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1 Introduction

The anomalous magnetic moments of leptons have historically played an important role
in the ongoing quest to uncover and understand fundamental physics at very short dis-
tances [1]. In the past two decades, especially the anomalous magnetic moment of the
muon (g − 2)µ ≡ aµ has been an intriguing venue of New Physics (NP) searches due to
the persistent disagreement between its measured and theoretically predicted value within
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the Standard Model (SM). Recently, the Muon g-2 experiment [38] produced a new up-
date to the long standing result of the Brookhaven experiment E281 [2]. On theory side,
a lot of effort in recent years has been put into re-evaluating hadronic corrections to the
muon-photon vertex [4–8]. Nonetheless, the current aµ prediction within the SM1 devi-
ates from the experimental result at the 3.3σ level. Intriguingly, recent re-evaluations of
the fine-structure constant have shifted the theoretical SM prediction for ae [10] which is
completely dominated by higher order QED effects. In particular, two measurements per-
formed on Cs [11] and Rb [12] atoms yield results which are inconsistent with each other
at more than 5σ, and are also both in tension with the measured value of ae at the 2.4σ
and 1.6σ level, respectively.

On the other hand, Higgs boson decays to charged fermions are key observables at high
energy colliders. They represent most direct probes of the Yukawa interactions, which
can be affected by BSM degrees of freedom mixing with either the Higgs boson or the
SM fermions. While Higgs interactions with the third generation SM fermions have been
established soon after its discovery, the first direct measurement of h → µ+µ− has only
been obtained recently by both ATLAS [13] and CMS [14]. The current observation at
around 3σ significance leaves ample room for possible sizable NP effects.

While phenomenologically very distinct, anomalous magnetic moments and the cor-
responding fermionic Higgs decays are naturally correlated in BSM models. The chiral
structure of the interaction is the same, as it involves a right- and a left-handed fermion.
The Lorentz structure is of course different: the Higgs decay is mediated by a purely scalar
vertex, while the g−2 arises from a tensor contraction with the photon field Fµν . However,
as we will show, tensor operators arise generically from scalars (and viceversa), since they
mix under the electroweak (EW) renormalization group (RG) evolution at one-loop.

In this paper, we describe imprints of possible NP above the EW scale on a` and
h → `+`− in a model-independent fashion, adopting the framework of Standard Model
Effective Field Theory (SMEFT).2 We focus on the leading dimension six lepton chirality-
flipping operators including a Higgs and SUL(2) gauge bosons respectively. While these
operators are sufficient for a tree-level analysis, they do not form a closed set under the
SM RGE. For a consistent treatment, it is thus necessary to include four-fermion scalar
and tensor operators, which in turn play a crucial role in the analysis of NP effects in both
observables. As already noted in ref. [17], including tensor operators in the RGE leads
to the so-called chiral enhancement effects in the anomalous magnetic moments. At the
same time, the scalar operators can generate sizable corrections to fermionic Higgs decays.
In the following we perform a complete analysis of NP effects in g − 2 and Higgs decays
within SMEFT by running the relevant operators from the NP matching scale to the weak
scale and evaluate their contributions to the relevant observables. A similar approach was
recently taken in ref. [18], where the focus was instead on the running of the low energy
effective theory (LEFT) for a`.

1Here the theoretical value aSM
µ does not include the results from the recent BMWc Lattice QCD study [9].

We discuss the impact of this intriguing new result on BSM phenomenology in section 4.2.
2Studies of explicit UV models correlating a` and h→ `+`− observables can be found e.g in refs. [15, 16].
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We further explore the role of four fermion operators by matching SMEFT to an explicit
UV NP model. Suitable scenarios include models of LeptoQuarks [19–22] as well as models
with multiple Higgs fields. Indeed, we explore two of such examples: first we study a
flavor specific Two-Higgs Doublet Model (2HDM) [23–25], where the chiral enhancement
is obtained only at the two-loop level by the s.c. Barr-Zee mechanism. Secondly, we study
two scalar LeptoQuarks, namely S1 and R2 [26], that can generate the desired operators
already at tree level. In both cases we compare the RGE improved SMEFT results to the
explicit (unresummed) model calculations and discuss the validity of the approximations
taken in each approach.

The paper is organized as follows. In section 2 we present the dimension six operators
relevant for the EFT analysis and describe their interplay due to the RGE. Section 3
is devoted to matching the SMEFT operators to observables below the EW scale. The
phenomenological aspects of the latter are discussed in section 4 for the three charged
lepton flavors. In section 5 we compare the SMEFT results to explicit calculations within
a flavor specific 2HDM, while in section 6 we do the same for the scalar LeptoQuarks case.
We then summarize our conclusions in section 7. Finally, appendix A gives details on the
RG equations for the chosen operators, appendix B gives details of our calculation of the
one-loop SMEFT matching when integrating out the top quark, while appendix C describes
the leading logarithm expansion of two-loop diagrams in the 2HDM.

2 SMEFT operator basis

We start by building the SMEFT at scales above the EW symmetry breaking (EWSB)
scale, v = 246GeV by extending the SM Lagrangian with a series of operators of increasing
canonical dimension (d): L = LSM +

∑
d L(d). The most relevant dimension-six Lagrangian

can be written as
L(6) =

∑
i

ĈiOi + h.c. , with Ĉi = CiΛ2 , (2.1)

where the index i runs over all the SM gauge invariant operators in a given basis. In the
following we work with the s.c. “Warsaw” basis of operators [27]. For simplicity, since we
are concerned with phenomenology of CP-even observables, we limit our discussion to CP
conserving NP dynamics. In practice, i.e. for the operators we consider, this means taking
all Ĉi as real.

The set of operators relevant for the analysis of charged lepton anomalous magnetic
moments and leptonic Higgs decays is actually quite small, including the three operators

O1,pr =
(
ϕ†ϕ

) (
¯̀
perϕ

)
, (2.2a)

O2,pr =
(

¯̀
pσ

µνer
)
τaϕW a

µν , (2.2b)

O3,pr =
(

¯̀
pσ

µνer
)
ϕBµν . (2.2c)

Here ϕ is the Higgs doublet, ` is the left-handed lepton doublet, e is the right-handed
lepton singlet and p, r are the lepton generation indices. W and B are the SU(2)L and
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U(1)Y gauge field strength tensors respectively, while τa are the SU(2)L generators, i.e. the
Pauli matrices.

As the relevant scales for the evaluation of g − 2 and Higgs decays are below the EW
and especially NP scales (where we assume v � Λ), the RG evolution and matching of
operators from the NP scale to low energies needs to be taken into account. The complete
system of one-loop SMEFT RG equations is presented in refs. [28–30]. The important
observation is that, setting all the fermion Yukawa couplings except for the top quark to
zero, operators in eqs. (2.2a)–(2.2c) can form a closed set under RGE provided we include
two additional four-fermion operators

O4,prst =
(

¯̀j
per
)
εjk
(
q̄ksut

)
, O5,prst =

(
¯̀j
pσµνer

)
εjk
(
q̄ksσ

µνut
)
, (2.3)

where q and u are the quark LH doublet and up-quark RH singlet respectively, with genera-
tion indices r, t. The indices j, k are SU(2)L gauge indices, contracted by the antisymmetric
Levi-Civita tensor εjk. In the following, we will consider only operators including the top-
quark and conserving lepton flavor, thus we suppress the s = t indices for quarks and
p = r = e, µ, τ indices for leptons. Finally, to form a closed set of RG equations, we need
to take into account the RG evolution of gauge and Yukawa couplings. The complete set
of RG equations we use is collected in appendix A.

In the approximations described before, the gauge couplings, the Higgs mass and the
top quark Yukawa evolve according to the SM equations, which we take from refs. [31]
and [32], respectively. On the other hand, the Higgs quartic coupling λ and the muon
Yukawa yµ receive one-loop contributions from the operators O1 and O4, described in
eqs. (A.7) and (A.8). The former contains corrections to yµ which, differently from the SM,
are not proportional to the yµ Yukawa itself. This is also reflected in the one-loop threshold
corrections at the weak scale proportional to v2Ci,p. The corrections to λ are instead also
proportional to yµ and we keep them for completeness, but are otherwise negligible.

The RG evolution of these operators can hint at the low-energy signatures, which will
be calculated in detail in the next section. As an illustration of the interplay between them,
we set the initial conditions at the high scale Λ = 108 GeV and solve the RG evolution
down to the weak scale v. In each case, we set Ci,`(Λ) = 1 while Cj,`(Λ) = 0 for j 6= i. In
other words, we consider the cases where the UV complete model generates one operator
for a specific flavor ` at the leading EW order, while all the others are EW loop-induced.
The results are shown in figure 1.

Note that C1,` does not appear in the RG equations for C2,3,4,5,` (see appendix A); this
is reflected in the first plot in figure 1, where the one-loop induced coefficients are all negli-
gible. Thus, UV models that only generate O1,` can be probed exclusively via Higgs decays.

On the other hand, C2,` and C3,` can induce a sizeble C1,` through their RG evolution.
It follows that bounds on leptonic Higgs decays become relevant for these models, together
with bounds on the lepton anomalous magnetic moments, which O2,` and O3,` generate
at the leading order when matched to the low energy EFT below the EW scale (see next
section for details).

Finally, the two four-fermion operators O4,` and O5,` are able to induce C1,`, C2,`
and C3,`, however in very different proportions. This behaviour allows one-loop matching
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Figure 1. Running for the five different initial conditions Ci,`(Λ) = 1. The color coding for each
Wilson coefficient is the same in each plot and shown in the legend on the plot side. The vertical
black line is at Λ = 108 GeV.

contributions (of O5,`) to the anomalous magnetic moment at the low scale to dominate
over the tree-level ones (from C2,` and C3,`), while also generating small deviations in Higgs
decays (due to C1,`). Thus, the case of O5,µ looks particularly promising, since it can
address the aµ problem at relatively low NP scales, which in turn can be probed by near
future experiments measuring h→ µµ decays.

3 Operator matching to observables below EWSB

Below the scale of EWSB we can integrate out the heavy degrees of freedom, namely the
top quark t and the weak gauge bosons W and Z. The Higgs doublet acquires the form

ϕT = 1√
2

(0, h+ v) . (3.1)

We keep the dynamical field h in the discussion of Higgs decay only, while we can integrate
it out when treating the lepton anomalous magnetic moment.
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` `

t t

γ

` `

t t

h

Figure 2. One-loop diagrams appearing in the EW matching of O5,` to Q2,` (left, details in
appendix B.2), in the matching O4,` to Q1,` (right, details in appendix B.1).

The operators entering the low energy effective Lagrangian (L 3
∑
iQi) relevant for our

phenomenological analysis (assuming CP invariance) below the EWSB scale only respect
EM (and QCD) gauge invariance

Q1,` = c1,`h
(
l̄`l`
)
, Q2,` = e

c2,`
m`

(
l̄`σµν l`

)
Fµν , (3.2)

where now l` denotes the `-flavored charged lepton, Fµν stands for the photon field strength
and e =

√
4πα is the QED gauge coupling. The first operator induces Higgs decay to two

leptons, while the second generates the lepton anomalous dipole moment.
When matching the low energy operators to the SMEFT basis, it is important to con-

sider and reduce the matching scale (µw) dependence of the physical results, by matching
to sufficiently high loop order. To parametrize the relative importance of matching scale
and loop corrections, we define the ratio

Ri,j(µw) = ci,`(µw)|j
ci,`(mt)|L

, i = 1, 2 , (3.3)

where the label j = T, L refers to matching to SMEFT at tree level only (T) or including 1-
loop terms (L). Fixing the SMEFT NP scale to Λ = 104 GeV and varying the matching scale
µW between the W mass and the EW vev v, the ratios for the two low energy operators
are plotted in figure 3. We discuss the details of this matching and its implications for
phenomenology associated with each operator separately below.

3.1 Higgs decay to two leptons

In the SM the Higgs boson interacts with leptons through the Yukawa terms in the La-
grangian

L ⊃ ySM
`

¯̀̀ ϕe` + h.c. = ySM
`

(
h+ v√

2

)
l̄`l` , (3.4)

where we wrote the explicit form of the neutral component of the Higgs doublet below the
EWSB scale. The Yukawa couplings in the SM are ySM

` = m`

√
2/v.

The effect of the renormalizable operator Q1,` can be included in a straightforward
way as

L ⊃
(
m`

v
+ δc1,`

)
hl̄`l` . (3.5)
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At the matching scale (µw) below EWSB, (real) C1,` matches at tree level into c1,` as

δc1,`(µw)|tree = Ĉ1,`(µw) v
2
√

2
. (3.6)

Further threshold corrections from top quark loops, induced by O4,`, appear at next
to leading order, see right diagram in figure 2. The details of the calculation are given in
appendix B.1. The resulting matching correction is of the form

δc1,`(µw)|loop = Ncm
3
t

8π2v
Ĉ4,`(µw)

[1
3 + ln

(
mt

µw

)]
. (3.7)

The importance of including the one-loop contribution can be understood from comparing
R1,T/L(µw) (orange lines) plotted in figure 3. We observe that the tree-level matched
result has a sizable µw dependence: starting with a fixed value of C4,` at the high scale of
Λ = 104 GeV, c1` can change by almost a factor of 1.5 when varying µw ∈ [mW , v] around
the top mass . Including the one-loop correction, the scale dependence is greatly reduced
to around 5%.

Collider experiments measure the signal strength of leptonic Higgs decays in various
Higgs production modes. These can in turn be related to the so-called κ formalism, where
the relevant quantity is defined as

κ2
` = Γ(h→ `+`−)

ΓSM(h→ `+`−) , (3.8)

where we can now identify
κ` =

(
1 + δc1,`v

m`

)
, (3.9)

where we evaluate δc1,` at the Higgs mass (µw = mh).

3.2 Anomalous magnetic moment

Measurements of a` are generally performed at the lepton mass scale, at which also the
Higgs boson can be integrated out safely.3 At tree level the operators O2,` and O3,` con-
tribute to the dipole operator Q2,` by projecting out the photon field, while the Higgs
acquires a vev. The matching condition (for real C2,3) then reads

δc2,`(µw)|tree = vm`√
2e

(
cwĈ3,`(µw)− swĈ2,`(µw)

)
, (3.10)

where cw and sw are the cosine and sine of the weak mixing angle respectively.
At the next to leading order, the threshold corrections come from two different dia-

grams. On one hand, we have O5,` matching into Q2,`, again through a top quark loop, see
left diagram in figure 2. This numerically dominant contribution is evaluated explicitly in
appendix B.2. On the other hand, additional corrections arise when we integrate out the
W , Z and the Higgs. The complete matching condition with the low energy operator was

3The case of aτ is slightly different but still consistent with this assumption, see the discussion in
section 4.3.
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Figure 3. Ratios of matching conditions as function of the matching scale below EWSB µW for
fixed Λ = 104 GeV and C4,`(Λ) = 1 as the initial condition for the RGE.

recently computed in ref. [33] and includes EW renormalization of C2,` and C3,` as well as
of the EW vev, the lepton mass and e. The end result is

δc2,`(µw)|1-loop = −NcQtĈ5,`(µw)mtm`

2π2 ln
(
µw
mt

)
+O(α) , (3.11)

where Qt = 2/3 the top-quark electric charge. To abbreviate the expression, the O(α) term
stands for all the one-loop contributions from O2,` and O3,`, which we take into account in
our analysis but are numerically sub-dominant (they include both finite threshold effects as
well as logarithmic scale dependent terms). Again we highlight the importance of including
the one-loop matching contributions in figure 3, where we plot R2,T/L(µw) (purple lines).
We observe that even more than in the case of c1` the tree-level matched result has a
pronounced µw dependence: starting with a fixed value of C4,` at the high scale of Λ =
104 GeV, c2` can change by almost a factor of two when varying µw ∈ [mW , v] around the
top mass . Including the one-loop correction, the scale dependence is greatly reduced to
below 10%.

The subsequent running from the weak scale to the lepton mass scale is driven by
QED interactions only. They are expected to induce a shift in c2` of at most a few percent,
and so in light of the residual matching scale variance can be safely neglected. In our
phenomenological analysis we thus take δc2,`(mt) ' δc2,`(m`), such that the matching is
numerically dominated by the tree-level contributions. The shift of the lepton anomalous

– 8 –



J
H
E
P
0
6
(
2
0
2
1
)
0
9
9

magnetic moment will then simply be

δa` = 4δc2,`(m`) . (3.12)

4 Phenomenology

In this section we explore the phenomenological implications of NP parametrized by the
operators in eq. (3.2). Given the initial conditions for the Wilson coefficients Ci,` at a high
scale Λ, we use the set of RG equations in appendix A to evolve these coefficients down to
the weak scale µw ∼ mt. We then use the matching conditions in eq. (3.11) and (3.7) to
get the low energy coefficients, which can be directly used to compare with experimental
results. Note that with the assumption of massless leptons (above EWSB) and no running
below the weak scale, the RG evolution itself is lepton flavor-independent given the same
initial conditions.

The effect on low-energy observables depends on the initial conditions of the high-
energy Wilson coefficients at the scale Λ. In this section we present the results correspond-
ing to the option where all coefficients but one are zero at Λ, i.e. the UV complete model
generates one operator, while all the others are induced by the EW RG evolution. Other
combinations are also possible and we explore this possibility using explicit UV completions
in sections 5 and 6.

4.1 Electron

The electron anomalous magnetic moment is one of the most precisely measured quanti-
ties in particle physics. Taking into account recent (diverging) measurements of the fine
structure constant in Cs [11] and Rb [12] atoms, the SM predicted and measured value of
ae differ by

δaCse = aexp
e − aSM(Cs)

e = (−0.88± 0.36)× 10−12 ,

δaRbe = aexp
e − aSM(Rb)

e = (0.48± 0.30)× 10−12 ,
(4.1)

and thus currently exhibit a ∼ 2.4 σ and ∼ 1.6 σ tension, according to the Cs and Rb
measurement of α, respectively. In figure 4 we compare these ranges to the predicted shift
in ae due to different SMEFT operators.

A measurement of Higgs decay to two electrons within the SM is outside the reach
of present experiments. This is a consequence both of low rates of Higgs production at
pp colliders but especially the smallness of the Higgs coupling to electrons in the SM,
ySM
e = mev/

√
2 ∼ 3 × 10−6. While ATLAS and CMS already provided upper bounds

on κe [34, 35] of the order of 102, neither the high luminosity (HL) LHC upgrade nor a
higher energy pp collider like the FCC-hh would be able to improve these considerably.
Future “Higgs factories” might thus be required to achieve a significant progress in this
decay channel. As reported in ref. [36], for example, FCC-ee (high energy circular electron-
positron collider) would be able to probe κe at the 10% level. These present and projected
bounds are shown in the right plot of figure 4.
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Figure 4. Left: induced shift in the electron anomalous magnetic moment from δc2,e as function of
the NP scale Λ. The horizontal gray bands show the (g−2)e favored regions according to Cs (solid)
and Rb (dashed) measurements. Right: induced shift in Higgs to two electrons decay from δc1,e
as function of the NP scale Λ. The horizontal solid line shows present bounds from measurements
at LHC, while dashed, dotted and dotdashed lines show projections from HL-LHC, FCChh and
FCCee respectively.

As expected, both LHC and HL-LHC are not able to exclude NP scales above a TeV.
Even projections from FCC-hh are only able to exclude NP below few TeV in h → ee

induced at tree-level by C1,e. Furthermore, C1,e cannot be probed by measurements of ae,
thus making such NP effects very challenging to probe. Conversely, out of all considered
scenarios addressing the present ae discrepancy, only the C4,e(Λ) = 1, Λ = few×104 GeV
case has the potential to be tested through h→ e+e− decay measurements at the FCC-ee.

4.2 Muon

The muon anomalous magnetic moment exhibits a long standing tension between its mea-
sured and predicted value [37], which has been recently reinforced by the FNAL measure-
ment [38]. Currently it is estimated at ∼ 4.2σ or numerically

δaµ = aexp
µ − aSM

µ = (251± 59)× 10−11 , (4.2)

where the error represents the combined theoretical and experimental uncertainties. Note
that the recent BMWc Lattice result [9] updates the value of the leading order hadron vac-
uum polarization (LO-HVP) contribution. When combined with the other terms described
in ref. [37], we get

δaµ = (115± 60)× 10−11 , (4.3)

which corresponds to a ∼ 1.9σ deviation. Left plot in figure 5 shows the shift in aµ
induced by the dipole operator Q2,µ compared to the discrepancy in eqs. (4.2) (gray region)
and (4.3) (purple region), when different initial conditions at the high-energy scale Λ are
taken. Again notice that models that only generate O4,µ in the UV can account for the
discrepancy in eq. (4.2) only at a relatively low scale interval, 3 . Λ . 7TeV, while other
scenarios point to much larger NP scales above 100TeV. One would instead require scales
of 10 . Λ . 20TeV in order for O4,µ to account for the discrepancy in eq. (4.3).
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Figure 5. Left: induced shift in the muon anomalous magnetic moment from δc2,µ as function of
the NP scale Λ. The horizontal gray and purple bands show the (g − 2)µ favored region assuming
δaµ as in eq. (4.2) or in eq. (4.3) respectively. Right: induced shift in Higgs to two muons decay
from δc1,µ as function of the NP scale Λ. The horizontal solid line shows present bounds from
measurements at LHC, while dashed and dotted lines show projections from HL-LHC and FCC
respectively.

Recently, di-muon Higgs decay was directly observed for the first time at LHC. ATLAS
and CMS reported the values [13]

ATLAS : κ2
µ = 1.2± 0.6 , CMS : κ2

µ = 1.19± 0.55 , (4.4)

for the signal strength. The precision of these measurements is expected to be improved
significantly at the HL-LHC [39] and especially FCC [40]. Converting these projections to
our notation, the reported values imply

HL− LHC : |κ2
µ − 1| < 0.053 , FCC : |κ2

µ − 1| < 4.2× 10−3 . (4.5)

The results are shown in the right plot in figure 5. We observe that compared to the NP
sensitivity of aµ, the current LHC Higgs decay measurements are not yet competitive in
any of the considered scenarios. However, already the HL-LHC upgrade could potentially
probe the current aµ discrepancy in the C4,µ(Λ) = 1 scenario. Sensitivity to other scenarios
would unfortunately be marginal even at the FCC. Better direct sensitivity could possibly
be achieved at a dedicated muon collider [41–43].

4.3 Tauon

The case for the anomalous magnetic moment of the tau lepton, aτ , is quite different than
the previous two. The very short tau lifetime does not allow for precise measurement of its
spin precession in a magnetic field, and aτ needs to be extracted from the cross section of
τ -pair production in high energy processes. These typically involve (virtual) photons with
non-negligible q2 and in practice probe the EM form factor of the tau away from q2 = 0
limit where a` is conventionally defined. The SM predicted value (at q2 = 0) is [8]

aSM
τ = (117717.1± 3.9)× 10−8 , (4.6)
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Figure 6. Left: induced shift in the tau anomalous magnetic moment from δc2,τ as function of the
NP scale Λ. The horizontal lines show the upper bounds from LEP and CLIC, see eq. (4.7). Right:
induced shift in Higgs to two taus decay from δc1,τ as function of the NP scale Λ. The horizontal
solid line shows present bounds from measurements at LHC, while dashed and dotted lines show
projections from HL-LHC and FCC respectively.

while experimental limits from LEP [44] and projections from CLIC [45]4 are:

LEP : −0.052 < aexp
τ < 0.013 , CLIC : −0.0131 < aexp

τ < 0.0091 . (4.7)

First, we observe that the experimental sensitivity is not expected to reach the order
of magnitude of the SM predictions (which have non-negligible q2 dependence) in the
foreseeable future. In addition, as discussed in section 3.2, contributions due to heavy
NP experience negligible running below the EWSB scale. Consequently, the experimental
bounds on δaτ at any small enough q2 will apply equally and can be used to constrain the
relevant UV scenarios. The results are shown in the left plot in figure 6. Unfortunately,
none of the considered scenarios with Λ above the TeV is expected to yield observable
signals at present or planned experiments. Any prospective signal in such measurements
would thus point to the presence of light new degrees of freedom.

On the other hand, h → ττ has been measured with good precision at LHC. The
signal strength reported by ATLAS [46] and CMS [47] are

ATLAS : κ2
τ = 1.09± 0.29 , CMS : κ2

τ = 1.09± 0.27 . (4.8)

Similar to the muon case, projected bounds are considered from HL-LHC [39] and FCC [40]
and can be translated to our notation as

HL− LHC : |κ2
τ − 1| < 0.023 , FCC : |κ2

τ − 1| < 4.5× 10−3 . (4.9)

The results are shown in the right plot in figure 6. We observe that the C1,τ (Λ) = 1 scenario
could be probed up to Λ ∼ 10TeV already at the HL-LHC, while the other scenarios would
require the FCC to be probed experimentally to the same degree, with C2,τ case being
most elusive.

4The bounds refer to 200 fb−1 luminosity,
√
s = 1.5TeV and δsys = 0.1.
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5 Flavor specific 2HDM

Based on the results of the EFT analysis, it is interesting to consider UV completions that
generate one of the operators, e.g. O4,`, above the EW scale already at the tree level, while
others are EW loop induced. In this section we consider a minimal Two Higgs-Doublet
Model (2HDM) extension of the SM,5 where we restrict the interactions of the new heavy
scalars to only one charged lepton flavor (the muon), as well as to one up-like quark flavor
(the top).

5.1 Model description

We introduce two SU(2)L doublets, ϕ1 and ϕ2, with hypercharge +1 and vacuum expec-
tation values (vevs) v1 and v2, respectively. This sector can be rotated via a global SU(2)
transformation in order to make ϕ1 to act as the SM Higgs [24]. We have(

Φ1
Φ2

)
=
(

cosβ sin β
− sin β cosβ

)(
ϕ1
ϕ2

)
, tan β = v2

v1
. (5.1)

In this basis, named the Higgs basis, Φ2 has no vev while Φ1 acquires a vev v =
√
v2

1 + v2
2.

To simplify our discussion, we take from the start v2 = 0 and v1 = v; this corresponds to
the case sin β = 0 and cosβ = 1.

In the Higgs basis we can decompose the doublets as

Φ1 =
(

G+

v+ρ1+iG0√
2

)
, Φ2 =

(
H+

ρ2+iη√
2

)
, (5.2)

where ρ1,2 and η are the neutral scalar and pseudoscalar components respectively and H+

is the charged degree of freedom. This global transformation has the advantage of clearly
isolating the Goldstone bosons G± and G0 in the decomposition, which will be eaten to
give mass to W± and Z0.

The scalar fields ρ1,2 can be additionally related with the physical Higgs field and a
heavy neutral scalar by an orthogonal transformation. Here we assume that the scalar
potential is CP conserving, thus the pseudoscalar components do not mix with the scalar
one. The CP-even mass eigenstates can be then obtained by a second rotation of the two
scalar components (

h

H0

)
=
(

cosα sinα
− sinα cosα

)(
ρ1
ρ2

)
, (5.3)

where we can assume 0 ≤ α ≤ π and mh < mH without loss of generality. The angle α
describes the amount of mixing between the two scalar mass eigenstates. For simplicity,
we take the limit α→ 0, which correspond to the heavy Higgs completely decoupling from
the light counterpart and from the SM gauge bosons. Thus, h is the SM Higgs.

Finally, the 2HDM Lagrangian is

L = Lkin + LY + V (Φ1,Φ2) , (5.4)
5For reviews of the topic, see e.g. refs. [25, 48].

– 13 –



J
H
E
P
0
6
(
2
0
2
1
)
0
9
9

where Lkin is the kinetic part for the two Higgs doublets, LY the Yukawa Lagrangian and
V (Φ1,Φ2) the scalar potential.

Firstly, the kinetic terms are

Lkin = DµΦ†1DµΦ1 + ∂µΦ†2∂µΦ2 , (5.5)

where we already imposed the decoupling limit α → 0. The interaction of the light Higgs
with the SM gauge bosons remain unaltered by this model and are given by the first term
of Lkin.

Secondly, the scalar potential V (Φ1,Φ2) can be written in the general form

V (Φ1,Φ2) = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 −
(
m2

12Φ†1Φ2 + h.c.
)

+ β1
2
(
Φ†1Φ1

)2
+ β2

2
(
Φ†2Φ2

)2

+ β3
(
Φ†1Φ1

) (
Φ†2Φ2

)
+ β4

(
Φ†1Φ2

) (
Φ†2Φ1

)
+
[
β5
2
(
Φ†1Φ2

)2
+ h.c.

]
.

(5.6)

In the decoupling limit, all the mixing terms in the potential are taken to be zero, so
m12 = β3 = β4 = β5 = 0. Moreover, m1 = mh = 125GeV and the quartic is v2 = −m2

1/β1.
Similarly, the mass term of the heavy Higgses are

m2
HΦ†2Φ2 = m2

H

(
|H+|2 + 1

2 |η|
2 + 1

2 |H
0|2
)
, m2 ≡ mH . (5.7)

For simplicity, we neglect the quartic coupling of the heavy Higgs, that is β2 = 0.
Finally, the Yukawa terms are

LY = Y u
st q̄sΦ̃1ut + Y d

stq̄sΦ1dt + Y `
pr

¯̀
pΦ1er + Y

′,`
pr

¯̀
pΦ2er + Y

′,u
st q̄sΦ̃2ut + h.c. , (5.8)

where Y f
ij and Y

′,f
ij are the 3× 3 Yukawa matrices, Φ̃1,2 = iτ2Φ∗1,2, and d is the down-quark

RH singlet. Here we have already assumed that Φ2 only couples to RH up-quarks and
leptons, while Φ1 also couples to RH down-quarks. Finally, we take Y

′,u
ij = y′tδi3δj3 in the

up-quark mass basis and Y
′,`
ij = y′lδilδjl in the charged lepton mass basis, with y′t and y′l

real, not to introduce new sources of CP violation.
In terms of the doublets components and fermion mass eigenstates, the Yukawa La-

grangian reads

LY ⊃ (v + h)
∑
f

mf

v
f̄PRf +

(
η +H0
√

2

)[
y′tt̄PRt+ y′l l̄PRl

]
+H+ [y′tVtit̄PLdi + y′lν̄lPRl

]
+ h.c. ,

(5.9)

where the elements of the Φ1 Yukawa matrices are written in the fermion mass basis
using the tree-level matching condition as Y f

ii = mf

√
2/v, and νl denotes the l-flavored

neutrino field. With a small abuse of notation, now t and di represent the top-quark and
down-type quark (Dirac) fields in their mass basis, respectively, and Vij denote the CKM
matrix elements.
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Figure 7. One-loop diagrams appearing in the 2HDM matching to O1,`. In the full theory, the
operator insertion should be replaced by a heavy Higgs propagator, see appendix B.3 for details.

5.2 Phenomenology: full 2HDM vs SMEFT

Here we describe the effect of the 2HDM on the two physical observables of interest, the
muon anomalous magnetic moment and the signal strength of h → µ+µ− decay. In the
full 2HDM calculation, these contributions consist of unresummed but finite loop diagram
calculations. In order to compare them with the SMEFT result, we need to match the
full theory to SMEFT at the UV matching scale Λ. In the following we take Λ = mH

without loss of generality. The tree level exchanges of neutral and charged heavy Higgs
then generate the scalar four-fermion operator O4,` in eq. (2.3) with the Wilson coefficient

Ĉ4,` = y′ty
′
`

m2
H

. (5.10)

The latter is taken as the initial condition for the RGE in appendix A. The subsequent
running of the Wilson coefficients to the weak scale and matching to the low energy ob-
servables, as described in section 3, yields the desired result. The full 2HDM and SMEFT
results are shown in figure 8 and figure 9 for aµ and h→ µ+µ− respectively.

One can in principle improve the matching condition in eq. (5.10) by including one-
loop effects for the other coefficients as initial conditions for the RGE, e.g. generating Ĉ5,`
via box diagrams with one heavy Higgs and one gauge boson, or Ĉ1,` via a heavy Higgs
tadpole diagram with top quarks running in the loop. However, the effect of these is just
to reduce the Λ scale dependence of the matching away from Λ = mH . Importantly, at
one loop, they do not induce finite threshold effects as we have also checked explicitly.
Consequently we do not consider them in the following.

5.2.1 aµ

The additional (Φ2) Yukawa terms in eq. (5.9) will induce loop corrections to the lepton-
photon vertex. It is well-known that in the 2HDM the two-loop Barr-Zee contributions to
the anomalous magnetic moment generically dominate over one-loop effects [23, 24, 49].
The chirality flip required for a` namely suppresses the latter, so that the former have a
relative (M/m`)2 enhancement, where M = mt,mW is a heavy particle in the loop.

The complete one-and two-loop contributions to a` have been calculated for a generic
2HDM in ref. [24]. As an example, in figure 8 left we show the results for ` = µ, where the
cyan and blue lines represent the one-loop and two-loop results, respectively, as a function
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Figure 8. Left: total contribution to ∆aµ for different values of mH , with fixed couplings to top
and muon, compared to the preferred region by the muon anomalous magnetic moment, represented
by the gray and purple bands (see section 4.2 for details). The cyan line shows the correction at
one-loop order, while the blue full one includes the two-loop Barr-Zee diagrams. The blue dashed
line is obtained by using only leading logarithm terms, see appendix C. The red line instead shows
the SMEFT running and matching with eq. (5.10) as the initial condition and Λ = mH . Right:
total contribution for different values of the product y′ty′µ, at fixed mH = Λ = 10TeV.

of the heavy Higgs mass mH . The effect at two-loops is about one order of magnitude
larger than the one-loop result for the mass range scanned. Figure 8 right shows the same
comparison when we fix mH = 104 GeV and scan over the couplings.

In the mH � mt limit we expect the two-loop result to be dominated by logarithms
of the form ln

(
m2
t /m

2
H

)
. Explicitly, the loop functions in ref. [24] can be expanded to

keep only the leading terms in ω = m2
t /m

2
H , as shown in appendix C. The blue dashed

line in figure 8 shows this “leading logarithm” approximation as function of mH and y′ty′µ
respectively. This approximation follows well the complete result all the way down to the
weak scale.

The SMEFT result takes as input only the matching in eq. (5.10) as a function of the
heavy Higgs mass and its couplings to leptons and up-quarks at Λ = mH , RGE evolves it
down to the weak scale and finally matches it to the relevant observables. Remarkably, as
can be seen in figure 8 these ingredients are sufficient to reproduce the full theory result
with very good accuracy. The excellent agreement can be partly understood by the fact
that the full two-loop result is well approximated by its leading logarithms, which are the
only terms effectively contained in RGE evolution of the tree-level or one-loop matched
SMEFT. Only when mH . 1TeV, the analytic contributions start to dominate, which
cannot be reproduced by the RGE evolution of the effective theory.

5.2.2 h→ µ+µ−

In the β = α = 0 limit, there is no 2HDM tree level diagram entering in the Higgs decay.
At one-loop however, a heavy neutral Higgs tadpole contribution can avoid the lepton mass
chiral suppression and yield a potentially important effect, as shown in figure 7. The details
of such a calculation are given in appendix B.3 with the result

δc1` = Nc
y′`y
′
tv

2

4
√

2m2
H

y3
t

(4π)2 ln
(
m2
t

m2
H

)
. (5.11)
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Figure 9. Left: shift to h → µ+µ− decay for different values of mH , with fixed couplings to top
and muon, compared to the present and future collider sensitivity, represented by the black solid
(LHC), dashed (HL-LHC) and dotted (FCC) lines (see section 4.2 for details). Blue and red lines
represent the full 2HDM contribution in eq. (5.11) and the SMEFT running and matching, with
eq. (5.10) as initial condition, respectively. Right: total shift for different values of the product
y′ty
′
µ, with fixed mH = Λ = 10TeV.

In figure 9 we compare the shift to h→ µ+µ− decay obtained by generating δc1` in the full
2HDM (the blue line) and by matching the 2HDM to SMEFT at tree level, eq. (5.10), and
consequently running to the weak scale (the red line). Similarly to the anomalous magnetic
moment, the SMEFT result reproduces the full theory one to 5–10% accuracy.

6 Scalar LeptoQuarks

Here we briefly discuss a different UV completion via the introduction of LeptoQuarks
(LQ). These particles can turn quarks into leptons (and viceversa) and can then provide
a simple but compelling model. In particular, scalar LQ can generate four-fermion scalar
and tensor operators already at tree level and contribute to the muon anomalous moment
and Higgs decay to two muons.

A comprehensive analysis of all possible allowed LQ models can be found in ref. [26],
which we follow in the rest of this section. There is a total of 12 different LQ realizations
under the SM gauge group GSM = SU(3)C × SU(2)L × U(1)Y . We focus on the scalars
S1 = (3̄,1, 1/3) and R2 = (3,2, 7/6) as the chirality structure of their interactions to
fermions will lead to the operators in eq. (2.3).

The interaction Lagrangians are respectively

LS1 ⊃ yLL1,ij q̄
C,iaS1ε

ab`j,b + yRR1,ij ū
C,iS1ε

abej + h.c. , (6.1)
LR2 ⊃ −yRL2,ij ū

iRa2ε
ab`j,b + yLR2,ij ē

iRa ∗2 qj,a + h.c. , (6.2)

where we only kept the terms relevant for our discussion. Here i, j are generation indices,
while a, b are SU(2) indices. The superscripts of y indicate the chirality properties of the
LQ. In general, y are arbitrary complex matrices in the generation space.
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The tree-level exchange of LQ directly generates four-fermion operators, which can be
related to eq. (2.3) by Fierz transformations. The relevant Lagrangian is [26]

L ⊃ −4GF√
2

[
gLLij,ks

(
q̄iLq

j
R

)(
¯̀k
L`
s
R

)
+ hLLij,ks

(
q̄iLσµνq

j
R

)(
¯̀k
Lσ

µν`sR

)]
, (6.3)

where i, j, k, s are again generational indices. The two coefficients are easily related to the
Wilson coefficients defined in eq. (2.3). The matching conditions with the Lagrangians in
eqs. (6.1) and (6.2) depend on the scalar LQ we consider. For simplicity, we take the LQ
mass to be the same, mS1 = mR2 = mLQ. We have

S1 : gLLij,ks = −4hLLij,ks = v2

4m2
LQ

yRR1,js

(
yLL1

)∗
ik
,

R2 : gLLij,ks = 4hLLij,ks = − v2

4m2
LQ

yRL2,jk

(
yLR2

)∗
si
.

(6.4)

In the numerical analysis we are interested in the i = j = 3 and k = s = 2, that is in
top quarks and muons. To simplify the notation, we suppress these indices and use the
definition Y ≡ yRR1,32

(
yLL1

)∗
32

= yRL2,32

(
yLR2

)∗
32
. Notice that the only difference between the

two LQ in the low energy basis is the relative sign of the two coefficients. With this, the
tree level matching with the SMEFT operator reads trivially

Ĉ4,µ = ∓4Ĉ5,µ = −4GF√
2
gLL = v2GF√

2m2
LQ

Y , (6.5)

where the relative sign for Ĉ5,µ depends on the LQ as in eq. (6.4).
We can now use the latter as initial condition to perform the SMEFT running to the

weak scale. Results for the muon anomalous magnetic moment are shown as red and blue
dashed lines for S1 and R2 case respectively in the top plots of figure 10. The bottom plots
show instead the shift in the Higgs decay signal strength. These EFT results are compared
with the evaluations of δaµ and of the ratio Br(h→ µ+µ−)/BrSM(h→ µ+µ−) obtained in
ref. [21], shown in red and blue solid lines for S1 and R2 case respectively. Again, we see
that the tree-level matched SMEFT analysis is able to reproduce accurately the full theory
calculations.

Note that in this study we have omitted possible additional (quartic) couplings of
the LQ to the Higgs. By varying the size of these couplings, one can obtain significantly
different results, as already shown in ref. [21]. In SMEFT, these terms would induce genuine
new one-loop matching contributions to the SMEFT operator basis and as such their effects
cannot be reproduced with tree-level matching.

7 Conclusions

In this paper we examined New Physics effects in charged lepton anomalous magnetic mo-
ments and Higgs decays to charged lepton pairs within the SMEFT framework. As the
scale of NP is assumed to be well above the weak scale, we take into account the one-loop
improved RGE evolution and mixing of the relevant operators. Just three dimension six
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Figure 10. Top: shift to muon anomalous magnetic moment induced by LeptoQuarks for different
values of mLQ, with fixed couplings to muons and top quarks (left) and for different values of the
coupling Y , with fixed LQ mass mLQ = Λ = 104 GeV (right). The red and blue dashed lines show
the result of matching LQ models to SMEFT operators using eq. (6.5) as initial condition and
running to the weak scale for S1 and R2 case respectively. The red and blue solid lines are obtained
using the results in ref. [21]. Bottom: same for the shift to Higgs to two muons decay. The black
solid, dashed and dotted lines represent lower bounds on |κ2

µ − 1| from LHC, HL-LHC and FCC
respectively (see section 4.2 for details). Note that the solid lines overlap in these plots.

chirality flipping operators including a Higgs and SU(2)L gauge bosons are sufficient for
a tree-level analysis, while to form a closed set under the RGE we need to include four-
fermion scalar and tensor operators. These can provide sizable corrections through top
quark loops, avoiding typical chiral suppression from lepton masses. We run the SMEFT
operators to the weak scale and match them to low-energy observables describing Higgs
decay and anomalous magnetic moments. We derive the analytical formulae for dominant
matching contributions at one-loop, which significantly reduce the associated EW match-
ing scale dependence, and perform a detailed numerical analysis of δa` and h → `+`−

for each charged lepton, comparing several SMEFT benchmark scenarios to the current
experimental results and future sensitivity projections.

In the case of the electron, the SM predicted branching fraction of h→ e+e− cannot be
reached with existing LHC data nor with the expected statistics of the HL-LHC upgrade.
On the other hand, the existing discrepancy in ae can be addressed by the presence of a
scalar four-fermion operator generated at a scale Λ & 10TeV, which can induce the appro-
priate dipole operator and at the same time potentially impact h → e+e−, measurements
at the future planned FCC-ee experiments.
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In the case of the muon, the anomalous magnetic moment measurement currently offers
a much better opportunity to probe NP than the recent LHC measurement of Higgs decay
branching fraction to muon pairs. The scalar four-fermion operator can simultaneously
solve the current discrepancy in aµ and respect Higgs decay constraints, while requiring a
relatively low NP scale, Λ ∼ O(1–10)TeV. The HL-LHC upgrade will potentially be able to
probe the associated effects in h→ µ+µ− and thus differentiate between heavy NP scenarios
addressing the aµ discrepancy. However, should the aµ discrepancy be significantly reduced,
as indicated by the recent Lattice computation of the LO-HVP [9], the lower limit on the
associated NP scale would increase beyond Λ ∼ 10TeV, and the related effect in Higgs
decays could no longer be probed at any currently considered future experimental facility,
except possibly a dedicated muon collider.

In the case of the tau, the branching fraction of h→ τ+τ− is already precisely measured
at the LHC, agrees well with its SM predicted value, and thus severely constrains the size
of possible NP effects in aτ . On the other hand, the current direct experimental reach
for aτ is rather limited and still well above the SM predictions. Consequently, significant
improvements in aτ sensitivity are required to make it a promising direction for NP searches
at existing or currently planned experiments.

Going beyond the pure SMEFT analysis, we explore two examples of UV complete
models that generate scalar and tensor four-fermion operators. Firstly, we build a Two
Higgs Doublet Model in the “decoupling” limit, where one doublet works as the SM Higgs
and the other as a heavy scalar coupling only to leptons and quarks. We use known results
in the literature for one- and two-loop diagrams contributing to the anomalous magnetic
moment and compare these with the SMEFT matching and running procedure. We find
that the latter (which only involves tree-level calculations in the UV model) can reproduce
the full theory two-loop calculations to remarkable accuracy formH & 1TeV. In the process
we have clarified the role of higher order contributions to the matching of UV models to
SMEFT. Keeping the heavy Higgs couplings to top quarks and muons below O(1), we
also show how a heavy Higgs with mH . 10TeV can solve the current discrepancy, with
possibly the only observable effect at the (HL-)LHC appearing in h → µ+µ−. Secondly,
we introduce the scalar LeptoQuarks S1 and R2, which possess the right chiral structure
to generate at tree-level the operators in eq. (2.3). The SMEFT tree-level matching and
one-loop RGE running for this model is straightforward and again reproduces well results
obtained in the full theory, (see figure 10). The analysis shows how both LQ considered
can solve the discrepancy in aµ for masses mLQ . 50TeV and perturbative couplings. The
associated effect in the Higgs decays to muons is then expected to be close to the projected
sensitivity of the FCC. To summarize, the two UV model examples showcase the power of
employing SMEFT in phenomenological analyses of explicit NP models. The procedure of
matching and running is in principle doable with any other UV model and an appropriate
set of SMEFT operators, and allows to conveniently capture the dominant effects of higher
order contributions of heavy NP on low energy phenomenology.
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A RGE

Here we collect the one-loop RG equations from refs. [28–30] describing the evolution and
mixing of the operator basis in eqs. (2.2a)–(2.2c) and (2.3). We assume that all Yukawa
couplings are zero, except for the top-quark Yukawa. We define

Ċi,` ≡ 16π2µ
dCi,`
dµ

, (A.1)

where µ in this case is the running renormalization scale. The equations read

Ċ1,` =
[
−27

4 g
2
2 − 3

(
3Y 2

` + 3Y 2
e − 4Y`Ye

)
g2

1 + 3Ncy
2
t + 24λ

]
C1,` + 4Ncyt

(
y2
t − λ

)
C4,`

− 3
(
4g2

1g2Yh (Ye + Y`) + 3g3
2

)
C2,` − 6

(
4g3

1Y
2
h (Ye + Y`) + g2

2g1Yh
)
C3,` , (A.2)

Ċ2,` =
[
(3cF,2 − b0,2) g2

2 +
(
−3Y 2

e + 8YeY` − 3Y 2
`

)
g2

1 +Ncy
2
t

]
C2,` (A.3)

+ g1g2 (3Y` − Ye) C3,` − 2g2NcytC5,` ,

Ċ3,` =
[
−3cF,2g2

2 +
(
3Y 2

e + 4YeY` + 3Y 2
` − b0,1

)
g2

1 +Ncy
2
t

]
C3,` (A.4)

+ 4cF,2g1g2 (3Y` − Ye) C2,` + 4g1Ncyt (Yu + Yq) C5,` ,

Ċ4,` = −
[
6
(
Y 2
e + Ye (Yu − Yq) + YqYu

)
g2

1 + 3
(
Nc −

1
Nc

)
g2

3 + y2
t (2Nc + 1)

]
C4,` (A.5)

−
[
24 (Yq + Yu) (2Ye − Yq + Yu) g2

1 − 18g2
2

]
C5,` ,

Ċ5,` = g1 (Yq + Yu) ytC3,` −
3
2g2ytC2,` +

[
2
(
Y 2
e − YeYq + YeYu − 2Y 2

q + 5YqYu − 2Y 2
u

)
g2

1

− 3g2
2 +

(
Nc −

1
Nc

)
g2

3 + y2
t

]
C5,` + 1

8
[
−4 (Yq + Yu) (2Ye − Yq + Yu) g2

1 + 3g2
2

]
C4,` .

(A.6)

Here Yi are the hypercharges of the fermions, Nc = 3 is the number of colors and ng = 3 the
number of active generations. We also used the definitions cF,2 = 3/4, b0,1 = −1/6−20ng/9
and b0,2 = 43/6− 4ng/3.
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To form a closed set of equations under RG, we must include the running of the muon
Yukawa, the Higgs mass and quartic coupling. The equations are [31, 32]

ẏ` = y`

(3
4y

2
` + 3

2
(
y2
t + y2

`

)
− 9

8
(
g2

1 + g2
2

))
+m2

h

(
3Ĉ1,` −NcytĈ4,`

)
, (A.7)

λ̇ = 2
(
12λ2 + 2Ncy

2
t λ−Ncy

4
t +m2

hy`Ĉ1,`
)
, (A.8)

ṁh = mh

(
6λ+Ncy

2
t −

9
4g

2
2 −

3
4g

2
1

)
. (A.9)

B Details on one-loop diagram calculations in SMEFT

Here we present the details on the calculation of one-loop diagrams needed to perform
the matching of SMEFT to the low energy observables below the weak scale in eqs. (3.7)
and (3.11) as well as the full one-loop contribution to Higgs decay to two leptons in the
2HDM in eq. (5.11). The Feynman Rules for the EFT vertices have been obtained indepen-
dently by following ref. [50] and using FeynRules [51]. As we use dimensional regularization
in these calculations, we treat the terms including a γ5 considering the scheme convention
in ref. [33].

B.1 One-loop matching of O4,` to Q1,`

The operator Q1,` can be generated by O4,` by attaching one Higgs to the top loop, as
shown in figure 2 right. The external legs are leptons, with momenta p1 (incoming) and
p2 (outgoing), so the Higgs momentum is ph = p1 − p2. In the loop we only consider top
quarks, as only the chirality flipping term will survive and will give a term proportional to
the quark mass. The loop momenta are l and l′ = l − ph.

The Feynamn rule for the effective vertex is

FR4 = iĈ4,`δc3,c4P1,2P3,4 . (B.1)

In our case, 1, 2 are the two muons and 3, 4 are the two tops, both with Pi,j = PR =
(1 + γ5)/2. The indices c3, c4 run over the top colors. We can now use this simple
expression in the fermion loop trace.

The amplitude reads

M =
(
−i yt√

2

)
(iNcĈ4,`)v̄2

∫
ddl

(2π)dµ
2ε
[
Tr
(
i(/l +mt)i(/l

′ +mt)PR
(l2 −m2

t )(l′2 −m2
t )

)]
u1

=
√

2ytNcĈ4,`v̄2

∫ 1

0
dx

∫
ddk

(2π)dµ
2ε
[
k2 +m2

t

(k2 −∆)2

]
u1 .

(B.2)

We further simplify this expression by taking mh � mt, or equivalently zero external
momenta. Thus p2

h = 0 and ∆ = m2
t . The integral in dx is now trivial and the d-

dimensional integral gives

M =
√

2ytNcĈ4,`
im2

t

(4π)d/2 Γ
(

2− d

2

)( 1
m2
t

)2−d/2 [
1− d/2

1− d/2

]
Q1,` . (B.3)
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Expanding d→ 4− 2ε for ε→ 0 and taking care of the pole, we have

δc1,`(µw)|1-loop = ytNcĈ4,`
3m2

t

8
√

2π2

[
1
3 + ln

(
m2
t

µ2
w

)]
. (B.4)

The overall factor of 3 in the latter equation (and in the tree level matching) is absorbed
by renormalizing the lepton mass, giving the result eq. (3.7).

B.2 One-loop matching of O5,` to Q2,`

The four fermion operator O5,` generates at one loop the dipole operator Q2,`. The diagram
is represented in figure 2 left, where a photon attaches to the quark in the loop. We use
the same momentum convention as before, with the replacement q = ph for the photon
momentum. The Feynman rule reads

FR5 = i

2 Ĉ5,`δc3,c4 (γµγνP1,2γµγνP3,4 − γµγνP3,4γνγµP1,2) , (B.5)

where the indices are the same convention as in eq. (B.1). However, as shown in ref. [33]
(see their section 4.2), we need to be careful to drop any linear term in ε.

With these ingredients we can write the amplitude in dimensional regularization as

M= iNcQteĈ5,`ū2

∫
ddl

(2π)dµ
2ε i

2γµγν

[
Tr
(
i(/l+mt)/ε(q)i(/l

′+mt)γνγµPR
(l2−m2

t )(l′2−m2
t )

)
−Tr(µ↔ ν)

]
u1

=−NcQteĈ5,`ū2

∫ 1

0
dx

∫
ddk

(2π)dµ
2ε
[

4mt/q/ε(q)
(k2−∆)2

]
u1 , (B.6)

where we defined ui ≡ u(pi). Nc = 3 is the number of colors and Qt = 2/3 is the top-quark
electric charge. In the last step we used the decomposition in Feynman parameters and
defined k = l−(1−x)q and ∆ = m2−q2x(x−1). Given the symmetry of the d-dimensional
integral, terms with odd powers of k vanish, thus the only piece remaining from the trace
is the one proportional to /q/ε. The integrals can be solved and we get

M = −4iNcmtQteĈ5,`
(4π)2 ū2/q/εu1

(
1
ε̂
− ln

(
m2
t

µ2

))
. (B.7)

In the previous equation we took the q2 = 0 condition, so that ∆ = m2
t and the integration

in dx is trivial.
The /q/ε term can be manipulated to get the expression σµνFµν . Indeed one can write

/q/ε = γµγνq
µεν = 2iσµν + 2ηµν

2
qµεν − qνεµ

2 = −1
2σµνF

µν → −m`

2e Q2,` , (B.8)

where we used the commutator and anticommutator of γ matrices, the antisymmetry of
the tensor qµεν and the product q · ε(q) = 0 of photon momentum with its polarization
vector. Also iqµ = −∂µ.

The UV pole 1/ε̂ can be canceled by an appropriate counterterm, so that the contri-
bution to the matching at the weak scale is

δc2,`(µw)|1-loop = NcQtĈ5,`(µw)mtm`

4π2 ln
(
m2
t

µ2
w

)
. (B.9)
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B.3 2HDM contribution to h→ `+`− decay

In the 2HDM, shifts to the Higgs decay widths to leptons can be generated at one loop
via mixing of the SM Higgs with the neutral heavy Higgses. The calculation is easier
by considering instead the one-loop matching to SMEFT, see figure 7, with the matching
condition in eq. (5.10). The pseudo-scalar Higgs contribution vanishes, while the charged
Higgs can only enter at two-loop level. The lepton momenta are p1 and p2, while the
external Higgs momenta are k1, k2 and k3. Thus the four momenta in the loop are l,
l1 = l + k1, l2 = l + k1 + k2 and l3 = l + k1 + k2 + k3. There are 6 equal diagrams for this
process. The total amplitude then reads

M= 6Nc

(
−i yt√

2

)3 iy′`y
′
t

2m2
H

v̄2

∫
ddl

(2π)dµ
2ε
[
Tr
(
i(/l+mt)i(/l1+mt)i(/l2+mt)i(/l3+mt)PR

(l2−m2
t )(l21−m2

t )(l22−m2
t )(l23−m2

t )

)]
u1

=−3Ncy
3
t

y′`y
′
t

2
√

2m2
H

v̄2

∫ 1

0
dx

∫
ddk

(2π)dµ
2ε
[
k4+6k2m2

t +m4
t

(k2−m2
t )4

]
u1 . (B.10)

where we have already taken zero external momenta. The integral in ddk is solved to

M=−3Ncy
′
`y
′
t

m2
H

iy3
t

(4π)
d
2 Γ(4)

( 1
m2
t

)2− d2
[
d(d+2)

4 Γ
(

2− d2

)
−3dΓ

(
3− d2

)
+Γ

(
4− d2

)]
O1,`

= 3Ncy
3
t

16π2
iy′`y

′
t

m2
H

[
ln
(
m2
t

µ2

)
− 8

3

]
O1,` . (B.11)

In these last equations, a factor of 2
√

2 has been re-absorbed into the operator definition
of O1,`, while the overall factor of 3 is absorbed by lepton mass renormalization as in ap-
pendix B.1. In the full 2HDM, the divergence in eq. (B.11) is absorbed by the counterterm
of the quartic Hhhh vertex, which we set to zero at the heavy Higgs mass scale (µ = mH).
From here (and using eq. (3.7)) we can read off the expression for δc1,` in eq. (5.11).
Conversely, when combined with eq. (5.10) the logarithmic term on the SMEFT side (i.e.
log(µ2/m2

H) with µ → Λ) precisely matches the relevant C4,` RG coefficient in eq. (A.2)
and thus helps reduce the matching scale dependency away from Λ = mH .

C Power expansion of two-loop Bar-Zee diagrams

Here we report the power expansion of the dominant terms in the Barr-Zee two-loop results
for δaµ within 2HDM presented in ref. [24], which approximate well the full analytic results.
Using the same notation as the reference, we have

F1(ω) ' ω

6
(
−12− π2 − 6 logω − 3 log2 ω

)
,

F̃1(ω) ' ω

6
(
π2 + 3 log2 ω

)
,

(C.1)
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for the dominant neutral Higgs diagrams, and∫ 1

0
dx (xQt+(1−x)Qb)x(1−x)G(ω,0)' 1

36
(
−87−16π2−78 logω−24 log2ω

)
+ ω

9
(
21+8π2−3 logω+12 log2ω

)
,

(C.2)

for the dominant charged Higgs diagram. Here Qb = −1/3 is the bottom quark electric
charge and we neglected terms proportional to m2

b , i.e. the bottom mass. The value of δaµ
obtained with this approximation is shown in figure 8.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J.S. Schwinger, On Quantum electrodynamics and the magnetic moment of the electron,
Phys. Rev. 73 (1948) 416 [INSPIRE].

[2] Muon g − 2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment
Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

[3] Muon g − 2 collaboration, Muon (g − 2) Technical Design Report, arXiv:1501.06858
[INSPIRE].

[4] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model,
Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].

[5] F. Jegerlehner and A. Nyffeler, The Muon g − 2, Phys. Rept. 477 (2009) 1
[arXiv:0902.3360] [INSPIRE].

[6] A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(M2
Z): a new data-based

analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].

[7] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum
polarisation contributions to the muon anomalous magnetic moment and to α(m2

Z), Eur.
Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].

[8] A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(M2
Z), and the

hyperfine splitting of muonium, Phys. Rev. D 101 (2020) 014029 [arXiv:1911.00367]
[INSPIRE].

[9] S. Borsányi et al., Leading hadronic contribution to the muon magnetic moment from lattice
QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].

[10] T. Aoyama, T. Kinoshita and M. Nio, Revised and Improved Value of the QED Tenth-Order
Electron Anomalous Magnetic Moment, Phys. Rev. D 97 (2018) 036001 [arXiv:1712.06060]
[INSPIRE].

[11] R.H. Parker, C. Yu, W. Zhong, B. Estey and H. Müller, Measurement of the fine-structure
constant as a test of the Standard Model, Science 360 (2018) 191 [arXiv:1812.04130]
[INSPIRE].

[12] L. Morel, Z. Yao, P. Cladé and S. Guellati-Khélifa, Determination of the fine-structure
constant with an accuracy of 81 parts per trillion, Nature 588 (2020) 61 [INSPIRE].

– 25 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRev.73.416
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C73%2C416%22
https://doi.org/10.1103/PhysRevD.73.072003
https://arxiv.org/abs/hep-ex/0602035
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F0602035
https://arxiv.org/abs/1501.06858
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.06858
https://doi.org/10.1016/j.physrep.2020.07.006
https://arxiv.org/abs/2006.04822
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04822
https://doi.org/10.1016/j.physrep.2009.04.003
https://arxiv.org/abs/0902.3360
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.3360
https://doi.org/10.1103/PhysRevD.97.114025
https://arxiv.org/abs/1802.02995
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.02995
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://arxiv.org/abs/1908.00921
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.00921
https://doi.org/10.1103/PhysRevD.101.014029
https://arxiv.org/abs/1911.00367
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.00367
https://doi.org/10.1038/s41586-021-03418-1
https://arxiv.org/abs/2002.12347
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.12347
https://doi.org/10.1103/PhysRevD.97.036001
https://arxiv.org/abs/1712.06060
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.06060
https://doi.org/10.1126/science.aap7706
https://arxiv.org/abs/1812.04130
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.04130
https://doi.org/10.1038/s41586-020-2964-7
https://inspirehep.net/search?p=find+J%20%22Nature%2C588%2C61%22


J
H
E
P
0
6
(
2
0
2
1
)
0
9
9

[13] ATLAS collaboration, A search for the dimuon decay of the Standard Model Higgs boson
with the ATLAS detector, Phys. Lett. B 812 (2021) 135980 [arXiv:2007.07830] [INSPIRE].

[14] CMS collaboration, Evidence for Higgs boson decay to a pair of muons, JHEP 01 (2021) 148
[arXiv:2009.04363] [INSPIRE].

[15] K. Kowalska and E.M. Sessolo, Minimal models for g − 2 and dark matter confront
asymptotic safety, arXiv:2012.15200 [INSPIRE].

[16] H.-B. Zhang, Z.-M. Niu, K.-S. Sun, S.-M. Zhao, Y.-L. Wang and T.-F. Feng, 125GeV Higgs
boson decay to a pair of muons in the µνSSM, arXiv:2011.04281 [INSPIRE].

[17] F. Feruglio, P. Paradisi and O. Sumensari, Implications of scalar and tensor explanations of
RD(∗) , JHEP 11 (2018) 191 [arXiv:1806.10155] [INSPIRE].

[18] J. Aebischer, W. Dekens, E.E. Jenkins, A.V. Manohar, D. Sengupta and P. Stoffer, Effective
field theory interpretation of lepton magnetic and electric dipole moments,
arXiv:2102.08954 [INSPIRE].

[19] I. Doršner, S. Fajfer and O. Sumensari, Muon g − 2 and scalar leptoquark mixing, JHEP 06
(2020) 089 [arXiv:1910.03877] [INSPIRE].

[20] A. Crivellin, C. Greub, D. Müller and F. Saturnino, Scalar Leptoquarks in Leptonic
Processes, JHEP 02 (2021) 182 [arXiv:2010.06593] [INSPIRE].

[21] A. Crivellin, D. Mueller and F. Saturnino, Correlating h→ µ+µ− to the Anomalous
Magnetic Moment of the Muon via Leptoquarks, arXiv:2008.02643 [INSPIRE].

[22] K.S. Babu, P.S.B. Dev, S. Jana and A. Thapa, Unified framework for B-anomalies, muon
g − 2 and neutrino masses, JHEP 03 (2021) 179 [arXiv:2009.01771] [INSPIRE].

[23] F.J. Botella, F. Cornet-Gomez and M. Nebot, Electron and muon g − 2 anomalies in general
flavour conserving two Higgs doublets models, Phys. Rev. D 102 (2020) 035023
[arXiv:2006.01934] [INSPIRE].

[24] A. Pich and P. Tuzon, Yukawa Alignment in the Two-Higgs-Doublet Model, Phys. Rev. D 80
(2009) 091702 [arXiv:0908.1554] [INSPIRE].

[25] A. Celis, V. Ilisie and A. Pich, Towards a general analysis of LHC data within
two-Higgs-doublet models, JHEP 12 (2013) 095 [arXiv:1310.7941] [INSPIRE].

[26] I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in
precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1
[arXiv:1603.04993] [INSPIRE].

[27] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the
Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

[28] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard
Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087
[arXiv:1308.2627] [INSPIRE].

[29] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard
Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035
[arXiv:1310.4838] [INSPIRE].

[30] R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of
the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and
Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

– 26 –

https://doi.org/10.1016/j.physletb.2020.135980
https://arxiv.org/abs/2007.07830
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.07830
https://doi.org/10.1007/JHEP01(2021)148
https://arxiv.org/abs/2009.04363
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.04363
https://arxiv.org/abs/2012.15200
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.15200
https://arxiv.org/abs/2011.04281
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.04281
https://doi.org/10.1007/JHEP11(2018)191
https://arxiv.org/abs/1806.10155
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.10155
https://arxiv.org/abs/2102.08954
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.08954
https://doi.org/10.1007/JHEP06(2020)089
https://doi.org/10.1007/JHEP06(2020)089
https://arxiv.org/abs/1910.03877
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.03877
https://doi.org/10.1007/JHEP02(2021)182
https://arxiv.org/abs/2010.06593
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.06593
https://arxiv.org/abs/2008.02643
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.02643
https://doi.org/10.1007/JHEP03(2021)179
https://arxiv.org/abs/2009.01771
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.01771
https://doi.org/10.1103/PhysRevD.102.035023
https://arxiv.org/abs/2006.01934
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.01934
https://doi.org/10.1103/PhysRevD.80.091702
https://doi.org/10.1103/PhysRevD.80.091702
https://arxiv.org/abs/0908.1554
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0908.1554
https://doi.org/10.1007/JHEP12(2013)095
https://arxiv.org/abs/1310.7941
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.7941
https://doi.org/10.1016/j.physrep.2016.06.001
https://arxiv.org/abs/1603.04993
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C641%2C1%22
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.4884
https://doi.org/10.1007/JHEP10(2013)087
https://arxiv.org/abs/1308.2627
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.2627
https://doi.org/10.1007/JHEP01(2014)035
https://arxiv.org/abs/1310.4838
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.4838
https://doi.org/10.1007/JHEP04(2014)159
https://arxiv.org/abs/1312.2014
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.2014


J
H
E
P
0
6
(
2
0
2
1
)
0
9
9

[31] L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge Coupling β-functions in the Standard
Model to Three Loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].

[32] K.G. Chetyrkin and M.F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs
self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

[33] W. Dekens and P. Stoffer, Low-energy effective field theory below the electroweak scale:
matching at one loop, JHEP 10 (2019) 197 [arXiv:1908.05295] [INSPIRE].

[34] CMS collaboration, Search for a standard model-like Higgs boson in the µ+µ− and e+e−

decay channels at the LHC, Phys. Lett. B 744 (2015) 184 [arXiv:1410.6679] [INSPIRE].

[35] ATLAS collaboration, Search for the Higgs boson decays H → ee and H → eµ in pp
collisions at

√
s = 13TeV with the ATLAS detector, Phys. Lett. B 801 (2020) 135148

[arXiv:1909.10235] [INSPIRE].

[36] A. Blondel and P. Janot, Circular and Linear e+e− Colliders: Another Story of
Complementarity, arXiv:1912.11871 [INSPIRE].

[37] Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018)
030001 [INSPIRE].

[38] Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment
to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

[39] M. Cepeda et al., Report from Working Group 2: Higgs Physics at the HL-LHC and
HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 221 [arXiv:1902.00134] [INSPIRE].

[40] M. Mangano et al., FCC Physics Opportunities: Future Circular Collider Conceptual Design
Report Volume 1. Future Circular Collider, CERN-ACC-2018-0056 (2018).

[41] R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, A No-Lose Theorem for Discovering the
New Physics of (g − 2)µ at Muon Colliders, arXiv:2101.10334 [INSPIRE].

[42] D. Buttazzo and P. Paradisi, Probing the muon g − 2 anomaly at a Muon Collider,
arXiv:2012.02769 [INSPIRE].

[43] W. Yin and M. Yamaguchi, Muon g − 2 at multi-TeV muon collider, arXiv:2012.03928
[INSPIRE].

[44] I. Boyko and V. Zhuravlov, Study of Tau-pair Production in Photon-Photon Collisions at
LEP and Limits on the Anomalous Electromagnetic Moments of the Tau Lepton,
DELPHI-2004-022 CONF 697 (2004).

[45] A.A. Billur and M. Koksal, Probe of the electromagnetic moments of the tau lepton in
gamma-gamma collisions at the CLIC, Phys. Rev. D 89 (2014) 037301 [arXiv:1306.5620]
[INSPIRE].

[46] ATLAS collaboration, Cross-section measurements of the Higgs boson decaying into a pair
of τ -leptons in proton-proton collisions at

√
s = 13TeV with the ATLAS detector, Phys. Rev.

D 99 (2019) 072001 [arXiv:1811.08856] [INSPIRE].

[47] CMS collaboration, Observation of the Higgs boson decay to a pair of τ leptons with the
CMS detector, Phys. Lett. B 779 (2018) 283 [arXiv:1708.00373] [INSPIRE].

[48] G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and
phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034]
[INSPIRE].

– 27 –

https://doi.org/10.1103/PhysRevLett.108.151602
https://arxiv.org/abs/1201.5868
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1201.5868
https://doi.org/10.1007/JHEP06(2012)033
https://arxiv.org/abs/1205.2892
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.2892
https://doi.org/10.1007/JHEP10(2019)197
https://arxiv.org/abs/1908.05295
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.05295
https://doi.org/10.1016/j.physletb.2015.03.048
https://arxiv.org/abs/1410.6679
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.6679
https://doi.org/10.1016/j.physletb.2019.135148
https://arxiv.org/abs/1909.10235
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.10235
https://arxiv.org/abs/1912.11871
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.11871
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD98%2C030001%22
https://doi.org/10.1103/PhysRevLett.126.141801
https://arxiv.org/abs/2104.03281
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C126%2C141801%22
https://doi.org/10.23731/CYRM-2019-007.221
https://arxiv.org/abs/1902.00134
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.00134
https://cds.cern.ch/record/2651294
https://arxiv.org/abs/2101.10334
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.10334
https://arxiv.org/abs/2012.02769
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.02769
https://arxiv.org/abs/2012.03928
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.03928
https://doi.org/10.1103/PhysRevD.89.037301
https://arxiv.org/abs/1306.5620
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.5620
https://doi.org/10.1103/PhysRevD.99.072001
https://doi.org/10.1103/PhysRevD.99.072001
https://arxiv.org/abs/1811.08856
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.08856
https://doi.org/10.1016/j.physletb.2018.02.004
https://arxiv.org/abs/1708.00373
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB779%2C283%22
https://doi.org/10.1016/j.physrep.2012.02.002
https://arxiv.org/abs/1106.0034
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C516%2C1%22


J
H
E
P
0
6
(
2
0
2
1
)
0
9
9

[49] V. Ilisie, New Barr-Zee contributions to (g − 2)µ in two-Higgs-doublet models, JHEP 04
(2015) 077 [arXiv:1502.04199] [INSPIRE].

[50] M. Paraskevas, Dirac and Majorana Feynman Rules with four-fermions, arXiv:1802.02657
[INSPIRE].

[51] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A
complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250
[arXiv:1310.1921] [INSPIRE].

– 28 –

https://doi.org/10.1007/JHEP04(2015)077
https://doi.org/10.1007/JHEP04(2015)077
https://arxiv.org/abs/1502.04199
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.04199
https://arxiv.org/abs/1802.02657
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.02657
https://doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
https://inspirehep.net/search?p=find+J%20%22Comput.Phys.Commun.%2C185%2C2250%22

	Introduction
	SMEFT operator basis
	Operator matching to observables below EWSB
	Higgs decay to two leptons
	Anomalous magnetic moment

	Phenomenology
	Electron
	Muon
	Tauon

	Flavor specific 2HDM
	Model description
	Phenomenology: full 2HDM vs SMEFT
	a(mu)
	h –> mu**(+) mu**(-)


	Scalar LeptoQuarks
	Conclusions
	RGE
	Details on one-loop diagram calculations in SMEFT
	One-loop matching of O(4,l) to Q(1,l)
	One-loop matching of O(5,l) to Q(2,l)
	2HDM contribution to h –> l**(+) l**(-) decay

	Power expansion of two-loop Bar-Zee diagrams

