds to a Dehn twist of the T 2.
Another remarkable attribute of the Kaluza-Klein spectrum of the N = 2 S-fold back-

grounds is that, for generic values of χ, they consist only of long multiplets. We argue in
section 4.2 that this is due to the fact that the compactification includes a S1 with tunable
radius. Since the conformal dimension for states with non-zero Kaluza-Klein modes on S1

must depend continuously on this tunable radius, these states must necessarily assemble
into long multiplets.10 This general observation is quite powerful when computing the
Kaluza-Klein spectrum. For example, when applied to the N = 4 AdS4 vacuum of the
same [SO(6)× SO(1, 1)] nR12 gauged supergravity [32], this argument allows us to deter-
mine the full Kaluza-Klein spectrum from just the spin-2 spectrum, which has been worked
out in [51]. We give the result in appendix B. A similar structure has been observed in the

10For special values of the radius, the conformal dimension of these states may hit the unitary bound, in
which case these long multiplets will split into short multiplets.
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Kaluza-Klein spectrum on AdS3 × S3 × S3 × S1 where the entire spectrum organises into
long multiplets [52–55] which can again be attributed to the presence of the S1 factor in
the background.

Our work opens up several new questions. Firstly, it would be interesting to investigate
other moduli of the N = 2 AdS4 vacua which cannot be seen in 4-dimensional supergravity.
For example, one may speculate that another modulus of the 10-dimensional AdS4 vacua
could be obtained by considering a general complex structure on the elliptic fibration used
to describe the S3 × S1 part of the internal space in section 5.1.1. More generally, the
infinitesimal moduli of the AdS4 vacua can be constructed explicitly using our Kaluza-
Klein fluctuation Ansatz (4.8). However, to find their finite form, it may be worthwhile to
use the techniques developed in [56, 57].

The [SO(6)× SO(1, 1)] nR12 gauged supergravity also contains a symmetry-breaking
family of N = 1 AdS4 vacua, which can be analysed in a similar fashion to the study of
N = 2 vacua presented here. This family of AdS4 vacua is parametrized by two real scalar
fields and generically has U(1)×U(1) symmetry. For special values of the real scalar fields,
the symmetry is enhanced to SU(2) × U(1) or even SU(3). A natural question following
from our work is if the true 10-dimensional moduli space of these N = 1 AdS4 vacua is also
compact and additional vacua have enhanced symmetries in 10-dimensions, with higher
Kaluza-Klein vector fields becoming massless.
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A Superconformal multiplets

In this appendix, we summarize the structure of the relevant OSp(2|4) multiplets, and the
pattern of multiplet shortening at critical values of the conformal dimensions, as worked
out in [58, 59]. We mostly follow the notation of [60], to which we refer for details.

In short, the OSp(2|4) multiplet will be classified by Dynkin labels of the maximal com-
pact subgroup U(1)× SO(3)J ×U(1)∆. The first factor represents the R-symmetry, whose
charges we label by real R ∈ R. In accordance with the two independent supersymmetries
Q and Q, a generic Osp(2|4) multiplet will be of the form

XȲ [J ](R)
∆ , (A.1)

where X ∈ {L,A1, A2, B1} and Ȳ ∈ {L̄, Ā1, Ā2, B̄1} refer to the long and the different
shortened structures with respect to Q and Q, respectively. The parameters R, J , and ∆
refer to the R-charge, Lorentz spin, and conformal dimension of the highest weight state
of the multiplet (A.1), respectively.11

11In contrast to the notation used in [60], our J is half-integer, referring to the spin, not the Dynkin label.
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LL̄[0](R)
∆ : long vector multiplet

spin ∆ R m2

0

∆ R (∆)(∆− 3)
∆ + 1 R− 2 (∆ + 1)(∆− 2)
∆ + 1 R+ 2 (∆ + 1)(∆− 2)
∆ + 1 R (∆ + 1)(∆− 2)
∆ + 2 R (∆ + 2)(∆− 1)

1
2

∆ + 1/2 R− 1 (∆− 1)2

∆ + 1/2 R+ 1 (∆− 1)2

∆ + 3/2 R− 1 ∆2

∆ + 3/2 R+ 1 ∆2

1 ∆ + 1 R (∆)(∆− 1)

LL̄[ 1
2 ](R)

∆ : long gravitino multiplet
spin ∆ R m2

0

∆ + 1/2 R− 1 (∆ + 1/2)(∆− 5/2)
∆ + 1/2 R+ 1 (∆ + 1/2)(∆− 5/2)
∆ + 3/2 R− 1 (∆ + 1/2)(∆− 5/2)
∆ + 3/2 R+ 1 (∆ + 3/2)(∆− 3/2)

1
2

∆ R (∆− 3/2)2

∆ + 1 R− 2 (∆− 1/2)2

∆ + 1 R+ 2 (∆− 1/2)2

∆ + 1 R (∆− 1/2)2

∆ + 1 R (∆− 1/2)2

∆ + 2 R (∆ + 1/2)2

1

∆ + 1/2 R− 1 (∆− 1/2)(∆− 3/2)
∆ + 1/2 R+ 1 (∆− 1/2)(∆− 3/2)
∆ + 3/2 R− 1 (∆ + 1/2)(∆− 1/2)
∆ + 3/2 R+ 1 (∆ + 1/2)(∆− 1/2)

3/2 ∆ + 1 R (∆− 1/2)2

Table 1. Long N = 2 multiplets LL̄[0](R)
∆ and LL̄[ 1

2 ](R)
∆ .

Unitarity implies the lower bound for the conformal dimension

∆ ≥ 1 + |R|+ J . (A.2)

For ∆ > 1 + |R|+ J , the multiplet is of the long type LL̄[J ](R)
∆ and is given by the tensor

product of its HWS with the representation generated by the action of the 4 supercharges
on a scalar vacuum, cf. section 4.2 of [60]. Therefore, its character factors as in (4.15).
Evaluating the product and organizing the fields according to their Lorentz spins, yields
the explicit field content which we summarize in tables 1, 2, for J = 0, 1

2 , 1 . When the
unitarity bound is saturated, the multiplets are shortened. More precisely, for R > 0 and
∆ = 1 +R+ J , the right factor L̄ in (A.1) breaks according to

L̄[1](R)
∆ −→ Ā1[1](R)

∆ + Ā1[1
2 ](R+1)

∆+ 1
2
,

L̄[1
2 ](R)

∆ −→ Ā1[1
2 ](R)

∆ + Ā2[0](R+1)
∆+ 1

2
,

L̄[0](R)
∆ −→ Ā2[0](R)

∆ + B̄1[1
2 ](R+2)

∆+1 ,

(A.3)

whereas for R < 0 it is the left factor L in (A.1) which breaks accordingly. At R = 0,
further shortening occurs, and massless multiplets show up. We list the relevant shortened
multiplets in tables 3 and 4, where we restrict to the long-short case LĀ1, etc.. The short-
long multiplets are obtained from the former upon replacing R with −R (we can refer to
this operation as “conjugation”). In particular, a half-hypermultiplet combined with its
conjugate forms a complete hypermultiplet.
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LL̄[1](R)
∆ : long graviton multiplet

spin ∆ R m2

0 ∆ R ∆(∆− 3)

1
2

∆ + 1/2 R− 1 (∆− 1)2

∆ + 1/2 R+ 1 (∆− 1)2

∆ + 3/2 R− 1 ∆2

∆ + 3/2 R+ 1 ∆2

1

∆ R (∆− 1)(∆− 2)
∆ + 1 R ∆(∆− 1)
∆ + 1 R ∆(∆− 1)
∆ + 1 R− 2 ∆(∆− 1)
∆ + 1 R+ 2 ∆(∆− 1)
∆ + 2 R ∆(∆ + 1)

3
2

∆ + 1/2 R− 1 (∆− 1)2

∆ + 1/2 R+ 1 (∆− 1)2

∆ + 3/2 R− 1 ∆2

∆ + 3/2 R+ 1 ∆2

2 ∆ + 1 R (∆ + 1)(∆− 2)

Table 2. Long N = 2 multiplet LL̄[1](R)
∆ .

LĀ1[ 1
2 ](R)

R+ 3
2
: short masssive gravitino multiplet

spin ∆ R m2

0 R+ 2 R− 1 (R+ 2)(R− 1)

1
2

R+ 3/2 R R2

R+ 5/2 R− 2 (R+ 1)2

R+ 5/2 R (R+ 1)2

1
R+ 2 R− 1 R(R+ 1)
R+ 2 R+ 1 R(R+ 1)
R+ 3 R− 1 (R+2)(R+1)

3/2 R+ 5/2 R (R+ 1)2

LB̄1[0](R)
R : half-hypermultiplet

spin ∆ R m2

0
R R R(R− 3)

R+ 1 R− 2 (R+ 1)(R− 2)
1/2 R+ 1/2 R− 1 (R− 1)2

Table 3. Shortened N = 2 multiplets.

A1Ā1[1](0)
2 : massless graviton multiplet

spin ∆ R m2

1 2 0 0

3
2

5/2 −1 1
5/2 +1 1

2 3 0 0

A2Ā2[0](0)
1 : massless vector multiplet

spin ∆ R m2

0
1 0 −2
2 0 −2

1
2

3/2 −1 0
3/2 +1 0

1 2 0 0

Table 4. Massless N = 2 multiplets.
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B Kaluza-Klein spectrum of the N = 4 vacuum

The N = 4 AdS4 vacuum, first presented in [30], is defined by the following expectation
values of the zi:

z1 = z2 = z3 = i , z4 = z5 = z6 = −z7 = 1√
2

(1 + i) . (B.1)

The vacuum has SU(2) × SU(2) symmetry, corresponding to the superconformal R-
symmetry.

As argued in section 4.2, the fact that the background contains a S1, whose radius can
be varied, implies that the Kaluza-Klein states with non-zero modes on the S1 must fit
into long supermultiplets. Moreover, by decomposing the N = 8 multiplet into long N = 4
multiplets, we deduce that, for generic values of the S1 radius, the entire Kaluza-Klein
spectrum organises itself into long graviton multiplets. Therefore, the full Kalzua-Klein
spectrum of the N = 4 vacuum can be determined from just its spin-2 spectrum, which
has been worked out in [51].

Indeed, a direct computation using the tools of [15, 16] and reviewed in section 4
confirms that all Kaluza-Klein modes can be organised into long graviton multiplets. These
are counted by the character for the highest-weight states, i.e. the gravitons,

ν1 = 1
(1− q2) (1− q u) (1− q v)

1 + s

1− s . (B.2)

Here exponents of q, s count levels for the S5 and S1 harmonics, respectively, while expo-
nents of u, v count the SU(2)× SU(2) spins.

We find that the conformal dimension, ∆, of the highest weight state of the supermul-
tiplets, as counted by (B.2), is given by

∆ = 3
2 + 1

2

√
9 + 2`(`+ 4) + 4`1(`1 + 1) + 4`2(`2 + 1) + 2n2π2

T 2 , (B.3)

for a HWS of type q` sn u`1 v`2 . This precisely matches the spin-2 Kaluza-Klein masses
computed in [51].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09
(2005) 016 [hep-th/0507289] [INSPIRE].

[2] B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP 06
(2007) 049 [arXiv:0705.2101] [INSPIRE].

[3] B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian
vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [INSPIRE].

– 31 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2005/09/016
https://doi.org/10.1088/1126-6708/2005/09/016
https://arxiv.org/abs/hep-th/0507289
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0507289
https://doi.org/10.1088/1126-6708/2007/06/049
https://doi.org/10.1088/1126-6708/2007/06/049
https://arxiv.org/abs/0705.2101
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.2101
https://doi.org/10.1002/prop.200510202
https://arxiv.org/abs/hep-th/0501243
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0501243


J
H
E
P
0
6
(
2
0
2
1
)
1
1
1

[4] B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies, and
M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].

[5] H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant.
Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].

[6] M. Trigiante, Gauged Supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745]
[INSPIRE].

[7] F. Cordaro, P. Fré, L. Gualtieri, P. Termonia and M. Trigiante, N = 8 gaugings revisited: An
Exhaustive classification, Nucl. Phys. B 532 (1998) 245 [hep-th/9804056] [INSPIRE].

[8] H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev.
Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].

[9] B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal
supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].

[10] O. Hohm and H. Samtleben, Exceptional Field Theory I: E6(6) covariant Form of M-theory
and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

[11] O. Hohm and H. Samtleben, Exceptional field theory. II. E7(7), Phys. Rev. D 89 (2014)
066017 [arXiv:1312.4542] [INSPIRE].

[12] O. Hohm and H. Samtleben, Exceptional field theory. III. E8(8), Phys. Rev. D 90 (2014)
066002 [arXiv:1406.3348] [INSPIRE].

[13] A. Baguet, O. Hohm and H. Samtleben, E6(6) Exceptional Field Theory: Review and
Embedding of Type IIB, PoS(CORFU2014)133 (2015) [arXiv:1506.01065] [INSPIRE].

[14] O. Hohm and H. Samtleben, Consistent Kaluza-Klein Truncations via Exceptional Field
Theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].

[15] E. Malek and H. Samtleben, Kaluza-Klein Spectrometry for Supergravity, Phys. Rev. Lett.
124 (2020) 101601 [arXiv:1911.12640] [INSPIRE].

[16] E. Malek and H. Samtleben, Kaluza-Klein Spectrometry from Exceptional Field Theory,
Phys. Rev. D 102 (2020) 106016 [arXiv:2009.03347] [INSPIRE].

[17] G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions,
Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].

[18] G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged
supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].

[19] G. Dall’Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal
Supergravity, JHEP 07 (2014) 133 [arXiv:1405.2437] [INSPIRE].

[20] B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].

[21] C.M. Hull and N.P. Warner, Noncompact Gaugings From Higher Dimensions, Class. Quant.
Grav. 5 (1988) 1517 [INSPIRE].

[22] L.J. Romans, Massive N = 2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986)
374 [INSPIRE].

[23] A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity
and Its Chern-Simons Duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009]
[INSPIRE].

– 32 –

https://doi.org/10.1088/1126-6708/2008/02/044
https://arxiv.org/abs/0801.1294
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0801.1294
https://doi.org/10.1088/0264-9381/25/21/214002
https://doi.org/10.1088/0264-9381/25/21/214002
https://arxiv.org/abs/0808.4076
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.4076
https://doi.org/10.1016/j.physrep.2017.03.001
https://arxiv.org/abs/1609.09745
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.09745
https://doi.org/10.1016/S0550-3213(98)00449-0
https://arxiv.org/abs/hep-th/9804056
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9804056
https://doi.org/10.1103/PhysRevLett.86.1686
https://doi.org/10.1103/PhysRevLett.86.1686
https://arxiv.org/abs/hep-th/0010076
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0010076
https://doi.org/10.1016/S0550-3213(03)00059-2
https://arxiv.org/abs/hep-th/0212239
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0212239
https://doi.org/10.1103/PhysRevD.89.066016
https://arxiv.org/abs/1312.0614
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.0614
https://doi.org/10.1103/PhysRevD.89.066017
https://doi.org/10.1103/PhysRevD.89.066017
https://arxiv.org/abs/1312.4542
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.4542
https://doi.org/10.1103/PhysRevD.90.066002
https://doi.org/10.1103/PhysRevD.90.066002
https://arxiv.org/abs/1406.3348
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.3348
https://doi.org/10.22323/1.231.0133
https://arxiv.org/abs/1506.01065
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.01065
https://doi.org/10.1007/JHEP01(2015)131
https://arxiv.org/abs/1410.8145
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.8145
https://doi.org/10.1103/PhysRevLett.124.101601
https://doi.org/10.1103/PhysRevLett.124.101601
https://arxiv.org/abs/1911.12640
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12640
https://doi.org/10.1103/PhysRevD.102.106016
https://arxiv.org/abs/2009.03347
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.03347
https://doi.org/10.1016/j.nuclphysb.2012.01.023
https://arxiv.org/abs/1112.3345
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.3345
https://doi.org/10.1103/PhysRevLett.109.201301
https://arxiv.org/abs/1209.0760
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.0760
https://doi.org/10.1007/JHEP07(2014)133
https://arxiv.org/abs/1405.2437
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.2437
https://doi.org/10.1016/0550-3213(82)90120-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB208%2C323%22
https://doi.org/10.1088/0264-9381/5/12/005
https://doi.org/10.1088/0264-9381/5/12/005
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C5%2C1517%22
https://doi.org/10.1016/0370-2693(86)90375-8
https://doi.org/10.1016/0370-2693(86)90375-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB169%2C374%22
https://doi.org/10.1103/PhysRevLett.115.091601
https://arxiv.org/abs/1504.08009
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.08009


J
H
E
P
0
6
(
2
0
2
1
)
1
1
1

[24] A. Guarino and O. Varela, Consistent N = 8 truncation of massive IIA on S6, JHEP 12
(2015) 020 [arXiv:1509.02526] [INSPIRE].

[25] A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP 02
(2016) 079 [arXiv:1508.04432] [INSPIRE].

[26] A. Guarino, J. Tarrio and O. Varela, Flowing to N = 3 Chern-Simons-matter theory, JHEP
03 (2020) 100 [arXiv:1910.06866] [INSPIRE].

[27] A. Guarino, J. Tarrio and O. Varela, Brane-jet stability of non-supersymmetric AdS vacua,
JHEP 09 (2020) 110 [arXiv:2005.07072] [INSPIRE].

[28] A. Guarino, E. Malek and H. Samtleben, Stable Nonsupersymmetric Anti–de Sitter Vacua of
Massive IIA Supergravity, Phys. Rev. Lett. 126 (2021) 061601 [arXiv:2011.06600]
[INSPIRE].

[29] G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings,
Phys. Rev. D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].

[30] A. Gallerati, H. Samtleben and M. Trigiante, The N > 2 supersymmetric AdS vacua in
maximal supergravity, JHEP 12 (2014) 174 [arXiv:1410.0711] [INSPIRE].

[31] A. Guarino and C. Sterckx, S-folds and (non-)supersymmetric Janus solutions, JHEP 12
(2019) 113 [arXiv:1907.04177] [INSPIRE].

[32] A. Guarino, C. Sterckx and M. Trigiante, N = 2 supersymmetric S-folds, JHEP 04 (2020)
050 [arXiv:2002.03692] [INSPIRE].

[33] D. Bak, M. Gutperle and S. Hirano, A Dilatonic deformation of AdS5 and its field theory
dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].

[34] E. D’Hoker, J. Estes and M. Gutperle, Ten-dimensional supersymmetric Janus solutions,
Nucl. Phys. B 757 (2006) 79 [hep-th/0603012] [INSPIRE].

[35] I. Arav, J.P. Gauntlett, M.M. Roberts and C. Rosen, Marginal deformations and RG flows
for type IIB S-folds, arXiv:2103.15201 [INSPIRE].

[36] N. Bobev, F.F. Gautason and J. van Muiden, The Holographic Conformal Manifold of 3d
N = 2 S-fold SCFTs, arXiv:2104.00977 [INSPIRE].

[37] B. Assel and A. Tomasiello, Holographic duals of 3d S-fold CFTs, JHEP 06 (2018) 019
[arXiv:1804.06419] [INSPIRE].

[38] E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry, and Janus,
Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [INSPIRE].

[39] D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The
theta-Angle in N = 4 Super Yang-Mills Theory, JHEP 06 (2010) 097 [arXiv:0804.2907]
[INSPIRE].

[40] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130
(1986) 1 [INSPIRE].

[41] M. Cesaro, G. Larios and O. Varela, A Cubic Deformation of ABJM: The Squashed,
Stretched, Warped, and Perturbed Gets Invaded, JHEP 10 (2020) 041 [arXiv:2007.05172]
[INSPIRE].

[42] A. Dabholkar and C. Hull, Duality twists, orbifolds, and fluxes, JHEP 09 (2003) 054
[hep-th/0210209] [INSPIRE].

– 33 –

https://doi.org/10.1007/JHEP12(2015)020
https://doi.org/10.1007/JHEP12(2015)020
https://arxiv.org/abs/1509.02526
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.02526
https://doi.org/10.1007/JHEP02(2016)079
https://doi.org/10.1007/JHEP02(2016)079
https://arxiv.org/abs/1508.04432
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.04432
https://doi.org/10.1007/JHEP03(2020)100
https://doi.org/10.1007/JHEP03(2020)100
https://arxiv.org/abs/1910.06866
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.06866
https://doi.org/10.1007/JHEP09(2020)110
https://arxiv.org/abs/2005.07072
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.07072
https://doi.org/10.1103/PhysRevLett.126.061601
https://arxiv.org/abs/2011.06600
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.06600
https://doi.org/10.1103/PhysRevD.95.066020
https://arxiv.org/abs/1612.05123
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.05123
https://doi.org/10.1007/JHEP12(2014)174
https://arxiv.org/abs/1410.0711
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.0711
https://doi.org/10.1007/JHEP12(2019)113
https://doi.org/10.1007/JHEP12(2019)113
https://arxiv.org/abs/1907.04177
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.04177
https://doi.org/10.1007/JHEP04(2020)050
https://doi.org/10.1007/JHEP04(2020)050
https://arxiv.org/abs/2002.03692
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.03692
https://doi.org/10.1088/1126-6708/2003/05/072
https://arxiv.org/abs/hep-th/0304129
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0304129
https://doi.org/10.1016/j.nuclphysb.2006.08.017
https://arxiv.org/abs/hep-th/0603012
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603012
https://arxiv.org/abs/2103.15201
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.15201
https://arxiv.org/abs/2104.00977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.00977
https://doi.org/10.1007/JHEP06(2018)019
https://arxiv.org/abs/1804.06419
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.06419
https://doi.org/10.1016/j.nuclphysb.2006.07.001
https://arxiv.org/abs/hep-th/0603013
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603013
https://doi.org/10.1007/JHEP06(2010)097
https://arxiv.org/abs/0804.2907
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.2907
https://doi.org/10.1016/0370-1573(86)90163-8
https://doi.org/10.1016/0370-1573(86)90163-8
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C130%2C1%22
https://doi.org/10.1007/JHEP10(2020)041
https://arxiv.org/abs/2007.05172
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.05172
https://doi.org/10.1088/1126-6708/2003/09/054
https://arxiv.org/abs/hep-th/0210209
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0210209


J
H
E
P
0
6
(
2
0
2
1
)
1
1
1

[43] N. Bobev, F.F. Gautason, K. Pilch, M. Suh and J. van Muiden, Holographic interfaces in
N = 4 SYM: Janus and J-folds, JHEP 05 (2020) 134 [arXiv:2003.09154] [INSPIRE].

[44] D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills
Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

[45] G. Aldazabal, P.G. Cámara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing,
JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].

[46] K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and
consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].

[47] L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fré, R. Minasian and M. Trigiante, Solvable Lie
algebras in type IIA, type IIB and M theories, Nucl. Phys. B 493 (1997) 249
[hep-th/9612202] [INSPIRE].

[48] E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 1, Nucl. Phys. B 523
(1998) 73 [hep-th/9710119] [INSPIRE].

[49] M. Cesàro and O. Varela, Kaluza-Klein fermion mass matrices from exceptional field theory
and N = 1 spectra, JHEP 03 (2021) 138 [arXiv:2012.05249] [INSPIRE].

[50] E. Malek, Half-Maximal Supersymmetry from Exceptional Field Theory, Fortsch. Phys. 65
(2017) 1700061 [arXiv:1707.00714] [INSPIRE].

[51] K. Dimmitt, G. Larios, P. Ntokos and O. Varela, Universal properties of Kaluza-Klein
gravitons, JHEP 03 (2020) 039 [arXiv:1911.12202] [INSPIRE].

[52] J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2−D
N = 4 superconformal symmetry, Adv. Theor. Math. Phys. 3 (1999) 577 [hep-th/9904073]
[INSPIRE].

[53] L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on
AdS3 × S3 × S3 × S1, JHEP 03 (2017) 124 [arXiv:1701.03552] [INSPIRE].

[54] M. Baggio, O. Ohlsson Sax, A. Sfondrini, B. Stefański and A. Torrielli, Protected string
spectrum in AdS3/CFT2 from worldsheet integrability, JHEP 04 (2017) 091
[arXiv:1701.03501] [INSPIRE].

[55] C. Eloy, Kaluza-Klein spectrometry for AdS3 vacua, arXiv:2011.11658 [INSPIRE].

[56] A. Ashmore, M. Gabella, M. Graña, M. Petrini and D. Waldram, Exactly marginal
deformations from exceptional generalised geometry, JHEP 01 (2017) 124
[arXiv:1605.05730] [INSPIRE].

[57] A. Ashmore, Marginal deformations of 3d N = 2 CFTs from AdS4 backgrounds in
generalised geometry, JHEP 12 (2018) 060 [arXiv:1809.03503] [INSPIRE].

[58] S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories,
Adv. Theor. Math. Phys. 2 (1998) 783 [hep-th/9712074] [INSPIRE].

[59] J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal
Field Theories in 3, 5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].

[60] C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in
Diverse Dimensions, JHEP 03 (2019) 163 [arXiv:1612.00809] [INSPIRE].

– 34 –

https://doi.org/10.1007/JHEP05(2020)134
https://arxiv.org/abs/2003.09154
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.09154
https://doi.org/10.4310/ATMP.2009.v13.n3.a5
https://arxiv.org/abs/0807.3720
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.3720
https://doi.org/10.1088/1126-6708/2006/05/070
https://arxiv.org/abs/hep-th/0602089
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0602089
https://doi.org/10.1002/prop.201700048
https://arxiv.org/abs/1401.3360
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.3360
https://doi.org/10.1016/S0550-3213(97)00136-3
https://arxiv.org/abs/hep-th/9612202
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9612202
https://doi.org/10.1016/S0550-3213(98)00136-9
https://doi.org/10.1016/S0550-3213(98)00136-9
https://arxiv.org/abs/hep-th/9710119
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9710119
https://doi.org/10.1007/JHEP03(2021)138
https://arxiv.org/abs/2012.05249
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.05249
https://doi.org/10.1002/prop.201700061
https://doi.org/10.1002/prop.201700061
https://arxiv.org/abs/1707.00714
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.00714
https://doi.org/10.1007/JHEP03(2020)039
https://arxiv.org/abs/1911.12202
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12202
https://doi.org/10.4310/ATMP.1999.v3.n3.a5
https://arxiv.org/abs/hep-th/9904073
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9904073
https://doi.org/10.1007/JHEP03(2017)124
https://arxiv.org/abs/1701.03552
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.03552
https://doi.org/10.1007/JHEP04(2017)091
https://arxiv.org/abs/1701.03501
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.03501
https://arxiv.org/abs/2011.11658
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.11658
https://doi.org/10.1007/JHEP01(2017)124
https://arxiv.org/abs/1605.05730
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.05730
https://doi.org/10.1007/JHEP12(2018)060
https://arxiv.org/abs/1809.03503
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.03503
https://doi.org/10.4310/ATMP.1998.v2.n4.a4
https://arxiv.org/abs/hep-th/9712074
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9712074
https://doi.org/10.1088/1126-6708/2008/02/064
https://arxiv.org/abs/0801.1435
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0801.1435
https://doi.org/10.1007/JHEP03(2019)163
https://arxiv.org/abs/1612.00809
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.00809

	Introduction
	The gauged D=4 supergravity
	The N=2 vacua
	U*2 symmetric vacua
	SU(2)xU(1) symmetric vaccum


	Embedding the model in ExFT
	The N=2 Kaluza-Klein spectrum from ExFT
	ExFT spectroscopy
	The Kaluza-Klein spectrum around the N=2 backgrounds
	Symmetries of the Kaluza-Klein spectrum

	Multiplet shortening

	The Type IIB uplift of the 1-parameter N=2 vacua
	Geometry of the internal space
	chi as a complex structure modulus

	The metric
	The 2-forms, the 4-form, the dilaton and the axion
	The chi-twist in the Kaluza-Klein spectrum
	Summarizing the symmetries in chi and their geometrical interpretation

	More general N=2 AdS4

	Discussion
	Superconformal multiplets
	Kaluza-Klein spectrum of the N=4 vacuum

