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1 Introduction

Recently, there has been significant progress in computing holographic correlators, which
just a few years ago was still considered a notoriously difficult problem.1 Tree-level four-
point functions of arbitrary 1

2 -BPS operators have now been fully computed in all maxi-
mally superconformal CFTs by using a universal constructive method [6, 7].2 The results
exhibit surprising universality and simplicity, and extend the success of earlier bootstrap
approaches [8–14] which were most powerful when applied to strongly coupled N = 4
SYM. Physically, these maximally supersymmetric holographic correlators can be inter-
preted as the scattering amplitudes of an infinite set of scalar fields in AdS, which arise
from the Kaluza-Klein reduction of the 10d or 11d supergravity multiplet on a sphere.
These scalars are the super primaries of the Kaluza-Klein multiplets, and can be viewed as
super partners of (massless and massive) gravitons, i.e., super gravitons. Further studies
of AdS super graviton amplitudes have revealed many interesting mathematical structures.
In AdS5×S5 IIB supergravity, super graviton amplitudes exhibit a curious ten dimensional
hidden conformal symmetry [15], which allows them to be succinctly packaged into a simple
generating function. This property, however, is not shared by super graviton amplitudes in
11d supergravity compactified on AdS4×S7 and AdS7×S4. Another independent dimen-
sional reduction structure was recently discovered in [16], which allows all super graviton
amplitudes to be expressed in terms of the amplitudes of a simple scalar seed theory in
lower dimensions. This emergent structure is universal to all maximally supersymmetric
theories, and appears to be closely related to the Parisi-Sourlas supersymmetry [17].

These fascinating new developments provide strong motivations to explore more am-
bitious extensions. One exciting direction is to consider theories which are not maximally
supersymmetric. There is a variety of SCFTs in diverse dimensions which preserve half
of the maximal superconformal symmetry (i.e., eight Poincaré supercharges) while still
admitting a weakly coupled holographic dual. Constrained by less supersymmetry, such
theories have richer structures which are otherwise forbidden, such as global symmetries,
and therefore are expected to exhibit new interesting features. Moreover, in five dimensions
eight-supercharge SCFTs are also in a sense “maximal”, since the 5d N = 2 supersymmetry
algebra does not admit a superconformal extension. On the other hand, it is also extremely
interesting to ask what happens when gauge theories, instead of supergravity, are placed
in AdS. Gauge theories in AdS were first explored in the late ‘80s [18], where the original
motivation was to use the negative curvature of AdS to bring the infrared behavior under
analytic control without conflicting with gauge invariance. This problem was later revisited
in e.g. [19, 20].3 However, much remains terra incognita due to enormous computational
difficulties in AdS.

1See [1–5] for earlier results in the literature.
2The three maximally superconformal theories are: IIB supergravity on AdS5 × S5 (dual to 4d N = 4

super Yang-Mills theory) and 11d supergravity on AdS4 × S7 and AdS7 × S4 (dual respectively to the 3d
N = 8 ABJM theory and the 6d N = (2, 0) theory).

3There is also an extensive list of works studying general quantum field theories in AdS. See [21–25] for
a sampling of results from various points of view.
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In this paper, we develop powerful techniques to explore both directions in an array
of theories. More precisely, we will approach the problem by studying tree-level four-point
functions of super gluons. These super gluons are the scalar super primaries of a family
of superconformal short multiplets whose super descendants have at most Lorentz spin 1.
A distinguished member of the family is the flavor current multiplet, which harbors spin-1
conserved currents associated with continuous global flavor symmetries. These conserved
currents are dual to massless spin-1 gauge fields in AdS, while the spin-1 operators in
other short multiplets are dual to massive vector bosons. The existence of such multiplets
demands a certain amount of supersymmetry. The required amount of supersymmetry is
only half as much (at most) as in the maximally superconformal cases. However, as we will
see, this amount of supersymmetry also makes the calculation tractable. By focusing on
correlators of super gluons, we can avoid dealing with the complicated kinematics associated
with spinning operators. On the other hand, correlators of spinning operators can be
obtained from the super gluon correlators by using superconformal symmetry.

While we expect our techniques to be useful in other setups, in this paper we will
consider super gluon scattering amplitudes in two classes of theories. The first class arises
from D-branes or M-branes near singularities, which preserve eight Poincaré supercharges.
Theories in this class are full-fledged SCFTs which include 4d N = 2 SCFTs arising from
D3-branes near F-theory singularities [26, 27], 5d F4 Seiberg exceptional theories [28] en-
gineered from D4-D8/O8 systems, as well as the 6d N = (1, 0) E-string theory [29, 30]
from M5-branes on an end-of-the-world M9-brane. These theories play important roles in
the landscape of SCFTs. For example, the 6d E-string theory is related to various lower-
dimensional conformal field theories. The circle compactification of the E-string theory in
the presence of E8 Wilson lines gives rise to the 5d Seiberg theories, while compactifying it
on Riemann surfaces leads to 4d N = 1 theories. These theories share a common feature
in their dual holographic descriptions: the background geometries all have a singular locus
of the form AdSd+1 × S3 where d is the spacetime dimension of the SCFT. On this locus
there is a vector multiplet with a certain gauge group (or flavor symmetry group from the
boundary CFT perspective),4 which upon reduction on S3 gives rise to the aforementioned
super gluons. Another important feature of these theories is that the self-coupling of super
gluons is stronger than their coupling to super gravitons by powers of N , where N is the
number of branes probing the singularities and is taken to be large. This hierarchy of cou-
plings implies that the dominant contribution in tree-level processes is given by super gluon
exchanges, and graviton exchanges will only appear at higher orders in 1/N . Essentially,
at leading order we are only dealing with supersymmetric gauge theories in AdS.

The second class of theories is a type of phenomenological model of holography in which
flavors (fundamental matter) in the boundary supersymmetric gauge theories are included
by adding probe D-branes. The two theories we will focus on are 4d N = 4 SYM and 3d
N = 6 ABJM with fundamental matter. In the first case, D7-branes which fill the AdS5 and
wrap an S3 inside S5 are added [31]. In the second case, D6-branes which fill the AdS4 and

4This is because in AdS/CFT global symmetry currents in the boundary couple to gauge fields in the
bulk. We will use the terms flavor, gauge, color interchangeably in this paper depending on the perspective
we want to take.
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wrap an RP3 inside CP3 are introduced [32–34]. The number of flavor branes in both cases
needs to be much smaller than the number of D3- or M2-branes so that the theories remain
conformal. The flavor branes can then be treated as probes and do not backreact to the
geometry. However, the added flavor branes break half of the supersymmetry, to 4d N = 2
and 3d N = 3 respectively. The low energy degrees of freedom on the probe branes are
again vector multiplets, and give rise to super gluons in AdS after Kaluza-Klein reduction.

The main result of this paper is a complete list of all tree-level four-point functions of
super gluons with arbitrary Kaluza-Klein levels in all the theories mentioned above. Our
main tool is the maximally R-symmetry violating (MRV) method developed in [6, 7] to-
gether with constraints from the superconformal Ward identities. Using these ingredients,
we develop a streamlined algorithm for computing general four-point super gluon ampli-
tudes that can be applied to any spacetime dimension. By only inputting the spectrum and
imposing superconformal symmetry, we show that four-point amplitudes in vast families of
theories are completely fixed. The answer for the amplitudes takes the universal form as a
sum over exchange contributions, with no additional contact terms

M = csMs + ctMt + cuMu .

Here cs = f I1I2JfJI3I4 , ct = f I1I4JfJI2I3 , cu = f I1I3JfJI4I2 are color structures associated
with exchanging adjoint representations, and f IJK are the structure constants of the gauge
group. Remarkably, we find that the only dependence on the gauge group is through these
color structures. The amplitude factors Ms,t,u capture nontrivial dynamics, and will be
explicitly given for each theory. These super gluon amplitudes encode a wealth of data in
the dual SCFTs. In particular, our analysis outputs the complete three-point functions of
all super primaries of these short multiplets (see section 4 and 5), which to our knowledge
were not known in most of these theories. Note that the structure above is very reminiscent
of that of flat space gluon amplitudes at tree level — e.g., the dependence on gauge groups
is exactly the same. In fact, the comparison can be sharpened by taking the flat space
limit of our results. In this limit AdS amplitudes simplify drastically and reduce to

M|flat =
(

csNs

s
+ ctNt

t
+ cuNu

u

)
×
(
wavefunctions on S3),

with simple polynomials Ns,t,u homogeneous in Mandelstam variables obeying Ns + Nt +
Nu = 0. The information of different Kaluza-Klein levels of AdS super gluons in the
flat space limit is factored out in an S3 wavefunction factor. We will show that this
result matches exactly with the flat space four-gluon scattering amplitude after choosing
appropriate polarizations. However, to appreciate the full richness of our results we need
to go back to finite AdS curvature where more interesting mathematical structures become
visible. Some of these structures have analogues in super graviton amplitudes in maximally
supersymmetric theories, while other features are only possible with less supersymmetry
and therefore are new. Let us highlight some of these structures below.

Parisi-Sourlas supersymmetry. As mentioned above, all super gluon amplitudes can
be expressed as the sum of exchange amplitudes without additional contact terms. The

– 3 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
0

exchange amplitudes receive contributions from only a finite set of super gluon multiplets
due to selection rules. For each multiplet, we find its contribution can be written as a
differential operator acting on the sum of two AdSd+1 scalar exchange Witten diagrams.
However, a closer look at the sum reveals that it is identical to just a single scalar exchange
Witten diagram which lives in a lower dimensional AdSd−1 space. This curious dimensional
reduction phenomenon turns out to be related to a holographically realized Parisi-Sourlas
supersymmetry [35], and is a feature shared by all the AdS supersymmetric gauge theories
considered in this paper. Similar dimensional reduction was observed in maximally super-
symmetric super graviton amplitudes [16]. However, in that case the dimension of the AdS
space is reduced by four instead of two.

Hidden conformal symmetry. For 4d N = 2 theories, we also observe an eight dimen-
sional hidden conformal symmetry. In position space, we can define a reduced correlator
Hk1k2k3k4 to fully capture the dynamical information, where ki labels the Kaluza-Klein
levels of the external super gluons. We find that the reduced correlator with lowest Kaluza-
Klein level H2222(x2

ij), depending on the AdS5 distances x2
ij only, can be promoted into a

generating function H. The promotion is done by replacing the five dimensional distances
in H2222(x2

ij) with the eight dimensional distances x2
ij → x2

ij−tij where tij are the distances
on S3. Since the AdS5×S3 background is conformally flat, they can also be viewed as the
conformally invariant distances in R7,1 after a Weyl transformation. General correlators
Hk1k2k3k4 can then be obtained by Taylor expanding the generating function H in tij and
collecting all admissible monomials of tij in the reduced correlator. The same type of hid-
den conformal structures also made appearances in IIB supergravity in AdS5×S5 [15] and
AdS3 × S3 ×K3 [13, 36], where the symmetries are ten and six dimensional respectively.
However, our new example makes it clear that such hidden structures are not unique to
supergravity theories, but can be found in supersymmetric gauge theories as well. It also
provides further evidence that these structures originate from the conformal flatness of the
background geometry.

AdS color-kinematic duality. A fascinating property of flat space amplitudes is the
color-kinematic duality [37]. A natural question is whether this structure extends to AdS.
In this paper, we provide an affirmative answer by finding an AdS version of the color-
kinematic duality. This AdS color-kinematic duality holds for the massless super gluons,
i.e., the gauge fields in AdS, and is almost identical to the flat space relation. These
massless four-point Mellin amplitudes have a form analogous to the flat space four-gluon
amplitude

M∼ csns
( 1
s− d+ 2 + . . .

)
+ ctnt

( 1
t− d+ 2 + . . .

)
+ cunu

( 1
u− d+ 2 + . . .

)
The kinematic factors ns,t,u are linear in the Mellin-Mandelstam variables, and the . . .
denote satellite poles at d − 2 + 2Z+ which are completely fixed by symmetry. Thanks
to the Jacobi identity, cs,t,u satisfy cs + ct + cu = 0. Remarkably, ns,t,u satisfy the same
identity ns + nt + nu = 0, giving an AdS relation that completely parallels the flat space
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one. This structure for massless super gluons also admits an interesting modification to
massive modes, as we will discuss in the paper.

The rest of the paper is organized as follows. In section 2 we give a brief review of
the theories which we will consider and provide some background. We also discuss various
kinematical aspects and introduce the Mellin representation. In section 3 we outline the
strategy of our computation. We introduce the MRV method for non-maximally supercon-
formal theories, and explain how to fix the super gluon amplitudes by imposing symmetry
constraints. sections 4 and 5 contain the main results of this paper. In section 4 we give
all four-point super gluon amplitudes in the three full-fledged SCFTs, and in section 5 we
give the results for two models with flavor branes. In section 6 we study the flat space
limit of AdS super gluon amplitudes and show how all amplitudes in this limit are repro-
duced from the flat space gluon scattering amplitudes. Using the flat space limit, we also
outline an alternative method to derive our results. In section 7 we discuss in detail var-
ious interesting mathematical structures in these super gluon amplitudes: Parisi-Sourlas
supersymmetry, hidden conformal symmetry and AdS color-kinematic duality. Finally, we
conclude in section 8 with an outlook of future directions. The paper also includes sev-
eral appendices, which collect useful formulae and some technical results. Appendix A
contains the Mellin amplitude expressions for exchange Witten diagrams from [7]. A few
technical comments on 3d superconformal blocks are made in appendix B. In appendix C
we extract the chiral algebra correlators from the holographically computed super gluon
amplitudes for 4d N = 2 theories, and compare the results with independent field theory
calculations. In appendix D we discuss contact terms and higher-derivative corrections in
various dimensions.

2 Preliminaries

In this section we discuss a few preliminary ingredients for the rest of the paper. In sec-
tion 2.1 we describe the theories to be considered. In section 2.2 we specify the correlators
we will consider and discuss their kinematic features. In section 2.3 we review the Mellin
representation and how superconformal constraints are implemented in Mellin space.

2.1 Theories

In this paper we will discuss holographic correlators in two types of theories. The first
type is a distinguished class of SCFTs in 4d, 5d and 6d, which arises from branes probing
singularities. These theories preserve half of the maximal superconformal symmetry, i.e.,
eight Poincaré supercharges, and are listed in table 1. Let us describe them in more detail.

N = 2 theories from F-theory singularities [26, 27]. These theories arise from N

D3-branes, with N large, near an F-theory 7-brane singularity. The resulting near horizon
geometry has a metric similar to AdS5×S5, but with one of the angular coordinates of the
compact space having a changed periodicity

ds2 = dθ2 + sin2 θ dφ2 + cos2 θ dΩ2
3 . (2.1)
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Dimension SCFTd holographic origin
d = 4 N = 2 theories D3 near F-theory singularities
d = 5 Seiberg exceptional theories D4-D8/O8 system
d = 6 E-string theory M5 on an end-of-the-world 9-brane

Table 1. A class of holographic theories with eight Poincaré supercharges and a supergravity limit.
These theories arise in a similar fashion from branes probing singularities.

Here dΩ2
3 is the metric on S3, 0 ≤ θ ≤ π

2 , and φ is periodic with period 2π(1 − ν/2).
Seven types of singularities give rise to a conformal field theory on the D3-branes and
those correspond to

ν = 1
3 ,

1
2 ,

2
3 , 1 , 4

3 ,
3
2 ,

5
3 . (2.2)

The 7-brane wraps the AdS5 and is located at θ = 0, which is an S3 in the compact space.
Therefore the SO(6) isometry is broken to

SO(4)× SO(2) ' SU(2)R × SU(2)L ×U(1)r (2.3)

where the first factor SU(2)R becomes the SU(2) R-symmetry of N = 2, and the other
SU(2)L becomes a flavor symmetry. On the 7-brane, there is a 7 + 1 dimensional N = 1
SYM theory with gauge group GF . From the point of view of the four-dimensional theory
living on the D3-brane GF plays the role of a global symmetry. The above choices for ν
in (2.2) correspond to the following global symmetries

GF = U(1) , SU(2) , SU(3) , SO(8) , E6 , E7 , E8 . (2.4)

The simplest case corresponds to a Z2 orientifold singularity with ν = 1. In this case the
four dimensional theory is a USp(2N) N = 2 gauge theory with SO(8) global symmetry
and with one antisymmetric and four fundamental hypermultiplets.

Seiberg exceptional theories [28]. This class of theories comes from the UV fixed
point of a USp(2N) gauge theory coupled to Nf ≤ 7 hypermultiplets in the fundamental
representation, and a single hypermultiplet in the antisymmetric representation. The flavor
symmetry is enhanced to G = ENf+1 × SU(2)L at the fixed point.5 These theories can
also be constructed from Type IIA string theory (or Type I′ string theory) by a D4-D8/O8
setup. The dual geometry is a warped product of AdS6 and a hemisphere HS4. Therefore
we are left with an SO(4) ' SU(2)R × SU(2)L isometry. The first factor becomes the
SU(2) R-symmetry of the 5d F4 superconformal group, while the SU(2)L becomes a flavor
symmetry. The boundary of the four-hemisphere gives an 8-brane that fills AdS6. Similar
to the above F-theory singularity case, there is a 9d N = 1 vector multiplet propagating
on this AdS6 × S3 boundary with a gauge group ENf+1.

5Note E1 = SU(2), E2 = SU(2)×U(1), E3 = SU(3)× SU(2), E4 = SU(5), E5 = SO(10).
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Dimension SCFTd holographic origin
d = 3 N = 6 ABJM with flavors D6 wrapped over AdS4 × RP3

d = 4 N = 4 SYM with flavors D7 wrapped over AdS5 × S3

Table 2. A class of holographic theories obtained by adding flavor branes. Note the number of
preserved supersymmetries after adding flavor branes is halved, i.e., N = 3 for the flavored ABJM
and N = 2 for the flavored SYM.

E-string theory [29, 30]. The E-string theory can be engineered by placing N M5-
branes on top of an “end-of-the-world” 9-brane of the Hořava-Witten compactification of
M-theory. The dual geometry is AdS7×S4/Z2, which has a Z2 fixed locus AdS7×S3. The
Z2 quotient breaks the isometry from SO(5) down to SO(4) ' SU(2)R×SU(2)L. Again, the
first factor is identified with the SU(2) R-symmetry of the 6d N = (1, 0) superconformal
group, and the other SU(2)L becomes part of the flavor symmetry. In addition, on the Z2
locus there is a 10d N = 1 SYM multiplet with E8 gauge group, which is a flavor group
from the point of view of the six dimensional SCFT.

In these three families of theories, the Kaluza-Klein fields in AdS come from two
sources: supergravity in the full 10d or 11d space, and degrees of freedom living on the
singular locus. The spectrum of the supergravity modes in AdS5 and AdS7 can be ana-
lyzed following the method of [27] (or in the simpler orbifold cases, the spectrum can be
obtained by projecting to the singlets [26, 38]). The analysis of the AdS6 case is more in-
volved due to the warped product structure [39]. The supergravity modes can be organized
into superconformal multiplets, and contain both short and long types. On the other hand,
analyzing the spectrum from the singular locus is much simpler. Because the vector super
multiplets contain fields with at most spin 1, all the KK modes must belong to 1

2 -BPS
multiplets. Their spectrum therefore is completely fixed by their R-symmetry representa-
tions [27, 38, 40], and there is no need to analyze the linearized equations of motion. In
this paper, we will focus on the latter type of AdS excitations, i.e., field modes descending
from the singular loci, and compute all four-point functions of their dual operators.

The second class of models shares a lot similarities with the theories discussed above.
These are the theories arising from adding “flavors”, i.e., fundamental quarks, to super-
symmetric gauge theories. We list these theories in table 2.

Holographically, these models can be obtained by adding probe flavor branes. Such a
construction was first considered for 4d N = 4 SYM in [31], where Nf � N D7-branes
are added as probes to AdS5 × S5.6 The D7-branes fill AdS5 and wrap an equatorial S3

inside the S5. The presence of the probe flavor branes breaks the N = 4 superconformal
symmetry to N = 2. Similarly, D6-branes can also be added to AdS4 × CP3, which adds
fundamental matter to the N = 6 ABJM theory [32–34]. The D6-branes fill AdS4 and wrap
an RP3 inside CP3. Note that the flavored theory now has only N = 3 superconformal
symmetry, i.e., six Poincaré supercharges. Nevertheless, we will see that it can be treated in
the same fashion. We also note that the flavor branes are only probes and do not backreact

6This is also known as the “quenched” approximation.
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to the bulk geometry, which differs from the situation for theories in table 1. Finally, using
the same argument as above, we can see that the AdS Kaluza-Klein modes from the low
energy degrees of freedom of the flavor branes contain only short multiplets [34, 41]. It is
this sector of operators for which we will compute correlators.

2.2 Kinematics of four-point functions

Operators. The primary focus of this paper is the class of holographic SCFTs with eight
Poincaré supercharges summarized in table 1 in the previous subsection. The examples
include 4d N = 2 theories constructed from D3-branes near F-theory singularities [26, 27],
5d F (4) theories constructed from D4-D8 systems in massive Type IIA supergravity [42],
and 6d (1, 0) theories from M5-branes on an “end-of-the-world” M9-brane [43]. However,
the same techniques will also apply to the theories with flavor branes summarized in table 2,
even though the 3d theory has only six supercharges. As already mentioned in section 2.1,
what these theories have in common is that there are branes that fill the AdS factors and
an S3 (or RP3) in the compact space. The presence of the branes breaks the compact space
isometries as follows

AdS7 : SO(5)→ SO(4) = SU(2)R × SU(2)L ,
AdS6 : SO(5)→ SO(4) = SU(2)R × SU(2)L ,
AdS5 : SO(6)→ SO(4)× SO(2) = SU(2)R × SU(2)L ×U(1) ,
AdS4 : SO(6)→ SO(4) = SU(2)R × SU(2)L

where SO(4) = SU(2)R × SU(2)L is the isometry of an S3 (or RP3). One of the SU(2)
factors is identified with the SU(2)R R-symmetry of the superconformal group,7 while the
other SU(2) factor becomes part of the global symmetry. The U(1) factor for the AdS5
case is identified with the U(1)r symmetry for the 4d N = 2 superconformal symmetry.

The low-energy theories on these AdS-filling branes are SYM with a certain gauge
group GF . An important feature of these theories at large N is that the degrees of freedom
localized on the branes interact more strongly with themselves than with the gravitational
degrees of freedom in the bulk. This can be seen from the fact that the flavor symmetry
central charge is larger than the stress tensor central charge by powers of N , and the
exchange contributions are inversely proportional to the central charges. Therefore, when
considering the leading tree-level processes with external brane degrees of freedom we can
focus only on the branes and decouple completely the supergravity modes.

Note that the vector multiplet on the branes contains fields with Lorentz spin at
most 1. This condition guarantees that the Kaluza-Klein reduction leads to only short
multiplets, which allows us to fix the spectrum from R-symmetry charges without analyzing
the linearized equations of motion. Such short multiplets are 1

2 -BPS for 4 ≤ d ≤ 6, and
1
3 -BPS for 3d N = 3. This strategy to obtain the spectrum was used in [27, 38, 40], and
the analyses led to the following results. The super multiplets are labelled by an integer

7For concreteness, we list the superconformal groups. The 3d N = 3 superconformal group is OSp(3|4);
the 4d N = 2 superconformal group is SU(2, 2|2); in 5d the only superconformal group is F4; in 6d the
N = (1, 0) superconformal group is OSp(8∗|2).
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Kaluza-Klein level k = 2, 3, . . ., with k = 2 corresponding to the current multiplet. The
super primaries are scalar operators which have spin- k2 under the SU(2)R R-symmetry
group and spin-k−2

2 under SU(2)L. In the 4d N = 2 case there is also a U(1)r R-symmetry.
However, the super primaries are neutral under this U(1)r. The super primaries have
protected conformal dimensions

∆k = εk , ε = d− 2
2 (2.5)

where d is the spacetime dimension of the boundary theory. Finally, all components of the
multiplet transform in the adjoint representation of the gauge group GF , which is a flavor
symmetry from the CFT point of view. We denote the super primaries as

OI;α1,...,αk;ᾱ1,...,ᾱk−2(x) (2.6)

where αi = 1, 2, ᾱi = 1, 2 are the SU(2)R, SU(2)L indices respectively, and I = 1, . . .,
dim(GF ) is a flavor symmetry index.

Four-point functions. To handle the R-symmetry and SU(2)L flavor symmetry indices,
it is convenient to multiply the super primary operators with auxiliary SU(2) spinors

OIk(x, v, v̄) = OI;α1,...,αk;ᾱ1,...,ᾱk−2(x)vβ1 . . . vβkεα1β1 . . . εαkβk v̄
β̄1 . . . v̄β̄k−2εᾱ1β̄1

. . . εᾱk−2β̄k−2
.

(2.7)
The contraction with the spinors automatically projects the indices to the spin- k2 and
spin-k−2

2 representations of SU(2)R and SU(2)L. The four-point correlation functions

GI1I2I3I4(xi; vi, v̄i) = 〈OI1
k1

(x1, v1, v̄1)OI2
k2

(x2, v2, v̄2)OI3
k3

(x3, v3, v̄3)OI4
k4

(x4, v4, v̄4)〉 , (2.8)

now become a function not only of the spacetime coordinates xi, but also internal coor-
dinates vi, v̄i. By exploiting the covariance under conformal symmetry, R-symmetry, and
SU(2)L flavor symmetry, we can extract a kinematic factor such that the correlators depend
only on the cross ratios

GI1I2I3I4(xi; vi, v̄i) =
∏
i<j

(
(vi · vj)(v̄i · v̄j)

x2ε
ij

)γ0
ij ((v1 · v2)(v3 · v4)

x2ε
12x

2ε
34

)E
× ((v̄1 · v̄2)(v̄3 · v̄4))E−2 GI1I2I3I4(U, V ;α, β) ,

(2.9)

where
xij = xi − xj , (vi · vj) = vαi v

β
j εαβ , (v̄i · v̄j) = v̄ᾱi v̄

β̄
j εᾱβ̄ . (2.10)

Here we have assumed without loss of generality that k1 ≤ k2 ≤ k3 ≤ k4 and distinguish
between two different cases

k1 + k4 ≥ k2 + k3 (case I) , k1 + k4 < k2 + k3 (case II) . (2.11)

The exponents are given by

γ0
12 = γ0

13 = 0 , γ0
34 = κs

2 , γ0
24 = κu

2 , (2.12)

γ0
14 = κt

2 , γ0
23 = 0 , (I) , γ0

14 = 0 , γ0
23 = κt

2 , (II)
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where

κs ≡ |k3 + k4 − k1 − k2| , κt ≡ |k1 + k4 − k2 − k3| , κu ≡ |k2 + k4 − k1 − k3| , (2.13)

and
E = k1 + k2 + k3 − k4

2 (case I) , E = k1 (case II) (2.14)

is the extremality. We have also defined the conformal cross ratios

U = x2
12x

2
34

x2
13x

2
24

= zz̄ , V = x2
14x

2
23

x2
13x

2
24

= (1− z)(1− z̄) , (2.15)

the R-symmetry cross ratio

α = (v1 · v3)(v2 · v4)
(v1 · v2)(v3 · v4) , (2.16)

and the SU(2)L flavor symmetry cross ratio

β = (v̄1 · v̄3)(v̄2 · v̄4)
(v̄1 · v̄2)(v̄3 · v̄4) . (2.17)

It is not difficult to see that the function GI1I2I3I4(U, V ;α, β) is a polynomial in α of degree
E and a polynomial in β of degree E − 2.

Superconformal Ward identities. The form (2.9) exploits only the bosonic part of the
superconformal group. The fermionic generators impose further constraints in the form of
superconformal Ward identities [44]

(z∂z − εα∂α)GI1I2I3I4(z, z̄;α, β)
∣∣∣∣
α= 1

z

= 0 . (2.18)

Another set of identities can be obtained by replacing z with z̄.
It is useful to compare these superconformal Ward identities to the ones with maximal

superconformal symmetry, which take the same form. In the latter case, the R-symmetry
group is SO(n) with n = 5, 6, 8 and therefore the four-point functions have two independent
R-symmetry cross ratios α, ᾱ which are on the same footing. Meanwhile, maximally
superconformal theories do not have flavor symmetries and there is no cross ratio β. The
superconformal Ward identities in the maximal case can be viewed as replacing β with ᾱ
in (2.18) and omitting the flavor indices Ii

(z∂z − εα∂α)G(z, z̄;α, ᾱ)
∣∣∣∣
α= 1

z

= 0 (maximally superconformal) . (2.19)

There are in total four identities by interchanging z, z̄, and α, ᾱ. While the non-maximal
case (2.18) has naively half as many identities, the independent flavor structures give rise
to more constraints, making the superconformal Ward Identities as powerful in the end.
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Flavor projectors and crossing matrices. That external operators transform in the
adjoint representation of the flavor group GF brings extra complexities. To deal with the
flavor symmetry indices, we introduce the following projectors

PI1I2|I3I4
a , PI1I4|I3I2

a , PI1I3|I2I4
a , (2.20)

for s-, t-, and u-channels respectively. The index a runs over all irreducible representations
in the tensor product of adjGF×adjGF . The projector PI1I2|I3I4

a , for example, represents the
flavor tensor structure that corresponds to exchanging the flavor symmetry representation
a in the 12→ 34 channel. These projectors satisfy the following relations

PI1I2|I3I4
a = (−1)|Ra|PI2I1|I3I4

a ,

PI1I2|I3I4
a = PI3I4|I1I2

a ,

PI1I2|I3I4
a PI1I2|I3I4

b = δabdim(Ra) , (2.21)

PI1I2|I3I4
a PI4I3|I5I6

b = δabPI1I2|I5I6
a ,

which follow from basic representation theory. The use of projectors makes it easy to talk
about independent flavor structures. Note that projectors in different channels {PI1I2|I3I4

a },
{PI1I4|I3I2

a }, {PI1I3|I2I4
a }, with a running over all representations in adjGF × adjGF , sep-

arately form a basis. Using this we can project, for example, the superconformal Ward
identities (2.18) into the intermediate s-channel representations, and obtain independent
constraints

(z∂z − εα∂α)
(
PI1I2|I3I4
a GI1I2I3I4(z, z̄;α, β)

) ∣∣∣∣
α= 1

z

= 0 , Ra ∈ adjGF × adjGF . (2.22)

In applications it is also often convenient to consider the decomposition of t- and u-
channel projectors into the s-channel. This is achieved by contracting the external adjoint
indices of the projectors to form flavor crossing matrices

(Ft)ab = 1
dim(Ra)

PI3I2|I1I4
a PI1I2|I3I4

b , (Fu)ab = 1
dim(Ra)

PI4I2|I3I1
a PI1I2|I3I4

b . (2.23)

These matrices can be computed using the methods of [45], and explicit examples can be
found in table 6 of [46]. Such flavor crossing matrices accompany the standard crossing
equations for four-point functions∑

b

(Ft)abGa(x3, x2, x1, x4) = Gb(x1, x2, x3, x4) ,∑
b

(Fu)abGa(x4, x2, x3, x1) = Gb(x1, x2, x3, x4) (2.24)

where
GI1I2I3I4(x1, x2, x3, x4) =

∑
a

PI1I2|I3I4
a Ga(x1, x2, x3, x4) , (2.25)

and we have suppressed R-symmetry and the other SU(2) flavor symmetry.
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2.3 Mellin representation

The amplitude interpretation of holographic correlators is manifest in the Mellin represen-
tation [47, 48]

GI1I2I3I4(U, V ;α, β) =
∫ i∞

−i∞

dsdt

(4πi)2U
s
2−asV

t
2−atMI1I2I3I4(s, t;α, β) Γ(ε)

{ki} , (2.26)

Γ(ε)
{ki} = Γ

[
ε(k1+k2)−s

2

]
Γ
[
ε(k3+k4)−s

2

]
Γ
[
ε(k1+k4)−t

2

]
Γ
[
ε(k2+k3)−t

2

]
Γ
[
ε(k1+k3)−u

2

]
Γ
[
ε(k2+k4)−u

2

]
whereMI1I2I3I4 , the Mellin amplitude, is naturally identified as the scattering amplitude
in AdS, and as = ε

2(k1 + k2) − εE , at = εE − ε
2(k1 − k4), s + t + u = ε

∑4
i=1 ki ≡ εΣ.

The advantage of this representation can already be seen at the level of individual Witten
diagrams. For example, the Mellin amplitude of a contact diagram with 2L derivatives is
a degree-L polynomial in Mellin variables. On other hand, an exchange Witten diagram
with exchanged dimension ∆ and spin ` has an amplitude that has a series of simple poles
with polynomial residues

M(s)
∆,`(s, t) =

∞∑
m=0

Qm,`(t, u)
s−∆ + `− 2m + P`−1(s, t) . (2.27)

Here Qm,` are degree-` polynomials, and the regular piece P`−1 is a polynomial of degree
` − 1. Note that the regular piece is ambiguous and can be modified by adding contact
diagrams with no more than 2(`−1) derivatives. This modification corresponds to choosing
different cubic couplings which are equivalent only on-shell. Mellin amplitudes of exchange
diagrams up to spin 2 are given for a specific (very convenient) choice of contact terms in
appendix A.

We now briefly review how to implement the superconformal Ward identity (2.22) in
Mellin space. The main difficulty is that (2.22) is not symmetric in z and z̄, which causes
square roots to appear when expressed in terms of U and V . These square roots are difficult
to interpret in Mellin space. However, as we will see below, by taking independent linear
combinations of (2.22) and its counterpart with z ↔ z̄, all the z, z̄ dependence becomes
polynomial in U and V . The latter is easy to exploit in Mellin space. The method was
first developed in [10], and was further streamlined in [7]. Let us define

Ma(s, t;α, β) = PI1I2|I3I4
a MI1I2I3I4(s, t;α, β) =

E∑
q=0

αqM(q)
a (s, t;β) . (2.28)

Starting from the basic identity

z∂z = U∂U −
z

1− zV ∂V , (2.29)

and using the fact that U∂U , V ∂V act multiplicatively in the Mellin representation (2.26)

U∂U →
(
s

2 − as
)
× , V ∂V →

(
t

2 − at
)
× , (2.30)
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we find the Ward identity (2.22) takes the following form acting on the Mellin amplitude

E∑
q=0

(
(1− z)zE−q

(
s

2 − as − q
)
− zE−q+1

(
t

2 − at
))
M(q)

a (s, t;β) = 0 . (2.31)

Here we have made the inverse Mellin integrals implicit, with the understanding that the
powers of z and 1 − z multiply the integrals from outside. Replacing z with z̄, we obtain
another identity

E∑
q=0

(
(1− z̄)z̄E−q

(
s

2 − as − q
)
− z̄E−q+1

(
t

2 − at
))
M(q)

a (s, t;β) = 0 . (2.32)

We now consider two independent linear combinations of (2.31) and (2.32), and get

E∑
q=0

(
(ζE−q± − ζ(E−q+1)

± )
(
s

2 − as − q
)
− ζ(E−q+1)
±

(
t

2 − at
))
M(q)

a (s, t;β) = 0 (2.33)

where we have defined
ζ

(n)
+ = zn + z̄n , ζ

(n)
− = zn − z̄n

z − z̄
. (2.34)

Crucially, ζ(n)
± can be expressed in terms of U and V using

ζ
(n)
+ = 21−n

bn/2c∑
k=0

(
n

2k

) (
(1 + U − V )2 − 4U

)k
(1 + U − V )n−2k ,

ζ
(n)
− = 21−n

bn/2c∑
k=0

(
n

2k + 1

) (
(1 + U − V )2 − 4U

)k
(1 + U − V )n−2k−1 ,

(2.35)

where we remind the reader that polynomials in U and V act as difference operators in
Mellin space. More precisely, each monomial UmV n multiplying the Mellin integral (2.26)
can be absorbed by shifting s and t, and thus becomes a difference operator ÛmV n acting as

ÛmV n ◦M(s, t) =
Γ(ε)
{ki}(s− 2m, t− 2n)

Γ(ε)
{ki}(s, t)

M(s− 2m, t− 2n) . (2.36)

Replacing the polynomials in (2.33) with the difference operators gives the superconformal
Ward identities in Mellin space.

3 MRV limit and bootstrap method

From holography, we expect the super gluon Mellin amplitudes to have the following general
structure at tree level

MI1I2I3I4 =MI1I2I3I4
s +MI1I2I3I4

t +MI1I2I3I4
u +MI1I2I3I4

con . (3.1)

HereMI1I2I3I4
s,t,u are exchange contributions and MI1I2I3I4

con comes from contact terms. The
contributionsMI1I2I3I4

t,u are related toMI1I2I3I4
s by Bose symmetry as usual, but we need
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to pay additional attention to the flavor symmetry. It is useful to introduce the following
flavor structures

cs = f I1I2JfJI3I4 , ct = f I1I4JfJI2I3 , cu = f I1I3JfJI4I2 (3.2)

where we have dropped the flavor indices in cs,t,u to avoid cluttering the notation, and f IJK
are the structure constants of the flavor symmetry algebra. In this paper we normalize the
structure constants as

f ILKf
JK

L = ψ2h∨δIJ (3.3)

where h∨ is the dual Coxeter number and ψ is the length squared of the longest root of the
flavor group. Since all the exchanged fields are in the adjoint representation of the flavor
group, the exchange contributions MI1I2I3I4

s,t,u are respectively proportional to cs,t,u. These
flavor structures can also be expressed in terms of the projectors introduced in section 2.2

cs = ψ2h∨PI1I2|I3I4
adj , ct = ψ2h∨PI1I4|I2I3

adj , cu = ψ2h∨PI1I3|I4I2
adj . (3.4)

Let us denote

MI1I2I3I4
s = csM (k1,k2,k3,k4)

s , MI1I2I3I4
t = ctM

(k1,k2,k3,k4)
t , MI1I2I3I4

u = cuM (k1,k2,k3,k4)
u

(3.5)
where we have added the superscript (k1, k2, k3, k4) to manifest the Kaluza-Klein level
associated with each external super gluon. Then Bose symmetry relates the t- and u-
channel exchange contributions to the s-channel as the permutations of labels (1, 2, 3, 4)→
(1, 4, 2, 3) and (1, 2, 3, 4)→ (1, 3, 4, 2), and gives

M
(k1,k2,k3,k4)
t = (α− 1)E(β − 1)E−2

(
M (k1,k4,k2,k3)
s

∣∣{s,t,u}→{t,u,s}
{α,β}→{ 1

1−α ,
1

1−β }

)
,

M (k1,k2,k3,k4)
u = (−α)E(−β)E−2

(
M (k1,k3,k4,k2)
s

∣∣{s,t,u}→{u,s,t}
{α,β}→{α−1

α
,β−1
β
}

)
. (3.6)

Similarly, under crossing the full Mellin amplitude transforms as

MI1I2I3I4
(k1,k2,k3,k4) = (α− 1)E(β − 1)E−2

(
MI1I4I2I3

(k1,k4,k2,k3)
∣∣{s,t,u}→{t,u,s}
{α,β}→{ 1

1−α ,
1

1−β }

)
,

MI1I2I3I4
(k1,k2,k3,k4) = (−α)E(−β)E−2

(
MI1I3I4I2

(k1,k3,k4,k2)
∣∣{s,t,u}→{u,s,t}
{α,β}→{α−1

α
,β−1
β
}

)
, (3.7)

or in terms of the flavor stripped amplitudes

Ma
(k1,k2,k3,k4) =

∑
b

(−1)|Ra|(Fu)ab(α− 1)E(β − 1)E−2
(
Mb

(k1,k4,k2,k3)
∣∣{s,t,u}→{t,u,s}
{α,β}→{ 1

1−α ,
1

1−β }

)
,

Ma
(k1,k2,k3,k4) =

∑
b

(−1)|Ra|(Ft)ab(−α)E(−β)E−2
(
Mb

(k1,k3,k4,k2)
∣∣{s,t,u}→{u,s,t}
{α,β}→{α−1

α
,β−1
β
}

)
(3.8)

where we have projected the flavor representations into the s-channel and the flavor crossing
matrices Ft, Fu were defined in section 2.2. Note that since the sum of the exchange
contributions satisfies Bose symmetry, (3.7) and (3.8) must also separately hold for the
contact contributions.
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We now outline our general strategy to compute the Mellin amplitudes (3.1).

1. We fix the contribution of the bosonic components inside each super multiplet ex-
change by looking at the maximally R-symmetry violating (MRV) limit to be defined
in the next subsection. In this limit, superconformal symmetry dictates the ampli-
tude to exhibit a zero in a Mandelstam-Mellin variable, which allows us to determine
the contribution of each component up to an overall factor.

2. We use R-symmetry to go away from the MRV limit and restore the general R-
symmetry polarization dependence in the multiplet exchange amplitudes.

3. We write down an ansatz in terms of all possible multiplet exchange amplitudes with
unfixed coefficients, as well as contact terms with arbitrary flavor structures. The
contact terms should only arise from quartic vertices with zero derivatives in order
for the result to be consistent with the flat space limit.

4. We use the superconformal Ward identities to uniquely solve the unknown parameters
up to an overall factor. In fact, with a suitable prescription to restore R-symmetry in
the second step, we find all contact terms in the ansatz vanish. Furthermore, these
unknown overall factors can be reduced to just one which is related to the flavor
central charge, by considering different mixed correlators.

The MRV notion was first introduced in [6, 7] for maximally superconformal theories.
There it was also shown that the zeros dictated by superconformal symmetry fix the rel-
ative coefficients of component fields inside each multiplet. Unlike the situation in [6, 7],
however, here we do not know the super primary three-point functions and therefore cannot
use them to fix the overall coefficient of each multiplet. Therefore, we have to resort to
the superconformal Ward identities in Mellin space, reviewed in section 2.3. The method
of using Mellin space superconformal Ward identities to fix the exchange and contact con-
tributions was first introduced and used in [10, 11]. In section 3.1 we will define and study
the MRV amplitudes, and in section 3.2 we will show how to obtain multiplet exchange
amplitudes with arbitrary R-symmetry polarizations. The last two steps of the above plan
will be explained in detail in section 3.3.

3.1 MRV amplitudes from zeros

Let us begin by listing the fields that can appear in the exchange amplitudes. A quick
look at the super descendant content of the short multiplets tells us that there are only
three components allowed inside each multiplet of OIp.8 The exchanged component fields
are summarized by table 3.

The s-channel multiplet exchange amplitude therefore can be written as the linear
combination of the three fields

Sp(s, t;α) = λspYp(α)Mεp,0(s, t) + λApYp−2(α)Mεp+1,1(s, t) + λrpYp−4(α)Mεp+2,0(s, t) .
(3.9)

8The 3d case may appear to contain more scalar super descendants of dimension εp+ 1 in the exchange
amplitudes. However, these extra fields are not exchanged as we will explain in section 5.2.
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component field sIp AIp,µ rIp

Lorentz spin ` 0 1 0
conformal dimension ∆ εp εp+ 1 εp+ 2

SU(2)R spin jR p
2

p
2 − 1 p

2 − 2

SU(2)L spin jL p−2
2

p−2
2

p−2
2

Table 3. Component fields exchanged in a super multiplet p.

Here we have stripped away the color structure cs. By M∆,` we denote the s-channel
exchange Mellin amplitudes for bosonic Witten diagrams, λfield are coefficients to be fixed,
and Yp are the R-symmetry polynomials9

Yp(α) =
Γ
[

2p−κt−κu+4
4

]
Γ
[

2p+κt+κu+4
4

]
p! P

(κt2 ,
κu
2 )

p
2−

κt+κu
4

(2α− 1) (3.10)

where P (a,b)
m (x) is the Jacobi polynomial and we assumed that we are in case I of (2.11).10

Moreover, we have temporarily suppressed the SU(2)L dependence, since the whole mul-
tiplet transforms in the same representation as we can see from the above table. This
SU(2)L dependence will only appear as a multiplicative polynomial in β, which we will
restore later on.

Let us now define the u-channel MRV limit of Mellin amplitudes as the R-symmetry
slice with α = 0, which corresponds to setting v1 = v3.11 We expect the MRV amplitudes

MRVI1I2I3I4(s, t) =MI1I2I3I4(s, t;α = 0) (3.11)

to have the following two features:

1. there are no poles in u;

2. there is a zero in u at u = εmax{k1 + k3, k2 + k4}.

Note that v1 = v3 implies that the only R-symmetry representation which can be ex-
changed in the u-channel has spin- k1+k3

2 . The first property then follows from the fact
that the R-symmetry polynomials associated with the u-channel exchanges vanish in the
MRV limit, because all the cubic couplings associated with exchange Witten diagrams
are non-extremal, i.e., with p < k1+k3

2 . Going to the MRV limit suppresses these ex-
change contributions. The second property is the statement that long operators with twist

9The normalization is chosen in such a way that in the s-channel OPE limit α → ∞, the leading term
α

1
4 (2p−κt−κu) appears with unit coefficient.
10Considering case I is sufficient to obtain the general result. The final expressions for the Mellin ampli-

tudes are independent of which of the two cases we consider.
11Note that we have assumed the ordering k1 ≤ k2 ≤ k3 ≤ k4. For arbitrary ordering, we should set

v1 = v3 if k1 + k3 ≤ k2 + k4, and v2 = v4 if k1 + k3 > k2 + k4. The generalization of the MRV notion to
other channels is obvious.

– 16 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
0

εmax{k1 + k3, k2 + k4} should decouple in the MRV limit.12 The zero in u precisely off-
sets the double pole at u = εmax{k1 + k3, k2 + k4} from the Gamma function factor,
which would otherwise lead to logarithmic singularities upon evaluating the inverse Mellin
transformation. Such logarithmic singularities are associated with anomalous dimensions,
which are characteristic of long operators.13 These conditions are in fact satisfied by each
multiplet either in the s-channel or t-channel, and turn out to fix the multiplet exchange
amplitudes uniquely up to an overall constant as we will see below.

The presence of zeros in the MRV limit fixes the contact term ambiguity for each
bosonic amplitude M∆,` in (3.9). This can be seen by examining the u-channel Regge
limit which corresponds to s → ∞, keeping u fixed. Since the process involves at most
spin-1 fields, the residue at each pole is linear in Mandelstam variables. On the other hand,
in the MRV limit we must produce a zero factor (u−εmax{k1 +k3, k2 +k4}), which implies
the MRV amplitude can only be of the form

MRV ∼ (u− εmax{k1 + k3, k2 + k4})

∑
i

µs,i
s− νs,i

+
∑
j

µt,j
t− νt,j

 . (3.12)

Here µs,i, νs,i, etc., are numbers. Note that this behavior of MRV amplitudes forbids us
from adding additional contact terms — the only allowed zero-derivative contact terms
correspond to constants, but these would be incompatible with the condition of having a
zero in u. Therefore we can see that the s-channel part of the MRV amplitude behaves
as s−1 in the u-channel Regge limit. Note that this Regge behavior is not satisfied by a
generic exchange Mellin amplitude of a spin-` field, which goes like s`−1. However, we
also note that a spin-` exchange Witten diagram can absorb, via redefining cubic vertices,
contact terms with up to 2(` − 1) derivatives. These contact terms correspond to degree
`−1 polynomials in Mellin space, and can be precisely used to improve the Regge behavior
to s−1. In practice, this improvement means we eliminate t in favor of u and m from the
numerators in (2.27) and discard all regular terms

P(s)
∆,`(s, t) =

∞∑
m=0

Qm,`(
∑
i ∆i − u− (∆− `+ 2m), u)
s−∆ + `− 2m . (3.13)

These exchange Witten diagrams with improved u-channel Regge behavior were called the
Polyakov-Regge blocks in [50, 51].

12In a long multiplet of which the super primary has SU(2)R spin j, the highest SU(2)R spin of the
super descendants is j + 2. For the whole long multiplet (exchanged in the u-channel) to fit inside the
correlator, we therefore must have j+ 2 ≤ min{k1 + k3, k2 + k4}. Meanwhile, for the multiplet to be visible
in the u-channel MRV limit, the super primary must satisfy j + 2 = min{k1 + k3, k2 + k4}, and the visible
component is the super descendant with SU(2)R spin j + 2. For 4d N = 2, 5d F4, and 6d (1, 0), this super
descendant is obtained from the super primary by acting with Q4 (see, e.g., [49]). The super primary with
twist τ decouples in the MRV limit, while a super descendant with twist τ + 2 remains. For 3d N = 3, the
spin j + 2 operator first appears in Q2 acting on the super primary, and the minimal visible twist is τ + 1.

13Strictly speaking, this argument applies when the Gamma function poles overlap, which is not always
guaranteed when ε is an half integer. However, for these values of ε we can just assume ki ∈ 2Z so that the
poles overlap and we work out the coefficients. The coefficients are essentially the coefficients of bosonic
conformal blocks in the superconformal block, and do not depend on the parity of ki. Therefore the solution
to these coefficients obtained with this assumption is in fact general.
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Using the Polyakov-Regge blocks in (3.9), we can now impose the u-channel zeros at
α = 0. This condition must hold for each pole, and therefore imposes strong conditions.
We find that λAp and λrp can be uniquely solved in terms of λsp

λAp = − Yp(0)
Yp−2(0)

ε(k1 − k2 + p)(k3 − k4 + p)
4p(pε+ 1) λsp , (3.14)

λrp = Yp(0)
Yp−4(0)

ε2(k1 − k2 + p− 2)(k1 − k2 + p)(k3 − k4 + p− 2)(k3 − k4 + p)
16(p− 2)(p− 1)(pε+ 1)(pε− ε+ 1) λsp .

The MRV limit of Sp then reduces to

SMRV
p = −λspYp(0)

∞∑
m=0

2(p− 1)p(k2ε+ k4ε− u)fm,0|∆E=εp
(k1 − k2 − p)(−k3 + k4 + p)(m+ pε− ε)(s− εp− 2m) , (3.15)

where fm,0|∆E=εp is defined in (A.2) in appendix A.
With the solution (3.14) at hand, let us show that our ansatz (3.9) obeys the s-channel

Bose symmetry up to contact terms. These contact terms are important, and will be
discussed in the next subsection. Bose symmetry dictates that the contribution to a four-
point function from each exchanged field in the s-channel must be separately invariant upon
applying 1 ↔ 2 and 3 ↔ 4 to the external bosons. To determine the 1 ↔ 2 (or 3 ↔ 4)
interchage parity of the fields allowed by our selection rules, we note that any (p2 − n,

p−2
2 )

representation of SU(2)R × SU(2)L appearing in the product of (k1
2 ,

k1−2
2 ) and (k2

2 ,
k2−2

2 )
has parity (−1)n+1. Furthermore, under 1 ↔ 2 the Lorentz spin of the exchanged field
contributes another factor (−1)` in a spin-` exchange Witten diagram (modulo contact
terms). Combined with the fact that the adjoint representation of GF is antisymmetric in
the tensor product of two adjoints, this shows that every component in table 3 has positive
total parity. It is therefore necessary for each component field to appear with symmetric
three-point function coefficients. This can be easily checked to be the case after using the
explicit expressions for Yp−2r(0), since both lines of (3.14) depend only on (k1 − k2)2 and
(k3 − k4)2.

3.2 Full multiplet exchange amplitudes

From the MRV limit, we can restore the full α-dependence by using R-symmetry. To
accomplish this, we continue to use the Polyakov-Regge blocks in (3.9) and plug in the so-
lution (3.14). However, we now use the R-symmetry polynomials for general α rather than
the special value α = 0. It is more convenient to write each R-symmetry polynomial (3.10)
as an expansion in powers of (1− α)

Yp(α) =
2p−κt−κu

4∑
i=0

Γ
[

2p+κt−κu+4
4

]
Γ
[

4i−2p+κt+κu
4

]
Γ
[

4i+2p+κt+κu+4
4

]
i! p! Γ

[
2i+2+κt

2

]
Γ
[
−2p+κt+κu

4

] (1− α)i . (3.16)

We find that at each simple pole s = εp + 2m there is a linear factor of the Mandelstam
variable u of the form

u+ ρ(i,m) , (3.17)
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which breaks the s-channel Bose symmetry since t, the counterpart of u, is missing. To
restore the Bose symmetry, we replace m in this factor by its solution from

s+ t+ u = ε(k1 + k2 + k3 + k4) , s = εp+ 2m. (3.18)

This prescription amounts to choosing a particular contact term in (3.9). The exchange
amplitude now becomes

Sp(s, t;α) =
∞∑
m=0

2p−κt−κu
4∑
i=0

Rip,m(t, u)
s− εp− 2m(1− α)i , (3.19)

Rip,m(t, u) = λspK
i
p(t, u)Bi

p,mE
i
p (3.20)

where

Ki
p(t,u) =−2i(2i+κt)u++2i(κu−2)t+− 1

4(t−−2iε)(2p−κt−κu)(2p+κt+κu−4) , (3.21)

Bi
p,m = (−1)1+p−κt+κu

2 +ip(p−1)Γ[ε(p−1)]Γ[εp]
p!m! (m+ε(p−1))!Γ[ ε2(k1+k2−p)−m]Γ[ ε2(k3+k4−p)−m] , (3.22)

Eip =
εΓ
[

2p−κt−κu+4
4

]
Γ
[

2p+κt−κu
4

]
4 i!Γ

[
2i+2+κt

2

]
Γ
[
−4i+2p−κt−κu+4

4

]
Γ
[

2pε−(κt+κu)ε+4
4

]
×

Γ
[

4i+2p+κt+κu−4
4

]
Γ
[
ε 2p−κt+κu

4

]
Γ
[
ε 2p+κt+κu

4

]
Γ
[
ε 2p+κt−κu

4

] ,
(3.23)

and
u± = u± ε

2κu −
ε

2Σ , t± = t± ε

2κt −
ε

2Σ . (3.24)

The same prescription for restoring Bose symmetry was used in [6, 7] for the maximally
superconformal cases, and was shown to have the additional benefit that the full amplitudes
can be written only in terms of these exchange amplitudes with no extra contact terms.
We will see the same happens for the case with half maximal superconformal symmetry.

3.3 Bootstrapping full correlators

We are now ready to assemble the pieces together and write down an ansatz for the full
correlator. The ansatz has the general form of (3.1). The s-channel exchange contribution
reads

MI1I2I3I4
s = cs

∑
p∈Is
Sp(s, t;α)Yp−2(β) . (3.25)

Here cs is the flavor structure associated with the s-channel exchange defined in (3.2), and
Sp(s, t;α) is the exchange amplitude of the multiplet p given in (3.19). The function Yp−2(β)
is the SU(2)L flavor symmetry polynomial given by (3.10),14 associated with the spin-
p−2

2 SU(2)L representation of multiplet p. Note that each multiplet amplitude Sp(s, t;α)
14In (3.10) the polynomial was defined for the SU(2)R symmetry. However, kinematically there is no

difference between SU(2)R and SU(2)L, and therefore they have the same symmetry polynomials.
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contains an unknown coefficient λsp , see (3.20), which will also be denoted as λ(k1k2|k3k4)
p

when we want to emphasize the channel and the external weights. However, we should also
note that this coefficient has the interpretation of the product of three-point functions of
super primary operators

λ(k1k2|k3k4)
p = Ck1,k2,pCk3,k4,p , (3.26)

with our normalizations used for Witten diagrams and SU(2)R, SU(2)L symmetry polyno-
mials. The summation of p is over a finite set Is

Is =
{
p | p−max{|k1 − k2|, |k3 − k4|} = 2 , 4 , . . . , 2E − 2

}
. (3.27)

The finite summation range is determined by two constraints: the selection rules of SU(2)L
flavor symmetry and SU(2)R R-symmetry, and the requirement that extremal couplings
must vanish.15 The t- and u-channels are similar, and can be obtained from the s-channel
by Bose symmetry (3.6).

For the contact partMI1I2I3I4
con , we will allow all possible flavor and R-symmetry struc-

tures but only terms that are independent of the Mandelstam variables

MI1I2I3I4
con =

∑
Ra∈adjGF×adjGF

PI1I2|I3I4
a

E∑
i=0

E−2∑
j=0

δa;i,jα
iβj . (3.28)

Here δa;i,j are arbitrary coefficients to be fixed. The independence of the Mandelstam
variables corresponds to zero-derivative contact interactions. This is required because the
Mellin amplitude in the s, t, u→∞ limit should coincide with the flat space amplitude [48]
which has a constant growth behavior. We will make further comments on the flat space
behavior of the Mellin amplitudes in section 6.

We now impose the superconformal Ward identities on the ansatzMI1I2I3I4 in Mellin
space, as reviewed in section 2.3. We find that all contact interaction parameters δa;i,j

vanish, and all exchange parameters λ(kikj |kmkn)
p are fixed up to an overall rescaling factor.

Furthermore, the ratios of λ(kikj |kmkn)
p are independent of the flavor group. Let us first

make a few comments on these general results. The explicit solutions for different theories
will be given in the next two sections.

• The independence of the solution on the flavor groups is easy to understand. With
all δa;i,j vanishing, the four-point amplitudes have only three flavor structures cs, ct,
cu. As cs,t,u satisfy the Jacobi identity

cs + ct + cu = 0 , (3.29)
15This is because the contact Witten diagrams associated with extremal couplings Ck1,k2,k1+k2 are diver-

gent. In order for the effective action to remain finite, these couplings must be absent. Note that there is no
contradiction with extremal three-point functions being “nonvanishing” on the CFT side, because in CFTs
operators in a different basis are usually considered. The natural single-particle operators in the AdS side
are linear combinations of the “single-trace” operators and “multi-trace” operators in the CFT side [52, 53].
The mixing is such that the extremal correlators are zero. See, e.g., section 2.1 of [54] and [55, 56] for
detailed discussions.
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only two structures are independent, and can be chosen as cs and ct. Therefore, the
Mellin superconformal Ward identities are implemented on the combinations

M (k1,k2,k3,k4)
s −M (k1,k2,k3,k4)

u , M
(k1,k2,k3,k4)
t −M (k1,k2,k3,k4)

u , (3.30)

which are agnostic about the flavor group GF .

• The vanishing of the additional contact terms in the ansatz may seem to be merely
a computational outcome of applying the superconformal conformal Ward identities,
and is far from obvious. However, in section 6 we will explain that the absence of
these terms is expected by examining the flat space limit of the Mellin amplitudes.
Moreover, their absence is also essential for the correlators to exhibit the Parisi-
Sourlas supersymmetry as we will discuss in section 7.1. We will also perform a
complementary check in appendix D, where we show that there are no contact term
solutions to the superconformal Ward identities with less than four derivatives.

• Finally, the unfixed overall factors of different correlators are actually not indepen-
dent. This follows from their interpretation in terms of OPE coefficients (3.26). In
fact by considering mixed correlators of the type 〈kkqq〉, we can extract all three-
point function coefficients Ck1,k2,k3 up to a common factor. This factor is fixed by
C2,2,2 which is related to the flavor central charge, as the k = 2 multiplet contains
the flavor current. This allow us to fully fix the answer.

4 Correlators in theories with eight supercharges

In this section we implement the strategy laid out in section 3 to compute all tree-level four-
point super gluon correlators for the theories listed in table 1. We find that all correlators
can be written as the sum of multiplet exchange amplitudes (3.25), with no extra contact
terms. Moreover, thanks to (3.26) we can fix all four-point correlators up to an overall
coefficient which is determined by the flavor central charge. This computation can be done
by examining 〈kkqq〉 correlators (and their permutations), from which we can also extract
all three-point functions for super primary operators.16

Let us expand on this point. We first look at the 〈22qq〉 correlators and consider the
following ratios

λ
(22|qq)
2

λ
(2q|2q)
q

= C2,2,2C2,q,q
C2,q,qC2,q,q

, (4.1)

which are fully determined since the overall coefficient drops out. This ratio arises from the
p = 2 multiplet exchange in the s-channel and p = q multiplet exchange in the t-channel,
and gives the three-point functions C2,q,q up to the overall factor C2,2,2. We then consider
the analogous ratio in 〈kkqq〉

λ
(kk|qq)
2

λ
(kq|kq)
r

= Ck,k,2C2,q,q
Ck,q,rCk,q,r

, (4.2)

16A famous earlier use of this strategy appeared in the derivation of three-point functions for Virasoro
minimal models [57, 58].
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from which we can get Ck,q,r, again up to the overall factor C2,2,2. We can then plug these
Ck,q,r in (3.25) and verify the superconformal Ward identities for general correlators 〈pqrs〉.
This serves as a consistency check of our method and also confirms the absence of contact
terms in the general case as well. Finally, the unfixed coefficient C2,2,2, or equivalently
λ

(22|22)
2 = (C2,2,2)2, is related to the flavor central charge CJ that appears in the two-point

function
〈J Iµ (x)J Jν (0)〉 = CJ

V 2
Ŝd−1

δIJIµν(x)
x2(d−1) . (4.3)

Here VŜd−1 = 2π d2 /Γ[d2 ] is the volume of the unit (d− 1)-sphere, and Iµν(x) = δµν − 2xµxν
x2

is a conformal structure. The central charge CJ was shown in [59] to enter λ(22|22)
2 as

λ
(22|22)
2 = 2(2ε+ 1)

ε

1
CJ

. (4.4)

To reiterate, the general super gluon four-point amplitudes in any spacetime dimensions
can be assembled as

M = csMs + ctMt + cuMu (4.5)

whereMs,t,u are related by the crossing relations (3.6), and in each channel csMs is given by
the finite sum over multiplets (3.25). The λ coefficients for each exchanged multiplet (3.20)
are related to the above three-point function coefficients Ck1,k2,k3 via (3.26). We now give
the solution for each theory by writing down the three-point functions.

4.1 4d N = 2: D3-branes near F-theory singularities

We start with the 4d N = 2 SCFTs arising from D3-branes probing F-theory singularities.
We impose the superconformal Ward identities on the ansatz, and find that additional
contact terms are absent. As outlined in the above strategy, we focus on the 〈kkqq〉
correlators. The solution is simply given by

λ(kk|qq)
p = λ(kq|kq)

p = λ
(22|22)
2 . (4.6)

Hence, from (3.26) the OPE coefficients are simply given by

Ck1,k2,k3 = C2,2,2 . (4.7)

The coefficient λ(22|22)
2 is given by (4.4), and the central charges were computed in [60]

CJ = 12
2− νN (4.8)

where ν characterizes the 7-brane singularity type and was defined in (2.2). By contrast,
the stress tensor central charge, which controls the coupling of super gluons to bulk super
gravitons, grows as CT ∼ N2. Tree-level super gluon four-point functions exchanging
super gravitons are proportional to C−1

T , and are therefore subleading to the correlators
considered in this paper where only super gluons are exchanged.
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To demonstrate our general result, we give the explicit amplitudes for the 〈22kk〉
correlators. The result is

M = csMs + ctMt + cuMu , (4.9)

where

Ms = −2α(k + 2) + k + αt+ αu− u+ 2
(k − 2)! (s− 2) (C2,2,2)2 ,

Mt = (1− α)(−2αk − k + αs+ u− 2)
(k − 2)! (t− k) (C2,2,2)2 ,

Mu = −α(2αk − 3k − αs+ s+ t− 2)
(k − 2)! (u− k) (C2,2,2)2 .

(4.10)

4.2 5d F4: Seiberg exceptional theories

We then move onto the Seiberg exceptional theories in 5d. Imposing the Ward identities
on 〈kkqq〉 correlators, we find that there are no further contact terms. The exchange
coefficients are given by

λ(kk|qq)
p = 22(k+q+p)3

1
2 (7−3k−3q−3p) Γ[k]Γ[q]Γ[p]Γ[3p/4]4

πΓ
[
−1

3 +k
]
Γ
[

1
3 +k

]
Γ
[
−1

3 +q
]
Γ
[

1
3 +q

]
Γ
[
−1

3 +p
]
Γ
[

1
3 +p

]
Γ[p/2]4

Γ
[

1
12(−2+6k+3p)

]
Γ
[

1
12(2+6k+3p)

]
Γ
[

1
12(−2+6q+3p)

]
Γ
[

1
12(2+6q+3p)

]
Γ
[

1
4(2k+p)

]
Γ
[

1
4(2q+p)

]
Γ
[

3
4(2k−p)

]
Γ
[

3
4(2q−p)

]
Γ
[
k− p

2
]
Γ
[
q− p

2
] λ

(kk|qq)
2 ,

λ(kq|kq)
p = 22(k+q+p)3

1
2 (7−3k−3q−3p) Γ[k]Γ[q]Γ[p]

πΓ
[
−1

3 +k
]
Γ
[

1
3 +k

]
Γ
[
−1

3 +q
]
Γ
[

1
3 +q

]
Γ
[
−1

3 +p
]
Γ
[

1
3 +p

]
Γ
[

3
4(k+p−q)

]2
Γ
[

3
4(k−p+q)

]2
Γ
[

3
4(−k+p+q)

]2
Γ
[

1
2(k+p−q)

]2
Γ
[

1
2(k−p+q)

]2
Γ
[

1
2(−k+p+q)

]2
Γ
[

1
12(−2+3k+3q+3p)

]2
Γ
[

1
12(2+3k+3q+3p)

]2
Γ
[

1
4(k+q+p)

]2 λ
(kk|qq)
2 . (4.11)

Using the relation (3.26) between λ(k1k2|k3k4)
p and the super primary three-point functions,

the above results allow us to extract the values of the OPE coefficients

Ck1,k2,k3 =
22Ξ 3

7−6Ξ
4 Γ

[
−1

6 + Ξ
2

]
Γ
[

1
6 + Ξ

2

]
√
π Γ

[
Ξ
2

] 3∏
i=1

√√√√ Γ[ki]
Γ
[
−1

3 + ki
]

Γ
[

1
3 + ki

] Γ
[

3αi
2

]
Γ[αi]

C2,2,2 .

(4.12)
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Here we have introduced

α1 = 1
2(k2 + k3 − k1) , α2 = 1

2(k3 + k1 − k2) , α3 = 1
2(k1 + k2 − k3) , (4.13)

and Ξ = α1 + α2 + α3. The overall factor C2,2,2 is given by (4.4), and the central charges
for the flavor group ENf+1 were computed in [61]. We have

C
ENf+1
J = 256

√
2

3π
√

8−Nf
N

3
2 +O(N

1
2 ) . (4.14)

For comparison, CT ∼ N
5
2 and super graviton exchanges are again suppressed at large N .

Let us also give the 〈22kk〉 correlator as an example. The poles in the Mellin amplitudes
can be resummed into hypergeometric functions, and the result reads

M = csMs + ctMt + cuMu , (4.15)

where

Ms =
64(2α(−3k + t+ u− 6) + 3k − 2u+ 6)3F2

(
−1

2 ,
5−3k

2 , 3−s
2 ; 5

2 ,
5−s

2 ; 1
)

3π5/2(s− 3)Γ
[

3
2(k − 1)

] (C2,2,2)2 ,

Mt =
Γ
[

3k
2

]
π2Γ

[
1
2(3k − 1)

]2 24(1− α)(k − 1)((6α+ 3)k − 2(αs+ u− 3))
3k − 2t ×

3F2

(
−1

2 ,−
1
2 ,

3k − 2t
4 ; 3k − 1

2 ,
3k − 2t+ 4

4 ; 1
)

(C2,2,2)2 ,

Mu =
Γ
[

3k
2

]
π2Γ

[
1
2(3k − 1)

]2 24α(k − 1)((6α− 9)k + 2(−αs+ s+ t− 3))
3k − 2u ×

3F2

(
−1

2 ,−
1
2 ,

3k − 2u
4 ; 3k − 1

2 ,
3k − 2u+ 4

4 ; 1
)

(C2,2,2)2 . (4.16)

The k = 2 case was first computed in [11].

4.3 6d N = (1, 0): E-string theory

Finally, we consider the E-string theory in 6d. Imposing the Ward identities for 〈kkqq〉
correlators, one finds that it is not possible to introduce extra contact terms, and

λ(kk|qq)
p =

6Γ
[
p+1

2

]4
Γ
[

1+2k−p
2

]
Γ
[

1+2q−p
2

]
Γ
[
−1+2k+p

2

]
Γ
[
−1+2q+p

2

]
πΓ

[
−1

2 +k
]
Γ
[

1
2 +k

]
Γ
[
−1

2 +q
]
Γ
[

1
2 +q

]
Γ
[
−1

2 +p
]
Γ
[

1
2 +p

] λ(kk|qq)
2 ,

λ(kq|kq)
p =

6Γ
[

1−k+q+p
2

]2
Γ
[

1+k−q+p
2

]2
Γ
[

1+k+q−p
2

]2
Γ
[
−1+k+p+q

2

]2
πΓ

[
−1

2 +k
]
Γ
[

1
2 +k

]
Γ
[
−1

2 +q
]
Γ
[

1
2 +q

]
Γ
[
−1

2 +p
]
Γ
[

1
2 +p

] λ(kk|qq)
2 .

(4.17)

This allows us to extract the values of the OPE coefficients

Ck1,k2,k3 =
√

6 Γ
[
−1

2 + Ξ
]

√
π

3∏
i=1

Γ
[

1
2 + αi

]
√

Γ
[
−1

2 + ki
]

Γ
[

1
2 + ki

] C2,2,2 . (4.18)
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Finally, the E8 flavor group central charge of the 6d E-string theory is given by [59]

CJ = 60N2 + 90N , (4.19)

which determines C2,2,2 via (4.4). On the other hand, note that the stress tensor central
charge scales as CT ∼ N3 at large N . Hence super graviton exchanges in the four-point
functions are again suppressed.

As an explicit example of our results, we give here the Mellin amplitudes for the 〈22kk〉
correlators in E-string theory

M = csMs + ctMt + cuMu , (4.20)

where

Ms = −2(k(s− 4)− 3)(2(2α− 1)k − α(t+ u− 8) + u− 4)
(2k − 3)! (s− 6) (s− 4) (C2,2,2)2 ,

Mt = 2(1− α)(k(−2k + t− 2) + 1)(−2(2α+ 1)k + αs+ u− 4)
(2k − 3)! (t− 2k) (t− 2k − 2) (C2,2,2)2 ,

Mu = −2α(k(−2k + u− 2) + 1)(2(2α− 3)k − αs+ s+ t− 4)
(2k − 3)! (u− 2k) (u− 2k − 2) (C2,2,2)2 .

(4.21)

The k = 2 case reproduces the result found in [11].

5 Correlators from flavor branes

5.1 4d SYM with flavors

In our computation we have shown that given the spectrum as an input, all correlators are
fixed by superconformal symmetry up to a common overall coefficient C2,2,2. The model of
AdS5×S5 with flavor D7-branes wrapping S3 ⊂ S5 has the same vector multiplet spectrum
and superconformal symmetry as the 4d N = 2 SCFTs arising from D3-brane probing F-
theory singularities. Therefore the four-point functions of super gluons (or mesons from
the dual field theory perspective) are identical, when expressed in terms of C2,2,2, to those
given in section 4.1. The strength of the interactions among mesons was analyzed in [41]
where the expected behavior at large N was found to be

C2,2,2 ∼
1√
N
. (5.1)

In particular, this interaction becomes small for large N but at the same time is dominant
with respect to the exchange of gravitons.

5.2 3d ABJM with flavors

We now study the AdS4 × CP3 model with flavor D6-branes wrapping RP3 ⊂ CP3, which
preserves 3d N = 3 superconformal symmetry. We first clarify the question about what
component fields are exchanged in a multiplet, which was alluded to in footnote 8. The
Kaluza-Klein spectrum from the D6-branes [34] turns out to be the same as the spectrum of
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component field sIp AIp,µ rIp tIp

Lorentz spin ` 0 1 0 0
conformal dimension ∆ p

2
p
2 + 1 p

2 + 2 p
2 + 1

SU(2)L spin jL p
2 − 1 p

2 − 1 p
2 − 1 p

2 − 1

SU(2)a spin ja p
2

p
2 − 1 p

2 − 2 p
2 − 1

SU(2)b spin jb 0 0 0 1

Table 4. Bosonic multiplet spectrum of a 7d N = 2 vector multiplet on AdS4 × S3.

a 7d N = 2 vector multiplet on AdS4×S3 [62]. The latter shows up when considering M2-
branes near orbifold singularities preserving 3d N = 4 superconformal symmetry [63–65],
and describes the degrees of freedom localized on the singular locus. These Kaluza-Klein
modes are 1

3 -BPS in terms of the 3d N = 3 superconformal algebra, while they are 1
2 -BPS

with respect to 3d N = 4. Let us first consider the N = 4 case. The multiplet spectrum
is summarized in table 4 [62], where we have kept only the bosonic fields, and SU(2)a,
SU(2)b are the two SU(2) R-symmetry groups of 3d N = 4. Notice that the extra scalars
tIp are charged under SU(2)b and therefore cannot be exchanged in four-point functions
of sIp. For N = 3, the spectrum is the same as above but SU(2)a,b combine diagonally
to give the SU(2)R R-symmetry group of 3d N = 3. One might wonder if the tIp scalars
are now allowed to appear in the exchange. However we will argue that this does not
happen. This is because the multiplet exchange amplitude has the same poles and residues
as its associated short multiplet superconformal block in Mellin space. The superconformal
blocks of this multiplet with external sIp satisfy the same superconformal Ward identities
in N = 3 and N = 4. Since the N = 4 case admits a unique solution [59, 66, 67], it would
require the conformal blocks associated with tIp scalars alone to form another solution to
the Ward identities, if they were to appear in the exchange. Such solutions do not exist
(see appendix B for details and further comments). To summarize, the 3d N = 3 case falls
within the situation considered in section 3.1, and we can use the techniques developed
there to compute four-point functions by setting ε = 1

2 . Moreover, since the exchanged
fields are the same as 3d N = 4, the correlators we compute can also be interpreted as
super gluon four-point functions of 7d N = 2 SYM on AdS4×S3 by identifying the SU(2)R
spinors as the SU(2)a spinors.

Following the same procedure and requiring that the Ward identities are satisfied, we
find that there are no additional contact terms. The solution for the 〈kkqq〉 correlators is
given by

λ(kk|qq)
p = 24−k−p−q π Γ[k] Γ[q] Γ[p]

Γ
[

2+2k−p
4

]
Γ
[

2+2q−p
4

]
Γ
[
p+2

4

]4
Γ
[
p+2q

4

]
Γ
[
p+2k

4

] λ(kk|qq)
2 ,

λ(kq|kq)
p = 24−k−p−q π Γ[k] Γ[q] Γ[p]

Γ
[

2+k+p−q
4

]2
Γ
[

2+k+q−p
4

]2
Γ
[

2+p+q−k
4

]2
Γ
[
k+p+q

4

]2 λ(kk|qq)
2 .

(5.2)
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It is straightforward to extract the values of the OPE coefficients which read

Ck1,k2,k3 = 22−Ξ√π
Γ
[

Ξ
2

] 3∏
i=1

√
Γ[ki]

Γ
[

1+αi
2

] C2,2,2, (5.3)

where C2,2,2 can be determined via (4.4) once the flavor central charge is inputted.
Let us also write down here the 〈22kk〉 correlators as a special case of our general

result, which read

M = csMs + ctMt + cuMu , (5.4)

where

Ms =
(2α(−k + t+ u− 2) + k − 2u+ 2) 3F2

(
1
2 ,

3−k
2 , 1−s

2 ; 3
2 ,

3−s
2 ; 1

)
π5/2(s− 1)Γ

[
k−1

2

] (C2,2,2)2 ,

Mt =
(1− α)Γ

[
k
2

]
(2α(s− k)− k + 2u− 2) 3F2

(
1
2 ,

1
2 ,

k−2t
4 ; k+1

2 , k−2t+4
4 ; 1

)
π2(2t− k)Γ

[
k−1

2

]
Γ
[
k+1

2

] (C2,2,2)2 ,

Mu =
−αΓ

[
k
2

]
(2αk − 3k − 2(α− 1)s+ 2t− 2) 3F2

(
1
2 ,

1
2 ,

k−2u
4 ; k+1

2 , k−2u+4
4 ; 1

)
π2(2u− k)Γ

[
k−1

2

]
Γ
[
k+1

2

] (C2,2,2)2 .

(5.5)

6 Flat space limit

In this section we examine the flat space limit of Mellin amplitudes [48], where s, t, u→∞
with s + t + u = 0. From our results in section 4 and 5 we find the following universal
behavior

MI1I2I3I4

∣∣∣∣
s,t→∞

= N{ki}P{ki}(σ, τ)AI1I2I3I4(s, t;α) , (6.1)

where N{ki} is an overall normalization and

P{ki}(σ, τ) =
∑

i+j+k=E−2
0≤i,j,k≤E−2

σiτ j

i! j! k! (i+ κu
2 )! (j + κt

2 )! (k + κs
2 )! , (6.2)

where in P{ki} we have introduced

σ = αβ , τ = (1− α)(1− β) , (6.3)

from the SU(2)L and SU(2)R cross ratios α and β. Note that in P{ki}, α and β are now
on the same footing since σ and τ are invariant under α↔ β. These new cross ratios can
be understood as the SU(2)R × SU(2)L spinors vi, v̄i regrouping into SO(4) null vectors ti
which satisfy ti · ti = 0. The factor P{ki} is then the Wick contraction of ki− 2 null vectors
ti with i = 1, . . . , 4

P{ki} ∝
∏
i<j

t
−γ0

ij

ij (t12t34)2−E Wick
[
t1 . . . t1︸ ︷︷ ︸
k1−2

. . . t4 . . . t4︸ ︷︷ ︸
k4−2

]
(6.4)
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where tij = ti · tj = (vi · vj)(v̄i · v̄j) and γ0
ij were defined in (2.12). The cross ratios σ and

τ can be expressed in terms of tij as

σ = t13t24
t12t34

, τ = t14t23
t12t34

. (6.5)

The fact that theories in different dimensions have the same flat space limit is a nontrivial
consistency check of our results, as tree-level amplitudes in flat space are blind to the
spacetime dimension. Let us now focus on the color-dependent factor AI1I2I3I4 , which
reads

AI1I2I3I4 = cs
u(1− α)− tα

s
+ ct

(α− 1)(u+ sα)
t

+ cu
α(t+ s(1− α))

u
. (6.6)

Let us now compare this high energy limit of Mellin amplitudes with the expression of tree-
level gluon amplitudes in flat space. In the usual setting of flat space scattering, we consider
gluons in the adjoint representation of the SU(Nc) gauge group, such that Aµ = AIµT

I with
I = 1, · · · , N2

c − 1. Tree-level amplitudes are usually organized in terms of color-ordered
amplitudes, see for instance [37, 68]

Aflat
4 = g2 ∑

P(2,3,4)
Tr
(
T I1T I2T I3T I4

)
A(1, 2, 3, 4) (6.7)

where the partial amplitudes A(1, 2, 3, 4), etc., are the color-ordered amplitudes. Color-
ordered amplitudes satisfy various relations, including the cyclic and reflection properties

A(1, 2, 3, 4) = A(2, 3, 4, 1), A(1, 2, 3, 4) = A(4, 3, 2, 1) . (6.8)

For our purposes, however, it becomes more transparent to express the amplitude in the
color basis introduced earlier

cs = f I1I2JfJI3I4 , ct = f I1I4JfJI2I3 , cu = f I1I3JfJI4I2 , (6.9)

which can be written in terms of traces as

cs = Tr
(
T I1T I2T I3T I4

)
−Tr

(
T I1T I2T I4T I3

)
−Tr

(
T I1T I3T I4T I2

)
+ Tr

(
T I1T I4T I3T I2

)
,

(6.10)
and similarly for ct and cu. Note that cs is given by the only combination with the right
symmetry properties under the exchange of indices: antisymmetric under the exchange of
I1 ↔ I2 or I3 ↔ I4. In this basis Aflat

4 takes the following form (see, e.g., [68])17

Aflat
4 = csNs

s
+ ctNt

t
+ cuNu

u
(6.11)

which coincides exactly with AI1I2I3I4 in (6.6) upon the identification

Ns = u(1− α)− tα, Nt = (α− 1)(u+ sα), Nu = α(t+ s(1− α)). (6.12)
17Note that our definition for the Mandelstam variables are s = −(k1 + k2)2, t = −(k1 + k4)2, u =
−(k1 + k3)2, where the role of t and u is reversed compared to the convention used in some flat space
amplitude literature.
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Changing back to the trace basis we can obtain the respective expressions for the color-
ordered amplitudes

A(1, 2, 3, 4) = −(s+ t− sα)2

st
, (6.13)

A(1, 3, 4, 2) = −(s+ t− sα)2

su
, (6.14)

A(1, 4, 2, 3) = −(s+ t− sα)2

tu
. (6.15)

These partial amplitudes satisfy both the photon-decoupling identity

A(1, 2, 3, 4) +A(1, 3, 4, 2) +A(1, 4, 2, 3) = 0, (6.16)

where we have used s+ t+ u = 0, as well as the BCJ relations

tA(1, 2, 3, 4) = uA(1, 3, 4, 2), sA(1, 2, 3, 4) = uA(1, 4, 2, 3), tA(1, 4, 2, 3) = sA(1, 3, 4, 2).

Let us now return to (6.12) and ask whether these expressions can be precisely reproduced
from the flat space gluon amplitudes with appropriately restricted kinematic configurations.
The functions Ns,t,u for four-gluon scattering with momenta ki and polarizations εi, i =
1, 2, 3, 4, in arbitrary flat space dimensions can be found in [69]. The results are given by18

Ns = 2
(
(ε1 · ε2)(k1 − k2)µ + 2(ε1 · k2)εµ2 − 2(ε2 · k1)εµ1

)
× ηµν

(
(ε3 · ε4)(k4 − k3)ν − 2(ε3 · k4)εν4 + 2(ε4 · k3)εν3

)
− 2

(
(ε1 · ε3)(ε2 · ε4)− (ε1 · ε4)(ε2 · ε3)

)(
k1 · k2 + k3 · k4

)
, (6.17)

with analogous expressions forNt, Nu fixed by crossing. We first consider the flat space limit
of the amplitude corresponding to the simplest operator OI2 = OI;α1,α2(x)εα1β1εα2β2v

β1vβ2 .
In order to make the comparison, we consider (6.17) in a specially chosen kinematics where
the momenta ki are restricted to Rd−1,1 ∼ ∂AdSd+1 while the polarization vectors εi are
restricted to a perpendicular R4, such that ki · εj = 0 for all i, j. This leads to

Ns = 2(ε1 ·ε2)(ε3 ·ε4)((k1−k2)·(k4−k3))−2((ε1 ·ε3)(ε2 ·ε4)−(ε1 ·ε4)(ε2 ·ε3))(k1 ·k2+k3 ·k4) .

For the polarization vectors we can assemble the doublet of spinors vβ1 , vβ2 into a null
vector ε, which leads to εi · εj = (vi · vj)2. This is exactly how we introduced the null
vectors earlier in this section, except that we now need to identify v̄ with v since OI2
contains two v. Extracting the overall factor (ε1 · ε2)(ε3 · ε4), we obtain

Ns = −2(t− u) + 2(α2 − (1− α)2)s = 4(αs+ u) (6.18)

which, upon using s+ t+u = 0, agrees precisely with our expression (6.12) for Ns up to an
unimportant overall factor. The flat space limit of general four-point amplitudes can also
be matched. For operators with ki > 2, one should modify the flat space in- and out-states

18The relevant expressions of [69] are (4.12) to (4.14) where one needs to drop the x−, y− dependence
and also identify Dµν with the flat space metric.

– 29 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
0

by allowing them to have a nontrivial wavefunction Ψi on the angular directions Sm of the
transverse Rm+1 (m = 3 in the above case). This wavefunction is just a scalar spherical
harmonic of rank ki − 2, which can be conveniently expressed as19

Ψi(T, ti) = (T · ti)ki−2 (6.19)

where ti is a (m + 1)-dimensional null vector with ti · ti = 0 and T ∈ Rm+1, T · T = 1
parametrizing Sm.20 The flat space gluon amplitudes are now dressed with a factor given
by the overlap of the four wavefunctions∫

Sm
[dT]Ψ1(T, t1)Ψ2(T, t2)Ψ3(T, t3)Ψ4(T, t4) (6.20)

which is easy to evaluate since the integral over T gives just the Wick contraction [70].
Using this result and the fact that the vectors ti are null, it is clear that the wavefunction
overlap gives the factor P{ki}(σ, τ) in (6.4). The above discussion can be straightforwardly
generalized to the case of gravitons (see also [71, 72]). In particular, our derivation explains
why the same factor P{ki} also shows up in the flat space limit of Mellin amplitudes in
maximally superconformal theories [6, 7]

MSUGRA∣∣
s,t→∞ ∝

(s+ t− sα)2(s+ t− sᾱ)2

s t u
P{ki}(σ, τ) . (6.21)

Here α, ᾱ are the two cross ratios of the R-symmetry group SO(m + 1) with m = 4, 5, 7,
and we should identify β = ᾱ.

Going back to (6.6), let us also note that using cs + ct + cu = 0 and s+ t+ u = 0 we
can write the amplitude as

AI1I2I3I4 = (tcs − sct)(s+ t− sα)2

s t u
. (6.22)

The factor (s + t − sα)2 exactly agrees with the holomorphic part of the corresponding
prefactor present in super graviton amplitudes in flat space. In particular, it implies that
the above amplitude is a solution to the flat space limit of the Ward identities. In fact,
substituting in (6.11)

cs → Ns , ct → Nt , cu → Nu , (6.23)

in which α→ ᾱ is already replaced, the flat space limit of the super gluon amplitudes just
become the super graviton amplitudes (6.21). Not surprisingly, this is just the double copy
relation in flat space [73].

Let us conclude this section with a remark about how to use the flat space limit to
constrain the correlators. Recall that in the last step of our bootstrap strategy we used

19To see this, we note that the scalar spherical harmonics can be written as Y Ik (T) = CIa1...akTa1 . . .Tak
where CIa1...ak is a symmetric traceless tensor of SO(m+1). To introduce the null vectors, we can contract the
spherical harmonics with CIb1...bk t

b1 . . . tbk . The contraction CIa1...akC
I
b1...bk is a product of delta functions

of the ai and bi indices, and gives rise to (6.19).
20We need to emphasize here that the sphere polarization ti and the spacetime polarization εi are inde-

pendent. From the AdS calculation they turn out to be correlated. However, generally it does not need to
be the case.
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the superconformal Ward identities to fix the OPE coefficients Ck1,k2,k3 in terms of C2,2,2.
Then in this section we checked that the resulting expression for the amplitude has the
correct flat space limit. However, we can also turn the logic around. We can leave the
OPE coefficients unfixed and require the precise answer (6.1) is reproduced in the flat
space limit. It turns out this requirement is powerful enough to fix all coefficients Ck1,k2,k3

up to an overall factor which we can choose to be C2,2,2. Note that in matching (6.1)
we do not need to include any contact terms, which are constant in the flat space limit.
However, because of this constant growth behavior, contact terms would contradict the
limit (6.1) and are not allowed. This provides an intuitive explanation for the vanishing of
contact terms observed earlier as a consequence of the Ward identities. In this new line of
attack, however, that the superconformal Ward identities hold now serves as a nontrivial
consistency check.

7 Hidden structures in holographic correlators

7.1 Parisi-Sourlas supersymmetry

The results in section 4 and 5 exhibit an interesting emergent dimensional Parisi-Sourlas-
like reduction structure. A similar structure was observed in correlators in maximally
superconformal theories [16]. However, unlike the maximally superconformal situation
where the dimension of the AdS space reduces by four, here we find the AdS space dimension
reduces only by two.

To see this structure, we first note that the factor Ki
p(t, u) in the multiplet exchange

amplitude residue (3.20) is a polynomial of t, u and i. This allows us to move the factor
outside the inverse Mellin integrals and interpret it as a differential operator

U∂U ↔ ( s2 − as)× , V ∂V ↔ ( t2 − at)× , (α− 1)∂α ↔ i× . (7.1)

We can now focus on the other two factors Bi
p,m, Eip. The remaining dependence on the

Mandelstam variable is contained in a sum over simple poles with residues independent of
the Mandelstam variables

∞∑
m=0

1
m! (m+ ε(p− 1))!Γ[ ε(k1+k2−p)−2m

2 ]Γ[ ε(k3+k4−p)−2m
2 ](s− εp− 2m)

, (7.2)

which turns out to be proportional to the linear combination of two AdSd+1 scalar exchange
Witten diagrams with conformal dimensions εp and εp+ 2

M(s),d
εp,0 −

(k1 − k2 + p)(k2 − k1 + p)(k3 − k4 + p)(k4 − k3 + p)ε2
16p(p− 1)(1 + pε)(1 + (p− 1)ε) M(s),d

εp+2,0 . (7.3)

Here we have added the superscript d to stress that the Witten diagrams are defined in
AdSd+1. On the other hand, we can check by explicit calculations that the above expression
is identical to just a single scalar exchange Witten diagram, however in a lower dimensional
space AdSd−1

M(s),d−2
εp,0 . (7.4)
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This scalar exchange Witten diagram has exchange dimension εp and the same exter-
nal dimensions εki. The equivalence of (7.3) and (7.4) can be explained in terms of a
holographically realized Parisi-Sourlas supersymmetry [35].21 However, it is not clear why
Parisi-Sourlas supersymmetry should be present in superconformal correlators. Let us turn
to the R-symmetry dependence in Bi

p,m and Eip

∑
i

(−1)iΓ
[

4i+2p+κu+κt−4
4

]
i! Γ

[
i+ κt

2 + 1
]
Γ
[
−4i+2p−κu−κt+4

4

](1− α)i . (7.5)

We can define more generally a polynomial

Yp,ν(α) =
∑
i

(−1)iΓ
[

4i+2p+κu+κt+4−4ν
4

]
Γ[2p−κt−κu+4

4 ]Γ[2p+κt−κu+4
4 ]

i! Γ
[

2i+κt+2
2

]
Γ
[
−4i+2p−κu−κt+4

4

]
Γ[1 + p− ν]

(1− α)i (7.6)

=
Γ[2p+κu+κt+4−4ν

4 ]Γ[2p+κt−κu+4
4 ]

(κt2 )!Γ[1 + p− ν] 2F1
(
−2p+κu+κt

4 , 4+2p+κu+κt−4ν
4 , 1 + κt

2 ; 1− α
)
,

which is proportional to (7.5) when ν = 2, and gives the SO(3) R-symmetry polynomi-
als (3.10) when ν = 0

Yp = Yp,0 . (7.7)

These functions Yp,ν satisfy the differential equation

y (1−y) d2

dy2Yp,ν+
(2+κu−2ν

2 −y(4+κt+κu−2ν
2 )

) d
dy

Yp,ν−(κt+κu−2p
4 )(κt+κu+2p+4−4ν

4 )Yp,ν = 0 .

In [16], the modified R-symmetry dependence was shown to be related to reducing the
dimension of the internal sphere also by four. However, it is less clear here how to geomet-
rically interpret Yp,ν , as the factorization into SU(2)R×SU(2)L is a feature of S3 only and
the SU(2)L factor is left intact throughout.

Using these observations we can now rewrite the correlators in a more compact form.
Restoring the kinematic factor extracted in (2.9), the s-channel multiplet exchange ampli-
tudes become

S(s)
p =

∏
i<j

(
(vi · vj)(v̄i · v̄j)

x2ε
ij

)γ0
ij (v1 · v2)E(v3 · v4)E

(x2ε
12x

2ε
34)E ((v̄1 · v̄2)(v̄3 · v̄4))E−2 (7.8)

× f{ki,p}Kp ◦
∫ i∞

−i∞

dsdt

(4πi)2U
s
2−asV

t
2−at

(
M(s),d−2

εp,0 Yp,2(α)Yp−2,0(β)
)

Γ(ε)
{ki} .

21More generally, [35] showed that an AdSd−1 exchange Witten diagram with dimension ∆ and spin ` can
be expressed as the linear combination of five exchange Witten diagrams in AdSd+1 with shifted dimensions
and spins. These Witten diagram relations generalize nontrivially similar dimensional reduction formulae
for conformal blocks discovered in [74]. The latter was shown in [74] to be a kinematic consequence of an
underlying Parisi-Sourlas supersymmetry [17]. Similar relations also exist for boundary CFTs and CFTs
on real projective space [35, 75].

– 32 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
0

Here Kp is a differential operator obtained with the replacement (7.1) in the factor Ki
p(t, u),

and f{ki},p is an overall factor22

f{ki},p = 2
(p− 1)ε(2p− κt − κu)(2p+ κt − κu) . (7.9)

Expressions with similar structures for the t- and u-channel multiplet exchange amplitudes
can be obtained from S(s)

p by crossing via permuting the external labels. The full correlator
can then be written as

Gk1k2k3k4 = cs
∑
ps

Ck1,k2,psCk3,k4,psS(s)
ps + ct

∑
pt

Ck1,k4,ptCk2,k3,ptS(t)
pt

+ cu
∑
pu

Ck1,k3,puCk2,k4,puS(u)
pu

(7.10)

This form of our results suggests that the super gluon correlators in these theories can
be obtained from a lower-dimensional scalar “seed theory” in AdSd−1, by dressing the
“seed correlators” with differential operators. Finally, we remind the reader that the above
Parisi-Sourlas dimensional reduction structure relies crucially on the fact that the four-
point functions can be written in terms of only exchange contributions. The existence of
additional contact terms would spoil this structure.

7.2 Hidden conformal symmetry

In this subsection, we point out another interesting feature, namely, the correlators in 4d
N = 2 theories exhibit an eight dimensional hidden conformal symmetry. To see it, we
start from the solution to superconformal Ward identities (2.18) in 4d, which reads [76]

Gk1k2k3k4 = G0,k1k2k3k4 +RHk1k2k3k4 , (7.11)

with
R = (v1 · v2)2(v3 · v4)2x2

13x
2
24(1− zα)(1− z̄α) . (7.12)

The function G0,k1k2k3k4 is the protected part of the correlator, and gives the meromorphic
correlator upon performing the chiral algebra twisting α = 1/z or α = 1/z̄ [76, 77] (see
appendix C for more discussions). Here and below we have left the color indices implicit.
We will refer to Hk1k2k3k4 as the reduced correlator, which has shifted conformal dimensions
ki + 1, and SU(2)R × SU(2)L spins (ki−2

2 , ki−2
2 ). Recall that the full Mellin amplitude is

defined as

Gk1k2k3k4 =
∫ i∞

−i∞

dsdt

(4πi)2 (x2
12)

s−k1−k2
2 (x2

34)
s−k3−k4

2 (x2
14)

t−k1−k4
2 (x2

23)
t−k2−k3

2

× (x2
13)

u−k1−k3
2 (x2

24)
u−k2−k4

2 Mk1k2k3k4 Γ(1)
{ki}

(7.13)

22Comparing the original expression (3.19) with the expression here we would find an extra factor
(−1)p−

κt+κu
2 . However, by selection rules this factor is just 1.
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where s+ t+u = ∑4
i=1 ki, and Γ(1)

{ki} was defined in (2.26). We define an analogous reduced
Mellin amplitude M̃k1k2k3k4 as

Hk1k2k3k4 =
∫ i∞

−i∞

dsdt

(4πi)2 (x2
12)

s−k1−k2
2 (x2

34)
s−k3−k4

2 (x2
14)

t−k1−k4
2 (x2

23)
t−k2−k3

2

× (x2
13)

ũ−k1−k3
2 (x2

24)
ũ−k2−k4

2 M̃k1k2k3k4 Γ̃(1)
{ki}

(7.14)

where s+ t+ ũ = ∑4
i=1 ki − 2, and

Γ̃(1)
{ki} = Γ

[
k1+k2−s

2

]
Γ
[
k3+k4−s

2

]
Γ
[
k1+k4−t

2

]
Γ
[
k2+k3−t

2

]
Γ
[
k1+k3−ũ

2

]
Γ
[
k2+k4−ũ

2

]
. (7.15)

The shift in ũ is important because Bose symmetry in the reduced Mellin amplitude acts
by permutation of s, t, ũ. Similar to the N = 4 case [9], the protected piece G0,k1k2k3k4

does not contribute to the Mellin amplitude. So it follows from the solution (7.11) that we
have the following relation between M̃k1k2k3k4 andMk1k2k3k4

Mk1k2k3k4 = R̂ ◦ M̃k1k2k3k4 (7.16)

where R̂ is a difference operator with each UmV n in R (after extracting the kinematic
factor (v1 · v2)2(v3 · v4)2x2

13x
2
24) interpreted as a difference operator

ÛmV n
′
◦ M̃(s, t) =

Γ̃(1)
{ki}(s− 2m, t− 2n)

Γ(1)
{ki}(s, t)

M̃(s− 2m, t− 2n) . (7.17)

Notice these monomials act differently than in (2.36), and their associated difference op-
erators are distinguished by a prime here. This is because the reduced Mellin amplitudes
require a different Gamma function factor in their definition. Using this operator, we find
that

M̃2222 = −4(C2,2,2)2
(

cs
(s− 2)(ũ− 2) −

ct
(t− 2)(ũ− 2)

)
. (7.18)

Here we have used the identity cs+ct+cu = 0 to eliminate cu in order to avoid ambiguities
in writing the answer. But we can also rewrite it in the more symmetric form

M̃2222 = − 4
3(C2,2,2)2

(
cs

(s− 2)(ũ− 2) −
cs

(s− 2)(t− 2) + ct
(t− 2)(s− 2)

− ct
(t− 2)(ũ− 2) + cu

(ũ− 2)(t− 2) −
cu

(ũ− 2)(s− 2)

)
.

(7.19)

This form of summing over pairs of simultaneous poles turns out to be a generic feature of
the reduced Mellin amplitudes.

The reduced correlators have a remarkable feature — they are organized by an eight
dimensional hidden conformal symmetry. This hidden symmetry allows us to promote
H2222 into a generating function by replacing AdS distances with higher dimensional dis-
tances, and obtain any Hk1k2k3k4 by Taylor expansion. More precisely, we find that the
SU(2)R × SU(2)L spinors vi, v̄i regroup into SO(4) null vectors ti as they do in the flat
space limit (see section 6). The reduced correlator Hk1k2k3k4 can be viewed as a correlator
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where each operator transforms in the rank-(ki − 2) symmetric traceless representation of
SO(4). The SO(4) indices of the operators are contracted with the null vectors ti. The null
vectors ti appear in Hk1k2k3k4 only as polynomials of tij = ti · tj , and under independent
scalings ti → ζiti the reduced correlators scale as Hk1k2k3k4 →

∏4
i=1 ζ

ki−2
i Hk1k2k3k4 . For

the lowest Kaluza-Klein level ki = 2, H2222 is a singlet under SO(4) and therefore depends
on x2

ij only. We can define a generating function from the ki = 2 reduced correlator as

H(xi, ti) = H2222(x2
ij − tij) . (7.20)

To obtain Hk1k2k3k4 , we only need to Taylor expand H in powers of tij , and collect all
the monomials of tij that can appear in this correlator. There are only finitely many
such monomials in each Hk1k2k3k4 because of the above scalings. The replacement of x2

ij

by x2
ij − tij indicates an eight dimensional conformal symmetry. Since the two factors of

AdS5×S3 have the same radius, this background can be conformally mapped to R7,1 where
x2
ij − tij is the conformally invariant distance. Furthermore, we can check the dimension

by looking at the flat space limit of the reduced Mellin amplitude

M̃2222 → −4(C2,2,2)2
(

cs
su
− ct
tu

)
. (7.21)

This amplitude is annihilated by the flat space special conformal transformation generators

Kµ =
3∑
i=1

(
piµ
2

∂

∂pνi

∂

∂pi,ν
− pνi

∂

∂pνi

∂

∂pµi
− d− 2

2
∂

∂pµi

)
, (7.22)

only when the spacetime dimension is d = 8. This number of dimensions agrees with
the fact that we are essentially studying scattering processes constrained inside the eight
dimensional world volume of the 7-branes. Using the generating function, it is easy to find
that the reduced Mellin amplitudes for general k1, k2, k3, k4 are

M̃k1k2k3k4 = −4(C2,2,2)2 ∏
a<b

t
γ0
ab
ab (t12t34)E−2 ∑

i+j+k=E−2
0≤i,j,k≤E−2

σiτ j

i! j! k! (i+ κu
2 )! (j + κt

2 )! (k + κs
2 )!

×
(

cs
(s− sM + 2k)(ũ− uM + 2i) −

ct
(t− tM + 2j)(ũ− uM + 2i)

)
(7.23)

where σ, τ were defined in (6.3), and

sM = min{k1 + k2, k3 + k4} − 2 ,
tM = min{k1 + k4, k2 + k3} − 2 , (7.24)
uM = min{k1 + k3, k2 + k4} − 2 .

Upon acting on M̃k1k2k3k4 with the difference operator R̂ defined in (7.16), we reproduce the
results found in section 4.1. From the flat space limit of (7.23) and R̂, it is straightforward
to see that the flat space limit ofMk1k2k3k4 is given by (6.1).

The above eight dimensional hidden conformal symmetry parallels the ten and six
dimensional hidden conformal structures for IIB supergravity on AdS5×S5 [15] and AdS3×
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S3×K3 [13] (see also [36]). In the latter two examples, the solutions to the superconformal
Ward identity also take the form (7.11), and it is possible to define reduced correlators
Hk1k2k3k4 which have similar shifted conformal and R-symmetry weights. The lowest-weight
reduced correlatorH2222 is an R-symmetry singlet, and upon the replacement x2

ij → x2
ij−tij

gives the generating function. The flat space limit of the reduced Mellin amplitudes are
also conformally invariant in ten and six dimensions respectively.

However, an important difference is that the 4d N = 2 case arises from a supersymmet-
ric gauge theory in AdS, while the other two examples are supergravity theories. Previously
it was not clear whether the existence of such higher dimensional conformal symmetries
relies on special properties of IIB supergravity. The 4d N = 2 example we presented here
proves that is not the case. At the moment, a precise understanding of these structures
is still lacking. However, finding the same phenomenon in drastically different theories
provides strong indication that such hidden conformal structures are due to the conformal
flatness of the background.

7.3 Color-kinematic duality

The holographic correlators in sections 4 and 5 also enjoy another interesting property that
can be more easily seen after using the prescription of section 3.2 to eliminate the contact
terms. This property mimics the celebrated color-kinematic duality [37] for the lowest
Kaluza-Klein modes with ki = 2, while higher Kaluza-Klein modes satisfy a modification
of it. Note the ki = 2 multiplet is where the flavor current belongs, dual to a massless
gauge field in AdS. These four-point amplitudes have the universal factorized structure in
each channel

M2222 = csns
(

const
s− 2ε + . . .

)
+ ctnt

(
const
t− 2ε + . . .

)
+ cunu

(
const
u− 2ε + . . .

)
(7.25)

where cs,t,u are the color structures defined in (3.2). The normalization const depends on
the theory but is the same for all three channels. The . . . denote satellite poles at 2ε+ 2Z+
which complete the series into the sum of two AdSd+1 scalar exchange diagrams (7.3), or
equivalently, a single scalar exchange diagram in AdSd−1 (7.4). The factors ns,t,u are simple
polynomials given by

ns = u−4ε+αs , nt =−(α−1)((α−1)(u−4ε)+αt) , nu =−α(α(s−4ε)+u) , (7.26)

and are related to each other by crossing symmetry. Note that this factorization into poly-
nomial factors ns,t,u and polar parts corresponding to an AdSd−1 scalar exchange diagram
is a highly nontrivial feature of our results. The form of (7.25) is very similar to the formula
for four-point gluon scattering amplitudes in flat space. The spacetime polarizations in flat
space are replaced by R-symmetry polarizations. In analogy with the 1

s scalar propagator
in flat space, we have the AdSd−1 scalar propagator which contains a series of simple poles
(const
s−2ε + . . .). Thanks to the Jacobi identity, we have

cs + ct + cu = 0 . (7.27)
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On the other hand, it is also straightforward to check that the kinematic factors satisfy

ns + nt + nu = 0 . (7.28)

This relation gives an AdS version of the color-kinematic duality, which is literally the same
as that of the flat space gluons! Finding AdS extensions of the flat space color-kinematic
duality was also discussed recently in momentum space [78, 79]. However, our realization
of this duality in Mellin space appears to be the simplest and bears most resemblance to
the flat space relation. One might be tempted by the flat space analogy and replace cs,t,u
by ns,t,u to obtain new amplitudes. However, we do not recognize the amplitudes following
from this naive prescription. It would be very interesting also to find a way to properly
“square” the super gluon amplitudes so that super gravitons amplitudes are obtained.

It turns out that a modified version of the color-kinematic duality also holds for cor-
relators with arbitrary weights. For simplicity, we shall discuss here the case of 〈kkkk〉
correlators, although analogous results are also found in general correlators. We extend
the definition of ns,t,u to each exchanged super multiplet (labelled by p) as the coefficient
of the pole due to the super primary (m = 0), dividing by the corresponding SU(2)L
polynomial in order to get rid of the dependence on β. Explicitly, for each p we have

ns =
p
2∑
i=0
Rip,m=0(t, u) (1− α)i , (7.29)

with nt and nu related to ns by crossing as in (3.6) as follows

nt = (α− 1)k
(

ns|{t,u}→{u,s}α→ 1
1−α

)
, nu = (−α)k

(
ns|{t,u}→{s,t}α→α−1

α

)
. (7.30)

In this definition we have exploited the fact that the poles of the multiplet exchange
amplitude can be completely factored out as an AdSd−1 scalar exchange amplitude with
the dimension of the super primary (see section 7.1). Therefore, stripping away the SU(2)L
polynomials each multiplet exchange amplitude can be expressed as ns,t,u multiplying a
series of simple poles in s, t or u, just as in (7.25). The simple poles have constant
coefficients, and the coefficient of the first pole is normalized to one. These kinematic
factors ns,t,u can be expressed in terms of SU(2)R R-symmetry polynomials and read

ns =
λsp (−1)p Γ[ε p]

16 ε (p− 3) (p− 1)2 Γ
[pε

2
]4 Γ

[
ε
2(2k − p)

]2[
(p− 3)(p− 1) (−4εk − εp+ t+ u+ 2ε) Yp(α)

+ 8(p− 3)(p− 1)(t− u)Yp−2(α) + (p− 2)2(−4εk + εp+ t+ u)Yp−4(α)
]
,

(7.31)

where for 〈kkkk〉 we have

Yp(α) = 1
p! Γ

[
p+2

2

]
2F1

(
p

2 + 1,−p2; 1; 1− α
)
. (7.32)
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We find that a generalized version of the relation (7.28) holds, which takes the form

ps(α) ns + pt(α) nt + pu(α) nu = 0 . (7.33)

Here ps,t,u(α) are polynomials in α, related by crossing symmetry.23 Explicitly, they are
given by

ps(α) = ((1− α)α)
p−2

2

[
− 2(α− 1)(p− 2) 2F1

(
1− p

2 ,
p

2; 1; α

α− 1

)
2F1

(
2− p

2 ,
p

2; 1; 1
α

)
+ (2(α− 2)(p− 2)− 4k) 2F1

(
1− p

2 ,
p

2; 1; α

α− 1

)
2F1

(
1− p

2 ,
p

2; 1; 1
α

)
+ 2(p− 2) 2F1

(
2− p

2 ,
p

2; 1; α

α− 1

)
2F1

(
1− p

2 ,
p

2; 1; 1
α

)]
,

(7.34)

with

pt(α) = (α− 1)−1−k+3p/2 ps
( 1

1− α

)
, pu(α) = (−α)−1−k+3p/2 ps

(
α− 1
α

)
. (7.35)

Note that when p = 2 (corresponding to the exchange of massless particles in AdS), the
relation (7.33) reduces to

ns + (α− 1)k−2 nt + (−α)k−2nu = 0 , (7.36)

which is a minimal modification of the color-kinematic duality relation (7.28). A remarkable
fact is that the ps,t,u(α) do not depend on ε, hence they are the same in any spacetime
dimension.

It is also possible to extend the relation (7.33) to general 〈k1 k2 k3 k4〉 correlators. We
notice that in each channel there are always an equal number of E − 1 multiplets being
exchanged. The generalized version of (7.33) holds for any triplet of exchanged multiplets
which have the same i-th lowest dimension in each channel, where ns,t,u are defined similarly
as in (7.29). The degrees of polynomials ps,t,u(α) are determined only by the extremality
E and the label i. For example, for next-to-next-to-extremal correlators which have E = 2
and include 〈2222〉 as a special example, ps,t,u(α) are just numbers. However, ps,t,u(α) do
depend on ε in the general case, and explicit formulae appear to be more cumbersome.

8 Outlook

In this paper we have developed powerful techniques to compute holographic correlators
in non-maximally supersymmetric conformal field theories. These correspond to tree-level
(super) gluon amplitudes on AdS. We applied these techniques to compute all tree-level
four-point functions of super gluons with arbitrary Kaluza-Klein levels in a variety of SCFTs
in three, four, five and six dimensions. Our strategy consists of two basic steps. In the first

23One might wonder how nontrivial such relations are. However, as a linear function of s and t, (7.33)
gives three equations for two unknowns which are the ratios ps,t,u, and is in general overly-determined.
Therefore, the existence of solutions is not guaranteed.

– 38 –



J
H
E
P
0
6
(
2
0
2
1
)
0
2
0

step we consider the contribution of each intermediate multiplet in the MRV configuration.
The special analytic properties for the multiplet exchange in this limit fix the contribution
of each member of the multiplet up to an overall factor. As a result

M(k1,k2,k3,k4) = cs
∑
p

Ck1,k2,pCp,k3,k4Sp + crossed +M(k1,k2,k3,k4)
contact (8.1)

where the contribution of each multiplet Sp is fully fixed, and the full Mellin amplitude
is written in terms of the OPE coefficients Ck1,k2,p plus a possible contact term, of degree
zero in the Mandelstam variables. Here cs is the corresponding color structure for the
s-channel exchange. While for maximally supersymmetric theories these OPE coefficients
were known, this is not the case for the problem at hand. The second step of our strategy
is then to impose the superconformal Ward identities for the full correlator (and those
related by crossing symmetry). This fixes all OPE coefficients in terms of C2,2,2, which
is in turn fixed in terms of the current central charge, and implies that contact terms are
actually absent. Our final results have the following structure

M = csMs + ctMt + cuMu (8.2)

whereMs,Mt,Mu are exchange contributions in the corresponding channels. The full flavor
dependence, or color dependence from the point of view of the dual amplitudes, is encoded
in the color factors cs, ct, cu. This color dependence is identical to that of tree-level gluon
amplitudes in flat space, but the structure of poles in AdS is more complicated

Mflat
s = Res(t, u)

s
→MAdS

s =
∑
m

Res(m)(t, u)
s− s0 − 2m (8.3)

where generically the sum over poles does not truncate.
Our techniques and explicit results open the gates for progress in two general directions.

On one hand they give us the ability to explore gluon amplitudes in AdS in a rigorous
setting, involving full-fledged SCFTs. On the other hand, they also give us a powerful
new tool to compute protected and unprotected quantities in a variety of non-maximally
supersymmetric conformal field theories, usually much less tractable than their maximally
supersymmetric cousins. There are several directions worth exploring.

• A natural question is which structures present in flat space generalize to AdS and
which new structures arise in AdS, without a flat space analogue. In this paper
we have seem glimpses of very rich structures behind AdS amplitudes in the form
of a Parisi-Sourlas supersymmetry, hidden conformal symmetry and even a color-
kinematic duality. A fascinating question is whether there is an algorithm to “square”
gluon amplitudes in AdS such as to obtain graviton amplitudes in AdS.

• Much of the beautiful structures in gluon amplitudes in flat space require considering
higher-point amplitudes. It would be very interesting to extend our methods to
higher-point correlators. Note that very much as in flat space, we expect gluon
amplitudes in AdS to be simpler than graviton amplitudes in AdS, although the CFTs
involved are naively less tractable. As in flat space one should study color-ordered
amplitudes.
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• In this paper we considered the leading contribution to the connected holographic
correlators in a 1/N expansion. To this order, graviton exchanges can be disregarded
and the computation is equivalent to that of a supersymmetric gauge theory on AdS.
Similar techniques to the ones used in this paper should also allow us to compute the
contribution arising from graviton exchanges (the simplest cases with ki = 2 were
computed in [11]). Note that the results of appendix D, in particular the absence
of linear order solutions to the Ward identities, suggest that contact terms will also
be absent in this case. A related problem is to consider correlators with external
gravitons, or mixed correlators with both gravitons and gluons.

• It would be interesting to consider higher loop corrections to our computation, pro-
portional to higher inverse powers of CJ , following the prescription of [80]. This
should allow us to explore the geometry of the world volume of the flavor branes.
On the other hand, contributions proportional to higher inverse powers of CT should
allow us to explore the geometry of the entire spacetime.

• The infinite families of correlators given in this paper contain a wealth of data for
various half maximally supersymmetric conformal field theories. This includes pro-
tected data, such as OPE coefficients of 1

2 -BPS operators, but also unprotected data,
such as anomalous dimensions of intermediate operators. The vast majority of the
OPE coefficients computed in this paper were, to our knowledge, unknown. But it
should be possible to match such results to localization computations, and test vari-
ous conjectures (for instance in relation to the chiral algebra). Furthermore, this data
can also be fed/compared to the numerical bootstrap treatment of these theories, see
for instance [46, 59].
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A Mellin amplitudes of exchange Witten diagrams

For the reader’s convenience, we reproduce here the AdSd+1 exchange Mellin amplitudes
from [7]. The exchanged field has conformal dimension ∆E and Lorentz spin `E up to 2.
The Mellin amplitudes take the form

M∆E ,`E (s, t) =
∑
m

fm,`E Qm,`E (t, u)
s−∆E + `E − 2m , (A.1)
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and the residues can be obtained by solving the Casimir equation in Mellin space. The
residues consist of a factor

fm,`E =
(−1)21−2`EΓ[∆E+`E ]

(
2−`E−∆1,2

E
2

)
m

(
2−`E−∆3,4

E
2

)
m

m!
(

2∆E−d+2
2

)
m

Γ
[

∆1,2
E +`E

2

]
Γ
[

∆3,4
E +`E

2

]
Γ
[

∆1,E
2 +`E

2

]
Γ
[

∆2,E
1 +`E

2

]
Γ
[

∆3,E
4 +`E

2

]
Γ
[

∆4,E
3 +`E

2

]
(A.2)

with ∆i,j
k ≡ ∆i + ∆j −∆k, and a degree-`E polynomial Qm,`E (t, u) in t and u

Qm,0 = 1 ,

Qm,1 = (δ2
u − δ2

t )(t+ u+ d− 2− Σ∆)
4(∆E − d+ 1) + (∆E − 1)(t− u) ,

Qm,2 = (d− 1)T1
16d(∆E − d) −

(d− 1)T2
16d(∆E − d+ 1) + T3

16d (A.3)

+ (δ2
u − δ2

t )
2 (t− u)(u+ t+ d− 2− Σ∆)

− 2(1−∆E + ∆2
E)− δ2

t − δ2
u

2d (u+ t+ d− 2− Σ∆)2

−∆E(1−∆E)(t− u)2 ,

where the combinations Ti are given by

T1 = (δ2
u − δ2

t )(t+ u+ d− 2− Σ∆)
(
u(δ2

u − δ2
t − 8d)

+ t(δ2
u − δ2

t + 8d)− (δ2
u − δ2

t )(Σ∆ − d+ 2)
)
,

T2 = ((δu − δt)2 − 4)((δu + δt)2 − 4)(t+ u+ d− 3− Σ∆) (A.4)
× (t+ u+ d− 1− Σ∆) ,

T3 = ((δu − δt)2 − 4)((δu + δt)2 − 4)
+ 8∆E(∆E − 1)(2(∆2

E − d(∆E + 3) + d2 + 1)− δ2
t − δ2

u) .

In the above we have also defined

δt ≡ ∆1 + ∆4 −∆2 −∆3 ,

δu ≡ ∆2 + ∆4 −∆1 −∆3 , (A.5)
Σ∆ ≡ ∆1 + ∆2 + ∆3 + ∆4 .

B Comments on 3d superconformal blocks

We have seen in section 5.2 that 1
3 -BPS multiplets of osp(3|4) and 1

2 -BPS multiplets of
osp(4|4), which are both generated by the action of four supercharges, contain the same
bosonic conformal primaries. This can be further checked at the level of characters using
the algorithm in [49]. However, this fact does not immediately make it clear whether all
such conformal primaries can appear in the OPE between two 1

3 -BPS super primaries of
a 3d N = 3 theory. The operators in question are the scalars tIp discussed in section 5.2,
with SU(2)R spins p

2 ,
p−2

2 and p−4
2 , obtained by acting on the super primary with Qᵀ

iCQj
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where C is the charge conjugation matrix. In deriving (5.3), we have assumed that these
operators cannot appear, and we used multiplet exchange amplitudes which only contain
the other three components sIp, AIp,µ and rIp. This assumption turns out to be consistent
with superconformal symmetry, as we found unique solutions to the superconformal Ward
identities for four-point correlators. However, this more stringent selection rule can also be
established without reference to any particular model by looking at superconformal blocks,
as was suggested in section 5.2. In this appendix, we present the details of this check. As a
byproduct, we also observe a bonus Z2 selection rule for 3d N = 4 superconformal blocks,
which however does not hold in general for 3d N = 3.

Our check is based on the fact that a conformal block in Mellin space only differs
from the corresponding Witten diagram by an entire function. Let us first consider in any
spacetime dimension d ≥ 3 the linear combination

Gp(U, V ;α) = Yp(α)gεp,0(U, V ) + c1Yp−2(α)gεp+1,1(U, V ) + c2Yp−4(α)gεp+2,0(U, V ) (B.1)

which has the same form as the combination of exchange Witten diagrams (3.9). Previously,
we used the single zero in the MRV limit to fix the coefficients of the Witten diagrams.
Since conformal blocks and Witten diagrams have the same polar part, this immediately
predicts that the superconformal block should be given by (B.1) with

c1 = ε(p2 − k2
12)(p2 − k2

34)
8p2(p− 1)(εp+ 1)

c2 =
ε2(p2 − k2

12)
(
(p− 2)2 − k2

12
)
(p2 − k2

34)
(
(p− 2)2 − k2

34
)

256p(p− 1)2(p− 2)2(p− 3)(εp+ 1)(εp− ε+ 1) .

(B.2)

Note that here we normalize the conformal blocks as

g∆,`(ρ, ρ̄) ∼ [4|ρ|]∆C(ε)
` (cosθ), ρ = |ρ|eiθ = z

(1 +
√

1− z)2 (B.3)

which is different from the normalization used in appendix A. This gives rise to an extra
factor of 2 in c1 compared to (3.14). On the other hand, we can independently reproduce
this answer by imposing superconformal Ward identities on (B.1), as these Ward identities
must hold for individual superconformal blocks. More concretely, we use the recursive
procedure in [81] to compute corrections to (B.3) and solve the superconformal Ward
identities order-by-order in |ρ|. Re-expressing (2.18) in the radial coordinates leads to[

e−iθ

8
(1 + ρ)3

1− ρ

(
∂

∂|ρ|
+ isinθ
|ρ|

∂

∂cosθ

)
− εα ∂

∂α

]
G(ρ, ρ̄;α)

∣∣∣∣
α= (1+ρ)2

4ρ

= 0 . (B.4)

The expansion coefficients of this equation at low-lying orders already fix c1 and c2 to be
the values given above. We have also gone up to O(|ρ|10) to check that (B.4) vanishes at
higher orders. Let us now turn to the case of 3d N = 3 with ε = 1

2 . To show the extra
scalar operators are absent, we now only need to show that their contributions cannot
satisfy the superconformal Ward identities. The scalar with SU(2)R spin p−2

2 can be ruled
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out because it does not obey the Bose symmetry in the s-channel. We then only need to
consider the combinations

G′p(U, V ;α) = U εE−
ε
2 (k1+k2)V

ε
2 (Σ−k4)−εE(d1Yp(α) + d2Yp−4(α)

)
gεp+1,0(U, V ). (B.5)

By looking at several values of p and the external weights ki, and using the above ρ-
expansion, we find that the only solution is the trivial one with both d1 and d2 zero. This
concludes that osp(3|4) and osp(4|4) have the same superconformal block exchanging this
short super multiplet.

Note that the above strategy of computing superconformal blocks can be also applied
to exchanging other types of super multiplets such as the long multiplets. In particular,
looking at long multiplets allows us to see the differences between the two superconformal
algebras. For the osp(3|4) blocks, it is easy to find values of ∆ which force all bosonic com-
ponents of the long multiplet to appear with a non-zero coefficient. Conversely, repeating
this exercise for osp(4|4) shows a surprising amount of structure in the blocks for long
multiplets. To illustrate, we have been able to satisfy the Ward identity for an osp(4|4)
long multiplet with the ansatz

GN=4
∆,`,p(U, V ;α) = Yp(α)g∆,`(U, V ) +

∑
i,j=±1

c
(1)
ij Yp+2i(α)g∆+1,`+j(U, V )

+
∑

i=0,±2
c

(2)
i0 Yp+2i(α)g∆+2,`(U, V ) +

∑
j=±2

c
(2)
0j Yp(α)g∆+2,`+j(U, V )

+
∑

i,j=±1
c

(3)
ij Yp+2i(α)g∆+3,`+j(U, V ) + c(4)Yp(α)g∆+4,`(U, V ). (B.6)

Note that this ansatz is much more restrictive than an expression which includes all of the
operator content indicated by [49]. As with (B.1), it has the property that all exchanged
super descendants have the same conformal twist as the primary mod 2.

The parity selection rule evident in (B.6) is reminiscent of the “bonus symmetry” of 4d
N = 4 SYM [82, 83]. More recently, [84, 85] found evidence of a bonus parity by computing
3d N = 8 superconformal blocks. Our results suggest that this structure might be a feature
of all 3d SCFTs with N ≥ 4 superconformal symmetry. It would be interesting to prove
this conjectured bonus selection rule using the superspace approach to superconformal
correlators [86].

C Chiral algebra and twisted correlators

The holographic theories we studied in four dimensions with N = 2 superconformal sym-
metry admit a chiral algebra structure through the construction of [77]. For a special class
of protected operators Oα1...α2j (z, z̄) restricted to the plane parameterized by (z, z̄), there
exists a z̄-dependent slice of R-symmetry space which defines operators with meromorphic
OPEs. Translated into the language of correlators, four-point functions of these operators
become meromorphic after the twist α = 1/z̄, as indicated by the superconformal Ward
identity (2.18) with ε = 1. The special operators with this property were classified in [77],
and from this list, we can see that the super primary of the flavor current multiplet and
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its higher-weight cousins generate a chiral algebra. Thanks to the rigid structure of mero-
morphic OPEs, we do not need a microscopic definition of this chiral algebra to compute
four-point functions of arbitrary generators to the order 1/CJ considered in this paper.
Taking the selection rule (3.27) as the one input from holography, we can fix the twisted
correlators in terms of their singularities including the OPE coefficients once we impose
crossing symmetry in the chiral algebra. This amounts to an independent derivation of the
three-point functions (4.7).24

In this appendix, we present the details of computing meromorphic correlators in the
world volume theories of D3-branes near F-theory singularities. We will first present the
calculation from the field theory side, where it follows straightforwardly from the chiral
algebra OPE. We then present the holographic calculation using the Mellin amplitudes
obtained in section 3.1. Note that the cancellation of the non-meromorphic piece in the
twisted four-point function requires all multiplets in all three channels. However, as we
will explain, meromorphic correlators can be most conveniently extracted from the MRV
limit where only two of the three exchange channels are present. Similar calculations for
the maximally superconformal case were done in [16].

A crossing symmetric solution. Let us start by discussing the kinematics using
conventions that are more standard in two dimensional CFT. The external operators
OIk(x, v, v̄) descend to currents JI(k)(z, v̄) of spin h = k

2 after twisting.25 Their weights with
respect to GF and SU(2)L are unchanged, while there is no SU(2)R dependence anymore
because of the superconformal twist. We can define the chiral algebra correlator to be

〈
JI1

(k1)(z1, v̄1)JI2
(k2)(z2, v̄2)JI3

(k3)(z3, v̄3)JI4
(k4)(z4, v̄4)

〉
=
[
z24(v̄1 · v̄4)
z14(v̄2 · v̄4)

] k12
2
[
z14(v̄1 · v̄3)
z13(v̄1 · v̄4)

] k34
2
[
v̄1 · v̄2
z12

] k1+k2−4
2

[
v̄3 · v̄4
z34

] k3+k4−4
2 FI1I2I3I4

1234 (z;β)
z2

12z
2
34

(C.1)

where zij = zi− zj and kij = ki− kj . The dynamical part FI1I2I3I4
1234 (z;β) is a meromorphic

function of the conformal cross ratio z which is related to the holomorphic coordinates zi
on the plane via

z = z12z34
z13z24

. (C.2)

It admits an expansion in sl(2) blocks which are given by

gh12,h34
h (z) = zh2F1(h− h12, h+ h34; 2h; z) (C.3)

24The same procedure applied to the 6d N = (2, 0) theory would still leave ambiguities in the twisted
correlators. However, in this case there is a microscopic definition of the conjectured chiral algebra in terms
of the WN family of algebras [87].

25We have parenthesized k to avoid confusing JI(k) with the Laurent modes of some current JI .
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and must obey the following crossing symmetry conditions

FI1I2I3I4
1234 (z;β) = z

k1+k2
2

(1− z)
k2+k3

2

(β − 1)
k2+k3−4

2

β
k3−k1

2

FI3I2I1I4
3214

(
1− z; β

β − 1

)
(C.4a)

FI1I2I3I4
1234 (z;β) = (βz)

k1+k4
2

β2 FI4I2I3I1
4231

(1
z

; 1
β

)
. (C.4b)

Importantly, only the invariance under (C.4a) will be manifest in the expressions we find
for FI1I2I3I4

1234 (z;β).
Unlike the k1 ≤ k2 ≤ k3 ≤ k4 ordering assumed in (2.9), here we will assume without

loss of generality a different ordering k2 ≤ k1 ≤ k3 ≤ k4, which guarantees

k1 + k2 ≤ k3 + k4 , k2 + k3 ≤ k1 + k4 . (C.5)

As was explained in [16], this choice is more convenient for computing chiral algebra cor-
relators because the singularities encountered when z2 → z1 and z2 → z3 determine those
of the full correlator. On the other hand, the most general four-point functions with arbi-
trary orderings are obtained by permuting the external operators and applying the crossing
relations above. With this chosen ordering, the two cases we need to distinguish are no
longer (2.11) but

k2 + k4 > k1 + k3 (case I′) , k2 + k4 ≤ k1 + k3 (case II′) . (C.6)

Since crossing symmetry in the chiral algebra will be one of our main tools, we will be most
interested in case II′. In this case the set inequalities of (C.5) and the case II′ condition
are preserved under 1 ↔ 4, thereby allowing us to impose (C.4b) instead of just using it
to define new weight arrangements. To be specific, we will choose cs and ct to be the
independent flavor structures and derive four-point functions of the form

F1234(z;β) = csF (s)
1234(z;β)− ctF (t)

1234(z;β) , (C.7)

where

F (t)
1234(z;β) = z

k1+k2
2

(1− z)
k2+k3

2

(β − 1)
k2+k3−4

2

β
k3−k1

2

F (s)
3214

(
1− z; β

β − 1

)
. (C.8)

This guarantees invariance under (C.4a). On the other hand, (C.4b) can be split into

F (s)
1234(z;β) = (βz)

k1+k4
2

β2 F (s)
4231

(1
z

; 1
β

)
, (C.9a)

F (t)
1234(z;β) = −(βz)

k1+k4
2

β2

[
F (s)

4231

(1
z

; 1
β

)
+ F (t)

4231

(1
z

; 1
β

)]
, (C.9b)

with the help of the Jacobi identity (7.27). As we will see, these equations are consistent
with (4.7), which is one of the main results in the body of the paper. However, we emphasize
that crossing symmetry of the chiral algebra and that of the higher dimensional theory do
not follow from each other in a simple way.
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As discussed at the beginning of this appendix, we assume the following OPE at tree
level for arbitrary Ck1,k2,p

JI1
(k1)(z1, v̄1)JI2

(k2)(z2, v̄2)

= f I1I2
I

k1+k2−2∑
p=|k12|+2

Ck1,k2,p

k1+k2−p−2
2∑

m=0

(
k12+p

2

)
m

m!(p)m
(v̄1 · v̄2)

k1+k2−p−2
2

z
k1+k2−p

2 −m
12

∂m

(p− 2)!
∑

σ∈Sp−2

JI(p);ᾱσ(1)...ᾱσ(p−2)
(z2)v̄ᾱ1

1 . . . v̄
ᾱ(p+k12−2)/2
1 v̄

ᾱ(p+k12)/2
2 . . . v̄

ᾱp−2
2 . (C.10)

This assumption of the chiral algebra OPE follows from the holographic setup given by the
brane construction, and is valid in the N →∞ limit. The chiral algebra correlator is fixed
by demanding that the singularities implied by (C.10) are reproduced in each channel.
Following [16], this indeed produces an expression of the form (C.7) where

F (s)
1234(z;β) = z

k1+k2
2

k1+k2−2∑
p=|k12|+2

Ck1,k2,pCk3,k4,pg
k21

2 ,
k43

2
1− p2

(β−1)

k1+k2−p−2
2∑

m=0

(
k21+p

2

)
m

(
k34+p

2

)
m

m!(p)mz
k1+k2−p

2 −m
.

(C.11)

The OPE coefficients must be chosen such that (C.9) are satisfied for all external weights
belonging to case II′, which is non-trivial. While it is reassuring that this happens for
Ck1,k2,p = C2,2,2, we can in fact say more. Imposing these nontrivial crossing equations
on a large number of 〈kkqq〉 examples shows that in fact Ck1,k2,p = C2,2,2 is the unique
solution. Upon using this solution, we also observe that the chiral algebra correlators for
case II′ can be recast into the remarkably compact form

F (s)
1234(z;β) = (C2,2,2)2

k1+k2−2
2∑

n=1+ |k12|
2

βn−1 zn (C.12)

which shows that (C.9a) is manifest. This is very reminiscent of a simplification previously
seen in the N = 4 results of [16].

Matching with holography. According to the chiral algebra construction, our main re-
sult (C.11) should also be reproduced from the 4d result after applying the twist α = z̄−1.
As commented earlier, showing the meromorphy of the twisted correlator requires all mul-
tiplets in all channels.26 However, our focus here is to extract the meromorphic correlators
and compare them with the field theory result. To this end, it is most efficient to go to a
special kinematic limit using the independence of the twisted correlator on z̄. This limit
turns out to be the same as the MRV limit where only two channels are present. In this
limit the matching of the meromorphic correlators can be seen at the level of each multiplet.

26This can be explicitly checked in many examples.
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The starting point of this calculation is the inverse Mellin integral. Taking into account
the difference in the extra factors in (2.9) and (C.1), and different orderings of the weights,
the function we should twist is

FI1I2I3I4
1234 (z, z̄;α, β) = (αβU)

1
2 (k1+k2)−EGI2I1I3I4

2134

(
U

V
,

1
V

; 1− α, 1− β
)

=
∫ i∞

−i∞

dsdt

(4πi)2U
s
2V −

s
2−

t
2 + 1

2 (k1+k4)(αβ)
1
2 (k1+k2)−E (C.13)

MI2I1I3I4
2134 (s, t; 1− α, 1− β) Γk2k1k3k4 .

Clearly, only one of the two terms in (C.7) needs to be computed thanks to the crossing
relation (C.8). In [16], the function F (t) was computed by extracting negative powers of
1 − z from an analogous integral. In this work, we will make the opposite choice and
compute F (s) instead. Recalling that (C.1) becomes proportional to z−

k1+k2
2 FI1I2I3I4(z;β)

in the (z1, z2, z3, z4) = (0, z, 1,∞) kinematics, F (s) requires us to extract the powers of z up
to z

k1+k2
2 −1. These powers can only arise from single-particle poles in the s-channel. All of

these are simple poles since we are dealing with Mellin amplitudes at tree level. Evaluating
the t-integral is more difficult because its contour encircles infinitely many double-particle
poles from the Gamma function factor. However, we can circumvent this difficulty by
exploiting the fact that twisted correlators are independent of z̄. This means there is no
loss of generality in setting z̄ to a special value if α = z̄−1. It will be most convenient to
take z̄ = 1 so that we do not have to worry about the region t > k1 + k4 − s and localize
the t-integral to just a single pole at t = k1 +k4− s.27 Note that the α = 1 limit is also the
t-channel MRV limit. We now implement this strategy, and start by restoring the SU(2)L
polynomial in the s-channel residue (3.19) and switching 1↔ 2. This leads to

Yp−2(β)
s−p−2m

E∑
i=0
Rp,m;i

1234 (t,u)(1−α)i→ Yp−2(1−β)
s−p−2m

E∑
i=0
Rp,m;i

2134 (t,u)αi (C.14)

= (−1)
2p−4−κt−κu

4

s−p−2m

E∑
i=0
Rp,m;i

2134 (t,u)αiβE−
k1+k2

2 g
k21

2 ,
k43

2
1− p2

(β−1).

We then apply the chiral algebra twist and extract the poles discussed above to get

F (s)(z;β) = z
k1+k2

2
Γ
[κt

2
]

2

k1+k2−2∑
p=max{|k12|,|k34|}+2

(−1)
2p−4−κt−κu

4 g
k21

2 ,
k43

2
1− p2

(β−1)

k1+k2−p−2
2∑

m=0

Γ
[
k21+2m+p

2

]
Γ
[
k34+2m+p

2

]
m!(p)mz

k1+k2−p
2 −m

E∑
i=0

(−1)iKi
pE

i
p (C.15)

where we have used Ki
p as a shorthand for Ki

p(k1 + k4 − 2m− p, k2 + k3). In other words,

Ki
p = 2i(κt − 2)

(1
2κt + 1

2κu − 2m− p
)

− 1
4

(1
2κt −

1
2κu − 2i− 2m− p

)
(2p− κt − κu)(2p+ κt + κu − 4).

(C.16)

27In restricting the outer integral to s = p+ 2m and the inner integral to t = k1 + k4 − s, we have relied
on the left and right inequalities of (C.5) respectively.
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The remaining task is to compute the inner sum of (C.15). Since this sum is hypergeo-
metric, it is a simple matter of using a Gamma function identity and {κt + κu, κt − κu} =
{−2k21,−2k34} to recover (C.11). This shows the desired matching between the multiplets
labelled by p individually.

Let us now return to (C.12) which gives the simplest expression for the chiral algebra
correlators. Although the exchange amplitudes in section 3.1 naturally led to chiral algebra
four-point functions that took the original form (C.11) under the superconformal twist, the
simplification (C.12) is instead best derived by using the reduced Mellin amplitudes. As
with the N = 4 SYM case, the N = 2 reduced amplitudes show that the complexity of the
rational function that accompanies each R-symmetry monomial is bounded with respect to
the external weights. Indeed, it is difficult to imagine how the hidden conformal symmetry
observed in section 7.2 would have been possible were this not the case. From section 7.2,
we know that the full Mellin amplitudes are related to the reduced Mellin amplitudes by

M2134(s, t; 1−α,1−β) = k2 +k3−u
2

k1 +k4−u
2 αM̃2134(s, t; 1−α,1−β) (C.17)

+ k1 +k2−s
2

k3 +k4−s
2 α(α−1)M̃2134(s−2, t; 1−α,1−β)

+ k2 +k4− t
2

k1 +k3− t
2 (1−α)M̃2134(s, t−2;1−α,1−β) ,

which follows fromM = R̂ ◦M̃ after swapping 1↔ 2. To see that this expression matches
the sum over poles with contact terms absorbed from section 4, one will need to use a
number of identities. However, since our goal is to make (C.12) transparent it is best not
to apply any of these identities. Let us now compute F (s) by performing the inverse Mellin
transformation for z̄ = 1 again, but using the expression given by (C.17). The choice
1/α = z̄ = 1 leaves only the first term of (C.17) after the twist. Moreover, note that only
the i = 0 term in the sum (7.23) survives, which leads to

M2134(s, t; 0, 1− β) = (C2,2,2)2 ∑
j+k=E−2

βjΓ
[
κt+2

2

]−1

j!k!
(
j + κu

2
)
!
(
k + κs

2
)
!

×
[
cs
u− k1 − k4
s− sM + 2k − ct

u− k1 − k4
t− tM + 2j

]
.

(C.18)

The t-integral is further localized at t = k1 + k4− s as before, and kills the 1− z̄ in (C.13).
We can then extract all the single-particle s-poles in (C.18). As long as the weight condition
for case II′ is met, we will have E = k2, which makes the powers of β the same as those
in (C.12). This completes the derivation of the simplified correlator (C.12).

D Contact terms and higher-derivative corrections

In this appendix we study a class of crossing symmetric solutions to the superconfor-
mal Ward identities, where we relax the condition of constant growth in the flat space
limit. Such contributions will be relevant when considering, for instance, subleading higher-
derivative corrections to our results. The exchange of the current multiplet (p = 2) is fixed
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in terms of the central charge to be 1/CJ -exact, and is expected not to receive corrections.
Hence, in our ansatz below we allow for the exchange of multiplets with p > 2 in addition
to a contact term of degree D.28 For simplicity, we will focus on 〈kkkk〉 correlators. For
D = 0 we find no new solutions. This is of course expected since in the body of the paper
we showed our solutions are unique, and all amplitudes were given in terms of multiplet
exchange amplitudes with no additional contact terms. Below we will analyze in detail the
cases D = 1, 2 and make a brief remark about D ≥ 3.

Ansatz. We start by writing down an ansatz for the higher-derivative corrections

MI1I2I3I4
H.D. =MI1I2I3I4

H.D., ex +MI1I2I3I4
H.D., con (D.1)

which consists of an exchange partMI1I2I3I4
H.D., ex and a contact partMI1I2I3I4

H.D., con. In the exchange
part, we include all multiplets p allowed at O(1/CJ ) with p > 2

MI1I2I3I4
H.D., ex = cs

2(k−1)∑
p=4

Λp S ′p(s, t;α)Yp−2(β)

 + crossed , (D.2)

where the prime symbol means that the λ coefficient in the multiplet exchange ampli-
tude (3.19) is set to 1, but we explicitly include a new coefficient Λp for each multiplet.
The contact part is given by a sum over all irreducible representations of the flavor group
GF in adjGF × adjGF

MI1I2I3I4
H.D., con =

∑
Ra∈adjGF×adjGF

PI1I2I3I4
a Ma

H.D., con . (D.3)

Each amplitude Ma
H.D., con is a polynomial in the four variables s, t, α and β. While the

degree in the last two variables is dictated by R-symmetry considerations, the degree in s
and t can be freely tuned, at least in principle. We parameterize contact terms of degree
D in s and t by

Ma
H.D., con =

∑
0≤m≤k

∑
0≤n≤k−2

∑
0≤p+q≤D
p≥0, q≥0

cam,n;p,qα
m βn sp tq , (D.4)

and we look for crossing symmetric solutions to the superconformal Ward identities for
increasing values of D. Note that the exchange part is already crossing symmetric. On the
other hand, crossing symmetry will constrain the individual amplitudes Ma

H.D., con in two
ways. First, one has to impose the conditions (3.8):

Ma
H.D., con =

∑
b

(−1)|Ra|(Fu)ab(α− 1)k(β − 1)k−2
(
Mb

H.D., con
∣∣{s,t,u}→{t,u,s}
{α,β}→{ 1

1−α ,
1

1−β }

)
,

Ma
H.D., con =

∑
b

(−1)|Ra|(Ft)ab(−α)k(−β)k−2
(
Mb

H.D., con
∣∣{s,t,u}→{u,s,t}
{α,β}→{α−1

α
,β−1
β
}

)
.

(D.5)

28For simplicity we are assuming that there are no new states appearing in the exchanges.
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Moreover, Bose symmetry requires that the amplitude is also symmetric under the exchange
of the first two operators.29 For the 〈kkkk〉 correlators we are discussing here, this condition
translates to

MI1I2I3I4
H.D., con(s, t;α, β) =MI2I1I3I4

H.D., con(s, u; 1− α, 1− β) , (D.6)

and given that PI2I1|I3I4
a = (−1)|Ra|PI1I2|I3I4

a it corresponds to a symmetry or antisymmetry
condition onMa

H.D., con according to the parity of the representation Ra.

D = 0, 1. Our first finding is that the Ward identities cannot be solved for D = 0, 1,
regardless of the spacetime dimension d or the flavor group GF . This provides a consis-
tency check for our results from sections 4 and 5, where contact terms in these four-point
amplitudes are found to be uniquely fixed by superconformal symmetry. The non-existence
of solutions for D = 1 has interesting implications. The coupling of the super gluons to
two-derivative supergravity would in general introduce such contact terms. Our result
shows that in tree-level super gluon amplitudes at subleading order, where super gravitons
are exchanged, contact terms should also be uniquely fixed by the exchange contributions.

D = 2. Nontrivial solutions start to appear at D = 2 for suitable choices of the coef-
ficients cam,n;p,q and Λp in (D.4) and (D.2). In the remainder of this appendix we shall
discuss such solutions, which interestingly show rather different behaviors in d = 4 and in
d = 3, 5, 6. We will discuss the two cases separately.

• d = 4. In four dimensions we find that all Λp are zero. The solutions are given by
polynomials of degree 2 in s, t with the following structure

Ma
H.D., con = P (s, t;α)Qa(α, β) , (D.7)

where P (s, t;α) is completely fixed

P (s, t;α) = (s+ t− s α)2 − 4k
(
−k α2 + k α− k + α2s− 2αs+ s+ t

)
, (D.8)

and has the following properties under crossing symmetry

P (s, t;α) = (α− 1)2 P

(
t, u; 1

1− α

)
= (−α)2 P

(
u, s; α− 1

α

)
= P (s, u; 1− α) , (D.9)

recalling that u = 4k − s − t. Qa(α, β) are polynomials of degree k − 2 in α and β

separately, thus containing in principle (k− 1)2 free parameters for each representation
Ra. We find that the Ward identities do not impose further constraints. Crossing
symmetry, however, gives the following relations on the polynomials Qa(α, β)

Qa(α, β) = (α− 1)k−2 (β − 1)k−2 ∑
b

(−1)|Ra|(Fu) b
a Q

b
( 1

1− α,
1

1− β

)
,

Qa(α, β) = (−α)k−2 (−β)k−2 ∑
b

(−1)|Ra|(Ft) b
a Q

b
(
α− 1
α

,
β − 1
β

)
,

Qa(α, β) = (−1)|Ra|Qa(1− α, 1− β) .

(D.10)

29Together with (D.5), this generates the whole crossing symmetry group. As discussed at the end of
section 3.1, this symmetry is built-in for exchange amplitudes, so it must only be enforced on contact terms.
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The flat space limit of (D.7) is simply

Ma
H.D., con

∣∣∣
s,t→∞

= (s+ t− s α)2Qa(α, β) , (D.11)

which contains the familiar prefactor (s+ t− s α)2 already discussed in section 6.
The vanishing of Λp for higher-derivative corrections in four dimensions is consistent
with the results of appendix C. Under the same assumption as footnote 28, the OPE
coefficients of the exchanged multiplets, which survive the chiral algebra twist, were
found to be completely fixed by crossing symmetry.
Let us finish our discussion of the d = 4 case with the following interesting remark.
In terms of the reduced Mellin amplitude (7.14), this solution simply corresponds to a
constant in the Mellin variables. This allows us to generalize the result for degree-two
contact terms in four dimensions to general weights: simply by acting with R̂ on a
constant we find that all that one needs to change in (D.7) is the form of the polynomial
P (s, t;α), which now reads

P (s, t;α) =−(k1 +k2−s) (k3 +k4−s)α (1−α)+(k1 +k4− t) (k2 +k3− t)α
+(k1 +k3−u) (k2 +k4−u) (1−α) .

(D.12)

Note that the flat space limit of P (s, t;α) does not depend on the weights.

• d = 3, 5, 6. In all dimensions other than four, the situation is more interesting. We find
there are both pure contact term solutions as in the d = 4 case, with Λp = 0, and new
solutions with non-vanishing exchange coefficients Λp.
Let us first describe the pure contact solutions. We find that the Ward identities admit
polynomial solutions of degree two in s, t only for even values of k. The solutions can
be written as

Ma
H.D., con = R(s, t;α)Sa(β) , (D.13)

where Sa(β) is an arbitrary polynomial of degree k−2 in β, constrained only by crossing.
In analogy with the case of d = 4, R(s, t;α) is a completely fixed polynomial for each
value of k, of degree two in s, t and degree k in α. We will give its expression in the flat
space limit. As for the polynomial P in d = 4, R(s, t;α) has simple properties under
crossing

R(s, t;α) = (α−1)kR
(
t,u; 1

1−α

)
= (−α)kR

(
u,s; α−1

α

)
=R(s,u;1−α) , (D.14)

where u = 4 ε k − s − t. The flavor dependence is completely factorized in Sa(β) and
crossing imposes the following constraints

Sa(β) = (β − 1)k−2 ∑
b

(−1)|Ra|(Fu) b
a S

b
( 1

1− β

)
,

Sa(β) = (−β)k−2 ∑
b

(−1)|Ra|(Ft) b
a S

b
(
β − 1
β

)
,

Sa(β) = (−1)|Ra| Sa(1− β) .

(D.15)
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In the flat space limit, the expressions greatly simplify. We find

Ma
H.D., con

∣∣∣
s,t→∞

= (s+ t− s α)2 r(α)Sa(β) , (D.16)

with again the expected prefactor and r(α) a polynomial in α of degree k−2, satisfying

r(α) = r(1− α) = (α− 1)k−2 r
( 1

1− α

)
= (−α)k−2 r

(
α− 1
α

)
. (D.17)

r(α) can be written explicitly in terms of the R-symmetry polynomials for 〈kkkk〉, given
in (7.32):

r(α) =

1
2 (k−2)∑
p=0

Cp;kY4p(α) ,

Cp;k = −
27−4(k−p)Γ

[
1
2(3− k)

]2
Γ
[
k
2

]2
Γ [2(k − 1)] Γ

[
1
2(1− k − 2p)

]2
√
π (p!)2 Γ

[
−1

2(1 + 4p)
]

Γ
[

1
2(k − 2p)

]2
Γ
[

1
2(1− 2p)

]2 .

(D.18)

Let us now consider solutions with Λp 6= 0. We now find that there are k−2 (for k > 2)
independent extra solutions to the superconformal Ward identities for both even and
odd k. These solutions with nonzero Λp also require specific contact coefficients cam,n;p,q
in the ansatz (D.4). Taking the flat space limit, we find these solutions become

MI1I2I3I4
H.D.

∣∣∣
s,t→∞

= (s+ t− s α)2 (cs Psu(α, β)− ct Ptu(α, β)) , (D.19)

where we have expressed the results in terms of the two independent flavor structures.
Here Psu(α, β) and Ptu(α, β) are polynomials in α and β of degree k − 2. The two are
not independent of each other, rather they are related by crossing via

Ptu(α, β) = (αβ)k−2 Psu

(
α− 1
α

,
β − 1
β

)
, (D.20)

with Ptu(α, β) symmetric under the exchange of the first two operators, namely

Ptu(α, β) = Ptu(1− α, 1− β) . (D.21)

Note that for both even and odd k the solutions we found behave universally in the flat
space limit, as expected. This would not be the case if we only considered polynomial
solutions. Something very similar happens when considering M-theory corrections to
AdS7 × S4 super graviton four-point functions, which was studied in detail in [72].
There it was also found that it is necessary to include exchange contributions in order
to find nontrivial solutions to the superconformal Ward identities. These solutions with
non-vanishing Λp were called “meromorphic” in [72].

Higher D. We will leave a careful investigation for solutions with D ≥ 3 for future work.
Here we only mention that for d = 4, based on checking the first few values of k and contact
terms up to degree D = 5, there appears to be no solution to the superconformal Ward
identities with nonzero exchange contributions. It extends our previous observation at
D = 2, and seems to indicate that all higher-derivative corrections for d = 4 correspond to
polynomial solutions. This is also consistent with our expectation from the chiral algebra.
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