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1 Introduction

An exciting aspect of the gauge theory/string theory correspondence [5, 6] is that it ge-

ometrizes the confinement/deconfinement transitions of strongly coupled gauge theories as

topology changing transitions in dual supergravity backgrounds. Following [7], consider

N = 4 SU(N) supersymmetric Yang-Mills (SYM) theory on the 3-sphere S3 of radius L3.

In the planar limit, N → ∞ and g2
Y M → 0 with g2

Y M N fixed, and for large ’t Hooft coupling

Ng2
Y M ≫ 1, this SYM has a classical description as Type IIB supergravity on AdS5 × S5.

Thermal states of the theory have two scales: the temperature T and the S3 compactifi-

cation scale µ = 1
L3

. There are two distinct phases of the theory: the confined phase Tcon

and the deconfined phase Tdecon. In the large-N limit there is a sharp distinction between

the two phases: the confined phase has an entropy s ∝ O(N0), while the deconfined phase

has an entropy s ∝ O(N2). The former one is represented gravitationally as EAdS5 × S5

with the Euclidean time direction tE compactified as

tE ∼ tE +
1

T
, (1.1)

and the latter one as a black hole in global AdS5. Which phase is the preferred one, depends

on the ratio T/µ: when T ≫ µ, the gravitational free energy of the black hole solution

is lower compare to EAdS5, and the deconfined phase is the preferred one. The confined

phase is the preferred one at low temperatures. On the gravity side of the holographic

duality, the confinement/deconfinement transition is the Hawking-Page thermal transition

in anti-de Sitter space-time [8]. Restricted to EAdS5, the two thermal phases are shown

in figure 1. These are the only SO(4) × SO(6) symmetric thermal phases of the SYM.

In this paper we study vacua and black holes1 on the conifold [9] with fluxes in Type

IIB supergravity. These gravitational backgrounds are holographic duals to the vacua and

the thermal states of N = 1 SU(N + M) × SU(N) cascading gauge theory [2] on S3.

1The black holes studied are Schwarzschild-AdS-like, namely they carry no angular momentum or electric

charge.
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S3S3

S1S1

Tcon Tdecon

Figure 1. Geometrical phases in global EAdS5: the cyan face represents Euclidean time direction

S1, compactified with the period 1
T

, the green face represents the 3-sphere S3. The bulk geometry

with the S3 smoothly shrinking to zero size represents the confined phase of thermal N = 4 SYM

(the left panel). The bulk geometry with the S1 smoothly shrinking to zero size represents the

deconfined phase of thermal N = 4 SYM (the right panel).

S3

S3
S3

S3
S3

T̃ 1,1
S2

S2

Vs
A VB Vb

A

Figure 2. Vacua of the cascading gauge theory on S3 (the green faces) are characterized by

topologically distinct gravitational backgrounds: in the left panel the boundary S3 shrinks to zero

size, with the internal T̃ 1,1 (orange face) of the warped conifold having unbroken U(1) symmetry; in

the middle panel the 2-cycle (the yellow faces) of the deformed conifold shrinks to zero size; in the

right panel the boundary S3 shrinks to zero size but the conifold is deformed — the U(1) symmetry

of T̃ 1,1 is spontaneously broken to Z2.

Unlike N = 4 SYM, the cascading gauge is not conformal, and has a strong coupling scale

Λ. Thus, already the vacua of the theory are characterized by two mass scales Λ and µ,

leading to a nontrivial phase structure. In figure 2 we characterize distinct vacua of the

compactified cascading gauge theory according to the topology of the gravitational dual:

• Vs
A — vacua with the boundary S3 (akin the 3-sphere in the N = 4 discussion above)

smoothly shrinking to zero size (the left panel). In these vacua the chiral symmetry

of the gauge theory is unbroken.
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S3

S3

S3

S3

S3S3

S3

S3

T̃ 1,1

T̃ 1,1

S1

S1S1

S1

S1

S2

S2S2

T s
con,A Tcon,B T b

con,A

T s
decon T b

decon

Figure 3. Top row: confined thermal states of the cascading gauge theory, obtained from the

compactification of the Euclidean time direction as in (1.1) of the corresponding vacua, see fig-

ure 2. Bottom row, left panel: deconfined thermal states with the unbroken U(1) symmetry — the

Klebanov-Tseytlin black holes. Bottom row, right panel: deconfined thermal states with the U(1)

symmetry spontaneously broken to Z2 — the Klebanov-Strassler black holes.

• VB — vacua with the conifold 2-cycle S2 smoothly shrinking to zero size (the middle

panel). In these vacua the chiral symmetry of the gauge theory is spontaneously

broken.

• Vb
A — vacua with the boundary S3 (akin the 3-sphere in the N = 4 discussion above)

smoothly shrinking to zero size (the right panel). In these vacua the chiral symmetry

of the gauge theory is spontaneously broken.

We discuss different vacua of the cascading gauge theory and the phase transitions in

section 5.

The set of possible thermal states of the cascading gauge theory is yet richer: in

addition to Λ and µ we have the temperature T . In figure 3 we characterize distinct vacua of

the compactified cascading gauge theory according to the topology of the gravitational dual:

• T s
con,A — confined thermal states with the boundary S3 smoothly shrinking to zero

size (the top row, left panel). In these states the chiral symmetry of the gauge theory

is unbroken. These thermal states are the Euclidean Vs
A vacua with the compactified

time direction as in (1.1).

• Tcon,B — confined thermal states with the conifold 2-cycle S2 smoothly shrinking to

zero size. In these vacua the chiral symmetry of the gauge theory is spontaneously

– 3 –
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broken (the top row, middle panel). These thermal states are the Euclidean VB vacua

with the compactified time direction as in (1.1).

• T b
con,A — confined thermal states with the boundary S3 smoothly shrinking to zero

size (the top row, right panel). In these states the chiral symmetry of the gauge

theory is spontaneously broken. These thermal states are the Euclidean Vb
A vacua

with the compactified time direction as in (1.1).

• T s
decon — deconfined thermal states with the Euclidean time direction S1 (cyan faces)

smoothly shrinking to zero size (the bottom row, left panel). In these states the

chiral symmetry of the gauge theory is unbroken. We call these thermal states the

Klebanov-Tseytlin black holes.

• T b
decon — deconfined thermal states with the Euclidean time direction S1 smoothly

shrinking to zero size (the bottom row, right panel). In these states the chiral sym-

metry of the gauge theory is spontaneously broken. We call these thermal states the

Klebanov-Strassler black holes.

We discuss different thermal states of the cascading gauge theory and the phase transitions

in section 6.

The black branes on the conifold were studied previously in [3, 4] — these solutions

can be obtained as the µ/Λ → 0, i.e., the S3 decompactification, limit of the black holes

analyzed here. Vs
A and VB vacua of the conifold with fluxes were analyzed earlier in [10].

Vb
A vacua are constructed here for the first time.

The rest of the manuscript is organized as follows. To have a self-contained presenta-

tion, in section 2 we review the cascading gauge theory and its holographic dual [2]. We

present an overview of how the cascading gauge theory fits into the framework of the top-

down holography, and what is precisely the gravitational dual to the strong coupling scale

Λ of the theory. In section 3 we review the consistent truncation in SU(2) × SU(2) × Z2

invariant sector of Type IIB supergravity on warped deformed conifold with fluxes to an

arbitrary five dimensional manifold M5 [11]. This effective five-dimensional gravitational

action is our holographic dual to cascading gauge theory on M4 ≡ ∂M5. In section 4 we

use the framework of the effective action of section 3 to reproduce the known results about

N = 1 Klebanov-Witten superconformal gauge theory holography [12]. The purpose is to

gently familiarize the reader with the notations, and the holographic renormalization of the

conifold effective action. Sections 5 and 6 collect the main results of this paper. For the

most part, we tried in these sections to make the presentation as free from the technicalities

as practical. Interested reader can find technical guidance in section 6.3, and more com-

plete assembly of relevant formulas in the appendices. We conclude, mainly listing the open

problems, in section 7. Extensive numerical tests conducted are covered in appendix E.

Numerical work described in this paper has been done using Maplesoftő (symbolic

manipulations) and Wolfram Mathematicaő (numerics). Unfortunately, it is not practical

to publicly release the code and the data produced, as it takes over 150MB.
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2 Review: kS cascading gauge theory and its holographic dual

Following [13–15], we present a brief review of the cascading gauge theory and its holo-

graphic dual [2].

The starting point is the original Maldacena duality [5] between N = 4 SU(N) super-

symmetric Yang-Mills theory (SYM) and Type IIB supergravity on AdS5 × S5:

ds2
10 =

r2

L2

(

−dt2 + dx2
i

)

+
L2

r2
dr2 + L2

(

dS5
)2

; (2.1)

there is also a constant dilaton eΦ = gs, and a quantized self-dual R-R five form F5 =

F5 + ⋆F5,

F5 = 16π(α′)2 N vol(S5) ,
1

(4π2α′)2

∫

S5

F5 = N ∈ Z . (2.2)

The radii of AdS5 and S5 are

L4 = 4πgsN(α′)2 . (2.3)

The string coupling gs is related to the exactly marginal coupling gY M of N = 4 SYM as

g2
Y M = 4πgs . (2.4)

This basic AdS/CFT correspondence, restricted as above to the supergravity approximation

and to leading order in α′, implies the planar limit on the SYM size, namely N → ∞ with

g2
Y M N kept fixed, and for the large ’t Hooft coupling constant, i.e., g2

Y M N ≫ 1. In this

paper we always work in the two-derivative Type IIB supergravity approximation.

N = 4 SYM is a conformal theory with central charges c = a2

c = a

∣
∣
∣
∣
N =4 SY M

=
N2

4
. (2.5)

The central charges characterize the quantum anomaly in the trace of the energy momen-

tum tensor of the theory on M4,

〈T µ
µ〉 =

1

(4π)2

(

cI4 − aE4 + b R

)

, (2.6)

where the four-dimensional Euler density E4 and the Weyl curvature I4 are given by

E4 = RµνρλRµνρλ − 4RµνRµν + R2 , I4 = RµνρλRµνρλ − 2RµνRµν +
1

3
R2 , (2.7)

and b is the renormalization scheme dependent constant. They determine the Casimir

energy E0 of the vacuum state of the theory on M4. The Casimir energy is renormalization

scheme-dependent [16] — it depends on finite counterterms in the effective action, which

basis can be taken to be E4, I4, the Pontryagin density Tr(R ∧ R) and R2. In this paper

2In the supergravity approximation the two central charges are the same for any dual pair in the

gauge/gravity correspondence.
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we will be interested in gauge theories on M4 = R × S3, and it is only the counterterm

due to R2 that is nonvanishing:

Sfinite
ct = − b

12(4π)2

∫

M4

volM4
R2 , (2.8)

where the scheme-dependent coefficient b correlates with the trace anomaly ambiguity

in (2.6). The finite counterterm (2.8) leads to an ambiguity δE0 of the SYM on the S3 of

radius 1
µ as

δE0 =
3b

8
µ . (2.9)

While we discussed here the Casimir energy ambiguity of the conformal theory, it is clear

that thermal states of the conformal theory on S3 have ambiguous energy density E and the

pressure P as well. Specifically, corresponding to (2.8), we have renormalization scheme

ambiguities leading to

δE =
3b

16π2
µ4 , δP =

1

3
δE . (2.10)

The next step towards construction of the cascading gauge theory is to Z2 orbifold

N = 4 SU(N) SYM. The resulting [17] N = 2 SU(N) × SU(N) superconformal quiver

gauge theory has hypermultiplets transforming in (N, N) ⊕ (N, N) representation. From

the N = 1 point of view, the hypermultiplets correspond to pairs of chiral multiplets

Ak, Bℓ, k, ℓ = 1, 2 in the (N, N) and (N, N) representations correspondingly. There are

additional N = 1 chiral multiples Φ and Φ̃ in the adjoint representations of the two gauge

group factors. The theory has a superpotential

gY M Tr Φ (A1B1 + A2B2) + gY M Tr Φ̃ (B1A1 + B2A2) , (2.11)

and SU(2) × SU(2) global flavor symmetry associated with rotations of Ak and Bℓ. The

holographic dual of the orbifold model was identified as AdS5 × S5/Z2 orbifold in [18].

Locally, the dual Type IIB background metric is as in (2.1); because of the orbifolding the

central charges are

c = a

∣
∣
∣
∣
S5/Z2 orbifold

=
N2

2
, (2.12)

leading to a modified expression for the AdS5 radius L:

L4 = 4πgsN(α′)2 vol(S5)

vol(S5/Z2)
= 8πgsN(α′)2 . (2.13)

In [12] (KW) the authors discussed an important holographic RG flow from the above

orbifold model in the UV. Specifically, they added to a superpotential (2.11) a relevant term

m

2

(

Tr Φ2 − Tr Φ̃2
)

. (2.14)

This mass term explicitly breaks the conformal invariance, and the supersymmetry to

N = 1. Below the energy scale set by m, the adjoint chiral multiples can be integrated out

leading to the superpotential

g2
Y M

2m
[Tr (A1B1A2B2) − Tr (B1A1B2A2)] . (2.15)

– 6 –
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It was argued in [12] that the mass-deformed orbifold model flows in the IR to N = 1

superconformal fixed point. Using the U(1)R symmetry of the superconformal fixed point,

and the SU(2) × SU(2) global symmetry, the anomalous dimensions of Ak and Bℓ chiral

superfields can be computed as

γAk
= γBℓ

= −1

4
, (2.16)

resulting in an exactly marginal superpotential in the IR:

WKW =
λ

2
ǫijǫkℓ Tr AiBkAjBℓ . (2.17)

The central charges a|KW and c|KW of the IR superconformal fixed point were determined

in [19]; in the large-N limit,

a|KW

a|S5/Z2 orbifold
=

c|KW

c|S5/Z2 orbifold
=

27

32
=⇒ c = a

∣
∣
∣
∣
KW

=
27N2

64
. (2.18)

The holographic dual to the full gauge theory renormalization group flow described above

is currently unknown. The end point of the RG flow was argued to be holographically dual

to a near-horizon geometry of D3 branes on a singular conifold [9] — this is commonly

referred to as a Klebanov-Witten model [12]. Here, the background geometry is

ds2
10 =

r2

L2

(

−dt2 + dx2
i

)

+
L2

r2
dr2 + L2ds2

T 1,1 , (2.19)

where

ds2
T 1,1 =

1

9

(

dψ +
2∑

i=1

cos θidφi

)2

+
1

6

2∑

i=1

(

dθ2
i + sin2 θidφ2

i

)

(2.20)

is the metric on T 1,1 ≡ (SU(2)×SU(2))/U(1) coset (the base of the conifold). The angular

coordinates range as 0 ≤ ψ ≤ 4π, 0 ≤ θa ≤ π and 0 ≤ φa ≤ 2π (a = 1, 2). Anticipating the

generalization to the deformed conifold [9], we introduce the following basis of one-forms

on the compact space [20]:

g1 =
α1 − α3

√
2

, g2 =
α2 − α4

√
2

, g3 =
α1 + α3

√
2

, g4 =
α2 + α4

√
2

, g5 = α5 , (2.21)

where

α1 = − sin θ1 dφ1 , α2 = dθ1 , α3 = cos ψ sin θ2 dφ2 − sin ψ dθ2 ,

α4 = sin ψ sin θ2 dφ2 + cos ψ dθ2 , α5 = dψ + cos θ1 dφ1 + cos θ2 dφ2 ,
(2.22)

allowing to rewrite the metric (2.19) as

ds2
10 =

r2

L2

(

−dt2 + dx2
i

)

+
L2

r2
dr2 + L2

(
1

9
g2

5 +
1

6

(

g2
3 + g2

4

)

+
1

6

(

g2
1 + g2

2

))

. (2.23)

Besides the metric, Type IIB supergravity background includes a constant string coupling

gs and a self-dual R-R five form F5 = F5 + ⋆F5,

F5 = 27π(α′)2 N vol(T 1,1) ,
1

(4π2α′)2

∫

T 1,1
F5 = N ∈ Z . (2.24)
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The AdS5 and T 1,1 radii L are given by

L4 = 4πgsN(α′)2 vol(S5)

vol(T 1,1)
=

27

4
πgsN(α′)2 . (2.25)

The holographic computation of the boundary stress-energy trace anomaly reproduces the

central charge (2.18), see [21].

The final step in constructing the cascading gauge theory is to deform the N = 1

Klebanov-Witten superconformal gauge theory by shifting the rank of one of the gauge

groups [2]: SU(N + M) × SU(N), keeping pairs of chiral multiplets Ak and Bℓ, k, ℓ = 1, 2,

in the bifundamental (N + M, N) and (N + N, N) representations, and the superpotential

as in (2.17). When M 6= 0, the theory is no longer conformal, and the gauge couplings g1

and g2, of the gauge group factors SU(N + M) and SU(N) correspondingly, run with the

renormalization group scale µ̂,

d

d ln(µ̂/Λ)

8π2

g2
1

= 3(N + M) − 2N(1 − γ) ,

d

d ln(µ̂/Λ)

8π2

g2
2

= 3N − 2(N + M)(1 − γ) ,

(2.26)

where γ is the anomalous dimension of operators Tr AiBj and Λ is the strong coupling scale

of the cascading gauge theory.3 To leading order in M/N , γ = −1
2 (see (2.16)), so that

8π2

g2
1

− 8π2

g2
2

= 6M ln
µ̂

Λ
×

(

1 + O(M/N)

)

, (2.27)

while the sum of the gauge couplings is constant along the RG flow

8π2

g2
1

+
8π2

g2
2

= const ≡ 2π

gs
. (2.28)

An immediate consequence of (2.27) and (2.28) is that as one goes to the UV (µ̂ increases)

g2 diverges at some finite value of µ̂ = µ̂UV ≈ Λe
π

3Mgs ; while as one go to the IR (µ̂

decreases) g1 diverges at some finite value of µ̂ = µ̂IR ≈ Λe
− π

3Mgs . To continue the RG

flow past µ̂UV or µ̂IR, we must perform N = 1 gauge theory Seiberg duality [22]. For

a cascading gauge theory discussed, Seiberg duality is a self-similar transformation of the

theory leading to N → N + M for µ̂ > µ̂UV , and N → N − M for µ̂ < µ̂IR [2]. Effectively,

the rank N of the cascading gauge theory runs along the RG flow as [23]

N = N(µ̂) ∝ +M2 ln
µ̂

Λ
. (2.29)

Although the duality cascade extends indefinitely in the UV, it stops in the IR since the

negative values of N(µ̂) are nonphysical. In general, the IR structure of the cascading

gauge theory can be rather involved [24]; when N is an integer multiple of M , the cascad-

ing gauge theory ends up in the IR as the N = 1 SU(M) Yang-Mills theory. It confines

with a spontaneous breaking of the U(1)R chiral symmetry,

U(1)R → Z2 . (2.30)

3Below, we use the holographic dual to provide a precise non-perturbative definition of Λ.
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The holographic dual of ‘shifting the rank of one of the gauge groups’ of the KW

superconformal gauge theory is to supplement the N D3 branes at the tip of the conifold

with M D5 branes wrapping the vanishing 2-cycle of the conifold. The resulting Type IIB

supergravity background takes form [2]

ds2
10 = H

−1/2
KS

(

−dt2 + dx2
i

)

+ Ω2
1

(

dτ2 + g2
5

)

+ Ω2
2

(

g2
3 + g2

4

)

+ Ω2
3

(

g2
1 + g2

2

)

, (2.31)

where

Ωi = ωi,KSH
1/4
KS , ω1,KS =

ǫ2/3

√
6K

, ω2,KS =
ǫ2/3K1/2

√
2

cosh
τ

2
,

ω3,KS =
ǫ2/3K1/2

√
2

sinh
τ

2
, K =

(sinh(2τ) − 2τ)1/3

21/3 sinh τ
,

d

dτ
HKS = 8

(2h2,KS − Mα′)h1,KS − 2h2,KSh3,KS

ǫ8/3K2 sinh2 τ
,

(2.32)

with

h1,KS =
Mα′gs

4

cosh τ − 1

sinh τ

(
τ cosh τ

sinh τ
− 1

)

, h2,KS =
Mα′gs

4

(

1 − τ

sinh τ

)

,

h3,KS =
Mα′gs

4

cosh τ + 1

sinh τ

(
τ cosh τ

sinh τ
− 1

)

,

(2.33)

for the Einstein frame metric with a radial coordinate τ ∈ [0, ∞). The asymptotic boundary

is as τ → +∞, while the deformed conifold 2-cycle collapsing as

∝ ǫ4/3 τ2

4

(

g2
1 + g2

2

)

, (2.34)

as τ → 0, with the 3-cycle remaining finite

∝ ǫ4/3
(

1

2
g2

5 + g2
3 + g2

4

)

. (2.35)

The dilaton is constant,

eΦ = gs , (2.36)

R-R 3-form flux F3 = F top
3 + dC2 and NS-NS 3-form flux H3 = dB2 are

B2 = h1,KS g1 ∧ g2 + h3,KS g3 ∧ g4, C2 = h2,KS (g1 ∧ g3 + g2 ∧ g4) ,

F top
3 =

1

2
Mα′ g5 ∧ g3 ∧ g4 ,

(2.37)

and the self-dual R-R five-form F5 = F5 + ⋆F5,

gsF5 = B2 ∧ F3 =

(

h2,KS(h3,KS − h1,KS) +
1

2
Mα′h1,KS

)

g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 . (2.38)

KS solution has 3 parameters:

• gs — the string coupling, related to the RG invariant sum of the cascading gauge

theory coupling constants (2.28);
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• an integer M defining the topological part of the R-R 3-form flux F top
3 (2.37) (equiv-

alently the number of D5 branes wrapping the conifold 2-cycle), related to the dif-

ference of the ranks of the cascading gauge theory groups;

• the conifold complex structure deformation parameter ǫ, determining the strong cou-

pling scale Λ of the cascading gauge theory and mass scale in the glueball spectrum

Λ =
25/12e1/3

33/2

ǫ2/3

Mg
1/2
s α′

, mglueball ≡ ǫ2/3

Mgsα′
, (2.39)

where the specific numerical prefactor in the definition of the strong coupling scale is

chosen to agree4 with the earlier computations of thermodynamics of the cascading

gauge theory on R
3.

To facilitate the identification of the strong coupling scale in the numerical solutions

representing the cascading gauge theory on S3 discussed in sections 5–6, we rewrite the

KS solution (2.32)–(2.38) in a radial coordinate ρ defined as in (3.15). Following [15] (see

appendix B.3 there), from
(dρ)2

ρ4
= (ω1,KS(τ))2(dτ)2 , (2.40)

and introducing

z ≡ e−τ/3 , (2.41)

we find
1

ρ
=

√
6 (2ǫ)2/3

4

∫ z

1
du

u6 − 1

u2(1 − u12 + 12u6 ln u)1/3
. (2.42)

In the UV, τ → ∞, z → 0 and ρ → 0 we have

e−τ/3 ≡ z =

√
6 (2ǫ)2/3

4
ρ

(

1 + Qρ + Q2ρ2 + Q3ρ3 + Q4ρ4 + Q5ρ5 +

(
27

80
ǫ4 ln 3 + Q6

+
27

800
ǫ4 − 9

16
ǫ4 ln 2 +

9

20
ǫ4 ln ǫ +

27

40
ǫ4 ln ρ

)

ρ6 +

(

−63

16
ǫ4Q ln 2 +

189

80
ǫ4Q ln 3 + Q7

+
729

800
Qǫ4 +

63

20
ǫ4Q ln ǫ +

189

40
Qǫ4 ln ρ

)

ρ7 +

(
2403

400
ǫ4Q2 − 63

4
ǫ4Q2 ln 2 +

189

20
ǫ4Q2 ln 3

+
63

5
ǫ4Q2 ln ǫ + Q8 +

189

10
ǫ4Q2 ln ρ

)

ρ8 +

(
189

5
ǫ4Q3 ln ǫ +

9729

400
ǫ4Q3 − 189

4
ǫ4Q3 ln 2

+
567

20
ǫ4Q3 ln 3 + Q9 +

567

10
ǫ4Q3 ln ρ

)

ρ9 + O(ρ10 ln ρ)

)

, (2.43)

where

Q =

√
6 (2ǫ)2/3

4

{∫ 1

0
du

(
1 − u6

u2(1 − u12 + 12u6 ln u)1/3
− 1

u2

)

− 1

}

= −
√

6 (2ǫ)2/3

4
× 0.839917(9) .

(2.44)

4In the previous studies of the cascading gauge theory on S3 [10] or in dS4 [15], the strong coupling scale

was defined as ΛS3 = ΛdS4
= 2−1/4Λ, relative to Λ in (2.39).
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In the IR, τ → 0, z → 1− and y ≡ 1
ρ → 0 we have

τ =

√
6 21/3

31/3 ǫ2/3
y

(

1 − 22/3 31/3

15 ǫ4/3
y2 +

71 32/3 21/3

2625 ǫ8/3
y4 + O(y6)

)

. (2.45)

Given an analytic Klebanov-Strassler solution (2.31)–(2.33), (2.36)–(2.38), and the asymp-

totic correspondence between τ and ρ (or y) coordinates (2.43) and (2.45) it is straightfor-

ward to express all the KS background functions asymptotically as τ → ∞ (ρ → 0) and

τ → 0 (ρ → ∞). Of particular importance is the UV asymptote of the NS-NS 3-form flux

function K1, to be defined below in (3.14), related to h1,KS :

K1 ≡ 54Mα′ h1,KS =

(
9

2
Mα′

)2

gs

{

ln

[
21/2

Λ2

(
2

9Mα′

)2 1

gs

]

− 2 ln ρ + O(ρ3 ln ρ)

}

, (2.46)

where we used (2.43) and the definition of the strong coupling scale Λ (2.39). The somewhat

grotesque definition of Λ, leading to (2.46) becomes natural as we construct numerical

solutions in sections 5–6, using P ∝ Mα′ as in (3.6) and the asymptotic parametrization

of K1 as in (A.15)

K1 = K0 − 2P 2gs ln ρ + O(ρ3 ln ρ) . (2.47)

Indeed, we find in this case

Λ2 =

√
2

P 2gs
e

−
K0

P 2gs , (2.48)

where the factor
√

2 is introduced for historical reasons, to agree with the analysis in [3, 4,

11].

3 Review: type IIB supergravity on warped deformed conifold with

fluxes

Consistent truncation in the SU(2)×SU(2)×Z2 invariant sector of Type IIB supergravity on

warped deformed conifold with fluxes to a five dimensional manifold M5 was derived in [11]:

S5

[

gµν ,Ωi=1···3, Φ, hi=1···3 , {P, Ω0}
]

=
108

16πG5

∫

M5

volM5
Ω1Ω2

2Ω2
3

×
{

R10 − 1

2
(∇Φ)2 − 1

2
e−Φ

(

(h1 − h3)2

2Ω2
1Ω2

2Ω2
3

+
1

Ω4
3

(∇h1)2 +
1

Ω4
2

(∇h3)2

)

− 1

2
eΦ

(

2

Ω2
2Ω2

3

(∇h2)2 +
1

Ω2
1Ω4

2

(

h2 − P

9

)2

+
1

Ω2
1Ω4

3

h2
2

)

− 1

2Ω2
1Ω4

2Ω4
3

(

4Ω0 + h2 (h3 − h1) +
1

9
Ph1

)2}

.

(3.1)

It is a functional of:

• a five-dimensional metric gµν on M5,

ds2
5 = gµν(y)dyµdyν , (3.2)
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• three scalars Ωi=1···3(y) uplifting the metric on M5 to a 10-dimensional metric of

Type IIB supergravity,

ds2
10 = ds2

5 + ds2
T 1,1 , ds2

T 1,1 = Ω2
1(y)g2

5 + Ω2
2(y)(g2

3 + g2
4) + Ω2

3(y)(g2
1 + g2

2) , (3.3)

• a dilaton Φ(y),

• three scalars hi=1···3(y), uplifting to a R-R 3-form flux F3 = F top
3 +dC2 and an NS-NS

3-form flux H3 = dB2 as

B2 = h1(y) g1 ∧ g2 + h3(y) g3 ∧ g4, C2 = h2(y) (g1 ∧ g3 + g2 ∧ g4) ,

F top
3 =

1

9
P g5 ∧ g3 ∧ g4 .

(3.4)

The topological part of the R-R 3-from flux F top
3 depends on a fixed parameter P , subject

to quantization [3, 13]:

1

4π2α′

∫

3−cycle
F top

3 =
2P

9α′
∈ Z , (3.5)

leading to

P =
9

2
Mα′ , (3.6)

where M is the number of fractional D3 branes (the number of D5 branes wrapping the

2-cycle of the conifold base).5

The self-dual R-R five-form F5 = F5 + ⋆F5 Bianchi identity

dF5 = H3 ∧ F3 (3.7)

can be integrated to obtain

gsF5 =

(

4Ω0 + h2(y)(h3(y) − h1(y)) +
P

9
h1(y)

)

g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 , (3.8)

where Ω0 is an arbitrary constant. In the absence of the 3-form fluxes (the vanishing r.h.s.

of (3.7)), the 5-form is conserved and must be quantized [13]

1

(4π2α′)2

∫

T 1,1
F5 =

16Ω0

πgs(α′)2
∈ Z , (3.9)

leading to

Ω0 =
πgs(α′)2N

16
, (3.10)

where N is the number of D3 branes placed at the tip of the singular conifold, and gs is

the asymptotic string coupling,

eΦ −→ gs . (3.11)

5The T 1,1 3-cycle is parameterized by θ2 = φ2 = 0, and the 2-cycle is parameterized by ψ = 0, θ1 = −θ2

and φ1 = −φ2, see [13].
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Note that R10 in (3.1) is given by

R10 = R5 +

(

1

2Ω2
1

+
2

Ω2
2

+
2

Ω2
3

− Ω2
2

4Ω2
1Ω2

3

− Ω2
3

4Ω2
1Ω2

2

− Ω2
1

Ω2
2Ω2

3

)

− 2� ln
(

Ω1Ω2
2Ω2

3

)

−
{

(∇ ln Ω1)2 + 2 (∇ ln Ω2)2 + 2 (∇ ln Ω3)2 +
(

∇ ln
(

Ω1Ω2
2Ω2

3

))2
}

,

(3.12)

and R5 is the five-dimensional Ricci scalar of the metric (3.2). Furthermore, all the covari-

ant derivatives ∇λ in the effective action (3.1) are computed with respect to the metric (3.2).

Finally, G5 is the five dimensional effective gravitational constant

G5 ≡ G10

volT 1,1

=
27

16π3
G10 , (3.13)

where 16πG10 = (2π)7g2
s(α′)4 is 10-dimensional gravitational constant of Type IIB super-

gravity.

Our primary application of the effective action (3.1) is in the context of black holes on

the warped deformed conifold, realizing the holographic dual to thermal states of the KS

cascading gauge theory on S3. For this goal, we find it convenient to introduce

h1 =
1

P

(
K1

12
− 36Ω0

)

, h2 =
P

18
K2 , h3 =

1

P

(
K3

12
− 36Ω0

)

,

Ω1 =
1

3
f1/2

c h1/4 , Ω2 =
1√
6

f1/2
a h1/4 , Ω3 =

1√
6

f
1/2
b h1/4 , g = eΦ ,

(3.14)

and following [25] isolate the holographic coordinate ρ in M5 as:

ds2
5 = gµν(y)dyµdyν ≡ 1

h1/2(x, ρ)ρ2

(

Gij(x, ρ)dxidxj
)

+
h1/2(x, ρ)

ρ2
gρρ(x, ρ)(dρ)2 . (3.15)

The boundary of the space M5, ∂M5, is taken at ρ → 0, with

lim
ρ→0

Gij(x, ρ)dxidxj = −(dt)2 +
1

µ2
(dS3)2 , lim

ρ→0
gρρ(x, ρ) = 1 , (3.16)

where (dS3)2 is the unit size round metric on S3, and L3 = 1
µ is its radius. Insisting

that the SO(4) symmetry of the boundary metric (3.16) is the symmetry of the full M5

metric (3.15) implies that Gij and gρρ are the functions of the holographic radial coor-

dinate ρ only.6 As emphasized in [10], the parametrization (3.15) is not unique — the

diffeomorphisms of the type
















ρ

h

Gij

gρρ

fa,b,c

K1,2,3

Φ
















=⇒
















ρ̂

ĥ

Ĝij

ĝρρ

f̂a,b,c

K̂1,2,3

Φ̂
















=
















ρ/(1 + α ρ)

(1 + α ρ)4 h

Gij

gρρ

(1 + α ρ)−2 fa,b,c

K1,2,3

Φ
















, α = const , (3.17)

6Of course, the same implies for all the scalars in the effective action (3.1).
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preserve the general form of the metric. For7 µ 6= 0, we can completely fix (3.17), i.e., the

parameter α in (3.17), requiring that for a geodesically complete M5 the radial coordinate

ρ extends as

ρ ∈ [0, +∞) . (3.18)

We choose different parameterizations of the metric (3.15) depending on whether or

not it has a regular Schwarzschild horizon in the bulk:

(A) [no horizon] : Gijdxidxj ≡ −(dt)2 +
f1(ρ)2

µ2
(dS3)2 , gρρ = 1 ;

(B) [horizon] : Gijdxidxj ≡ −f(ρ) (dt)2 +
1

µ2
(dS3)2 , gρρ = f−1(ρ) .

(3.19)

From (3.16), at the M5 boundary,

lim
ρ→0

f1(ρ) = 1 , and lim
ρ→0

f(ρ) = 1 , (3.20)

while the presence of the horizon as ρ → ∞ in case (B) implies that

lim
ρ→∞

f(ρ) = 0 . (3.21)

Note that in case (A) — no horizon in M5 — f1(ρ) → 0 as ρ → ∞ is one of the possible

boundary condition dictated by the geodesic completeness of M5; alternatively, we can

require for a 2-cycle of the warped deformed conifold to shrink to zero size, much like in

the KS solution [2], with f1 nonvanishing in the limit.

Given the radial coordinate as in (3.18) and the metric ansatz (3.19), there is an

additional rescaling symmetry of the background geometry that effects the energy scale µ:

ρ → ρ

β
, t → t

β
, µ → βµ , β = const , (3.22)

with the rest of the background defining functions ((3.14) and h, f1 or f) unchanged.

Clearly, under the symmetry transformation (3.22) any physical observable O of a mass-

scaling dimension ∆ would transform as

O → β∆O . (3.23)

In numerical analysis in sections 5–6 we fix this symmetry either by fixing µ or the rescaling

of the radial coordinate — the results of the computations will be presented as dimensionless

ratios, invariant under (3.22).

Finally, there are two rescaling symmetries acting on P as P → λP : with

g → g

λ
, {ρ, µ, Gij , fa,b,c, h, K1,2,3} → {ρ, µ, Gij , fa,b,c, h, K1,2,3} , (3.24)

7When µ → 0, i.e., in the decompactification limit S3 → R
3, there is a residual rescaling of the radial

coordinate ρ → λρ, with the constant λ, where λ is absorbed into the rescaling of the time t → λt and the

R
3 spatial coordinates xi → λxi, with all the fields of the effective action (3.1) left invariant.
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or with

ρ → ρ

λ
, {h, K1,3} → λ2{h, K1,3} , {µ, Gij , fa,b,c, K2, g} → {µ, Gij , fa,b,c, K2, g} . (3.25)

The former symmetry can be used to set the asymptotic string coupling as

lim
ρ→0

g = 1 ≡ gs , (3.26)

while the latter can be used to either set P = 1, or to set the asymptotic parameter K0,

see (2.47), since under (3.25)

K0

P 2gs
→ K0

P 2gs
− 2 ln λ . (3.27)

Generic solutions of the effective action (3.1) have only Z2 R-symmetry; this chiral

symmetry is enhanced to U(1) in solutions of the consistent truncation of the latter ac-

tion [25], constraining

K1 = K3 , fa = fb , K2 ≡ 1 . (3.28)

In appendix A we collect equations of motion derived from the effective action (3.1),

produce the corresponding asymptotic expansions, and review the holographic renormaliza-

tion of the model. Additionally, in appendix A.1.1, we recast the supersymmetric solution

of the Klebanov-Strassler [2], reviewed in section 2, as the spatial S3-decompactification

limit, i.e., µ → 0, of the warped deformed conifold vacua VB. We collect explicit expres-

sions for the boundary stress-energy tensor in vacua and in thermal states of the model in

appendix A.4.

4 Vacua and black holes in AdS5 × T 1,1

Prior to moving to a more technical example of Type IIB flux geometries on warped

deformed conifold, we consider the vacua and the black holes on a singular conifold, with

the self-dual flux F5 only. For large values of the flux these solutions represent the vacua

and the thermal states of large-N Klebanov-Witten theory [12] on M4 = R × S3. There

are not new results here: we just present this textbook example in the framework of the

effective action 3.

Note that the absence of the three form fluxes implies (see (3.14))

P = 0 , K1 = K3 ≡ K0 = 432Ω0 , K2 ≡ 1 , (4.1)

where Ω0 is quantized as in (3.10).

4.1 Conformal Vs
A vacua

The equations of motion for horizonless bulk geometries of Type IIB supergravity (3.1),

dual to Klebanov-Witten gauge theory vacua on S3 are collected in appendix A.1. The

limit P → 0 of these equations is slightly subtle: first we need to set Ki as in (4.1), followed

by setting P = 0. We find:
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• from (A.9):

g(ρ) ≡ gs ; (4.2)

• from (A.7):

fb(ρ) = fa(ρ) . (4.3)

• Equations (A.2) and (A.3) become identities once we set

fc(ρ) = fa(ρ) . (4.4)

• We expect that the warp factors Ωi in (3.14) are constant, thus we set

fa(ρ) =
Q

√

h(ρ)
. (4.5)

Consistency of (A.2), (A.5) and (A.10) implies that

Q =
1

2
K

1/2
0 . (4.6)

Notice that the “size” of the compact space T 1,1 is (see (4.1) and (3.10))

L4 ≡ Q2 =
K0

4
= 108Ω0 =

27

4
πgsN(α′)2 , (4.7)

in agreement with (2.25). In what follows, we present the solution in terms of K0,

rather than L from (4.7).

• We are left at this stage with the 3 equations, i.e., (A.1), (A.5) and (A.10), for the

remaining functions f1, h and the first-order constraint. The most efficient way to

proceed is to introduce

h̃ ≡ h

f4
1

. (4.8)

The new function must be defined on the interval (3.18), and from (A.14) and (A.19),

and (A.23), must satisfy the boundary conditions:

lim
ρ→0

h̃ =
K0

4
, lim

ρ→∞
h̃ =

1

µ4hh
0

= finite . (4.9)

Eliminating f ′
1 from (A.10), we find a decoupled equation for h̃:

0 = h̃′′ − 5(h̃′)2

4h̃
. (4.10)

The most general solution is

h̃ =
H1

(1 + H2 ρ)4
, (4.11)

where Hi are the integration constants. Imposing the boundary conditions (4.9) we

determine

h̃ ≡ K0

4
. (4.12)

– 16 –



J
H
E
P
0
6
(
2
0
2
1
)
1
0
2

• Given (4.12), we solve (A.1), subject to the boundary condition (3.20),

f1 =
2

(4 + K0µ2ρ2)1/2
. (4.13)

From (4.8) we find

h =
4K0

(4 + K0µ2ρ2)2
. (4.14)

Equipped with the analytic solution, we can extract the UV parameters (A.21):

fa,1,0 = fa,3,0 = k2,3,0 = fa,4,0 = fc,4,0 = g4,0 = fa,6,0 = k2,7,0 = fa,8,0 = 0 , (4.15)

and the IR parameters (A.24):

fh
a,0 = fh

b,0 = fh
c,0 =

µ2K0

4
, hh

0 =
4

µ4K0
,

Kh
1,0 = Kh

3,0 = K0 , Kh
2,0 = 1 , gh

0 = gs .

(4.16)

Using (A.83) in the limit P → 0 we find for the energy density E0 and the pressure P

E0 = 3P =
1

8πG5

K2
0µ4

32
=

c

2π2
µ4 , (4.17)

where in the last equality we used the expression for Ω0 from (3.10), G5 from (3.13), and

the expression for the central charge c of the large-N Klebanov-Witten gauge theory (2.18),

resulting in the Casimir energy

E0 = E0 × 1

µ3
vol(S3) = c µ . (4.18)

Note that (4.18) obtained using the holographic renormalization of [25] is different from

the standard result for the Casimir energy of the holographic CFT [26]:

Eb=0
0 =

3c

4
µ . (4.19)

We put the superscript b = 0 in (4.19) to emphasize that this result was obtained in the

holographic renormalization scheme where the ambiguous coefficient b multiplying R of

the conformal theory boundary stress-energy tensor trace vanishes, see (2.6). As detailed

in [25], the minimal holographic renormalization of the flux geometries, reviewed in sec-

tion A.3, (dual to the cascading gauge theory on generic M4) requires the presence of R2
γ

and Rab γRab
γ counterterms (see (A.68)). These counterterms, in the conformal, i.e., P → 0,

limit produce the R term in the boundary stress-energy tensor (see eq. (3.54) in [25]) as

+
1

8πG5
R × 1

384
K2

0 = +
c

24π2
R ≡ 1

(4π)2
× 2c

3
︸︷︷︸

≡b

× R , (4.20)

which comparing with (2.6) implies that b = 2c
3 . Thus, following (2.9), we expect that

E0 = Eb=0
0 + δE

b=2c/3
0 =

3c

4
µ +

3

8
× 2c

3
µ = c µ , (4.21)

which is indeed the case.
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4.2 Conformal T s
decon

thermal states

The equations of motion for black hole geometries of Type IIB supergravity (3.1), dual

to Klebanov-Witten gauge theory deconfined thermal states on S3 are collected in ap-

pendix A.2. To solve these equations we follow the same steps as in section 4.1. We find

f =
4(fa,1,0ρ + 1)(K0µ2ρ2 + 2f2

a,1,0ρ2 + 4fa,1,0ρ + 4)

(fa,1,0ρ + 2)4
, fa = fb = fc =

(fa,1,0ρ + 2)2

4
,

h =
4K0

(fa,1,0ρ + 2)4
, K1 = K3 ≡ K0 , K2 ≡ 1 , g ≡ gs , (4.22)

resulting in the UV parameters (A.55)

f4,0 =
1

16
f2

a,1,0(2K0µ2 − f2
a,1,0) ,

fa,3,0 = k2,3,0 = fc,4,0 = g4,0 = fa,6,0 = k2,7,0 = fc,8,0 = 0 ,
(4.23)

and the IR parameters (A.58)

fh
a,0 = fh

b,0 = fh
c,0 =

1

4
f2

a,1,0 , hh
0 =

4K0

f4
a,1,0

, Kh
1,0 = Kh

3,0 = K0 , Kh
2,0 = 1 ,

gh
0 = gs , fh

1 =
4(K0µ2 + 2f2

a,1,0)

f3
a,1,0

.

(4.24)

While K0 is a fixed parameter, specifying the size of T 1,1, see (4.7), the parameter fa,1,0,

which we express as

fa,1,0 ≡ K
1/2
0 κ , (4.25)

is not fixed, and instead encodes the temperature of the state (A.59):

T =
µ2 + 2κ2

2πκ
. (4.26)

From section A.4.4, the remaining thermodynamic characteristics of the deconfined state

are

E = 3P =
c

2π2

(

µ4 + 3κ2(κ2 + µ2)

)

, s =
2c

π
κ3 , F =

c

2π2

(

µ4 + κ2(µ2 − κ2)

)

. (4.27)

We end this section summarizing the well-known properties and the phase structure

of the black holes in AdS5 × T 1,1: the first law of thermodynamics is satisfied:

dE =
3c

π2
κ(2κ2 + µ2) ≡ Tds . (4.28)

The specific heat density cV of small black holes, i.e., the low entropy, is negative:

cV = −T
∂2F
∂T 2

=
6cκ3

π

2κ2 + µ2

2κ2 − µ2
< 0 ⇐⇒ κ <

1√
2

µ . (4.29)

The black holes discussed realize the deconfined thermal phase of the Klebanov-Witten

gauge theory. The confined thermal phase is represented by the Vs
A vacua solutions of
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Figure 4. The phase diagram of black holes in AdS5 × T 1,1. The energy density E relative to the

Casimir energy density E0 is shown as a function of κ/µ. κ determines the Hawking temperature

of the black hole, see (4.26).

section 4.1 with the Euclidean time direction compactified with the appropriate inverse

temperature period. The Hawking-Page [8] or the confinement phase transition [7] occurs

when (compare (4.27) and (4.17))

F
∣
∣
∣
∣
deconfined

≥ F = E
∣
∣
∣
∣
confined

⇐⇒ κ2(µ2 − κ2) ≥ 0 , (4.30)

leading to a critical temperature Tcon/decon of the confinement/deconfinement phase tran-

sition

Tcon/decon =
3µ

2π
. (4.31)

The black holes considered are ‘smeared’ over the compact space — T 1,1 in this case. When

the black hole becomes sufficiently small, it becomes unstable with respect to localization

on the compact space [27, 28]. From the dual boundary gauge theory perspective, the

global SU(2) × SU(2) × U(1) symmetry of the Klebanov-Witten gauge theory is sponta-

neously broken. It was determined in [29] that the AdS5 × T 1,1 black holes develop such

an instability when

κ < 0.37285(8) µ . (4.32)

In figure 4 we collect the features of the black holes in AdS5 × S5. We plot the

energy density E of the black holes relative to their Casimir energy density E0 (4.17) as a
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Figure 5. Round S3 vacua of the warped deformed conifold with fluxes. The vertical dashed black

line indicates the first-order transition between the chirally symmetric Vs
A (solid blue curve) and VB

(solid green curve) vacua with the spontaneously broken symmetry, see (5.3). The vertical dashed

red line indicates the onset of the perturbative chiral symmetry breaking instability of the Vs
A vacua

(which are denoted with the grey dashed curve), see (5.4).

function of κ/µ. κ is an auxiliary mass scale, which can be traded for the temperature T

following (4.26), and µ is the boundary S3 compactification scale. We choose κ so that the

Hawking-Page (or confinement/deconfinement phase transition from the dual boundary

perspective) is at
κ

µ

∣
∣
∣
∣
Hawking−Page

= 1 . (4.33)

Black holes dominate in the canonical ensemble for κ > µ, and undergo the first-order phase

transition at κ = µ. In the microcanonical ensemble, black holes remain thermodynamically

stable for κ > µ/
√

2, and develop a perturbative instability as indicate in (4.32).

5 Round S3 vacua of the warped deformed conifold with fluxes

We begin this section summarizing the results for the S3 vacua structure of the warped

deformed conifold with fluxes. These vacua realize the holographic dual to the SO(4)

invariant ground states of the cascading gauge theory [2] on S3 of radius 1
µ . The theory

has a strong coupling scale Λ (2.39). In figures 5 and 6 we present the reduced Casimir

energy density Ê , defined as

Ê ≡ 8πG5

P 4g2
s

E
Λ4

=
26π4

35M4

E
Λ4

, (5.1)
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where we used (3.13) and (3.6), as a function of µ
Λ . Recall that there are 3 distinct

types of vacua: Vs
A, VB and Vb

A, see figure 2: the Vs
A vacua realize ground states of the

cascading gauge theory with unbroken chiral symmetry; in the bulk gravitational dual they

are characterized topologically by the presence of the trivial 3-cycle (the boundary S3 can

smoothly shrink to a zero size). In the limit µ ≫ Λ they resemble the ground states of the

conformal Klebanov-Witten gauge theory [12], see section 4.1. These vacua were originally

constructed and analyzed in [10].

The VB vacua realize ground states of the cascading gauge theory with the spon-

taneously broken chiral symmetry; in the bulk gravitational dual they are characterized

topologically by the presence of the trivial 2-cycle (the vanishing 2-cycle of the deformed

conifold, see (2.34)). In the limit µ/Λ → 0 they represent the ground state of the Klebanov-

Strassler gauge theory on R
3. Note that, see (A.85),

Ê
∣
∣
∣
∣
KS on R3

= 0 . (5.2)

These vacua were originally constructed and analyzed in [10].

The Vb
A vacua realize ground states of the cascading gauge theory with the spon-

taneously broken chiral symmetry; in the bulk gravitational dual they are characterized

topologically by the presence of the trivial 3-cycle (the boundary S3 can smoothly shrink

to a zero size). These vacua are constructed and analyzed here for the first time.

In figure 5 the dashed vertical black line denotes the first-order (zero temperature)

transition between Vs
A (solid blue curve) and VB (solid green curve) vacua:

µχSB

Λ
= 1.043069(7) . (5.3)

This is in perfect agreement with the corresponding transition point obtained in [10].8 Vs
A

vacua dominate for µ > µχSB, implying that the ground state of the cascading gauge theory

on sufficiently small S3 has unbroken chiral symmetry; while the VB vacua dominate for µ <

µχSB, implying that the ground state of the cascading gauge theory on S3 spontaneously

breaks the chiral symmetry on sufficiently large S3. Chirally symmetric Vs
A states can be

constructed for µ < µχSB, however, they become perturbatively unstable for µ < µu,

µu

Λ
= 0.991613(4) , (5.4)

represented by the dashed vertical red line in figure 5. We represent Vs
A vacua for µ < µu

with a dashed grey curve. In [10] the instability (5.4) was identified9 analyzing the spectrum

of the chiral symmetry breaking fluctuations of the theory. Here we identify the instability

studying the linearized chiral symmetry breaking fluctuations about Vs
A vacua with an

explicit symmetry breaking source term [15]. This latter approach would allow us to

construct Vb
A vacua, which escaped the analysis in [10].

8The critical value of µ reported there, see eq. (5.76) in [10], is 21/4 times bigger corresponding to a
√

2

difference in the definition of the strong coupling scale Λ2 (2.48) used in this work and in [10].
9Again, up to the redefinition of the strong coupling scale Λ (2.48), we find a perfect agreement with

the earlier computations.
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Figure 6. The new branch of Vb
A vacua (solid magenta curve) extends for µ > µu, see (5.4),

represented by the vertical dashed red line.

In figure 6 the solid magenta curve represent Vb
A vacua — much like VB, vacua, the

dual states of the cascading gauge theory have Z2 chiral symmetry. Since their energy

density is above the energy density of VB states, they are not the true ground states. The

scale of the figure does not allow to show this, but (compare with figure 5) for the range

of µ/Λ reported,

Ê
∣
∣
∣
∣
Vs

A

> Ê
∣
∣
∣
∣
VB

. (5.5)

What is exotic in the diagram 6 is that Vb
A vacua exist only for µ > µu, see (5.4), represented

by a vertical dashed red line, where Vs
A vacua are perturbatively stable and

Ê
∣
∣
∣
∣
Vb

A

> Ê
∣
∣
∣
∣
Vs

A

, (5.6)

i.e., the states with the spontaneously broken symmetry exist above (rather than below!)

the energy scale set by the transition point.10 We report on the perturbative stability of

Vb
A states elsewhere. We comment on the fate of the unstable Vs

A vacua in section 6.

10This is not the first encounter of such a phenomenon: see [30] for the discovery and additional exam-
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Figure 7. Left panel: the reduced Kretschmann scalar K̂ of VB vacua in the deep IR of the bulk

geometry, see (5.7). K̂KS denotes the value of the scalar for the Klebanov-Strassler solution, i.e.,

when µ/Λ = 0, see (5.8). Right panel: the rapid growth of the scalar when µ & µχSB (denoted by

the vertical dashed black line) is caused by the collapsing 3-cycle of the conifold, see (5.9). R̂2
S3,KS

denotes the size of this 3-cycle for the Klebanov-Strassler solution, i.e., when µ/Λ = 0, see (5.10).
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Figure 8. Left panel: the reduced Kretschmann scalar K̂ of Vs
A vacua in the deep IR of the bulk

geometry, see (5.7). K̂KS denotes the value of the scalar for the Klebanov-Strassler solution, i.e.,

when µ/Λ = 0, see (5.8). Right panel: the rapid growth of the scalar when µ . µu (denoted by the

vertical dashed red line) is caused by the collapsing of the deformed T 1,1, see (5.11) and (5.12).

We encountered a (technical) obstruction of constructing VB and Vb
A vacua for large

values of µ, and Vs
A vacua for small values of µ. The physical reason for the obstruction is

easy to understand focusing on the invariant properties of the corresponding geometries.

In the left panels of figures 7–9 we plot the reduced Kretschmann scalar K̂, defined as

K̂ ≡ P 2gs × RµνλρRµνλρ

∣
∣
∣
∣
IR

, (5.7)

where the ten-dimensional bulk Riemann tensor quadratic invariant is evaluated in the

ples [4, 31–35] in holography and [36] in QFTs.
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Figure 9. Left panel: the reduced Kretschmann scalar K̂ of Vb
A vacua (magenta curve) and Vs

A

vacua (blue/grey curves) in the deep IR of the bulk geometry, see (5.7). K̂KS denotes the value of

the scalar for the Klebanov-Strassler solution, i.e., when µ/Λ = 0, see (5.8). Right panel: the rapid

growth of the scalar (magenta curve, Vb
A vacua) when µ & µu (denoted by the vertical dashed red

line) is caused by the collapsing 2-cycle of the conifold, see (5.13).

deep IR of the geometry, i.e., as y ≡ 1
ρ → 0, as a function of µ/Λ. The quantity

K̂KS =
64 × 32/321/3 × (110 × 31/322/3 + 177147H2

0 )

295245H3
0

(5.8)

represents the reduced Kretschmann scalar of the Klebanov-Strassler geometry, i.e., when

µ/Λ → 0. H0 ≡ 0.056288(0) is the numerical coefficient in the IR asymptote of hh
0 ,

see (A.34). Interestingly, K̂KS , as defined, is independent of the strong coupling scale Λ of

the cascading gauge theory, equivalently the conifold deformation parameter ǫ, see (2.39).

Clearly, the obstruction in extending the construction of the flux vacua is associated with

the rapid growth of the quadratic curvature invariant in the deep IR of the geometry, leading

to the breakdown of the supergravity approximation. This is associated with an additional

cycle11 becoming small in the IR. As demonstrated in the right panels of figures 7–9, what

is precisely this additional cycle, differs: from the right panel in figure 7 for VB vacua,

this is a conifold 3-cycle (A.32). We define the reduced radius square of the cycle (again

evaluated in the IR, y → 0) as

R̂2
S3 ≡

(

P 2gs

)−1/2
× fh

a,0(hh
0)1/2

3
. (5.9)

Note that the corresponding 3-cycle of the Klebanov-Strassler solution has a reduced size

(again independent of Λ or ǫ)

R̂2
S3,KS ≡

(

P 2gs

)−1/2
×

(
2

3

)1/3

H
1/2
0 . (5.10)

11This is an additional cycle to the already collapsed one: the boundary S3 for Vs
A vacua, the conifold

2-cycle for VB vacua, and the boundary S3 for Vb
A vacua — see figure 2.
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From the right panel in figure 8 for Vs
A vacua, this is (deformed) T 1,1 (compare with (2.23)):

(dT̃ 1,1)2

∣
∣
∣
∣
IR

= fh
a,0(hh

0)1/2
(

fh
c,0

fh
a,0

1

9
g2

5 +
1

6
(g2

3 + g2
4) +

1

6
(g2

1 + g2
2)

)

. (5.11)

We define the reduced radius square of the cycle (from (5.11)) as

R̂2
T 1,1 ≡

(

P 2gs

)−1/2
× (fh

c,0)1/5(fh
a,0)4/5(hh

0)1/2 . (5.12)

From the right panel in figure 9 for Vb
A vacua, this is a conifold 2-cycle (A.31). We define

the reduced radius square of the cycle (again evaluated in the IR, y → 0) as

R̂2
S2 ≡

(

P 2gs

)−1/2
×

fh
b,0(hh

0)1/2

3
. (5.13)

As before, the vertical dashed black line indicates (5.3), and the vertical dashed red

line indicates (5.4).

In the rest of this section we explain the technical details leading to the results reported

above.

5.1 VB vacua

These vacua were originally constructed in [10]. Equations of motion describing VB vacua

are collected in (A.1)–(A.10), with the UV, i.e., ρ → 0+, asymptotics (A.11)–(A.16), and

the IR, i.e., y ≡ 1
ρ → 0+, asymptotics (A.27), (A.28). There are 4 non-normalizable

coefficients

K0 , µ , P , gs , (5.14)

characterizing the cascading gauge theory (A.20), and 17 normalizable coefficients (A.21)

and (A.29) — precisely as needed to solve the system of 8 second-order equations (A.1)–

(A.3), (A.5)–(A.9) and the first-order constraint (A.10).

The numerical techniques for solving the required system of nonlinear ODEs were

developed in [3]. The scaling symmetries (3.24) and (3.25) are used to set

gs = 1 and P = 1 . (5.15)

Additionally, note that (3.22) acts on K0 as

K0

P 2gs
→ K0

P 2gs
− 2 ln β , (5.16)

which can be used to keep
K0

P 2gs
= constant ≡ ks . (5.17)

It is important to keep in mind that the symmetry transformation (3.22) affects all the

dimensionful observables, and so, once used, the numerical results must be represented as

dimensionless quantities. At this stage the only variable non-normalizable coefficient is µ,
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which is used to label the sets of normalizable coefficients (A.21) and (A.29). At µ = 0,

VB vacuum is a Klebanov-Strassler solution, thus from (A.35),

ǫ = 25/43−3/4 exp

(

−1

2
− 3

4
ks

)

, (5.18)

leading to (see (A.33))

fa,1,0 = 2Q̂ exp

(

−1

3
− 1

2
ks

)

, fa,3,0 = 2 exp

(

−1 − 3

2
ks

)

,

k2,3,0 = −(2 + 3ks) exp

(

−1 − 3

2
ks

)

, fa,4,0 = −2Q̂ exp

(

−4

3
− 2ks

)

,

fc,4,0 = 0 , g4,0 = 0 , fa,6,0 = − 2

25
(25Q̂3 + 15ks − 14) exp (−2 − 3ks) ,

k2,7,0 =
3

2
(37 − 30ks)Q̂4 exp

(

−7

3
− 7

2
ks

)

,

fa,8,0 = −2Q̂2(Q̂3 + 6ks − 11) exp

(

−8

3
− 4ks

)

,

(5.19)

in the UV, with (see (2.44))

Q̂ ≡ − 4√
6(2ǫ)2/3

Q = 0.839917(9) , (5.20)

and (see (A.34))

fh
a,0 =

4

3
32/3 exp

(

−2

3
− ks

)

, hh
0 =

9

16
22/3 exp

(
4

3
+ 2ks

)

× 0.056288(0) ,

gh
0 = 1 , Kh

1,3 = exp

(

1 +
3

2
ks

)

, Kh
2,2 =

1

2
31/3 exp

(
2

3
+ ks

)

, (5.21)

Kh
2,4 = −11

40
32/3 exp

(
4

3
+ 2ks

)

, Kh
3,1 =

4

9
32/3 exp

(
1

3
+

1

2
ks

)

, fh
1,0 = 1 ,

in the IR.

In practice, fixing ks, we start with µ = 0 with (5.19) and (5.21), and produce the data

sets, incrementing µ, for
µ

Λ
≡ 2−1/4µ exp

(
1

2
ks

)

, (5.22)

and Ê of (5.1), where Λ ≡ 21/4 exp
(

−1
2ks

)

. A powerful numerical check is that the curves
µ
Λ — versus — Ê produced for different values of ks must collapse in the overlapping range

of µ/Λ. As figure 10 demonstrates, this is indeed what we find: the solid green curve is

obtained with ks = 1
4 and the dashed magenta curve is obtained with ks = 1 — they

differ at ∼ 10−5 fractional level or less. Yet a different computation scheme is to use the

symmetry transformation (3.22) to keep µ = 1 fixed, and instead vary K0, so that

µ

Λ
= 2−1/4 exp

(
1

2
K0

)

. (5.23)
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Figure 10. Cross checks on numerics of VB vacua energy in the three different computational

schemes: solid green curve, dashed magenta curve, and the dotted black curve. The vertical blue

line denotes the common reference point in the green/black curve computational schemes, see (5.24).

Of course, in this computational scheme we can not connect to the Klebanov-Strassler

(µ = 0) solution, but we can connect to, say, green curve at K0 = 1
4 and µ = 1, i.e., when

µ

Λ

∣
∣
∣
∣
connection to green

= 2−1/4 exp

(
1

2
× 1

4

)

= 0.952860(5) , (5.24)

which is represented by a vertical blue line. Such alternatively produced set of VB vacua

(dotted black curve in figure 10) must still agree with the green and magenta data sets.

Clearly, this is the case: we extend the data sets for the black curve for both K0 < 1
4 and

K0 > 1
4 to show the overlaps with the green/magenta data sets.

5.2 Vs
A vacua

These vacua were originally constructed in [10]. Equations of motion describing Vs
A vacua

are collected in (A.1)–(A.10), which in the case of the unbroken chiral symmetry can be

truncation as

fb(ρ) ≡ fa(ρ) ≡ f3(ρ) , K3(ρ) = K1(ρ) ≡ K(ρ) , K2(ρ) ≡ 1 , (5.25)
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Figure 11. Cross checks on numerics of Vs
A vacua energy in the two different computational

schemes: solid blue curve and the dotted magenta curve. The vertical blue line denotes the common

reference point in the two computational schemes, see (5.31).

leading to nontrivial 5 second-order equations (A.1), (A.2), (A.5), (A.6), (A.9) and a single

first order constraint (A.10). We have the UV, i.e., ρ → 0+, asymptotics (A.11)–(A.16),

and the IR, i.e., y ≡ 1
ρ → 0+, asymptotics (A.22), (A.23). There are 4 non-normalizable

coefficients

K0 , µ , P , gs , (5.26)

characterizing the cascading gauge theory (A.20), and 17 − 6 = 11 normalizable coeffi-

cients (A.21) and (A.24) — where the reduction in the number of the normalizable coeffi-

cients reflects the constraints of the unbroken chiral symmetry, see (A.26).

The numerical techniques for solving the required system of nonlinear ODEs were

developed in [3]. We use the scaling symmetry (3.24) to set

gs = 1 . (5.27)

We further use the symmetry transformation (3.22) to set12

µ = 1 . (5.28)

12As before, this necessitates that the numerical results be represented as dimensionless quantities.
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The final symmetry transformation (3.25) is utilized to cross check the numerics:

• We can set P = 1 and vary K0, in which case

µ

Λ
≡ 2−1/4 exp

(
1

2
K0

)

and Λ = 21/4 exp

(

−1

2
K0

)

. (5.29)

• We can set K0 = 1 and vary P 2 ≡ b, in which case

µ

Λ
≡ 2−1/4b1/2 exp

(
1

2b

)

and Λ = 21/4b−1/2 exp

(

− 1

2b

)

. (5.30)

Irrespectively which computational scheme is used, the produced curves µ
Λ — versus — Ê

must collapse in the overlapping range of µ/Λ. As figure 11 demonstrates, this is indeed

what we find: the solid blue curve is obtained keeping fixed P = 1, and the dotted magenta

curve is obtained keeping fixed K0 = 1. The two schemes connect at K0 = 1 and b = 1,

i.e., when
µ

Λ

∣
∣
∣
∣
connection

= 2−1/4 exp

(
1

2

)

= 1.38640(4) , (5.31)

which is represented by a vertical blue line.13

5.3 Vb
A vacua

Analyzing normal modes about Vs
A vacua it was established in [10] that they are per-

turbatively unstable when µ < µu, see (5.4). However, no new branch of vacua with

spontaneously broken symmetry, Vb
A in classification here, was identified. We use a differ-

ent technique, introduced in [15], to independently reproduce the onset of the instability,

and construct Vb
A vacua.

Consider static, chiral symmetry breaking fluctuations about Vs
A vacua:

fa ≡ f3 + δf , fb ≡ f3 − δf , K1 ≡ K + δk1 , K3 ≡ K − δk1 , K2 ≡ 1 + δk2 , (5.32)

with the remaining metric functions and the string coupling as in Vs
A vacua {f1, fc, h, g}. It

is straightforward to verify that truncation to {δf, δk1, δk2} is consistent (at the linearized

level). Equations of motion for the fluctuations and their asymptotic expansions in the

UV (ρ → 0) and the IR (y = 1
ρ) are collected in appendix B. Once the non-normalizable

coefficient (the explicit chiral symmetry breaking parameter, i.e., the gaugino mass term)

is fixed to m = 1, the expansions are characterized by 6 UV/IR parameters

UV : {δf3,0 , δk2,3,0 , δk2,7,0} ;

IR : {δfh
0 , δkh

1,0 , δkh
2,0} ,

(5.33)

which is the correct number of parameters to find a unique solution of 3 second-order

differential equations (B.2)–(B.4) for {δf, δk1, δk2} on Vs
A background parameterized by

K0 (it is convenient to use a computation scheme as in (5.29)).

13This is the smallest value of µ/Λ that can be reached in the computational scheme with K0 = 1.
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Figure 12. Parameters {δf3,0 , δk2,3,0 , δk2,7,0 , δfh
0 , δkh

1,0 , δkh
2,0} of the chiral symmetry breaking

fluctuations over Vs
A vacua as a function of µ

Λ , evaluated at fixed explicit chiral symmetry breaking

scale m = 1, diverge at µ = µu (5.4), indicated by a vertical red dashed line. µu identifies the

bifurcation point of spontaneous symmetry broken Vb
A vacua off chirally symmetric Vs

A vacua.
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Figure 13. Susceptibilities of the UV parameters, see (5.35), of the linearized chiral symmetry

breaking fluctuations. The red dashed vertical line denotes µu, see (5.4). The black horizontal

dashed lines indicate the values of the susceptibilities at µ = µunstalble, see (5.36).

In figure 12 we assemble results for the fluctuation parameters (5.33) as K0 label of

Vs
A vacua is varied. A signature of the spontaneous symmetry breaking is the divergence

of all the parameters, once the scale of the explicit chiral symmetry breaking, the non-

normalizable parameter m, is kept fixed. This occurs at µ = µu (5.4), represented by

vertical dashed red lines. The corresponding critical value of K0 is

Kcritical
0 = 0.329729(7) . (5.34)
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dashed lines indicate the values of the susceptibilities at µ = µunstalble, see (5.36).
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Figure 15. Sample of the UV parameters of Vb
A vacua constructed from the ‘seed’ (5.40). The

linearized approximations in λ are represented by dashed red lines.

To use the critical fluctuations as a seed for Vb
A vacua, we need to know the ‘suscepti-

bilities’

{

χk2,3,0 , χk2,7,0 , χf̂h
0

, χkh
1,0

, χkh
2,0

}

≡ lim
µ→µu

{
δk2,3,0

δf3,0
,

δk2,7,0

δf3,0
,

δfh
0

δf3,0
,

δkh
1,0

δf3,0
,

δkh
2,0

δf3,0

}

.

(5.35)

In figure 13 we present susceptibilities χk2,3,0 and χk2,7,0 — notice that they are finite at

µu, represented by vertical dashed red lines. The other susceptibilities (see figure 14) are

finite as well; we find:

χk2,3,0 = −0.47398(9) , χk2,7,0 = −0.95889(7) , χfh
0

= 1.7089(5) ,

χkh
1,0

= 0.40872(4) , χkh
2,0

= −16.936(2) .
(5.36)

Given (5.36), fully nonlinear Vb
A vacua, with K0 close to Kcrit

0 , can be constructed

following the same procedure as the one employed in construction of Klebanov-Strassler

black brane in [4]. We highlight the main steps:
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Figure 16. Sample of the IR parameters of Vb
A vacua constructed from the ‘seed’ (5.40). The

linearized approximations in λ are represented by dashed red lines.

• We set K0 = Kcrit
0 and compute the corresponding Vs

A vacuum. This vacuum is

characterized by (see (A.20), (A.21), (A.24) and (A.26))

UV :

{

K0 = Kcrit
0 , µ = 1, P = 1, gs = 1, f crit

a,1,0, f crit
a,3,0 =

1

4
f crit

a,1,0, kcrit
2,3,0 = 0,

f crit
a,4,0 ≡ f crit

3,4,0, f crit
c,4,0, gcrit

4,0 , f crit
a,6,0, kcrit

2,7,0 = 0, f crit
a,8,0

}

,

IR :

{

fh,crit
a,0 ≡ fh,crit

3,0 , fh,crit
b,0 ≡ fh,crit

3,0 , fh,crit
c,0 , hh,crit

0 , Kh
1,0 ≡ Kh,crit

0 , Kh
2,0 ≡ 1,

Kh
3,0 ≡ Kh,crit

0 , gh,crit
0

}

. (5.37)

• Let’s denote the amplitude of the symmetry breaking condensate (see (5.32))

δf3,0 ≡ 1

2
(fa,3,0 − fb,3,0) = λ . (5.38)

Then,
{

δk2,3,0, δk2,7,0, δfh
0 , δkh

1,0, δkh
2,0

}

= λ {χk2,3,0 , χk2,7,0 , χfh
0

, χkh
1,0

, χkh
2,0

} + O(λ2) .

(5.39)

• Using (5.32), (5.37)–(5.39) we find to O(λ2):

K0 = Kcrit
0 + O(λ2) , fa,1,0 = f crit

a,1,0 + O(λ2) , fa,3,0 = f crit
a,3,0 + λ + O(λ2) ,

k2,3,0 = kcrit
2,3,0 + λχk2,3,0 + O(λ2) , fa,4,0 = f crit

a,4,0 + O(λ2) , fc,4,0 = f crit
c,4,0 + O(λ2) ,

g4,0 = gcrit
4,0 + O(λ2) , fa,6,0 = f crit

a,6,0 + O(λ2) , k2,7,0 = kcrit
2,7,0 + χk2,7,0λ + O(λ2) ,

fa,8,0 = f crit
a,8,0 + O(λ2) , fh

a,0 = fh,crit
a,0 + χfh

0
λ + O(λ2) ,

fh
b,0 = fh,crit

b,0 − χfh
0

λ + O(λ2) , fh
c,0 = fh,crit

c,0 + O(λ2) , hh
0 = hh,crit

0 + O(λ2) ,

Kh
1,0 = Kh,crit

1,0 + χkh
1,0

λ + O(λ2) , Kh
2,0 = Kh,crit

2,0 + χkh
2,0

λ + O(λ2) ,

Kh
3,0 = Kh,crit

3,0 − χkh
1,0

λ + O(λ2) , gh
0 = gh,crit

0 + O(λ2) . (5.40)

• We construct fully nonlinear in λ Vb
A vacua using the linearized approximation (5.40)

as a seed. Select UV/IR parameters, along with the corresponding linearized approx-

imations (dashed red lines) are shown in figures 15–16.
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6 Black holes on the warped deformed conifold with fluxes

The physics of black holes on the warped deformed conifold with fluxes, correspondingly the

dual deconfined thermal states of the cascading gauge theory plasma on S3 with a radius
1
µ is very rich. There are interesting phase transitions between them, as well as phase

transitions towards confined thermal states. We set the stage by reviewing the results in

the decompactification limit µ
Λ → 0, followed by the general presentation for µ

Λ 6= 0. We

highlight details in the following subsections, and delegate the numerical checks to the

appendix E. The µ = 0 results were obtained over the years in [3, 4, 11, 14, 23, 25, 37–40].

All the µ 6= 0 results are new.

6.1 Conifold black branes and phase transitions at µ
Λ

= 0

At µ = 0 we have (see figure 3):

• T s
decon : Klebanov-Tseytlin black branes, representing thermal deconfined states

of the cascading gauge theory plasma with the unbroken chiral symmetry (blue /

brown curves in the figures below);

• T b
decon : Klebanov-Strassler black branes, representing thermal deconfined states

of the cascading gauge theory plasma with spontaneously broken chiral symmetry

(magenta curves in the figures below);

• Tcon,B : confined states with spontaneously broken chiral symmetry (green curves

in the figures below).

Similar to (5.1), it is convenient to introduce the reduced free energy density F̂ , and

the reduced entropy density ŝ:

F̂ ≡ 8πG5

P 4g2
s

E
Λ4

=
26π4

35M4

E
Λ4

, ŝ ≡ 8πG5

P 4g2
s

s

Λ3
=

26π4

35M4

s

Λ3
. (6.1)

In figure 17 we recall the phase diagram in the canonical ensemble. There are three

critical temperatures

Tu < TχSB < Tc . (6.2)

Tc is the temperature of the confinement-deconfinement phase transition [3], i.e., the

transition T s
decon ↔ Tcon,B,

Tc = 0.614(1)Λ . (6.3)

The confined phase with spontaneously broken chiral symmetry Tcon,B has a lower free

energy density for T < Tc, while the chirally symmetric deconfined phase T s
decon dominates

when T > Tc. Since the entropy density of T s
decon states ŝ 6= 0, while the reduced en-

tropy density of T b
con states identically vanishes,14 the phase transition at T = Tc is of the

first-order.

14This is true in the supergravity, i.e., the large-M approximation.
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Figure 17. Phase diagram in the canonical ensemble at µ/Λ = 0: the reduced free energy density

F̂ , see (6.1), versus the reduced temperature T/Λ for different states in the theory. Vertical dashed

lines indicate critical temperatures Tc (black) for the confinement-deconfinement phase transition,

TχSB (red) for the onset of the spontaneous chiral symmetry breaking, and Tu (brown) for the

bifurcation point of the T s
decon states with positive/negative specific heat.
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Figure 18. Left panel: detailed phase diagram in the canonical ensemble at µ/Λ = 0 for T & Tu.

T s
decon states unstable to spontaneous chiral symmetry breaking are denoted with dashed curves.

Right panel: specific heat ĉV (6.6) of different states. Brown curves denote T s
decon states with

ĉV < 0, and blue curves denote T s
decon states with ĉV > 0. Note that the specific heat of T b

decon

states (magenta curves), i.e., the Klebanov-Strassler black branes, is negative.
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T s
decon phase is stable with respect to linearized (perturbative) chiral symmetry break-

ing fluctuations when T > TχSB [11]

TχSB = 0.541(9)Λ , (6.4)

and is unstable (denoted by the dashed curves) when T < TχSB. T = TχSB is a bifurcation

point of the phase diagram, where deconfined phase with spontaneously broken chiral

symmetry T b
decon joins the symmetric T s

decon phase [4]. This phase, represented by the

Klebanov-Strassler black branes, exists for T > TχSB, but never dominates in the canonical

ensemble as it has a higher free energy density than that of the chirally symmetric phase

T s
decon at the same temperature.

Tu [39],

Tu = 0.537(3)Λ , (6.5)

is the terminal temperature of the T s
decon states. It is the second bifurcation point on the

phase diagram, which separates deconfined chirally symmetric states with positive specific

heat ĉV ,

ĉV ≡ Λ
dÊ
dT

, (6.6)

denoted as T s,+
decon (blue curves) in figure 18, from deconfined chirally symmetric states with

a negative specific heat T s,−
decon (brown curves). At a temperature where both T s,+

decon and

T s,−
decon states exist, the former ones always have a lower free energy density. Note that the

specific heat of the deconfined states with the spontaneously broken chiral symmetry is

also negative, thus these states are denoted as T b,−
decon (magenta curves) in figure 18.

Deconfined states of the cascading gauge theory plasma at µ/Λ = 0 are dual to black

branes: the holographic geometries with a regular Schwarzschild horizon with translational

invariance. It was pointed out in [41] that a negative specific heat of the black branes imme-

diately implies that the extended horizon is perturbatively unstable to metric fluctuations,

breaking the translational invariance. The latter is a holographic dual to the fact that in

an infinitely spatially extended media with a negative specific heat the speed of the sound

waves is purely imaginary:

c2
s =

s

cV
< 0 if cV < 0 . (6.7)

Thus, the states T s,−
decon and all the T b

decon states are perturbatively unstable to inhomoge-

neous metric fluctuations.

In figure 19 we discuss the criticality of µ/Λ = 0 states at T = Tu (the left panel) and

T = TχSB (the right panel). In the former case, both for T s,−
decon and T s,+

decon states

Ê± − Êu ∝
√

T − Tu =⇒ c±
V ∝ (T − Tu)−1/2 , (6.8)

implying that the specific heat diverges as T → Tu with the critical exponent15 α = 1/2.

Of course, this is consistent with the results of the right panel in figure 18. In the vicinity

15In holographic models such critical behavior was identified first in [42].
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Figure 19. Critical behavior at T = Tu (the left panel) and T = TχSB (the right panel). In the

former case, the specific heat of T s,±
decon states diverge as T → Tu+ with the critical exponent α = 1

2 .

The scaling of the free energy density difference between the two phase as T → TχSB+ implies that

the phase transition at T = TχSB is of the second order.

of T = TχSB, the free energy density difference ∆F̂ , between the deconfined states with

the spontaneously broken (T b
decon) and the unbroken (T s

decon) chiral symmetry, scales as

∆F̂ ∝ (T − TχSB)2 , (6.9)

as indicative of the second-order phase transition.

Figure 20 represents the phase diagram of the system at µ/Λ = 0 in the microcanonical

ensemble. Microcanonical ensemble is crucial in understanding the dynamics and the

equilibration of the generic states in the theory. We will omit discussion of the confined

states as the latter have vanishing reduced entropy density ŝ (6.1) and thus never dominate

over the deconfined states in the microcanonical ensemble. There are two critical energy

densities (corresponding to critical temperatures TχSB and Tu in the canonical ensemble)

Êu < ÊχSB . (6.10)

ÊχSB,

ÊχSB = 0.635(1) , (6.11)

is the critical energy density below which T s
decon (represented by the dashed curves) become

unstable to perturbative chiral symmetry breaking instability. T b
decon states, represented

by the Klebanov-Strassler black branes [4] — the magenta curve in figure 20, exist for

Ê < ÊχSB and are more entropic (and thus are the dominant ones) compare to T s
decon states,

represented by the Klebanov-Tseytlin black branes [3, 23, 37, 38]. While thermodynamic

instability, i.e., the negative specific heat, in general does not affect the phase diagram in the

microcanonical ensemble, it does so when µ/Λ = 0 as in this case it is related to the pertur-

bative instability breaking the translational invariance of the thermal states — the purely

imaginary speed of the sound waves in the cascading gauge theory interpretation. Since

c2
s < 0 for T b

decon states (at all energy densities), they can not be the end point of the evolu-

tion of the chiral symmetry breaking instability in T s
decon states. Neither can Tcon,B states
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Figure 20. Phase diagram in the microcanonical ensemble at µ/Λ = 0: the reduced entropy

density ŝ, see (6.1), versus the reduced energy density Ê , see (5.1), for different deconfined states in

the theory. Vertical dashed lines indicate critical reduced energy densities ÊχSB (red) for the of the

spontaneous chiral symmetry breaking, and Êu (brown) for the onset of the spontaneous breaking

of the spatial translational invariance in T s
decon states.

be the end point of this instability, as these are the confined states. Identification of the end

point of the chiral symmetry breaking instability in T s
decon states remains an open problem.

Êu,

Êu = 0.386(9) , (6.12)

is the critical energy density that separates T s
decon states stable to spontaneous breaking of

the spatial translational invariance (blue curves with Ê > Êu), from the states where it is

broken (brown curve).

From figure 20, T b
decon states exist only for Ê < ÊχSB, while T s

decon extend to arbitrary

high energy densities.16 Neither T s
decon nor the T b

decon states reach to the energy density of

the true vacuum, see (A.85),

Ê [VB]

∣
∣
∣
∣
µ/Λ=0

= 0 . (6.13)

Figure 21 explains why that is the case. In the left panel we present the Kretschmann scalar

K̂ (5.7) for different deconfined states in the theory normalized to its value at Ê = ÊχSB,

i.e., K̂χSB. Note the sharp increase in K̂/K̂χSB as Ê < ÊχSB. For T b
decon states (magenta

16We explicitly construct these states for Ê → ∞ in section 6.4.
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ÊχSB

Êu
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ÊχSB

Êu
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decon

states is associated with collapsing of the conifold 2-cycle (the central panel), and of T s
decon states
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curve, the central panel) this growth is associated with the collapse of the conifold 2-cycle,

see (5.13). For T s
decon states (blue/brown curves, the right panel) this growth is associated

with the collapse of the deformed T 1,1, see (5.11) and (5.12).

6.2 Conifold black holes and phase transitions at µ
Λ

6= 0

In section 6.2.1 we presents the results for the conifold black holes in the canonical ensemble,

followed by the microcanonical ensemble discussion in section 6.2.2. In section 6.2.3 we

dive into details of the black holes thermodynamics for select values µ 6= 0, highlighting

similarities and differences with the µ = 0 case covered in section 6.1.

The main conceptual difference with the black branes on the conifold, reviewed in sec-

tion 6.1, is that the black hole horizon is compact; as the result, there is no simple relation

between the thermodynamic and the dynamic instabilities. While we do identify branches

of the black holes with the negative specific heat, this does not imply that these black holes

are unstable. The stability analysis of the black holes with respect to perturbative metric

fluctuations breaking the spatial SO(4) symmetry will be discussed elsewhere [43].

6.2.1 Canonical ensemble

The critical temperatures of the canonical ensemble phase diagram identified in section 6.1

become functions of µ/Λ; the hierarchy of scales (6.2) is however preserved:

Tu(µ) ≤ TχSB(µ) < Tc(µ) . (6.14)

There is a special value µ⋆, such that

Tu(µ⋆) = TχSB(µ⋆) =⇒ µ⋆ = 0.848(0) Λ . (6.15)

Similar to the black branes, at µ/Λ 6= 0:

• The critical temperature Tu(µ) identifies the terminal temperature of T s
decon states.

This temperature is a bifurcation point for the two branches of the Klebanov-Tseytlin

black holes, the T s
decon states, with the positive and the negative reduced specific heat

densities ĉV , see (6.6). We use blue curves to refer to T s,+
decon states with ĉV > 0, and
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brown curves when the reduced specific heat density of the T s,−
decon states is negative.

As T → Tu(µ)+, the reduced specific heat diverges with the same critical exponent

as for µ = 0, see (6.8). We find that for all values of µ/Λ, at an appropriate17 fixed

temperature, T s,+
decon states have a smaller reduced free energy densities F̂ (6.1) then

that of the T s,−
decon states.

• The critical temperature TχSB(µ) (red curve) denotes the onset of the perturbative

chiral symmetry breaking instability of the T s
decon states. TχSB(µ) is also the bifur-

cation point on the phase diagram, where T s
decon and T b

decon branches of states join

with the second-order phase transition.

• The reduced specific heat of the T b
decon states, or the Klebanov-Strassler black holes

(represented with magenta curves), is always negative.

On the contrary to the black branes, at µ/Λ 6= 0:

• T s,−
decon states, while having a negative specific heat, can be perturbatively stable to

the chiral symmetry breaking fluctuations, provided µ > µ⋆, see (6.15).

• Related to above, while at µ = 0 the chiral symmetry is spontaneously broken for

T < TχSB, for µ > µ⋆, the chiral symmetry breaking occurs for T > TχSB(µ) in T s,−
decon

states. In this regime, at a fixed temperature, the reduced free energy density of

the symmetry broken states T b
decon is lower than that of the T s,−

decon, however it is still

larger than the reduced free energy density of the T s,+
decon states at the corresponding

temperature, i.e.,

µ > µ⋆ : F̂ [T s,+
decon] < F̂ [T b

decon] < F̂ [T s,−
decon] . (6.16)

• There is a conceptual difference associated with the critical temperature Tc(µ) for

the confinement-deconfinement phase transitions, albeit all these phase transitions are

still of the first order. At µ = 0 this transition is between T s
decon and Tcon,B states.

For µ/Λ 6= 0, at a given value of µ, there can exist two or even three different confined

states:18 Tcon,B and T s
con,A when µ is large enough but smaller than µχSB, or Tcon,B,

T s
con,A and T b

con,A for µ & µχSB. As a result, we must augment the Tc(µ) label with

the corresponding confined state label. We use green curves to denote confinement-

deconfinement transitions T s
decon ↔ Tcon,B, blue curves to denote transitions T s

decon ↔
T s

con,A, and magenta curves to denote transitions T s
decon ↔ T b

con,A. Much like Vs
A vacua

(see figure 5), T s
con,A states are perturbatively unstable to chiral symmetry breaking

fluctuations for µ < µu. We represent branches of Tc(µ) subject to such instabilities

with dashed curves.

In figure 22 we present the temperature of the first-order phase confinement / de-

confinement phase transition Tc as a function of µ between T s
decon and Tcon,B states (the

17Both states T s,+
decon

and T s,−
decon

must exist.
18Figures 5 and 6 make this point obvious.
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T s
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Figure 22. The temperature Tc of the confinement/deconfinement phase transitions between the

different states in the cascading gauge theory; equivalently, the analog of the Hawking-Page phase

transition between the Klebanov-Tseytlin black holes and the different Euclidean vacua of the

conifold flux geometries. The deconfined states are the preferred ones for T > Tc.

green curve) and between T s
decon and T s

con,A states (the blue curves). The T s
decon ↔ Tcon,B

transition is the finite µ extension of the phase transition at µ = 0 identified originally

in [3]. Note that for µ > µχSB the confined states T s
con,A are thermodynamically referred,

compare to Tcon,B states.19 For µ < µu the confined states T s
con,A are perturbatively un-

stable with respect to chiral symmetry breaking fluctuations (represented with the dashed

curve). The blue curve extends to µ/Λ → ∞ reproducing the Hawking-Page transition of

the AdS5 × T 1,1 black holes, see section 4.2.

In figure 23 we present the temperature of the first-order phase confine-

ment/deconfinement phase transition Tc as a function of µ between T s
decon and T s

con,A states

(the blue curve) and between T s
decon and T b

con,A states (the magenta curve). Note that these

phase transitions are never realized in practice since for the range of µ/Λ in question the

preferred phase is always Tcon,B, compare with figure 22.

In figure 24 we present that temperature of the confinement/deconfinement transition

T s
decon ↔ T s

con,A relative to the S3 compactification scale µ. Here, we can take the limit

µ/Λ → ∞, in which case the Klebanov-Tseytlin black holes approach conformal black holes

in AdS5 × T 1,1, see section 4.2. For the latter, the Hawking-Page transition temperature

T conformal
c is given by (4.31), represented by the horizontal black line.

19This reflects the χSB phase transition between Vs
A and VB vacua, see figure 5.
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Figure 23. The temperature Tc of the confinement/deconfinement phase transitions between the

different states in the cascading gauge theory. Magenta curve represents the analog of the Hawking-

Page phase transition between the Klebanov-Tseytlin black holes and the Vb
A Euclidean vacua of

the conifold flux geometries. The deconfined states are the preferred ones for T > Tc.

In figure 25, corresponding to the confinement/deconfinement temperatures Tc we

present the reduced energy densities Êc (see (5.1)) of T s
decon states, i.e., the Klebanov-

Tseytlin black holes, at the transition point. Once again, the green curve represents

T s
decon ↔ Tcon,B transition, and the blue curves represents T s

decon ↔ T s
con,A transition. The

deconfined states are the preferred ones above the corresponding Êc. The dashed curve in-

dicates when the end-point of the phase transition, i.e., the T s
decon states, are perturbatively

unstable to chiral symmetry breaking. The red curve indicates the critical energy ÊχSB:

the Klebanov-Tseytlin black holes are unstable to chiral symmetry breaking for Ê < ÊχSB.

The Klebanov-Strassler black holes exist only at energy densities Ê < ÊχSB, i.e., below the

red curve. Note that the red curve ÊχSB terminates at µ = µKS ,

µKS = 0.8766(6) Λ , (6.17)

— there are no Klebanov-Strassler black holes for µ > µKS . We explain origin of µKS in

section 6.3.2.

In figure 26 we present the reduced energy densities Êc of T s
decon states at Êc[T s

decon ↔
T s

con,A confinement/deconfinement transition (blue curve) and Êc[T s
decon ↔ T b

con,A confine-

ment/deconfinement transition (magenta curve). These transitions are never realized in

practice since the transition to a the preferred confined phase Tcon,B occurs at higher energy

densities (compare with figure 25).
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Figure 24. The temperature Tc of the confinement/deconfinement phase transition T s
decon ↔ T s

con,A

relative to S3 compactification scale µ. For large values of µ/Λ it approaches its conformal limit

T conformal
c , given by (4.31). The deconfined states are the preferred ones for T > Tc.

Recall that Tu(µ) is the terminal temperature for T s
decon states — the Klebanov-Tseytlin

black holes. Thus TχSB(µ), the critical temperature at the onset of the chiral symmetry

breaking, can not exceed Tu(µ). In the left panel of figure 27 we present results for TχSB.

µ⋆, see (6.15), identifies the S3 compactification scale when both critical temperatures Tu

and TχSB coincide. In the right panel of figure 27 we explain how to compute µ⋆: we

evaluate the reduced specific heat density ĉV (6.6) along the ÊχSB curve for T s
decon states

and identify the value of µ when it diverges.

Much like for µ = 0, for the values of µ when both T s,±
decon and T b

decon states exist,

the free energy density of T s,+
decon states is always lower than that of T b

decon states,20 i.e.,

whenever both Klebanov-Strassler and Klebanov-Tseytlin black holes exist, the latter ones

(on the branch with the positive specific heat) always dominate in the canonical ensemble.21

This also implies that even if theoretically possible, the confinement/deconfinement phase

transitions T b
decon ↔ Tcon,B, i.e., between the Klebanov-Strassler black holes and the VB

Euclidean vacua would never occur in practice: these phase transitions would always be

preceded by T s,+
decon ↔ Tcon,B phase transitions.

20See section 6.2.3 for some examples.
21As we will see in section 6.2.2, the story in the microcanonical ensemble is different: whenever both

exist, Klebanov-Strassler black holes are always more entropic at a fixed energy density than the Klebanov-

Tseytlin black holes.
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Ê
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T s
decon
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T s
decon

T s
con,A

χSB

χSB

µχSB
µu

µKS

ÊχSB(µ)

Êc[T s
decon ↔ Tcon,B] Êc[T s

decon ↔ T s
con,A]

Figure 25. Critical energies Êc of T s
decon states (Klebanov-Tseytlin black holes) for different con-

finement/deconfinement phase transitions. The deconfined states are preferred above green and

blue curves. The Klebanov-Tseytlin black holes become unstable to χSB fluctuations below the

red curve ÊχSB(µ). The Klebanov-Strassler black holes exist only for Ê < ÊχSB and only when

µ < µKS (6.17).

Some of the potential confinement/deconfinement phase transitions, are never realized

(even theoretically):

• T b
decon ↔ T s

con,A — the transition between the Klebanov-Strassler black holes and the

Vs
A Euclidean vacua. These transitions do not exist because there are no Klebanov-

Strassler black holes for µ > µu, and there are no stable Vs
A vacua (correspondingly

T s
con,A confined thermal states) for µ < µu, see figures 25 and 5.

• T b
decon ↔ T b

con,A — the transition between the Klebanov-Strassler black holes and the

Vb
A Euclidean vacua. These transitions do not exist because there are no Klebanov-

Strassler black holes for µ > µu, and there are Vb
A vacua (correspondingly T b

con,A

confined thermal states) for µ < µu, see figures 25 and 6.

6.2.2 Microcanonical ensemble

The phase diagram in the microcanonical ensemble for the conifold black branes (µ = 0)

morally repeats for black holes at µ/Λ > 0:
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Figure 26. Critical energies Êc of T s
decon states (Klebanov-Tseytlin black holes) for different confine-

ment/deconfinement phase transitions. These transitions do not happen in practice since the transi-

tion to a dominant confined phase Tcon,B occurs at higher energy densities (compare with figure 25).
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Figure 27. Left panel: the critical temperature TχSB of the spontaneous chiral symmetry breaking

in T s
decon states, i.e., the Klebanov-Tseytlin black holes, as a function of µ/Λ. Right panel: µ∗,

see (6.15), identifies the S3 compactification scale µ with the divergent reduced specific heat ĉV at

TχSB(µ∗). At µ = µ⋆ the critical temperature TχSB coincides with the terminal temperature Tu of

T s
decon states.
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Figure 28. Landscape of the Klebanov-Tseytlin black holes, T s
decon states, (the shaded region

labeled by T s
decon) and the Klebanov-Strassler black holes, T b

decon states, (the shaded region labeled

by T b
decon). Two T b

decon state spectra at µ = µ1 and µ = µ2 are represented by the vertical orange

lines. The vertical magenta line represents the spectrum of the Klebanov-Strassler black branes,

T s
decon states at µ = 0.

• Confined states have vanishing reduced entropy density ŝ (6.1) in the large M limit

(the supergravity approximation of the dual geometry), and thus are never the pre-

ferred states if any of the deconfined states T s
decon, i.e., the Klebanov-Tseytlin, or

T b
decon, i.e., the Klebanov-Strassler black holes, exist.

• When both the T s
decon and T b

decon states exist, the latter ones are always more entropic,

and thus represent the preferred states.

Since T b
decon states at µ = 0 have the negative specific heat, the corresponding

Klebanov-Strassler black branes are perturbatively unstable to metric fluctuations break-

ing the translational invariance of the horizon [41]. This link is no longer true for the black

holes, and the unstable hydrodynamic sound mode of the black brane extended horizon

could be lifted by the compactification [43].

In figure 28 we discuss the landscape of T s
decon and T b

decon states. For reference, the

green and the blue curves represent the vacua states VB and Vs
A correspondingly. The red

curves reproduces the critical energy density ÊχSB for the range µ ∈ [0, µKS ]. µKS is the

terminal point of the red curve. The Klebanov-Tseytlin black holes are the preferred states

in the microcanonical ensemble in the shaded region above the red the blue curves, labeled
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by T s
decon. The Klebanov-Strassler black holes are the preferred states in the shaded region

labeled by T b
decon. They exist below the red curve, and only for µ < µKS (6.17). The

vertical magenta line, at µ = 0, represents the Klebanov-Strassler black brane constructed

in [4]. It extends along the Ê axis indicative to which reduced energy density, as the lower

limit, we have been able to construct this black brane numerically. Note that there is

likely a ’gap’ between the magenta curve and the green curve representing the vacuum VB.

Likewise, the sample of two vertical orange curves at µ = µ1 and µ = µ2 represents the

energy spectra of the Klebanov-Strassler black holes, see section 6.2.3 for additional details.

Once again, notice the potential gap in the spectrum of the Klebanov-Strassler black holes

and the appropriate vacuum states VB. There is also a potential gap in the spectrum of

Klebanov-Tseytlin black holes and the appropriate vacuum states Vs
A. We emphasize this

gap since it points out that the non-equilibrium energy states on S3-compactified conifold

geometries with fluxes, alternatively the low energy density states of the cascading gauge

theory, might not thermalize along SO(4)-invariant evolution trajectories.22 Note that for

our sample scales, µ1 < µ⋆ < µ2 where µ⋆ (6.15) affects the sequence of the various phase

transitions, see 6.2.3 for further details. Recall that Vs
A vacua are perturbatively unstable to

the spontaneous chiral symmetry breaking when µ < µu, represented by the dashed curve.

Interestingly, the Klebanov-Strassler black holes at µ = µ2 reaches the energy densities

of some of these unstable states — the corresponding vertical orange line intersects the

dashed line of the unstable Vs
A vacua. Thus, at least when µ < µKS , the unstable to χSB

fluctuations Vs
A vacua are expected to thermalize as Klebanov-Strassler black holes. It is

very interesting to understand the fate of the unstable Vs
A vacua for µ ∈ (µKS , µu) — we

do not have the answer to this question.

6.2.3 Black holes thermodynamics for select values of µ/Λ 6= 0

In this section we follow the discussion of section 6.1 and presents results for the conifold

black holes thermodynamics at

µ1 = 0.303(3)Λ and µ2 = 0.858(5)Λ . (6.18)

Note that µ1 < µ⋆ (6.15) and µ2 > µ⋆ — as we will see the relation of the compactification

scale µ relative to µ⋆ affects the sequences of the phase transitions for the T s
decon states.

At µ = µ1 there is a single confinement-deconfinement phase transition:

T s
decon ↔ Tcon,B : Tc(µ1) = 0.612(1)Λ , Êc(µ1) = 3.025(2) . (6.19)

At µ = µ2, theoretically there are two confinement-deconfinement phase transition:

T s
decon ↔ Tcon,B : Tc(µ2) = 0.596(9)Λ , Êc(µ2) = 1.103(5) ,

T s
decon ↔ T s

con,A : Tc(µ2) = 0.553(4)Λ , Êc(µ2) = 0.148(8) .
(6.20)

In practice only the transition at higher temperature/energy density occurs. All these

transitions are of the first order, with the deconfined phase being the preferred state at

T > Tc or Ê > Êc.

22See further discussion of this in holography in [44, 45].
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Figure 29. Typical phase diagram in the canonical ensemble for deconfined states T s
decon (the

Klebanov-Tseytlin black holes) and T b
decon (the Klebanov-Strassler black holes) for 0 < µ = µ1 < µ⋆

(see (6.15)) (the left panel), and for µ = µ2 > µ⋆ (the right panel).

In figure 29 we highlight the similarities and the differences between the phase diagrams

at µ = µ1 (the left panel) and µ = µ2 (the right panel) in the canonical ensemble. Tu

denotes the terminal point of T s
decon states, i.e., the Klebanov-Tseytlin black holes; TχSB is

the critical temperature for the onset of the perturbative χSB instability of T s
decon states.

Tu is a bifurcation point of the two branches of T s
decon states: with the positive specific

heat T s,+
decon (blue), and the negative specific heat T s,−

decon (brown). The critical behavior as

T → Tu is exactly the same as for µ = 0, see (6.8).

While at µ = µ1 T s,+
decon states are unstable to χSB for T < TχSB (blue dashed curve),

at µ = µ2 it is the T s,−
decon states that are unstable to χSB for T > TχSB (brown dashed

curve). The critical behavior as T → TχSB is exactly the same as for µ = 0, see (6.9).

T b
decon states (orange curves), i.e., the Klebanov-Strassler black holes, exist for T >

TχSB. These black holes always have a negative specific heat. Although they are thermo-

dynamically unstable, they are not necessarily dynamically unstable [41, 43].

When multiple phases present, T s,+
decon is always the preferred one:

F̂ [T s,+
decon] < F̂ [T b

decon] < F̂ [T s,−
decon] . (6.21)

The order of the transition from the T b
decon states to (dominant) T s,+

decon states differs:

it is of the second order at µ = µ1 and of the first-order at µ = µ2.

The phase transition from the T s,−
decon states to (dominant) T s,+

decon states is always of the

first order.

In figure 30 we present the typical phase diagram in the microcanonical ensemble for

the black holes on the conifold.

T b
decon (the orange curves; the Klebanov-Strassler black holes) are always the preferred

states, when they exist along with T s
decon (blue/brown curves, the Klebanov-Tseytlin black

holes) states.

T b
decon states exist for Ê < ÊχSB, in which regime the Klebanov-Tseytlin black holes are

perturbatively unstable to χSB fluctuations (dashed curves).

Note that ÊχSB > Êu at 0 < µ = µ1 < µ⋆, but ÊχSB < Êu at µ = µ2 > µ⋆.
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ÊχSB

Êu
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Figure 30. Typical phase diagram in the microcanonical ensemble for deconfined states T s
decon (the

Klebanov-Tseytlin black holes) and T b
decon (the Klebanov-Strassler black holes) for 0 < µ = µ1 < µ⋆

(see (6.15)) (the left panel), and for µ = µ2 > µ⋆ (the right panel).
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Figure 31. Inverse Kretschmann scalar K̂ normalized to its value at Ê = ÊχSB for T s
decon states

(blue/drown curves) and T b
decon states (orange curve) at µ = µ1. Vertical green line denotes the

energy density of the vacuum V̂B at µ = µ1.
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In figure 31 we present the inverse of the reduced Kretschmann scalar K̂ (5.7), normal-

ized to its value at the Ê = ÊχSB for T s
decon states (blue/drown curves, the Klebanov-Tseytlin

black holes) and T b
decon states (orange curve, the Klebanov-Strassler black holes) at µ = µ1.

The vertical green line indicates the energy density of the V̂B vacuum state at µ = µ1.

Our numerics suggests23 that K̂ likely diverges in deconfined states prior to reaching the

vacuum energy — there is potentially a gap in the spectrum of black holes on the conifold.

6.3 Technical details on constructing the black holes, computing TχSB(µ) and

Tc(µ)

In constructing black holes on the conifold with fluxes it is convenient to start at µ = 0 and

slowly increase the S3 curvature, compare to the strong coupling scale Λ of the theory. At

µ = 0 we have black branes, thus we would like to recycle the numerical results obtained

in [3, 4, 11]. In the latter references the “universal” radial coordinate x,

1 − x ≡ − Gtt

Gxixi

, x ∈ [0, 1] , (6.22)

was used, with x → 0+ being the asymptotic boundary, and x → 1− being the regular

Schwarzschild horizon. It would appear to be more natural to use the same radial co-

ordinate x, instead of ρ as defined in (3.15) and (3.19). The problem is that the radial

coordinate x is simply not defined when µ 6= 0. Indeed, the definition (6.22) is sensible

only that the ratio of the warp factors Gtt and Gxixi is a monotonic function from the

boundary to the horizon. When µ 6= 0, this function is not monotonic. Indeed, even in the

conformal limit, see (4.22),

− Gtt

Gxixi

=
4(fa,1,0ρ + 1)(K0µ2ρ2 + 2f2

a,1,0ρ2 + 4fa,1,0ρ + 4)

(fa,1,0ρ + 2)4
, (6.23)

has a local maximum at

ρ = ρmax ≡ 2µ((2κ2 + 2µ2)1/2 + µ)

(2κ2 + µ2)K
1/2
0 κ

, (6.24)

with κ defined in as in (4.25), and

− Gtt

Gxixi

∣
∣
∣
∣
ρ=0

= 1 , − Gtt

Gxixi

∣
∣
∣
∣
ρ=ρmax

> 1 , − Gtt

Gxixi

∣
∣
∣
∣
ρ→+∞

= 0 . (6.25)

Of course, at µ = 0, we can fully map the results for the black branes on the conifold in x

radial coordinate to those in ρ: from eq. (A.11) and (A.17) of [4]

K
[x]
1 = P 2g0ks − 1

2
P 2g0 ln x + O

(

x3/4 ln x
)

, g[x] = g0

[

1 + O(x ln x)

]

,

h[x] =
P 2g0

a2
0

(
1

8
+

ks

4

)

− P 2g0

8a2
0

ln x + O(x1/2 ln x) ,

(6.26)

23A definite conclusion requires more precise analysis with improved numerical codes.
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and using

− Gtt

Gxixi

≡ (1 − x)2 ≡ f(ρ) =⇒ x = 1 −
√

f , (6.27)

with the asymptotic expansions (A.50), (A.53) and (A.54) we find

gs = g0 , K0 = P 2g0

(

ks +
1

2
ln 2 − 1

2
ln(−f4,0)

)

. (6.28)

Additionally, matching the gtt components of the metric on M5 (3.2) in different radial

coordinates,

gtt ≡ (1 − x)2

(h[x])1/2(2x − x2)1/2
≡ f

h1/2ρ2
=⇒ f4,0 = −a2

0 , (6.29)

where a2
0 ∝ sT of the thermal states of the black branes on the conifold. The scaling

symmetries of the equations of motion in [3, 4, 11] were always used to set a0 = 1, with

varying ks. This means, effectively, keeping the temperature scale ‘fixed’, while varying

the strong coupling scale Λ of the theory. The results were presented in terms of a single

dimensionless ratio T
Λ . Setting a0 = 1 implies that, see (6.29),

f4,0 = −1 . (6.30)

While (6.30) was established for µ = 0, we keep it even for µ 6= 0. This means that out of

three scales µ, Λ, T relevant to the black holes on the conifold, we fixed one of them — the

temperature. As in [3, 4, 11], this is consistent as long as we use dimensionless observables.

We now outline the steps used to produced the data reported in section 6.2.

6.3.1 Klebanov-Tseytlin black holes at µ 6= 0

In addition to (6.30), we use the scaling symmetries (3.24) and (3.25) to fix

P = 1 , gs = 1 . (6.31)

For the data files of [4] we identify the black brane solution corresponding to (see (2.48))

K0 = 4 ⇐⇒ Λ = 21/4e−2 , (6.32)

i.e., when ks = 4 − ln 2/2. We use the coordinate transformation x ↔ ρ of (6.27) to map

the corresponding black brane data to (A.55), (A.58), remembering the constraints of the

unbroken chiral symmetry (A.61). We thus obtained our first entry line for the Klebanov-

Tseytlin black hole data file at µ = 0. We populate this KT-master file, with each line

labeled by µ, keeping fixed f4,0, P, gs, K0 as in (6.30)–(6.32). Each entry line in the file

represents a black hole at a single value of T/Λ, labeled by

µ

Λ
= 2−1/4e2 µ ≡ µ̂ . (6.33)

Given this KT-master file, we can produce Klebanov-Tseytlin black holes at fixed µ/Λ,

for different values of T/Λ as follows:24 pick an entry from the KT-master file at required

value of µ̂r. This is a Klebanov-Tseytlin black holes at some temperature T , see (A.59).

24We use a separate file for distinct values of µ/Λ.
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We continue to keep (6.30) and (6.31), but we now vary both K0 and µ along the line

{K0, µ} ≡
{

K0, µ̂r21/4e−K0/2
}

. (6.34)

Since we vary K0, we vary the strong coupling scale of the theory

Λ = 21/4e−K0/2 , (6.35)

and thus, the ratio T/Λ. The corresponding change in µ as per (6.34) guarantees that

during this T/Λ variation

µ

Λ
= µ̂r21/4e−K0/2 × 2−1/4eK0/2 = µ̂r = constant . (6.36)

Each Klebanov-Tseytlin black hole data file (at a given value of µ̂r) is verified with

respect to the first law of thermodynamics (A.91). For example, the left panel of figure 35

verifies this for the Klebanov-Tseytlin black hole at µ = µ1 (6.18) — the accuracy is ∼ 10−7

and better. This is a typical accuracy achieved for the Klebanov-Tseytlin black holes at

µ/Λ 6= 0.

6.3.2 Computation of TχSB(µ)

TχSB is the temperature of the onset of the perturbative chiral symmetry breaking insta-

bility of T s
decon states, i.e., the Klebanov-Tseytlin black holes. To identify it we study χSB

fluctuations about T s
decon states and search for the normalizable mode.

As in (5.32), we set

fa ≡ f3 + δf , fb ≡ f3 − δf , K1 ≡ K + δk1 , K3 ≡ K − δk1 , K2 ≡ 1 + δk2 , (6.37)

with the remaining metric functions and the string coupling as in T s
decon thermal states

{f, fc, h, g}. It is straightforward to verify that truncation to {δf, δk1, δk2} is consistent

(at the linearized level). Equations of motion for the fluctuations and their asymptotic

expansions in the UV (ρ → 0) and the IR (y = 1
ρ) are collected in appendix C. The

expansions are characterized by 6 UV/IR parameters

UV : {δf3,0 , δk2,3,0 , δk2,7,0} ;

IR : {δfh
0 , δkh

1,0 , δkh
2,0} ,

(6.38)

Without the loss of generality, we fix the overall normalization of the linearized χSB fluc-

tuations setting

δfh
0 ≡ 1 . (6.39)

Note that we have only 5 parameters in (6.38), specifying a solution to 3 second-order

differential equations (C.2)–(C.4) for {δf, δk1, δk2} on T s
decon background parameterized by

K0, with given µ/Λ. For a generic value of K0 (equivalently T/Λ) there is no solution:

given µ/Λ, K0 must be tuned to identify the χSB normalizable mode. This tuned value of

K0, for the corresponding background Klebanov-Tseytlin black hole, would determine the

temperature T (A.59), which is precisely TχSB at a given value µ/Λ:

TχSB

Λ
=

fh
1

4π
√

hh
0

× 2−1/4eK0/2 . (6.40)
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Figure 32. Variation of parameters (6.43) of the critical Klebanov-Tseytlin black hole with µnum:

while δk2,3,0 monotonically increases with µnum (left panel), µ/Λ (right panel) reaches a maximum

at µnum = µnum,max (6.44), represented by the vertical dashed magenta line.

The access to the numerical data for the chiral symmetry breaking for the black branes on

the conifold [11] greatly simplifies our task: using the map (6.27), with (6.30) and (6.31), we

identify from the data in [11] the onset of the chiral symmetry breaking at µ = 0 to occur at

K0 = −0.43170(7) , fh
1 = 3.8074(5) , hh

0 = 0.14353(3) , (6.41)

leading to (from (6.40))
TχSB

Λ

∣
∣
∣
∣
µ=0

= 0.54193(5) . (6.42)

We continue to keep (6.30) and (6.31), and be vary µ, simultane-

ously solving for the Klebanov-Tseytlin black hole {f, fc, f3, h, K, g} and the

χSB fluctuations {δf, δk1, δk2}. Note that in total we have 8 second-order

ODEs25 (A.36), (A.37), (A.40), (A.41), (A.44), (C.2)–(C.4), and a single first order

equation (A.45). To specify the solution we need to adjust 8 × 2 + 1 = 17 parameters.

These are (see (A.55), (A.58) and (C.9)):

UV : {K0, fa,1,0, fc,4,0, g4,0, fa,6,0, fc,8,0} and {δf3,0, δk2,3,0, δk2,7,0} ;

IR : {fh
a,0, fh

c,0, hh
0 , Kh

1,0, gh
0 , fh

1 } and {δkh
1,0, δkh

2,0} .
(6.43)

Given (6.43) we compute from (6.40) TχSB(µ)/Λ as a function of µ/Λ.

We now explain the origin of µKS (6.17) — the terminal point of TχSB(µ) or ÊχSB(µ).

Parameters (6.43), characterizing the critical Klebanov-Tseytlin black holes along with χSB

fluctuations, are functions of µnum — we use the subscript num to highlight that these are

“numerical” values of µ in the computation scheme with (6.30) and (6.31). However, these

parameters are not all monotonic functions of µnum. In figure 32 we present the variation

of some parameters in (6.43) of the critical Klebanov-Tseytlin black hole with µnum: while

δk2,3,0 monotonically increases with µnum, µ/Λ reaches a maximum at

µ2
num = µ2

num,max ≡ 14.41(0) , (6.44)

25Recall that for the Klebanov-Tseytlin black hole fa = fb = f3, K1 = K2 = K and K2 = 1.
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Figure 33. The critical Klebanov-Tseytlin black holes for µnum < µnum,max (dashed black curves

in figure 32) and µnum > µnum,max (red curves in figure 32) have identical values of TχSB/Λ (left

panel) and ÊχSB (right panel) as a function of µ/Λ.

represented by the vertical dashed magenta line. This maximal value of µ/Λ is precisely

µKS/Λ — there is no instability to χSB fluctuations of Klebanov-Tseytlin black holes for

µ/Λ > µKS/Λ. A remarkable test on our numerics, the critical Klebanov-Tseytlin black

holes for µnum < µnum,max (black dashed curves in figure 32) and for µnum > µnum,max (red

curves in figure 32) are physically identical: in figure 33 we plot TχSB/Λ (left panel) and

ÊχSB (right panel) of these two branches as a function of µ/Λ — there is a perfect overlap.

It is possible to set up numerics in such a way that we vary directly µ̂ ≡ µ/Λ and thus

set

µ ≡ 21/4e−K0/2 µ̂ . (6.45)

In this numerical scheme we have been unable to extend the critical line of the Klebanov-

Tseytlin black holes past µ̂ = µKS/Λ as well.

6.3.3 Klebanov-Strassler black holes at µ 6= 0

In section 6.3.2 we constructed the set of critical Klebanov-Tseytlin black holes, labeled

by µ/Λ ∈ [0, µKS/Λ], unstable to spontaneous chiral symmetry breaking. Each point

of TχSB(µ) (or ÊχSB(µ) ) of the phase diagrams discussed in sections 6.1 and 6.2 is a

bifurcation point for the branch of Klebanov-Strassler black holes, equivalently T b
decon —

the thermal deconfined states of the cascading gauge theory with the spontaneously broken

chiral symmetry.

Given a bifurcation point on the critical Klebanov-Tseytlin black hole branch, the

construction of the Klebanov-Strassler black hole branch is straightforward. In fact the

procedure is identical to the one employed for the black branes in [4], or to the construction

of Vb
A vacua in section 5.3. An important subtlety is that we need to keep µ/Λ fixed,

allowing for the variation of the temperature/energy density of the Klebanov-Strassler

black hole. This is done as in section 6.3.1: we vary both K0 and µ along the line (6.34),

where the KS black hole branch label µ̂ is picked from the range µ̂ ∈ [0, µKS/Λ]. Specific

procedural steps are as follows.
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From (6.43) we identify the susceptibilities (compare with (5.35)) as

{

χf3,0 , χk2,3,0 , χk2,7,0 , χkh
1,0

, χkh
2,0

}

≡
{

δf3,0

δfh
0

,
δk2,3,0

δfh
0

,
δk2,7,0

δfh
0

,
δkh

1,0

δfh
0

,
δkh

2,0

δfh
0

}

, (6.46)

remembering (6.39).

Similar to (5.38), we denote the amplitude of the chiral symmetry breaking condensate

(see (6.37))

δfh
0 ≡ 1

2

(

fh
a,0 − fh

b,0

)

= λ . (6.47)

Then,
{

δf3,0 δk2,3,0, δk2,7,0, δkh
1,0, δkh

2,0

}

= λ {χf3,0 , χk2,3,0 , χk2,7,0 , χkh
1,0

, χkh
2,0

}+O(λ2) . (6.48)

Using (6.37), keeping (6.30) fixed, and correlating µ and K0 variation as in (6.34), we

find to O(λ2):

K0 = Kcrit
0 + O(λ2) , fa,1,0 = f crit

a,1,0 + O(λ2) , fa,3,0 = χf3,0λ + O(λ2) ,

k2,3,0 = λχk2,3,0 + O(λ2) , fc,4,0 = f crit
c,4,0 + O(λ2) ,

g4,0 = gcrit
4,0 + O(λ2) , fa,6,0 = f crit

a,6,0 + O(λ2) , k2,7,0 = χk2,7,0λ + O(λ2) ,

fc,8,0 = f crit
c,8,0 + O(λ2) , fh

a,0 = fh,crit
a,0 + λ + O(λ2) ,

fh
b,0 = fh,crit

a,0 − λ + O(λ2) , fh
c,0 = fh,crit

c,0 + O(λ2) , hh
0 = hh,crit

0 + O(λ2) ,

Kh
1,0 = Kh,crit

1,0 + χkh
1,0

λ + O(λ2) , Kh
2,0 = 1 + χkh

2,0
λ + O(λ2) ,

Kh
3,0 = Kh,crit

1,0 − χkh
1,0

λ + O(λ2) , gh
0 = gh,crit

0 + O(λ2) , fh
1 = fh,crit

1 + O(λ2) ,

(6.49)

where the superscript crit stands for the values of the corresponding parameters in (6.43)

along the critical line of the Klebanov-Tseytlin black holes.

We construct fully nonlinear in λ T b
decon states, i.e., the Klebanov-Strassler black holes,

using the linearized approximation (6.49) as a seed.

An important check on our numerics is the validity of the first law of thermodynam-

ics (A.91). For example, the right panel of figure 35 verifies this for the Klebanov-Strassler

black hole at µ = µ1 (6.18) — the accuracy is ∼ 10−5 and better. This is a typical accuracy

achieved for the Klebanov-Strassler black holes at µ/Λ 6= 0.

6.3.4 Computation of Tc(µ)

Tc(µ) is the temperature of the confinement deconfinement phase transition. There are

distinct confined states: Tcon,B and T s
con,A (see figure 22) and T b

con,A (see figure 23). Corre-

spondingly, there are distinct curves Tc(µ) for the transition between the deconfined chirally

symmetric states T s
decon, i.e., the Klebanov-Tseytlin black holes, and these confined states.

Computation of the deconfined temperature is a numerically consuming procedure, albeit

very straightforward: we follow section 6.3.1 to generate spectra of Klebanov-Tseytlin black

holes labeled by µ/Λ.

At fixed µ̂ ≡ µ/Λ, we compute the reduced free energy density F̂T s
decon

(T ; µ̂) (see (6.1))

of T s
decon states, using the expressions in appendices A.4.4 and A.4.5.
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The reduced free energy density of the confined states is temperature independent, and

is simply the reduced vacuum energy density of VB, Vs
A or Vb

A (A.82) at the corresponding

value of µ̂.

For example, for T s
decon ↔ Tcon,B transition reported in figure 22, Tc(µ) is determined

from

F̂T s
decon

(T ; µ̂)

∣
∣
∣
∣
T =Tc(µ)

= VB(µ̂) . (6.50)

We replicated (6.50) for the transitions T s
decon ↔ T s

con,A and T s
decon ↔ T b

con,A, and

extract the corresponding confinement/deconfinement temperatures Tc.

6.4 Conifold black holes at {T, µ} ≫ Λ

In this section we extend the work on black branes on the conifold with fluxes in the limit

T ≫ Λ of [25, 38, 39] to Klebanov-Tseytlin black holes, i.e., T s
decon states. We work to the

leading order in the limit {T, µ} ≫ Λ, without any particular hierarchy between T and µ.

The main motivation for this analysis is to have yet another check on the numerics and

the holographic renormalization of the model.

Chiral symmetry is unbroken in the limit T ≫ Λ [23], so our starting point are the

conformal T s
decon thermal states of section 4.2. As in [39], we use a perturbative in P 2gs/K̂0

ansatz to solve (A.36)–(A.45):

f =
4(f̂a,1,0ρ + 1)(K̂0µ2ρ2 + 2f̂2

a,1,0ρ2 + 4f̂a,1,0ρ + 4)

(f̂a,1,0ρ + 2)4
×

[

1 +
∞∑

n=1

(

P 2gs

K̂0

)2

fn(ρ)

]

,

fa = fb =
(f̂a,1,0ρ + 2)2

4
×

[

1 +
∞∑

n=1

(

P 2gs

K̂0

)2

f3,n(ρ)

]

,

fc =
(f̂a,1,0ρ + 2)2

4
×

[

1 +
∞∑

n=1

(

P 2gs

K̂0

)2

fc,n(ρ)

]

,

h =
4K̂0

(f̂a,1,0ρ + 2)4
×

[

1 +
∞∑

n=1

(

P 2gs

K̂0

)2

hn(ρ)

]

,

K1 = K3 = K̂0 ×
[

1 +
∞∑

n=1

(

P 2gs

K̂0

)2

k1,n(ρ)

]

, K2 ≡ 1 ,

g = gs ×
[

1 +
∞∑

n=1

(

P 2gs

K̂0

)2

gn(ρ)

]

, (6.51)

were we used the conformal solution (4.22) in the limit Λ/T → 0. It is convenient to

introduce

x ≡ f̂a,1,0

2
ρ , q ≡ µ2K̂0

f̂2
a,1,0

, z ≡ P 2gs

K̂0

. (6.52)

All the functions fn, f3,n, fc,n, hn, k1,n, gn become the functions of the new radial coordi-

nate x, with the parametric dependence on q. We present the explicit equations and the

asymptotic expansions for these functions for n = 1 in appendix D.
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Using (6.52), the asymptotic expansions (D.11)–(D.16), we identify26 (compare (A.55)

and (A.58))

K0 = K̂0

(

1 − 2 ln
f̂a,1,0

2
z

)

, fa,1,0 = f̂a,1,0

(

1 +
1

2
f̂c,1.0 z + O(z2)

)

, (6.53)

f4,0 =
1

16
f̂4

a,1,0(2q − 1) +
1

96
f̂4

a,1,0

(

q(8q ln 2 + 36 ln 2 + 3q) − 4q(2q + 9) ln f̂a,1,0

+ 6f̂1,4,0

)

z + O(z2) , fc,4,0 = − 1

144
f̂4

a,1,0

(

5q2 + 3q − 3
)

z + O(z2) , (6.54)

fh
a,0 =

1

4
f̂2

a,1,0

(

1 + fh
3,1,0 z + O(z)2

)

, fh
c,0 =

1

4
f̂2

a,1,0

(

1 + fh
c,1,0 z + O(z)2

)

, (6.55)

hh
0 =

4K̂0

f̂4
a,1,0

(

1 + ĥh
1,0 z + O(z2)

)

, fh
1 =

4(q + 2)

f̂a,1,0

(

1 + f̂h
1,0 z + O(z2)

)

, (6.56)

where we identified only the parameters necessary to compute the energy density E (A.86),

the entropy density s (A.89) and the temperature T (A.59).

Using (2.48), (6.53) and (6.52) we identify

µ2

Λ2
= 23/2P 2gs

q

K̂0

e
K̂0

P 2gs . (6.57)

We produce the numerical data for Klebanov-Tseytlin black holes using q as a label (see

appendix D) — to discuss thermodynamics of a fixed theory we must keep {P, gs, µ, Λ}
constant as the temperature T varies.27 This obviously necessitates that

K̂0 = K̂0(q) =⇒ dK̂0

dq
= −P 2gs

q
× K̂0

K̂0 − P 2gs

. (6.58)

The fact that K̂0 must depend on temperature, compactification scale is not new and was

first observed in [23].

Notice that at q = 0, i.e., the limit of the Klebanov-Tseytlin black brane,

f4,0

∣
∣
∣
∣
q=0

= − 1

16
f̂4

a,1,0

(

1 − f̂1,4,0 z + O(z2)

)

. (6.59)

As discussed earlier, see (6.30), f4,0 sets the overall mass scale, and can be adjusted at will,

without affecting physics, provided we express observables as dimensionless quantities.

In (6.30) f4,0 was fixed matching to (fully nonlinear) numerics used for black branes, i.e.,

at q = 0 and finite T/Λ. Here, we do the same, matching f4,0 to the perturbative black

brane numerics of [3]. We omit the technical details and simply present the answer:

f̂a,1,0 = 2 , f̂1,4,0 =
1

3
. (6.60)

26Note that the relation for K0 is exact to all orders in z, provided the additive integration constants are

set to zero for all k1,n functions, see (D.10) for k1,1.
27Here, the temperature variation is induced by variation of q.
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Using (6.52), (6.60), (6.53)–(6.56), and the thermodynamic expressions of appen-

dices A.4.4 and A.4.5 we find

8πG5 E
µ4

=
K̂2

0

32

(
q2 + 3q + 3

q2
+

54f̂c,1,0 − 2q − 69

6q

P 2gs

K̂0

+ O(z2)

)

, (6.61)

8πG5 s

µ3
=

πK̂2
0

8q3/2

(

1 +
ĥh

1,0 + 4f̂h
3,1,0 + f̂h

c,1,0

2

P 2gs

K̂0

+ O(z2)

)

, (6.62)

T

µ
=

q + 2

2πq1/2

(

1 +
2f̂h

1,0 − ĥh
1,0

2

P 2gs

K̂0

+ O(z2)

)

. (6.63)

The first law of thermodynamics in the form dE = Tds, keeping {P, gs, µ, Λ} constant, and

using (6.58), is automatically satisfied at O(z0), while at O(z) it leads to the constraint:

0 = FL[1],2(q) q2 + FL[1],1(q) q + FL[1],0(q) ≡ FL[1](q) , (6.64)

with

FL[1],2 = −4

3
(f̂h

3,1,0)′ − 1

3
(f̂h

c,1,0)′ + 3(f̂c,1,0)′ − 1

3
(ĥh

1,0)′ − 2

3
,

FL[1],1 = 2f̂h
3,1,0 +

1

2
f̂h

c,1,0 − 8

3
(f̂h

3,1,0)′ − 2

3
(f̂h

c,1,0)′ − 2

3
(ĥh

1,0)′ + f̂h
1,0 − 3f̂c,1,0 +

19

6
,

FL[1],0 = 4f̂h
3,1,0 + f̂h

c,1,0 + 2f̂h
1,0 +

2

3
,

(6.65)

where ′ ≡ d/dq. In figure 37 we check the first law of thermodynamics (6.64) presenting

C[1] ≡ FL[1](q)

max[FL[1],2(q) , FL[1],1(q) , FL[1],0(q)]
, (6.66)

as a function of q. We find that C[1] ∼ 10−8 for the range q ∈ [0, 0.8]
⋃

[1.2, 2]. We

deliberately excluded the region around q = 1 for an important reason: it turns out that

almost all parameters in (D.17) diverge as q → 1 (both from above and below). As we

demonstrate now, this fact has interesting implications for the leading corrections to the

confinement/deconfinement temperature Tc for the transition T s
decon ↔ T s

con in the limit

{T, µ} ≫ Λ.

We will not presents results for the divergence of all the parameters in (D.17), and

focus instead on two combinations C1 and C2, which will be relevant for the computation

of the leading in P 2gs/K̂0 corrections to the Hawking-Page temperature (4.31):

C1(q) ≡
(

2f̂h
1,0 − 9f̂c,1,0 + f̂h

c,1,,0 + 4f̂h
3,1,0

)

q + 4f̂h
1,0 + 2f̂h

c,1,0 + 8f̂h
3,1,0 , (6.67)

C2(q) ≡ 2f̂h
1,0 − ĥh

1,0 . (6.68)

In figure 34 the blue curves represent C−1
1 (the left panel) and C−1

2 (the right panel) as a

function of q. The dashed black lines represent the slopes to the curves at q = 1:

C−1
1 = δ1 (q − 1) + O((q − 1)2) , δ1 = 0.26695(6) ,

C−2
1 = δ2 (q − 1) + O((q − 1)2) , δ2 = 0.80086(7) .

(6.69)
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Figure 34. Certain linear combinations of the parameters in (D.17), C1 (the left panel, (6.67)) and

C2 (the right panel, (6.68)), diverge as q → 1. The dashed black lines are the tangents to the curves

1/C1 and 1/C2 at q = 1.

Note a serendipitous numerical fact:

3δ1 − δ2 = −1.0(5) × 10−9 , (6.70)

i.e., with very good numerical accuracy 3δ1 = δ2. We are now ready to compute the

correction to Tc as µ/Λ → ∞ for Klebanov-Tseytlin black holes. From (6.61)–(6.63) we have

8πG5 F [T s
decon]

µ4
=

8πG5 E
µ4

− 8πG5 s

µ3
× T

µ

=
K̂2

0

32

(
q2 + q − 1

q2
− (6C1 + 2q2 + 69q)

6q2

P 2gs

K̂0

+ O(z2)

)

,

(6.71)

where C1 is given (6.67). For the confined state,

8πG5 F [T s
con]

µ4
=

8πG5 E [Vs
A]

µ4
=

K̂2
0

32

(

1 + γ
P 2gs

K̂0

+ O(z2)

)

, (6.72)

where the coefficient γ was computed in28 [10]

γ = −2.2725(9) . (6.73)

Confinement/deconfinement transition occurs when

F [T s
con] = F [T s

decon] . (6.74)

To leading order in P 2gs/K̂0 it happens at

q

∣
∣
∣
∣
leading order

= 1 . (6.75)

Precisely because C1 diverges as ∝ 1/(q − 1) as q → 1, the leading correction to (6.75) in

the limit µ/Λ → ∞ are nonanalytic in P 2gs/K̂0. Using (6.69), we find from (6.74)

q

∣
∣
∣
∣
con/decon

= 1 ± δ
−1/2
1

(

P 2gs

K̂0

)1/2

+ O
(

P 2gs

K̂0

)

. (6.76)

28We independently verified that result here.
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To compute the correction to the transition temperature (6.63) due to (6.76) we need to

remember that C2(q) (6.68) diverges as q → 1 as well — see (6.69). We find

Tc

µ
=

3

2π
± 3δ1 − δ2

4δ
1/2
1 δ2π

(

P 2gs

K̂0

)1/2

+ O
(

P 2gs

K̂0

)

=
3

2π
+ 0 ×

(

1

2 ln µ
Λ

)1/2

+ O
(

1

2 ln µ
Λ

)

,

(6.77)

where in the second equality we used 3δ1 − δ2 = 0 (motivated by (6.70)) and (6.57)

at q = 1 and to leading order in µ/Λ → ∞. Thus, to compute the leading in the

limit µ/Λ → ∞ nonvanishing correction to the confinement/deconfinement transition

temperature T conformal
c , and compare with results reported in figure 24 we need to develop

perturbative solution to the Klebanov-Tseytlin black hole (6.51) to order n = 2. We will

not pursue this computation here.

7 Conclusion and open questions

In this paper we studied the vacua and the black holes on the conifold of Type IIB super-

gravity with fluxes. These background geometries realize the holographic dual to vacua

and thermal states of the cascading gauge theory [2] on a 3-sphere. We uncovered rich

phase diagrams in the canonical and microcanonical ensembles, identified distinct confine-

ment/deconfinement phase transitions, spontaneous breaking of the chiral symmetry in

vacua and in thermal states. Further details are provided in sections 5 and 6.

We list now open question for the future work.

• In a review section 4.1, see figure 4 in particular, we recalled that AdS5 × T 1,1 black

holes we unstable to localization on T 1,1 [27–29]. There are no studies in the literature

on the localization instabilities in the presence of internal (3-form) fluxes on T 1,1.

• We still do not know what is the end point of the chiral symmetry breaking instability

of Klebanov-Tseytlin black branes, i.e., when µ = 0. Although Klebanov-Strassler

black branes are the preferred states in the microcanonical ensemble [4], their trans-

lational invariant horizon is unstable to gravitational perturbations, the sound modes

in the dual cascading gauge theory plasma.

• In holography, there is a simple relation between the thermodynamic and the dynam-

ical instabilities of the black branes [41]. In this work we established that Klebanov-

Strassler black holes, as well as some branches of the Klebanov-Tseytlin black holes,

have a negative specific heat, i.e., are thermodynamically unstable. Whether or not

they are dynamically unstable (when µ 6= 0) is an open question.

• In this paper we used holography to study the vacua and the thermal states of the

interesting strongly coupled quantum field theory which has a confinement and a

spontaneous breaking of a symmetry. It would be very interesting to understand
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how to enlarge the holographic duality used here, and include the background mag-

netic field.29 This would open the possibility to explore confinement/deconfinement

and chiral symmetry breaking in the presence of the magnetic field in a top-down

holographic model. A challenge is to identify a simple enough consistent truncation

including a bulk gauge field for the class of models in [47, 48].

• In this paper we identified certain conifold vacua which are unstable to the sponta-

neous breaking of the chiral symmetry, and could ‘thermalize’ into Klebanov-Strassler

black holes. It would be interesting to simulate this dynamics.

• There is an interesting interval in the S3 compactification scale of the cascading

gauge theory, namely µ ∈ [µKS , µu]. In this range, chirally symmetric vacua of the

conifold with fluxes are unstable to symmetry breaking fluctuations, yet, there are

no Klebanov-Strassler black holes, see figure 28. What is the fate of these vacua

instabilities?
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A Equations of motion, asymptotic expansions, and the holographic

renormalization

A.1 Case (A): horizonless warped deformed conifold with fluxes

Using the metric ansatz (3.19) we derive from (3.1) the following equations of motion:

0 = f ′′
1 +

2(f ′
1)2

f1
− f ′

1

2

(
6

ρ
− 2f ′

b

fb
− 2f ′

a

fa
− f ′

c

fc

)

− 2hµ2

f1
, (A.1)

0 = f ′′
a − 3fa

2f2
1

(f ′
1)2 − 1

8fa
(f ′

a)2 − fa

8f2
b

(f ′
b)

2 +
fa

8h2
(h′)2 +

fa

8g2
(g′)2 +

gP 2

36hfb
(K ′

2)2

+
5

32ghfaP 2
(K ′

3)2 − 3fa

32ghf2
b P 2

(K ′
1)2 +

(
3f ′

a

2f1
− 3h′fa

4hf1
− 3f ′

cfa

4f1fc
− 3f ′

bfa

2fbf1
− 3fa

2rf1

)

f ′
1

+

(
f ′

a

4fc
− f ′

bfa

4fbfc

)

f ′
c +

f ′
af ′

b

2fb
+

h′fa

hρ
− 3f ′

a

ρ
− 9(K1 −K3)2

64fbhgfcρ2P 2
− K2

1

8f2
b h2fafcρ2

+
5fa

ρ2

− g(K2
2 (5f2

a −3f2
b )+12f2

b (K2 −1))P 2

8hf2
b fafcρ2

− K2(K1 −K3)(K2(K1 −K3)−4K1)

32f2
b h2fafcρ2

− 45f2
a

16fbfcρ2
+

9fa

8fcρ2
+

3fa

fbρ2
+

27fb

16fcρ2
− 9

ρ2
+

3fc

fbρ2
+

3hfaµ2

2f2
1

, (A.2)

29See [46] for a recent related discussion in N = 2∗ model.
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0 = f ′′
b − 3fb

2f2
1

(f ′
1)2 − fb

8f2
a

(f ′
a)2 − 1

8fb
(f ′

b)
2 +

fb

8h2
(h′)2 +

fb

8g2
(g′)2 +

gP 2(K ′
2)2

36hfa

− 3fb(K
′
3)2

32ghf2
a P 2

+
5(K ′

1)2

32ghfbP 2
+

(
3f ′

b

2f1
− 3h′fb

4hf1
− 3fbf

′
c

4f1fc
− 3fbf

′
a

2faf1
− 3fb

2ρf1

)

f ′
1 +

(
f ′

b

4fc

− fbf
′
a

4fafc

)

f ′
c +

f ′
bf

′
a

2fa
− 3f ′

b

ρ
+

fbh
′

hρ
− 9(K1 −K3)2

64hfagfcρ2P 2
− K2

1

8h2f2
a fbfcρ2

+
5fb

ρ2
+

27fa

16fcρ2

+
g(K2

2 (3f2
a −5f2

b )+20f2
b (K2 −1))P 2

8hfcfbf2
a ρ2

− K2(K1 −K3)(K2(K1 −K3)−4K1)

32fcfbh2f2
a ρ2

+
9fb

8fcρ2
− 9

ρ2
− 45f2

b

16fafcρ2
+

3fb

faρ2
+

3fc

faρ2
+

3hfbµ
2

2f2
1

, (A.3)

0 = f ′′
c − fc

8f2
a

(f ′
a)2 − fc

8f2
b

(f ′
b)

2 − 1

2fc
(f ′

c)
2 − gfcP

2(K ′
2)2

12hfbfa
− 3fc(K

′
3)2

32ghf2
a P 2

− 3(K ′
1)2fc

32hgf2
b P 2

+
fc

8g2
(g′)2 +

fc

8h2
(h′)2 − 3fc

2f2
1

(f ′
1)2 +

(
9f ′

c

4f1
− 3h′fc

4hf1
− 3fcf

′
b

2fbf1
− 3fcf

′
a

2faf1
− 3fc

2ρf1

)

f ′
1

+

(
3f ′

b

4fb
+

3f ′
a

4fa
− 3

ρ

)

f ′
c − fcf

′
bf

′
a

2fbfa
+

fch
′

hρ
+

27(K1 −K3)2

64hfbfagρ2P 2
− K2

1

8f2
b h2f2

a ρ2
+

5fc

ρ2
+

63fa

16fbρ2

+
3g(K2

2 (f2
a +f2

b )−4f2
b (K2 −1))P 2

8hf2
b f2

a ρ2
− K2(K1 −K3)(K2(K1 −K3)−4K1)

32f2
b h2f2

a ρ2
− 63

8ρ2

+
3fc

fbρ2
+

63fb

16faρ2
+

3fc

faρ2
− 9f2

c

fafbρ2
+

3hfcµ
2

2f2
1

, (A.4)

0 = h′′ − 9

8h
(h′)2 − h

8g2
(g′)2 +

3h

2f2
1

(f ′
1)2 +

h

8f2
a

(f ′
a)2 +

h

8f2
b

(f ′
b)

2 +
gP 2(K ′

2)2

12fbfa

+
3(K ′

3)2

32gf2
a P 2

+
3(K ′

1)2

32gf2
b P 2

+

(
3f ′

bh

2fbf1
+

15h′

4f1
+

3f ′
ah

2faf1
+

3f ′
ch

4f1fc
+

15h

2ρf1

)

f ′
1 +

(
h′

2fc
+

h

ρfc

+
f ′

bh

4fbfc
+

f ′
ah

4fafc

)

f ′
c +

(
f ′

b

fb
+

f ′
a

fa
− 4

ρ

)

h′ +
hf ′

bf
′
a

2fbfa
+

2hf ′
b

fbρ
+

2hf ′
a

faρ
+

45(K1 −K3)2

64fbfagfcρ2P 2

+
5g(K2

2 (f2
a +f2

b )−4f2
b (K2 −1))P 2

8f2
b f2

a fcρ2
+

9K2(K1 −K3)(K2(K1 −K3)−4K1)

32f2
b hf2

a fcρ2
− 13h

ρ2

+
9K2

1

8f2
b hf2

a fcρ2
+

hfc

fafbρ2
− 3h

fbρ2
− 3h

faρ2
+

9hfa

16fbfcρ2
− 9h

8fcρ2
+

9hfb

16fafcρ2
− 3h2µ2

2f2
1

, (A.5)

0 = K ′′
1 +

(
f ′

c

2fc
− h′

h
− f ′

b

fb
+

f ′
a

fa
+

3f ′
1

f1
− g′

g
− 3

ρ

)

K ′
1 − 9fb(K1 −K3)

2fafcρ2

− g(K2(K2(K1 −K3)−4K1 +2K3)+4K1)P 2

hf2
a fcρ2

, (A.6)

0 = K ′′
2 +

(
3f ′

1

f1
− h′

h
+

f ′
c

2fc
+

g′

g
− 3

ρ

)

K ′
2 − 9(K1 −K3)(K2(K1 −K3)−2K1)

8ghfafbfcP 2ρ2

− 9(K2(f2
a +f2

b )−2f2
b )

2fafbfcρ2
, (A.7)
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0 = K ′′
3 +

(
f ′

c

2fc
− h′

h
+

f ′
b

fb
− f ′

a

fa
+

3f ′
1

f1
− g′

g
− 3

ρ

)

K ′
3 +

9fa(K1 −K3)

2fbfcρ2

+
K2g(K2(K1 −K3)−2K1)P 2

hf2
b fcρ2

, (A.8)

0 = g′′ − 1

g
(g′)2 +

(
f ′

c

2fc
+

f ′
b

fb
+

f ′
a

fa
+

3f ′
1

f1
− 3

ρ

)

g′ − P 2g2(K ′
2)2

9hfafb
+

(K ′
3)2

8hf2
a P 2

+
(K ′

1)2

8hf2
b P 2

+
9(K1 −K3)2

16fafbhfcρ2P 2
− g2(K2(K2(f2

a +f2
b )−4f2

b )+4f2
b )P 2

2hf2
a f2

b fcρ2
. (A.9)

Additionally we have the first order constraint

0 =
(K ′

1)2

P 2
+

8g2P 2(K ′
2)2fb

9fa
+

f2
b (K ′

3)2

f2
a P 2

+
4f2

b h

g
(g′)2 − 48hf2

b g

f2
1

(f ′
1)2 − 8gfbh

(
f ′

b

fc
+

fbf
′
a

fafc

+
3f ′

1fb

f1fc
− 4fb

ρfc

)

f ′
c − 24gfb

(
2f ′

bh

f1
+

h′fb

f1
+

2f ′
afbh

f1fa
− 6fbh

f1ρ

)

f ′
1 − 4gh(f ′

b)
2

− 16ghf ′
bf

′
afb

fa
+

4g(h′)2f2
b

h
− 4gh(f ′

a)2f2
b

f2
a

+
64ghf ′

bfb

ρ
+

32gh′f2
b

ρ
+

64ghf ′
af2

b

ρfa

− 9fb(K1 − K3)2

2faρ2fcP 2
− 4g2(K2

2 (f2
a + f2

b ) − 4f2
b (K2 − 1))P 2

ρ2fcf2
a

− 4gK2
1

hρ2fcf2
a

− gK2(K1 − K3)(K2(K1 − K3) − 4K1)

hρ2fcf2
a

− 2gfbh

(
48fb

ρ2
+

16fc

faρ2
− 48

ρ2
− 48fb

faρ2
+

9fa

fcρ2

− 18fb

fcρ2
+

9f2
b

fafcρ2

)

+
48h2f2

b gµ2

f2
1

. (A.10)

We explicitly verified that the constraint (A.10) is consistent with (A.1)–(A.9). Thus

the second-order equation for fc (A.4) can be eliminated in favor of the constraint equa-

tion (A.10) where f ′
c enters linearly. In total, we expect that a solution is specified by

8 × 2 + 1 × 1 = 17 parameters (8 second-order equations for fa,b, K1,2,3, h, g, f1 and a single

first-order equation for fc).

The general UV (as ρ → 0 ) asymptotic solution of (A.1)–(A.10) describing the vacua

of the warped deformed conifold with fluxes and S3 spatial boundary, i.e., the vacua of the

cascading gauge theory on S3, takes the form

fa = 1+fa,1,0ρ+ρ2
(

5

16
µ2P 2gs +

1

4
µ2K0 +

1

4
f2

a,1,0 − 1

2
µ2P 2gs lnρ

)

+ρ3fa,3,0

+O(ρ4 ln2 ρ) , (A.11)

fb = 1+fa,1,0ρ+ρ2
(

5

16
µ2P 2gs +

1

4
µ2K0 +

1

4
f2

a,1,0 − 1

2
µ2P 2gs lnρ

)

+ρ3
(

1

2
µ2fa,1,0P 2gs −fa,3,0

)

+O(ρ4 ln2 ρ) , (A.12)

fc = 1+fa,1,0ρ+ρ2
(

3

8
µ2P 2gs +

1

4
µ2K0 +

1

4
f2

a,1,0 − 1

2
µ2P 2gs lnρ

)

+
1

4
µ2fa,1,0P 2gsρ3

+O(ρ4 ln2 ρ) , (A.13)
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h =
1

8
P 2gs +

1

4
K0 − 1

2
P 2gs lnρ+ρ

(

−1

2
fa,1,0K0 +fa,1,0P 2gs lnρ

)

+ρ2
(

23

288
µ2P 4g2

s

− 1

6
P 2gsµ2K0 − 1

4
P 2gsf2

a,1,0 − 1

8
µ2K2

0 +
5

8
f2

a,1,0K0 +
1

96
P 2gs(32P 2gsµ2 +48K0µ2

−120f2
a,1,0) lnρ− 1

2
µ2P 4g2

s ln2 ρ

)

+ρ3
(

1

4
P 2gsµ2fa,1,0K0 − 13

32
P 4g2

sfa,1,0µ2

+
11

24
P 2gsf3

a,1,0 +
3

8
µ2fa,1,0K2

0 − 5

8
K0f3

a,1,0 +

(
5

4
P 2gsf3

a,1,0 − 1

2
P 4g2

sfa,1,0µ2

− 3

2
P 2gsµ2fa,1,0K0

)

lnρ+
3

2
P 4g2

sfa,1,0µ2 ln2 ρ

)

+O(ρ4 ln3 ρ) , (A.14)

K1 = K0 −2P 2gs lnρ+P 2gsfa,1,0ρ+ρ2
(

1

4
P 2gs(3P 2gsµ2 +K0µ2 −f2

a,1,0)

− 1

2
µ2P 4g2

s lnρ

)

+ρ3
(

1

12
P 2gs(8k2,3,0 −8P 2fa,1,0gsµ2 −3K0fa,1,0µ2 +f3

a,1,0 +8fa,3,0)

+2P 2gsfa,3,0 lnρ

)

+O(ρ4 ln2 ρ) , (A.15)

K2 = 1+ρ3
(

k2,3,0 +

(

3fa,3,0 − 3

4
µ2fa,1,0P 2gs

)

lnρ

)

+O(ρ4 lnρ) , (A.16)

K3 = K0 −2P 2gs lnρ+P 2gsfa,1,0ρ+ρ2
(

1

4
P 2gs(3P 2gsµ2 +K0µ2 −f2

a,1,0)

− 1

2
µ2P 4g2

s lnρ

)

+ρ3
(

1

12
P 2gs(f3

a,1,0 −4P 2gsfa,1,0µ2 −3K0fa,1,0µ2 −8fa,3,0 −8k2,3,0)

+P 2gs(P 2gsfa,1,0µ2 −2fa,3,0) lnρ

)

+O(ρ4 ln2 ρ) , (A.17)

g = gs

(

1− 1

4
µ2P 2gsρ2 +

1

4
µ2fa,1,0P 2gsρ3 +O(ρ4 lnρ)

)

, (A.18)

f1 = 1+ρ2
(

− 1

16
µ2P 2gs − 1

8
µ2K0 +

1

4
µ2P 2gs lnρ

)

+ρ3
(

− 1

16
µ2fa,1,0P 2gs

+
1

8
µ2fa,1,0K0 − 1

4
µ2fa,1,0P 2gs lnρ

)

+O(ρ4 ln2 ρ) . (A.19)

It is characterized by the cascading gauge theory defining parameters

K0 , µ , P , gs , (A.20)

correspondingly related to the strong coupling scale Λ (2.48), the S3 compactification scale

µ (3.16), the rank difference of the gauge group factors M (3.6), and the renormalization

group flow invariant sum of the gauge couplings (2.28). Additionally, there are 9 normal-

izable coefficients related to the diffeomorphism parameter α (3.17) and the expectation

values of the various operators in the boundary theory

{fa,1,0 , fa,3,0 , k2,3,0 , fa,4,0 , fc,4,0 , g4,0 , fa,6,0 , k2,7,0 , fa,8,0} . (A.21)

The IR (as y ≡ 1
ρ → 0) asymptotics of (A.1)–(A.10) differ depending on the topology of

the background geometry. We call vacua of the cascading gauge theory with the boundary
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spatial S3 smoothly shrinking to zero size VA, and vacua with the 2-cycle of the warped

deformed conifold smoothly shrinking to zero size VB. Note that the 3-cycle of the warped

deformed conifold can not vanish without producing a naked singularity since it supports

nonzero (when P 6= 0) RR 3-form flux (3.5).

• VA vacua of the cascading gauge theory. To identify smooth geometries with vanishing

S3 as y → 0 we introduce

fh
1 ≡ y−1 f1 , fh

a,b,c ≡ y2 fa,b,c , hh ≡ y−4 h . (A.22)

The IR asymptotic expansion

fh
a,b,c =

∑

n=0

fh
a,b,c,n y2n , hh = hh

0 +
∑

n=1

hh
n y2n , K1,2,3 =

∑

n=0

Kh
1,2,3,n y2n ,

g =
∑

n=0

gh
n y2n , fh

1 = µ
√

hh
0

(

1 +
∑

n=1

fh
1,n y2n

)

, (A.23)

is characterized by 8 parameters:

{fh
a,0 , fh

b,0 , fh
c,0 , hh

0 , Kh
1,0 , Kh

2,0 , Kh
3,0 , gh

0 } . (A.24)

Note that given (A.23),

1

h1/2ρ2

(

−dt2 +
f2

1

µ2

(

dS3
)2

)

+
h1/2

ρ2
(dρ)2 =

1√
hh

(

−dt2 +
(fh

1 )2

µ2
y2

(

dS3
)2

)

+
√

hh(dy)2 −→
︸︷︷︸

y→0

− 1
√

hh
0

dt2 +
√

hh
0

(

y2
(

dS3
)2

+ (dy)2
)

, (A.25)

i.e., S3 indeed smoothly shrinks to zero size as y → 0. It is important to emphasize

that VA vacua defined by (A.23) have either U(1) or Z2 chiral symmetry — the chiral

symmetry is unbroken in the former (Vs
A vacua), and is spontaneously broken in the

latter (Vb
A vacua). Specifically, unbroken chiral symmetry dictates (3.28), leading to

UV : fa,3,0 =
1

4
µ2fa,1,0P 2gs , k2,3,0 = 0 , k2,7,0 = 0 ;

IR : fh
b,0 = fh

a,0 , Kh
3,0 = Kh

1,0 , Kh
2,0 = 1 .

(A.26)

• VB vacua of the cascading gauge theory. To identify smooth geometries with vanishing

S2 as y → 0 we introduce

fh
a,b,c ≡ y2 fa,b,c , hh ≡ y−4 h . (A.27)

The IR asymptotic expansion

fh
a = fh

a,0 +
∑

n=1

fa,n y2n , fh
b = 3y2 +

∑

n=2

fb,n y2n , fh
c =

3

4
fh

a,0 +
∑

n=1

fc,n y2n ,

K1 = Kh
1,3y3 +

∑

n=2

K1,ny2n+1 , K2 = Kh
2,2y2 +

∑

n=2

K2,ny2n ,

K3 = Kh
3,1y +

∑

n=1

K3,ny2n+1 , hh = hh
0 +

∑

n=1

hh
n y2n ,

g =
∑

n=0

gh
n y2n , fh

1 =
∑

n=0

fh
1,n y2n , (A.28)
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is characterized by 8 parameters:

{fh
a,0 , hh

0 , Kh
1,3 , Kh

2,2 , Kh
2,4 , Kh

3,1 , gh
0 , fh

1,0} . (A.29)

Note that given (A.28),

h1/2

ρ2
(dρ)2 +

fbh
1/2

6
(g2

1 + g2
2) =

√
hh(dy)2 +

fh
b (hh)1/2

3

1

2
(g2

1 + g2
2)

∣
∣
∣
∣
2−cycle

−→
︸︷︷︸

y→0

√

hh
0

(

y2
(

dS2
)2

+ (dy)2
)

,

(A.30)

where

∣
∣
∣
∣
2−cycle

means restriction to the T 1,1 2-cycle. Following [13], this means setting

ψ = 0, φ2 = −φ1, θ2 = −θ1 in one-forms {gi} (see (2.21)) on T 1,1:

(g2
1 + g2

2)

∣
∣
∣
∣
2−cycle

= 2

(

(dθ1)2 + sin2 θ1 (dφ1)2
)

= 2
(

dS2
)2

. (A.31)

On the other hand, the 3-cycle supporting RR flux remains finite, provided fh
a,0hh

0 6= 0:

fch
1/2

9
g2

5 +
fah1/2

6
(g2

3 + g2
4) =

fh
c (hh)1/2

9
g2

5 +
fh

a (hh)1/2

6
(g2

3 + g2
4) (A.32)

−→
︸︷︷︸

y→0

fh
a,0(hh

0)1/2

6

(
1

2
g2

5 + g2
3 + g2

4

) ∣
∣
∣
∣
3−cycle: θ2=φ2=0,θ1=2η,ψ=ξ1+ξ2,φ1=ξ1−ξ2

=
fh

a,0(hh
0)1/2

6
2

(

(dη)2 + cos2 η(dξ1)2 + sin2 η(dξ2)2
)

=
fh

a,0(hh
0)1/2

3

(

dS3
)2

.

From (A.30), S2 indeed smoothly shrinks to zero size as y → 0. Because fa 6= fb

as y → 0, VB vacua defined by (A.28) have only Z2 chiral symmetry — the chiral

symmetry is spontaneously broken.

A.1.1 Klebanov-Strassler solution [2] as µ → 0 limit of VB conifold vacua

The supersymmetric Klebanov-Strassler solution [2] is a decompactification limit µ → 0 of

VB conifold vacua discussed above (see section 2 for a review). Indeed,

• in the UV, using (2.43) we identify (see (A.21)):

fa,1,0 = −2Q , fa,3,0 =
3
√

6

4
ǫ2 , k2,3,0 =

3
√

6

8
ǫ2(3 ln 3 − 5 ln 2 + 4 ln ǫ) ,

fa,4,0 =
3
√

6

4
Qǫ2 , fc,4,0 = 0 , g4,0 = 0 ,

fa,6,0 =

(

−27

16
ln 2 +

81

50
+

81

80
ln 3 +

27

20
ln ǫ

)

ǫ4 +
3
√

6

4
Q3ǫ2 ,

k2,7,0 =
45

√
6

8

(
57

10
− 5 ln 2 + 3 ln 3 + 4 ln ǫ

)

Q4ǫ2 ,

fa,8,0 =

(
27

2
ln ǫ − 135

8
ln 2 +

81

8
ln 3 +

405

16

)

Q2ǫ4 +
3
√

6

4
Q5ǫ2 , (A.33)
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• in the IR, using (2.45) we identify (see (A.29)):

fh
a,0 = 21/3 32/3 ǫ4/3 , hh

0 = P 2gs ǫ−8/3 × 0.056288(0) ,

Kh
1,3 =

4
√

6

9 ǫ2
P 2gs , Kh

2,2 =
22/3

32/3 ǫ4/3
, Kh

2,4 = −11 21/3 32/3

45 ǫ8/3
,

Kh
3,1 =

4
√

6 21/3 32/3

27ǫ2/3
P 2gs , gh

0 = gs , fh
1,0 = 1 .

(A.34)

The relation between K0 and the strong coupling scale Λ of the cascading gauge the-

ory (2.39) is given by (2.48):

K0 = P 2gs

(
5

3
ln 2 − ln 3 − 2

3
− 4

3
ln ǫ

)

. (A.35)

A.2 Case (B): schwarzschild horizon in warped deformed conifold with fluxes

Using the metric ansatz (3.19) we derive from (3.1) the following equations of motion:

0=f ′′−f ′

2

(
6

ρ
−2f ′

b

fb
−2f ′

a

fa
−f ′

c

fc

)

+4hµ2, (A.36)

0=f ′′
a − 1

8fa
(f ′

a)2− fa

8f2
b

(f ′
b)

2+
fa

8g2
(g′)2+

fa

8h2
(h′)2+

gP 2(K ′
2)2

36hfb
− 3fa(K ′

1)2

32ghf2
b P 2

+
5(K ′

3)2

32ghfaP 2
+

(
3f ′

a

4f
−fah′

8hf
− faf ′

b

4fbf
− faf ′

c

8fcf
− 5fa

4ρf

)

f ′+

(
f ′

a

4fc
− faf ′

b

4fbfc

)

f ′
c+

f ′
bf

′
a

2fb

+
fah′

hρ
−3f ′

a

ρ
− 9(K3−K1)2

64hfbgfcρ2fP 2
−g(K2

2 (5f2
a −3f2

b )+12f2
b (K2−1))P 2

8hf2
b fafcρ2f

−K2(K3−K1)(K2(K3−K1)+4K1)

32f2
b h2fafcρ2f

− K2
1

8f2
b h2fafcρ2f

+
5fa

ρ2
− 45f2

a

16fbfcρ2f
+

9fa

8fcρ2f

+
3fa

fbρ2f
+

27fb

16fcρ2f
− 9

ρ2f
+

3fc

fbρ2f
−5hfaµ2

2f
, (A.37)

0=f ′′
b −fb(f

′
a)2

8f2
a

−(f ′
b)

2

8fb
+

fb(h
′)2

8h2
− 3fb(K

′
3)2

32hf2
a P 2g

+
5(K ′

1)2

32fbhP 2g
+

P 2g(K ′
2)2

36hfa
+

fb(g
′)2

8g2

+

(
3f ′

b

4f
− fbf

′
a

4faf
−fbh

′

8hf
− 5fb

4ρf
− fbf

′
c

8fcf

)

f ′+

(
f ′

b

4fc
− fbf

′
a

4fcfa

)

f ′
c+

f ′
bf

′
a

2fa
−3f ′

b

ρ
+

fbh
′

hρ

+
g(K2

2 (3f2
a −5f2

b )+20f2
b (K2−1))P 2

8hfcfbf2
a ρ2f

−K2(K3−K1)(K2(K3−K1)+4K1)

32fcfbh2f2
a ρ2f

− 9(K3−K1)2

64hfagfcρ2fP 2
− K2

1

8fcfbh2f2
a ρ2f

+
5fb

ρ2
+

27fa

16fcρ2f
+

9fb

8fcρ2f
− 9

ρ2f
− 45f2

b

16fafcρ2f

+
3fb

faρ2f
+

3fc

faρ2f
−5hfbµ

2

2f
, (A.38)

0=f ′′
c −(f ′

c)
2

2fc
−fc(f

′
a)2

8f2
a

−fc(f
′
b)

2

8f2
b

+
fc(h

′)2

8h2
−P 2gfc(K

′
2)2

12fbhfa
− 3fc(K

′
3)2

32hf2
a P 2g

− 3fc(K
′
1)2

32f2
b hP 2g

+
fc(g

′)2

8g2
+

(
7f ′

c

8f
− fcf

′
b

4fbf
−h′fc

8hf
− fcf

′
a

4faf
− 5fc

4ρf

)

f ′+

(
3f ′

b

4fb
+

3f ′
a

4fa
−3

ρ

)

f ′
c−

fcf
′
bf

′
a

2fbfa

+
fch

′

hρ
+

27(K3−K1)2

64fbhfagρ2fP 2
+

3g(K2
2 (f2

a +f2
b )−4f2

b (K2−1))P 2

8hf2
b f2

a ρ2f
− K2

1

8f2
b h2f2

a ρ2f
+

5fc

ρ2
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+
63fa

16fbρ2f
−K2(K3−K1)(K2(K3−K1)+4K1)

32f2
b h2f2

a ρ2f
− 63

8ρ2f
+

3fc

fbρ2f
+

63fb

16faρ2f

+
3fc

faρ2f
− 9f2

c

fafbρ2f
−5hfcµ

2

2f
, (A.39)

0=h′′+
gP 2(K ′

2)2

12fbfa
+

3(K ′
1)2

32gf2
b P 2

+
3(K ′

3)2

32gf2
a P 2

− h

8g2
(g′)2− 9

8h
(h′)2+

h

8f2
a

(f ′
a)2

+
h

8f2
b

(f ′
b)

2+

(
hf ′

b

4fbf
+

9h′

8f
+

hf ′
a

4faf
+

13h

4ρf
+

hf ′
c

8fcf

)

f ′+

(
hf ′

b

4fcfb
+

h′

2fc
+

hf ′
a

4fcfa

+
h

fcρ

)

f ′
c+

(
f ′

a

fa
+

f ′
b

fb
−4

ρ

)

h′+
hf ′

bf
′
a

2fafb
+

2hf ′
b

fbρ
+

2hf ′
a

faρ
+

45(K3−K1)2

64fbfagfcρ2fP 2
−13h

ρ2

+
9K2

1

8fcf2
b hf2

a ρ2f
+

5g(K2
2 (f2

a +f2
b )−4f2

b (K2−1))P 2

8fcf2
b f2

a ρ2f
+

9K1K2(K3−K1)

8fcf2
b hf2

a ρ2f
+

hfc

fafbρ2f

+
9fah

16fbfcρ2f
+

9(K3−K1)2K2
2

32fcf2
b hf2

a ρ2f
− 9h

8fcρ2f
− 3h

fbρ2f
+

9hfb

16fafcρ2f
− 3h

faρ2f
+

13h2µ2

2f
, (A.40)

0=K ′′
1 +

(
f ′

f
+

f ′
c

2fc
−f ′

b

fb
−h′

h
−g′

g
+

f ′
a

fa
−3

ρ

)

K ′
1+

9fb(K3−K1)

2faffcρ2

+
g(K2(K2(K3−K1)−2K3)+4K1(K2−1))P 2

hffcf2
a ρ2

, (A.41)

0=K ′′
2 +

(
g′

g
+

f ′
c

2fc
−h′

h
+

f ′

f
−3

ρ

)

K ′
2−9(K3−K1)(K2(K3−K1)+2K1)

8hffcfafbgP 2ρ2

−9((f2
a +f2

b )K2−2f2
b )

2ffcfafbρ2
, (A.42)

0=K ′′
3 +

(
f ′

f
−g′

g
+

f ′
b

fb
−f ′

a

fa
+

f ′
c

2fc
−h′

h
−3

ρ

)

K ′
3−9fa(K3−K1)

2fbffcρ2

−gK2(K2(K3−K1)+2K1)P 2

hffcf2
b ρ2

, (A.43)

0=g′′−(g′)2

g
−g2P 2(K ′

2)2

9hfafb
+

(K ′
1)2

8hf2
b P 2

+
(K ′

3)2

8hf2
a P 2

+

(
f ′

f
+

f ′
c

2fc
+

f ′
b

fb
+

f ′
a

fa
−3

ρ

)

g′

+
9(K3−K1)2

16fafbhffcρ2P 2
−g2((f2

a +f2
b )K2

2+4f2
b (1−K2))P 2

2hffcf2
a f2

b ρ2
. (A.44)

Additionally we have the first order constraint

0 =
(K ′

1)2

P 2
+

(K ′
3)2f2

b

f2
a P 2

+
8g2P 2(K ′

2)2fb

9fa
+

4h(g′)2f2
b

g
−4hg(f ′

b)
2 +

4gf2
b (h′)2

h

− 4hg(f ′
a)2f2

b

f2
a

+

(
24hgf2

b

fρ
− 4hgf2

b f ′
c

ffc
− 8hgfbf

′
b

f
− 4gf2

b h′

f
− 8hgf2

b f ′
a

ffa

)

f ′ +
64hgfbf

′
b

ρ

+

(
32hgf2

b

fcρ
− 8hgfbf

′
b

fc
− 8hgf2

b f ′
a

fcfa

)

f ′
c − 16hgfbf

′
bf

′
a

fa
+

32gf2
b h′

ρ
+

64hgf2
b f ′

a

faρ

− 4g2(K2
2 (f2

a +f2
b )+4f2

b (1−K2))P 2

ffcf2
a ρ2

− gK2(K3 −K1)(K2(K3 −K1)+4K1)

hffcf2
a ρ2

– 67 –



J
H
E
P
0
6
(
2
0
2
1
)
1
0
2

− 9fb(K3 −K1)2

2faffcρ2P 2
− 4gK2

1

hffcf2
a ρ2

− 96hgf2
b

ρ2
− 18hfagfb

ffcρ2
+

36hgf2
b

ffcρ2
+

96hgfb

fρ2
− 18hgf3

b

ffcfaρ2

+
96hgf2

b

ffaρ2
− 32hfcgfb

ffaρ2
+

48h2gf2
b µ2

f
. (A.45)

We explicitly verified that the constraint (A.45) is consistent with (A.36)–(A.44). Thus

the second-order equation for fc (A.39) can be eliminated in favor of the constraint equa-

tion (A.45) where f ′
c enters linearly. In total, we expect that a solution is specified by

8 × 2 + 1 × 1 = 17 parameters (8 second-order equations for fa,b, K1,2,3, h, g, f and a single

first-order equation for fc).

The general UV (as ρ → 0 ) asymptotic solution of (A.36)–(A.45) describing the black

hole on the warped deformed conifold with fluxes and S3 horizon (from the effective 5d

perspective (3.1)), i.e., the thermal states of the cascading gauge theory on S3, takes the

form

fa = 1+fa,1,0ρ+ρ2
(

3

16
µ2P 2gs +

1

4
f2

a,1,0

)

+ρ3fa,3,0 +O(ρ4 lnρ) , (A.46)

fb = 1+fa,1,0ρ+ρ2
(

3

16
µ2P 2gs +

1

4
f2

a,1,0

)

−ρ3fa,3,0 +O(ρ4 lnρ) , (A.47)

fc = 1+fa,1,0ρ+ρ2
(

1

4
µ2P 2gs +

1

4
f2

a,1,0

)

+O(ρ4 lnρ) , (A.48)

h =
1

8
P 2gs +

1

4
K0 − 1

2
P 2gs lnρ+ρ

(

−1

2
K0fa,1,0 +P 2gsfa,1,0 lnρ

)

+ρ2
(

1

9
P 4g2

sµ2

− 1

24
K0P 2gsµ2 − 1

4
P 2gsf2

a,1,0 +
5

8
K0f2

a,1,0 +

(
1

12
P 4g2

sµ2 − 5

4
P 2gsf2

a,1,0

)

lnρ

)

+ρ3
(

−3

8
fa,1,0P 4g2

sµ2 +
1

8
K0fa,1,0µ2P 2gs +

11

24
f3

a,1,0P 2gs − 5

8
K0f3

a,1,0

+

(

−1

4
fa,1,0P 4g2

sµ2 +
5

4
f3

a,1,0P 2gs

)

lnρ

)

+O(ρ4 ln2 ρ) , (A.49)

K1 = K0 −2P 2gs lnρ+fa,1,0P 2gsρ+ρ2
(

1

4
P 2gs(3P 2gsµ2 +K0µ2 −f2

a,1,0)

− 1

2
P 4g2

sµ2 lnρ

)

+ρ3
(

1

12
P 2gs(f3

a,1,0 −6P 2gsfa,1,0µ2 −3K0fa,1,0µ2 +8fa,3,0 +8k2,3,0)

+
1

2
P 2gs(P 2gsfa,1,0µ2 +4fa,3,0) lnρ

)

+O(ρ4 ln2 ρ) , (A.50)

K2 = 1+ρ3
(

k2,3,0 +3fa,3,0 lnρ

)

+O(ρ4 lnρ) , (A.51)

K3 = K0 −2P 2gs lnρ+P 2gsfa,1,0ρ+ρ2
(

1

4
P 2gs(3P 2gsµ2 +K0µ2 −f2

a,1,0)

− 1

2
µ2P 4g2

s lnρ

)

+ρ3
(

1

12
P 2gs(f3

a,1,0 −6P 2fa,1,0gsµ2 −3K0fa,1,0µ2 −8fa,3,0 −8k2,3,0)

+
1

2
P 2gs(P 2gsfa,1,0µ2 −4fa,3,0) lnρ

)

+O(ρ4 ln2 ρ) , (A.52)
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g = gs

(

1− 1

4
µ2P 2gsρ2 +

1

4
µ2fa,1,0P 2gsρ3 +O(ρ4 lnρ)

)

, (A.53)

f = 1+ρ2
(

1

8
µ2P 2gs +

1

4
µ2K0 − 1

2
µ2P 2gs lnρ

)

+ρ3
(

1

8
µ2fa,1,0P 2gs − 1

4
µ2fa,1,0K0

+
1

2
µ2fa,1,0P 2gs lnρ

)

+ρ4
(

f4,0 −
(

13

144
µ4P 4g2

s +
1

12
µ4K0P 2gs +

3

8
µ2P 2gsf2

a,1,0

)

lnρ

+
1

12
µ4P 4g2

s ln2 ρ

)

+O(ρ5 ln2 ρ) . (A.54)

It is characterized by the cascading gauge theory defining parameters (A.20). Additionally,

there are 9 normalizable coefficients, related to the diffeomorphism parameter α (3.17) and

the expectation values of the various operators in the boundary theory

{fa,1,0 , fa,3,0 , k2,3,0 , f4,0 , fc,4,0 , g4,0 , fa,6,0 , k2,7,0 , fc,8,0} . (A.55)

Unlike the topologically distinct background geometries representing the VA or VB

vacua of the cascading gauge theories, the topology of the background geometry represent-

ing the deconfined thermal states30 of the cascading gauge theory Tdecon is unique: here,

the Euclidean time direction smoothly shrinks to zero size, with the boundary spatial S3

and the conifold cycles remaining finite. Introducing

fh
a,b,c ≡ y2 fa,b,c , hh ≡ y−4 h , (A.56)

the IR asymptotic expansion takes form

fh
a,b,c =

∑

n=0

fh
a,b,c,n yn , hh =

∑

n=0

hh
n yn , K1,2,3 =

∑

n=0

Kh
1,2,3,n yn ,

g =
∑

n=0

gh
n yn , f =

∑

n=1

fh
n yn ,

(A.57)

and is characterized by 9 parameters:

{fh
a,0 , fh

b,0 , fh
c,0 , hh

0 , Kh
1,0 , Kh

2,0 , Kh
3,0 , gh

0 , fh
1 } . (A.58)

A combination of these parameters is related to the Hawking temperature T of the black

hole:

T =
fh

1

4π
√

hh
0

. (A.59)

Note that given (A.57),

1

h1/2ρ2

(

−f dt2
)

+
h1/2

fρ2
(dρ)2 −→

︸︷︷︸

t→itE

f√
hh

dt2
E +

√
hh

f
(dy)2

−→
︸︷︷︸

y≡z2→0

4
√

hh
0

fh
1

(

z2 (fh
1 )2

4hh
0

dt2
E + (dz)2

)

,

(A.60)

30Dual to bulk geometries with a regular Schwarzschild horizon, see (3.19).
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i.e., the compactified Euclidean time direction S1 indeed smoothly shrinks to zero size as

z → 0, provided tE ∼ tE + 1
T with the temperature given by (A.59). It is important to

emphasize that Tdecon deconfined thermal states defined by (A.57) have either U(1) or Z2

chiral symmetry — the chiral symmetry is unbroken in the former (T s
decon deconfined ther-

mal states), and is spontaneously broken in the latter (T b
decon deconfined thermal states).

Specifically, unbroken chiral symmetry dictates (3.28), leading to

UV : fa,3,0 = 0 , k2,3,0 = 0 , k2,7,0 = 0 ;

IR : fh
b = fh

a , Kh
3,0 = Kh

1,0 , Kh
2,0 = 1 .

(A.61)

A.3 Holographic renormalization of the effective action (3.1)

The holographic renormalization of the theory (3.1) was discussed in [25] (see also appendix

A.2 of [4]). We review here the expressions necessary to recover various thermodynamic

quantities of the black holes on the warped deformed conifold with fluxes, and the Casimir

energies of the S3 conifold vacua.

The SO(4) invariant five-dimensional metric ansatzes (3.15) and (3.19), convenient for

the numerical computations, differ depending whether or not the bulk geometry of M5

has a horizon. To present the common expressions for the holographic renormalization we

parameterize the full ten-dimensional metric (3.3) as

ds2
10 = −c2

1dt2 + c2
2

(

dS3
)2

+ c2
3(dρ)2 + Ω2

1g2
5 + Ω2

2(g2
3 + g2

4) + Ω2
3(g2

1 + g2
2) , (A.62)

where ci = ci(ρ) and Ωi = Ωi(ρ). Note that Ωi are parameterized as in (3.14), and

(A) [no horizon] : c1 = h−1/4ρ−1 , c2 = h−1/4ρ−1µ−1 f1 , c3 = h1/4ρ−1 ; (A.63)

(B) [horizon] : c1 = h−1/4ρ−1f1/2 , c2 = h−1/4ρ−1µ−1 , c3 = h1/4ρ−1 f−1/2 .

Following [25], the renormalized five-dimensional effective action with a cutoff ρ = ρ̂

takes form

Srenom
5,ρ̂ = Sbulk

5,ρ≥ρ̂ + SGH,ρ̂ + Sct,ρ̂ . (A.64)

Sbulk
5,ρ≥ρ̂ is the regularized bulk action (3.1) with ∂M5 at ρ = ρ̂, here ′ ≡ ∂ρ,

Sbulk
5,ρ≥ρ̂ =

108

16πG5
volS3

∫

dt

∫ +∞

ρ̂
dρ c1c3

2c3 × Ω1Ω2
2Ω2

3 ×
{

R10 + · · ·
}

=
108

16πG5
volS3

∫

dt

∫ +∞

ρ̂
dρ

[

−2c′
1c3

2Ω1Ω2
2Ω2

3

c3

]′

=
108

16πG5
volS3 ×

∫

dt ×
[

2c′
1c3

2Ω1Ω2
2Ω2

3

c3

]ρ̂

+∞

,

(A.65)

where in the second line we used the equations of motion (A.1)–(A.10) or (A.36)–(A.45)

to represent the bulk integral as a total derivative.
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SGH,ρ̂ is the generalized Gibbons-Hawking term, evaluated at the regularization bound-

ary ∂M5,

SGH,ρ̂ =
108

16πG5
× 2

∫

∂M5

vol∂M5
Ω1Ω2

2Ω2
3

(

∇µnµ + nµ∇µ ln
(

Ω1Ω2
2Ω2

3

))

=
108

16πG5
volS3 ×

∫

dt × 2

c3

(

c1c3
2Ω1Ω2

2Ω2
3

)′∣
∣
∣
∣
ρ=ρ̂

,

(A.66)

where nµ is a unit space-like vector orthogonal to the four-dimensional boundary ∂M5.

Sct,ρ̂ is the counter-term action,31 evaluated at the regularization boundary ∂M5,

Sct,ρ̂ =
1

16πG5

∫

∂M5

vol∂M5
Lcounter , (A.67)

where, in the “minimal subtraction scheme” [25],

Lcounter = K̂ − 2Ω̂4
1 − 8Ω̂4

2 + A4 + Rγ Ω̂2
1

(

− 1

12
K̂ +

1

12
P 2eΦ − 1

6
Ω̂4

1 + B2

)

+ R2
γ × L0

R2 + Rab γRab
γ × L0

Ric2 , (A.68)

Xa ≡
(

1 − Ω̂2
2

Ω̂2
1

)

, A4 =
18

5
X2

aΩ̂4
1 , B2 = Xa

(
1

6
K̂ − 1

30
P 2eΦ

)

, (A.69)

L0
R2 = − 1

144
P 4e2Φ ln3 ρ − 1

96
P 2eΦ ln2 ρ K̂ − 1

192
ln ρ K̂2

+

(
1

96
+ 4κ1

)

P 4e2Φ ln2 ρ +

(
1

96
+ 4κ1

)

P 2eΦ ln ρ K̂

+

(

κ1 +
1

1152

)

K̂2 +

(

2κ2 − 43

2304

)

P 4e2Φ ln ρ

+

(

κ2 − 13

1152

)

P 2eΦK̂ + κ3P 4e2Φ, (A.70)

L0
Ric2 =

1

48
P 4e2Φ ln3 ρ +

1

32
P 2eΦ ln2 ρ K̂ +

1

64
ln ρ K̂2 +

(

− 1

32
− 12κ1

)

P 4e2Φ ln2 ρ

+

(

− 1

32
− 12κ1

)

P 2eΦ ln ρ K̂ +

(

− 1

256
− 3κ1

)

K̂2

+

(
43

768
− 6κ2

)

P 4e2Φ ln ρ +

(
5

192
− 3κ2

)

P 2eΦK̂

+

(
541

138240
− 3κ3

)

P 4e2Φ, (A.71)

with [4]

K̂ =
1

2
(K1 + K3) , Ω̂1 = 3Ω1 , Ω̂2 =

√
6

2
(Ω2 + Ω3) , (A.72)

and, for a specific choice of the five-dimensional background metric in (A.62),

Rγ =
6

c2
2

, Rab γRab
γ =

12

c4
2

,
γ

Rγ = 0 . (A.73)

31This counter-term action renormalizes the effective action, the boundary stress-energy tensor and the

expectation values of all the relevant and the marginal operators of the boundary theory. Additional

counterterms are necessary to remove power-law divergences of the irrelevant operators of the cascading

gauge theory, see [25] for more details.
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Notice that the holographic renormalization in the minimal subtraction32 has a 3-

parameter ambiguity — these are the coefficients κ1 · · · κ3 in (A.70) and (A.71) parame-

terizing finite as ρ → 0 counterterms

Lcounter
finite =

(

κ1

(

K̂ + 2P 2eΦ ln ρ
)2

+ κ2

(

K̂ + 2P 2eΦ ln ρ
)

P 2eΦ + κ3P 4e2Φ
)

×
(

R2
γ − 3Rab γRab

γ

)

.

(A.74)

The presence of the finite counterterms (A.74) is mandated [25] by the reparametrization of

the radial coordinate ρ → λρ because of the explicit ln ρ dependence in (A.70) and (A.71).

Indeed, it is easy to see that the reparametrization ln ρ → ln ρ + ln λ is equivalent to

κ1 → κ1 − 1

192
ln λ ;

κ2 → κ2 + 4κ1 ln λ − 1

96
ln2 λ +

1

96
ln λ ;

κ3 → κ3 + 2κ2 ln λ + 4κ1 ln2 λ − 1

144
ln3 λ +

1

96
ln λ − 43

2304
ln λ .

(A.75)

The specific structure of the finite counter-term ambiguity, namely the combination (R2
γ −

3Rab γRab
γ ), implies that the renormalized boundary stress-energy tensor is ambiguity free

when ∂M5 = R × S3 [10]. This might come as a surprise, as it is well-known [26] that a

finite counterterm (constant δR2)

δLcounter
finite = δR2 × R2

γ (A.76)

would produce ∝ δR2R2 ambiguity in the boundary energy, as well as contribute ∝ δR2 R

ambiguity to the trace-anomaly. As explained in [25], a finite counterterm (A.76) is absent

in the minimal subtraction since it reintroduces ∝ δR2 R divergences in the one-point

functions of the irrelevant operators of the cascading gauge theory. If we restrict renor-

malization of the theory to the manifolds with γ Rγ = 0, as in (A.73), such a finite

counter-term is allowed.

As usual, in the present of the Schwarzschild horizon in the bulk, we can analytically

continue time

t → itE , tE ∼ tE +
1

T
, (A.77)

where tE is periodic with inverse temperature T , and identify the free energy density F of

the black hole as
1

T
× 1

µ3
volS3 × F = lim

ρ̂→0
Srenom

5,ρ̂

∣
∣
∣
∣
t→itE

. (A.78)

The renormalized effective action Srenom
5,ρ̂ can further be used to compute the boundary

stress-energy tensor as detailed in [25].

32Additional ambiguities arise for generic ∂M5, in particular when γ Rγ 6= 0.
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A.4 Boundary stress-energy tensor

In this section, using the results of sections A.1–A.3, we collect expressions for the energy

density E and pressure P, as well as some additional characteristics, for the vacua and the

thermal states of the cascading gauge theory on S3.

Recall that,

• Vb
A denotes vacua of the cascading gauge theory with spontaneously broken chiral

symmetry, with topologically trivial boundary S3 — see (A.11)–(A.19) for the UV

asymptotics, and (A.23) (with (A.25)) for the IR asymptotics;

• Vs
A denotes vacua of the cascading gauge theory with unbroken chiral symmetry,

with topologically trivial boundary S3 — see (A.26) for the constraints on UV/IR

parameters;

• VB denotes vacua of the cascading gauge theory with spontaneously broken chiral

symmetry, with topologically non-trivial boundary S3 (the Klebanov-Strassler so-

lution [2] is a member of this class in the boundary S3 decompactification limit)

— see (A.11)–(A.19) for the UV asymptotics, and (A.28) (with (A.30)) for the IR

asymptotics;

• T b
decon denotes thermal deconfined states of the cascading gauge theory with spon-

taneously broken chiral symmetry — see (A.46)–(A.54) for the UV asymptotics,

and (A.57) (with (A.60)) for the IR asymptotics;

• T s
decon denotes thermal deconfined states of the cascading gauge theory with unbroken

chiral symmetry — see (A.61) for the constraints on UV/IR parameters.

A.4.1 Vb
A vacua

For the energy density E and the pressure P we find [25]

8πG5 E =

(
403

1920
P 4g2

s +
3

32
K0P 2gs +

1

32
K2

0

)

µ4 +
9

32
f2

a,1,0µ2P 2gs − 3

2
fa,1,0fa,3,0

− 3fa,4,0 +
3

2
fc,4,0 ,

8πG5 P =

(
283

5760
P 4g2

s +
1

16
K0P 2gs +

1

96
K2

0

)

µ4 − 5

32
f2

a,1,0µ2P 2gs +
1

2
fa,1,0fa,3,0

+ fa,4,0 − 3

2
fc,4,0 .

(A.79)

Additionally, the expectation value of the dim-4 operator OK0
, associated with the coupling

K0, is [25]

8πG5 〈OK0
〉 =

(

− 3

32
K0+

1

16
P 2gs

)

µ4+
3

4
f2

a,1,0µ2+
6(fc,4,0 − fa,4,0) − 3fa,1,0fa,3,0

P 2gs
. (A.80)

As explained in details in [25], the conformal anomaly of the cascading gauge theory reads

conformal anomaly = 〈T i
i 〉 + P 2gs 〈OK0

〉 = −E + 3P + P 2gs 〈OK0
〉 , (A.81)
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which vanishes here. Indeed, in any local field theory with the gravitational dual, the

conformal anomaly is a linear combination of terms I4 − E4 ∝ (3RµνRµν − R2) (see (2.6)

and (2.7)) and R — both of these terms vanish for the M4 = R × S3 boundary.

Note that any gravitational solution representing a Vb
A vacuum can be interpreted as

a thermal confined state of the cascading gauge theory with spontaneously broken chiral

symmetry, T b
con,A, provided the Euclidean time direction is compactified with the inverse

temperature period as in (A.77). In this case, it is easy to verify that the free energy

density computed from (A.78) is exactly the same as the energy density,

T b
con,A : F = E , (A.82)

consistent with vanishing (in the supergravity or large-N approximation) entropy density

of the confined states.

A.4.2 Vs
A vacua

These vacua are the special case of the Vb
A vacua, subject to constraints of the unbroken

chiral symmetry (A.26). Explicitly,

8πG5 E =

(
403

1920
P 4g2

s +
3

32
K0P 2gs +

1

32
K2

0

)

µ4 − 3

32
f2

a,1,0µ2P 2gs −3fa,4,0 +
3

2
fc,4,0 ,

8πG5 P =

(
283

5760
P 4g2

s +
1

16
K0P 2gs +

1

96
K2

0

)

µ4 − 1

32
f2

a,1,0µ2P 2gs +fa,4,0 − 3

2
fc,4,0 , (A.83)

and

8πG5 〈OK0
〉 =

(

− 3

32
K0 +

1

16
P 2gs

)

µ4 +
6(fc,4,0 − fa,4,0)

P 2gs
. (A.84)

A.4.3 VB vacua

While VB vacua are represented by topologically district solutions in the holographic dual

from those corresponding to Vb
A vacua, and thus have different IR asymptotics (com-

pare (A.23) with (A.28)), both vacua have the same UV asymptotics (A.11)–(A.19). This

leads to the identical expressions for the energy density E , the pressure P, and the expec-

tation value of OK0
operators as in (A.79)–(A.80).

Supersymmetric Klebanov-Strassler solution [2] is a decompactification µ → 0 limit of

VB vacua. Using the identifications (A.33) we compute from (A.79)–(A.80)

E = 0 , P = 0 , 〈OK0
〉 = 0 , (A.85)

as expected.
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A.4.4 T b
decon

thermal states

For the energy density E and the pressure P we find [25]

8πG5 E =

(
171

640
P 4g2

s +
17

192
K0P 2gs +

1

32
K2

0

)

µ4 +

(
9

32
K0 − 21

64
P 2gs

)

f2
a,1,0µ2 − 3

2
f4,0

+
3

2
fc,4,0 ,

8πG5 P =

(

− 7

5760
P 4g2

s +
1

576
K0P 2gs +

1

96
K2

0

)

µ4 +

(
3

32
K0 − 7

64
P 2gs

)

f2
a,1,0µ2

− 1

2
f4,0 − 3

2
fc,4,0 . (A.86)

Additionally, the expectation value of the dim-4 operator OK0
, associated with the coupling

K0, is [25]

8πG5 〈OK0
〉 =

(
1

12
K0 +

13

48
P 2gs

)

µ4 +
6fc,4,0

P 2gs
. (A.87)

Once again, the conformal anomaly of the cascading gauge theory reads

conformal anomaly = 〈T i
i 〉 + P 2gs 〈OK0

〉 = −E + 3P + P 2gs 〈OK0
〉 = 0 , (A.88)

i.e., it vanishes here.

Thermal deconfined states T b
decon carry the entropy density s,

s =
1

4G5
fh

a,0fh
b,0

√

fh
c,0hh

0 , (A.89)

with the equilibrium temperature T given by (A.59). The basic thermodynamic relation

F = E − sT (A.90)

automatically holds, with the free energy density F evaluated from (A.78).

The first law of the thermodynamics, i.e.,

0 =
dE

Tds
− 1 , (A.91)

is verified numerically in all solutions to an accuracy ∼ 10−7 for the Klebanov-Tseytlin

black holes, and an accuracy ∼ 10−5 for the Klebanov-Strassler black holes — see figure 35

for a typical example.

A.4.5 T s
decon

thermal states

These thermal states are the special case of T b
decon thermal states, subject to constraints of

the unbroken chiral symmetry (A.61). We have identical expressions to (A.86) and (A.87)

for the energy density E , the pressure P, and the expectation value of OK0
because they

do not depend on {fa,3,0, k2,3,0, k2,7,0}.

The equilibrium temperature T is still given by (A.59), while for the entropy density

we have

s =
1

4G5

(

fh
a,0

)2 √

fh
c,0hh

0 . (A.92)
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B Fluctuations about Vs
A vacua

Introducing

fa ≡ f3 + δf , fb ≡ f3 − δf , K1 ≡ K + δk1 , K3 ≡ K − δk1 , K2 ≡ 1 + δk2 , (B.1)

we obtain from (A.1)–(A.10) decoupled linearized equations for fluctuations δf(ρ), δk1(ρ),

δk2(ρ) about Vs
A vacua (see section 5.2):

0 = δf ′′ +

(
3f ′

1

f1
+

f ′
c

2fc
− 3

ρ

)

δf ′ − K ′

2f3hP 2g
δk′

1 +

(
3hµ2

2f2
1

+
(h′)2

8h2
− 3h′f ′

1

4hf1
+

(g′)2

8g2

− 3(f ′
1)2

2f2
1

− 3f ′
1f ′

3

f1f3
− 3f ′

1f ′
c

4f1fc
+

(f ′
3)2

4f2
3

− f ′
3f ′

c

2fcf3
+

h′

hρ
− 3f ′

1

2f1ρ
+

5

ρ2
− 9

fcρ2
+

6

f3ρ2
+

3fc

ρ2f2
3

− K2

8h2fcρ2f4
3

− 7(K ′)2

16hf2
3 P 2g

− 9P 2g

4hf2
3 fcρ2

)

δf − 2P 2g

f3hfcρ2
δk2 , (B.2)

0 = δk′′
1 +

(
f ′

c

2fc
− h′

h
+

3f ′
1

f1
− g′

g
− 3

ρ

)

δk′
1 +

2K ′

f3
δf ′ +

(
4KP 2g

hf3
3 fcρ2

− 2K ′f ′
3

f2
3

)

δf

+
2KP 2g

hρ2fcf2
3

δk2 − 9

fcρ2
δk1 , (B.3)

0 = δk′′
2 +

(
3f ′

1

f1
− h′

h
+

f ′
c

2fc
+

g′

g
− 3

ρ

)

δk′
2 +

9K

2hf2
3 fcP 2gρ2

δk1 − 9

fcρ2
δk2 − 18

f3fcρ2
δf . (B.4)

We turn on a finite source term33 m, (a non-normalizable coefficient for δf) explicitly

breaking the chiral symmetry U(1) → Z2, leading to

δf = m ρ +
1

2
fa,1,0m ρ2 + ρ3

(

δf3,0 +
1

8
mµ2(K0 − 10P 2gs) ln ρ − 1

8
mµ2P 2gs ln2 ρ

)

+ O(ρ4 ln2 ρ) , (B.5)

δk1 = −1

2
P 2gsm ρ +

1

4
P 2gsmfa,1,0 ρ2 + ρ3

(

− 1

1728
P 2gs(131P 2gsmµ2 + 330K0mµ2

− 432f2
a,1,0m − 1152δf3,0 − 1152δk2,3,0) − 1

288
P 2gs(263P 2gsmµ2 + 168K0mµ2

− 576δf3,0) ln ρ +
1

24
P 2gsmµ2(−16P 2gs + 3K0) ln2 ρ − 1

12
P 4g2

smµ2 ln3 ρ

)

+ O(ρ4 ln3 ρ) , (B.6)

δk2 = −9

4
m ρ +

9

8
fa,1,0m ρ2 + ρ3

(

δk2,3,0 +

(

−133

192
mµ2P 2gs − mµ2K0 + 3δf3,0

)

ln ρ

+

(

−7

8
mµ2P 2gs +

3

16
mµ2K0

)

ln2 ρ − 1

8
mµ2P 2gs ln3 ρ

)

+ O(ρ4 ln3 ρ) , (B.7)

as ρ → 0, and (compare with the definition of fh
a in (A.22))

δfh ≡ y2 δf =
∑

n=0

δfh
n y2n , δk1 =

∑

n=0

δkh
1,n y2n , δk2 =

∑

n=0

δkh
2,n y2n , (B.8)

33This is one of the two possible source terms. It is possible to turn on an independent source term for

δk1; such an additional source term produces conceptually identical results.
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as y ≡ 1
ρ → 0. It is characterized by 3 normalizable coefficients in the UV, and 3 normal-

izable coefficients in the IR:

UV : {δf3,0 , δk2,3,0 , δk2,7,0} ;

IR : {δfh
0 , δkh

1,0 , δkh
2,0} ,

(B.9)

precisely as needed to identify a solution of a system of three second-order ODEs (B.2)–

(B.4).

C Fluctuations about T s
decon

thermal states

Introducing

fa ≡ f3 + δf , fb ≡ f3 − δf , K1 ≡ K + δk1 , K3 ≡ K − δk1 , K2 ≡ 1 + δk2 , (C.1)

we obtain from (A.36)–(A.45) decoupled linearized equations for fluctuations δf(ρ), δk1(ρ),

δk2(ρ) about T s
decon states (see section 6.3.1):

0 = δf ′′ +

(
f ′

c

2fc
+

f ′

f
− 3

ρ

)

δf ′ − K ′
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1 +
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+
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+
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+
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− 7(K ′)2

16hf2
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− 9P 2g

4hf2
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− 9

ρ2ffc

+
6

f3ρ2f
+

3fc

f2
3 ρ2f

− K2

8h2f4
3 ρ2ffc

− 5hµ2

2f

)

δf − 2P 2g

f3hρ2ffc
δk2 , (C.2)

0 = δk′′
1 +

(
f ′

f
+

f ′
c

2fc
− h′

h
− g′

g
− 3

ρ

)

δk′
1 +

2K ′

f3
δf ′ +

(
4KP 2g

hf3
3 fcρ2f

− 2K ′f ′
3

f2
3

)

δf

+
2KP 2g

f2
3 hfcρ2f

δk2 − 9

ffcρ2
δk1 , (C.3)

0 = δk′′
2 +

(
g′

g
+

f ′
c

2fc
− h′

h
+

f ′

f
− 3

ρ

)

δk′
2 +

9K

2hffcf2
3 P 2gρ2

δk1 − 9

ffcρ2
δk2

− 18

f3ffcρ2
δf . (C.4)

We find

δf = δf3,0ρ3 + O(ρ4) , (C.5)

δk1 =

(
2

3
P 2gs(δf3,0 + δk2,3,0) + 2P 2gsδf3,0 ln ρ

)

ρ3 + O(ρ4 ln ρ) , (C.6)

δk2 =

(

δk2,3,0 + 3δf3,0 ln ρ

)

ρ3 + O(ρ4 ln ρ) , (C.7)

as ρ → 0, and (compare with the definition of fh
a in (A.56))

δfh ≡ y2 δf =
∑

n=0

δfh
n y2n , δk1 =

∑

n=0

δkh
1,n y2n , δk2 =

∑

n=0

δkh
2,n y2n . (C.8)
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as y ≡ 1
ρ → 0. It is characterized by 3 normalizable coefficients in the UV, and 3 normal-

izable coefficients in the IR:

UV : {δf3,0 , δk2,3,0 , δk2,7,0} ;

IR : {δfh
0 , δkh

1,0 , δkh
2,0} .

(C.9)

Because the fluctuations describing the spontaneous chiral symmetry breaking are lin-

earized, their overall amplitude is not fixed:

{δf , δk1 , δk2} ∼ λ {δf , δk1 , δk2} , λ ≡ const . (C.10)

We find it convenient to fix the amplitude setting δfh
0 = 1. Note that we do not have this

rescaling freedom when the chiral symmetry is broken explicitly, as in appendix B: such a

rescaling would affect the source term m → λm.

D Conifold black holes at {T, µ} ≫ Λ

Using (6.51), a new radial coordinate x and parameter q (6.52), we find from (A.36)–(A.45)

at n = 1:

0 = f ′′
1 +

4qx3 +qx2 −10x2 −10x−3

x(x+1)∆1
f ′

1 − x(qx2 −2qx+2x2 −q)

(x+1)∆1
f ′

c,1

− 4x(qx2 −2qx+2x2 −q)

(x+1)∆1
f ′

3,1 − 4q(f1 −h1)

∆1
, (D.1)

0 = f ′′
c,1 − 5

4x(x+1)
f ′

1 +
9qx4 −2qx3 +18x4 −5qx2 −40x2 −40x−12)

4x(x+1)∆1
f ′

c,1

+
x(qx2 −2qx+2x2 −q)

(x+1)∆1
f ′

3,1 +
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h′

1

− 3

4
(k′

1,1)2 − 4(x+1)2
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k1,1 +
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∆1x2
fc,1

+
20(x+1)2

∆1x2
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3(x+1)2
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, (D.2)

0 = f ′′
3,1 − 5

4x(x+1)
f ′

1 +
x(qx2 −2qx+2x2 −q)

4∆1(x+1)
f ′

c,1 +
1

4
(k′

1,1)2 − 4(x+1)2

∆1x2
k1,1

+
3qx4 −2qx3 +6x4 −2qx2 −10x2 −10x−3

x(x+1)∆1
f ′

3,1 +
8(x+1)2

∆1x2
f3,1 − (x+1)2

∆1x2

− 5qx2 −8x2 −16x−8

2∆1x2
h1 +

qx4 +6qx3 +2x4 +3qx2 +16x3 +24x2 +16x+4

4x∆1(x+1)
h′

1

+
5(qx2 +2x2 +4x+2)

2∆1x2
f1 +

5(x+1)2

∆1x2
fc,1 , (D.3)

0 = h′′
1 +

13

4x(x+1)
f ′

1 − qx4 −10qx3 +2x4 −5qx2 −16x3 −24x2 −16x−4

4x(x+1)∆1
f ′

c,1

− qx4 −10qx3 +2x4 −5qx2 −16x3 −24x2 −16x−4

x(x+1)∆1
f ′

3,1 +
3

4
(k′

1,1)2 +
36(x+1)2

∆1x2
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+
7qx4 −6qx3 +14x4 −7qx2 −16x3 −64x2 −56x−16

4x(x+1)∆1
h′

1 − 17(x+1)2

∆1x2
fc,1

− 13(qx2 +2x2 +4x+2)

2∆1x2
f1 +

13qx2 −72x2 −144x−72

2∆1x2
h1 − 68(x+1)2

∆1x2
f3,1

+
5(x+1)2

∆1x2
, (D.4)

0 = k′′
1,1 +

(2qx4 +4x4 −qx2 −10x2 −10x−3)

x(x+1)∆1
k′

1,1 − 8(x+1)2

∆1x2
, (D.5)

0 = g′′
1 +

2qx4 +4x4 −qx2 −10x2 −10x−3

x(x+1)∆1
g′

1 − 4(x+1)2

∆1x2
+(k′

1,1)2 , (D.6)

0 = f ′
c,1 +4f ′

3,1 +h′
1 +

3

∆2
(qx2 +2x2 +2x+1)(2x+1)f ′

1 +
x

∆2
(x+1)(2x+1)

×(qx2 +2x2 +2x+1)(k′
1,1)2 − 16(x+1)3

x∆2
k1,1 − 6(x+1)(qx2 +2x2 +4x+2)

x∆2
f1

+
4(x+1)3

x∆2
fc,1 +

16(x+1)3

x∆2
f3,1 +

2(x+1)(3qx2 +8x2 +16x+8)

x∆2
h1 − 4(x+1)3

x∆2
, (D.7)

where

∆1 = (2x + 1)((q + 2)x2 + 2x + 1) ,

∆2 = x2(x2 + 6x + 3)q + 2x4 + 32x3 + 48x2 + 32x + 8 .
(D.8)

Notice that the equation for k1,1 decouples and can be solved analytically:

k1,1 =
1

q + 1

(

q
(

ln((2 + q)x2 + 2x + 1) − 2 ln x
)

− 2 ln x + 2 ln(x + 1)

)

, (D.9)

where we fixed, without the loss of generality, the additive integration constant so that34

k1,1 = const − 2 ln x + O(x) , const = 0 . (D.10)

The remaining equations must be solved numerically. We use the first order equation (D.7)

to eliminate (algebraically) f ′
c,1 from (D.1), (D.3)–(D.5), keep (D.6), and drop the redun-

dant equation (D.2). Thus we end up with 4 second-order equations and a single first-order

equation for {f1, f3,1, h1, g1, fc,1}.

34Choosing const 6= 0 simply modifies K̂0 → K̂0 + P 2gs × const.
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In the UV, i.e., as x → 0, we have

f1 = x2
(

1

2
q −2q lnx

)

+x3
(

(1− f̂c,1,0)q +4q lnx
)

+x4
(

f̂1,4,0 +

(
2

3
q2 −6q

)

lnx

)

+O(x5 lnx) , (D.11)

f3,1 = xf̂c,1,0 +

(
3

4
q − f̂c,1,0

)

x2 +

(

f̂c,1,0 − 3

2
q

)

x3 +

(
9

4
q − f̂c,1,0 − 2

9
q2

)

x4 +O(x5) , (D.12)

h1 =
1

2
−2lnx+

(

2−2f̂c,1,0

)

x+

(

2f̂c,1,0 −1− 2

3
q

)

x2 +

(
2

3
+

4

3
q −2f̂c,1,0

)

x3

+

(

−17

24
+2f̂c,1,0 +

11

72
q2 − 55

24
q

)

x4 +O(x5) , (D.13)

g1 = −qx2 +2qx3 +x4
(

ĝ1,4,0 +(1−q2 −q) lnx
)

+O(x5 lnx) , (D.14)

fc,1 = xf̂c,1,0 +
(

q − f̂c,1,0

)

x2 +
(

f̂c,1,0 −2q
)

x3 +

(
1

3
− f̂c,1,0 − 5

9
q2 +

8

3
q

)

x4

+O(x5) , (D.15)

where the additive integration constant in g1 is set to zero — it can be absorbed in

O(P 2/K̂0) redefinition of gs.

In the IR, i.e., as y ≡ 1
x → 0, we have

f1 = f̂h
1,0 + O(y) , f3,1 = f̂h

3,1,0 + O(y) , h1 = ĥh
1,0 + O(y) ,

g1 = ĝh
1,0 + O(y) , fc,1 = f̂h

c,1,0 + O(y) .
(D.16)

Besides q, the solution for {f1, f3,1, h1, g1, fc,1} is characterized by 10 parameters:

{f̂c,1,0 , f̂1,4,0 , f̂c,6,0 , f̂c,8,0 , ĝ1,4,0 , f̂h
1,0 , f̂h

3,1,0 , ĥh
1,0 , ĝh

1,0 , f̂h
c,1,0} . (D.17)

One combination of these parameters determines the temperature at order O(P 2gs/K̂0),

thus, we have precisely 2×4+1 = 9 parameters left, necessary to specify a unique physical

solution.

We set up numerics varying q, resulting in all parameters in (D.17), except for f̂1,4,0,

being the functions of q. A choice of f̂1,4,0 is equivalent to fixing the overall mass scale

at order O(P 2gs), and does not affect results expressed as dimensionless quantities. Our

specific choice of f̂1,4,0 is explained in section 6.4.

E Numerical tests

The work presented in this paper is numerical. It is imperative that we do as many tests

as possible to confirm the reliability of the results. In the rest of this section we highlight

a small subset of the obvious, and less obvious (accidental) tests that we performed.

For the numerical integration — solving the boundary value problem for a system of

coupled ODEs — we use the “shooting” procedure developed in [3]. Numerical integration

uses a finite-difference method, thus, concerns that there could be a singularity in the

solution inside the integration range is less of the concern, as it would have been for the

spectral methods. Still, we would often plot the resulting functions over the integration

range to inspect that the solutions are indeed free from the singularities.
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Figure 35. The first law of thermodynamics for the Klebanov-Tseytlin (the left panel) and the

Klebanov-Strassler (the right panel) black holes at µ = µ1, see (6.18). The color coding as in

figure 30.

E.1 The first law of thermodynamics of T s
decon

and T b
decon

states at µ = µ1

In order to study the phase diagram of the black holes on the conifold we have to generate

a large number of thermal spectra of these black holes. These spectra at taken at fixed

µ/Λ, with µ begin the compactification scale of the S3 and Λ the strong coupling scale

of the cascading gauge theory. We use the holographic renormalization of appendix A.3

to compute the energy and free energy densities E and F , the entropy density s and the

temperature T . When both µ and Λ kept first, the first law of thermodynamics (A.91)

must be satisfied. Note that (A.91) is a differential constraint on our numerical data —

we use the default tools of Wolfram Mathematicaő to construct interpolating functions

for the collected data sets and verify that the first law of thermodynamics is satisfied for

the obtained interpolation functions (which can be easily differentiated). In figure 35 we

present the verification of the first law for the Klebanov-Tseytlin black holes (the left panel)

and the Klebanov-Strassler black holes at select value35 µ = µ1, see (6.18). It is important

to keep in mind that not only the first law validates the numerics, but it also confirmed that

we correctly collected the black hole spectra using the defining parameters of the theory

fixed (µ, Λ), and that we correctly implemented the holographic renormalization.

Results reported in figure 35 are typical:

• Klebanov-Tseytlin black holes are more symmetric than the Klebanov-Strassler black

holes — the former ones require solving a coupled nonlinear system of 6 ODEs, while

the latter ones has 9 ODEs. The asymptotics of the KS black holes are more involved,

and contain a gravitational mode dual to a dimension-7 operator (parameter k2,7,0

in (A.21)), which is absent in KT black holes. It is thus not a surprise that numerical

accuracy of KS black holes lags behind that of KT black holes.

• Numerics of black holes on the conifold, studied here, is more challenging than that

of the of the black branes discussed in [3, 4]. The reason is apparent from the UV

asymptotic expansions (A.46)–(A.54). For concreteness, focus on the expansion for f

35We performed this check for every single spectrum we collected.
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in (A.54): when µ 6= 0, there are additional terms, say ∝ µ4ρ4 ln2 ρ, that are present

for black holes, and are absent for the black branes — these additional logarithms

produce extra numerical difficulties.

• The quality of the numerics deteriorates as the simulated system is pushed into

more extreme regime — the curvature of the background geometry increases, or we

approach the state existence boundary (as for the Klebanov-Strassler black holes as

µ → µKS of (6.17)), or some of the parameters specifying the solution diverge (see

the left panel of figure 32).

• Typically as in figure 35 (more pronounced in the left panel), the error has a high-

frequency noise — this is a reflection of the discreteness in data collection, which was

used to produce interpolating functions.

We stop trusting numerics when the first law constraint (A.91) violation exceeds ∼
10−5 − 10−4. Mistakes in analytical results for the holographic renormalization, or failures

to keep mass scales defining the theory fixed, lead to violations of (A.91) of order O(1).

E.2 Thermodynamics of T s
decon

states at µ = µ2

The parameter state of the black holes on the conifold is 3-dimensional; we have:

µ — the compactification scale of the boundary S3;

Λ — the strong coupling scale of the theory;

T — the Hawking temperature of the black holes.

These scales have a nonlinear dependence on the numerical parameters defining the

solution (A.20). For example, from (2.48),

µ2

Λ2
= 2−1/2µ2 P 2gs e

K0

P 2gs . (E.1)

The symmetries of the equations of motion describing the black holes, i.e., (3.22), (3.24)

and (3.25), allows for an inequivalent numerical schemes. One such scheme is to set µ = 1,

gs = 1 and K0 = 1, parameterizing

µ2

Λ2
= 2−1/2 b e

1

b , (E.2)

with b ≡ P 2, see (5.30). Note that (E.2) is a decreasing function of b as b ∈ [0, 1], and then it

increases again for b > 1, retracing the same set of µ/Λ with b → ∞, albeit with seemingly

different set of defining parameters. Of course, any black hole physical observable, say

ŝ(Ê), in reality is represented as a parametric dependence

{Ê(b) , ŝ(b)} , (E.3)

with E (A.86) and s (A.89) depending on b implicitly via parameters (A.55) and (A.58),

must ‘fold on itself’ for b > 1. This is precisely what we observe in this work, and what

was observed for black branes in [3, 4]. We call this ‘an obvious’ numerical test.
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Figure 36. Physical observables of conifold black holes, here the Klebanov-Tseytlin black hole at

µ = µ2 (6.18), can depend on the numerical parameters (K0 in the left panel) non-monotonically.

Some of this non-monotonicity, when translated to physical observables as in the right panel, results

in retracing the same states of the black hole: the blue solid curve folds onto the red dashed curve

in the right panel.

In figure 36 we present an example of the ‘accidental’ numerical test. The results

reported relate to the Klebanov-Tseytlin black hole, i.e., T s
decon thermal state, at fixed

µ/Λ = µ2/Λ, see (6.18). We use numerical scheme with P = 1, gs = 1. We vary K0 and

µ along the line (6.34) to enforce the condition µ/Λ = constant. The left panel presents

the results for T/Λ as a function of K0, and the right panel presents ŝ as a function of Ê .

Notice that T/Λ is not a monotonic function of K0. One aspect of this non-monotonicity

is actually physics: the magenta dot represents the terminal temperature Tu(µ2/Λ) of the

Klebanov-Tseytlin black hole separating the phases with the positive (dotted green curve)

and negative (dashed red curve) specific heat in the canonical ensemble,36 see figure 29. On

the contrary, the non-monotonicity highlighted by the black dot is a numerical artifact, akin

to ‘folding’ for b > 1 discussed above — the part of the blue curve retracing the same values

of T/Λ as those to the right of the black dot, represented by the red dashed curve, ’folds on

itself’ when we use the dimensionless physical observables, see the right panel. We did not

show it, but the same ‘folding’ is true for the plot of F̂ as a function of T/Λ.What is different

in this folding, compare to the one discussed above, is that it could not have been foreseen.

A similar example of the accidental numerical test, due to unforeseen ‘folding’ is high-

lighted in figure 33.

E.3 First law of thermodynamics of near-conformal conifold black holes

In section 6.4 we discuss construction of T s
decon thermal states, i.e., the Klebanov-Tseytlin

black holes, perturbatively in z (see (6.52) and (6.57))

1 ≫ z ≡ P 2gs

K̂0

∼ 1

2 ln µ
Λ

. (E.4)

36Of course, this feature is invisible in the microcanonical ensemble, see the right panel of figure 36.
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Figure 37. Verification of the first law of thermodynamics — see (6.66) for a precise definition

of C[1] — for the Klebanov-Tseytlin black holes to leading order in 1/ ln(µ/Λ) as a function of q,

equivalently T
µ

(E.6).

The first law of thermodynamics in this case leads to a series of differential constraints

0 ≡
∞∑

n=0

zn FL[n](q) =⇒ FL[n](q) = 0 (E.5)

on parameters specifying the perturbative functions fn, f3,n, fc,n, hn, k1,n, gn. Explicit

expression for FL[1] is given by (6.64) and (6.65). In figure 37 we verify the first law of

thermodynamics at order n = 1 — see (6.66) for a precise definition of C[1]. We excluded

the region around q = 1, as in this limit some of the parameters diverge — see figure 34.

The results are presented as a function of q; to leading order in z, see (6.63),

T

µ
=

q + 2

2πq1/2

(

1 + O(z)

)

. (E.6)

E.4 Additional numerical tests

We list here additional some implicit and explicit numerical tests.

In multiple cases we cross checked numerics using different computational schemes, see

figures 10 and 11.

Black branes on the conifold are µ/Λ → 0 limiting cases of the black holes discussed

here. Even in this limit, the computations performed here differ from analysis in [3, 4, 11].

Specifically, in the latter work a different radial coordinate was used, see section 6.3. In

all cases we found a perfect agreement in the µ/Λ → 0 limit with the results reported

previously.
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