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ABSTRACT: We perform a Feynman diagram calculation of the two-loop scattering ampli-
tude for gravitationally interacting massive particles in the classical limit. Conveniently, we
are able to sidestep the most taxing diagrams by exploiting the test-particle limit in which
the system is fully characterized by a particle propagating in a Schwarzschild spacetime.
We assume a general choice of graviton field basis and gauge fixing that contains as a subset
the well-known deDonder gauge and its various cousins. As a highly nontrivial consistency
check, all gauge parameters evaporate from the final answer. Moreover, our result exactly
matches that of Bern et al. [39], here verified up to sixth post-Newtonian order while also
reproducing the same unique velocity resummation at third post-Minkowksian order.
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1 Introduction

The breakthrough observation of gravitational waves at LIGO/Virgo [1, 2] has triggered
immense interest in bridging developments from the modern scattering amplitudes program
to the physics of gravitational waves. Building on past work on the inspiral problem based
on graviton effective field theory (EFT) [3-7] and matching to a classical potential [8,
9, 11-13], many developments have now emerged which exploit classic methods [14-21]
as well as recent amplitudes advances [22-25] to investigate systems with [26-38] and
without spin [39, 40].

Already, these efforts have culminated in genuinely new results which have yet to be
fully verified through the existing conventional methods, which include the effective one-
body formalism [41, 42], numerical relativity [43-45], self-force formalism [46, 47|, and
analytic calculations in the post-Newtonian (PN) [48-62], post-Minkowskian (PM) [14,
63-72] and nonrelativistic general relativity [10, 73-81] approaches. In particular, the
recent calculation of the conservative Hamiltonian for binary dynamics at 3PM order [39,
40] overlaps and agrees with existing results in the PN expansion but also encodes an
infinitude of new higher order velocity corrections. This new 3PM calculation entails an
intricate “vertical pipeline” of tools which span string theory, effective field theory, and
orbital mechanics.

The 3PM calculation [39, 40] centers on the scattering amplitude for two massive,
spinless bodies interacting via Einstein gravity. The multiloop integrand for this process is
built from tree amplitudes constructed via the double copy construction [82-86] and then
fused together via generalized unitarity [87-91]. The resulting object is then integrated
through a battery of relativistic and nonrelativistic methods. The latter approach hinges on
a crucial split between potential and radiation graviton modes which was first systematized
for the binary inspiral problem in a quantum field theoretic context in the pioneering work
of [73] (see [81] for a full treatment of the conservative 4PN Lagrangian in this framework).



Finally, by matching the resulting scattering amplitude to an EFT for the binary system,
one extracts the conservative potential governing the inspiral [8, 9, 11-13, 15].

To date, there are now a number of works studying the implications of this 3PM result
as well as its consistency. These include the study of the effect of these new 3PM corrections
on the binding energy of a binary inspiral in comparison with numerical relativity [92].
Currently, the 5PN term of the 3PM result has been verified [93], while other methods
for EFT matching have also been devised [16-19]. The case of massless scattering has
also received more recent attention with new computations in supergravity as well as in
Einstein gravity [94-97]. In particular, [96] utilizes the first complete evaluation of the
two-loop four-graviton scattering amplitude in [97] and confirms from first principles the
classic result for the massless deflection angle in pure Einstein gravity in [98]. Notably,
these explicit calculations are all inconsistent with the 3PM dynamics conjectured in [99].

In this paper we perform an independent and comprehensive check of the 3PM results
in [39, 40] using age-old tools from the perturbative, quantum field theoretic description
of gravitons coupled to massive scalars. To begin, we compute the two-loop integrand
associated with gravitational scattering using Feynman diagrams. For maximal generality,
we perform this calculation assuming an arbitrary choice of local graviton field basis and
gauge fixing. At two loops, the resulting Feynman diagrams individually depend on a
total of ten gauge parameters, for which certain choices of values correspond to deDonder
gauge, its nonlinear generalization to harmonic gauge, and a “simplified” gauge previously
engineered to reduce the complexity of graviton perturbation theory [100]. Note that the
latter formalism admits a version of Berends-Giele recursion relations [101] for gravity
which was employed in the recent calculation of two-loop graviton scattering in Einstein
gravity [97].

As a crucial simplification, we are able to completely sidestep a large class of Feynman
diagrams which contribute only in the test-particle limit. Instead, we fix these contri-
butions from the known behavior of a test particle in a Schwarzschild background, as
discussed in [40].

Afterwards, we integrate our two-loop integrands using the nonrelativistic method
discussed in [40] up to 6PN order. As expected, all dependence on unphysical gauge
parameters disappear entirely from our final result, which also exactly matches that of [39)].
As in [40], the series of velocity corrections which appear are simple and take the same
form as those collected in appendix C of [40].] Resummation is then mechanical and
reproduces the same 3PM scattering amplitude. This agreement implies that the entire
3PM calculation — in particular the integration procedure — is gauge invariant, and
furthermore that integrand construction via the double copy and generalized unitarity
works as expected. Note that, along with the recent result for massless scattering at two
loops [96], this offers additional evidence via explicit computation that the claimed 3PM
result in [99] is incorrect. Nonetheless, confirmation of the 6PN result from other methods,
as was done at 5PN [93], would be valuable.?
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The paper is organized as follows. In section 2.1, we discuss the action describing
our setup for different choices of gauge fixing and field basis. We then give a brief review
of the classical limit of Feynman diagrams implemented at integrand level in section 2.2.
Afterwards, in section 2.3 we discuss the subclass of Feynman diagrams that contribute only
to the test-particle limit and show how to sidestep their direct calculation. In section 2.4,
we list the final set of Feynman diagrams that we compute, and we discuss our results and
outlook in section 3.

2 Setup

The scattering amplitude for massive, gravitationally interacting particles is computed
using the quantum field theory description of gravitons. For a review we refer the reader
to [3-7]. Here we specify various forms of the action that we use for our calculation.

2.1 Action

To begin, we consider Einstein gravity coupled to a pair of massive scalars. The action is®

S = Sgraviton + Smatter + SGF (21)

where the graviton and matter actions are

1 D e
Sgrawton — M/d x _gR

Smatter = /de\/jg Z

i=1,2

2.2
<_;vu¢ivu¢i - ;mfgb?) 22

and Sgr denotes the gauge fixing term. Here all derivatives and metric contractions are
covariant with respect to the full metric.

In order to define perturbation theory for the graviton, eq. (2.2) must be supplemented
with an explicit definition of the graviton fluctuation about flat space. As explored in [102],
there is immense freedom in this choice of field basis and gauge fixing which will affect
intermediate steps in any calculation but will evaporate from any physical quantity. Let us
describe the various choices of gauge fixing and field basis to be considered in this paper.

de Donder gauge. To begin, let us consider eq. (2.2) with a gauge fixing and field basis,

1

R e

2
1
/ dPx (thW - 20#11) and g = T + Py (2.3)
where h,,, is the graviton, h is its trace, and all contractions are taken with the flat space
metric 7,,,. Throughout, we work in a noncanonical normalization in which the graviton
is dimensionless. Since we will not be concerned with processes with external gravitons,
this choice will not affect the overall normalization of the scattering amplitude. That said,

also confirms the 6PN result in [39] using the formalism of nonrelativistic general relativity.
3We work in mostly plus metric signature throughout.



in order to go to canonical normalization, one simply rescales the graviton by a factor
of V327G.

We emphasize that eq. (2.3) is purposely expressed in terms of partial derivatives and
does not include a factor of \/—g. This term is obviously not gauge invariant but this is
expected since it is a gauge fixing term. Since the gauge fixing term is purely quadratic in
the graviton, it serves only to modify the graviton propagator of the theory. Consequently,
the Feynman rules for this formulation are obtained by inserting the definition of the
graviton perturbation in eq. (2.3) into the Einstein-Hilbert and matter coupling terms
while using the well-known deDonder propagator for the graviton.

Harmonic gauge. Alternatively, consider eq. (2.2) with the gauge fixing

1

i% dD.’L‘\/jg F“l’yl—‘“pp and gl“’ = 771“/ + h/“/, (24)

Sar =
where the indices in the Christoffel symbols are contracted using the full metric. Harmonic
gauge fixing is a nonlinear generalization of the deDonder gauge in eq. (2.3) since they
coincide at quadratic order in the graviton but deviate at higher order. In particular,
graviton self-interactions arise from the gauge fixing term as well as the Einstein-Hilbert
term. However, harmonic gauge and deDonder gauge exactly coincide at quadratic order
in the graviton, so the propagator here is still of deDonder form.

Simplified gauge. In [100, 102], the Einstein-Hilbert action was analyzed in an arbitrary
field basis and gauge fixing. While these choices have no effect on physical observables,
they can elucidate various hidden structures in gravity and also simplify the Feynman
diagram expansion. For example, [102] showed how the dual Lorentz invariance implied by
the double copy construction [82-86] can be made manifest at the level of the action.

In [100], these freedoms were further exploited to build highly simplified Feynman rules
and Berends-Giele recursion relations [101] for gravity derived from a perturbative version
of the Palatini formulation. In fact, this work was later utilized in the first calculation [97]
of the two-loop scattering amplitude of massless gravitons. In the present work, we also use
this simplified action for graviton perturbations about flat space, S = Sgraviton + Smatter;
where

_L D _1 LRV L u
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where the ellipses denote terms which are quartic or higher in the graviton which are not
needed for the present calculation. As before, the graviton kinetic term again coincides with
that of deDonder and harmonic gauge, so the graviton propagator is the same. Meanwhile,
the graviton couplings to matter are slightly modified, and should be obtained by inserting
the graviton perturbation defined by the relation /—g g" = n** — h*¥ into eq. (2.2).



Generalized gauge. Last but not least, we consider the Einstein-Hilbert action in a
general field basis and gauge fixing, subject only to the assumption of locality. In particular,
we consider the most general local gauge fixing term that coincides with harmonic gauge
at linear order while maintaining the deDonder form of the graviton propagator,

Sap = dPx F,F* (2.6)

327G

where the gauge fixing function is

1
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and all contractions are taken with the flat space metric. At linear order, this gauge fixing
coincides with deDonder gauge. Furthermore, in the Einstein-Hilbert term we plug in the
general graviton field basis,

uv = Nuv + huu + glh,uphyp + §2huuh + §3nul/hpahpa + 5477,wh2, (28)

restricting to local nonlinear functions of the graviton. In eq. (2.7) and eq. (2.8) we have
neglected to write down terms even higher order in the graviton since these only affect
quartic or higher self-interaction vertices which we will not need.

Last of all, note that since the deDonder, harmonic, and simplified gauge discussed
earlier are all local functions of the graviton field, they are all subsumed by various choices
of the gauge parameters above.

2.2 Classical limit

As discussed at length in [15, 40], the complexity of the scattering amplitude calculation
is immensely reduced by the fact that we are interested only in the classical dynamics.
Indeed, the vasty majority of terms computed via Feynman diagrams actually contribute
to the quantum dynamics. By applying classical truncation as early as possible — in
particular at the level of the integrand — we can substantially simplify our expressions.

Consider, for example, a scattering process with center of mass momentum p and mo-
mentum transfer ¢. Because the impact parameter scales as b ~ 1/|q], then the angular
momentum of the process goes as J ~ |p]/|q]. For a classical process, the angular momen-
tum must be large in units of A, so J > 1. Mechanically, we can enforce this hierarchy in
Feynman diagrams by scaling relativistic momenta as follows

p1 — p1

P2 — P2

q— Aq

b — N,

(2.9)

where p; and po are the incoming momenta of particles 1 and 2, respectively, ¢ = (0, q) is
the momentum transfer in the center of mass frame, ¢; denotes the (loop) four-momenta
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Figure 1. Sample Feynman diagrams corresponding to the test-particle limit at 2PM, 3PM,
and 4PM. Thick horizontal lines and thin lines respectively denote massive scalars and exchanged
gravitons. Other variants include nonplanar topologies and those involving the seagull vertex.

of exchanged gravitons, and A is the classical power counting parameter. We expand in
small A in the numerator. On the other hand, as discussed at length in [40], we do not
expand propagators in Feynman diagrams at this stage in order to keep the pole structure
manifest for loop integration. For a detailed discussion of the nonrelativistic integration
method, we refer the reader to [40].

With this power counting, the classical momentum-space scattering amplitude at nth
order in the PM expansion scales as

My — X3 M, + lower order in . (2.10)

Terms higher order than A\*~3 are pure quantum and should be discarded. Note, on the
other hand, that there do in general exist “super-classical” terms which are lower order
in ), infrared divergent, and enter through iterations of lower orders in the PM potential.
While super-classical terms appear in the scattering amplitude, they evaporate from the
conservative potential after matching, which is expected since the full theory the EFT share
the same infrared structure.

As discussed in [40], the classical limit also permits us to drop large classes of Feynman
diagrams. These diagrams can be dropped because their corresponding integrands have no
poles in the integration region corresponding to potential graviton modes. Consequently,
they contribute only when the exchanged gravitons are high energy, thus generating pure

quantum corrections.

2.3 Test-particle limit

In the test-particle limit, m; > meo, the scattering amplitude coincides with that of a
point particle propagating in a Schwarzschild background. This well-known fact was one
of many consistency checks of the 3PM result [39, 40]. In the present work we use this
limit to sidestep the calculation of a complicated subset of Feynman diagrams. That is,
we identify the class of Feynman diagrams that contribute only to the test-particle limit,
and instead of computing them explicitly, fix them so that the final answer agrees with the
test-particle limit.

Consider the “triangular” Feynman diagrams in figure 1, which have the defining
feature of containing the maximal allowed number of propagators for particle 1 but no
propagators for particle 2. Crucially, this class of diagrams typically involves the high-
est order self-interactions of the graviton, and are very work-intensive to compute using

Feynman diagrams.



First, let us apply to these diagrams the classical power counting outlined in eq. (2.9)
and eq. (2.10). A diagram at nth PM order will involve an n — 1 loop integral of the form

T~ /d‘“”lw X gnl_l X ﬁin x N, (2.11)
where A is the numerator of the Feynman diagram, and ¢ schematically denotes any loop
momentum or momentum transfer, including ¢, which scales linearly with A in eq. (2.9).
The 1/¢"~! and 1/£?" come from the loop momentum dependence of the matter lines and
the all-graviton sub-diagram, respectively. Note that we have suppressed dependence on the
scales in the problem, such as the masses. Applying eq. (2.9) and comparing to eq. (2.10),
it is then clear that we have to take N at zeroth order in the classical expansion parameter
A, thus setting everything in the numerator to zero except py, ph, and the masses.

By this logic, the Feynman diagram numerator will carry 2(n+ 1) factors of p}’ and two
factors of ph after classical truncation, here rewriting all masses as m? = —p? or m3 = —p3
via the on-shell condition. This implies that

N ~ G"m* " m2(A + Bo?), (2.12)

where o = —% in our mostly plus signature, and A and B are unknown dimensionless
coefficients. Higher powers of ¢ cannot arise, simply because there are not enough factors
of pi to produce them. Furthermore, as described in [40] the first step of integration is
to localize all matter poles for particle 1, effectively introducing a total of n — 1 factors of

1/my. Applying this to eq. (2.11), we obtain
T ~ G"m} 3 m3(A+ Bo?)q" 3, (2.13)

where the power of ¢ = \/—t is fixed by eq. (2.10) and is only schematic — that is,
depending on the PM order, logarithms of ¢ may also appear.

Rather than compute the triangular Feynman diagrams explicitly, we simply add them
to our calculation as an ansatz term in the general form of eq. (2.13). Obviously, we can
do the same for diagrams related to those in figure 1 by swapping particles 1 and 2, and
they will have the same values for A and B. In particular, for the 3PM answer we take

MSPM = Mansatz + MFeynman (214)

where the ansatz function is
Moansatz = 7G*m3im3(m3 +m3)(A + Bo?)Ing, (2.15)

where the ¢ dependence is fixed by the 1/73 structure of the 3PM potential. The remaining
term MFeynman i computed explicitly via Feynman diagrams. We then take the full answer
Mspy and demand that it is consistent with the test-particle limit amplitudes presented
in [40]. This constraint uniquely fixes A and B, thus completing the calculation.
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Figure 2. Two-loop Feynman diagrams for classical scattering. Not shown here are diagrams such
as those in figure 1, which are trivially fixed by the test-particle limit, as well as “twisted” graphs
obtained by swapping the incoming and outgoing legs for particle 1, or equivalently, for particle
2. The peculiar labeling is meant to align with the topologies defined in figure 14 of [39], and the
primed labels denote graphs in which an exchanged graviton has been pinched.

2.4 Feynman diagrams

Upon dropping quantum and test-particle contributions, we need only compute the subset
of Feynman diagrams shown in figure 2. Notably, these diagrams involve at most cubic self-
interactions of the graviton but not higher, affording some degree of reduction in complexity.

For the interested reader, we provide supplementary material containing all two-loop
integrands, classically truncated, for the deDonder, harmonic, and simplified gauges de-
scribed above, as well as their integrated values. We include only the finite pieces, while
the infrared divergent, super-classical terms that cancel in the matching with the EFT are
as given in eq. (9.2) of [40].

3 Results and outlook

In summary, we have computed all of the Feynman diagrams in figure 2 working in the
deDonder, harmonic, simplified, and general gauges discussed previously. Integration was
performed using the nonrelativistic method discussed at length in [40]. Calculating up to
6PN order in the velocity expansion, we find perfect agreement among all four gauges and
with the results of [39, 40]. For all cases, the test-particle limit fixes A = 0 and B = —64 in
eq. (2.15). As discussed in [40], due to the limited number of possible relativistic invariants,
agreement at 6PN is sufficient to guarantee a simple and unique expression for the 3PM
amplitude and potential.

The fact that these separate computations all yield the same answer is a highly non-
trivial verification of our previous 3PM result. On the one hand, the present calculation
is a test of the integrands previously computed via generalized unitarity. Furthermore,
this computation confirms that the nonrelativistic integration method devised in [15, 40]
is fully gauge invariant. While the methods employed in [15, 40] are well-established tools
of effective field theory and scattering amplitudes, it is nevertheless necessary to perform
such checks in light of the doubts recently raised in [99].



As we have seen, the 3PM calculation relevant to conservative binary dynamics is
actually tractable via standard Feynman diagrammatic methods. This simple fact strongly
suggests that amplitudes methods — which are invariably more efficient than Feynman
diagrams — will have mileage to even higher orders than expected.
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