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Abstract: Traversing a continuous phase transition at a finite rate leads to the breakdown
of adiabatic dynamics and the formation of topological defects, as predicted by the cele-
brated Kibble-Zurek mechanism (KZM). We investigate universal signatures beyond the
KZM, by characterizing the distribution of vortices generated in a thermal quench leading
to the formation of a holographic superconductor. The full counting statistics of vortices
is described by a binomial distribution, in which the mean value is dictated by the KZM
and higher-order cumulants share the universal power-law scaling with the quench time.
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Extreme events associated with large fluctuations no longer exhibit a power-law behavior
with the quench time and are characterized by a universal form of the Weibull distribution
for different quench rates.
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1 Introduction

The dynamics across a continuous phase transition is a paradigmatic scenario of sponta-
neous symmetry breaking in which adiabaticity inextricably breaks down. In any finite
time scale, a quench from the high-symmetry phase to the lower-symmetry phase is gov-
erned by critical slowing down and the effective freezing of the system. Facing a degenerate
manifold, causally separated regions of the system make disparate choices of the broken
symmetry that result in the formation of topological defects [1, 2]. The characterization
of the latter depends on the topology of the vacuum manifold. In the formation of su-
perconductors and superfluids, entailing U(1) symmetry breaking, vortices with quantized
flux appear [3, 4]. Spontaneously formation of vortices was observed in experiments with
neutron-irradiated superfluid Helium [5, 6].
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The mean number of topological defects generated in the course of a phase transition
is predicted by the KZM to follow a universal power law with the rate at which the phase
transition is crossed. The verification of this prediction has been the subject of a long-
time quest [7]. The validity of the KZM is not only supported by theoretical models and
numerical simulations, but has been established in a variety of experimental platforms
ranging from colloids [8] to quantum simulators [9, 10].

In strongly coupled systems, the validity of KZM cannot be taken for granted. A
natural framework to account for strong coupling is provided by holography [11, 12]. In
this context, the spontaneous current formation in a superconducting ring [13–15] is well
described by the KZM prediction [2, 16]. However, deviations from KZM have been pre-
dicted and the power-law scaling of the mean number of topological defects is expected to
be modified by logarithmic terms of the quench rate [17]. In the laboratory, pioneering
experiments on the spontaneous vortex formation in the light of the KZM were restricted to
the weakly interacting regime, accessible with Bose-Einstein condensates [18–20] and fer-
roelectrics [21]. Remarkably, recent progress has allowed probing the strongly-interacting
regime using a unitary Fermi gas [22]. The measured density of defects was found to be
compatible with the KZM scaling laws as in the weakly interacting case. Theoretical [17]
and experimental [22] results on vortex formation at strong coupling are thus in conflict.

The predictive power of the KZM is restricted to the average number of topological de-
fects. Spatial correlations between topological defects have been discussed in the framework
of the Halperin-Liu-Mazenko theory [23, 24]. Fluctuations of the number of topological
defects have recently been explored in spin chains [10, 25, 26] and one-dimensional φ4 the-
ory [27]. These studies have unveiled signatures of universality in the full counting statistics
of topological defects that lie beyond the scope of the KZM.

In this work, we explore the statistics of vortices in a newborn holographic supercon-
ductor in (2+1) dimensions and show that the full counting statistics of vortices is universal.
The mean density is shown to follow the KZM power-law prediction. Fluctuations beyond
the mean are probed by low-order cumulants of the vortex number distribution, which are
found to exhibit a universal power-law scaling with the quench time. The vortex number
distribution is well described by a binomial distribution restricted to even outcomes by the
topology of the system, making it possible to probe rare events far away from equilibrium.
Large deviations away from the mean vortex number no longer exhibit a power-law behavior
and the corresponding extreme value statistics is characterized by a Weibull distribution.

2 Formation of a newborn holographic superconductor

We simulate the superconducting transition from a normal metal to a holographic type-
II superconductor in two spatial dimensions by implementing a thermal quench in a finite
time τQ. This results in the spontaneous formation of vortices that are pinned. The system
is described making use of the gauge-gravity duality and numerical simulations involving
a (3+1) dimensional gravity. In this setup, a thermal quench can be effectively simulated
by changing the charge density in the boundary of the black hole, see section 3 [28]. The
phase transition is continuous and of second-order. Critical slowing down in the proximity
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of the critical point leads to vortex formation. To characterize the resulting vortex number
distribution, we consider a homogeneous system, free from external potentials that can
alter the KZM scaling [29].

According to the KZM, traversing the phase transition at finite rate leads to the
formation of domains of characteristic length scale ξ̂ = ξ0(τQ/τ0)

ν
1+zν , where ν and z are

the correlation-length and dynamical critical exponents of the continuous phase transition,
and ξ0 and τ0 are microscopic constants. Within such domains, the superconductor phase
is chosen coherently. According to the geodesic rule [3], when multiple domains merge at a
point, there is a chance that the quantized circulation of the superconductor phase φ around
that point is non-zero and a multiple 2π. This configuration can lead to the formation of
a vortex. Typical values of its vorticity V = 1

2π
∮
dγ∇φ ∈ Z are V = ±1. The number of

vortices induced by the thermal quench is thus proportional to 〈n〉 ∝ A/ξ̂2 where A is the
area of the superconductor. As a result, the mean vortex number scales with the quench
rate following the universal power law 〈n〉 ∝ (τ0/τQ)

2ν
1+zν , which is the key prediction of

the KZM. This universal scaling quantifies the intuition that fast quenches result in a high
number of vortices, the number of which decreases as the rate of the transition is reduced.
As the transition is thermal, the number of vortices is not deterministic but it constitutes
a stochastic variable described by a probability distribution.

Characterizing the full counting statistics of spontaneously formed vortices across the
phase transition is our central goal. As we shall see, fluctuations away from the mean value
are universal. Specifically, we show that cumulants of the distribution share with the mean
value a universal power-law behavior in the limit of slow quenches, required for scaling
theory to hold. In addition, knowledge of the exact vortex number distribution allows us
to characterize extreme events associated with large deviations from the mean value.

3 Methods

3.1 Holographic setup

We work in the black brane background in Eddington-Finkelstein coordinates

ds2 = L2

z2 (−f(z)dt2 − 2dtdz + dx2 + dy2), (3.1)

with f = 1 − (z/zh)3. The horizon is zh while z = 0 is the boundary in which the field
theory lives. In the probe limit we adopt the Abelian-Higgs Lagrangian density as

L = −1
4FµνF

µν − |DΨ|2 −m2|Ψ|2, (3.2)

where Dµ = ∇µ − iAµ is the covariant derivative, Aµ is the U(1) gauge field, Fµν =
∂µAν − ∂νAµ is the gauge field strength and Ψ is the scalar field. We take the ansatz
as Ψ = Ψ(t, z, x, y), At = At(t, z, x, y), Ax = Ax(t, z, x, y), Ay = Ay(t, z, x, y) and Az =
0. The equations of motions (EoMs) of these fields can be obtained readily from the
Lagrangian density. The explicit forms of the EoMs can be found in the appendix A. Near
the boundary z → 0 the expansion of the fields are (we have set L = 1 and m2 = −2),
Aµ ∼ aµ + bµz +O(z2), Ψ = Ψ0z + Ψ1z

2 +O(z3).
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From gauge-gravity duality, the coefficients at, ai (i = x, y) and Ψ0 can be interpreted
as chemical potential, gauge field velocities, and scalar operator source in the boundary,
respectively Their corresponding conjugate variables are achieved by varying the renormal-
ized on-shell action Sren with respect to these coefficients. To get a finite Sren, some counter
terms should be added. According to holographic renormalization [30], the counter terms
of the scalar field is Sct =

∫
d3x
√
−γΨ∗Ψ, where γ is the reduced metric on the z → 0

boundary. We have imposed Neumann boundary conditions for gauge fields as z → 0 in
order to get dynamical gauge fields in the boundary [31, 32]. Therefore, a surface term
Ssurf =

∫
d3x
√
−γnµFµνAν , where nµ is the normal vector perpendicular to the boundary,

should also be added to have a well-defined variation. Therefore, the expectation value
of the order parameter on the boundary, 〈O〉 = Ψ1, can be obtained by varying the finite
renormalized action Sren with respect to the source term Ψ0. The conservation equation
of the charge density and current on the boundary is ∂tbt + ∂iJ

i = 0, where bt = −ρ with
ρ the charge density, and the current along i-direction is J i = −bi − (∂iat − ∂tai).

In order to have a spontaneously symmetry breaking of the order parameter, we set
Ψ0 = 0 in the z → 0 boundary. Besides, the Neumann boundary conditions for gauge fields
can be imposed from the above conservation equations. Along spatial (x, y)-directions we
impose the periodic boundary conditions for all the fields. At the horizon we set the time
component of gauge fields as At(zh) = 0, and the regular finite boundary conditions for
other fields.

To drive the system out of equilibrium, we quench the charge density ρ on the bound-
ary while fixing the temperature of the black hole, which was commonly implemented in
holographic superconductor settings [28]. The mass dimension of black hole temperature
T is one, while the mass dimension of the charge density ρ is two. Thus, T/√ρ is a di-
mensionless quantity. Therefore, decreasing the temperature is equivalent to increasing the
charge density. In order to have a linear quench of temperature across the critical point,
one can quench the charge density ρ as ρ(t) = ρc (1− t/τQ)−2 with critical charge density
as ρc ≈ 4.06.

3.2 Numerical scheme

Before quench, we thermalize the system by adding random seeds into the system in the
normal state. The random seeds of the fields are added in the bulk by satisfying the
statistical distributions 〈s(t, xi)〉 = 0 and 〈s(t, xi)s(t′, xj)〉 = hδ(t − t′)δ(xi − xj), with
the amplitude h ≈ 10−3. In principle, h cannot be too large since the seeds serve as
fluctuations to thermalize the system. The system is quenched linearly from Ti = 1.4Tc to
Tf = 0.8Tc with Tc the critical temperature. We evolve the system by using the fourth-
order Runge-Kutta method with a time step ∆t = 0.02. In the radial direction z, we
use the Chebyshev pseudo-spectral method with 20 grids. Since along (x, y)-directions
periodic boundary conditions are imposed, we adopt the Fourier decomposition in the
(x, y)-directions. The size along (x, y) is 50 × 50, and the number of grids are 201 × 201.
Filtering methods are implemented following the rule that the uppermost one-third Fourier
modes are removed [33]. We count the number of vortices as the average order parameter
just arrived at its equilibrium value. Due to the large dimensions of the system (3+1-
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Figure 1. (Top) Phase of the superconductor after the thermal quench. After the non-equilibrium
dynamics, the phase in the top panel will evolve into the bottom panel (phase ordering). Now it is
hard to see the “domain structure” like the bottom panel. There will be a branch cut connecting
two defects if the phase geometry is a closed space. (Bottom) Phase of the order parameter near
the critical point. The domain structures of the phase space are shown. Among them, there are
singular points (topological defects) where vortices will eventually form.

dim), the time cost in large quench time is considerable. For instance of τQ = 4000, each
trajectory of the simulation will cost more than two hours. Therefore, collecting statistics
with 1000 trajectories required about three months of running time. Due to the large
consumption of time, we have limited the number of trajectories for each quench time
to 1000.

4 Vortex counting statistics

We consider the formation of a newborn superconductor in two spatial dimensions with
periodic boundary conditions in the (x, y) spatial directions. The topology of the sys-
tem is that of a torus T2 with zero Euler characteristics χ(T2) = 0. As a result of the
Poincaré-Hopf theorem [34], the total vorticity of the superconductor equals χ and vanishes
identically. By contrast, in the case of open boundary conditions, the vortex number would
be unrestricted by the topology of the system and could take both even and odd values.
The regime of parameters studied is such that no vortex with vorticity other than V = ±1
is observed, and the number of vortices and anti-vortices is thus balanced, see figure 1. We
focus on the total number of vortices, regardless of their vorticity. By numerically solv-
ing the stochastic dynamics in the holographic setting, an ensemble of realizations is used
to collect statistics and build a histogram for different values of the vortex number. For
increasingly fast quenches (τQ = 4000, 2000, 1000 and 20) the distribution shifts to higher
mean values, while simultaneously broadening. By contrast, at the onset of adiabatic dy-
namics the distribution narrows down and becomes increasingly asymmetric, as the fully

– 5 –



J
H
E
P
0
6
(
2
0
2
1
)
0
6
1

Figure 2. Histogram for the vortex-number probability distribution for various quench times.
The distribution is asymmetric at the onset of adiabatic dynamics and becomes symmetric for
faster thermal quenches that increase the average vortex number. Numerical simulations are well
described by the EP distribution in eq. (4.2) with the same average vortex number 〈n〉. The size
of the system is 50× 50 and the number of trajectories for each τQ is 1000.

adiabatic regime with n = 0 acquires a significant probability P (0); see figure 2. The vortex
number statistics is found to be precisely described by a binomial distribution restricted to
even outcomes, which we refer to as an even-binomial (EB) distribution in the following.
The later results from assuming that the probability for vortex formation at the merging
point between adjacent domains occurs with probability p, while no vortex is formed at
such location with probability (1 − p). With only two possible outcomes this process can
be described as a single Bernoulli trial. The total number of vortices is the result of a
number of trials N ∼ A/ξ̂2. We next assume that vortex formation at different locations
unfolds as a result of uncorrelated events that can be described by N independently and
identically distributed (iid) random variables. The probability to observe a given vortex
number n is thus

PEB(n) = 1
A

(
N

n

)
pn(1− p)N−n, (4.1)

for any even integer n ≥ 0, with A = 1+(1−2p)N
2 as normalization constant. Signatures of

universal critical dynamics are encoded in the estimate of the number of Bernoulli trials
for vortex formation N , while the nature of the vortex number fluctuations is determined
by the stochastic model which determines the shape of the distribution. For small values
of p, Le Cam’s theorem [35] guarantees that the statistics becomes even-Poissonian (EP)

PEP(n) = sech(λ)λ
n

n! , (4.2)

where λ = Np is a parameter and the mean reads 〈n〉 = λ tanh(λ). Additional supporting
evidence of the excellent agreement between the P (n) values extracted from the histogram
and those predicted by the distribution (4.2) is provided in the appendix B for different
values of n.

To characterize universal signatures in the full counting statistics, we describe the scal-
ing of the low-order cumulants of the distribution as a function of the quench time. Given
the Fourier transform of the distribution P̃ (w) = E[eiwn], where w is variable conjugated to
n, cumulants κp are defined through the expansion log P̃ (w) =

∑∞
p=1 κp(iw)p/p!. The first
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Figure 3. Universal scaling of low-order cumulants of the vortex number distribution. The solid line
is the fitting of the κ1, with power κ1 ∼ τ−1/2

Q . The error bars stand for standard deviations. Within
error bars, the variance of the vortex number quantified by the second cumulant exhibits the same
power-law scaling and its magnitude is consistent with that of the mean vortex number, indicating
Poissonian statistics. Finite sampling statistics generally prevents establishing the universal scaling
of high-order cumulants.

cumulant equals the average vortex number 〈n〉 and is predicted by the KZM. The second
cumulant equals the variance κ2 = Var(n) while the third one is related to the skewness
Skew(n) of the distribution through the identity κ3 = Skew(n)κ3/2

2 . In the Poissonian limit
for large average vortex numbers, all cumulants approach the first,

κp → 〈n〉, (4.3)

thus inheriting the universal power-law scaling as a function of the quench time dictated
by KZM. This prediction is explicitly verified in figure 3 where the first three cumulants
are plotted as a function of the quench time using about 1000 trajectories. This sampling
size is limited by the computational cost (see Methods). The first two cumulants show
saturation at a plateau for fast quenches, followed by a universal power-law behavior for
longer values of the quench time. The scaling of the first cumulant is dictated by the KZM
to follow a power-law 〈n〉 ∝ τ

−1/2
Q for mean-field critical exponents ν = 1/2 and z = 2

in two spatial dimensions. A fit to the data shows that 〈n〉 ∝ τ−0.518±0.0243
Q . The even

Poissonian distribution for a large mean number of vortices predicts a power-law scaling
of the vortex number variance κ2 = Var(n) ∝ τ−1/2

Q , i.e., equal to the KZM scaling for the
mean. The large fluctuations observed in the third cumulant are expected for the number
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Figure 4. Cumulative probability for P (n ≤ r) (Left) and P (n ≥ r) (Right) in the tails of
the vortex number distribution, with respect to the average vortex number 〈n〉. Numerical dots
obtained for different quench times match the theoretical predictions eq. (5.1) and eq. (5.2) (solid
lines) derived from an EP distribution.

of trajectories considered and their suppression would require one to increase the number
of trajectories by one to two orders of magnitude.

5 Large fluctuations

In what follows we turn our attention to extreme statistics associated with rare events,
that can be estimated efficiently with the available sample size. Fluctuations far away
from the mean vortex number can be expected to be sensitive to defect-defect interactions.
Their characterization can be achieved by adding the contribution from the tails of the
distribution. In the even-Poissonian limit, the cumulative probability for PEP(n ≤ r) and
PEP(n ≥ r) are

PEP(n ≤ r) = 1−
sech(λ)λ2b r2c+2

1F2
(
1;
⌊
r
2
⌋

+ 3
2 ,
⌊
r
2
⌋

+ 2; λ2

4

)
(
2
(⌊
r
2
⌋

+ 1
))

! , (5.1)

PEP(n ≥ r) =
sech(λ)λr 1F2

(
1; r2 + 1

2 ,
r
2 + 1; λ2

4

)
r! , (5.2)

in which 1F2 is a hypergeometric function. For the values of r = 6, 10, 20 and 30, the
cumulative probability is shown in figure 4 as a function of the mean number with an
excellent agreement between the numerical data and the prediction for the even Poissonian
distribution. As 〈n〉 is predicted by the KZM, it can be fitted to power the scaling of
〈n〉 ≈ 333.3× τ−0.518

Q in the range of quench times τQ ∈ [1000, 4000] (see figure 3), together
with eqs. (5.1) and (5.2), to quantify the quench time dependence of rare events, shown
in figure 5.

For further characterization, we resort to large deviation theory and characterize the
distribution of the maxima in long sequences of realizations. According to the Fisher-
Tippett-Gnedenko theorem [36], the extreme values of the iid variables satisfy the gener-
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Figure 5. Universal scaling in the tails of the vortex number distribution. The cumulative prob-
abilities P (n ≤ r) (Left) and P (n ≥ r) (Right) are shown as functions of the quench rate τQ. The
analytical results (solid lines) for the EP distribution are shown in the range of quench times from
τQ = 800 to τQ = 4000, where the numerical simulations exhibit Kibble-Zurek scaling.

alized extreme value (GEV) distribution,

G(x;µ, σ, ξ) =


exp

(
−
(
1 + x−µ

σ ξ
)−1/ξ

)
, ξ 6= 0

exp
(
− exp

(
−x−µ

σ

))
, ξ = 0.

(5.3)

with location parameter µ, scale parameter σ and shape parameter ξ. The GEV distribu-
tion includes as limiting cases of the Weibull (ξ < 0), Gumbel (ξ → 0) and Fréchet (ξ > 0)
laws. To determine the relevant GEV distribution, we use the block maxima method. Data
from the stochastic trajectories is partitioned in blocks. In each block, the maximum vortex
number nM is found and from the ensemble of blocks the probability Prob(nM < x) is de-
termined. We analyze the statistics of large vortex number deviations for slow quenches in
the universal scaling regime in figure 6, that show the probability density function (PDF)
and the cumulative distribution function (CDF) for their GEV distributions in different
groups. Both PDF and CDF are shown as a function of the variable y = x−µ

σ . Specifically,
for τQ = 1000, data is partitioned into 100 groups (top row in figure 6) and 200 groups (bot-
tom row in figure 6). The corresponding parameters are µ = 13.056, σ = 1.666, ξ = −0.149
and µ = 11.892, σ = 1.943, ξ = −0.184, respectively. Thus, GEV is described by the
Weibull distribution, which has reflecting the existence of an upper bound to the vortex
number. As shown in the appendix E, the validity of the Weibull distribution further
extends away from the universal scaling regime and characterizes deviations also in the
saturation regime associated with fast quench times.

6 Discussion

The characterization of the full distribution of topological defects generated across a phase
transition is expected to have wide applications, ranging from condensed matter to quantum
simulation and computation, and cosmology. Experimental efforts to date have focused
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Figure 6. Vortex-number GEV distribution for τQ = 1000. The numerical results follow the
Weibull distribution with an upper bound.

on the universal power-law dependence of the mean number of defects with the quench
time, which is successfully predicted by KZM. Our results show that fluctuations away
from the mean exhibit universality but are no longer captured by the KZM power-law
scaling. The full counting statistics of vortices in a strongly coupled superconductor follows
a universal binomial distribution. The distribution of maxima in a sequence of realizations
is captured for the Weibull law in large deviation theory. The dependence of the tails of the
distribution with the quench time dictates the suppression of topological effects, near or far
from the onset of adiabatic dynamics. This dependence is thus crucial to analyze rare events
associated with profusion or absence of topological defects. The complete suppression of
topological defects is sought after in the preparation of novel phases of matter in quantum
simulators and finite-time quantum annealing and quantum optimization. It is also of
relevance in a cosmological setting, as the observation of cosmic strings predicted by the
KZM remains elusive.

A Equations of motion for a holographic superconductor

In the probe limit, the equations of motions for Ψ and Aµ read,

DµD
µΨ−m2Ψ = 0, ∇µFµν = −2=(Ψ∗DνΨ), (A.1)

– 10 –
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in which =(.) represents imaginary part. In explicit form, these equations read

DµD
µΨ−m2Ψ = 0, ∇µFµν = −2=(Ψ∗DνΨ), (A.2)

in which =(.) represents imaginary part. In explicit form, these equations read

∂t∂zΦ−iAt∂zΦ−
1
2[i∂zAtΦ+∂z(f∂zΦ)−zΦ+(∂2

xΦ+∂2
yΦ)−i(∂xAx+∂yAy)Φ

−(A2
x+A2

y)Φ−2i(Ax∂xΦ+Ay∂yΦ)] = 0, (A.3)
∂t∂zAt−(∂2

xAt+∂2
yAt)−f∂z(∂xAx+∂yAy)+∂t(∂xAx+∂yAy)+2At|Φ|2

+2f=(Φ∗∂zΦ)−2=(Φ∗∂tΦ) = 0, (A.4)

∂t∂zAx−
1
2
[
∂z(∂xAt+f∂zAx)+∂y(∂yAx−∂xAy)+2=(Φ∗∂xΦ)−2Ax|Φ|2

]
= 0, (A.5)

∂t∂zAy−
1
2
[
∂z(∂yAt+f∂zAy)+∂x(∂xAy−∂yAx)+2=(Φ∗∂yΦ)−2Ay|Φ|2

]
= 0, (A.6)

∂z(∂xAx+∂yAy−∂zAt)−2=(Φ∗∂zΦ) = 0, (A.7)

where Φ = Ψ/z. The above five equations are not independent, and their L.H.S. satisfy
the following constraint equation

− d

dt
eq. (A.7)− d

dz
eq. (A.4) + 2 d

dx
eq. (A.5) + 2 d

dy
eq. (A.6) ≡ 4=(eq. (A.3)×Φ∗). (A.8)

Therefore, there are four independent equations for four fields, Φ, At, Ax and Ay. This also
implies that our choice of the gauge Az = 0 is viable for the setup of the system.

B Properties of binomial and Poissonian distributions restricted to even
outcomes

The even-binomial (EB) distribution is obtained by restricting to even outcomes the bino-
mial distribution and is

PEB(n) = 1
A

(
N

n

)
pn(1− p)N−n, (B.1)

where N is the number of domains with broken symmetry, p is the success probability to
form a vortex, n represents a given number of vortex and belongs to non-negative even
integers, and A = 1+(1−2p)N

2 is the normalization constant. The first three cumulants of
EB distribution are

κ1 = Np
1− (1− 2p)N−1

1 + (1− 2p)N , (B.2)

κ2 = Np(1− p)
(1 + (1− 2p)N )2

[
1− (1− 2p)2N−2 + 4(N − 1)(p− p2)(1− 2p)N−2

]
, (B.3)

κ3 = Np(1− p)
(1 + (1− 2p)N )3

[
1− 2p− (1− 2p)3N−3

+ (1− 4(1− p)p(1− (N − 1)(3− 2(N + 4)(1− p)p))) (1− 2p)N−3

− (1− 4(1− p)p(1 + (N − 1)(3 + 2(N − 2)(1− p)p)))(1− 2p)2N−3
]
. (B.4)
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Figure 7. Cumulants of the EP distribution as a function of the parameter λ = Np. For large
values of λ, all cumulants approach the mean of the distribution 〈n〉 = λ tanh(λ).

These cumulants satisfy a recursion relation such as κq+1 = p(1 − p)dκqdp . In the limit
of N → ∞ and keeping the parameter Np = λ finite, we get the even-Poisson (EP)
distribution

lim
N→∞
Np=λ

PEB(n) = 2eλλn

(e2λ + 1) Γ(n+ 1) = sech(λ)λ
n

n! . (B.5)

In addition, in this limit the first three cumulants eqs. (B.2), (B.3) and (B.4) become

lim
N→∞
Np=λ

κ1 = λ tanh(λ), (B.6)

lim
N→∞
Np=λ

κ2 = λ
[
tanh(λ) + λsech2(λ)

]
, (B.7)

lim
N→∞
Np=λ

κ3 = λ
[
tanh(λ) + λ(3− 2λ tanh(λ))sech2(λ)

]
. (B.8)

In the large λ limit, these three cumulants eqs. (B.6), (B.7) and (B.8) are close to each
other, i.e., κ1 ≈ κ2 ≈ κ3 ≈ λ. From the explicit expressions for the cumulants and the
behavior of the tanh(λ) function one can see that for values of λ ≥ 4 this is already satisfied
to great accuracy, see figure 7. Cumulants of the EP distribution for large parameter λ
approach those of the (unrestricted) Poissonian distribution with mean λ tanh(λ) ≈ λ. The
regime of quench rates explored in the main extends to lower values of λ in which deviations
of the third cumulant from the asymptotic form occur (for any number of trajectories).
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Figure 8. Probability distribution of each even appearance of vortices P (n = 0, 2, 4, . . . , 30) with
respect to the average vortex number 〈n〉. Except for n = 0, other distributions P (n) satisfy the
EP distribution very well.

C Full counting statistics of vortices: numerical simulations for a holo-
graphic superconductor and even-Poissonian distribution

In figure 8, we compare the numerical results of the probability distribution P (n =
0, 2, 4, . . . , 30) of a given vortex number n with respect to theoretical value of the EP
distribution, and the (unrestricted) Poisson distribution, which is a limit of (unrestricted)
Binomial distribution with N →∞ and keeping the parameter Np = λ finite. The agree-
ment between the numerical simulations and the EP distribution is excellent provided
sufficient statistics.

The probability P (n = 0) to observe no vortices at all is a rare event away from the
adiabatic limit and can be estimated from the EP distribution. Using eq. (B.5), it reads

PEP(n = 0) = sech(λ). (C.1)

Numerical results for P (n = 0) with respect to 〈n〉 are shown in figure 9 with P (n =
0) ≈ 3.998× sech(〈n〉). The value of the prefactor is found to decrease with an increasing
number of trajectories of simulations. This implies that the error between the numerical
results and the theoretical EP distribution is due to the limited sampling statistics in the
simulations. By increasing it, the numerical results are expected to approach the theoretical
EP distribution.
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Figure 9. Probability distribution of P (n = 0) with respect to the average number of vortices 〈n〉.
Numerical results are consistent with theoretical EP distribution (red line) up to an O(1) factor.
Black line is the (unrestricted) Poissonian distribution.

D Large fluctuations and cumulative probability in the tails of the
vortex-number distribution as function of the quench time

In the main text, we show the cumulative probability of even-Poissonian distribution for
PEP(n ≤ r) and PEP(n ≥ r) as

PEP(n ≤ r) = 1−
sech(λ)λ2b r2c+2

1F2
(
1;
⌊
r
2
⌋

+ 3
2 ,
⌊
r
2
⌋

+ 2; λ2

4

)
(
2
(⌊
r
2
⌋

+ 1
))

! , (D.1)

PEP(n ≥ r) =
sech(λ)λr 1F2

(
1; r2 + 1

2 ,
r
2 + 1; λ2

4

)
r! , (D.2)

where 1F2 is a hypergeometric function and b·c is the floor function. In figure 10, the nu-
merical results of the cumulative probabilities are shown to match very well the theoretical
predictions for a broad range of rates at which the transition is crossed, ranging from slow
quenches with τQ = 3000 to the fast quench limit with τQ = 20.

D.1 Chernoff bound

The Chernoff bound [37] can be used to derive exponentially decreasing bounds on the tail
distributions of vortex numbers. In its looser form, the Chernoff bound can be written as

P (n ≤ 〈n〉 − δ) ≤ e−
δ2

2〈n〉 , (Lower tail) (D.3)

P (n ≥ 〈n〉+ δ) ≤ e−
δ2

2〈n〉+δ . (Upper tail) (D.4)

In figure 11 we plot bound of lower tail and upper tail for δ = 1, 2, 3. The numerical
results satisfy the Chernoff bound very well. The latter can thus be used to capture the
dependence on the quench time of the large fluctuations away from the mean, associated
with the tails of the distribution.
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Figure 10. Cumulative probability P (n ≤ r) (Left) and P (n ≥ r) (Right) for τQ = 20, 1000 and
3000. Numerical results fit closely the theoretical predictions derived from the EP distribution in
eq. (D.1) and eq. (D.2).

Figure 11. The bound of the upper tail (Left) and lower tail (Right) of distributions of vortex
numbers as a function of the inverse of quench time. Numerical results satisfy the theoretical
bounds, that capture the dependence on the quench time.

E Extreme value distribution of vortex numbers

According to the Fisher-Tippett-Gnedenko theorem [36], the extreme maximal values of
the independently and identically distributed (iid) variables satisfy the generalized extreme
value (GEV) distribution,

G(x;µ, σ, ξ) =


exp

(
−
(
1 + x−µ

σ ξ
)−1/ξ

)
, ξ 6= 0

exp
(
− exp

(
−x−µ

σ

))
, ξ = 0.

(E.1)

in which, µ is the location parameter, σ is the scale parameter and ξ is the shape parameter.
Note that ξ(x − µ)/σ + 1 > 0 and zero otherwise. The above GEV distribution function
G(x;µ, σ, ξ) is the cumulative density function (CDF), whose corresponding probability
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Figure 12. Probability density function (PDF) and cumulative distribution function (CDF) of
extreme maximum values of the vortex number spontaneously generated in the limit of fast quenches
with τQ = 20. Independently of the partitioning size, he data is well described by a Weibull
distribution with an upper bound.

density function (PDF) can be written as

P (x;µ, σ, ξ) =


1
σ

(
ξ(x−µ)
σ + 1

)− 1
ξ
−1

exp
(
−
(
ξ(x−µ)
σ + 1

)−1/ξ
)
, ξ 6= 0

1
σ exp

(
−x−µ

σ − exp
(
−x−µ

σ

))
, ξ = 0.

(E.2)

If ξ < 0, the GEV distribution is called Weibull distribution which is upper bounded. if
ξ = 0, the GEV distribution is called Gumbel distribution which has a light tail. Finally,
if ξ > 0, the GEV distribution is called Fréchet distribution which has a heavy tail and a
lower bound.

In practice, to analyze the extreme value distributions for iid variables, it is customary
to separate the data into several groups (or blocks), and then proceed to identify the
maximum in each group. The final list of maxima will tend to satisfy the above GEV
distribution. This method is called ‘Block Maxima’ method, and we adopt it to study the
maximum value distributions for the vortex numbers in numerical simulations. There are
some arbitrary choices in the partition of the data. We partition the data into more than
100 groups, which is sufficient for the observed vortex-number maxima distribution to be
identified with the GEV.

The extreme maximal value distributions of the vortex number for a slow quench
(such as τQ = 1000) are shown in the main text. Here, we show the PDF and CDF of
the maximum values for a fast quench (τQ = 20) in figure 12. Specifically, for τQ = 20 we

– 16 –



J
H
E
P
0
6
(
2
0
2
1
)
0
6
1

have 11655 numerical data of the vortex number. They are partitioned into 777 groups
(top row in figure 12) and 111 groups (bottom row in figure 12). Both PDF and CDF are
shown as a function of the variable y = x−µ

σ . In the top row of figure 12, the parameters
are µ = 32.841, σ = 2.382, ξ = −0.113; while in the bottom row the parameters are
µ = 36.558, σ = 2.114, ξ = −0.090. The analysis of the data based on these partitions
shows that the GEV distribution of the maxima for τQ = 20 belongs to Weibull distribution,
which means there is an upper bound.
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