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1 Introduction

The celebrated Kawai-Lewellen-Tye (KLT) relations show that tree-level closed string am-
plitudes factorize into a sum of quadratic products of open string amplitudes [1]. Intuitively,
the KLT relations are a consequence of the factorization of complex integrals describing
closed string amplitudes into contour integrals describing open string amplitudes. The
simplest incarnation of such a factorization is the classic Riemann bilinear identity.

The KLT relations have revealed elegant structures in scattering amplitudes and led
to surprising connections between different theories (see e.g. [2–11]). Originally, the KLT
relations were proposed as a powerful method for evaluating tree-level closed string ampli-
tudes [1]. Intriguingly, the discovery of such relations has also led to numerous insights into
quantum field theory (QFT) amplitudes by considering the infinite tension limit of string
amplitudes. For example, it has been shown that Born-Infeld, non-linear sigma models,
and special Galileons fit into the QFT type of KLT relations [12], via the framework of the
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CHY formalism [13]. The KLT relations also inspired studies of gravity as a double copy of
gauge theory over the past decade [14]. The importance of the double-copy construction is
justified by its use in significantly simplifying the calculation of gravity amplitudes at loop
level [15, 16]. A deeper understanding of these remarkable relations may hold new surprises
in simplifying practical computations of amplitudes in both field and string theory.

Connecting string theory with nature requires compactifying string theory down to four
spacetime dimensions. Upon compactification, the extended nature of the string clearly
distinguishes string theory from local QFT. The existence of string states winding along a
compact direction, which do not have a local field theory description, enriches the quantum
numbers carried by string states and the collection of string amplitudes in the theory, and
leads to inherently stringy phenomena, such as T-duality.

In this paper we derive a KLT-like relation for N -point scattering amplitudes of closed
strings when a spatial direction is compactified on a circle and string states carry winding
(and momentum) on the circle. This allows us to express any closed string amplitude in
terms of open string amplitudes. But which open string amplitudes? At first sight there
seems to be a puzzle. A closed string state on a circle of radius R can carry both momentum
n/R and winding w along that circle, where n, w ∈ Z. In contrast, an open string state can
either carry momentum or winding along the circle, depending upon whether we impose
Neumann or Dirichlet boundary conditions along the circle, but cannot carry both momen-
tum and winding. The resolution of this conundrum is that, while the winding number wi
of the i-th closed string can be identified with the winding number of the i-th open string
obeying Dirichlet boundary conditions, the closed string momentum ni is encoded in the
D-brane configuration where open string amplitudes are defined, and corresponds to the
fractional winding number of an open string stretched between D-branes. Figure 1 shows
the scattering of N closed strings with momentum and winding data (ni, wi). Figure 2
illustrates the corresponding D-brane configuration. The D-branes are equally separated
by a distance which is T-dual to the circumference of the compactified circle. The asso-
ciated open string amplitude is depicted in figure 3, and involves open strings defined on
an array of n+ + 1 D-branes, with n+ defined in figure 1. The i-th open string winds wi
times around the full spatial circle; in addition, it traverses ni− 1 D-branes, with ni corre-
sponding to the “fractional” part of winding number of the open string stretched between
two D-branes. The fractional winding number is equal to ni R̃/R = α′ ni/R

2. The above
mapping between the quantum numbers describing closed and open string states in the
KLT-like relation is summarized in table 1. The precise meaning of these terms will be
further clarified in section 3.2.1

This paper is organized as follows. In section 2, we give an introduction to essential
ingredients of winding closed strings, and evaluate in section 2.3 the four closed string

1There is also a straightforward T-dual interpretation for open string scattering amplitudes with open
strings ending on the D-brane configuration described in figure 2. In the T-dual frame, an open string
ends on a stack of spacetime-filling D-branes in the presence of Wilson lines. Such an open string satisfies
Neunmann boundary conditions in the compactified direction and can carry nonzero momentum number
(both integral and fractional, with the latter attributed to the Wilson line) but only zero winding. See
section 3.3 for details.
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(nk, wk)

(nN , wN )

(nk+2, wk+2)

(nk+3, wk+3)

(nk+1, wk+1)

incoming outgoing

n+ =
∑ k

i=1ni

Figure 1. Closed string amplitude with momentum and winding data (ni, wi) obeying conservation
laws

∑N
i=1 ni = 0 and

∑N
i=1 wi = 0. We choose n1 , . . . , nk > 0 and nk+1 , . . . , nN ≤ 0, splitting

strings into incoming and outgoing states. The integer n+ is the total incoming momentum. We
show that the number of D-branes in the open string scattering amplitude appearing in the KLT-
like factorization is n+ + 1.

R•
0

• •
2πR 4πR

︷ ︸︸ ︷2πR̃

· · · · · ·

n+ + 1 equidistantly separated D-branes

•

•• •
•

•

n1

n2 n3
nk

Figure 2. The horizontal line represents the real axis, which under the x ∼ x+ 2πR identification
becomes a circle of radius R. The vertical lines represent an array of equidistantly separated D-
branes. The distance between consecutive D-branes is 2πR̃, where R̃ = α′/R is the T-dual radius.
Each blue curve represents an incoming open string stretched between different D-branes. The
momentum ni of the i-th closed string is encoded in the number of D-branes traversed by the i-th
open string and physically corresponds to fractional winding.

closed string open string
momentum fractional winding
winding integer winding

Table 1. The mapping between quantum numbers of closed and open strings in the KLT relations.

tachyon2 amplitude in the presence of windings. In section 3, we discuss winding open
strings and derive in section 3.3 the KLT relation between four closed and open string
tachyon amplitudes. In section 4, we generalize the KLT relation for winding strings to
higher-point amplitudes that involve massless and massive vertex operators, and present
the general form of the KLT relation in (4.23). We conclude our paper in section 5. In

2Although a closed string tachyon cannot simultaneously have nonzero momentum and winding along
the compactified circle, the four-tachyon amplitude still provides a sufficiently interesting example that
captures the salient properties of the KLT relation for winding strings.
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n1 n3

n2
n4

incoming outgoing

n+ = n1 + n2 = 4

Figure 3. A four-point open string amplitude with n1 = 1, n2 = 3, n3 = −2, and n4 = −2. Open
strings can only join or split at the same D-brane. There is a total of n+ + 1 = 5 D-branes for this
choice of closed string quantum numbers.

appendix A, we recast our new KLT relation in more modern terms using intersection
theory, which gives rise to a compact rewriting of the KLT relation in (A.26).

2 Elements on winding closed strings

We consider string theory described by a sigma model that maps the worldsheet Σ to a d-
dimensional target spaceM. We take the worldsheet to be Euclidean and denote the world-
sheet coordinates by σα = (τ, σ), with τ ∈ R and σ ∈ [0, 2π]. In the target space, we denote
the coordinates by XM = (Xµ, X), where M = 0, . . . , d − 1 and µ = 0 , 1 , . . . , d − 2. We
have defined Xµ ≡ Xµ and X ≡ Xd−1. We compactify X over a circle of radius R, such that

X ∼ X + 2πR . (2.1)

A closed string that winds w times around the circle along the X-direction satisfies

X(σ + 2π) = X(σ) + 2πRw , w ∈ Z . (2.2)

The mode expansion of X is

X(τ, σ) = x− iα′p τ +Rwσ + i

√
α′

2
∑
m 6=0

1
m

(
αm e

−imσ + α̃m e
imσ

)
e−mτ , (2.3)

where p denotes the momentum in the X-direction and α′ is the Regge slope. The single-
valuedness of the operator exp(ipX) requires the quantization condition

p = n

R
, n ∈ Z . (2.4)

Here, n is the Kaluza-Klein (KK) excitation number.
To perform radial quantization, we define

z = eτ+iσ , z = eτ−iσ , (2.5)
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in terms of which the mode expansion of X is X(z , z) = XL(z) +XR(z), where

XL(z) = xL −
i

2 α
′pL ln z + i

√
α′

2
∑
m 6=0

αm
mzm

, (2.6a)

XR(z) = xR −
i

2 α
′pR ln z + i

√
α′

2
∑
m 6=0

α̃m
mzm

, (2.6b)

with x = xL + xR and

pL = n

R
+ Rw

α′
, pR = n

R
− Rw

α′
. (2.7)

Note that pL and pR are eigenvalues of the operators

p̂L = 1
πα′

∮
C
dz ∂zXL(z) , p̂R = − 1

πα′

∮
C
dz ∂zXR(z) , (2.8)

where the counterclockwise oriented contour C encloses the vertex operator associated with
the string.

2.1 Closed string tachyons and cocycles

The closed string tachyon is described by the following vertex operator [17]:

VC(z , z) = gc exp
[
i
4 πα

′(pL − pR)(p̂L + p̂R)
]

:eiKL·XL(z)+iKR·XR(z) :

= gc exp
[
i
2 πRw (p̂L + p̂R)

]
:eiKL·XL(z)+iKR·XR(z) : ,

(2.9)

where KL,R · XL,R = ηMN K
M
L,R XNL,R, and

XML = (Xµ, XL) , KM
L = (kµ, pL) , (2.10a)

XMR = (Xµ, XR) , KM
R = (kµ, pR) . (2.10b)

The extra phase factor in (2.9) is known as the cocycle, which is important for removing
the phases arising from crossing certain branch cuts when different vertex operators are
interchanged with each other.

To demonstrate that (2.9) is the correct vertex operator, we first note the operator
product expansions (OPEs),

XL(z1)XL(z2) ∼ −α
′

2 ln z12 , XL(z1)Xµ(z2 , z2) ∼ 0 , (2.11a)

XR(z1)XR(z2) ∼ −α
′

2 ln z12 , XR(z1)Xµ(z2 , z2) ∼ 0 , (2.11b)

XL(z1)XR(z2) ∼ 0 , (2.11c)

and
Xµ(z1 , z1)Xν(z2 , z2) ∼ −α

′

2 ηµν ln |z12|2. (2.11d)
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We defined z12 ≡ z1 − z2 and z12 = z1 − z2. It follows that

p̂LVC(z , z) = 1
πα′

∮
C
dw :∂wXL(w) : VC(z , z) = pLVC(z , z) . (2.12)

Therefore, VC(z , z) corresponds to the eigenstate of p̂L,R. Similarly, we have

p̂RVC(z , z) = pRVC(z , z) . (2.13)

We next note that the BRST invariance of (2.9) requires

−K2
L = −K2

R = − 4
α′

=⇒ −k2 = p2
L −

4
α′

= p2
R −

4
α′
, (2.14)

where k2 = kµk
µ. It then follows that the dispersion relation is

− k2 = n2

R2 + w2R2

α′2
− 4
α′
, (2.15)

when supplemented with the level matching condition

nw = 0 . (2.16)

This level matching condition implies that an asymptotic tachyonic state cannot have both
nonzero Kaluza-Klein and winding numbers.

Finally, we consider the product of two tachyon operators, such as

VC1(z1 , z1)VC2(z2 , z2) , (2.17)

which is taken to be radially ordered, i.e. C1 encloses C2. It follows that

VC1(z1 , z1)VC2(z2 , z2)

∼ g2
c e

iπ w1n2 z
1
2α
′KL1·KL2

12 z
1
2α
′KR1·KR2

12 :ei(KL1+KL2)·XL(z)+i(KR1+KR2)·XR(z) :

= g2
c e

iπ w1n2

(
e

1
2 iπα

′KL1·KL2 z
1
2α
′KL2·KL1

21

)(
e−

1
2 iπα

′KR1·KR2 z
1
2α
′KR2·KR1

21

)
× :ei(KL2+KL1)·XL(z)+i(KR2+KR1)·XR(z) : .

(2.18)

Using
1
2 α
′(KL1 ·KL2 −KR1 ·KR2

)
= n1w2 + n2w1 , (2.19)

we find

VC1(z1 , z1)VC2(z2 , z2)

∼ e2 iπ w1n2

[
g2

c e
iπ w2 n1z

1
2α
′KL2·KL1

21 z
1
2α
′KR2·KR1

21 :ei(KL2+KL1)·XL(z)+i(KR2+KR1)·XR(z) :
]

∼ e2 iπ w1n2 VC2(z2 , z2)VC1(z1 , z1) . (2.20)

Since both w1 and n2 are integers, we find that VC1(z1 , z1) and VC2(z2 , z2) commute.
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2.2 Higher-order vertex operators

More general vertex operators can be constructed by multiplying vertex operator with
factors of the form ∂mXML and ∂̄mXMR , for positive integer m. BRST invariance imposes
various conditions on such operators. For example, we have the BRST-invariant (up to
total derivatives) and gauge-fixed vertex operators

e
1
2 iπRw (p̂L+p̂R) εI1···IN J1···J

Ñ

× :∂XI1
L · · · ∂XINL ∂̄XJ1

R · · · ∂̄X
J
Ñ

R eiKL·XL(z)+iKR·XR(z) : , (2.21)

where εM1···Mk N1···N` is symmetric in {M1, . . . ,Mk} and in {N1, . . . , N`}, respectively, and

KMi
L εM1···Mi···Mk N1···N` = 0 , ηMiNj εM1···Mi···Mk N1···Nj ···N` = 0 , (2.22a)

KNi
R εM1···Mk N1···Ni···N` = 0 . (2.22b)

The dispersion relation and the level matching conditions are

− k2 = n2

R2 + w2R2

α′2
+ 2
α′
(
N + Ñ − 2

)
, nw = Ñ −N . (2.23)

Unlike closed string tachyons, the vertex operator (2.21) can simultaneously have nonzero
KK and winding quantum numbers.

For an example of a BRST-invariant vertex operator that contains higher derivatives
acting on XL, R, we consider the gauge-fixed operator

e
1
2 iπRw (p̂L+p̂R) εMN :

(
i
2 α
′KM

L ∂2XNL + ∂XML ∂XNL
)
eiKL·XL(z)+iKR·XR(z) : , (2.24)

where εMN is a symmetric tensor that satisfies

εMM = α′KM
L KN

L εMN . (2.25)

The dispersion relation and the level matching condition in this case are

− k2 = n2

R2 + w2R2

α′2
, nw = −2 . (2.26)

Other higher-derivative vertex operators can be constructed similarly.

2.3 Four closed string tachyon amplitudes

We start with the tree-level four tachyon amplitude, which exhibits the simplest nontrivial
KLT relation. Due to the level matching condition (2.16), a tachyonic state can either
have a nonzero KK or winding number. Later in section 4, we will consider amplitudes
that involve massless and massive vertex operators discussed in section 2.2, in which case

– 7 –
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an asymptotic closed string state can have both nonzero KK and winding numbers. The
amplitude for four closed string tachyons on a spherical worldsheet is

A(4)
c = e−χΦ0

∫
C
d2z2

〈
:c(z1) c̃(z1) : :c(z3) c̃(z3) : :c(z4) c̃(z4) :

4∏
i=1

:VCi(zi , zi) :
〉

S2

∝ i (2π)25 δ(25)(k1 + · · ·+ k4
)
δn1+···+n4, 0 δw1+···+w4, 0M(4) . (2.27)

Here, χ = 2 is the Euler characteristic of the sphere and Φ0 is the expectation value of the
dilaton field. We have dropped a proportionality constant that depends on the coupling
gc, which we do not need in this paper. The vertex operators VCi are ordered radially, with
the integration contour Ci enclosing Cj , i < j. It follows that

M(4) = 1
α′
|z13|2 |z14|2 |z34|2

∫
C
d2z2

4∏
i, j=1
i<j

eiπwinj z
1
2α
′KLi·KLj

ij z
1
2α
′KRi·KRj

ij . (2.28)

The vertex operator VCi(zi , zi) is defined in (2.9). We have used the Möbius transformations
to fix z1 = 0, z3 = 1, and z4 =∞. Using the identity

z
1
2α
′KLi·KLj

ij z
1
2α
′KRi·KRj

ij =
(
e

1
2 iπα

′KLi·KLj z
1
2α
′KLi·KLj

ji

)(
e−

1
2 iπα

′KRi·KRj z
1
2α
′KRi·KRj

ji

)
= eiπ(niwj+njwi) z

1
2α
′KLi·KLj

ji z
1
2α
′KRi·KRj

ji , (2.29)

we find that (2.27) becomes

M(4)
c = 1

α′
exp

(
iπ
∑4

i,j=1
i<j

niwj

)
I(4) , (2.30)

where

I(4) =
∫
C
d2z2 z

1
2α
′KL1·KL2

2 z
1
2α
′KR1·KR2

2 (1− z2)
1
2α
′KL2·KL3 (1− z2)

1
2α
′KR2·KR3 . (2.31)

This integral can be studied using intersection theory, which gives rise to a geometrical
interpretation of the associated KLT relation in terms of the twisted (co)homology and
intersection number. We will discuss this modern interpretation later in appendix A. In
practice, however, we will perform the integrals following the method used in the original
work in [1], without resorting to intersection theory. This allows us to focus on the novelties
brought by nonzero windings.

Define z2 = x + i ỹ (and z2 = x − i ỹ) for real variables x and ỹ, and then promote
the integral over ỹ to be in the complex plane. Then, the integrand for ỹ has its branch
points at ±ix and ±i(1−x). We deform the contour for the ỹ-integral that is along the real
axis counterclockwise by π

2 − ε, for ε→ 0+. This deformation is captured by the following
change of variables:

ỹ = exp
[
i(π2 − ε

)]
y ≈ i y + ε y . (2.32)

– 8 –
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Therefore,3

I(4) = i

2

∫
R
dζ

∫
R
dξ (ζ + i δ)

1
2α
′KL1·KL2 (1− ζ − i δ)

1
2α
′KL2·KL3

× (ξ − i δ)
1
2α
′KR1·KR2 (1− ξ + i δ)

1
2α
′KR2·KR3 ,

(2.33)

where
ξ ≡ x+ y , ζ ≡ x− y , δ ≡ ε y = 1

2 ε (ξ − ζ) . (2.34)

For a fixed ζ ∈ (−∞ , 0), the ξ-integral has branch points at

i δ
∣∣
ξ=0 = 1

2 i ε (−ζ) , 1 + i δ
∣∣
ξ=1 = 1 + 1

2 i ε (1− ζ) . (2.35)

Importantly, both of the branch points reside in the upper half plane. Completing the
integration contour for ξ in the lower half plane, the integral over ξ yields zero. A similar
argument also shows that ζ ∈ (1,∞) contributes zero to the amplitude. Therefore, only
when ζ ∈ (0, 1), the amplitude receive nonzero contributions and

I(4) = 1
2 i I

(4)
L I

(4)
R , (2.36)

where

I(4)
L =

∫ 1

0
dζ ζ

1
2α
′KL1·KL2 (1− ζ)

1
2α
′KL2·KL3 , (2.37a)

I(4)
R =

∫
R
dξ (ξ − i δ)

1
2α
′KR1·KR2 (1− ξ + i δ)

1
2α
′KR2·KR3 . (2.37b)

In I(4)
R , there are two branch points at the positions given in (2.35), but now with ζ ∈ (0, 1).

This implies that the branch point at i δ
∣∣
ξ=0 resides in the lower half plane, and the branch

point at 1 + i δ
∣∣
ξ=1 resides in the upper half plane. We then take the part of the ξ-integral

contour that lies to the right of ξ = 0, and rotate it by 180◦ across the lower half plane of the
complex plane, around the branch point ξ = i δ

∣∣
ξ=0. Note that this contour deformation

does not cross any branch points. See [1] for more details. We find

I(4)
R = 2 i sin

(1
2 πα

′KR1 ·KR2
) ∫ 0

−∞
dξ (−ξ)

1
2α
′KR1·KR2 (1− ξ)

1
2α
′KR2·KR3 . (2.38)

We can alternatively take the part of the original ξ-integral contour that lies to the left of
ξ = 1 to the right, and rotate is by 180◦ across the upper half plane, around the branch
point 1 + i δ

∣∣
ξ=1. This contour deformation does not cross any branch points, either. This

second choice of integration contour gives

I(4)
R = 2 i sin

(1
2 πα

′KR2 ·KR3
) ∫ ∞

1
dξ ξ

1
2α
′KR1·KR2 (ξ − 1)

1
2α
′KR2·KR3 . (2.39)

To proceed further, we introduce the generalized Mandelstam variables,

sL = −(KL1 +KL2)2 , tL = −(KL1 +KL3)2 , uL = −(KL1 +KL4)2 , (2.40a)

sR = −(KR1 +KR2)2 , tR = −(KR1 +KR3)2 , uR = −(KR1 +KR4)2 , (2.40b)
3We use the convention d2z2 = dx dỹ in (2.31).

– 9 –
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and define αx ≡ −1
4 α
′ x− 1. Note that αsL

+ αtL + αuL
= 1 and αsR

+ αtR + αuR
= 1. It

follows that

I(4)
L = B(αsL

, αuL
) , (2.41a)

I(4)
R = −2 i sin(π αsR

)B(αsR
, αtR)

= −2 i sin(π αuR
)B(αuR

, αtR) , (2.41b)

where B(a, b) is the Euler beta function, with

B(a, b) = Γ(a) Γ(b)
Γ(a+ b) . (2.42)

The second equality in (2.41b) can be shown explicitly by using the identity

Γ(x) Γ(1− x) = π

sin(π x) . (2.43)

Therefore,

I(4) = B(αuL
, αsL

) sin(π αsR
)B(αsR

, αtR) (2.44a)

= B
(
αsL

, αuL
) sin(π αuR

)B(αuR
, αtR) . (2.44b)

The same result in (2.44a) can be confirmed by evaluating I(4) in (2.31) directly as in [18].4

Recall that, to derive this result, we fixed ζ while performing the integral over ξ. Alterna-
tively, if we switch the order of integration by first performing the integral over ζ with ξ
fixed, then

I(4) = B(αuR
, αsR

) sin(π αsL
)B(αsL

, αtL) (2.45a)

= B(αsR
, αuR

) sin(π αuL
)B(αuL

, αtL) . (2.45b)

It is also straightforward to show that the expressions in (2.44) and (2.45) are equivalent by
repetitively using (2.43). For example, applying (2.43) to the beta functions in (2.44a) gives

B(αuL
, αsL

) sin(π αsR
)B(αsR

, αtR)

=
sin(π αsR

) sin(π αtL) sin(π αuR
)

sin(π αsL
) sin(π αtR) sin(π αuL

) B(αuR
, αsR

) sin(π αsL
)B(αsL

, αtL) .
(2.46)

From (2.19), we find

sin
(1

2 α
′πKRi ·KRj

)
= (−1)niwj+njwi sin(1

2 α
′πKLi ·KLj) , (2.47)

which implies

B(αuL
, αsL

) sin(π αsR
)B(αsR

, αtR)

= (−1)n1 (w2+w3+w4) + (n2+n3+n4)w1 B(αuR , αsR
) sin(π αsL

)B(αsL
, αtL)

= (−1)−2n1 w1 B(αuR , αsR
) sin(π αsL

)B(αsL
, αtL)

= B(αuR , αsR
) sin(π αsL

)B(αsL
, αtL) .

(2.48)

This shows explicitly that (2.44a) and (2.45a) are equivalent.
4Note that the integral in (2.31) is defined to be over the complex plane with d2z2 = dx dỹ, which is

different from the convention used in [18]. This leads to an extra factor 1/2 in our result.
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3 Open string amplitude and KLT relation

The decomposition of the four closed string tachyon amplitude into the left-moving and
right-moving parts in (2.36) is already in form the same as the standard KLT relation that
relates closed string amplitudes to open string amplitudes. The exceptions here include the
cocycle factors and that I(4)

L and I(4)
R depend on KLi and KRi, respectively. The kinematic

data KLi and KRi are different from each other when the winding number wi is nonzero. As
we shall see the expressions of I(4)

L,R in (2.37)–(2.39) correspond to open string amplitudes.
This will be the case by introducing appropriate D-brane configurations, which we discuss
in detail below.

3.1 Winding open strings

Consider a stack of D-branes that extend in all the noncompactified directions and are
localized in the compactified X-direction. We require that the q-th brane is located at

xq = x0 + q L mod 2πR , q ∈ Z , (3.1)

in the compactified circle, such that the q-th and (q+ 1)-th branes are separated by L. See
figure 2 for an illustration, where L = 2πR̃ is fixed.

We now take the worldsheet to be a strip, with τ ∈ R and σ ∈ (0, π). Consider open
strings that satisfy the Dirichlet boundary condition in the compactified X-direction and
the Neumann boundary condition in directions along the D-branes. We fix the ends of a
given open string at two of the D-branes — say, the q-th and (q + n)-th D-brane, with
n ∈ Z — separated by a distance |n|L.5 The compactified worldsheet field X(τ, σ) takes
on the following mode expansion on the strip:

X(τ, σ) = xq + 1
π

(nL+ 2πRw)σ −
√

2α′
∑
m 6=0

αm
m

e−mτ sin(mσ) . (3.2)

Here, xq is the location of the q-th D-brane and xq+n = xq + nL is the location of the
(q + n)-th D-brane. The winding number w denotes how many additional loops the open
string winds around the compactified circle. Note that, when xq+n = xq, the open string
ends on the same D-brane. The worldsheet field X(τ, σ) in (3.2) satisfies the Dirichlet
boundary conditions

X(τ, 0) = xq , X(τ, π) = xq+n . (3.3)

Under the change of coordinates introduced in (2.5),

z = eτ+iσ , z = eτ−iσ , (3.4)

5Note that |n|L can be larger than the circumference of the compactified circle, in which case the physical
distance between the two D-branes along the circle can be smaller than |n|L.
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the worldsheet is mapped to the upper half plane with X(z , z) = XL(z) +XR(z) and

XL(z) = xL −
i

2π (nL+ 2πRw) ln z − i

√
α′

2
∑
m 6=0

αm
m

1
zm

, (3.5a)

XR(z) = xR + i

2π (nL+ 2πRw) ln z + i

√
α′

2
∑
m 6=0

αm
m

1
zm

, (3.5b)

with xq = xL + xR. The boundary of the wordsheet is at z = z.
The OPE between two X’s on the disk that satisfy the Dirichlet boundary conditions is

X(z1)X(z2) ∼ −α
′

2
(
ln |z1 − z2|2 − ln |z1 − z2|2

)
. (3.6)

It then follows that the OPEs between XL’s and XR’s are

XL(z1)XL(z2) ∼ −α
′

2 ln z12 , XL(z1)XR(z2) ∼ α′

2 ln(z1 − z2) , (3.7a)

XR(z1)XR(z2) ∼ −α
′

2 ln z12 , XR(z1)XL(z2) ∼ α′

2 ln(z1 − z2) . (3.7b)

The OPEs on the boundary can be readily derived by setting zi = zi = yi; the OPE in (3.6)
vanishes on the boundary.

The total winding number of the open string can be non-integer, given by

W = 1
2πR

∮
Co

(dz ∂zXL + dz ∂zXR) = nL

2πR + w , (3.8)

where the contour C for an open string vertex operator inserted at y on the real axis
traverses counterclockwise along a small semi-circle centered at y in the upper half plane.
We refer to nL/(2πR) in (3.8) as the fractional winding number of the open string, which
means that the open string winds over a fraction of the compactified circle. From (3.8) we
define the winding number operator

Ŵ = 1
2πR

∮
Co

(dz ∂zX + dz ∂zX) . (3.9)

Similarly, the momentum operator in the compactified direction is

p̂ = 1
2πα′

∮
Co

(
dz ∂zXL − dz ∂zXR

)
. (3.10)

We are interested in the open string tachyon vertex operator that corresponds to the
eigenstate of Ŵ with the eigenvalue W in (3.8). Such a vertex operator takes the form

Vo(y) = go :eiQL·YL(y)+iQR·YR(y) : , (3.11)

where y ∈ R and

YML,R ≡ XML,R
∣∣
z=z , QML = (kµ, WR/α′) , (3.12a)

QMR = (kµ, −WR/α′) . (3.12b)
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R
••

L

R ••

Figure 4. The circle of radius R represents the compactified X-direction and the ticks represent
a series of D-branes transverse to the compactified circle, equidistantly positioned along X at
xq = x0 + q L, q = 0, 1, 2, . . ., as shown in figure 2. The diagrams above depict the special case
when 2πR/L = 3, which is rational. As a result, maximally, there are only three transverse branes
in the circle. Note that these diagrams also represent the D-brane configuration when L takes other
values, for example, L = 4πR/3. An open string, shown in blue, can stretch between two D-branes
as in the left diagram, or as in the right diagram by making an integer number of wrappings around
the compactified direction. Generically, when 2πR/L is irrational, there is no maximal number of
transverse branes in the circle.

The vertex operator Vo corresponds to an eigenstate of Ŵ with eigenvalue W and of p̂
with eigenvalue p = 0, consistent with that open strings carry zero momentum in the
direction satisfying the Dirichlet boundary condition. We recall that XM = (Xµ, X), with
Xµ satisfying the Neumann boundary condition and X satisfying the Dirichlet boundary
condition. The BRST invariance of Vo requires

− k2 = W 2R2

α′2
− 1
α′
, (3.13)

which gives the on-shell condition.
As a final remark, we note that, in the degenerate case when 2πR/L is rational, there

can be D-branes coinciding with each other in the compactified direction. See figure 4
for a special case with 2πR/L = 3. When 2πR/L is irrational, none of the D-branes will
coincide after compatification and the branes densely fill the circle.

3.2 Four open string tachyon amplitudes

We are ready to compute open string scattering amplitudes with the open strings ending on
the D-brane configuration introduced in section 3.1. We are interested in the following open
string amplitude of four open string tachyons inserted along the real axis in the complex
plane, with the ends of each open string attached to the D-branes:

Ao(1, 2, 3, 4) = e−χΦ0

〈 4∏
i=1

:c(Yi)Vo(Yi) :
〉

D2

1 2

34
(3.14)
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The Euler characteristic χ = 1 for the disk and we have specified the permutation. We
apply the PSL(2, R) symmetry to fix y1 = 0, y3 = 1, and y4 =∞. Then,

Ao(1, 2, 3, 4) ∝ i

α′
(2π)25δ(25)(k1 + · · ·+ k4) δW1+···+W4, 0Mo(1, 2, 3, 4) . (3.15)

Here,

Mo(1, 2, 3, 4) =
∫ 1

0
dy2 |y2|2α

′K1·K2 |1− y2|2α
′K2·K3 , (3.16)

with
KM
i = (kµi ,WiR/α

′) . (3.17)

We have dropped a proportionality constant that depends on the coupling constant go. In
general, there can also be color factors from Chan-Paton charges, which we drop when the
KLT relation is concerned. The total winding number Wi defined in (3.8) is

Wi = niL

2πR + wi , ni , wi ∈ Z . (3.18)

The conservation law of Wi is imposed by the Kronecker symbol in (3.15), which gives

L

2πR
∑
i

ni +
∑
i

wi = 0 . (3.19)

In the case when L/(2πR) is irrational, (3.19) further implies∑
i

ni =
∑
i

wi = 0 . (3.20)

In the degenerate case when L/(2πR) is rational, it is still possible to choose the definitions
of ni and wi such that the split of the conservation law (3.19) in (3.20) is satisfied. We
therefore require that (3.20) hold in the rest of the paper.

Note that the amplitude in (3.15) involves only open strings, which can only join or
split on a D-brane. See figure 5 for an illustration. The total number of D-branes that
are involved in the scattering process is given by n+ + 1, where n+ is the sum of ni > 0
associated with the incoming closed strings. See figure 1 and 2. In contrast, scatterings
between open strings that do not occur on the same D-brane necessarily involve closed
strings. One such example is given in figure 6. These scattering processes with asymptotic
closed string states are not captured by the open string amplitudes that we compute here
and are irrelevant in the KLT relation that we consider in this paper.

Intriguingly, if we take L = 2πR̃, with R̃ = α′/R the radius of the T-dual circle over
which the X-direction is compactified, we find that KM

i in (3.17) becomes

KM
i =

(
kµi ,

niL

2πα′ + wiR

α′

)
=
(
kµi ,

ni
R

+ wiR

α′

)
, (3.21)

which is identical to KLi defined for closed strings in (2.10a), and ni can be interpreted as
the KK number for the closed string tachyon.6 For the open string amplitude in (3.16) to

6If wi in KM
i is identified with the negative of the closed string winding number, Ki in (3.21) is mapped

to KRi defined in (2.10b).
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ni
a nf

a

ni
b

nf
b

Figure 5. The vertical lines represent D-branes separated by the same distance L, and the blue
wavy lines represent fundamental strings with their ends residing on different D-branes. The picture
on the left represents the initial state and the picture on the right represents the final state of the
scattering process. During the scattering process, the two strings join into one at the second D-
brane from the left; then, the single intermediate string splits at the third D-brane into two. This
picture captures the conservation law n1 +n2 +n3 +n4 = 0, with n1 = 1, n2 = 3, and n3 = n4 = −2.
The incoming strings on the left carry the initial quantum numbers ni

a = n1 and ni
b = n2. The

outgoing strings on the right carry the quantum numbers nf
a = −n3 and nf

b = −n4. The amplitude
for this type of scattering process is given by (3.14). The total number of D-branes involved in the
scattering process is equal to n1 + n2 + 1 = 5.

ñi
a

ñi
b

ñf
b

ñf
a

Figure 6. Scattering between two open strings that do not end on the same D-brane necessarily
involve asymptotic closed string states. The figure with closed strings realizes the same conservation
law for ni in figure 5 as follows. The incoming strings on the left carry the initial quantum numbers
ñi
a = n1 and ñi

b = n3. The outgoing strings on the right carry the final quantum numbers ñf
a = −n4

and ñf
b = −n2. Nevertheless, the scattering process considered in this figure requires inserting an

external closed string vertex operator, and is thus not computed by (3.14).

match the expression in (2.37a), we have to make the following rescalings of α′, R, and L:

α′ → α′

4 , R→ R

4 , L→ L

4 = πα′

2R . (3.22)

Here, the rescaling of R and L essentially uniformly rescales the geometry of the system.
Under the rescalings in (3.22), the open string amplitude (3.16) becomes

ML(1, 2, 3, 4) ≡Mo(1, 2, 3, 4)
α′→α′

4 , R→
R
4 , L→

L
4

= I(4)
L , (3.23)

where I(4)
L is given in (2.37a).
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Similarly, for different permutations of vertex operators and appropriate choices of
which D-branes the open strings end at, we find the following open string amplitude inter-
pretation for the quantities in (2.38) and (2.39),

I(4)
R = 2 i sin

(1
2 πα

′KR1 ·KR2
)
MR(1, 3, 4, 2)

1 3

42
(3.24a)

= 2 i sin
(1

2 πα
′KR2 ·KR3

)
MR(1, 3, 2, 4)

1 3

24
(3.24b)

We have defined

MR(i1, i2, i3, i4) ≡Mo(i1, i2, i3, i4)
α′→α′

4 , R→
R
4 , L→

L
4 , wi→−wi

. (3.25)

The second identity in (3.24b) comes from the open string relation

sin
(
2πα′P1 · P2

)
Mo(1, 3, 4, 2) = sin

(
2πα′P2 · P3

)
Mo(1, 3, 2, 4) , (3.26)

which is the stringy generalization [2, 3] of the Bern-Carraso-Johansson (BCJ) relation in
field theories [15]. However, in the case of nonzero winding, the field theory limit α′ → 0
does not converge, as winding states do not have a conventional QFT interpretation.

3.3 Four-point KLT relation

We are finally ready to write down the first KLT relation for winding strings. Plug-
ging (3.23) and (3.24a) into (2.30) and (2.36), we find the following KLT relation between
closed string amplitudeMc and open string amplitudesML andMR:

Mc(1, 2, 3, 4) =

= − 1
α′
C(1, 2, 3, 4) sin

(1
2 πα

′KR1 ·KR2
)
ML(1, 2, 3, 4)MR(2, 1, 3, 4) (3.27a)

= − 1
α′
C(1, 2, 3, 4) sin

(1
2 πα

′KR2 ·KR3
)
ML(1, 2, 3, 4)MR(1, 3, 2, 4) , (3.27b)

where C denotes contribution from the cocycle factors, with

C(i1 , i2 , i3 , i4) ≡ exp
(
iπ
∑4

p, q=1
p<q

nip wiq

)
. (3.28)

Here, (3.27a) matches (2.44a) and (3.27b) matches (2.44b). We now show explicitly
that (3.27) is invariant under switching “L” and “R”. First, note that the closed string
amplitude is unchanged upon permuting the vertex operators. Starting with (3.27a) and
performing the permutation (1, 2, 3, 4)→ (3, 2, 4, 1), we have

Mc(1, 2, 3, 4) =Mc(3, 2, 4, 1)

= − 1
α′
C(3, 2, 4, 1) sin

(1
2 πα

′KR3 ·KR2
)
ML(3, 2, 4, 1)MR(2, 3, 4, 1) .

(3.29)
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Using

C(3, 2, 4, 1) = (−1)n3w2−n2w3 C(1, 2, 3, 4) , (3.30)

and applying (2.47), we find

Mc(1, 2, 3, 4)

= − 1
α′
C(1, 2, 3, 4) sin

(1
2 πα

′KL2 ·KL3
)
MR(1, 2, 3, 4)ML(1, 3, 2, 4) ,

(3.31)

which is (3.27b) but with “L” and “R” switched, and it matches (2.45b). Similarly, we can
show that (3.27b) is equal to

− 1
α′
C(1, 2, 3, 4) sin

(1
2 πα

′KL1 ·KL2
)
MR(1, 2, 3, 4)ML(2, 1, 3, 4) , (3.32)

which is (3.27a) but with “L” and “R” switched, and it matches (2.45a).
From the above four tachyon amplitudes, we make the following general observations

of the KLT relation for winding strings, which are also valid for amplitudes involving
massless and massive vertex operators. The KLT relation in (3.27) is for string amplitudes
in spacetime with a spatial direction compactified over a circle of radius R. The KLT
relation maps the closed string amplitude to a sum of the products of a pair of open
string amplitudes with the open strings ending on an array of D-branes transverse to the
compactified direction. The D-branes are positioned equidistantly along the spatial circle,
with the consecutive ones separated by L = 2πR̃, where R̃ = α′/R is the T-dual radius.
For a closed string that carries winding number wi and KK number ni,7 the corresponding
open string wraps wi times around the compactified circle. In addition, excluding the wi
times that it wraps around the circle, the open string is stretched between the q-th and
(q + ni)-th branes.8 Using (3.8), we find that the closed string momentum ni/R along the
compactified direction is mapped to the fractional winding number (defined in (3.8))

L

2πR ni = R̃

R
ni = α′

R2 ni (3.33)

of the open strings. The number of D-branes that are involved in the scattering between
open strings is n+ + 1, with n+ the sum of ni > 0 associated with the incoming closed
strings. See figure 1–3 for illustrations.

There is an equivalent interpretation for the open string amplitudes in the T-dual
frame, where the open strings satisfy Neumann boundary conditions in the compactified
direction. In this case, the open strings can carry nonzero momenta but only zero winding.

7For tachyons we have niwi = 0, which implies that at least one of ni and wi is zero. However, when
other vertex operators are considered, the quantity niwi is not necessarily zero.

8Since the series of D-branes is wrapped around the compactified circle, the shortest separation along
the circle between the ends of the open string might span over fewer than ni − 1 D-branes. For example,
in the diagram on the right in figure 4, if wi = 0, the open string starts at the q-th brane and ends at the
(q+4)-th brane in the series, which implies that ni = 4. However, the shortest separation between the ends
of the open string along the compactified circle is just between two D-branes.
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The KK number of a closed string is mapped to the KK number of the associated open
string, while the winding number of a closed string is mapped to a constant gauge field,
which gives rise to a shift in the open string momentum: it gives rise to fractional momen-
tum. The gauge field A is associated with a U(n+ + 1) Chan-Paton charge, where n+ + 1
is the number of D-branes. Since we take A to be constant, one can diagonalize it to be

A = 1
2πR̃

diag(θ1 , . . . , θn++1) , θq = qL

2πR , (3.34)

breaking the gauge group to U(1)n++1. Note that θq is T-dual to the location of the q-th
D-brane. The field A is pure gauge, but a Wilson loop that winds around the compactified
circle of dual radius R̃ gains a phase factor of the form

exp
(
i

∮
dX Aq

)
= eiθq , (3.35)

leading to a shift in the momentum ñi/R̃ along the compactified X-direction. For a string
in the Chan-Paton state |q + w̃i , q〉, its canonical momentum in X is

K̃M
i =

(
kµi ,

ñi + θq+w̃i − θq
R̃

)
=
(
kµi ,

ñi

R̃
+ w̃iR̃

α′

)
. (3.36)

Here, ñi = wi and w̃i = ni, with wi (ni) the winding (momentum) number of the corre-
sponding closed string.

The above observations hold for any higher point amplitudes among general vertex
operators discussed in section 2.2. We prove the general KLT relation for winding strings
in the next section. We also note that all such constructions straightforwardly generalize to
the Narain compactification, in which more than one spatial direction is compactified. In
this more case, we need to consider Dp-branes that are transverse to multiple compactified
directions.

4 KLT relation for higher-point amplitudes

In this section, we derive the KLT relation for higher-point amplitudes, involving winding
closed string vertex operators that take the general form as discussed in section 2.2.

4.1 Higher-point closed string amplitude

We start with anN -point tree-level closed string amplitude, which, similar to the four-point
amplitude in (2.27), takes the following general form:

A(N )
c ∝ (2π)25 δ(25)

(∑N
i=1
ki

)
δ∑N

i=1ni , 0
δ∑N

i=1wi , 0
(
iM(N )

c
)
, (4.1)
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where

Mc(1 , . . . , N )

= 1
α′N−3 |z1 − zN−1|2 |z1 − zN |2 |zN−1 − zN |2 (4.2)

×
(N−2∏
i=2

∫
C
d2zi

)
F (z1 , . . . , zN ; z1 , . . . , zN )

N∏
j,k=1
j<k

eiπwjnk z
1
2α
′KLj ·KLk

jk z
1
2α
′KRj ·KRk

jk .

We defined zij ≡ zi − zj . Here, the factor F comes from contracting the derivative terms
in the vertex operators that for example take the form of (2.21) and (2.24). The factor F
is single valued. Fixing z1 = 0, zN−1 = 1, and zN =∞, we find

Mc(1 , . . . , N )

= 1
α′N−3 C(1 , . . . , N )

(N−2∏
i=2

∫
C
d2zi

)
F (z2 , . . . , zN−2 ; z2 , . . . , zN−2)

×
N−2∏
i, j, k=2
j<k

z
1
2α
′KL1·KLi

i (1− zi)
1
2α
′KL(N−1)·KLi

z
1
2α
′KLj ·KLk

kj ×

z
1
2α
′KR1·KRi

i (1− zi)
1
2α
′KR(N−1)·KRi z

1
2α
′KRj ·KRk

kj ,

(4.3)

where the cocycle factor C(1 , . . . , N ) is defined by

C(i1 , . . . , iN ) ≡ exp
(
iπ
∑N

p, q=1
p<q

nip wiq

)
. (4.4)

We have abbreviated F (z1 , . . . , zN ; z1 , . . . , zN )
∣∣
z1=0, zN−1=1, zN=∞ by dropping the argu-

ments z1, zN−1, and zN , as well as their complex conjugates.
We write schematically the i-th closed string vertex operators as∑

k1+···kp=N
`1+···`q=Ñ

ε
(i)
I1···Ip J1···Jq

[
e

1
2 iπRwi (p̂L+p̂R)

]
Ci

:∂ k1XI1
Li · · · ∂

kpXIpLi ∂
`1XJ1

Ri · · · ∂
`qXJqRi

× eiKLi·XLi(z)+iKRi·XRi(z) : .
(4.5)

With appropriate choices of the polarization tensors ε(i), this general operator reduces to the
vertex operators considered in (2.21) and (2.24). In general, the tensors ε(i) satisfy various
conditions by imposing BRST invariance on the vertex operator. The dispersion relation
and the level matching condition for the state corresponding to the vertex operator (4.5)
are in form the same as the expressions in (2.23). In the following calculation, we employ
the standard trick in [1] and rewrite the polarization tensor as

ε
(i)
I1···Ip J1···Jq → εLiI1···Ip ε

Ri
J1···Jq . (4.6)

Under this replacement, the F -factor in (4.3) decomposes as

F (z2 , . . . , zN−2 ; z2 , . . . , zN−2)→ FL(z2 , . . . , zN−2)FR(z2 , . . . , zN−2) , (4.7)
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where FL (FR) contains polarization factor εLi (εRi). The new factors FL,R will be inter-
preted as factors in open string amplitudes coming from contracting derivative terms in
open string vertex operators. Applying the replacement (4.7) to (4.3), we find

Mc(1 , . . . , N )

→ 1
α′N−3 C(1 , . . . , N )

(N−2∏
i=2

∫
C
d2zi

)
FL(z2 , . . . , zN−2)FR(z2 , . . . , zN−2)

×
N−2∏
i, j, k=2
j<k

z
1
2α
′KL1·KLi

i (1− zi)
1
2α
′KL(N−1)·KLi

z
1
2α
′KLj ·KLk

kj ×

z
1
2α
′KR1·KRi

i (1− zi)
1
2α
′KR(N−1)·KRi z

1
2α
′KRj ·KRk

kj .

(4.8)

Note that FL, R are single-valued functions that do not contribute any branch points. Col-
lecting terms multilinear in εLi and εRi and replacing their product with ε(i), we recover
the original amplitude (4.3). In the following, we will take Mc to denote the expression
in (4.8), with the splitting of the polarization factor taken into account implicitly.

4.2 Splitting the worldsheet integrals

It is a standard exercise to perform the integrals over the complex plane such that it splits
into two sets of contour integrals for the left- and right-movers, respectively [1], bearing
caveats concerning the cocycle factor. For completeness, we will review the complex integral
and articulate the differences.

First, make the change of variables with zi = xi + i ỹi for real variables xi and ỹi.
Then, we promote the integrals over ỹi to be in the complex plane, with the branch points
at i xi, −i(1 − xi), and ỹj + i(xi − xj). Deform the contour for the ỹi-integral that runs
along the real axis by rotating it counterclockwise by π

2 − ε, ε → 0+. This is done by a
second change of variables,

ỹi = exp
[
i(π2 − ε)

]
yi ≈ i yi + ε yi . (4.9)

We require that such deformations of the contours are done simultaneously for all the
ỹi-integrals, in order to ensure that none of the branch points are crossed. Define

ξi ≡ xi + yi , ζi ≡ xi − yi , δi ≡ ε yi = 1
2 ε (ξi − ζi) , (4.10)

in terms of which we rewrite (4.8) as

Mc(1 , . . . , N ) = 1
α′N−3 C(1 , . . . , N )

(N−2∏
i=2

∫
R
dζi

∫
R
dξi

)
OLOR , (4.11)
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where

OL = FL

N−2∏
j=2

(ζj + i δj)
1
2α
′KL1·KLj (1− ζj − i δj)

1
2α
′KL(N−1)·KLj

×
N−2∏
k, `=2
k<`

[
ζ` − ζk + i (δ` − δk)

] 1
2α
′KLk·KL` , (4.12a)

OR = FR

N−2∏
j=2

(ξj − i δj)
1
2α
′KR1·KRj (1− ξj + i δj)

1
2α
′KR(N−1)·KRj

×
N−2∏
k, `=2
k<`

[
ξ` − ξk − i (δ` − δk)

] 1
2α
′KRk·KR` . (4.12b)

We now perform the integrals over ξi for fixed ζi, i = 2, . . . , N − 2. First, we define the
permutation σ(2, . . . , N − 2) of the particle numbers such that the fixed values of ζi’s are
ordered as

ζσ(2) < ζσ(3) < · · · < ζσ(N−2) . (4.13)

In the case when ζσ(2) ∈ (−∞ , 0), the branch points for the ξσ(2)-integral are at

i δσ(2)
∣∣
ξσ(2)=0 = i

2 ε (−ζσ(2)) , (4.14a)

1 + i δσ(2)

∣∣
ξσ(2)=1 = 1 + i

2 ε
(
1− ζσ(2)

)
, (4.14b)

ξσ(i) + i (δσ(2) − δσ(i))
∣∣
ξσ(2)=ξσ(i)

= ξσ(i) + i
2 ε (ζσ(i) − ζσ(2)) , i > 2 . (4.14c)

All these branch points reside in the upper half plane. Completing the contour in the lower
half plane, we find that the contribution from ζσ(2) ∈ (−∞ , 0) to the amplitude Mc is
zero. Similarly, when ζσ(N−2) ∈ (1 ,∞), all the branch points for the ξσ(N−2)-integral are
in the lower half plane. Therefore, the contribution from ζσ(N−2) ∈ (1,∞) to Mc is also
zero. Therefore, the integrals in (4.11) are only nonzero when

0 < ζσ(2) < · · · < ζσ(N−2) < 1 , (4.15)

which partitions up the associated integration region from 0 to 1. As a result, (4.11)
becomes

Mc(1 , . . . , N ) =Mc
(
1 , σ(2 , . . . , N −2) , N −1 , N

)
=
(

i

2α′
)N−3

C
(
1 , σ(2 , . . . , N −2) , N −1 , N

)∫
∆

(N−2∏
i=2

dζi

∫
R
dξi

)
OLOR ,

(4.16)

with the integration domain

∆ = {ζ2 , . . . , ζN−2
∣∣0 < ζσ(2) < · · · < ζσ(N−2) < 1} , (4.17)
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and

OL = FL

N−2∏
j=2

ζ
1
2α
′KL1·KLj

j (1− ζj)
1
2α
′KL(N−1)·KLj

×
N−2∏
k, `=2
k<`

(ζσ(`) − ζσ(k))
1
2α
′KLσ(k)·KLσ(`) , (4.18a)

OR = FR

N−2∏
j=2

(ξj − i δj)
1
2α
′KR1·KRj (1− ξj + i δj)

1
2α
′KR(N−1)·KRj

×
N−2∏
k, `=2
k<`

[
ξσ(`) − ξσ(k) − i (δσ(`) − δσ(k))

] 1
2α
′KRσ(k)·KRσ(`) . (4.18b)

When k < `, for a fixed ξσ(`), the ξσ(k)-integral has a branch point at

ξσ(`) + i
2 ε
(
ζσ(`) − ζσ(k)

)
, (4.19)

which resides in the upper half plane if the ξσ(k)-contour traverses the real axis. This
implies that, in order to avoid branch points, we need to shift the contour associated with
the ξσ(`)-integral to be slightly above the contour associated with the ξσ(k)-integral in the
complex plane [4].

We now elaborate on the factors

(ζσ(`) − ζσ(k))
1
2α
′KLσ(k)·KLσ(`) , k < ` , (4.20)

that appear in (4.18a). When σ(`) < σ(k), this factor ultimately comes from

(zσ(k) − zσ(`))
1
2α
′KLσ(k)·KLσ(`) (4.21)

in (4.8). To pass from (4.21) to (4.20), an extra phase factor that is a function of KLi
appears. The same reordering for zi’s in (4.8) also introduces a similar phase factor, which
is a function of KRi. In the case when there is zero winding, we have KLi = KRi and
there is no extra phase factor introduced after simultaneously reordering zi’s and zi’s.
This is, however, not the case when winding modes are present: the extra phase factors
from reordering zi’s and zi’s do not exactly cancel when KLi 6= KRi. The remainder phase
factor can be absorbed into the cocycle factor C(1 , . . . , N ) in (4.11), which turns the
cocycle factor into C

(
1 , σ(2 , . . . , N − 2) , N − 1 , N

)
in (4.16), where the arguments are

permuted. The above observation is summarized by the following identity:

C(1, . . . , N )
N−2∏
k, `=2
k<`

(z` − zk)
1
2α
′KLk·KL` (z` − zk)

1
2α
′KRk·KR`

= C
(
1 , σ(2 , . . . , N − 2) , N − 1 , N

)
×
N−2∏
k, `=2
k<`

(zσ(`) − zσ(k))
1
2α
′KLσ(k)·KLσ(`) (zσ(`) − zσ(k))

1
2α
′KRσ(k)·KRσ(`) .

(4.22)
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4.3 Higher-point KLT relation

Now, the integrals over ζi and ξi in (4.16) can be performed in the standard way as
in [1, 3, 4], generalizing the same procedure for four-point amplitudes in section 2.3 to
N -point amplitudes. We find the following N -point KLT relation:

Mc(1, . . . , N ) = (−1)N−3 ∑
σ, β, γ

C
(
1 , σ(2 , . . . , N − 2) , N − 1 , N

)
× SR

[
γ ◦ σ(2 , . . . , `− 1)

∣∣σ(2 , . . . , `− 1)
]
KR1

× SR
[
σ(` , . . . , N − 2)

∣∣β ◦ σ(` , . . . , N − 2)
]
KR(N−1)

×ML
(
1 , σ(2 , . . . , N − 2) , N − 1 , N

)
×MR

(
γ ◦ σ(2 , . . . , `− 1) , 1 , N − 1, β ◦ σ(` , . . . , N − 2) , N

)
.

(4.23)

Note that β permutes N − ` − 1 indices and γ permutes ` − 2 indices. Here, we defined
the open string amplitudeML after the rescaling (3.22) as

ML
(
1, σ(2, . . . , N − 2), N − 1, N

)
=
∫

∆
FL

N−2∏
i=2

dζi |ζi|
1
2α
′KL1·KLi |1− ζi|

1
2α
′KL(N−1)·KLi

×
N−2∏
j, k=2
j<k

|ζσ(k) − ζσ(j)|
1
2α
′KLσ(j)·KLσ(k) , (4.24)

where the domain ∆ is defined in (4.17). The i-th open string involved in the scattering
amplitude is labeled by the quantum numbers (ni , wi). See (3.23) for an example. Open
string amplitudes with a different cyclic ordering are defined accordingly by permuting the
integration domain and the indices in (4.24). The open string amplitude MR is defined
analogously by replacing the subscript “L” with “R”, with the i-th open string involved
in the scattering amplitude labeled by the quantum numbers (ni ,−wi). See (3.25) for an
example. The momentum kernel SR is defined as [19]

SR
[
i1 , . . . , ik | j1 , . . . , jk

]
P

=
(
α′
)−k k∏

t=1
sin

1
2 πα

′

P ·KRit +
k∑

q=t+1
θ(it , iq)KRit ·KRiq

 , (4.25)

which takes into account the phase factors associated to crossing a branch cut. Here,
i1 , . . . , ik and j1 , . . . , jk are elements in {1 , . . . , k}. Moreover, if the ordering of it and
iq is the opposite in the ordered sets (i1 , . . . , ik) and (j1 , . . . , jk), we set θ(it , iq) = 1;
if the ordering is the same, we set θ(it , iq) = 0. The KLT relation in (4.23) shows how
the N -point amplitude for closed strings with windings can be factorized as a product of
open string amplitudes. The open strings satisfy the Dirichlet boundary condition in the
compactified direction, with their ends positioned on an array of D-branes transverse to
the compactified circle, as we have detailed in section 3.
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Note that (4.23) is independent of ` ∈ {3 , . . . , N − 2}. This is reminiscent of the
four-point amplitude that we discussed earlier in section 2.3, which has two equivalent
expressions in (2.38) and (2.39), depending on whether the integration contour for the
ξ-integral is deformed to the left or right. To derive the N -point amplitude (4.23), we
have deformed ` − 2 contours associated with the ξσ(k)-integrals, k = 2, . . . , ` − 1, and
the remaining N − ` − 1 contours have been deformed to the right, without crossing any
branch cuts. From the open string amplitude perspective, the existence of different ways
of writing the KLT relation is due to the open string generalization of the Kleiss-Kuijf
and BCJ relations [2–4].9 The KLT relation can also be cast in equivalent forms other
than (4.23). When ` = 2, all the contours for the ξi-integral are deformed to the right,
yielding

Mc(1 , . . . , N ) = (−1)N−3 ∑
ρ, σ

C
(
1 , σ(2 , . . . , N − 2) , N − 1 , N

)
× SR

[
σ(2 , . . . , N − 2)

∣∣ ρ(2 , . . . , N − 2)
]
KR(N−1)

×ML
(
1 , σ(2 , . . . , N − 2) , N − 1 , N

)
×MR

(
1 , N − 1 , ρ(2 , . . . , N − 2) , N

)
.

(4.26)

Here, ρ is the same as σ that permutes the ordered set (2, . . . ,N − 2). When ` = N − 1,
all the contours for the ξi-integrals are deformed to the left, where

Mc(1 , . . . , N ) = (−1)N−3 ∑
ρ, σ

C
(
1 , σ(2 , . . . , N − 2) , N − 1 , N

)
× SR

[
ρ(2 , . . . , N − 2)

∣∣σ(2 , . . . , N − 2)
]
KR1

×ML
(
1 , σ(2 , . . . , N − 2) , N − 1 , N

)
×MR

(
ρ(2 , . . . , N − 2) , 1 , N − 1 , N

)
.

(4.27)

The expressions in (4.26) and (4.27) can be thought as two limiting cases of (4.23).10

To show explicitly that these expressions are invariant under swapping the subscripts
“L” and “R”, we start with the expression in (4.26) and permute the closed string vertex

9Also see [11] for generalizations to higher genus Riemann surfaces using twisted homology.
10There is also a different representation of KLT relations as noted in [1], which can be obtained by

evaluating the integrals in (4.11) directly without performing any further deformation of the integration
contours. This representation has a simple combinatorial interpretation [20]. In the winding case, this
representation has the benefit of making the resulting KLT relation manifestly symmetric with respect to
the subscripts “L” and “R”, However, this KLT relation contains

[
(N − 1)!/2

]2 terms. In contrast, the
KLT relation (4.23) is more useful in practice since it only contains (N − 3)! (` − 2)! (N − ` − 1)! terms,
with 2 ≤ ` ≤ N − 1, which are far fewer than

[
(N − 1)!/2

]2 terms when N > 3 [4, 20].
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operators as

Mc(1 , . . . , N ) =Mc(N , 2 , . . . , N − 2 , 1 , N − 1)

= (−1)N−3 ∑
ρ, σ

C
(
N , ρ(2 , . . . , N − 2) , 1 , N − 1

)
× SR

[
ρ(2 , . . . , N − 2)

∣∣σ(2 , . . . , N − 2)
]
KR1

×ML
(
N , ρ(2 , . . . , N − 2) , 1 , N − 1

)
×MR

(
N , 1 , σ(2 , . . . , N − 2) , N − 1

)
= (−1)N−3 ∑

ρ, σ

C
(
N , ρ(2 , . . . , N − 2) , 1 , N − 1

)
× SR

[
ρ(2 , . . . , N − 2)

∣∣σ(2 , . . . , N − 2)
]
KR1

×MR
(
1 , σ(2 , . . . , N − 2) , N − 1 , N

)
×ML

(
ρ(2 , . . . , N − 2) , 1 , N − 1 , N

)
. (4.28)

We have swapped the dummy permutation symbol ρ and σ to get the second equality
above. Furthermore, note that

C
(
N , ρ(2, . . . , N − 2), 1, N − 1

)
SR
[
ρ(2, . . . , N − 2)

∣∣σ(2, . . . , N − 2)
]
KR1

=C
(
1, σ(2, . . . , N − 2), N − 1, N

)
SL
[
ρ(2, . . . , N − 2)

∣∣σ(2, . . . , N − 2)
]
KL1

,
(4.29)

where
SL
[
i1 , · · · , ik | j1 , · · · , jk

]
P

≡
(
α′
)−k k∏

t=1
sin

1
2 πα

′

P ·KLit +
k∑
q>t

θ(it , iq)KLit ·KLiq

 . (4.30)

Plugging (4.29) back into (4.28), we find

Mc(1 , · · · , N ) = (−1)N−3 ∑
ρ, σ

C
(
1, σ(2, . . . , N − 2), N − 1, N

)
× SL

[
ρ(2 , · · · , N − 2)

∣∣σ(2 , · · · , N − 2)
]
KL1

×MR
(
1 , σ(2 , · · · , N − 2) , N − 1 ,N

)
×ML

(
ρ(2 , · · · , N − 2) , 1 , N − 1 ,N

)
,

(4.31)

which is exactly the expression in (4.27) but with the subscripts “L” and “R” swapped.
Another way to understand this invariance under switching “L” and “R” is by observing
that (4.27) comes from integrating {ξi} before {ζi} in (4.11), and that (4.31) comes from
integrating {ζi} before {ξi} in (4.11). Therefore, the invariance under switching “L” and
“R” is the consequence of the invariance under commuting the orders of performing different
integrals. Similarly, starting with the expression from switching “L” and “R” in (4.27) and
then going through the analogous procedure in (4.28)–(4.31), we arrive at (4.26) but with
the subscripts “L” and “R” swapped. It also follows immediately that the more general
KLT relation in (4.23) has to hold after switching “L” and “R”.
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5 Conclusions and outlooks

In this paper we extended the KLT relation to winding strings in a toroidal compactification
of string theory. We showed that the string amplitudes of winding closed strings factorize
into quadratic products of amplitudes for open strings ending on an array of D-branes
transverse to the compact directions. The winding number w of a closed string is mapped
to an integer winding number of an open string wrapping around the compactified circle;
while the momentum of a closed string is mapped to the fractional winding number that
encodes how many D-branes the open string traverses, excluding the w times that the open
string winds around the full circle. The general form of the KLT relation is given in (4.23).
In appendix A, we use intersection theory to write the KLT relations in a succinct form
in (A.26).

In the case of nonzero winding, there is no field theory limit by simply sending the
Regge slope α′ to zero. However, there still is a nonsingular α′ → 0 limit for winding
strings in the presence of a near critical Kalb-Ramond field. This type of limit was origi-
nally applied to open strings on spacetime filling D-branes, which led to noncommutative
open string (NCOS) theory [21, 22]. This NCOS limit was then realized for winding closed
strings [23–25] as well as winding open strings with Dirichlet boundary conditions [26, 27],
leading to self-contained nonrelativistic closed and open string theory, where the string
spectra enjoy a Galilean-invariant dispersion relation. It has also been shown that NCOS
is T-dual to nonrelativistic open string theory [28]. Recently, there has been growing inter-
est in nonrelativistic string theory, leading to a plethora of applications to nonrelativistic
gravity and field theory (see, e.g., [27, 29–37]). Amplitudes for nonrelativistic closed strings
have been studied in [24], while amplitudes for nonrelativistic open strings and the asso-
ciated KLT relation are still in progress [38]. This endeavor may also enrich the current
S-matrix program to include nonrelativistic field theories.

The KLT relation for winding string amplitudes explored in this paper opens up new
possibilities of generalizing other modern techniques developed for field-theoretical am-
plitudes to the study of winding string states. The program of mapping out structures
of winding string amplitudes may bring us new insights into string theory and quantum
gravity in general.
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A KLT and twisted period relation

In this appendix, we review the modern interpretation of the KLT relation using intersec-
tion theory. We will see that the KLT relation for winding strings given in section 4.3 is
indeed underlay by the twisted Riemann’s period relation [39] (which generalizes Riemann’s
bilinear relation), and the inverse KLT kernel receives the geometrical interpretation as an
intersection number between cycles in the twisted homology, defined on the moduli space.
This is a direct generalization of the results in [9, 40] for the standard KLT relation, which
we follow closely in the following discussion. For the mathematical part of the following
discussion, we mostly follow [41, 42].

A.1 Twisted cocycles and closed string amplitudes

We start with the closed string side of the KLT relation. Recall the integrals for closed
string amplitudes in (4.8), and its split form in (4.16), which we choose to separate into
the multi-valued function given by the Koba-Nielsen factor,

U(z2, · · · , zN−2) =
N−1∏
i, j=1
i<j

z
1
2α
′KRi·KRj

ji , (A.1)

and the following factors that are single valued:

fL(z2, · · · , zN−2) = FL(z2, · · · , zN−2)
N−1∏
i, j=1
i<j

z
1
2α
′KLi·KLj− 1

2α
′KRi·KRj

ji

= FL(z2, · · · , zN−2)
N−1∏
i, j=1
i<j

z
niwj+njwi
ji , ni , wi ∈ Z ; (A.2a)

fR(z2, · · · , zN−2) = FR(z2, · · · , zN−2) . (A.2b)

Note that z1 = 0 and zN−1 = 1 are fixed. Using the above notation, the closed string
amplitude (4.8) can be written as

Mc(1, · · · ,N ) = C(1, · · · ,N )
(N−2∏
i=2

∫
C
d2zi

)
fL(z2, · · · , zN−2) fR(z2, · · · , zN−2)

× |U(z2, · · · , zN−2)|2 . (A.3)

This closed string amplitude is reminiscent of the intersection number between cocycles in
the twisted cohomology, which we brief in the following.

We start with the definition of the twisted cohomology [43] on the moduli space. The
singular loci of the Koba-Nielsen factor (A.1) are

zi = 0 , zi − 1 = 0 , zj − zi = 0 , 2 ≤ i < j ≤ N − 2 . (A.4)
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We define a divisor D as the union of the hyperplanes in (A.4). Then, the closed string
moduli space is X = CN−3 \D. Consider the twisted logarithmic one-form of the multi-
valued Koba-Nielsen factor (A.1) [9],

ω ≡ d logU = α′

2

N−2∑
i=2

Ei dzi , Ei ≡
N−1∑
j=1
j 6=i

KRi ·KRj
zij

, (A.5)

and the covariant derivative ∇ω = d+ω∧ on X. We require that α′

2 KRi ·KRj ∈ R\Z. Here,
Ei denotes the scattering equation [5, 44]. With respect to ∇ω, we define the (N − 3)-th
twisted de Rham cohomology

HN−3(X,∇ω) =
Ker

(
∇ω : ΩN−3(X)→ 0

)
Im
(
∇ω : ΩN−4(X)→ ΩN−3(X)

) , (A.6)

where Ωk(X) is the space of smooth k-forms on X.11 Consider the single-valued (N − 3)-
forms on X,

ϕL(z2, · · · , zN−2) = fL(z2, · · · , zN−2) dz2 ∧ · · · ∧ dzN−2 , (A.7a)

ϕR(z2, · · · , zN−2) = fR(z2, · · · , zN−2) dz2 ∧ · · · ∧ dzN−2 , (A.7b)

which are cocycles in HN−3(X,∇ω). We now consider a pairing between HN−3(X,∇ω) and
its dual HN−3

c (X,∇ω∨). It is important that the dual cohomology is with compact support,
and hence the subscript “c” [43]. We keep this implicit in the following expressions. These
two cohomologies are dual to each other under the pairing

〈
ϕL , ϕ

∨
L
〉

=
∫
X

(
U U∨

)
ϕL ∧ ϕ∨L . (A.8)

Defining ω∨ ≡ ω, U∨ ≡ U , and ϕ∨L ≡ ϕR, where the barred quantities are complex
conjugations, we find 〈

ϕL , ϕR
〉

=
∫
X
|U |2 ϕL ∧ ϕR . (A.9)

In terms of (A.9), the closed string amplitude (A.3) becomes

Mc(1, · · · ,N ) = C(1, · · · ,N )
〈
ϕL , ϕR

〉
. (A.10)

Note that this is different from the pairing of two k-th twisted cohomology groups that
gives rise to the intersection number of k-th twisted cocycles, which requires a different
choice of the dual quantities, namely with ω∨ = −ω and U∨ = U−1 [43]. The duality that
we are interested in here, which maps ω and U to their conjugations, has been studied
in [9, 42].

11A common basis for the twisted cohomology takes a logarithmic form, which is related to the Parke-
Taylor factor [9, 45].
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A.2 Loaded cycles and open string amplitudes

Now we move on to the open string side. In terms of the Koba-Nielsen factor U in (A.1)
and the differential form ϕL in (A.7a), the open string amplitudeML introduced in (4.24)
can be cast in the form

Θ
(
β(1, · · · ,N )

∣∣ 1, · · · ,N )ML(β) =
∫

∆(β)
U∆
(
β
)
ϕL(z2, · · · , zN−2) , (A.11)

where permutation β fixes the cyclic ordering
(
β(1), · · · , β(N )

)
. We introduced the Θ-

factor,
Θ
(
i1 , · · · , iN

∣∣ j1 , · · · , jN ) , (A.12)

that contributes a factor (−1)niwj+njwi if the ordering of i and j is the opposite in the
ordered sets (i1 , · · · , iN ) and (j1 , · · · , jN ). In the case when(

β(1), · · · , β(N )
)

=
(
1, σ(2), · · · , σ(N − 2), N − 1, N − 2

)
, (A.13)

the open string amplitude in (A.11) becomes (4.24). To be concrete, we explain different
ingredients in (A.11) using the example (A.13). The integration domain,

∆(1, σ(2), · · · , σ(N − 2), N − 1, N − 2) , (A.14)

represents the (N − 3)-dimensional region 0 < zσ(2) < · · · < zσ(N−2) < 1. The closure
of this integration domain is an (N − 3)-simplex in a smooth triangulation of the real
section of the moduli space X which we refer to as X(R). Since there exist more than two
coalescing punctures, a minimal blowup of the moduli space is required [42]. The blowup
of a simplex is an associahedron KN−1 [46, 47]. The multi-valued Koba-Nielsen factor U
has its branch fixed with respect to the simplex ∆(β) in (A.11), giving rise to quantity U∆
that is single-valued in ∆(β). In the concrete example (A.13), we have

U∆
(
1,σ(2), · · · ,σ(N−2),N−1,N

)
=
N−2∏
i=2

z
1
2α
′KR1·KRσ(i)

σ(i)
(
1−zσ(i)

) 1
2α
′KR(N−1)·KRσ(i)

N−2∏
k,`=2
k<`

(
zσ(`)−zσ(k)

) 1
2α
′KRσ(k)·KRσ(`) .

(A.15)

In general, for a given permutation β in ∆(β), there corresponds a unique associahedron,
for which a particular branch of the Koba-Nielsen factor is chosen [9].

The above pairing between the simplex ∆(β) and the single-valued branch choice U(β)
motivates the definition of a loaded simplex [48], Γ(β) = ∆(β) ⊗ U(β). Using the loaded
simplices we define the (N − 3)-th twisted homology group HN−3(X,Lω), with coefficients
in the sheaf Lω consisting of local solutions to dψ = ω ψ, where ψ is a locally holomorphic
function that has the formal solution ψ ∝ U [41, 43]. Then, the loading U in a loaded
cycle ∆⊗ U is a section of Lω on ∆. The open string amplitude (A.11) is now defined as
a pairing between the twisted homology group HN−3(X,Lω) and the twisted cohomology
group HN−3(X,∇ω),

〈∆(β)⊗ U(β) , ϕL〉 =
∫

∆(β)
U∆(β)ϕL . (A.16)
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• •
z = 1z = 0

S1
ε (0) S1

ε (1)

ε 1− ε

Figure 7. Regularization of the path [0, 1]. S1
ε (z) is a circle centered at z with radius ε.

Here, ∆(β)⊗ U(β) is a loaded cycle12 that is an element of HN−3(X, Lω), defined on the
non-compact manifold X.

Furthermore, we define the locally finite homology group H l.f.
N−3(X, Lω) [48], and in-

troduce a pairing between H l.f.
N−3(X, Lω) and the cohomology group HN−3

c (X,∇ω) with a
compact support. This pairing represents the open string amplitude MR, with

〈∆(β)⊗ U(β) , ϕR〉 =
∫

∆(β)
U∆(β)ϕR =MR(β) , (A.17)

where ∆(β)⊗ U (β) is a loaded cycle in H l.f.
N−3(X, Lω).

A.3 Intersection number and twisted period relation

Finally, we consider a pairing between HN−3(X, Lω) and the locally finite homology group
H l.f.
N−3(X, Lω). This pairing gives rise to a geometric interpretation for the inverse KLT ker-

nel as an intersection number between two loaded cycles [9]. There exists an isomorphism
map [41],

reg : H l.f.
N−3(X,Lω)→ HN−3(X,Lω ) . (A.18)

The map “reg” can be realized by a regularization of the loaded cycles. For example, when
N = 4, and when the tachyonic vertex operators are concerned, we encounter the integral∫

0<z2<1
U(1, 2, 3, 4)ϕL(z2) , (A.19)

with

U(1, 2, 3, 4) = z
1
2α
′KR1·KR2 (1− z)

1
2α
′KL2·KR3 , ϕL(z2) = fL(z) dz . (A.20)

This integral is equal to the open string amplitude (2.37a) up to the Θ-factor as specified
in (A.11). Moreover, (A.19) only converges when both the exponents (that we have assumed
to be non-integers) in (A.20) are larger than −1. The regularization of the integration
domain (0, 1) is the Pochhammer contour, which gives rise to the regularization ∆(1, 2, 3, 4)
of the path [0, 1] as in figure 7. We have

Γ(1, 2, 3, 4) = [0, 1]⊗ U(1, 2, 3, 4) ∈ H l.f.
1 (X,Lω) , (A.21a)

reg Γ(1, 2, 3, 4) = ∆(1, 2, 3, 4)⊗ U(1, 2, 3, 4) ∈ H1(X, Lω) , (A.21b)

which can be generalized to arbitrary N . See [9, 41, 42] for further details.
12We follow [49] and use the terminology “loaded cycle” instead of the usual name “twisted cycle”.
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•
z = 0

. . . ε

z = −∞
1− ε •

z = 1
−ε

(a) Intersection between regΓ(1, 2, 3, 4) (in blue) and Γ(2, 1, 3, 4) (in red) at z = −ε. Using (A.22), the
intersection number is computed to be

[
2 i sin

(
1
2 πα

′KR1 ·KR2
)]−1, whose inverse matches the KLT kernel

in (3.27a).

z = 0
ε 1− ε

z = 1
. . .•

z =∞
• 1 + ε

(b) Intersection between regΓ(1, 2, 3, 4) (in blue) and Γ(1, 3, 2, 4) (in red) at z = 1 + ε. Using (A.22), the
intersection number is computed to be

[
2 i sin

(
1
2 πα

′KR2 ·KR3
)]−1, whose inverse matches the KLT kernel

in (3.27b).

Figure 8. Intersection numbers between different loaded cycles.

The intersection number between the two loaded cycles is defined with respect to
the intersection points between the paths Γ and regΓ. In general, we define the inter-
section number as the following pairing between regΓ(β) ∈ H l.f.

N−3(X,Lω) and Γ(γ) ∈
H l.f.
N−3(X,Lω) [42]:

〈
regΓ(β) ,Γ(γ)

〉
=
∑

p∈∆∩∆′
Ip(∆ ,∆′) U∆ U∆′

|U |2

∣∣∣∣
p

, (A.22)

where we defined
regΓ(β) = ∆⊗ U∆ , Γ(γ) = ∆′ ⊗ U∆′ . (A.23)

Here, ∆ and ∆′ are N − 3 simplices and Ip denotes the topological intersection number
at the intersecting point p, which only depends on the relative orientations of ∆ and ∆′

at p. It is shown in [9] that (A.22) precisely gives the inverse of the KLT kernel that is a
function of KRi. For example, see figure 8 for intersection numbers that give rise to the
inverse kernels in the KLT relations from (3.27). See [9] for detailed calculation. This
intersection number between two loaded cycles also receives the physical interpretation as
the α′-corrected bi-adjoint scalar amplitudes [8].

Assembling the ingredients introduced above, we now rewrite the KLT relation for
winding strings as a twisted Riemann’s period relation,

〈
ϕL, ϕR

〉
=

∑
Γ′(β),Γ(γ)

〈
ϕL ,Γ′(β)

〉
m−1(β|γ)

〈
Γ(γ) , ϕR

〉
, (A.24)

where m−1(β|γ) is the inverse of the intersection matrix m(β|γ) ≡
〈
Γ′(β) ,Γ(γ)

〉
. Also note

that

ϕL ∈ HN−3(X,∇ω) , Γ′ ∈ HN−3(X,Lω) , (A.25a)

ϕR ∈ HN−3
c (X,∇ω) , Γ ∈ H l.f.

N−3(X,Lω) . (A.25b)
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Here, the sum over Γ′ and Γ are taken over generic bases of the loaded cycles inHN−3(X,Lω)
and H l.f.

N−3(X,Lω), respectively. In the case of zero winding, (A.24) reduces to the one dis-
cussed in [9, 42]. Taking the relations to closed and open string amplitudes (A.10), (A.11),
and (A.17) into account, we find that (A.24) becomes

Mc =
∑
β, γ

C(β)ML(β)m−1(β|γ)MR(γ) , (A.26)

which succinctly summarizes the KLT relations given in (4.23), (4.26), and (4.27).13 If we
start with the multi-valued function,

U(z2, · · · , zN−2) =
N−1∏
i, j=1
i<j

z
1
2α
′KLi·KLj

ji , (A.27)

instead of the expression for U in (A.1) that has been considered through this appendix, we
will land on the twisted Riemann’s period relation that represents the same KLT relations
but with “L” and “R” swapped (which of course swaps KLi and KRi).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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