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1 Introduction

Precise predictions for collider physics experiments require to include QCD corrections
both at fixed-order and within resummed perturbation theory. While fixed-order calcula-
tions reliably predict inclusive quantities and the coarse spectra of jets at high transverse
momenta, infrared sensitive observables require resummed perturbation theory in order to
capture the dominant, logarithmic contributions appearing at each order in the pertur-
bative series. A complementary approach is the use of multi-purpose Monte Carlo event
generators, which provide very detailed simulation of realistic final states, including phe-
nomenological models of how a high-multiplicity partonic final state with small inter-parton
scales converts into the observed hadrons. The component central to event generators is
the parton shower algorithm which describes the evolution from large to small momentum
transfers and also facilitates the resummation of large logarithmic contributions.

The resummation of non-global observables [1, 2] requires a framework of parton evo-
lution at the amplitude level [3–5], and such a formalism is very promising in providing a
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theoretical framework which allows to systematically construct parton shower algorithms
beyond the currently adopted approximations [6, 7], and with the highest level of control
over their accuracy. Such a formalism has recently been adopted to make decisive state-
ments about the accuracy of parton showers [8–12]. Solving the evolution equations which
do resum non-global logarithms requires Monte Carlo methods [13] and has recently been
extended beyond the leading-N limit [14, 15], addressing a dedicated resummation algo-
rithm before aiming at a more versatile simulation within an event generator. The same
formalism also allows to analyze approaches to improve existing parton showers beyond the
leading-N limit [16–18] in order to show which colour suppressed contributions are actually
taken into account [19], highlighting the fact that amplitude level evolution will go beyond
a probabilistic approach in the sense that unitarity cannot be naively employed anymore.
A connection to colour reconnection models has recently been highlighted, as well [20].

In the present work we address key ingredients of extending the amplitude level evolu-
tion beyond the leading order, and towards including soft gluon effects at second order in
the strong coupling, within the double-soft limit. The evolution at this order will require
two-loop, one-loop one-emission and double-emission diagrams to be available in a form
appropriate to be handled by a numerical code. This will provide the entry point to include
triple-collinear and soft-collinear configurations, and serves the purpose of clarifying the
structure of the evolution in colour space similarly to the one-loop anomalous dimension
analyzed in [14]. We also establish methodology in order to systematically obtain the vir-
tual corrections required at this order in a representation of phase-space type integrals,
which is complementary to approaches which perform the actual integrals and make the
divergencies explicit in terms of poles of the dimensional regularisation parameter ε, see
e.g. results on one-, two- and three-loop divergencies [21–23], as well as the one-loop cor-
rections to the emission of a soft gluon [24]. The resulting anomalous dimensions for soft
gluon exchange have been discussed in more detail in [25, 26], and their role in resumma-
tion of soft gluon effects in hadronic 2 → 2 scatterings has been pioneered in [27–29] and
recently summarised e.g. in [30]. The resummation of soft gluon corrections has also been
considered for a larger class than 2→ 2 scatterings [31], and general algorithms for dealing
with the colour structure are available in [32]. Our approach focuses on a general algo-
rithm using the colour flow basis, and a formulation appropriate for an arbitrary number
of coloured legs.1 Within our formalism we are also in the position to isolate the imaginary
parts of the virtual corrections (which we leave in explicit and detailed form for a future
publication), as well as the possibility to straightforwardly implement subtractions, and
the evaluation of virtual corrections in a manner inherent to parton branching algorithms
based on (weighted) Sudakov veto algorithms [33–35].

The present work is structured as follows: in section 2 we will first review basic prin-
ciples of soft gluon evolution in colour space, and in particular at the leading order using
one-loop soft exchanges and single emission Eikonal currents. We will also review that
the colour structures obtained at this level give rise to a systematic expansion around the
leading-N limit. In section 3 we will then perform a detailed analysis of the colour struc-

1Here we only consider outgoing partons, though a generalisation of our methods to incoming partons
and colour correlations between in- and outgoing partons is straightforward.
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tures encountered in the two-loop, and the one-loop one-emission cases using the colour
flow basis which has proven to be computationally advantageous; it also closely connects
to the language actual parton shower algorithms are formulated in. In section 4 we will
then outline our approach to the virtual contributions, and in particular we will detail
the algorithmic way of casting the virtual corrections into phase-space-type integrals by
means of the Feynman tree theorem [36, 37], which we generalise to account for Eikonal
propagators, as well as complications appearing at two loops such as propagators raised to
higher powers. Detailed formulae of our results are collected in several appendices and will
serve as input to future work which we discuss in a summary and outlook in section 5.

2 Soft gluon evolution and the colour flow basis

Amplitude evolution algorithms like the approach outlined in [7], and the resummation of
non-global logarithms [3], proceed through evolution equations in colour space which govern
the contribution to the cross section originating from n hard partons. They generically are
expected to be of the form

E
∂

∂E
An(E) = Γn(E)An(E) + An(E)Γ†n(E)−

min(n,`)∑
k=1

R(k)
n (E)An−k(E)R(k),†

n (E) . (2.1)

The sum over simultaneously unresolved emissions k is cut off by either the loop order `
through which the anomalous dimensions have been calculated in a perturbative expansion,
or the maximum possible number of emissions at fixed multiplicity n ≥ 0. The final cross
section is a trace over the hard function An and a soft function Sn, which determine the
final state configurations on which the observable can then be evaluated,

σ[u] =
∑
n

∫
Tr [AnSn]u(q1, . . . , qn)dφ(q1, . . . , qn|Q) . (2.2)

Here q1, . . . , qn denote the final state particles and dφ is the associated phase space measure
which can be approximated for soft emissions for which momentum conservation is a sub-
leading effect. Working to `th order in the evolution, we will then be able to predict
non-global observables at the N(`−1)LL level. The evolution equation (2.1) comprises the
soft anomalous dimension matrices Γn as well as emission operators R(k)

n which describe
how k partons are emitted from a n − k parton state. Both Γ and R have perturbative
expansions and originate after diagrammatic recursions in the soft limit have appropriately
been subtracted and renormalised. Upon taking matrix elements in between different colour
flows τ, σ [5, 14], the virtual corrections can be expressed as an expansion in the ’t Hooft
coupling

[τ |Γ|σ〉 = (αsN)[τ |Γ(1)|σ〉+ (αsN)2[τ |Γ(2)|σ〉+ . . . . (2.3)

For a jet cross section at leading order Sn is the identity operator in colour space, and the
evolution of An is driven by iterating single, soft emissions and the one-loop soft anomalous
dimension, which results from a combination of the real emission and virtual contributions
subject to the resolution scale E. To be more precise, we allow to emit gluons above the
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evolution scale E, and combine the contribution from lower energies to cancel the infrared
divergencies in the one-loop integral. The remaining (artificial) ultraviolet divergences in
the one-loop and one-emission cross section stemming from the soft gluon approximation
are then absorbed to all orders into a renormalisation of the hard and soft functions, giving
rise to the evolution equation stated in eq. (2.1). More details of such an approach will be
discussed in upcoming work.

The purpose of the present work is to investigate in detail the structure of the Feynman
diagrams contributing to the evolution at the next-to-leading order in colour space, as
well as to explore strategies how these contributions can be manipulated to allow for the
appropriate subtractions at the level of phase-space-type integrals. This will enable us to
address the observable dependence in a most differential way. The basis-independent colour
space formalism [21] is very well suited for general investigations of the colour structure of
soft gluon contributions, however in a practical implementation one has to choose a basis
and express the amplitudes and colour space operators as complex vectors and matrices
with respect to the basis chosen.

As the dimensionality of the colour space grows asymptotically as a factorial with
the number of external legs, the handling of these objects soon becomes intractable and a
numerical solver of evolution equations of the type of eq. (2.1) can only proceed by using
Monte Carlo methods to sample over the different colour structures involved, possibly
paired with approximation methods to keep track of certain classes of 1/N suppressed
contributions to the cross section [5, 14]. From a computational point of view, the colour
flow basis has proven to be useful in such an approach, and a practical code has been based
on it [15]. In order to be able to solve the evolution equations in this approach at the next
order, we choose to express the anomalous dimension and emission matrices not only in
the basis independent notation, but also in the colour flow basis. To make the connection
between the two clear we will review the one-loop case in the next section, and we will
then outline our approach to the loop integrals involved.

2.1 Leading-order evolution

In the leading order evolution, the one-loop contribution takes the form

Γ(1) = 1
2
∑
i,j

Ω(1)
ij

1
N

Ti ·Tj , (2.4)

where the individual coefficients Ω(1)
ij can be deduced by casting the loop integral corre-

sponding to an Eikonal exchange of a gluon in between two (in this case, outgoing) external
lines i and j into the form

Ω(1)
ij = iµ2ε

∫ đdk
iπd/2

pi · pj
(k2 + i0)(pi · k + i0)(pj · k − i0) =

∫ ∞
0

dE
E

(
µ2

E2

)ε
ω(ij) , (2.5)

where we have defined đdk
iπd/2 ≡ 4π ddk

(2π)d . After combining the virtual contributions with
the real emission the soft singularity E → 0 will cancel and we are left with an ultraviolet
divergence in E only (collinear divergences in ω(ij) will cancel with the real emission when
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calculating a full cross section). At leading order, ω(ij) is independent of the scales µ and
E, and only depends on the hard parton’s directions of motion rather than their energies.
We find in the case of two outgoing or two incoming lines that

ω(ij) = (2π)2ε

π

[∫ dΩ(d−2)

4π
ni · nj

ni · n n · nj
− iπ

∫ dΩ(d−3)

2π

]
. (2.6)

In this case, we have assumed an ordering in energy, though other ordering variables are
possible and will give rise to different forms of the anomalous dimension; we therefore
discuss the loop integrals without making a reference to a particular ordering variable or
observable. Explicit results for energy and p⊥ ordering will be presented in an upcoming
publication.

In the colour flow basis, the same quantity takes the form

[τ |Γ(1)|σ〉 =
(

Γ(1)
σ + 1

N2 ρ
(1)
)
δστ + 1

N
Σ(1)
στ , (2.7)

which is readily verified by using the decomposition of the colour charge correlators in the
colour flow basis

[τ |Ti ·Tj |σ〉 = −Nδτσ
[
λiλ̄jδci,σ−1(c̄j) + λ̄iλjδcj ,σ−1(c̄i) + 1

N2 (λi − λ̄i)(λj − λ̄j)
]

+
∑
(ab)

δτ(ab),σ

(
λiλjδ(ab),(cicj) + λ̄iλ̄jδ(ab),(σ−1(c̄i)σ−1(c̄j))

−λiλ̄jδ(ab),(ciσ−1(c̄j)) − λ̄iλjδ(ab),(cjσ−1(c̄i))
)
.

(2.8)

In fact, we define the coefficients Γ(1)
σ , ρ(1) and Σ(1)

τσ through this relation; implementa-
tions performing this calculation are available from the authors. We shall obtain similar
identities for the colour structures required for the evolution in the next order. At this
point it is important to remark that we can explicitly identify what the leading, colour
diagonal contributions are, and how the very sparse elements in the off-diagonal part of
the anomalous dimension matrix can be addressed efficiently. This knowledge allows for an
efficient Monte Carlo in colour space as well as a systematic expansion around the large-N
limit mentioned earlier.

While, in a perturbative expansion, one would treat the diagonal, 1/N2 suppressed bit
as a correction this turns out not to be a viable approach in the presence of collinear contri-
butions: in this case, dropping the 1/N2 contribution amounts to effectively replacing CF
by CA/2 in the quark splitting function, which would thus not properly take into account
logarithmic contributions of soft- and hard-collinear origin. For this reason we stress that
an appropriate expansion around the large-N limit would actually need to be seen as an
expansion around the colour diagonal part (also referred to as d′ approximations in [15]),
something which will be of great importance when discussing the colour structures appear-
ing the two-loop case. Also note that the 1/N2 suppression in the one-loop anomalous
dimension might possibly be overcome since ρ contains a sum over all pairs of quarks and
antiquarks, not only colour connected dipoles.
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3 Colour structures at next-to-leading order

In order to facilitate the evolution at the next order, several ingredients are required.
In this paper we concentrate on the evolution of the hard function An, for which we
require knowledge of the two-loop, one-loop and one emission, and two-emission soft gluon
contributions to a general hard process characterised by outgoing momenta pi. In this
section we will discuss the colour structures of the two loop virtual corrections, as well as
the one-loop/one-emission corrections, and how they translate into the colour flow basis.
The actual kinematic dependence and loop integrals will be discussed in the next section,
and we are not limiting ourselves to the case of the soft limit only, such that our analysis
of the colour structures can be readily carried on towards the inclusion of collinear effects
as well as possibly massive external partons, see e.g. [38] for a recent development.

3.1 Two-loop contributions

Starting from the individual diagrams, in the basis independent notation the two-loop soft
anomalous dimension takes the form

N2Γ(2) =
∑
i,j

[1
2(Ti ·Tj)(Ti ·Tj)Ω(2)

ij + 1
2Tb

iTa
iTa

jTb
jΩ̃

(2)
ij + Tb

iTa
iTb

iTa
j Ω̂

(2)
ij

]

+
∑
i,j,l

[
(Ti ·Tl)(Ti ·Tj)Ω(2)

ijl + 1
2f

abcTa
iTb

jTc
l Ω̂

(2)
ijl

]

+
∑
i,j

TR (Ti ·Tj)
[1

2Ω(2)
ij, self-en. + Ω(2)

ij, vertex-corr.

]
.

(3.1)

For the self-energy and the vertex-correction we have chosen to write the colour factor
as TR(Ti · Tj). The Casimir invariant CA of the gluon-bubble and the vertex-correction
is understood to be absorbed into the kinematical factor, in the same way the number
of flavours nf of the fermion-bubble is part of its kinematical factor. In this way we
can conveniently write a global colour structure for these types of diagrams, where we
choose the normalisation TR = 1/2 (the colour structure for the gluon-bubble and the
vertex-correction can be written as CA/2 = TR CA in our convention). Table 1 gives an
overview of the diagrams we consider and the colour structures we are extracting in the
basis independent notation. Not all colour structures in this expression will in general
be independent as we can use colour conservation to appropriately simplify the individual
contributions, however eq. (3.1) makes direct connection to the structures encountered in
individual Feynman diagrams. In fact, using some colour algebra, we can write

N2Γ(2) =
∑
i,j

1
2(Ti ·Tj)(Ti ·Tj)

[
Ω(2)
ij + Ω̃(2)

ij

]

+
∑
i,j,l

[
(Ti ·Tl)(Ti ·Tj)Ω(2)

ijl + 1
2 if

abcTa
iTb

jTc
l Ω̂

(2)
ijl

]

+
∑
i,j

TR (Ti ·Tj)
[1

2Ω(2)
ij, self-en. + Ω(2)

ij, vertex-corr. + 1
2Ω̃(2)

ij + Ω̂(2)
ij

]
,

(3.2)
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Coefficient Diagram Colour-factor

Ω(2)
ij (Ti ·Tj)(Ti ·Tj)

Ω̃(2)
ij Ta

iTb
iTb

jTa
j

Ω(2)
ijl (Ti ·Tl)(Ti ·Tj)

Ω̂(2)
ijl ifabcTa

iTb
jTc

l

Ω(2)
ij,self-en. TR(Ti ·Tj)

Ω(2)
ij,vertex-corr. TR(Ti ·Tj)

Ω̂(2)
ij Tb

iTa
iTb

iTa
j

Table 1. Two-loop diagrams contributing to the anomalous dimension, and the colour structures
we extract in order to define the coefficients of the basis independent notation. See text for more
details.

where we have considered unordered sums of the hard lines. As a result we need to include
factors of 1/2 for some of the diagrams in order to avoid overcounting. Using an unordered
colour sum is convenient in this case, since we always want to define one direction as
the emitter. Furthermore, the cutting prescription used for the loop integrals does not
necessarily show a dipole symmetry (cf. section 4). In the soft limit in Feynman gauge we
can further assume that i 6= j, as well as i 6= j 6= l for the colour sums, since at the two-loop
level all of the diagrams involving only one hard line are either sub-leading or vanish due
to the on-shellness of the hard lines. We point out that the part of the colour structure
pertaining to the coefficient Ω̂(2)

ij which is of the form of the one-loop level structure after
performing the colour algebra is not anymore explicitly included in eq. (3.2).

In view of a numerical implementation, it is much more instructive to consider the
structure of the same quantity in a concrete basis like the colour flow basis, and to evaluate
what patterns of 1/N suppression arise, specifically in a counting where the anomalous
dimension loop expansion is an expansion in the ’t Hooft coupling αsN (see eq. (2.3)),
where each coefficient now admits an expansion in 1/N and the different transitions the
terms mediate between colour states organised by the number of transpositions or swaps
(we refer the reader to [5, 14] for more details).
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In appendix A we detail how the colour correlators appearing in the expression above
can be translated into the colour flow basis, which then gives rise to the structure

[τ |Γ(2)|σ〉 =
(

Γ(2)
σ + 1

N2 (ρσ + ρ̃) + 1
N4 ρ

(2)
)
δστ

+ 1
N

(
Σ(2)
στ + Σ̂(2)

στ

)
+ 1
N3 Σ̃(2)

στ + 1
N2

(
Σ′(2)
στ + Σ′′(2)

στ

)
,

(3.3)

where ρσ and ρ̃ are additional diagonal parts, Σ̂(2)
στ denotes off-diagonal parts with single

swaps, Σ′(2)
στ and Σ′′(2)

στ represent terms with double swaps of the form (ab)(bc) and two
independent single swaps (ab)(cd), respectively (cf. appendix A for our notation).

In the following we provide some examples of colour flows and identify to which of
the coefficients in eq. (3.3) they contribute. As with the one-loop case an implementation
of this decomposition is available from the authors. The colour-flow diagrams are always
depicted with the basis permutation σ separated from the rest of the diagram by the dashed
line and the (anti-)colour labels are explicitly written for the hard lines. The translation
of the diagram to the Kronecker deltas which compare the permutations σ and τ , i.e. a
translation to the corresponding parts of the matrix elements of the colour correlators, is
given.

An example of a contribution to the matrix element [τ |(Ti·Tj)(Ti·Tj)|σ〉 (cf. eq. (A.5))
is given by the colour-flow diagram

→ N2δστδciσ−1(cj) , (3.4)

due to the colour connection in σ this is enhanced by a factor of N2. The diagonal structure
ρσ contains a three-parton correlation from the Feynman diagram involving three hard lines
and a triple gluon vertex, it gives a colour flow of

→ λiλ̄jλlδστδciσ−1(cj) , (3.5)

and it is part of the matrix element [τ |TgTiTjTl|σ〉 (cf. eq. (A.7)). For the gluon vertex
we have defined that Tabc

g ≡ ifabc. For an example of the coefficient Σ̂(2)
στ , which has a

colour connection in σ and where a single swap of colour labels has to be performed in
order for the permutations σ and τ to match, consider

→ Nδcjσ−1(ci)δστ(a,b)δ(a,b)(cj ,cl) , (3.6)
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where this colour flow pertains to the matrix element [τ |TgTiTjTl|σ〉 as well. The double
swap coefficients Σ′′(2)

στ can be exemplified by

→ δστ(a,b)(b,c)δ(a,b)(ci,σ−1(cj))δ(b,c)(σ−1(cj),σ−1(cl)) , (3.7)

in this case a colour label has to be swapped twice such that the permutations σ and τ

match. This colour flow is part of the matrix element [τ |(Ti ·Tl)(Ti ·Tj)|σ〉 (cf. eq. (A.8)).

3.2 One-loop, one-emission contributions

Similarly to the two-loop contribution we can analyze the one-loop one emission contri-
butions at the level of the amplitude. Notice that at the level of the cross section the
structures we encounter will be similar to the two-loop contribution upon a fixed order
expansion, however in a practical evolution at the amplitude level, the entire complexity
of the one-loop correction to the emission operator needs to be taken into account sepa-
rately. Table 2 summarises our conventions on extracting the colour structures from the
one-loop/one-emission contributions, similarly to what we have been doing in the two-loop
case. In the basis independent notation, the one-loop, one-emission contribution reads

N2Γ(1,1) =
∑
i,j

[
Ta
i (Ti ·Tj)Ω(1,1)

ij + (Ti ·Tj)Ta
i Ω̃

(1,1)
ij + 1

2 if
abcTb

iTc
jΩ

(1,1)
ij

]

+
∑
i,j,l

1
2Ta

l (Ti ·Tj)Ω(1,1)
ijl +

∑
i

TR Ta
i

[
Ω(1,1)
i,self-en. + Ω(1,1)

i,vertex-corr. + Ω̂(1,1)
ij

]
,

(3.8)

and in the colour-flow basis its action is encoded in

[τ |Γ(1,1)|σ〉 =
( 1
N2 ρστ + 1

N4 ρτ

)
δστ\n

+ 1
N

Σ̂(1,1)
στ + 1

N3

(
Σ̃(1,1)
στ + ˆ̃Σστ

)
+ 1
N2

(
Σ′(1,1)
στ + Σ′′(1,1)

στ

)
.

(3.9)

In the one-loop, one-emission result the δστ\n indicates that the colour and anti-colour
labels denoted by (cn, c̄n) of the emitted gluon are at first merged and then removed from
the τ -permutation such that a comparison to the σ-permutation is possible.

The ρ-coefficients again denote colour flows which are suppressed in the number of
colours. The structure ρτ contains colour flows with a 1/N2 suppression, whereas ρστ
stands for terms with only a 1/N suppression and a colour connection in σ. For instance
consider

→ δστ\nδcnτ−1(cn)δciσ−1(cj) , (3.10)

which is part of the matrix element [τ |TgTiTj |σ〉 (cf. eq. (A.2)), as an example of a
contribution to ρστ . All of the Σ-coefficients denote the various different structures which
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Coefficient Diagram Colour-factor

Ω(1,1)
ij Ta

i (Ti ·Tj)

Ω̃(1,1)
ij (Ti ·Tj)Ta

i

Ω(1,1)
ij ifabcTb

iTc
j

Ω(1,1)
ijl Ta

l (Ti ·Tj)

Ω(1,1)
i,self-en. TRTa

i

Ω(1,1)
i,vertex-corr. TRTa

i

Ω̂(1,1)
ij Tb

iTa
iTb

i

Table 2. One-loop, one-emission diagram coefficients.

require swaps of colour labels to achieve matching permutations. The coefficient Σ̂(1,1)
στ

includes single swaps with a colour connection in σ, Σ̃(1,1)
στ represents colour flows with

single swaps and a 1/N suppression due to U(1)-gluon exchange, while the suppression for
the ˆ̃Σ(1,1)

στ contributions occurs due to U(1)-gluon emission. The latter can be exemplified by

→ 1
N
δcnτ−1(cn)δστ(a,b)\nδ(a,b)(ci,cj) . (3.11)

This colour flow belongs to the matrix element [τ |(Ti ·Tj)Tl|σ〉 (cf. eq. (A.4)). Just like
at two-loop order, the coefficients Σ′(1,1)

στ and Σ′′(1,1)
στ denote double swaps of a single (anti-)

colour label and swaps of four distinct (anti-)colour labels respectively. As an example for
a contribution to Σ′′(1,1)

στ consider

→ δστ(a,b)(c,d)\nδ(a,b)(σ−1(cl),cn)δ(c,d)(ciσ−1(cj)) , (3.12)

which pertains to the matrix element [τ |(Ti · Tj)Tl|σ〉 (cf. eq. (A.3)). The results of the
colour structures can be used for the algorithm presented in [15] to generalise the sampling
of emission flows including the one-loop corrections.
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4 Kinematic dependence and loop integrals

As we aim at an evolution algorithm which is able to treat a large class of observables
differentially, we chose to relate the virtual corrections systematically to phase space inte-
grals, or integrals which we can effectively treat as such. The advantage of this procedure
is that from these integrals we can single out an evolution variable as appropriate to the
observable we consider, and we can devise local subtractions which make the cancellation
of infrared divergencies explicit. Exposing the remaining singularities leads to an identifi-
cation of the anomalous dimension by means of a counter term required to obtain an overall
finite cross section. In particular, the anomalous dimension will be expressed in terms of
variables which can be linked to the real emission contributions. Such a form is then very
well suited for a Monte Carlo evolution algorithm like the one outlined in [15], and further
development thereof. The approach exploited here then also allows to properly subtract
collinear divergencies, and to make use of colour conservation in order to factorise soft-
collinear from (colour) non-trivial soft, large-angle physics, see the discussion on collinear
subtractions and the ordering variable in [7].

In the present work we solely consider soft gluon contributions and use the Eikonal
approximation throughout, though our approach will be more generally applicable both to
singular limits in the full QCD, as well as to the Eikonal propagators encountered in the
context of e.g. SCET [3]. We also envisage that a generalisation to the inclusion of collinear
singularities will be possible, however they are beyond the scope of the current work. In
the soft limit, for which we scale all of the real emission and virtual gluon momenta by a
common factor λ, we only keep the leading singular term in an expansion around λ → 0.
We also neglect the contribution of a soft qq̄ pair, which in principle needs to be taken into
account and can easily be included using the results we have presented here. We stress that
this procedure naturally guarantees that there will not be any approximation applied in
the case that soft gluons only couple via the three- and four-gluon vertex, see also [39, 40].

4.1 Cutting rules

For the case of the single gluon exchange, the relevant one-loop integral can be performed
using a contour integration, however in the case of higher orders a more algorithmic treat-
ment is desirable, specifically if we aim for yet higher orders. To this extent we use the
Feynman tree theorem [36, 37], which we extend to apply to the two-loop case, and to
Eikonal propagators. Our starting point is the relation between advanced and Feynman
propagators,

1
[q2 − i0(T · q)|T · q|] = 1

[q2 + i0(T · q)2] + 2πiδ(q2)θ(T · q) , (4.1)

which is a modification of expressing the imaginary part of the Feynman propagator via
1

[q2 − i0(T · q)2] = 1
[q2 + i0(T · q)2] + 2πiδ(q2) . (4.2)

It is noteworthy that, depending on the momentum routing of the Feynman diagram,
different cuts will appear when applying the Feynman tree theorem which lead to dif-
ferent imaginary parts per cut contribution, see [37] for instructive examples. However,
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by combining the individual contributions the results for the imaginary part will coincide
regardless of the chosen momentum routing. We have also highlighted the fact that the
Feynman i0 does need to carry mass dimensions, and that any projection onto a time-like
component of the loop momentum (one can choose T 2 = 2 for convenience2) is sufficient to
guarantee the right deformation of the integration contour around the poles in the complex
T · k plane.

Eq. (4.1) is at the heart of the Feynman tree theorem, which uses the fact that an
integral consisting of advanced propagators only is bound to vanish as all propagator poles
reside in the upper half plane of the T · k plane. The full integral is then expressed as a
sum over cut diagrams containing any possible configuration of (multiple) cut propagators.
We will generalise this method to the case of Eikonal propagators, for which we note that

1
2pi · k − i0(T · pi)2 = 1

2pi · k + i0(T · pi)2 + 2πi δ(2pi · k) , (4.3)

can be applied as cutting rule for an Eikonal propagator (with pi > 0, which we should
always assume here), for which the left hand side does in fact admit a pole in the upper
half plane. Cuts through lines which have the soft gluon momentum running in the other
direction though, 1/(−2pi ·k+i0(T ·pi)2) will not be cut, since the propagator in the integral
of interest has its pole already in the upper half plane. In particular, we can reproduce the
well-known form of the one-loop soft exchange (cf. eq. (2.6)), including imaginary parts
and the fact that for an incoming and outgoing leg there is no imaginary part; this is due
to both Eikonal lines being cut, and those cuts which contribute imaginary parts do cancel
in the result.

Since we are focusing purely on soft effects, we will exemplify the application of our
method in a covariant gauge. In this case, self-energy type diagrams are suppressed in
the soft limit, and we will only need to consider gluon exchange diagrams. Since we will
perform the analysis at the level of physical amplitudes, ghosts do not appear as external
lines, and diagrams with ghost exchanges with a hard line are soft sub-leading owing to
the momentum structure of the ghost-gluon vertex. A notable exception is the gluon self
energy, for which ghost contributions need to be included, since those will contribute in
the double soft limit; on a similar note the three-gluon vertex will not be approximated
by taking the double soft limit, which has already been noted in [40]. We depict some
diagrams with ghost contributions in figure 1.

We do however point out that when one wants to include collinear singular contribu-
tions a physical gauge is more advantageous. In this case we further face poles stemming
from the propagator term involving the gauge vector n; in order to obtain the full n
(in)dependence it is vital to also consider the linear propagator terms introduced in the
gluon propagator. If we limit our consideration to the light-cone gauge we can use the
prescription [41]3

1
n · k

→ 1
n · k + i0 n∗ · k , (4.4)

2This choice guarantees that, in a frame where T = (
√

2,~0) we find that 1/(q2 + i0(T · q)2) =
(1/(2|~q |))(1/(q0 − |~q |+ i0q0)− 1/(q0 + |~q |+ i0q0)).

3We have slightly altered the form to be consistent with ‘0’ meaning a dimensionless infinitesimal pa-
rameter, cf. the discussion on the Feynman propagator.
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Figure 1. Examples of possible ghost contributions to the virtual corrections; due to the nature
of the ghost coupling the diagram on the left hand side does not contribute in the soft limit. On
the right hand side the ghost contribution for the gluon self energy is depicted, which needs to be
included since it has the same momentum scaling as the three gluon vertex when all attached lines
become soft.

where n∗ = (n0,−~n) for n = (n0, ~n). This denominator implementing the Mandel-
stam/Leibbrandt prescription has a pole in the upper half-plane, if the spatial part of
the loop momentum is anti-parallel to ~n, and in the lower half-plane otherwise. The cut-
ting rule is to assign a cut contribution 2πiδ(n · k)θ(~n · ~k) to such a gauge denominator,
and accordingly we can build derivatives for higher powers.

4.2 Application to two-loop integrals

The application of the Feynman tree theorem in the two-loop case is not unique as com-
pared to the one-loop case. However, we can apply it to one of the one-loop sub-integrals,
and then find a shift of the loop momenta such that the second loop momentum after the
transformation is not affected by constraints of cuts from the previous application. If this
is not possible, we terminate the algorithm. In this way we maximise the number of contri-
butions of the two-loop integral which can directly be cast into a form of a double-emission
phase space-type integral. After having cut in a first loop integration k we determine, for
each term in the sum over cuts, if we can shift the loop momenta k, q → k′, q′ in such a
way that one loop integration, say q′, only involves propagators and that no δ or θ-function
involves q′. Then the q′ integration can again be treated with the Feynman tree theo-
rem. If this is not possible to perform such a momentum shift and both loop momenta
are constrained by the δ-functions already after the first application, or if the transfor-
mation k, q → k′, q′ would enforce a negative-energy θ-function which has originated from
the previous cut, the procedure terminates. Notice that our method solely relies on the
validity of the Feynman tree theorem for each poossible one-loop subintegral, and shifts of
the loop momenta. The algorithm we outline here has been automated and we have used it
to process all integrals required to calculate the two-loop soft integrals. We also exemplify
the procedure in figure 2, which shows a detailed workflow for one of the topologies we
have considered. Starting from the results for the two-loop integrals we then can choose an
explicit parametrisation of the loop momentum in order to make contact with the phase
space integrals over the real emission, and the resolution scale of the observable. At this
stage, however, we only quote the (non-vanishing) cut contributions, including those which
give rise to imaginary parts and will address a more concrete parametrisation tailored for
specific observables in a future work. All of the relevant integrals in the two-loop, soft gluon
case, are listed in appendix C. The loop integrals which correspond to the Ω(2)-coefficients
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Figure 2. Illustration of the workflow when applying the Feynman tree theorem at the two-loop
level. The short black lines symbolise cuts of the corresponding propagators. We have explicitly
included the negative sign due to the application of the FTT. The rightmost diagram in the top
row obtained by the FTT in the momentum k appears in the cutting procedure in total three times
(twice with a positive sign, one with a negative sign). Due to this cancellation the diagram is drawn
only once in the first line, we have to multiply by (−1) in order to find the final result. Modulo this
convention each arrow indicates equality.

involving two hard lines are given by

Ω(2)
ij = −(pi · pj)(pi · pj) I(ij)

1 ,

Ω̃(2)
ij = −(pi · pj)(pi · pj) I(ij)

2 ,

Ω(2)
ij,vertex-corr. = CA (pi · pj)

[
2I(ij)

3 − I(ij)
4

]
, (4.5)

Ω(2)
ij,self-en.|gluon+ghost = 2CA

[
(4− 2d) I(ij)

5 − 2(pi · pj) I(ij)
3 − (pi · pj) I(ij)

6

]
,

Ω(2)
ij,self-en.|fermion = 4nf

[
2I(ij)

5 − 1
2(pi · pj)I(ij)

3 − (pi · pj)I(ij)
6

]
,

and involving three hard lines we find

Ω(2)
ijl = −(pi · pl)(pi · pj) I(ijl)

1 , (4.6)

Ω̂(2)
ijl = 2

[
(pj · pl) I(ijl)

2 − (pi · pj) I(ijl)
3 − (pi · pl) I(ijl)

4

]
.

4.3 Application to higher propagator powers

In the two-loop case we will also need to consider propagators at higher powers, in particular
when a self-energy correction is inserted on an exchanged gluon. In order to find an
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analogous rule for treating propagators of higher powers, we consider the derivative of
equation (4.2) with respect to the momentum qµ

qµ − i0Tµ(T · q)
[q2 − i0(T · q)2]2 −

qµ + i0Tµ(T · q)
[q2 + i0(T · q)2]2 = −iπ ∂

∂qµ
δ(q2) . (4.7)

The derivative of the δ-function with respect to a momentum component can be left as
a formal object until we can simplify this later by means of integration by parts. An
alternative which we consider is to eliminate the T -dependent term in the numerator,
contract with some vector Sµ, which has the property S · T = 0, i.e. Sµ is space-like
(S2 < 0) to obtain

1
[q2 − i0(T · q)2]2 −

1
[q2 + i0(T · q)2]2 = −iπ Sµ

S · q
∂

∂qµ
δ(q2)

= −2iπδ′(q2) ,
(4.8)

where we define δ′(q2) ≡ ∂
∂q2 δ(q2). This identity can then be supplemented by placing the

double pole again in the upper half plane and we effectively use

1
[q2 − i0(T · q)|T · q|]2 −

1
[q2 + i0(T · q)2]2 = −2iπθ(T · q)δ′(q2) . (4.9)

Clearly this procedure can continue to even higher powers of propagators. In our case we
require to apply eq. (4.9) when considering a self-energy insertion on an exchanged gluon
line. We note that, if we have not expressed the self energy in its integrated form but do
want to apply our cutting procedure, then we will face δ′-distributions possibly in both
loop integrations. We can ultimately only resolve these constraints using integration by
parts once we have expressed the loop momenta in a certain parametrisation. An example
of this procedure is to write

qµ = q+n
µ + q2 − q2

⊥
2q+(n · n)n

µ + qµ⊥ , (4.10)

as this leads to the following expression for the derivative with respect to q2

∂qµ

∂q2 = nµ

2q+(n · n) = nµ

2(n · q) , (4.11)

with q+ = n·q
n·n . No reference then needs to be made to the additional vectors Tµ and Sµ

which we have been resorting to in setting up the derivative rule. In appendix B we give
expressions for the relevant integrals using this procedure.

4.4 One-loop, one-emission contributions

The integrands of the one-loop, one-emission diagrams have been treated with the modified
Feynman tree theorem for Eikonal propagators. To ensure the applicability of the FTT we
checked for each of the diagrams that the degrees of the polynomial in the loop-momentum
of the propagators is bigger or equal to the polynomial of the numerator structure plus
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two. For the diagram involving the triple gluon vertex a tensor reduction can be performed
prior to the application of the FTT. The cut-contributions which are obtained through
this procedure for the one-loop, one-emission diagrams are listed in appendix C.1. The
coefficients Ω(1,1) for two hard lines are given by

Ω(1,1)
ij = (−i)(pi · pj)

pi · q
(pi · ε∗(q)) I(ij)

7 ,

Ω̃(1,1)
ij = (−i)(pi · pj)(pi · ε∗(q)) I(ij)

8 , (4.12)

Ω(1,1)
ij = i

{
(pj · q)(pi · ε∗(q)) I(ij)

9 − pi · q
pj · q

(pj · ε∗(q)) I(ij)
10

− pi · pj
2

[
(pi · ε∗(q))
pi · q

+ (pj · ε∗(q))
pj · q

]
I

(ij)
7

}
,

Ω(1,1)
ij,vertex-corr. = CA(pi · ε∗(q))

[
I

(ij)
10 −

2
pi · q

I
(ij)
0

]
,

where the loop integral described by I(ij)
0 is scale-less and if the FTT is used one finds that it

vanishes exactly for p0
i > 0 and on-shell external momenta. For the one-loop/one-emission

contribution with three hard lines one gets the one-loop integral Ω(1)
il (cf. eq. (2.5))

Ω(1,1)
ijl = pi · pl

pj · q
(pj · ε∗(q)) Ω(1)

il . (4.13)

Using the results of the FTT for the two loop contributions, the one-loop one emission
contributions, and combining them at the cross section level with the double emission
current squared [43], we observe a cancellation of the radiative cuts, which provides another
cross check on our approach.

5 Conclusion and outlook

In this paper we have been providing the basic ingredients to formulate soft gluon evolution
at the next-to-leading order, using the colour flow basis, as well as the Feynman tree
theorem, to express the relevant one-loop, one-emission and two-loop diagrams.

This will allow to perform the resummation of non-global observables at the next-to-
leading logarithmic order, and provides crucial insight to the design of amplitude evolution
algorithms and parton showers beyond the currently adopted approximations. In particular
we have taken an entirely new approach towards virtual corrections, being able to cast them
into a form in which we can make the cancellation of infrared divergencies explicit and
determine the imaginary parts of the loop integrals in a way that we control the kinematic
regions from which they originate. Results on this, assuming certain orderings, will be
published elsewhere, while we have here presented the virtual corrections in a generic
manner using a new method of applying the FTT to the two-loop case and to Eikonal
propagators. All of our results are carried out in dimensional regularisation such that
upon performing the actual integrals one could recover the poles in an expansion in ε→ 0.
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The analysis of the colour structure allows us to adopt a perturbative treatment of the
amplitude evolution operators, or to explore more sophisticated Monte Carlo methods in
colour space. Our analysis definitely highlights that a dipole-type picture is not anymore
sufficient provided one concentrates not only on the strict leading colour approximation, but
requires to include all colour diagonal contributions, an approximation which has turned
out to be crucial within the leading-order context already, and certainly if one attempts
to include collinear physics which probes such effects effectively as the difference between
CA/2 and CF .

Note added. While we have been finalizing our work, ref. [44] appeared, which also
follows the strategy of casting loop integrals into phase-space-type integrals in order to
locally cancel infrared singularities with emission contributions. This work uses the loop-
tree-duality, which is based on the Feynman tree theorem, and focuses on exact fixed-order
calculations at the cross section level. Our work focuses on soft gluon exchange between
Eikonal lines and the evolution at amplitude level. The combination with soft emissions
will be discussed in detail in an upcoming manuscript.
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A Details on colour structures

In this appendix we quote the main results on the decomposition of the colour structures in
the one-loop, one-emission as well as two loop cases, translating the colour structures into
the colour flow basis and quoting the final result in terms of swaps and colour flows added
after the emission. We quote those per diagram, as we have extracted them to separate
the colour structures from the kinematic dependence.

A.1 One-loop, one-emission colour structures

• Gluon emission after the exchange:

[τ |Ti(Ti ·Tj)|σ〉 = N2δστ\n[
1
N2 (λi − λ̄i)

(
λiλ̄jδciσ−1(cj)δcnτ−1(cn) + λ̄iλjδcjσ−1(ci)δcnτ−1(cn)

)
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+ 1
N4 (λi − λ̄i)2(λj − λ̄j)δcnτ−1(cn)

]
+
∑
(a,b)

δστ(a,b)\n

[
N
(
λ̄2
iλjδcjσ−1(ci)δ(a,b)(cj ,cn) − λ2

i λ̄jδciσ−1(cj)δ(a,b)(ci,cn)

+λiλ̄iλjδciσ−1(cj)δ(a,b)(σ−1(ci),cn) − λiλ̄iλjδcjσ−1(ci)δ(a,b)(ci,cn)
)

+ 1
N
δcnτ−1(cn)(λi − λ̄i)

(
λiλ̄jδ(a,b)(ci,σ−1(cj)) + λ̄iλjδ(a,b)(cj ,σ−1(ci))

−λiλjδ(a,b)(ci,cj) − λ̄iλ̄jδ(a,b)(σ−1(cj),σ−1(ci))
)

− 1
N

(λi − λ̄i)(λj − λ̄j)
(
λiδ(a,b)(ci,cn) − λ̄iδ(a,b)(σ−1(ci),cn)

) ]
+
∑
(a,b)

∑
(b,c)

δστ(a,b)(b,c)\n

[
λ2
iλjδ(a,b)(cn,ci)δ(b,c)(ci,cj) + λ̄2

iλjδ(a,b)(cn,cj)δ(b,c)(cj ,σ−1(ci))

−λ2
i λ̄jδ(a,b)(cn,ci)δ(b,c)(ci,σ−1(cj)) − λ̄2

i λ̄jδ(a,b)(cn,σ−1(cj))δ(b,c)(σ−1(cj),σ−1(ci))
]

+
∑
(a,b)

∑
(c,d)

δστ(a,b)(c,d)\nλiλ̄i

[
δ(a,b)(σ−1(ci),cn)

(
λ̄jδ(c,d)(ci,σ−1(cj)) − λjδ(c,d)(ci,cj)

)
+δ(a,b)(ci,cn)

(
λ̄jδ(c,d)(σ−1(ci),σ−1(cj)) − λjδ(c,d)(cj ,σ−1(ci))

)]
. (A.1)

• Triple gluon vertex:

[τ |TgTiTj |σ〉 =
√
TR
{
δστ\nδcnτ−1(cn)

[
−λiλ̄jδciσ−1(cj) + λ̄iλjδcjσ−1(ci)

]
+N

∑
(a,b)

δστ(a,b)\n
[
λiλ̄jδciσ−1(cj)δ(a,b)(ci,cn) − λ̄iλjδcjσ−1(ci)δ(a,b)(cj ,cn)

]
+
∑
(a,b)

∑
(b,c)

δστ(a,b)(b,c)\n[
λiλ̄j

(
δ(a,b)(cn,ci)δ(b,c)(ci,σ−1(cj)) − δ(a,b)(cn,σ−1(cj))δ(b,c)(σ−1(cj),ci)

)
+λ̄iλj

(
δ(a,b)(cn,σ−1(ci))δ(b,c)(σ−1(ci),cj) − δ(a,b)(cn,cj)δ(b,c)(cj ,σ−1(ci))

)
+λiλj

(
δ(a,b)(cn,cj)δ(b,c)(cj ,ci) − δ(a,b)(cn,ci)δ(b,c)(ci,cj)

)
+λ̄iλ̄j

(
δ(a,b)(cn,σ−1(cj))δ(b,c)(σ−1(cj),σ−1(ci))

−δ(a,b)(cn,σ−1(ci))δ(b,c)(σ−1(ci),σ−1(cj))
)]}

. (A.2)

• Gluon emission and exchange involving three hard lines:

[τ |(Ti ·Tj)Tl|σ〉 = N2δστ\nδcnτ−1(cn)

[ 1
N4 (λi − λ̄i)(λj − λ̄j)(λl − λ̄l)

+ 1
N2

(
λ̄iλj(λl − λ̄l)δcjσ−1(ci) + λiλ̄j(λl − λ̄l)δciσ−1(cj)

)]
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+
∑
(a,b)

δστ(a,b)\n
[
Nδ(a,b)(σ−1(cl),cn)

(
λiλ̄j λ̄lδciσ−1(cj) + λ̄iλj λ̄lδcjσ−1(ci

)
)

−Nδ(a,b)(cl,cn)
(
λiλ̄jλlδciσ−1(cj) + λ̄iλjλlδcjσ−1(ci)

)
+ 1
N

(λi − λ̄i)(λj − λ̄j)
(
λ̄lδ(a,b)(σ−1(cl),cn) − λlδ(a,b)(cl,cn)

)
+ 1
N
δcnτ−1(cn)(λl − λ̄l)

(
λiλ̄jδ(a,b)(ci,σ−1(cj)) + λ̄iλjδ(a,b)(σ−1(ci),cj)

−λiλjδ(a,b)(ci,cj) − λ̄iλ̄jδ(a,b)(σ−1(ci),σ−1(cj))
)]

+
∑
(a,b)

∑
(c,d)

δστ(a,b)(c,d)\n

[
−λiλ̄lδ(a,b)(σ−1(cl),cn)

(
λjδ(c,d)(ci,cj) − λ̄jδ(c,d)(ci,σ−1(cj))

)
+λ̄iλ̄lδ(a,b)(σ−1(cl),cn)

(
λjδ(c,d)(σ−1(ci),cj)) − λ̄jδ(c,d)(σ−1(ci),σ−1(cj))

)
+λiλlδ(a,b)(cl,cn)

(
λjδ(c,d)(ci,cj) − λ̄jδ(c,d)(ci,σ−1(cj))

)
−λ̄iλlδ(a,b)(cl,cn)

(
λjδ(c,d)(σ−1(ci),cj) − λ̄jδ(c,d)(σ−1(ci),σ−1(cj))

)]
. (A.3)

• Gluon emission prior to exchange:

[τ |(Ti ·Tj)Ti|σ〉 = N2δστ\nδcnτ−1(cn)

[ 1
N2

(
λiλ̄iλjδcjσ−1(ci) − λiλ̄iλ̄jδciσ−1(cj)

)
+ 1
N4 (λi − λ̄i)2(λj − λ̄j)

]
+
∑
(a,b)

δστ(a,b)\n

[
Nλiλ̄i

(
λ̄jδciσ−1(cj)δ(a,b)(σ−1(ci),cn) − λjδcjσ−1(ci)δ(a,b)(ci,cn)

)
+ 1
N
δcnτ−1(cn)(λi − λ̄i)

(
λ̄jλiδ(a,b)(ci,σ−1(cj)) + λ̄iλjδ(a,b)(σ−1(ci),cj)

−λiλjδ(a,b)(ci,cj) − λ̄iλ̄jδ(a,b)(σ−1(ci),σ−1(cj))
)

− 1
N
λi(λi − λ̄i)(λj − λ̄j)δ(a,b)(ci,cn)

+ 1
N
λ̄i(λi − λ̄i)(λj − λ̄j)δ(a,b)(σ−1(ci),cn)

]
+
∑
(a,b)

∑
(b,c)

δστ(a,b)(b,c)\n

[
λ2
iλjδ(a,b)(cn,cj)δ(b,c)(cj ,ci) + λ̄2

iλjδ(a,b)(cn,σ−1(ci))δ(b,c)(σ−1(ci),cj)

−λ2
i λ̄jδ(a,b)(cn,σ−1(cj))δ(b,c)(σ−1(cj),ci)

−λ̄2
i λ̄jδ(a,b)(cn,σ−1(ci))δ(b,c)(σ−1(ci),σ−1(cj))
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−λiλ̄iλjδcjσ−1(ci)δ(a,b)(cn,ci)δ(b,c)(ci,cj)

+λiλ̄iλ̄jδciσ−1(cj)δ(a,b)(cn,ci)δ(b,c)(ci,σ−1(ci))
]

+
∑
(a,b)

∑
(c,d)

δστ(a,b)(c,d)\nλiλ̄i

[
λ̄j
(
δ(a,b)(σ−1(ci),cn)δ(c,d)(ci,σ−1(cj)) − δ(a,b)(ci,cn)δ(c,d)(σ−1(ci),σ−1(cj))

)
−λj

(
δ(a,b)(σ−1(ci),cn)δ(c,d)(ci,cj) + δ(a,b)(ci,cn)δ(c,d)(σ−1(ci),cj)

)]
. (A.4)

A.2 Two-loop structures

• Double gluon exchange:

[τ |(Ti ·Tj)(Ti ·Tj)|σ〉 = N2δστ[
λ2
i λ̄

2
jδciσ−1(cj) + λ̄2

iλ
2
jδcjσ−1(ci) + 2λiλ̄iλj λ̄jδciσ−1(cj)δcjσ−1(ci)

+ 2
N2 (λi − λ̄i)(λj − λ̄j)

(
λ̄iλjδcjσ−1(ci) + λiλ̄jδciσ−1(cj)

)
+ 1
N2

(
λ2
iλ

2
j + λ̄2

i λ̄
2
j

)
+ 1
N4 (λi − λ̄i)2(λj − λ̄j)2

]
+N

∑
(a,b)

δστ(a,b)

[
λ2
i λ̄

2
jδ(a,b)(ci,σ−1(cj)) + λ̄2

iλ
2
jδ(a,b)(σ−1(ci),cj)

+ 2
N2 (λi − λ̄i)(λj − λ̄j)

(
λiλ̄jδ(a,b)(ci,σ−1(cj)) + λ̄iλjδ(a,b)(σ−1(ci),cj)

−λiλjδ(a,b)(ci,cj) − λ̄iλ̄jδ(a,b)(σ−1(ci),σ−1(cj))
)

−λiλ̄i
(
λ2
jδ(a,b)(ci,cj)δcjσ−1(ci) + λ̄2

jδ(a,b)(ci,σ−1(ci))δciσ−1(cj)
)

−λj λ̄j
(
λ2
i δ(a,b)(ci,cj)δciσ−1(cj) + λ̄2

i δ(a,b)(cj ,σ−1(cj))δcjσ−1(ci)
)

+2λiλ̄iλj λ̄j
(
δ(a,b)(σ−1(ci),cj)δciσ−1(cj) + δ(a,b)(ci,σ−1(cj))δcjσ−1(ci)

)]
−
∑
(a,b)

∑
(b,c)

δστ(a,b)(b,c)

[
λiλ̄iλ

2
j

(
δ(a,b)(ci,σ−1(ci))δ(b,c)(σ−1(ci),cj) + δ(a,b)(ci,cj)δ(b,c)(cj ,σ−1(ci))

)
+λj λ̄jλ2

i

(
δ(a,b)(ci,σ−1(cj))δ(b,c)(σ−1(cj),cj)) + δ(a,b)(ci,cj)δ(b,c)(cj ,σ−1(cj))

)
+λiλ̄iλ̄2

j

(
δ(a,b)(ci,σ−1(ci))δ(b,c)(σ−1(ci),σ−1(cj))

+δ(a,b)(ci,σ−1(cj))δ(b,c)(σ−1(cj),σ−1(ci))
)

+λj λ̄j λ̄2
i

(
δ(a,b)(σ−1(ci),σ−1(cj))δ(b,c)(σ−1(cj),cj)

+δ(a,b)(σ−1(ci),cj)δ(b,c)(cj ,σ−1(cj))
)]

+ 2
∑
(a,b)

∑
(c,d)

δστ(a,b)(c,d)λiλ̄iλj λ̄j

[
δ(a,b)(ci,σ−1(cj))δ(c,d)(σ−1(ci),cj) + δ(a,b)(ci,cj)δ(c,d)(σ−1(ci),σ−1(cj))

]
.

(A.5)
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• Crossed double exchange:

[τ |TiTiTjTj |σ〉 = N2δστ

[
2λiλ̄iλj λ̄jδciσ−1(cj)δcjσ−1(ci)

+ 2
N2 (λi − λ̄i)(λj − λ̄j)(λiλ̄jδciσ−1(cj) + λ̄iλjδcjσ−1(ci))

+ 1
N2

(
λ2
i λ̄

2
j + λ̄2

iλ
2
j

)
+ 1
N4 (λi − λ̄i)2(λj − λ̄j)2

]
+
∑
(a,b)

δστ(a,b)

[
Nλ2

iλ
2
jδ(a,b)(ci,cj) +Nλ̄2

i λ̄
2
jδ(a,b)(σ−1(ci),σ−1(cj))

+2Nλiλ̄iλj λ̄j
(
δciσ−1(cj)δ(a,b)(σ−1(ci),cj) + δcjσ−1(ci)δ(a,b)(ci,σ−1(cj))

)
+ 2
N

(λi − λ̄i)(λj − λ̄j)
(
λiλ̄jδ(a,b)(ci,σ−1(cj)) + λ̄iλjδ(a,b)(cj ,σ−1(ci))

−λiλjδ(a,b)(ci,cj) − λ̄iλ̄jδ(a,b)(σ−1(ci),σ−1(cj))
)]

−
∑
(a,b)

∑
(b,c)

δστ(a,b)(b,c)

[
λ2
jλiλ̄i

(
δ(a,b)(ci,cj)δ(b,c)(cj ,σ−1(ci))) + δ(a,b)(ci,σ−1(ci))δ(b,c)(σ−1(ci),cj)

)
+λ̄2

jλiλ̄i
(
δ(a,b)(ci,σ−1(ci))δ(b,c)(σ−1(ci),σ−1(cj))

+δ(a,b)(ci,σ−1(cj))δ(b,c)(σ−1(cj),σ−1(ci))
)

+λ̄2
iλj λ̄j

(
δ(a,b)(σ−1(ci),cj)δ(b,c)(cj ,σ−1(cj))

+δ(a,b)(σ−1(ci),σ−1(cj))δ(b,c)(σ−1(cj),cj)
)

+λ2
iλj λ̄j

(
δ(a,b)(ci,σ−1(cj))δ(b,c)(σ−1(cj),cj) + δ(a,b)(ci,cj)δ(b,c)(cj ,σ−1(cj))

)]
+ 2

∑
(a,b)

∑
(c,d)

δστ(a,b)(c,d)λiλ̄iλj λ̄j
[
δ(a,b)(ci,σ−1(cj))δ(c,d)(cj ,σ−1(ci))

+δ(a,b)(ci,cj)δ(c,d)(σ−1(ci),σ−1(cj))
]
. (A.6)

• Triple gluon vertex connecting three hard lines:

[τ |TgTlTiTj |σ〉 =
√
TRN

2δστ

[
1
N2

(
(λl − λ̄l)

(
λiλ̄jδciσ−1(cj) − λj λ̄iδcjσ−1(ci)

)
+(λj − λ̄j)

(
λ̄iλlδclσ−1(ci) − λiλ̄lδciσ−1(cl)

)
+(λi − λ̄i)

(
λ̄lλjδcjσ−1(cl) − λ̄jλlδclσ−1(cj)

)) ]
+
∑
(a,b)

δστ(a,b)N
√
TR
[
λiλ̄jλlδ(a,b)(ci,cl)

(
δclσ−1(cj) − δciσ−1(cj)

)
+λ̄iλjλlδ(a,b)(cj ,cl)

(
δcjσ−1(ci) − δclσ−1(ci)

)
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+λiλj λ̄lδ(a,b)(ci,cj)
(
δciσ−1(cl) − δcjσ−1(cl)

)
+λiλ̄j λ̄l

(
δ(a,b)(ci,σ−1(cl))δciσ−1(cj) − δ(a,b)(ci,σ−1(cj))δciσ−1(cl)

)
+λ̄iλj λ̄l

(
δ(a,b)(σ−1(ci),cj)δcjσ−1(cl) − δ(a,b)(cj ,σ−1(cl))δcjσ−1(ci)

)
+λ̄iλ̄jλl

(
δ(a,b)(σ−1(cj),cl)δclσ−1(ci) − δ(a,b)(σ−1(ci),cl)δclσ−1(cj)

)]
+
∑
(a,b)

∑
(b,c)

δστ(a,b)(b,c)

√
TR
[
λiλjδ(a,b)(ci,cj)

(
λlδ(b,c)(cj ,cl) − λ̄lδ(b,c)(cj ,σ−1(cl))

)
−λiλlδ(a,b)(ci,cl)

(
λjδ(b,c)(cl,cj) − λ̄jδ(b,c)(cl,σ−1(cj))

)
−λiλ̄jδ(a,b)(ci,σ−1(cj))

(
λlδ(b,c)(σ−1(cj),cl) − λ̄lδ(b,c)(σ−1(cj),σ−1(cl))

)
+λ̄iλlδ(a,b)(σ−1(ci),cl)

(
λjδ(b,c)(cl,cj) − λ̄jδ(b,c)(cl,σ−1(cj))

)
−λ̄iλjδ(a,b)(σ−1(ci),cj)

(
λlδ(b,c)(cj ,cl) − λ̄lδ(b,c)(cj ,σ−1(cl))

)
−λ̄iλ̄lδ(a,b)(σ−1(ci),σ−1(cl))

(
λjδ(b,c)(σ−1(cl),cj) − λ̄jδ(b,c)(σ−1(cl),σ−1(cj))

)
+λiλ̄lδ(a,b)(ci,σ−1(cl))

(
λjδ(b,c)(σ−1(cl),cj) − λ̄jδ(b,c)(σ−1(cl),σ−1(cj))

)
+λ̄iλ̄jδ(a,b)(σ−1(ci),σ−1(cj))

(
λlδ(b,c)(σ−1(cj),cl) − λ̄lδ(b,c)(σ−1(cj),σ−1(cl))

)]
.

(A.7)

• Double gluon exchange between three hard lines:

[τ |(Ti ·Tl)(Ti ·Tj)|σ〉 = N2δστ[
− λiλ̄i

(
λj λ̄lδciσ−1(cl)δcjσ−1(ci) + λ̄jλlδciσ−1(cj)δclσ−1(ci)

)
+ 1
N2 (λi − λ̄i)(λl − λ̄l)

(
λiλ̄jδciσ−1(cj) + λ̄iλjδcjσ−1(ci)

)
− 1
N2

(
λ2
i λ̄jλlδclσ−1(cj) + λ̄2

iλj λ̄lδcjσ−1(cl)
)

+ 1
N2λiλ̄i(λj − λ̄j)

(
λ̄lδciσ−1(cl) − λlδclσ−1(ci)

)
+ 1
N4 (λi − λ̄i)2(λj − λ̄j)(λl − λ̄l)

]
+
∑
(ab)

δστ(a,b)

{
Nλiλ̄i

[
λjδcjσ−1(ci)

(
λlδ(a,b)(ci,cl) − λ̄lδ(a,b)(ci,σ−1(cl))

)
+λlδclσ−1(ci)

(
λjδ(a,b)(ci,cj) − λ̄jδ(a,b)(ci,σ−1(cj))

)
−λ̄lδciσ−1(cl)

(
λjδ(a,b)(σ−1(ci),cj) − λ̄jδ(a,b)(σ−1(ci),σ−1(cj))

)
−λ̄jδciσ−1(cj)

(
λlδ(a,b)(σ−1(ci),cl) − λ̄lδ(a,b)(σ−1(ci),σ−1(cl))

)]
+N

[
−λ2

i λ̄jδciσ−1(cj)
(
λlδ(a,b)(ci,cl) − λ̄lδ(a,b)(ci,σ−1(cl))

)
+λ̄2

iλjδcjσ−1(ci)
(
λlδ(a,b)(cj ,cl) − λ̄lδ(a,b)(cj ,σ−1(cl))

)
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−λ̄2
i λ̄jλlδclσ−1(cj)δ(a,b)(σ−1(ci),cl) − λ2

iλj λ̄lδcjσ−1(ci)δ(a,b)(ci,cj)
]

+ 1
N

(λi − λ̄i)
[
(λj − λ̄j)

(
λiλ̄lδ(a,b)(ci,σ−1(cl)) − λiλlδ(a,b)(ci,cl)

+λ̄iλlδ(a,b)(σ−1(ci),cl) − λ̄iλ̄lδ(a,b)(σ−1(ci),σ−1(cl))
)

+(λl − λ̄l)
(
λiλ̄jδ(a,b)(ci,σ−1(cj)) + λ̄iλjδ(a,b)(σ−1(ci),cj)

−λiλjδ(a,b)(ci,cj) − λ̄iλ̄jδ(a,b)(σ−1(ci),σ−1(cj))
) ]}

+
∑
(a,b)

∑
(b,c)

δστ(a,b)(b,c)

{
λ2
iλjδ(a,b)(ci,cj)

(
λlδ(b,c)(cj ,cl) − λ̄lδ(b,c)(cj ,σ−1(cl))

)
+λ̄2

iλlδ(a,b)(σ−1(ci),cl)
(
λjδ(b,c)(cl,cj) − λ̄jδ(b,c)(cl,σ−1(cj))

)
−λ̄2

i λ̄lδ(a,b)(σ−1(ci),σ−1(cl))
(
λjδ(b,c)(σ−1(cl),cj) − λ̄jδ(b,c)(σ−1(cl),σ−1(cj))

)
−λ2

i λ̄jδ(a,b)(ci,σ−1(cj))
(
λlδ(b,c)(σ−1(cj),cl) − λ̄lδ(b,c)(σ−1(cj),σ−1(cl))

)}
+
∑
(a,b)

∑
(c,d)

δστ(a,b)(c,d)λiλ̄i

[
λjδ(a,b)(ci,cj)

(
λlδ(c,d)(σ−1(ci),cl) − λ̄lδ(c,d)(σ−1(ci),σ−1(cl))

)
−λ̄jδ(a,b)(ci,σ−1(cj))

(
λlδ(c,d)(σ−1(ci),cl) − λ̄lδ(c,d)(σ−1(ci),σ−1(cl))

)
+λlδ(a,b)(ci,cl)

(
λjδ(c,d)(σ−1(ci),cj) − λ̄jδ(c,d)(σ−1(ci),σ−1(cj))

)
−λ̄lδ(a,b)(ci,σ−1(cl))

(
λjδ(c,d)(σ−1(ci),cj) − λ̄jδ(c,d)(σ−1(ci),σ−1(cj))

)]
.

(A.8)

B Diagrams involving the gluon self energy

The gluon self energy diagrams at two-loop level can be expressed in the following form
after reduction (neglecting terms which vanish due to colour conservation)

+ = α2
s

2
∑
i,j

TR(Ti ·Tj) 2CA

[
(4− 2d)I(ij)

5 − 2(pi · pj)I(ij)
3 − (pi · pj)I(ij)

6

]
,

(B.1)

and

= α2
s

2
∑
i,j

4TR(Ti ·Tj)nf
[
2I(ij)

5 − 1
2(pi · pj)I(ij)

3 − (pi · pj)I(ij)
6

]
. (B.2)

Again, we have used unordered colour sums. This requires the inclusion of a factor of 1/2
in order to avoid overcounting for the bubble diagrams.
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The loop integrals pertaining to the diagrams above are given by

I
(ij)
5 = µ4ε

∫
k,q

(pi · k)(pj · k)
[pi · q + i0][−pj · q + i0][k2 + i0][(q − k)2 + i0][q2 + i0]2 ,

I
(ij)
6 = µ4ε

∫
k,q

1
[pi · q + i0][−pj · q + i0][k2 + i0][q2 + i0]2 ,

I
(ij)
3 = µ4ε

∫
k,q

1
[pi · q + i0][−pj · q + i0][k2 + i0][(q − k)2 + i0][q2 + i0] ,

(B.3)

where we have used the short-hand notation
∫
k,q ≡

∫ đdk
iπd/2

∫ đdq
iπd/2 . Furthermore note that

according to our definition the i0-prescription of an Eikonal propagator with momentum pi
is given by i0(T ·pi)2 and for the soft gluon propagator of momentum q we have i0(T ·q)2. To
avoid clutter we do not explicitly write these factors for the i0-prescription in the following.
However, they can be easily reinstated with the rule above.

The contribution I(ij)
3 does not contain a propagator to second power anymore. Due

to its propagator structure this contribution is treated in appendix C.2, eq. (C.16). For
the contributions with higher order propagators we find

I
(ij)
5 = µ4ε

∫
k,q

(pi · k)(pj · k)
{

(2πi)2δ̃(q)δ̃(k)
[pi · (k + q) + i0][−pj · (k + q) + i0][(k + q)2 + i0]2

+ 2(2πi)2δ̃(k)δ(pi · q)
[−pj · q + i0][(q − k)2 + i0][q2 + i0]2

+ 2(2πi)2(−δ′(q2)θ(q0))δ̃(k)
[pi · q + i0][−pj · q + i0][(q − k)2 + i0]

+2(2πi)3δ̃(k)δ̃(q − k)δ(pi · q)
[−pj · q + i0][q2 + i0]2

+2(2πi)3(−δ′(q2)θ(q0))δ̃(k)δ(pi · q)
[−pj · q + i0][(q − k)2 + i0]

+2(2πi)3(−δ′(q2)θ(q0))δ̃(k)δ̃(q − k)
[pi · q + i0][−pj · q + i0]

+2(2πi)4(−δ′(q2)θ(q0))δ̃(k)δ̃(q − k)δ(pi · q)
[−pj · q + i0]

}
,

(B.4)

I
(ij)
6 = µ4ε

∫
k,q

{
(2πi)2δ̃(k)δ(pi · q)

[−pj · q + i0][q2 + i0]2 + (2πi)2(−δ′(q2)θ(q0))δ̃(k)
[pi · q + i0][−pj · q + i0]

+(2πi)3(−δ′(q2)θ(q0))δ̃(k)δ(pi · q)
[−pj · q + i0]

}
.

(B.5)
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C List of integrals

C.1 One loop and one emission

Performing a Passarino-Veltman reduction one obtains the following contributions for the
diagrams at one-loop, one-emission order

= αs g
∑
i,j

TRTa
iCA(pi · ε∗(q))

[
I

(ij)
10 −

2
pi · q

I
(ij)
0

]
, (C.1)

= αs g
∑
i,j

Ta
i (Ti ·Tj)(−i)

pi · pj
pi · q

(pi · ε∗(q))I(ij)
7 , (C.2)

= αs g
∑
i,j

(Ti ·Tj)Ta
i (−i)(pi · pj)(pi · ε∗(q))I

(ij)
8 , (C.3)

= −αs g2
∑
i,j

fabcTb
iTc

j

{
(pj · q)(pi · ε∗(q))I(ij)

9

− pi · q
pj · q

(pj · ε∗(q))I(ij)
10 −

pi · pj
2

[
pi · ε∗(q)
pi · q

+ pj · ε∗(q)
pj · q

]
I

(ij)
7

}
.

(C.4)

The integrals in the equations above are given by

I
(ij)
7 = µ2ε

∫
k

1
[pi · (k + q) + i0][−pj · k + i0][k2 + i0] ,

I
(ij)
8 = µ2ε

∫
k

1
[pi · (k + q) + i0][pi · k + i0][−pj · k + i0][k2 + i0] ,

I
(ij)
9 = µ2ε

∫
k

1
[pi · (k + q) + i0][−pj · k + i0][k2 + i0][(k + q)2 + i0] ,

I
(ij)
10 = µ2ε

∫
k

1
[−pi · k + i0][k2 + i0][(k + q)2 + i0] ,

I
(ij)
0 = µ2ε

∫
k

1
[(k + q)2 + i0][k2 + i0] .

(C.5)

Using the Feynman tree theorem and filtering out contributions which give zero, such as
δ̃(k)δ(pi · (k + q)) and δ̃(k)δ(pi · (k + q))δ(k · q) — for q being on-shell the conditions for
Ek lead to a contradiction — results in

I
(ij)
7 = −µ2ε

∫
k

{
(2πi)δ̃(k)

[pi · (k + q) + i0][−pj · k + i0] + (2πi)δ(pi · k)
[(k − q)2 + i0][pj · (q − k) + i0]

+(2πi)2δ̃(k)δ(pi · (k + q))
[−pj · k + i0]

}
,

(C.6)
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I
(ij)
8 = −µ2ε

∫
k

{
(2πi)δ̃(k)

[pi · (k + q) + i0][pi · k + i0][−pj · k + i0]

+ (2πi)δ(pi · k)
[k2 + i0][pi · (k + q) + i0][−pj · k + i0] + (2πi)2δ̃(k)δ(pi · k)

[pi · (k + q) + i0][−pj · k]

+ (2πi)δ(pi · k)
[(k − q)2 + i0][pi · (k − q) + i0][pj · (q − k) + i0]

}
,

(C.7)

I
(ij)
9 = −µ2ε

∫
k

{
(2πi)δ̃(k)

[(k + q)2 + i0][pi · (k + q) + i0][−pj · k + i0]

+ (2πi)δ̃(k)
[(k − q)2 + i0][pi · k + i0][pj · (q − k) + i0]

+ (2πi)δ(pi · k)
[(k − q)2 + i0][k2 + i0][pj · (q − k) + i0]

+ (2πi)2δ̃(k)δ̃(k + q)
[pi · (k + q) + i0][−pj · k + i0] + (2πi)2δ̃(k)δ(pi · k)

[(k − q)2 + i0][pj · (q − k) + i0]

}
,

(C.8)

I
(ij)
10 = −µ2ε

∫
k

{
(2πi)δ̃(k)

[(k + q)2 + i0][−pi · k + i0] + (2πi)δ̃(k)
[(k − q)2 + i0][pi · (q − k) + i0]

+(2πi)δ̃(k)δ̃(k + q)
[−pi · k + i0]

}
.

(C.9)

C.2 Two loops

The amplitudes of the Feynman diagrams involving two hard lines at two-loop level are
given by

= −α
2
s

2
∑
i,j

(Ti ·Tj)(Ti ·Tj)(pi · pj)2 I
(ij)
1 , (C.10)

= −α
2
s

2
∑
i,j

Tb
iTa

iTa
jTb

j(pi · pj)2 I
(ij)
2 , (C.11)

= −α2
s

∑
i,j

TR(Ti ·Tj)CA(pi · pj)
[
I

(ij)
4 − 2I(ij)

3

]
. (C.12)

The two-loop integrals pertaining to the amplitudes above have the following form

I
(ij)
1 = µ4ε

∫
k,q

1
[pi · (k+ q) + i0][−pj · (k+ q) + i0][k2 + i0][q2 + i0][pi · q+ i0][−pj · q+ i0]

I
(ij)
2 = µ4ε

∫
k,q

1
[pi · (k+ q) + i0][−pj · (k+ q) + i0][k2 + i0][q2 + i0][pi · q+ i0][−pj · k+ i0]
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I
(ij)
3 = µ4ε

∫
k,q

1
[pi · k+ i0][−pj · k+ i0][k2 + i0][q2 + i0][(q− k)2 + i0]

I
(ij)
4 = µ4ε

∫
k,q

1
[pi · k+ i0][−pj · (k+ q) + i0][k2 + i0][q2 + i0][(k+ q)2 + i0] .

(C.13)

Applying the FTT to each integral of the equation above leads us to

I
(ij)
1 = µ4ε

∫
k,q

{
(2πi)2δ̃(q)δ̃(k)

[pi · (k + q) + i0][−pj · (k + q) + i0][pi · q + i0][−pj · q + i0]

+ (2πi)2δ̃(k)δ(pi · q)
[pi · (k + q) + i0][−pj · (k + q) + i0][q2 + i0][−pj · q + i0]

+ (2πi)2δ(pi · k)δ(pi · q)
[−pj · k + i0][q2 + i0][(k − q)2 + i0][−pj · q + i0]

+ (2πi)2δ̃(q)δ(pi · k)
[pi · q + i0][−pj · k + i0][(k − q)2 + i0][−pj · q + i0]

+ (2πi)2δ̃(k)δ(pi · q)
[pi · (q − k) + i0][−pj · q + i0][(q − k)2 + i0][−pj · (q − k) + i0]

+ (2πi)3δ̃(k − q)δ(pi · k)δ(pi · q)
[q2 + i0][−pj · k + i0][−pj · q + i0]

+ (2πi)3δ̃(q)δ̃(k − q)δ(pi · k)
[pi · q + i0][−pj · q + i0][−pj · k + i0]

}
, (C.14)

I
(ij)
2 = µ4ε

∫
k,q

{
(2πi)2δ̃(k)δ̃(q)

[pi · (k + q) + i0][pi · q + i0][−pj · (k + q) + i0][−pj · k + i0]

+ (2πi)2δ̃(k)δ(pi · q)
[pi · (k + q) + i0][q2 + i0][−pj · (k + q) + i0][−pj · k + i0]

+ (2πi)2 δ(pi · k)δ(pi · q)
[(k − q)2 + i0][q2 + i0][pj · (q − k) + i0][−pj · k + i0]

+ (2πi)2δ̃(q)δ(pi · k)
[pi · q + i0][(k − q)2 + i0][pj · (q − k) + i0][−pj · k + i0]

+ (2πi)2 δ(pi · k)δ(pj · q)
[pi · (k + q) + i0][(k + q)2 + i0][q2 + i0][−pj · k + i0]

+ (2πi)2δ̃(k)δ(pi · q)
[pi · (q − k) + i0][(q − k)2 + i0][−pj · q + i0][−pj · k + i0]

+(2πi)3 δ(pi · k)δ(pi · q)δ(pj · (q − k))
[(k − q)2 + i0][q2 + i0][−pj · k + i0]

+ (2πi)3 δ̃(q)δ(pi · k)δ(pj · (q − k))
[pi · q + i0][(k − q)2 + i0][−pj · k + i0]
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+ (2πi)3δ̃(k − q)δ(pi · k)δ(pi · q)
[q2 + i0][pj · (q − k) + i0][−pj · k + i0]

+(2πi)3δ̃(k − q)δ(pj · (q − k))δ(pi · k)
[pi · q + i0][q2 + i0][−pj · k + i0]

+ (2πi)3δ̃(q)δ̃(k − q)δ(pi · k)
[pi · q + i0][pj · (q − k) + i0][−pj · k + i0]

+(2πi)4δ̃(k − q)δ(pi · k)δ(pi · q)δ(pj · (q − k))
[q2 + i0][−pj · k + i0]

}
, (C.15)

I
(ij)
3 = µ4ε

∫
k,q

{
(2πi)2δ̃(k)δ̃(q)

[pi · k + i0][(q − k)2 + i0][−pj · k + i0]

+ (2πi)2δ̃(q)δ(pi · k)
[(q − k)2 + i0][k2 + i0][−pj · k + i0]

+ (2πi)2δ̃(q)δ̃(k)
[pi · k + i0][(k + q)2 + i0][−pj · k + i0]

+ (2πi)2δ̃(q)δ(pi · k)
[(k + q)2 + i0][k2 + i0][−pj · k + i0]

+ (2πi)2δ̃(k)δ̃(q)
[pi · (q − k) + i0][(q − k)2 + i0][−pj · (q − k) + i0]

+ (2πi)3δ̃(q)δ̃(k)δ̃(q − k)
[pi · k + i0][−pj · k + i0] + (2πi)3δ̃(q)δ̃(q − k)δ(pi · k)

[k2 + i0][−pj · k + i0]

+ (2πi)3δ̃(q)δ̃(k)δ̃(k + q)
[pi · k + i0][−pj · k + i0] + (2πi)3δ̃(q)δ̃(k + q)δ(pi · k)

[k2 + i0][−pj · k + i0]

}
, (C.16)

I
(ij)
4 = µ4ε

∫
k,q

{
(2πi)2δ̃(k)δ̃(q)

[pi · k + i0][(k + q)2 + i0][−pj · (k + q) + i0]

+ (2πi)2δ̃(q)δ(pi · k)
[k2 + i0][(k + q)2 + i0][−pj · (k + q) + i0]

+ (2πi)2δ̃(k)δ̃(q)
[pi · k + i0][(q − k)2 + i0][−pj · q + i0]

+ (2πi)2δ̃(q)δ(pi · k)
[k2 + i0][(q − k)2 + i0][−pj · q + i0]

+ (2πi)2δ̃(q)δ̃(k)
[pi · (k − q) + i0][(k − q)2 + i0][−pj · k + i0]

+ (2πi)3δ̃(k)δ̃(q)δ̃(k + q)
[pi · k + i0][−pj · (k + q) + i0]
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+ (2πi)3δ̃(q)δ̃(k + q)δ(pi · k)
[k2 + i0][−pj · (k + q) + i0] + (2πi)3δ̃(q)δ̃(k)δ̃(q − k)

[pi · k + i0][−pj · q + i0]

+(2πi)3δ̃(q − k)δ̃(q)δ(pi · k)
[k2 + i0][−pj · q + i0]

}
. (C.17)

The amplitudes of the diagrams involving three hard lines can be expressed as

= −α2
s

∑
i,j,l

(Ti ·Tl)(Ti ·Tl)(pi · pl)(pi · pj) I(ijl)
1 , (C.18)

= α2
s

2
∑
i,j,l

ifabcTa
iTb

jTc
l 2
[
(pj · pl)I(ijl)

2 − (pi · pj)I(ijl)
3 − (pi · pl)I(ijl)

4

]
.

(C.19)

The two-loop integrals in the equations above are given by

I
(ijl)
1 = µ4ε

∫
k,q

1
[pi · (k + q) + i0][pi · q + i0][k2 + i0][q2 + i0][−pj · k + i0][−pl · q + i0]

I
(ijl)
2 = µ4ε

∫
k,q

pi · k
[−pi · q + i0][k2 + i0][q2 + i0][(k + q)2 + i0][−pj · k + i0][pl · (k + q) + i0]

I
(ijl)
3 = µ4ε

∫
k,q

pl · k
[−pi · q + i0][k2 + i0][q2 + i0][(k + q)2 + i0][−pj · k + i0][pl · (k + q) + i0]

I
(ijl)
4 = µ4ε

∫
k,q

pj · q
[−pi · q + i0][k2 + i0][q2 + i0][(k + q)2 + i0][−pj · k + i0][pl · (k + q) + i0] ,

(C.20)
where the non-abelian three-line diagram gives an irreducible contribution. In this case
the denominator structure is the same for I(ijl)

2 , I
(ijl)
3 and I

(ijl)
4 , however, the numerator

changes. This has to be taken into account when the shifts of the loop momenta are
performed in the procedure of the Feynman tree theorem. In the following the FTT is
applied to the integrals in eq. (C.20):

I
(ijl)
1 = µ4ε

∫
k,q

{
(2πi)2δ̃(k)δ̃(q)

[pi · (k + q) + i0][pi · q + i0][−pj · k + i0][−pl · q + i0]

+ (2πi)2δ̃(k)δ(pi · q)
[pi · (k + q) + i0][q2 + i0][−pj · k + i0][−pl · q + i0]

+ (2πi)2δ̃(q)δ(pi · k)
[pi · q + i0][(k − q)2 + i0][pj · (q − k) + i0][−pl · q + i0]

+ (2πi)2δ(pi · k)δ(pj · q)
[pi · (k + q) + i0][(k + q)2 + i0][pj · q + i0][−pl · (k + q) + i0]

+ (2πi)2δ(pi · k)δ(pi · q)
[q2 + i0][(k − q)2 + i0][pj · (q − k) + i0][−pl · q + i0]
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+ (2πi)2 ˜δ(k)δ(pi · q)
[pi · (q − k) + i0][(q − k)2 + i0][−pj · k + i0][pl · (k − q) + i0]

+ (2πi)3δ̃(k − q)δ(pi · k)δ(pi · q)
[q2 + i0][pj · (q − k) + i0][−pl · q + i0]

+(2πi)3δ̃(k − q)δ(pi · k)δ(pj · (q − k))
[pi · q + i0][q2 + i0][−pl · q + i0]

+ (2πi)3δ̃(q)δ(pi · k)δ(pj · (q − k))
[pi · q + i0][(k − q)2 + i0][−pl · q + i0]

+(2πi)3δ(pi · k)δ(pi · q)δ(pj · (q − k))
[q2 + i0][(k − q)2 + i0][−pl · q + i0]

+ (2πi)3δ̃(q)δ̃(k − q)δ(pi · k)
[pi · q + i0][pj · (q − k) + i0][−pl · q + i0]

+(2πi)4δ̃(k − q)δ(pi · q)δ(pi · k)δ(pj · (q − k))
[q2 + i0][−pl · q + i0]

}
, (C.21)

I
(ijl)
2 = µ4ε

∫
k,q

{
(2πi)2(pi · k)δ̃(q)δ(pl · k)

[−pi · q + i0][k2 + i0][(k − q)2 + i0][pj · (q − k) + i0]

+ (2πi)2(pi · k)δ̃(k)δ̃(q)
[−pi · q + i0][(k − q)2 + i0][pj · (q − k) + i0][pl · k + i0]

+ (2πi)2(pi · k)δ̃(q)δ̃(k)
[−pi · q + i0][(k + q)2 + i0][−pj · k + i0][pl · (k + q) + i0]

+ (2πi)2(pi · k)δ̃(q)δ̃(k)
[pi · (k − q) + i0][(q − k)2 + i0][−pj · k + i0][pl · q + i0]

+ (2πi)2(pi · q)δ̃(q)δ(pi · k)
[k2 + i0][(k + q)2 + i0][−pj · (k + q) + i0][pl · q + i0]

+ (2πi)2(pi · k)δ̃(k)δ(pl · q)
[pi · (k − q) + i0][q2 + i0][(q − k)2 + i0][−pj · k + i0]

+ (2πi)2(pi · q)δ(pi · k)δ(pl · q)
[q2 + i0][k2 + i0][(k + q)2 + i0][−pj · (k + q) + i0]

+ (2πi)3(pi · k)δ̃(q)δ̃(k)δ̃(k + q)
[−pi · q + i0][−pj · k + i0][pl · (k + q) + i0]

+ (2πi)3(pi · k)δ̃(q)δ̃(k)δ(pl · (k + q))
[−pi · q + i0][(k + q)2 + i0][−pj · k + i0]
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+ (2πi)3(pi · k)δ̃(q)δ̃(k)δ̃(q − k)
[pi · (k − q) + i0][−pj · k + i0][pl · q + i0]

+ (2πi)3(pi · k)δ̃(k)δ̃(q)δ(pi · (k − q))
[(q − k)2 + i0][−pj · k + i0][pl · q + i0]

+(2πi)3(pi · k)δ̃(q)δ̃(q − k)δ(pi · (k − q))
[k2 + i0][−pj · k + i0][pl · q + i0]

+(2πi)3(pi · k)δ̃(q − k)δ(pl · q)δ(pi · (k − q))
[q2 + i0][k2 + i0][−pj · k + i0]

+(2πi)3(pi · k)δ̃(k)δ(pl · q)δ(pi · (k − q))
[(q − k)2 + i0][q2 + i0][−pj · k + i0]

+ (2πi)3(pi · k)δ̃(k)δ̃(q − k)δ(pl · q)
[pi · (k − q) + i0][q2 + i0][−pj · k + i0]

}
, (C.22)

I
(ijl)
3 = µ4ε

∫
k,q

{
(2πi)2(pl · q)δ̃(q)δ(pl · k)

[−pi · q + i0][k2 + i0][(k − q)2 + i0][pj · (q − k) + i0]

+ (2πi)2(pl · q)δ̃(k)δ̃(q)
[−pi · q + i0][(k − q)2 + i0][pj · (q − k) + i0][pl · k + i0]

+ (2πi)2(pl · k)δ̃(q)δ̃(k)
[−pi · q + i0][(k + q)2 + i0][−pj · k + i0][pl · (k + q) + i0]

+ (2πi)2(pl · k)δ̃(q)δ̃(k)
[pi · (k − q) + i0][(q − k)2 + i0][−pj · k + i0][pl · q + i0]

+ (2πi)2(pl · k)δ̃(q)δ(pi · k)
[k2 + i0][(k + q)2 + i0][−pj · (k + q) + i0][pl · q + i0]

+ (2πi)2(pl · k)δ̃(k)δ(pl · q)
[pi · (k − q) + i0][q2 + i0][(q − k)2 + i0][−pj · k + i0]

+ (2πi)2(pl · k)δ(pi · k)δ(pl · q)
[q2 + i0][k2 + i0][(k + q)2 + i0][−pj · (k + q) + i0]

+ (2πi)3(pl · k)δ̃(q)δ̃(k)δ̃(k + q)
[−pi · q + i0][−pj · k + i0][pl · (k + q) + i0]

+ (2πi)3(pl · k)δ̃(q)δ̃(k)δ(pl · (k + q))
[−pi · q + i0][(k + q)2 + i0][−pj · k + i0]

+ (2πi)3(pl · k)δ̃(q)δ̃(k)δ̃(q − k)
[pi · (k − q) + i0][−pj · k + i0][pl · q + i0]
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+ (2πi)3(pl · k)δ̃(k)δ̃(q)δ(pi · (k − q))
[(q − k)2 + i0][−pj · k + i0][pl · q + i0]

+(2πi)3(pl · k)δ̃(q)δ̃(q − k)δ(pi · (k − q))
[k2 + i0][−pj · k + i0][pl · q + i0]

+(2πi)3(pl · k)δ̃(q − k)δ(pl · q)δ(pi · (k − q))
[q2 + i0][k2 + i0][−pj · k + i0]

+(2πi)3(pl · k)δ̃(k)δ(pl · q)δ(pi · (k − q))
[(q − k)2 + i0][q2 + i0][−pj · k + i0]

+ (2πi)3(pl · k)δ̃(k)δ̃(q − k)δ(pl · q)
[pi · (k − q) + i0][q2 + i0][−pj · k + i0]

}
, (C.23)

I
(ijl)
4 = µ4ε

∫
k,q

{
(2πi)2(pj · q)δ̃(q)δ(pl · k)

[−pi · q + i0][k2 + i0][(k − q)2 + i0][pj · (q − k) + i0]

+ (2πi)2(pj · q)δ̃(k)δ̃(q)
[−pi · q + i0][(k − q)2 + i0][pj · (q − k) + i0][pl · k + i0]

+ (2πi)2(pj · q)δ̃(q)δ̃(k)
[−pi · q + i0][(k + q)2 + i0][−pj · k + i0][pl · (k + q) + i0]

+ (2πi)2(pj · q)δ̃(q)δ̃(k)
[pi · (k − q) + i0][(q − k)2 + i0][−pj · k + i0][pl · q + i0]

− (2πi)2(pj · k)δ̃(q)δ(pi · k)
[k2 + i0][(k + q)2 + i0][−pj · (k + q) + i0][pl · q + i0]

+ (2πi)2(pj · q)δ̃(k)δ(pl · q)
[pi · (k − q) + i0][q2 + i0][(q − k)2 + i0][−pj · k + i0]

− (2πi)2(pj · k)δ(pi · k)δ(pl · q)
[q2 + i0][k2 + i0][(k + q)2 + i0][−pj · (k + q) + i0]

+ (2πi)3(pj · q)δ̃(q)δ̃(k)δ̃(k + q)
[−pi · q + i0][−pj · k + i0][pl · (k + q) + i0]

+ (2πi)3(pj · q)δ̃(q)δ̃(k)δ(pl · (k + q))
[−pi · q + i0][(k + q)2 + i0][−pj · k + i0]

+ (2πi)3(pj · q)δ̃(q)δ̃(k)δ̃(q − k)
[pi · (k − q) + i0][−pj · k + i0][pl · q + i0]

+ (2πi)3(pj · q)δ̃(k)δ̃(q)δ(pi · (k − q))
[(q − k)2 + i0][−pj · k + i0][pl · q + i0]
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+(2πi)3(pj · q)δ̃(q)δ̃(q − k)δ(pi · (k − q))
[k2 + i0][−pj · k + i0][pl · q + i0]

+(2πi)3(pj · q)δ̃(q − k)δ(pl · q)δ(pi · (k − q))
[q2 + i0][k2 + i0][−pj · k + i0]

+(2πi)3(pj · q)δ̃(k)δ(pl · q)δ(pi · (k − q))
[(q − k)2 + i0][q2 + i0][−pj · k + i0]

+ (2πi)3(pj · q)δ̃(k)δ̃(q − k)δ(pl · q)
[pi · (k − q) + i0][q2 + i0][−pj · k + i0]

}
. (C.24)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B
512 (2001) 323 [hep-ph/0104277] [INSPIRE].

[2] A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006
[hep-ph/0206076] [INSPIRE].

[3] T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and Resummation for Jet
Processes, JHEP 11 (2016) 019 [Erratum JHEP 05 (2017) 154] [arXiv:1605.02737]
[INSPIRE].

[4] S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, JHEP 03
(2018) 036 [arXiv:1501.03754] [INSPIRE].

[5] R. Ángeles Martínez, M. De Angelis, J.R. Forshaw, S. Plätzer and M.H. Seymour, Soft gluon
evolution and non-global logarithms, JHEP 05 (2018) 044 [arXiv:1802.08531] [INSPIRE].

[6] Z. Nagy and D.E. Soper, A parton shower based on factorization of the quantum density
matrix, JHEP 06 (2014) 097 [arXiv:1401.6364] [INSPIRE].

[7] J.R. Forshaw, J. Holguin and S. Plätzer, Parton branching at amplitude level, JHEP 08
(2019) 145 [arXiv:1905.08686] [INSPIRE].

[8] J.R. Forshaw, J. Holguin and S. Plätzer, Building a consistent parton shower, JHEP 09
(2020) 014 [arXiv:2003.06400] [INSPIRE].

[9] J. Holguin, J.R. Forshaw and S. Plätzer, Improvements on dipole shower colour, Eur. Phys.
J. C 81 (2021) 364 [arXiv:2011.15087] [INSPIRE].

[10] M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni, G.P. Salam and G. Soyez, Parton
showers beyond leading logarithmic accuracy, Phys. Rev. Lett. 125 (2020) 052002
[arXiv:2002.11114] [INSPIRE].

[11] K. Hamilton, R. Medves, G.P. Salam, L. Scyboz and G. Soyez, Colour and logarithmic
accuracy in final-state parton showers, arXiv:2011.10054 [INSPIRE].

[12] Z. Nagy and D.E. Soper, Summations of large logarithms by parton showers,
arXiv:2011.04773 [INSPIRE].

– 33 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0370-2693(01)00725-0
https://doi.org/10.1016/S0370-2693(01)00725-0
https://arxiv.org/abs/hep-ph/0104277
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0104277
https://doi.org/10.1088/1126-6708/2002/08/006
https://arxiv.org/abs/hep-ph/0206076
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0206076
https://doi.org/10.1007/JHEP11(2016)019
https://doi.org/10.1007/JHEP05(2017)154
https://arxiv.org/abs/1605.02737
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.02737
https://doi.org/10.1007/JHEP03(2018)036
https://doi.org/10.1007/JHEP03(2018)036
https://arxiv.org/abs/1501.03754
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.03754
https://doi.org/10.1007/JHEP05(2018)044
https://arxiv.org/abs/1802.08531
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.08531
https://doi.org/10.1007/JHEP06(2014)097
https://arxiv.org/abs/1401.6364
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.6364
https://doi.org/10.1007/JHEP08(2019)145
https://doi.org/10.1007/JHEP08(2019)145
https://arxiv.org/abs/1905.08686
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08686
https://doi.org/10.1007/JHEP09(2020)014
https://doi.org/10.1007/JHEP09(2020)014
https://arxiv.org/abs/2003.06400
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.06400
https://doi.org/10.1140/epjc/s10052-021-09145-1
https://doi.org/10.1140/epjc/s10052-021-09145-1
https://arxiv.org/abs/2011.15087
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.15087
https://doi.org/10.1103/PhysRevLett.125.052002
https://arxiv.org/abs/2002.11114
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.11114
https://arxiv.org/abs/2011.10054
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.10054
https://arxiv.org/abs/2011.04773
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.04773


J
H
E
P
0
6
(
2
0
2
1
)
0
0
7

[13] M. Balsiger, T. Becher and D.Y. Shao, Non-global logarithms in jet and isolation cone cross
sections, JHEP 08 (2018) 104 [arXiv:1803.07045] [INSPIRE].

[14] S. Plätzer, Summing Large-N Towers in Colour Flow Evolution, Eur. Phys. J. C 74 (2014)
2907 [arXiv:1312.2448] [INSPIRE].

[15] M. De Angelis, J.R. Forshaw and S. Plätzer, Resummation and Simulation of Soft Gluon
Effects beyond Leading Color, Phys. Rev. Lett. 126 (2021) 112001 [arXiv:2007.09648]
[INSPIRE].

[16] S. Plätzer and M. Sjödahl, Subleading Nc improved Parton Showers, JHEP 07 (2012) 042
[arXiv:1201.0260] [INSPIRE].

[17] S. Plätzer, M. Sjödahl and J. Thorén, Color matrix element corrections for parton showers,
JHEP 11 (2018) 009 [arXiv:1808.00332] [INSPIRE].

[18] S. Höche and D. Reichelt, Numerical resummation at sub-leading color in the strongly
ordered soft gluon limit, arXiv:2001.11492 [INSPIRE].

[19] J. Holguin, J.R. Forshaw and S. Plätzer, Comments on a new ‘full colour’ parton shower,
arXiv:2003.06399 [INSPIRE].

[20] S. Gieseke, P. Kirchgaeßer, S. Plätzer and A. Siodmok, Colour Reconnection from Soft Gluon
Evolution, JHEP 11 (2018) 149 [arXiv:1808.06770] [INSPIRE].

[21] S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO
QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323]
[INSPIRE].

[22] S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427
(1998) 161 [hep-ph/9802439] [INSPIRE].

[23] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative
QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905]
[arXiv:0901.0722] [INSPIRE].

[24] S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591
(2000) 435 [hep-ph/0007142] [INSPIRE].

[25] S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop anomalous dimension matrix for
soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [INSPIRE].

[26] O. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension
in multileg scattering, Phys. Rev. Lett. 117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].

[27] N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard
scattering, Nucl. Phys. B 531 (1998) 365 [hep-ph/9803241] [INSPIRE].

[28] H. Contopanagos, E. Laenen and G.F. Sterman, Sudakov factorization and resummation,
Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [INSPIRE].

[29] Y.L. Dokshitzer and G. Marchesini, Soft gluons at large angles in hadron collisions, JHEP
01 (2006) 007 [hep-ph/0509078] [INSPIRE].

[30] N. Kidonakis, Soft anomalous dimensions and resummation in QCD, Universe 6 (2020) 165
[arXiv:2008.09914] [INSPIRE].

[31] M. Sjödahl, Color evolution of 2→ 3 processes, JHEP 12 (2008) 083 [arXiv:0807.0555]
[INSPIRE].

– 34 –

https://doi.org/10.1007/JHEP08(2018)104
https://arxiv.org/abs/1803.07045
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.07045
https://doi.org/10.1140/epjc/s10052-014-2907-2
https://doi.org/10.1140/epjc/s10052-014-2907-2
https://arxiv.org/abs/1312.2448
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.2448
https://doi.org/10.1103/PhysRevLett.126.112001
https://arxiv.org/abs/2007.09648
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.09648
https://doi.org/10.1007/JHEP07(2012)042
https://arxiv.org/abs/1201.0260
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1201.0260
https://doi.org/10.1007/JHEP11(2018)009
https://arxiv.org/abs/1808.00332
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.00332
https://arxiv.org/abs/2001.11492
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.11492
https://arxiv.org/abs/2003.06399
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.06399
https://doi.org/10.1007/JHEP11(2018)149
https://arxiv.org/abs/1808.06770
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.06770
https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9605323
https://doi.org/10.1016/S0370-2693(98)00332-3
https://doi.org/10.1016/S0370-2693(98)00332-3
https://arxiv.org/abs/hep-ph/9802439
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9802439
https://doi.org/10.1103/PhysRevLett.102.162001
https://arxiv.org/abs/0901.0722
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0901.0722
https://doi.org/10.1016/S0550-3213(00)00572-1
https://doi.org/10.1016/S0550-3213(00)00572-1
https://arxiv.org/abs/hep-ph/0007142
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0007142
https://doi.org/10.1103/PhysRevLett.97.072001
https://arxiv.org/abs/hep-ph/0606254
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0606254
https://doi.org/10.1103/PhysRevLett.117.172002
https://arxiv.org/abs/1507.00047
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.00047
https://doi.org/10.1016/S0550-3213(98)00441-6
https://arxiv.org/abs/hep-ph/9803241
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9803241
https://doi.org/10.1016/S0550-3213(96)00567-6
https://arxiv.org/abs/hep-ph/9604313
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9604313
https://doi.org/10.1088/1126-6708/2006/01/007
https://doi.org/10.1088/1126-6708/2006/01/007
https://arxiv.org/abs/hep-ph/0509078
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0509078
https://doi.org/10.3390/universe6100165
https://arxiv.org/abs/2008.09914
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.09914
https://doi.org/10.1088/1126-6708/2008/12/083
https://arxiv.org/abs/0807.0555
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.0555


J
H
E
P
0
6
(
2
0
2
1
)
0
0
7

[32] M. Sjödahl, Color structure for soft gluon resummation: A General recipe, JHEP 09 (2009)
087 [arXiv:0906.1121] [INSPIRE].

[33] S. Plätzer and M. Sjödahl, The Sudakov Veto Algorithm Reloaded, Eur. Phys. J. Plus 127
(2012) 26 [arXiv:1108.6180] [INSPIRE].

[34] J. Bellm, S. Plätzer, P. Richardson, A. Siódmok and S. Webster, Reweighting Parton
Showers, Phys. Rev. D 94 (2016) 034028 [arXiv:1605.08256] [INSPIRE].

[35] J. Olsson, S. Plätzer and M. Sjödahl, Resampling Algorithms for High Energy Physics
Simulations, Eur. Phys. J. C 80 (2020) 934 [arXiv:1912.02436] [INSPIRE].

[36] R.P. Feynman, Quantum theory of gravitation, Acta Phys. Polon. 24 (1963) 697 [INSPIRE].

[37] S. Catani, T. Gleisberg, F. Krauss, G. Rodrigo and J.-C. Winter, From loops to trees
by-passing Feynman’s theorem, JHEP 09 (2008) 065 [arXiv:0804.3170] [INSPIRE].

[38] M. Balsiger, T. Becher and A. Ferroglia, Resummation of non-global logarithms in cross
sections with massive particles, JHEP 09 (2020) 029 [arXiv:2006.00014] [INSPIRE].

[39] R. Ángeles-Martínez, J.R. Forshaw and M.H. Seymour, Coulomb gluons and the ordering
variable, JHEP 12 (2015) 091 [arXiv:1510.07998] [INSPIRE].

[40] R. Ángeles Martínez, J.R. Forshaw and M.H. Seymour, Ordering multiple soft gluon
emissions, Phys. Rev. Lett. 116 (2016) 212003 [arXiv:1602.00623] [INSPIRE].

[41] G. Leibbrandt, Noncovariant Gauges. Quantization of Yang-Mills and Chern-Simons Theory
in Axial-Type Gauges, World Scientific (1994) [https://doi.org/10.1142/2014] [INSPIRE].

[42] D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A Graphical user interface for
drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009)
1709 [arXiv:0811.4113] [INSPIRE].

[43] S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the
next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523]
[INSPIRE].

[44] Z. Capatti, V. Hirschi, A. Pelloni and B. Ruijl, Local Unitarity: a representation of
differential cross-sections that is locally free of infrared singularities at any order, JHEP 04
(2021) 104 [arXiv:2010.01068] [INSPIRE].

– 35 –

https://doi.org/10.1088/1126-6708/2009/09/087
https://doi.org/10.1088/1126-6708/2009/09/087
https://arxiv.org/abs/0906.1121
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.1121
https://doi.org/10.1140/epjp/i2012-12026-x
https://doi.org/10.1140/epjp/i2012-12026-x
https://arxiv.org/abs/1108.6180
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.6180
https://doi.org/10.1103/PhysRevD.94.034028
https://arxiv.org/abs/1605.08256
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.08256
https://doi.org/10.1140/epjc/s10052-020-08500-y
https://arxiv.org/abs/1912.02436
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02436
https://inspirehep.net/search?p=find+J%20%22Acta%20Phys.Polon.%2C24%2C697%22
https://doi.org/10.1088/1126-6708/2008/09/065
https://arxiv.org/abs/0804.3170
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.3170
https://doi.org/10.1007/JHEP09(2020)029
https://arxiv.org/abs/2006.00014
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.00014
https://doi.org/10.1007/JHEP12(2015)091
https://arxiv.org/abs/1510.07998
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.07998
https://doi.org/10.1103/PhysRevLett.116.212003
https://arxiv.org/abs/1602.00623
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.00623
https://doi.org/10.1142/2014
https://inspirehep.net/literature/384305
https://doi.org/10.1016/j.cpc.2009.02.020
https://doi.org/10.1016/j.cpc.2009.02.020
https://arxiv.org/abs/0811.4113
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.4113
https://doi.org/10.1016/S0550-3213(99)00778-6
https://arxiv.org/abs/hep-ph/9908523
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9908523
https://doi.org/10.1007/JHEP04(2021)104
https://doi.org/10.1007/JHEP04(2021)104
https://arxiv.org/abs/2010.01068
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.01068

	Introduction
	Soft gluon evolution and the colour flow basis
	Leading-order evolution

	Colour structures at next-to-leading order
	Two-loop contributions
	One-loop, one-emission contributions

	Kinematic dependence and loop integrals
	Cutting rules
	Application to two-loop integrals
	Application to higher propagator powers
	One-loop, one-emission contributions

	Conclusion and outlook
	Details on colour structures
	One-loop, one-emission colour structures
	Two-loop structures

	Diagrams involving the gluon self energy
	List of integrals
	One loop and one emission
	Two loops


