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1 Introduction

The factorization theorem for the differential cross-sections of boson production (Drell-Yan

process or DY in this paper) and semi-inclusive deep inelastic scattering (SIDIS) identifies

clearly the sources of non-perturbative QCD effects as the transverse momentum depen-

dent (TMD) distributions and, separately, their evolution kernel [1–11]. The extraction

of these non-perturbative (NP) elements from data is then a major challenge for modern

phenomenology [12].

In this article, we consider the unpolarized observables that have the simplest structure

and are accessible in a relatively large number of experiments. They allow us to extract the

quark unpolarized TMD distributions and the non-perturbative part of TMD evolution. In

the literature one can find many extractions of these elements within various schemes [13–

22]. The distinctive feature of this work is the simultaneous study of two kinds of reactions:

DY and SIDIS. Previously, a global fit of both processes has been attempted only in ref. [18].

We demonstrate that the global description of both processes is straightforward and does

not meet any obstacle. The description is based on the latest theory developments, such

as next-to-next-to-leading order (NNLO) and N3LO perturbative parts together with ζ-

prescription. In addition, we make a special emphasis on some topics not so often discussed

in the literature, that is, universality and theory uncertainties of the TMD.

The factorization theorem declares that the TMD non-perturbative parts have a cer-

tain degree of universality, as explained in the following: a) the evolution kernel is the

same for all processes where the TMD factorization theorem is valid; b) the TMD parton
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distribution functions (TMDPDF) are the same in DY and SIDIS experiments. Testing

universality needs an analysis of different types of experiments at the same time. Although

the universality is a cornerstone of the approach, we have not found any dedicated phe-

nomenological study in the literature. In order to check and proof universality properties

of the TMD approach, we perform an analysis in three steps:

I. Firstly, we consider only the DY measurements, and analyze TMDPDF f1(x, b) and

rapidity anomalous dimension (RAD), D(µ, b). The DY data sets have a vast span in

x and Q, therefore, it is possible to extract f1 (that dictates the x-dependence of the

cross-section) and D (that dictates the Q-dependence of the cross-section) without a

significant correlation between these functions. This analysis is conceptually similar

to the previous work [20], albeit some improvements.

II. Using the outcome of the previous step (D and f1), we consider the SIDIS measure-

ments and extract the TMDFF, D1. Assuming the universality of TMD distributions,

one should be able to describe the SIDIS cross-section with a single extra function

D1. This is a non-trivial statement since the SIDIS cross-section has 4-degrees of

freedom, and only two of them are affected by D1. Additionally, the present SIDIS

data are concentrated in a range of small-Q that is unreachable for DY experiments.

III. Finally, we perform a simultaneous fit of DY and SIDIS data. Given the excellent

quality of the separate DY and SIDIS fits, this stage provides only a fine-tune of

non-perturbative parameters as well as a consistency check of previous step II.

These three independent analyses provide a consistent and congruent picture of the TMD

factorization and allow the extraction of three non-perturbative functions (unpolarized

quark TMDPDF, TMDFF and quark evolution kernel). We find that our results are in

full agreement with the depicted scenario, which gives a solid confirmation of the declared

universality.

On top of the described test of universality and the extraction of TMD distributions,

in this work we perform many additional studies of the TMD approach, some of which

should be better addressed elsewhere: we test the phenomenological limits of the TMD

factorization for SIDIS; we check the dependence of the TMD prediction on the collinear

inputs; we perform an overall test of the impact power suppressed contributions to the TMD

factorization; we check the impact of experimental constraints on the final phase space

configurations (like fiducial cross sections and lepton cuts at LHC, bin shapes in HERMES

kinematics). Altogether the tests can form a comprehensive picture of TMD factorization

and its accuracy. We have observed that the impact of some input uncertainties, f.i. the

ones from collinear PDF, to the prediction is unlucky large. Still, we restrict ourself to the

indication of problematic issues, leaving it as an invitation for the further developments in

the future.

The theoretical work done in recent years for the development of the elements of

TMD factorization has been noticeable. Significant efforts have been committed in the

perturbative calculations for TMD distributions at small-b [23–29]. Together with the

N3LO results for universal QCD anomalous dimensions [30–34], it leads to an extremely
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accurate perturbative input. The consistent composition of all elements is made employing

the ζ-prescription [11, 21]. The ζ-prescription is essential for current and future TMD

phenomenology because it grants a unified approach to observables irrespectively of the

order of perturbative matching. So, the collinear matching procedure that is fundamental

for resummation approaches (such as in refs. [4, 35–40]) or b∗-like prescriptions (such as

in refs. [5, 18, 41, 42]), is considered just as part of the model for a TMD distribution in

the ζ-prescription. Therefore, unpolarized TMD distributions (extracted in this work with

NNLO matching) and the TMD evolution (extracted in this work with NNLO and N3LO

matching) are entirely universal and could be used for the description of other processes,

where the matching is not known at such a high order.

Given the number of details needed for the presentation of this work, we split the

discussions into almost independent parts. The first part, section 2, contains the description

of the TMD factorization theorem for unpolarized DY and SIDIS cases. In this section, we

articulate all relevant formulas, including a lot of small corrections and details that we have

not found mentioned in previous literature. This part provides a comprehensive collection

of theory results, which can be useful for comparison with other works and future tests,

and it can be seen as a theory review. Some of the issues reported here are expected to

be addressed in separate works. Section 3 is devoted to the review of the available SIDIS

and DY data suitable for unpolarized TMD phenomenology. Section 4 presents the details

of the comparison of the theory expression with the experimental data. It contains the

definition of χ2-test, the interpretation of the experimental environment, and some details

of the numerical implementation that is made by artemide package [43, 44]. The following

sections 5, 6 and 7 describe the fit program outlined earlier, and they are devoted to

DY(only), SIDIS(only), and DY and SIDIS(together) fits. Each of these sections contains

several subsections describing the specific impact of each process on TMD extraction.

Finally, we collect the information on the resulting NP functions in section 8.

2 Cross sections in TMD factorization

In this section, we present in detail the cross sections of SIDIS and DY processes in TMD

factorization, skipping their derivation that can be found in refs. [1–11]. The main purpose

of this section is to collect all pieces of information about theoretical approximations and

models that are used in the fit procedure.

2.1 SIDIS cross-section

The (semi-inclusive) deep-inelastic scattering (SIDIS) is defined by the reaction

`(l) +H(P )→ `(l′) + h(ph) +X, (2.1)

where ` is a lepton, H and h are respectively the target and the fragmenting hadrons,

and X is the undetected final state. The vectors in brackets denote the momenta of each

particle. The masses of the particles are

P 2 = M2, p2
h = m2, l2 = l′2 = m2

l ' 0. (2.2)

In the following, we neglect the lepton masses, but keep the effects of the hadron masses.
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Approximating the interaction of a lepton and a hadron by a single photon exchange,

one obtains the differential cross-section

dσ =
2

s−M2

α2
em

(q2)2
LµνW

µν d
3l′

2E′
d3ph
2Eh

, (2.3)

with q = l − l′ being the momentum of the intermediate photon. Here, the scattering

flux-factor, ((s − (ml + M)2)(s − (ml −M)2))−1/2 is evaluated at vanishing lepton mass;

the factors q2 come from the photon propagators ∆µν = gµν/(q2 + i0) and αem = e2/4π

is QED coupling constant. The last factors in eq. (2.3) are the phase-space differentials

for the detected hadron and lepton, with E′(Eh) being their energies. The leptonic and

hadronic tensors (Lµν and Wµν) are

Lµν = e−2〈l′|Jµ(0)|l〉〈l|J†ν(0)|l′〉,

Wµν = e−2

∫
d4x

(2π)4
e−i(x·q)

∑
X

〈P |J†µ(x)|ph, X〉〈ph, X|Jν(0)|P 〉, (2.4)

where e is the lepton charge, and Jµ is the electro-magnetic current.

2.1.1 Kinematic variables for SIDIS

The formulation of the factorization theorem in SIDIS is done in the hadronic Breit frame

(alternatively, we can call it ”the factorization frame”), where the momenta of hadrons

are almost light-like and back-to-back. The light-like direction to which the hadrons are

aligned defines the decomposition of their momenta,

Pµ = P+n̄µ +
M2

2P+
nµ, pµh = p−h n

µ +
m2

2p−h
n̄µ, (2.5)

with n2 = n̄2 = 0, (nn̄) = 1. Here, we have also introduced the common notation of a

vector decomposition

vµ = v+n̄µ + v−nµ + vµT , v+ = (nv), v− = (n̄v), (nvT ) = (n̄vT ) = 0. (2.6)

The transverse component of a vector is extracted with the projector

vµT = gµνT vν , gµνT = gµν − nµn̄ν − n̄µnν . (2.7)

We also use the convention that the bold font denotes vectors that have only transverse

components. So, they obey Euclidian scalar product:

v2
T = −v2

T > 0. (2.8)

For the SIDIS cross-section one introduces the following scalar variables:

Q2 = −q2, x =
Q2

2(Pq)
, y =

(Pq)

(Pl)
, z =

(Pph)

(Pq)
. (2.9)

In the experimental environment one typically measures the transverse momentum defined

as the one of the produced hadron with respect to the plane formed by vectors q and P .
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The projector corresponding to these transverse components is given by the tensor gµν⊥
defined as

gµν⊥ = gµν − 1

M2Q2 + (Pq)2

[
Q2PµP ν + (Pq)(Pµqν + qµP ν)−M2qµqν

]
(2.10)

= gµν − 1

Q2(1 + γ2)

[
2x2PµP ν + 2x(Pµqν + qµP ν)− γ2qµqν

]
.

In what follows, we denote the transverse components of vµ in the factorization frame as

vµT , see eq. (2.7), while transverse components projected by g⊥ are vµ⊥.

In order to describe the target- and produced-mass corrections, it is convenient to use

the following combinations

γ =
2Mx

Q
, ς = γ

m

zQ
, ς2

⊥ = γ2m
2 + p2

h⊥
z2Q2

. (2.11)

The definition of ς2
⊥ in eq. (2.11) contains p2

h⊥ = phµphνg
µν
⊥ .

The measured transverse momentum p⊥ is different from the one defined in TMD

factorization. In fact, the transverse momentum used in the factorization theorem, qT , is

defined with respect to the hadron-hadron-plane and the corresponding transverse compo-

nents are extracted by the tensor gµνT in eq. (2.7). In terms of hadron momenta the tensor

gT reads

gµνT = gµν − 1

m2M2 − (Pph)2

[
m2PµP ν − (Pph)(Pµpνh + pµhP

ν) +M2pµhp
ν
h

]
(2.12)

= gµν +
1

Q2(1− ς2)

[
4
x2

γ2
ς2PµP ν − 2x

z
(Pµpνh + pµhP

ν) +
γ2

z2
pµhp

ν
h

]
.

Using the projectors in eq. (2.10) and eq. (2.12), it is straightforward to derive the relation

between q2
T = qµqνg

µν
T and p2

⊥ = pµhp
ν
hg⊥,µν :

q2
T =

p2
⊥
z2

1 + γ2

1− ς2
. (2.13)

Using these definition we can rewrite the elements of the SIDIS cross-section formula

in terms of observable variables. The differential volumes of the phase space are

d3l′

2E′
=

y

4x
dQ2dxdψ,

d3ph
2Eh

=
1√

1− ς2
⊥

dzd2p⊥
2z

=
1√

1− ς2
⊥

dzdp2
⊥dϕ

4z
, (2.14)

where ψ is the azimuthal angle of scattered lepton, and ϕ is the azimuthal angle of the

produced hadron.

In the following we find important to introduce the variables xS and zS , that are the

collinear fractions of parton momentum which include kinematic power corrections,

xS = − q
+

P+
, zS =

p−h
q−
, (2.15)
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which are invariant under boosts along the direction of n, n̄, but are not invariant for a

generic Lorentz transformation. The variables xS and zS in eq. (2.15) are

xS = −x 2

γ2

(
1−

√
1 + γ2

(
1−

q2
T

Q2

))
, (2.16)

zS = −z
1−

√
1 + γ2

(
1− q2T

Q2

)
γ2

1 +
√

1− ς2

1− q2T
Q2

= z
xS
x

1 +
√

1− ς2

2
(

1− q2T
Q2

) , (2.17)

where we have used the variable q2
T (2.13) for simplicity.

The kinematic corrections presented above are usually small when Q�M,m. In this

case the relation between observed and factorization variables simplifies

q2
T '

p2
⊥
z2
, xS ' x

(
1−

q2
T

Q2

)
, zS ' z. (2.18)

Notice that the data of SIDIS at our disposal are taken at energies comparable with hadron

masses and thus target mass correction could be significant. The contributions dependent

on hadron masses could in principle be classified as power corrections. However we consider

more appropriate to distinguish these corrections from others of different origin. Thus we

will not use the approximate formulas in eq. (2.18). The phenomenological test of this

assumption is given in section 6.2.

2.1.2 Factorization for the hadronic tensor in SIDIS

In this work we consider the transverse momentum dependence of the cross section which is

factorizable in terms of transverse momentum dependent (TMD) distributions in the limit

of qT � Q, where qT is defined in eq. (2.13) and Q is the di-lepton invariant mass. We refer

to the literature about the proof of factorization of the processes related to this work [1, 4–

10]. In order to specify the properties of the TMD distributions and the factorized hadronic

tensor, we start fixing the basic notation.

For unpolarized hadrons, the factorized hadronic tensor and in its complete form reads

Wµν = −2zS
∑
f

e2
f |CV (Q2, µ2)|2

∫
d2b

(2π)2
e−i(bqT ) (2.19)

×
[
gµνT f1,f←H (xS , b;µ, ζ1)D1,f→h (zS , b;µ, ζ2)

+(gµνT b2 − 2bµbν)
mM

4
h⊥1,f←H (xS , b;µ, ζ1)H⊥1,f→h (zS , b;µ, ζ2)

]
+O

(
q2
T

Q2

)
,

where the index f in the sum runs through all quark flavours (including anti-quarks), ef
is a charge of a quark measured in units of e. The function CV is the matching coefficient

for vector current to collinear/anti-collinear vector current and the factorization (µ) and

rapidity (ζ) scales typical of the TMD factorization are shown explicitly.
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The unpolarized TMDPDF and TMDFF from partons of flavor f are defined as

f1,f←h(x, b;µ, ζ) (2.20)

=

∫
dλ

2π
e−ixλp

+
∑
X

〈h(p)|q̄(nλ+ b)W †n(nλ+ b)
γ+

2
|X〉〈X|Wn(0)q(0)|h(p)〉,

D1,f←h(z, b;µ, ζ) (2.21)

=
1

2zNc

∫
dλ

2π
eiλp

+/z
∑
X

〈0|γ
+

2
Wn(nλ+ b)q(nλ+ b)|h(p), X〉〈h(p), X|q̄(0)W †n(0)|0〉.

Here, Wv(x) are Wilson lines rooted at x and pointing along vector v to infinity. In the

case of SIDIS, the Wilson lines in TMDPDF(TMDFF) points to future (past) infinity. The

functions h⊥1 and H⊥1 are Boer-Mulders and Collins functions respectively and they are

defined as

iMεαβT bβh
⊥
1,f←h(x, b;µ, ζ) (2.22)

=

∫
dλ

2π
e−ixλp

+
∑
X

〈h(p)|q̄(nλ+ b)W †n(nλ+ b)
iσα+γ5

2
|X〉〈X|Wn(0)q(0)|h(p)〉,

iMεαβT bβH
⊥
1,f←h(z, b;µ, ζ) (2.23)

=
1

2zNc

∫
dλ

2π
eiλp

+/z〈0| iσ
α+γ5

2
Wn(nλ+ b)q(nλ+ b)|h(p), X〉〈h(p), X|q̄(0)W †n(0)|0〉,

where εµνT = ε+−µν . In formulas (2.20)–(2.23) we have omitted for brevity the obvious

details of operator definitions, such as T (T̄ )-ordering, color and spinor indices, rapidity

and ultraviolet renormalization factors.

Boer-Mulders and Collins functions in eq. (2.22), (2.23) do not contribute to the angle

averaged cross-section, but they can appear when cuts on phase space distributions of final

particles are introduced by the experimental setup. In this work we will not consider these

effects, and leave their study for the future (see discussion in section 2.3).

The TMD distributions depend on b2 only. Therefore, the angular dependence can be

integrated explicitly with the result

Wµν =
zS
π

∑
f

e2
f

[
(−gµνT )W f

f1D1
(Q, |qT |, xS , zS) (2.24)

+

(
gµνT − 2

qµT q
ν
T

q2
T

)
W f

h⊥1 H
⊥
1

(Q, |qT |, xS , zS)

]
+O

(
q2
T

Q2

)
,

where

W f
f1D1

(Q, qT , xS , zS) = |CV (Q2, µ2)|2 (2.25)

×
∫ ∞

0
db bJ0(bqT )f1,f←H (xS , b;µ, ζ1)D1,f→h (zS , b;µ, ζ2) ,

W f

h⊥1 H
⊥
1

(Q, qT , xS , zS) =
mM

4
|CV (Q2, µ2)|2 (2.26)

×
∫ ∞

0
db b3J2(bqT )h⊥1,f←H (xS , b;µ, ζ1)H⊥1,f→h (zS , b;µ, ζ2) .
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The functions W f
ab are dimensionless and scale-independent functions. The experimental

configurations are not usually provided in the factorization frame, and the correspondence

between the measured quantities and the ones that appear in the factorization theorem

is often non-trivial. It happens in fact, that a Lorentz transformation affects the power

corrections to the cross section presented here. We detail this in the next sections.

2.1.3 Leptonic tensor in SIDIS

The leptonic tensor for unpolarized SIDIS is

Lµν = 2(lµl
′
ν + l′µlν − (ll′)gµν). (2.27)

In order to express the convolution of the leptonic tensor with a hadronic tensor we define

the azimuthal angle of a produced hadron as [2]:

cosφ =
−lµphνgµν⊥√

−lαlβgαβ⊥
√
−phα′phβ′gα

′β′

⊥

(2.28)

and we define

ε =
1− y − γ2y2

4

1− y + y2

2 + γ2y2

4

.

As the result we obtain

(−gµνT )Lµν =
2Q2

1− ε

[
1 +

p2
⊥

Q2z2

ε− γ2

2

1− ς2
(2.29)

− cosφ

√
2ε(1 + ε)p2

⊥

zQ

√
1− ς2

⊥

1− ς2
− cos(2φ)

εp2
⊥γ

2

2z2Q2(1− ς2)

]
.

The kinematical rearrangements of the variables produce the appearance of the cos φ and

cos 2φ terms in the second line of eq. (2.29), that is, there are contributions to the structure

functions F cosφ
UU and F cos 2φ

UU , see also [45]. Similarly, the convolution of lepton tensor with

the spin-1 part

(
gµνT − 2

qµT q
ν
T

q2
T

)
Lµν =

2Q2

1− ε

[
ε cos(2φ)

(
1−

p2
⊥γ

2

2z2Q2(1− ς2)

)
(2.30)

− cosφ

√
2ε(1 + ε)p2

⊥

zQ

√
1− ς2

⊥

1− ς2
+

p2
⊥

Q2z2

ε− γ2

2

1− ς2

]
.

produces also contribution to the cos φ and cos 2φ parts.

The terms ∼ p2
⊥/Q

2 in eqs. (2.29), (2.30) can be modified by power corrections to

TMD factorization, see discussion in section 2.3.
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2.1.4 SIDIS cross-section in TMD factorization

Combining together the expressions for the cross-section in eq. (2.3), the differential

phase-space volume in eq. (2.14), the hadronic tensor in eq. (2.24), the leptonic tensor

in eq. (2.29), (2.30), and integrating over the azimuthal angles we obtain

dσ

dxdzdQ2dp2
⊥

=
π√

1− ς2
⊥

α2
em

Q4

y2

1− ε
zS
z

(2.31)

×
∑
f

e2
f

[(
1 +

q2
T

Q2

ε− γ2

2

1 + γ2

)
W f
f1D1

(
Q,
√
q2
T , xS , zS

)

+
q2
T

Q2

ε− γ2

2

1 + γ2
W f

h⊥1 H
⊥
1

(
Q,
√
q2
T , xS , zS

)]
,

where xS , zS and q2
T are the functions of p2

⊥, x, and z defined in eq. (2.16), (2.17) and

eq. (2.13), correspondingly. The functions W f
ab are defined in eq. (2.25), (2.26).

The final expression for the cross section in eq. (2.31) explicitly shows that part of

power corrections has a kinematical origin, and therefore, it is independent of the fac-

torization theorem and it can be taken into account in the present formalism without

contradictions. As an example one can consider the factor
√

1− ς2
⊥ that is a part of the

phase-space element, and the difference between zS and z that is a consequence of the

TMDFF definition. The separation between kinematical power corrections and higher or-

ders in power expansion of the cross-section is however not neat, because a detailed study

of the factorization theorem correction is still not complete. The admixture of these effects

can be seen in the second line of eq. (2.31), which is the present status of our understand-

ing. In the fit we omit the contribution Wh⊥1 H
⊥
1

in eq. (2.31) and perform a check of the

importance of mass-corrections for the agreement with experimental data in section 6.2.

We discuss power corrections also in section 2.3.

2.2 DY cross-section

The Drell-Yan pair production (or DY for shortness) is defined by the process

h1(P1) + h2(P2)→ l(l) + l′(l′) +X, (2.32)

where l, l′ are the lepton pair, h1, h2 are the colliding hadrons, and the symbols in brackets

denote the momentum of each particle. In the following, we include hadron masses and we

neglect lepton masses:

P 2
1 = M2

1 , P 2
2 = M2

2 , l2 = l′2 = m2
l ' 0. (2.33)

The energies of the DY experiments are higher than the SIDIS ones, and the interference

of electro-weak (EW) bosons must be included. Approximating the interactions of leptons

and hadrons by a single EW-gauge boson exchange one obtains the following expression

for the differential cross-section

dσ =
2α2

em

s

d3l

2E

d3l′

2E′

∑
GG′

LGG
′

µν Wµν
GG′∆G(q)∆∗G′(q). (2.34)
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where q = l + l′, αem = e2/4π is the QED coupling constant and the index G runs over

gauge bosons γ, Z. Here, we have approximated the exact flux factor [(s−(M1−M2)2)(s−
(M1 +M2)2)]−1/2 with 1/s because the corrections of order M2/s are negligibly small for

any considered data set. The function ∆G(q) is defined as

∆G(q) =
1

q2 + i0
δGγ +

1

q2 −M2
Z + iΓZMz

δGZ , (2.35)

with MZ = 91.188GeV and ΓZ = 2.495GeV [46]. Finally, LµνGG′ and Wµν
GG′ are the leptonic

and hadronic tensors that are defined as

LGG
′

µν = e−2〈0|JGµ (0)|l, l′〉〈l, l′|JG′†ν (0)|0〉, (2.36)

Wµν = e−2

∫
d4x

(2π)4
e−i(x·q)

∑
X

〈P1, P2|JG†µ (x)|X〉〈X|JG′ν (0)|P1, P2〉, (2.37)

where e is the lepton charge, and JGµ is the current for the production of EW gauge boson G.

Integrating the cross-section over a lepton momentum one finds

dσ =
2α2

em

s
d4q

∑
GG′

L̂GG
′

µν Wµν
GG′∆G(q)∆∗G′(q), (2.38)

where q is the momentum of the EW-gauge boson. The new lepton tensor is

L̂GG
′

µν =

∫
d3l

2E

d3l′

2E′
δ(4)(l + l′ − q)LGG′µν . (2.39)

2.2.1 Kinematic variables for DY

The relevant kinematic variable in DY read

s = (P1 + P2)2, q2 = Q2, y =
1

2
ln
q+

q−
. (2.40)

The transverse components are projected by a tensor gµνT , that is orthogonal to Pµ1 and

Pµ2 , identically to the SIDIS case eq. (2.12),

gµνT = gµν − 2

s
(Pµ1 P

ν
2 + Pµ2 P

ν
1 ) , (2.41)

and we have dropped the negligible corrections of order of M2/s. In this limit, the factor-

ization theorem is expressed in the center-of-mass frame, the components of momenta are

P+
1 = P−2 =

√
s/2 and the variables x1,2 in eq. (2.49) are

x1 =

√
Q2 + q2

T

s
e+y, x2 =

√
Q2 + q2

T

s
e−y. (2.42)

The differential phase-space element reads

d4q =
1

2
dQ2dyd2qT =

1

4
dQ2dydq2

Tdϕ, (2.43)

where ϕ is the azimuthal angle of the vector boson.
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2.2.2 Factorization for hadronic tensor in DY

The factorization for DY hadronic tensor is totally analogous to the SIDIS case. The

vectors n and n̄ are defined by hadrons,

Pµ1 = P+
1 n̄

µ +
M2

1

2P+
1

nµ ' P+
1 n̄

µ, Pµ2 = P−2 n
µ +

M2
2

2P−2
n̄µ ' P−1 n

µ, (2.44)

where on r.h.s. the small contributions ∼M2/s are neglected. The inclusion of weak-boson

exchange requires the consideration of a more general current. To this purpose we define

JµG(x) = q̄(x)[gGRγ
µ(1 + γ5) + gGL γ

µ(1− γ5)]q(x), (2.45)

with the EW coupling constants

gγR = gγL =
ef
2
, gZR =

−efs2
W

2sW cW
, gZL =

T3 − efs2
W

2sW cW
, (2.46)

where ef is the electric charge of a particle (in units of e), T3 is the third projection of

weak isospin, sW = sin(θW ), cW = cos(θW ).

Collecting all this, the unpolarized part of the factorized hadronic tensor reads

Wµν
GG′ =

∑
f

|CV (−Q2, µ2)|2
∫

d2b

(2π)2
e−i(bqT )

×
[
− 2gµνT (gGRg

G′
R + gGL g

G′
L )
(
f1,f←h1f1,f̄←h2 + f1,f̄←h1f1,f←h2

)
−
gµνT b2 − 2bµbν

2
M1M2(gGRg

G′
R + gGL g

G′
L )
(
h⊥1,f←h1h

⊥
1,f̄←h2 + h⊥1,f̄←h1h

⊥
1,f←h2

)
−2iεµνT (gGRg

G′
R − gGL gG

′
L )
(
f1,f←h1f1,f̄←h2 − f1,f̄←h1f1,f←h2

)
+i(εµαT bαb

ν + εναT bαb
µ)
M1M2

2
(gGRg

G′
L − gGL gG

′
R )

×
(
h⊥1,f←h1h

⊥
1,f̄←h2 − h

⊥
1,f̄←h1h

⊥
1,f←h2

)]
+O

(
q2
T

Q2

)
, (2.47)

where f runs through all quark flavours. The functions f1,f←h1 are the TMDPDF and the

functions h⊥1,f←h1 are the Boer-Mulders functions, defined in eq. (2.20), (2.22). In eq. (2.47)

we have omitted the arguments of the TMD distributions for brevity, however they can be

included with substitutions like e.g.

f1,f←h1f1,f̄←h2 → f1,f←h1(x1, b;µ, ζ1)f1,f̄←h2(x2, b;µ, ζ2), (2.48)

and proceed similarly for all products of TMD distributions. The variables x1 and x2

measure the collinear fractions of parton momenta,

x1 =
q+

P+
1

, x2 =
q−

P−2
. (2.49)
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The flavor indices f , f̄ run through all flavors of quarks and anti-quarks respectively. Here,

the flavor index f̄ refers to the anti-parton of f . Note that, in the case of W-boson, the

constants gWL/R mix the flavors of quarks.

In the factorized hadronic tensor in eq. (2.47), different terms are not equally impor-

tant. In fact, the fifth line of eq. (2.47) vanishes identically due to the peculiar combination

of g-constants that is null for any electro-weak channel. The forth line can contribute only

to ZZ and Zγ-channels, that have an anti-symmetric part of the leptonic tensor. However,

the resulting expression is anti-symmetric in the rapidity parameter, and thus it vanishes

when the rapidity is measured/integrated on symmetric intervals. In principle, this part

can contribute to a cross-section when experiments perform very asymmetric kinematic

cuts on the detected leptons (e.g. at LHCb). However, even in this case the resulting inte-

gral is suppressed as q2
T /Q

2e−2|y| and it is numerically very small, e.g in some bins it can

give a 10−6 − 10−8-size relative to the leading contribution. Thus, in the following we do

not consider contributions of the last two lines in eq. (2.47).

Performing the integration over angles we obtain a result formally similar to the SIDIS

case in eq. (2.24),

Wµν
GG′ =

1

2π

∑
f

2(gGRg
G′
R + gGL g

G′
L )

[
− gµνT W f

f1f1
(Q, |qT |, x1, x2) (2.50)

+

(
gµνT − 2

qµT q
ν
T

q2
T

)
W f

h⊥1 h
⊥
1

(Q, |qT |, x1, x2)

]
+O

(
q2
T

Q2

)
,

where gµνT is now given in eq. (2.41) and

W f
f1f1

(Q, qT , x1, x2) = |CV (−Q2, µ2)|2 (2.51)

×
∫ ∞

0
db bJ0(bqT )f1,f←h1(x1, b;µ, ζ1)f1,f̄←h2(x2, b;µ, ζ2),

W f

h⊥1 h
⊥
1

(Q, qT , x1, x2) =
M1M2

4
|CV (−Q2, µ2)|2 (2.52)

×
∫ ∞

0
db b3J2(bqT )h⊥1,f←h1(x1, b;µ, ζ1)h⊥1,f̄←h2(x2, b;µ, ζ2).

2.2.3 Lepton tensor and fiducial cuts in DY

In experiments not all final state leptons are collected in the measurements and fiducial cuts

are for instance performed at LHC. We use the same implementation of cuts as in [19, 20].

However, here we give a more general discussion to see how they affect power suppressed

parts of the cross section.

The lepton tensor of unpolarized DY formally written in eq. (2.36) is

LGG
′

µν = 8
[
(lµl′ν + lν l′µ − gµν(ll′))

(
gRGg

R
G′ + gLGg

L
G′
)

+ iεµναβlαl
′
β

(
gRGg

R
G′ − gLGgLG′

) ]
, (2.53)

where gRG(gLG) are the couplings of right (left) components of a lepton field to EW current as

in eq. (2.45). In the case of W boson, these couplings also carry flavor indices. As discussed

in section 2.2.2, the anti-symmetric part does not contribute visibly to the unpolarized

cross-section even in the presence of asymmetric fiducial cuts.
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Figure 1. Plot of cut-factors P1,2 (2.57), (2.58) versus qT [GeV] in the case of fiducial cuts of

ATLAS and CMS Z-boson measurement [47–50], at Q = 91.GeV and different values of y. The

lines with y = 0.0 and y = 0.5 are very close to each other.

The DY cross-section contains the lepton tensor integrated over the lepton momenta

with l + l′ = q, in eq. (2.39), and this gives

(−gµνT )L̂GG
′

µν = 16
(
gRGg

R
G′ + gLGg

L
G′
) ∫ d3l

2E

d3l′

2E′
δ(4)(l + l′ − q)((ll′)− (ll′)T ) (2.54)

=
[
2
(
gRGg

R
G′ + gLGg

L
G′
)] 4π

3
Q2

(
1 +

q2
T

2Q2

)
,(

gµνT − 2
qµT q

ν
T

q2
T

)
L̂GG

′
µν = −32

(
gRGg

R
G′ + gLGg

L
G′
)

(2.55)

×
∫
d3l

2E

d3l′

2E′
δ(4)(l + l′ − q)

2l2T l
′
T + (ll′)T l

2
T + (ll′)T l

′2
T

q2
T

=
[
2
(
gRGg

R
G′ + gLGg

L
G′
)] 4π

3
Q2 q

2
T

Q2
.

The cuts on the lepton pair at LHC are usually reported as

ηmin < η, η′ < ηmax, l2T > p2
1, l′

2
T > p2

2, (2.56)

where η and η′ are pseudo-rapidity of the leptons. In the presence of these cuts the

integration volume of the leptonic tensor can be done only numerically. To account this

effect we introduce cut factors as

P1 =

∫
d3l

2E

d3l′

2E′
δ(4)(l + l′ − q)((ll′)− (ll′)T )θ(cuts)

/[π
6
Q2

(
1 +

q2
T

2Q2

)]−1

, (2.57)

P2 =
12

π

∫
d3l

2E

d3l′

2E′
δ(4)(l + l′ − q)(2l2T l′2T + (ll′)T l

2
T + (ll′)T l

′2
T )θ(cuts). (2.58)

These factors are equal to one in the absence of cuts. The impact of these cuts at LHC

is extremely important and depends on the rapidity interval and the value of the vector

boson transverse momentum. We show P1,2 for ATLAS experiment in figure 1. One can

see that the factor P2 is enhanced at smaller qT and in general these factors are very

different from 1.
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2.2.4 DY cross-section in TMD factorization

Collecting the expressions for the differential phase-space element in eq. (2.43), the hadronic

tensor eq. (2.50), the leptonic tensor (2.54), (2.55) with the fiducial cuts in eq. (2.57), (2.58),

we obtain the final cross-section in the TMD factorization. For the case of neutral vector

boson (i.e. Z- and γ- bosons) it reads

dσ

dQ2dydq2
T

=
2π

3Nc

α2
em

sQ2

∑
f

[(
1 +

q2
T

2Q2

)
P1W

f
f1f1

(
Q,
√
q2
T

)
+
q2
T

Q2
P2W

f

h⊥1 h
⊥
1

(
Q,
√
q2
T

)]

×
[
zγγl zγγf + zγZl zγZf

2Q2(Q2 −M2
Z)

(Q2 −M2
Z)2 + Γ2

ZM
2
Z

+zZZl zZZf
Q4(Q2 −M2

Z)

(Q2 −M2
Z)2 + Γ2

ZM
2
Z

]
, (2.59)

where functions W f are defined in (2.51), (2.52), MZ and ΓZ are mass and width of Z-boson.

The factors z are the combinations of couplings gR,L for quarks and for leptons (2.46):

zγγf = e2
f , (2.60)

zγZf =
T3 − 2efs

2
W

2s2
W c

2
W

, (2.61)

zZZf =
(1− 2|ef |s2

W )2 + 4e2
fs

4
W

8s2
W c

2
W

. (2.62)

The term W f

h⊥1 h
⊥
1

describes the contributions of the Boer-Mulders functions and we omit

this term in the rest of the fit as motivated in section 2.3.

2.3 Power corrections and higher twist structure functions

The cross-section of SIDIS and DY given by eq. (2.31), (2.59) contains a variety of power

suppressed contributions, which have different origin, as listed in the following:

• Power corrections to TMD factorization. These corrections appear during the fac-

torization procedure for the hadronic tensors, see eq. (2.19), (2.47). One can distin-

guish two kinds of power corrections: corrections that are proportional to the leading

structure functions Wab, which arise through the so-called Wandzura–Wilczek terms

(in the case of SIDIS, this part of cross-section has been studied recently in [51]);

corrections that involve genuine “twist-3” TMD distributions (some part of these

corrections is discussed in [52]);

• Mass and q2
T dependence within the momentum fraction variables (xS , zS) (SIDIS),

(x1, x2) (DY), see eq. (2.15), (2.49). Despite the fact that the corrections in the

momentum fraction can be interpreted as part of power corrections to TMD factor-

ization (contributing to the Wandzura–Wilczek terms), we consider them on their

own. These corrections come from the field-modes separation and the definition of

the scattering plane, and they can be seen as the “Nachtmann-variable for TMD fac-

torization”. The usage of these variables is also in agreement with expected large-qT
structure of cross-section, which has different form, but uses similar variables, e.g.

see [53].
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• Fiducial cuts for DY. The cut factors for the DY lepton tensor in eq. (2.57), (2.58) are

a source of power corrections and they can mix different structure functions. They

are accumulated in separate factors, and have totally auxiliary nature. They must

be accounted for the proper description of LHC data.

• Mismatch between factorization and laboratory frames in SIDIS. The azimuthal an-

gles and transverse planes are defined differently in the factorization and laboratory

frames see eq. (2.10), (2.12). This introduces target-mass, produced-mass, and qT -

corrections. A good example is the p⊥-linear contribution to the structure function

F cosφ
UU (2.29), (2.30), which is a purely a frame-dependent effect.

• Cross-section phase-space volume in SIDIS. In the case of a non-negligible mass for

the detected particle, the phase-volume contains power corrections. They are ac-

cumulated in a universal factor in eq. (2.14), and are part of the definition of the

observable.

Some of the power corrections of this list can be accounted exactly (e.g. the corrections

to the phase-space, the collinear momentum fractions, the relation between q2
T and p2

⊥),

while some are absolutely unknown (i.e. the power correction to the TMD factorization).

The problem of power corrections to TMD factorization is unsolved and should be

addressed in future studies. We resume it here for the interested readers in the DY case.

The hadronic tensor defined in eq. (2.50) is expressed in terms of the tensor gµνT defined in

eq. (2.41) and it is transverse to a plane containing hadrons. The appearance of the tensor

gµνT is the consequence of the TMD factorization approach. This tensor is not transverse

to the vector boson momentum, and as a result whenever one uses the leading term of

factorized formula for the cross section one finds

qµW
µν
TMD fact. 6= 0, (2.63)

which demonstrates the violation of QED Ward identity. The violation can be accounted

for as a power-suppressed contribution, since qµW
µν ∼ qT . Accounting of the linear power

correction (∼ qT /Q) would correct the QED Ward identity to this order (i.e. one would

obtain qµW
µν ∼ q2

T 6= 0). In order to get a hadron tensor completely transverse to qµ one

has to account for the full chain of power corrections. This problem is well known and it

has been addressed several times in the literature in DY and SIDIS cases [2, 5, 54–57]. All

the suggested solutions extend the TMD factorization in some model-dependent way and

they provide different expressions for the cross-section. A systematic solution is still not

available. It is also often assumed that the resummation of Sudakov logarithms and the

matching to the perturbative expansion of the cross section can interpolate between the

TMD factorization region and the perturbative region. This method however presents its

own limitations because in practice not all sources of power corrections listed above are

usually taken into account and a more systematic work in this sense is still missing.

In the present work we adopt a different strategy. We first observe that power sup-

pressed terms have not a single origin and that part of them are calculable, so that they can

be included in our computations. The TMD factorization provides the cross section for DY
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and SIDIS in terms of 4 structure functions Wab defined in eq. (2.25), (2.26), (2.51), (2.52)

and each of them is a Hankel convolution of two TMD distributions times a hard coefficient

function. We remark that the TMD include all the non-perturbative information of the

process, and it is different from the one contained in a collinear PDF. The unknown parts

in eq. (2.31), (2.59) come from higher twist matrix elements Wh⊥1 H
⊥
1

and Wh⊥1 h
⊥
1

which are

expected to contribute at larger values of qT .

The structure functions Wh⊥1 H
⊥
1

and Wh⊥1 h
⊥
1

are formally of higher dynamical twist

with respect to the others. While higher twist contributions are in principle accompanied

by q2
T /Q

2 factors, the complex kinematics of the experiments (especially in the SIDIS

case) makes it hard to distinguish purely non-perturbative higher-twist effects from the

kinematical ones. For instance, the azimuthal angles measured in the lab frames and in

the Breit frame for SIDIS are different and some non-perturbative QCD effects can be

overlooked when we pass from one frame to the other. The only way to solve this problem

would be a complete inclusion of higher power corrections to the cross section, which

goes beyond the scope of the present work. For this reason, while we consider the exact

kinematics, as described in the previous section, we also put

W f

h⊥1 H
⊥
1

(Q, qT , x, z) = 0, W f

h⊥1 h
⊥
1

(Q, qT , x, x
′) = 0. (2.64)

The effect of this assumption must be very small at q2
T � Q2, and this justifies the

conservative data sets used in the present fit (see section 3).

The Q dependence of W f
ab is dictated by the TMD evolution, and it is discussed in

the next section 2.4. The asymptotic limit of high qT allows for a perturbative matching

of TMD distributions to collinear ones and it is discussed in section 2.4.1. The non-

perturbative inputs on top of the large-qT asymptotic limit are discussed in section 2.4.2.

Finally, we summarize all theoretical inputs in section 2.5.

In section 5.2 and 6.2, we test the influence of the power corrections to the fit quality.

This test provides us an estimation of the systematic error due to the presence of unknown

power correction.

2.4 TMD evolution and optimal TMD distributions

While the differential evolution equations for TMD are fixed by the factorization theorem,

the boundary conditions of their solution are a matter of choice. They clearly determine

the convergence of the perturbative series and the success of the theoretical description of

DY and SIDIS spectrum. In this paper, we work with the so-called ζ-prescription described

in [11], and including the improvement found in [21]. The prescription consists in defining

the TMD distribution on a null-evolution line. The null-evolution line has the defining

property of keeping the evolution factor for TMD distributions is equal to one for all val-

ues of the impact parameter b. Because of this property, the ζ-prescription is conceptually

different from other popular prescriptions, where the reference scales do not belong to a

null-evolution line. In this case, the resulting (reference) TMD distribution includes an

admixture with the perturbative evolution factor evaluated at different values of b. Thus it

appears that the ζ-prescription has an important advantage that the resulting TMD distri-

bution is independent of any perturbative parameter, i.e. it is completely non-perturbative
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and one can freely parameterize a distribution without any reference to perturbative order.

For a detailed description and analyses of TMD evolution and the ζ-prescription we refer

to [11], whereas here we present only the final expressions without derivation.

The system of TMD evolution equations is

µ2 d

dµ2
F (x, b;µ, ζ) =

γF (µ, ζ)

2
F (x, b;µ, ζ), (2.65)

ζ
d

dζ
F (x, b;µ, ζ) = −D(µ, b)F (x, b;µ, ζ), (2.66)

where F is any TMD distribution (f1 or D1 in the present case). The TMD evolution

equations are not sensitive to the flavor of a parton1 and thus we omit flavor indices in this

section for simplicity. The eq. (2.65) is a standard renormalization group equation, which

comes from the renormalization of the ultraviolet divergences, with the function γF (µ, ζ)

being the anomalous dimension. The eq. (2.66) results from the factorization of rapidity

divergences. The function D(µ, b) is called the rapidity anomalous dimension (RAD). The

RAD is a generic non-perturbative function that can be computed at small values of b in

perturbation theory. The perturbative expression for the RAD and γF can be found in

the literature (e.g. see appendix of ref. [26]). In this work we use the resummed version of

RAD [58]. The resummed expressions are also given in appendix B (see also appendix B

in ref. [39]).

The scales µ and ζ have an independent origin, and this has important consequences.

To start with, the TMD evolution takes place in the plane (µ, ζ). The solution of equations

eq. (2.65), (2.66) for the evolution from a point (µf , ζf ) to a point (µi, ζi) is

F (x, b;µf , ζf ) = exp

[∫
P

(
γF (µ, ζ)

dµ

µ
−D(µ, b)

dζ

ζ

)]
F (x, b;µi, ζi) (2.67)

where P is any path in (µ, ζ)-plane that connects initial (µi, ζi) and final points (µf , ζf ).

The value of evolution is (in principle) independent on the path, thanks to integrability

condition (also known as Collins-Soper (CS) equation [41])

−ζ dγF (µ, ζ)

dζ
= µ

dD(µ, b)

dµ
= Γcusp(µ), (2.68)

where Γcusp(µ) is the cusp anomalous dimension. This equation dictates the logarithmic

structure of anomalous dimensions. In particular, the TMD anomalous dimension is

γF (µ, ζ) = Γcusp(µ) ln

(
µ2

ζ

)
− γV (µ). (2.69)

The formal path-independence of eq. (2.67) is violated at any fixed order of perturbation

theory. The penalty term is proportional to the area surrounded by paths, and can be huge

in the case of very separated scales. Nevertheless, the path dependence decreases with the

increase of the perturbative order and it is numerically small at N3LO [11].

1The TMD evolution is sensitive to the color-representation. Since in this work we deal only with quark

channels, we do not write the corresponding labels.
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The final scales of the evolution are binded to the hard scale of factorization such that

µ2
f ∼ Q2 and ζ1fζ2f = Q4. In particular, we choose the symmetric point

µ2
f = Q2, ζ1f = ζ2f = Q2. (2.70)

The TMD initial (or defining) scale is chosen with the ζ-prescription and deserves some

explanation. In the ζ-prescription the scales µ and ζ belong to a null-evolution line, that

we parameterize as (µ, ζµ(b)). To find the null-evolution line, we recall that the system

of eq. (2.65), (2.66) is a two-dimensional gradient equation (∇∇∇F = EF ) with the field

E = (γF (µ, ζ)/2,−D(µ, b)). Therefore, the null-evolution line is simply an equipotential

line of the field E. It provides the equation that define ζµ(b) such that

Γcusp(µ) ln

(
µ2

ζµ(b)

)
− γV (µ) = 2D(µ, b)

d ln ζµ(b)

d lnµ2
, (2.71)

A TMD distribution does not evolve between scales belonging to the same equipotential

line by definition.

Among equipotential lines there is a special line that passes through the saddle point

(µ0, ζ0) of the field E. The values (µ0, ζ0) are defined as

D(µ0, b) = 0, γF (µ0, ζ0) = 0. (2.72)

The special equipotential line is preferable for the definition of TMD scales for two im-

portant reasons. First, there is only one saddle point in the evolution field, and thus, the

special null-evolution line is unique. Second, the special null-evolution line is the only null-

evolution line, which has finite ζ at all values of µ (bigger than ΛQCD). These properties

follow from its definition and they are very useful. In figure 2 we show the force-lines of the

evolution field E (in grey, with arrows), null-evolution lines, (thick grey lines, orthogonal

to the force-lines), and the lines that cross at the saddle point (in red) at different values

of b. In this figure the special line is the one that goes from left to right in each panel.

The concept of ζ prescription has been introduced in ref. [19] and elaborated in [11].

Presently we use a form slightly different from the original version of refs. [11, 19]. Here we

follow the updated realization introduced in ref. [21] that has been used for the description

of the pion-induced DY process. In refs. [19, 20] the ζ-lines has been taken perturbative

for all ranges of b (with slight deformations due to the Landau pole). Notwithstanding,

such definition introduces an undesired correlation between the non-perturbative parts of

the TMD distribution and RAD. In ref. [21] a new simple solution has been found for the

values of special null-evolution line at large b that accurately incorporates non-perturbative

effects, without adding new parameters to the fit. In appendix C we present the expression

for the special line as it is used in this fit.

A TMD distribution F (x, b;µ, ζµ) with ζµ belonging to the special line is called opti-

mal TMD distribution, and denoted by F (x, b) (without scale arguments), to emphasize

its uniqueness and independence on scale µ. The exact independence of optimal TMD

distribution on scale µ, allows us to select the simplest path for the evolution exponent in

eq. (2.67), that is, the path at fixed value of µ = Q along ζ from the value ζf = Q2 down
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Figure 2. In the (ζ, µ) plane we show the force-lines of the TMD evolution field E at different values

of b (in grey, with arrows). The thick continuous gray lines are null-evolution (equipotential) lines.

Red lines are the equipotential lines that define the saddle point. The red line which crosses each

panel from left to right is the special evolution curve where the TMD are defined. The blue dashed

lines in each plot correspond to the final scale choice (µf , ζf ) for typical experimental measurements.

The black points indicate the initial evolution scales for Q = 5, 91 and 150 GeV cases. Black dashed

lines with arrows are paths of evolution implemented in eq. (2.73).

to any point of ζi = ζQ(b). In figure 2 this path is visualized by black-dashed lines. The

resulting expression for the evolved TMD distributions is exceptionally simple

F (x, b;Q,Q2) =

(
Q2

ζQ(b)

)−D(b,Q)

F (x, b). (2.73)

We recall that this expression is same for all (quark) TMDPDFs and TMDFF. Substitut-

ing (2.73) into the definition of structure functions W we obtain,

W f
f1f1

(Q, qT ;x1, x2) = |CV (−Q2, Q2)|2 (2.74)

×
∫ ∞

0
db bJ0(bqT )f1,f←h(x1, b)f1,f̄←h(x2, b)

(
Q2

ζQ(b)

)−2D(b,Q)

,

W f
f1D1

(Q, qT ;xS , zS) = |CV (Q2, Q2)|2 (2.75)

×
∫ ∞

0
db bJ0(bqT )f1,f←h(xS , b)D1,f→h(zS , b)

(
Q2

ζQ(b)

)−2D(b,Q)

.

These are the final expressions used to extract the NP functions.

The simplicity of expressions (2.74), (2.75) is also accompanied by a good convergence

of the cross section. In figure 3 we show the comparison of curves for DY and SIDIS

cross-section at typical energies. In the plot the TMD distributions and the NP part of

the evolution are held fixed while the perturbative orders are changed. The perturbative

series converges very well, and the difference between NNLO and N3LO factorization is of

order of percents. This is an additional positive aspect of the ζ-prescription, which is due

to fact that all perturbative series are evaluated at µ = Q.
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Figure 3. The cross-section at different orders of TMD factorization and for different boson

energies. The legend of the perturbative orders means that NkLO (NkLL) incorporates aks -order

(ak−1
s -order) of the coefficient function, aks -order of anomalous dimensions with ak+1

s -order of Γcusp.

The TMD distributions and the NP part of the evolution are the same for all cases.

2.4.1 Matching of TMD distribution to collinear distributions

The TMD are generic non-perturbative functions that depend on the parton fraction x

and the impact parameter b. A fit of a two-variable function is a hopeless task due to the

enormous parametric freedom. This freedom can be essentially reduced by the matching

of a b→ 0 boundary of a TMD distribution to the corresponding collinear distribution. In

the asymptotic limit of small-b one has

lim
b→0

f1,f←h(x, b) =
∑
f ′

∫ 1

x

dy

y
Cf←f ′

(
x

y
,LµOPE , as(µOPE)

)
f1,f ′←h(y, µOPE), (2.76)

lim
b→0

D1,f→h(z, b) =
∑
f ′

∫ 1

z

dy

y
Cf→f ′

(
z

y
,LµOPE , as(µOPE)

)
d1,f ′→h(y, µOPE)

y2
, (2.77)

where f1(x, µ) and d1(x, µ) are collinear PDF and FF, the label f ′ runs over all active

quarks, anti-quarks and a gluon, and

Lµ = ln

(
b2µ2

4 exp−2γE

)
, as(µ) =

g2(µ)

(4π)2
, (2.78)

with γE being the Euler constant and g being QCD coupling constant. The extra factor

y−2 in eq. (2.77) is present due to the normalization difference of the TMD operator in

eq. (2.21) and the collinear operator, see e.g. [5, 25]. The coefficient functions C and

C can be calculated with operator product expansion methods (for a general review see

ref. [59]) and in the case of unpolarized distributions the coefficient functions are known

up to NNLO [23, 25, 26, 29]. The coefficient function C has the general form

Cf←f ′(x,Lµ, as) = δ(x̄)δff ′ + as(µ)
(
−LµP

(1)
f←f ′ + C

(1,0)
f←f ′

)
(2.79)

+a2
s(µ)

[
P

(1)
f←k ⊗ P

(1)
k←f ′ − β0P

(1)
f←f ′

2
L2
µ

−Lµ

(
P

(2)
f←f ′ + C

(1,0)
f←k ⊗ P

(1)
k←f ′ − β0C

(1,0)
f←k

)
+C

(2,0)
f←f ′ +

d(2,0)γ1

Γ0
δ(x̄)δff ′

]
+O(a3

s),
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where x̄ = 1 − x, the symbol ⊗ denotes the Mellin convolution, and a summation over

the intermediate flavour index k is implied. In eq. (2.79) we have omitted argument x of

functions on left-hand-side for brevity. The functions P (n)(x) are the coefficients of the

PDF evolution kernel P (x) =
∑

n a
n
sP

(n)(x) (DGLAP kernel), which can be found f.i. in

ref. [60]. The functions C
(n,0)
f←f ′(x) are given in [23, 25, 26, 29]. In particular, the NLO

terms are

C(1,0)
q←q (x) = CF

(
2x̄− δ(x̄)

π2

6

)
, C(1,0)

q←g (x) = 2xx̄. (2.80)

The last term in the square brackets of eq. (2.79) is the consequence of the boundary

condition of eq. (2.72), and it consists of some coefficients of the anomalous dimension

defined in eq. (B.2), (C.8).

In the case of TMDFF the matching coefficient C follows the same pattern as in

eq. (2.79) with the replacement of the PDF DGLAP kernels P
(n)
f←f ′(x) by the FF DGLAP

kernels P
(n)
f←f ′(z) (they can be found f.i. in ref. [61]), and C

(n,0)
f←f ′(x) by C(n,0)

f→f ′(z) [25, 26].

In TMDFF case, the NLO terms are

C(1,0)
q→q (z) =

CF
z2

(
2z̄ +

4(1 + z2) ln z

1− z
− δ(z̄)

π2

6

)
,

C(1,0)
q→g (z) =

2CF
z2

(
z + 2(1− z̄2)

ln z

z

)
. (2.81)

As a consequence of the ζ-prescription the scale of operator product expansion µOPE is

independent on external parameters. In particular, it has no connection to the scales of

the TMD evolution, as it happens f.i. in the case of b∗-prescription [5, 42]. In other words,

in the ζ-prescription, the scale µOPE is entirely encapsulated inside the convolutions in

eq. (2.76), (2.77). This fact gives an enormous advantage to achieve a complete decorre-

lation of RAD from TMD distributions (we will be more quantitative about this point in

later sections). The optimal TMD distributions as any scale-less observables, are formally,

independent on the value of µOPE given the good convergence of perturbative series. So,

the scale µOPE has to be selected such that on one hand, it minimizes the logarithm con-

tributions at b→ 0, and on another hand, it does not hit the Landau pole at large-b. For

TMDPDF, we use the following value

µPDF
OPE =

2e−γE

b
+ 2GeV, (2.82)

whereas for TMDFF we use

µFF
OPE =

2e−γEz

b
+ 2GeV. (2.83)

The extra factor z in (2.83) effectively compensates ln z terms in the matching coefficient,

and in this way improve the convergence of the series (e.g. it completely neglects ln z

terms in NLO expressions (2.81)). The choice of the large-b offset of µOPE as 2 GeV is

arbitrary, with the only motivation that it is a typical reference scale for PDFs (and lattice
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calculations). In the ζ-prescription, this scale is intrinsic to the model of TMD distribution,

and thus, any modifications in it would be absorbed by NP parameters discussed in the

next section.

Let us note that in the ζ-prescription, the coefficient functions of small-b matching in

eq. (2.79) do not contain a double-logarithm contribution. For that reason the perturbative

convergence, as well as the radius of convergence improves. Both these facts make the ζ-

prescription highly advantageous.

2.4.2 Ansatzes for NP functions

In this work we deal with three independent non-perturbative functions in total. These are

the unpolarized (optimal) TMDPDF, f1(x, b), the unpolarized (optimal) TMDFF, D1(x, b),

and the RAD, D(b, µ). The amount of perturbative and non-perturbative contributions to

each function depends on the value of the impact parameter b. Namely, at small values

of b the perturbative approximation is good and the TMD distributions can be matched

onto collinear functions as in eq. (2.76), (2.77). In the case of the RAD the small-b limit is

given in appendix B. The small-b perturbative expressions gains power corrections in even

powers b2n [62]. Therefore, with the increase of b the perturbative approximation becomes

less and less correct, and must be replaced by some generic function.

The phenomenological ansatzes for TMD distributions that satisfy this picture, can be

written as following:

f1,f←h(x, b) =

∫ 1

x

dy

y

∑
f ′

Cf←f ′ (y,LµOPE , as(µOPE)) f1,f ′←h

(
x

y
, µOPE

)
fNP(x, b), (2.84)

D1,f→h(z, b) =
1

z2

∫ 1

z

dy

y

∑
f ′

y2Cf→f ′ (y,LµOPE , as(µOPE)) d1,f ′→h

(
z

y
, µOPE

)
DNP(z, b),

(2.85)

where functions fNP and DNP are non-perturbative functions. Note, that in our ansatz

we do not modify the value of b within the coefficient function. Therefore, at large-b the

logarithm part of the coefficient function grows unrestrictedly. This growth is suppressed

by the non-perturbative functions.

Generally, the functions fNP and DNP depend also on parton flavor f and hadron type

h. However, in the present work we use the approximation that fNP and DNP are flavor

and hadron-type independent. All hadron- and flavor dependence is driven by the collinear

PDFs and FFs (see also section 4.1). Given such an ansatz the only requirement for NP

functions is that they are even-functions of b that turn to unity for b→ 0 (see ref. [62] for

an analysis of these processes using renormalons). We use the following parameterizations

fNP (x, b) = exp

(
−λ1(1− x) + λ2x+ x(1− x)λ5√

1 + λ3xλ4b2
b2

)
, (2.86)

DNP (x, b) = exp

(
−η1z + η2(1− z)√

1 + η3(b/z)2

b2

z2

)(
1 + η4

b2

z2

)
, (2.87)
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and we extract λi and ηi from our fit. The functional form of fNP has been already used

in [20]. It has five free parameters which grant a sufficient flexibility in x-space as needed

for the description of the precise LHC data. The form of DNP has been suggested in [18]

(albeit there are more parameters in [18]). In both cases the function has exponential or

Gaussian form depending on the relative size of λ1,2,5/λ3, and η1,2/η3. There are natural

restrictions on the parameter space λ1,2,3 > 0, η1,2,3 > 0, λ5 & −2(λ1 + λ2), due to the

request that TMD distribution is null for b→∞.

We use the following ansatz for the NP RAD,

D(µ, b) = Dresum(µ, b∗(b)) + c0bb
∗(b), (2.88)

where

b∗(b) =
b√

1 + b2/B2
NP

. (2.89)

The the term c0bb
∗(b) dictates the large-b behavior of the RAD and its form is suggested

in [20]. At large-b the NP expression for RAD is linear in b, D ∼ c0BNPb. The linear

behavior is suggested by model calculations of the RAD [63, 64]. Generally, the asymptotic

behavior of RAD could vary from constant to linear [64–66].

The function Dresum is the resummed perturbative expansion of RAD [11, 58] reported

in the appendix B. At LO it reads

DLO
resum = − Γ0

2β0
ln (1− β0as(µ)Lµ) . (2.90)

The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0

and BNP are free positive parameters, in principle totally uncorrelated from the rest of

non-perturbative parameters.

The resummed expression for RAD shows explicitly a singularity in b (see e.g.

eq. (2.90)). The singularity designates the convergence radius of the perturbative expres-

sion. Consequently, the perturbative behavior must be turned off well before b approaches

the singularity. In the ansatz in eq. (2.88), this is achieved freezing the perturbative part

at b ∼ BNP. The singularity is located at β0as(µ)Lµ = 1 and thus, the value of BNP is

restricted from above by: BNP . 2e−γEΛ−1
QCD ≈ 4GeV−1.

The special null-evolution line can be incorporated both at perturbative and non-

perturbative level. In [19] and [20] the special null-evolution line included only its per-

turbative part for simplicity. This part is the most important one because it guarantees

the cancellation of double-logarithms in the matching coefficient. However, at large-b, the

non-perturbative corrections to the RAD are large and cannot be ignored: in [19] they

can be seen as a part of the non-perturbative model, at the price of introducing an unde-

sired correlation between fNP and D. In order to adjust the null-evolution curve with a

non-perturbative RAD one has to solve eq. (2.71) including the RAD in the full generality.

Such solution can be found in principle, but its numerical implementation is problematic

at very small-b, because it is very difficult to obtain the exact numerical cancellation of
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Evolution Acronym in CV Γcusp γV Dresum ζpertµ ζexactµ C, C
+matching present work

NNLO+NNLO NNLO α2
s α3

s (Γ2) α2
s (γ2) α2

s (d2) α1
s (v1) α1

s (g2) α2
s

N3LO+NNLO N3LO α3
s α4

s (Γ3) α3
s (γ3) α3

s (d3) α2
s (v2) α2

s (g3) α2
s

Table 1. Summary of the perturbative orders used for each part of the factorized cross sec-

tion. The evolution of αs is provided by the LHAPDF library and comes together with PDF

set (uniformly nnlo). In brackets we write the last included term of corresponding perturbative

expansion (B.4), (B.5), (C.4), (C.8), (C.12).

the perturbative series of logarithms with an exact solution. To by-pass this problem we

use the perturbative solution at very small b, (and hence cancel all logarithm exactly) and

turn it to an exact solution at larger b. This is realized by

ζµ(b) = ζpert
µ (b)e

− b2

B2
NP + ζexact

µ (b)

(
1− e

− b2

B2
NP

)
, (2.91)

that is, for b2 � B2
NP we have the perturbative solution, and one turns to the exact for

larger b. Since the RAD is entirely perturbative at small-b, the numerical difference between

eq. (2.91) and ζexact
µ (b) is negligibly small.

2.5 Summary on theory input

The structure functions Wf1D1 and Wf1f1 are evaluated according to eq. (2.74), (2.75).

The phenomenological ansatzes for the optimal unpolarized TMDPDF and TMDFF are

defined in eq. (2.84), (2.85), (2.86), (2.87). At small-b TMD distributions are matched to

corresponding collinear distributions. The phenomenological ansatz for the RAD is given in

eq. (2.88). In table 1 we list the perturbative orders used in each factor of the cross section.

The N3LO perturbative composition used here is equivalent to the one used in [39, 40] on

the resummation side. A total of 11 phenomenological parameters are determined by

the fit procedure. Two of these parameters describe the RAD, 5 are for the unpolarized

TMDPDF, and 4 are for the unpolarized TMDFF. Additionally, TMDPDFs and TMDFF

depend on collinear distributions. Thus collinear distributions can be seen as parameters

of our model that we take from others fits. We have found that the quality of fit highly

depends on the choice of collinear distributions (we can address this fact as the “PDF-bias”

problem). The study of this issue is in section 5.1, 6.1.

3 Data overview

In the present work, we consider the extraction of unpolarized TMD in DY and SIDIS data,

extending so the analysis of ref. [20] and including the theoretical improvements described

in the previous sections. The selection of data is crucial for a proper TMD extraction,

because of the limits imposed by the factorization theorem. These constraints are here

discussed for both type of reactions.
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Experiment Reaction ref. Kinematics
Npt

after cuts

HERMES

p→ π+

[67]

0.023 < x < 0.6 (6 bins)

0.2 < z < 0.8 (6 bins)

1.0 < Q <
√

20 GeV

W 2 > 10GeV2

0.1 < y < 0.85

24

p→ π− 24

p→ K+ 24

p→ K− 24

D → π+ 24

D → π− 24

D → K+ 24

D → K− 24

COMPASS
d→ h+

[68]
0.003 < x < 0.4 (8 bins)

0.2 < z < 0.8 (4 bins)

1.0 < Q ' 9 GeV (5 bins)

195

d→ h− 195

Total 582

Table 2. Summary of the SIDIS data included in the fit. For each data set we report reference,

reaction, kinematic region, and number of points that are left after the application of consistency

cuts in eq. (3.1), (3.2).

3.1 SIDIS data

In the current literature, one can find several measurements of the unpolarized SIDIS [67–

72] and a total of some thousands of data points. We restrict our attention only to those

data whose kinematical features are compatible with the energy scaling of TMD factor-

ization theorem. The first constraint comes from the di-lepton invariant mass (Q) and in

general from the energy scale of the processes. Most of SIDIS reactions have been measured

at fixed target experiments, that are typically run at low energies. Unfortunately much of

these data do not accomplish the QCD factorization request of a high Q to separate field

modes. To secure our analysis (but still leave some data) we have used a restriction on the

average Q of a data point, namely

〈Q〉 ≥ 2GeV. (3.1)

Here, 〈Q〉 is the value of Q averaged over the multiplicity value in a bin, see figure 4. The

restriction in eq. (3.1) quite reduces the pool of data. In particular, eq. (3.1) completely

discards the JLAB measurement published in [71], and cuts out the most part of HERMES

data in ref. [67].

The second constraint comes from the TMD factorization assumptions. Namely, the

TMD factorization regime is fully consistent only for low values of qT /Q and receives

quadratic power corrections of order (qT /Q)2, see eq. (2.24) and eq. (2.31). We consider

data such that

δ ≡ 〈qT 〉
〈Q〉

< 0.25, (3.2)

where the value 0.25 was deduced in [19]. From the qT interval of eq. (3.2), one can expect

a ∼ 4− 6% influence of the power corrections, which is well inside the uncertainties of the
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Figure 4. Illustration for bin shapes in HERMES kinematics. Three bins are shown (0.12 < x <

0.2, 0.2 < x < 0.35, 0.35 < x < 0.6). Solid lines are boundaries of the fiducial region. Color

density demonstrates the distribution of multiplicity value within a bin. Crosses show the averaged

(x,Q) over multiplicities in a bin. The bin 0.12 < x < 0.2 is not included in the fit since it has

〈Q〉 < 2GeV.

data. In section 6.3, we have tested cutting the condition in eq. (3.2) considering the data

at different δ, and found eq. (3.2) sufficient.

It should not pass unobserved that eq. (3.2) is written in terms of q2
T , that is the

natural variable of TMD factorization approach, whereas the data are presented in terms

of p2
⊥. These variables are related by q2

T ' p2
⊥/z

2, see eq. (2.13). Thus, the cut in eq. (3.2)

puts also a restriction on z. Altogether it makes the allowed values of p2
⊥ even smaller,

p⊥ . 0.25zQ. In particular, we have to completely discard the measurements of H1 and

ZEUS collaborations [69, 70] that are made at very small values of z, despite the relatively

high values of Q.

After the application of eq. (3.1), (3.2) we are left with the data taken by HERMES

and COMPASS2 collaborations [67, 68]. For HERMES we have selected the zxpt-3D-

binning set due to the finer bins in pT . The COMPASS data includes the subtraction of

vector-boson channel, and thus we also select the subtracted HERMES data (.vmsub set).

In total we have 582 points that cover the region of 1.5 ' Q ' 9 GeV, 10−2 ' x < 0.6,

0.2 < z < 0.8. The summary of the considered data is reported in table 2.

3.2 DY data

The DY data are selected following the same principles as the SIDIS data, eq. (3.2) (the

rule (3.1) makes no sense now, because DY processes are measured at sufficiently high-

energies) with only small modifications. The changes consist in cutting some extra higher-

qT data points for several specific data sets (this concerns mainly ATLAS measurements

of Z-boson production). The reason for it is that the estimated size of power corrections

at qT /Q ∼ 0.25 is of order of 5%, however, some highly precise data are measured with

much better accuracy. So, given a data point p± σ, with p being the central value and σ

2We do not consider the data from [72] since they have large systematic errors, and fully replaced by [68].
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Experiment ref.
√
s [GeV] Q [GeV] y/xF

fiducial

region

Npt

after cuts

E288 (200) [73] 19.4
4–9 in

1 GeV bins∗
0.1 < xF < 0.7 — 43

E288 (300) [73] 23.8
4–12 in

1 GeV bins∗
−0.09 < xF < 0.51 — 53

E288 (400) [73] 27.4
5–14 in

1 GeV bins∗
−0.27 < xF < 0.33 — 76

E605 [74] 38.8
7–18 in

5 bins∗
−0.1 < xF < 0.2 — 53

E772 [75] 38.8
5–15 in

8 bins∗
0.1 < xF < 0.3 — 35

PHENIX [76] 200 4.8–8.2 1.2 < y < 2.2 — 3

CDF (run1) [77] 1800 66–116 — — 33

CDF (run2) [78] 1960 66–116 — – 39

D0 (run1) [79] 1800 75–105 — — 16

D0 (run2) [80] 1960 70–110 — — 8

D0 (run2)µ [81] 1960 65–115 |y| < 1.7
pT > 15 GeV

|η| < 1.7
3

ATLAS (7 TeV) [47] 7000 66–116

|y| < 1

1 < |y| < 2

2 < |y| < 2.4

pT > 20 GeV

|η| < 2.4
15

ATLAS (8 TeV) [48] 8000 66–116
|y| < 2.4

in 6 bins

pT > 20 GeV

|η| < 2.4
30

ATLAS (8 TeV) [48] 8000 46–66 |y| < 2.4
pT > 20 GeV

|η| < 2.4
3

ATLAS (8 TeV) [48] 8000 116–150 |y| < 2.4
pT > 20 GeV

|η| < 2.4
7

CMS (7 TeV) [49] 7000 60–120 |y| < 2.1
pT > 20 GeV

|η| < 2.1
8

CMS (8 TeV) [50] 8000 60–120 |y| < 2.1
pT > 20 GeV

|η| < 2.1
8

LHCb (7 TeV) [82] 7000 60–120 2 < y < 4.5
pT > 20 GeV

2 < η < 4.5
8

LHCb (8 TeV) [83] 8000 60–120 2 < y < 4.5
pT > 20 GeV

2 < η < 4.5
7

LHCb (13 TeV) [84] 13000 60–120 2 < y < 4.5
pT > 20 GeV

2 < η < 4.5
9

Total 457

∗: Bins with 9 . Q . 11 are omitted due to the Υ resonance.

Table 3. Summary table for the data included in the fit.. For each data set we report: the reference

publication, the centre-of-mass energy, the coverage in Q and y or xF , possible cuts on the fiducial

region, and the number of data points that survive the cut in eq. (3.3).
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its uncorrelated relative uncertainty, corresponding to some values of qT and Q, we include

it in the fit only if

δ ≡ 〈qT 〉
〈Q〉

< 0.1, or δ < 0.25 if δ2 < σ. (3.3)

In other words, if the (uncorrelated) experimental uncertainty of a given data point is

smaller than the theoretical uncertainty associated to the expected size of power corrections,

we drop this point from the fit. This is the origin of the second condition in eq. (3.3).

The resulting data set contains 457 data points, and spans a wide range in energy,

from Q = 4 GeV to Q = 150 GeV, and in x, from x ∼ 0.5 · 10−4 to x ∼ 1. Table 3 reports

a summary of the full data set included in our fit. This selection of the data is the same

as the one considered in our earlier work [20]. In the current fit, we compare the absolute

values of the cross-section, whenever they are available. The only data set that require

normalization factors are all CMS data, ATLAS at 7 TeV, and D0 run2 measurements. For

these sets we have normalized the integral of the theory prediction to the corresponding

integral over the data (see explicit expression in ref. [19]).

3.3 Summary of the data set

In total for the extraction of unpolarized TMD distribution we analyze 1039 data points

that are almost equally distributes between SIDIS (582 points) and DY (457 points) pro-

cesses. All these points contribute to the determination of the TMD evolution kernel D
and unpolarized TMDPDF f1. The determination of unpolarized TMDFF is based only on

SIDIS data. In addition, we recall that a single DY data point is simultaneously sensitive

to a larger and a smaller value of x. This is because the cross section is given by a pair of

TMDPDFs, eq. (2.51), computed at x1 and x2 such that x1x2 ' Q2/s. So, the statistical

weight of a DY point in the determination of TMDPDF is effectively doubled.

The kinematic region in x and Q covered by the data set and thus contributing to the

determination of TMDPDF is shown in figure 5. The boxes enclose the sub-regions covered

by the single data sets. Looking at figure 5, it is possible to distinguish two main clusters

of data: the “low-energy experiments”, i.e. E288, E605, E772, PHENIX, COMPASS and

HERMES that place themselves at invariant-mass energies between 1 and 18 GeV, and

the “high-energy experiments”, i.e. all those from Tevatron and LHC, that are instead

distributed around the Z-peak region. From this plot we observe that, kinematic ranges of

SIDIS and DY data do not overlap.

As a final comment of this section let us mention that our data selection is partic-

ularly conservative because it drops points that could potentially be described by TMD

factorization (see e.g. ref. [18] where a less conservative choice of cuts is used). However,

our fitted data set guarantees that we operate well within the range of validity of TMD

factorization. In section 7 we show that unexpectedly our extraction can describe a larger

set of data as well.

4 Fit procedure

The experimental data are usually provided in a form specific for each setup. In order to ex-

tract valuable information for the TMD extraction, one has to detail the methodology that
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Total:

457 DY points
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Figure 5. Density of data in the plane (Q, x) (a darker color corresponds to a higher density).

has been followed, and this is the purpose of this section. Finally, we also provide a suitable

definition of the χ2 that allows for a correct exploitation of experimental uncertainties.

4.1 Treatment of nuclear targets and charged hadrons

The data from E288, E605 (Cu), E772, COMPASS, part of HERMES (isoscalar targets)

come from nuclear target processes. In these cases, we perform the iso-spin rotation of the

corresponding TMDPDF that simulates the nuclear-target effects. For example, we replace

u-, and d-quark distributions by

f1,u←A(x, b) =
Z

A
f1,u←p(x, b) +

A− Z
A

f1,d←p(x, b), (4.1)

f1,d←A(x, b) =
Z

A
f1,d←p(x, b) +

A− Z
A

f1,u←p(x, b), (4.2)

where A(Z) is atomic number(charge) of a nuclear target. In principle, for E288, E605 data

extracted from very heavy targets one should also incorporate the nuclear modification

factor that depends on x. In the given kinematics the nuclear modification factor produces

effects of order 5-10% in the normalization of the cross-section. The shape of cross-section

is changed in much smaller amount, about 1% in a point, as it is shown in f.i. [21, 85].

Simultaneously, the systematic (correlated) errors of these experiments are large 25% and

20%, correspondingly, as well as the uncorrelated error (typically 2-5%). Therefore, we are

not sensitive to nuclear modification effect.

The measurements of SIDIS are made in a number of different channels. The HER-

MES data include π± and K±, and COMPASS data are for charged hadrons, h±. Pions

and kaons are described by an individual TMDFFs. However, charged hadrons are a com-
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position of different TMDFFs. According eq. (2.21) the TMDFF for charged hadrons is a

direct sum of TMDFFs for individual hadrons:

D1,f→h±(x, b) =
∑
h∈h±

D1,f→h(x, b) = D1,f→π±(x, b) +D1,f→K±(x, b) + . . . , (4.3)

where dots denote the higher-mass hadron states. At COMPASS energies, this sum is

dominated by the pion (65 − 75%), and the kaon (15 − 20%) contributions. The residual

term is lead by proton/antiproton contribution (2−5%). The contribution of other particles

is smaller (for discussion and references see [86, 87]). Thus, in our study we use the first

two terms of eq. (4.3) to simulate the charged hadron fragmentation.

The SIDIS measurements in refs. [67, 68] are given in form of multiplicities. The SIDIS

multiplicity is defined as

dMh(x,Q2, z,p2
⊥)

dzdp2
⊥

=

(
dσ

dxdzdQ2dp2
⊥

)/( dσDIS

dxdQ2

)
, (4.4)

where dσDIS is the differential cross-section for DIS. It reads

dσDIS

dxdQ2
=

4πα2
em

xQ4

[(
1− y − y2γ2

4

)
F2(x,Q2) + xy2F1(x,Q2)

]
, (4.5)

where F1 and F2 are DIS structure functions. The DIS cross-section cannot be computed

starting from TMD factorization, but it is described by the collinear factorization theorem.

In order to evaluate the multiplicity we have pre-computed the DIS cross-section (inte-

grated over the given bin) by the APFEL-library [88], and then divided the TMD prediction

according to eq. (4.4).

4.2 Bin integration in SIDIS and DY

The majority of SIDIS data is measured at relatively low-Q and in large bins. The

cross-section value changes greatly within a bin, and so, binning effects are known to be

strong. For a measured cross-section dσ/dxdzdQ2dp2
⊥, a bin is specified by {xmin, xmax},

{zmin, zmax}, {Qmin, Qmax} and {pmin,pmax}. The binning constraints impose certain cuts

on the measured phase space. Typically, these cuts are given as intervals of the variable y

and of the invariant mass of photon-target system W 2 = (P + q)2, which belong to ranges

{ymin, ymax} and {W 2
min,W

2
max}. Both these variables are connected to x and Q2,

W 2 = M2 +Q2 1− x
x

, y =
Q2

x(s−M2)
. (4.6)

where s is the Mandelshtam variable s = (P + l)2. So, in the presence of fiducial cuts in

SIDIS the bin boundaries are

x̂min(Q) = max

{
xmin,

Q2

ymax(s−M2)
,

Q2

Q2 +W 2
max −M2

}
, (4.7)

x̂max(Q) = min

{
xmax,

Q2

ymin(s−M2)
,

Q2

Q2 +W 2
min −M2

}
, (4.8)

Q̂2
min = max

{
Q2

min, xminymin(s−M2),
xmin

1− xmin
(W 2

min −M2)

}
, (4.9)

Q̂2
max = min

{
Q2

max, xmaxymax(s−M2),
xmax

1− xmax
(W 2

max −M2)

}
. (4.10)
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An example of effects of cuts in the bins is shown in figure 4. In the case of multiplicity

measurements the bin effects are taken into account with the cross-section

dMh(x,Q2, z,p2
⊥)

dzdp2
⊥

∣∣∣∣∣
bin

= (zmax − zmin)−1(p2
max − p2

min)−1 (4.11)

×
∫ pmax

pmin

2p⊥dp⊥

∫ zmax

zmin

dz

∫ Q̂max

Q̂min

2QdQ

×
∫ x̂max(Q)

x̂min(Q)
dx

dσ

dxdzdQ2dp2
⊥

/∫ Q̂max

Q̂min

2QdQ

∫ x̂max(Q)

x̂min(Q)
dx

dσDIS

dxdQ2
,

where the expression in the first line is the volume of (z,p2
⊥)-bin.

In the case of DY the binning effects are also extremely important. The difference

in the value of the cross section between center-of-bin and the averaged/integrated value

can reach tenth of percents, especially, for very low-energy bins (where the change in Q is

rapid), and for very wide bins (such as Z-boson measurement). We have used the definition

dσ

dQ2dyq2
T

∣∣∣
bin

= (Q2
max −Q2

min)−1(q2
max − q2

min)−1(ymax − ymin)−1 (4.12)

×
∫ qmax

qmin

2qTdqT

∫ Qmax

Qmin

2QdQ

∫ ymax

ymin

dy
dσ

dQ2dyq2
T

.

4.3 Definition of χ2-test function and estimation of uncertainties

To test the theory prediction against the experimental measurement we compute the χ2-test

function

χ2 =

n∑
i,j=1

(mi − ti)V −1
ij (mj − tj) , (4.13)

where mi is the central value of i’th measurement, ti is the theory prediction for this

measurement and Vij is the covariance matrix. An accurate definition of the covariance

matrix is essential for a correct exploitation of experimental uncertainties. In order to

build the covariance matrix we distinguish, uncorrelated and correlated uncertainties. For

example, a typical data point has the structure

mi ± σi,stat ± σi,unc ± σ(1)
i,corr ± · · · ± σ

(k)
i,corr, (4.14)

where mi the reported central value, σi,stat is (uncorrelated) statistical uncertainty, σi,unc

is uncorrelated systematic uncertainty, and σ
(k)
i,corr are correlated systematic uncertainties.

Uncorrelated uncertainties give an estimate of the degree of knowledge of a particular

data point irrespective of the other measurements of the data set. Instead, correlated

uncertainties provide an estimate of the correlation between the statistical fluctuations

of two separate data points of the same data set. With this information at hand, one

can construct the covariance matrix Vij as follows (for more detailed discussion on this

definition see refs. [89, 90]):

Vij =
(
σ2
i,stat + σ2

i,unc

)
δij +

k∑
l=1

σ
(l)
i,corrσ

(l)
j,corr. (4.15)
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Equipped with this definition of covariance matrix the χ2-test in eq. (4.13) takes into

account the nature of the experimental uncertainties leading to a faithful estimate of the

agreement between data and theoretical predictions.

To estimate the error propagation from the experimental data to the extracted values

of TMD distributions we have used the replica method. This method is described in details

in ref. [89]. It consists in the generation of N replicas of pseudo-data, and the minimization

of the χ2 on each replica. The resulting set of N vectors of NP parameters is distributed

in accordance to the distribution law of the data. And thus, it represents a Monte Carlo

sample that is used to evaluate mean values, standard deviation and correlations of the

NP parameters. For the estimation of error propagation we consider N = 100 replicas.

The procedure of χ2-minimization for each replica is the most computationally heavy part

of the fit.

The proper treatment of correlated uncertainties is essential in global analysis. The

presence of sizable correlated uncertanties could result into a misleading visual disagree-

ment between theory prediction and the (central values of) data points. Namely, the theory

prediction for a data set could be globally shifted by significant amount, that is nonetheless

in agreement with correlated experimental uncertainty. To quantify the effects of correlated

shifts we use the nuisance parameter method presented in [89, 90]. Within the nuisance

parameter method one is able to determine the shift di of a theory prediction ti for the

i’th data point, such that t̄i = ti + di contributes only to the uncorrelated part of the

χ2-value. The value di is interpreted as a shift caused by the correlated uncertainties. It

is computed as

di =

k∑
l,m=1

σ
(l)
i,corrA

−1
lm ρm, (4.16)

where

Alm = δlm +

n∑
i=1

σ
(l)
i,corrσ

(m)
i,corr

σ2
i,stat + σ2

i,unc

, ρl =

n∑
i=1

mi − ti
σ2
i,stat + σ2

i,unc

σ
(l)
i,corr . (4.17)

It also instructive to check the average systematic shift, which we define as

〈d/σ〉 =
1

n

n∑
i=1

di
mi
. (4.18)

It shows a general deficit/excess of the theory with respect to the data for a given data set.

Let us note that the multiplicities in SIDIS are experimentally convenient because the

systematic uncertainties related to the measurement efficiency and the beam luminosity

cancel in the ratio. However, theoretically, the multiplicities are not so well defined, since

the denominator and the numerator of multiplicity ratio (4.4) need a completely different

theoretical treatment. In order to account this effect, we have computed the uncertainty

of theory prediction for DIS cross-section for each bin and added it as a fully correlated

error for each data set. We should admit that the theory uncertainty for DIS cross-section

is negligibly small (typically, 0.1 − 2.0%) in comparison to systematic uncertainties of

experiment. As a result the values of χ2 change very little on the level of ±10−2 per point.
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4.4 Artemide

The computation of the cross-section is made with the code artemide that is developed by

us. Artemide is organized as a package of Fortran 95 modules, each devoted to evaluation

of a single theory construct, such as the TMD evolution factor, a TMD distribution, or

their combinations such as structure functions W and cross-sections. The artemide also

evaluates all necessary procedures needed for the comparison with the experimental data,

such as bin-integration routines and cut factors. For simplicity of data analysis artemide

is equipped by a python interface, called harpy. The artemide package together with the

harpy is available in the repository [43, 44].

The module organization of artemide allows for flexible use. In particular, it gives to

a user a full access to non-perturbative ansatzes and models. Although artemide is based

on the ζ-prescription, it also includes other strategies for TMD evolution, such as CSS

evolution [42], γ-improved evolution [11] and their derivatives. The user has full control

on the perturbative orders, and can set each individual part to a particular (known) order.

Currently, artemide can evaluate unpolarized TMD distributions, and linearly polarized

gluon distributions together with the related cross-sections, such as DY, SIDIS, Higgs-

production (for application see [91]), etc. In future, we plan to include more processes and

distributions.

The evaluation of a single cross-section point that is to be compared with the ex-

perimental one, implies the evaluation of a number of integrals: two Mellin convolutions

for small-b matching eq. (2.84), (2.85), the Hankel-type integral for the structure function

W eq. (2.75), (2.74), and 3(in DY case)/4(in SIDIS case) bin-integrations. Note, that in

the ζ-prescription one does not need to evaluate integrations for TMD evolution, which

is its additional positive point. Altogether, it makes the evaluation of TMD cross-section

rather expensive in terms of computing time. Artemide uses adaptive integration rou-

tines to ensure the required computation accuracy. To speed-up the evaluation, artemide

precomputes the tables of Mellin convolutions for TMD distributions that are the most

time-consuming integrations. The code presently takes about 4.5 (3.2) minutes to evaluate

a single χ2 value for the full data set of DY and SIDIS given in section 3 on an average

8-core (12-core) processor (2.5GHz) depending on the NP-values. Therefore, the minimiza-

tion χ2 and especially the computation of error-propagation are especially long. Due to

that we are restricted in certain important directions of studies (e.g. error-propagation of

PDF sets, and flavour dependence).

5 Fit of DY

The data-set and the functional input for the DY fit is inherited from our earlier study [20].

The only modification is the update of the functional form of the special null-evolution

line in eq. (2.91), which in the present case matches the exact solution at large-b. This

update leads relatively minor formal changes, while some values of the model parameter are

changed as a result of the fit. The value of χ2 (per 457 points) is reduced from 1.174 [20]→
1.168 (this work). The main impact takes place at low-energies. In particular, the typical

deficit in the cross-section for low-energy experiments is reduced by 5-6% (compare table
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Short name Full name Ref. LHAPDF id.

NNPDF31 NNPDF31 nnlo as 0118 [92] 303600

HERA20 HERAPDF20 NNLO VAR [93] 61230

MMHT14 MMHT2014nnlo68cl [94] 25300

CT14 CT14nnlo [95] 13000

PDF4LHC PDF4LHC15 nnlo 100 [96] 91700

Table 4. List of collinear PDF used as the boundary for unpolarized TMDPDF.

3 in [20] with table 8), which however does not significantly affects the χ2 values due to

the large correlated uncertainties of fixed-target DY measurements.

In this section, we present the fit of DY data-set only. Since the general picture

is similar to ref. [20], we concentrate on the sources of systematic uncertainties of our

approach. We discuss the dependence on the collinear PDF, that serves as a boundary for

TMDPDF, and the effects of qT corrections in the definitions of x1,2.

5.1 Dependence on PDF

The collinear PDF is an important part of our model for TMDPDF, e.g. eq. (2.84). The

issue of PDF-bias of our result can be stated in the following terms. The small-b matching

essentially reduces the number of NP parameters for TMDPDF and guarantees the asymp-

totic agreement of the TMDPDF with the collinear observables. The small-b part of the

Hankel integral gives a sizable contribution to the cross-section, especially for qT ∼ 10-20

GeV. Therefore, the quality of our fit and the values of the extracted NP parameter are

robustly correlated with the collinear PDF set. This observation has been made earlier,

e.g. see discussion in [15, 18, 20], but it has not been systematically studied. Ideally, the

PDF set and TMDPDF are to be coherently extracted in a global fit of collinear and TMD

observables. Meanwhile, we treat the collinear inputs as independent parameters that we

cannot control and we test various sets available in the literature.

There is an enormous amount of available PDF sets. We have tested some of the

most popular sets that are recently extracted at NNLO accuracy, see table 4. All sets

have LHAPDF interface [97]. For each PDF set we have performed the full fit procedure

with the estimation of the error-propagation. In the fit, the central value of PDFs are

used, see section 5.3 for a discussion uncertainties induced by PDFs. The values of the

χ2/(Npt = 457) and the NP parameters are reported in table 5 for each PDF set in table 4.

The visual comparison of the parameter values is shown in figure 6 and 7. The parameters

of RAD (BNP and c0) are rather stable with respect to input PDF, and in agreement with

each other (note, that BNP and c0 are anti-correlated, see section 8.1).

Contrary to the RAD, the parameters λi show a significant dependence on the collinear

PDF (see figure 7). This fact is expected, since a different collinear PDF dictates a dif-

ferent shape in x, while the Q-dependence is not changed. The parameters λ1 and λ2

do not change significantly with different PDFs, while a bigger change is provided by the

parameters λ3,4,5. This is because the parameters λ1,2 dictate the main shape of fNP at
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1.931.38 2.48 4.092.39 5.79

Figure 6. Comparison of NP parameter for TMD evolution extracted in different fits. The values

above the red-dashed line are extracted in fit of DY data, see table 5. The values below the red-

dashed line are extracted in global fit of DY and SIDIS data, see table 9. The vertical dashed lines

and gray boxes correspond to average mean and standard deviation of the results of the global fit.

The blue points and their error-bars correspond to the estimation of the uncertainties from the

collinear PDF (see section 5.3). The input collinear distributions are marked in the right column.

0.211 0.269 0.328 9.26 13.9 18.5 404. 808. 1210. 2.131.6 2.67 -4.7-8.62 -0.783

Figure 7. Comparison of NP parameter for unpolarized TMDPDF extracted in different fits. The

values above the red-dashed line are extracted in fit of DY data, see table 5. The values below the

red-dashed line are extracted in global fit of DY and SIDIS data, see table 9. The vertical dashed

lines and gray boxes correspond to average mean and standard deviation of the results of the global

fit. The blue points and their error-bars correspond to the estimation of the uncertainties from the

collinear PDF (see section 5.3). The input collinear distributions are marked in the right column.

For CT14 and MMHT14 some NP parameters are beyond the plot region.

middle values of b, whereas other parameters are responsible for the large-b tale (λ3,4) or

fine-tuning of x-shape (λ5).

In table 5, fits are ordered according to the χ2/Npt value obtained in the DY fit.

The distribution of the values of χ2 between experiments changes for different PDFs. For

example, NNPDF31 demonstrates some tension between ATLAS and LHCb subsets (see

table 3 in ref. [20], and also table 8). In the case of HERA20 this tension reduces. The

value of χ2/Npt for ATLAS measurements is practically the same in both cases, we find

2.02NNPDF vs. 1.99HERA for Npt = 55 (note, that the bin-by-bin distribution of χ2 changes

between the sets). On contrary, the value of χ2/Npt for LHCb measurement undoubtedly

differ in the two sets of PDF, as we find 2.93NNPDF vs. 1.24HERA for Npt = 24. The main

part of the improvement happens due to the general normalization, that is lower by 3-5%

in NNPDF case, and almost exact in HERA case.
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PDF set χ2/Npt Parameters for D Parameters for f1

HERA20 0.97
BNP = 2.29± 0.43

c0 = (2.22± 0.93) · 10−2

λ1 = 0.324± 0.029

λ2 = 13.2± 2.9

λ3 = (3.56± 1.59) · 102

λ4 = 2.05± 0.26

λ5 = −10.4± 3.5

NNPDF31 1.14
BNP = 1.86± 0.30

c0 = (2.96± 1.04) · 10−2

λ1 = 0.253± 0.032

λ2 = 9.0± 3.0

λ3 = (3.47± 1.16) · 102

λ4 = 2.48± 0.15

λ5 = −5.7± 3.4

MMHT14 1.34
BNP = 1.55± 0.29

c0 = (4.70± 1.77) · 10−2

λ1 = 0.198± 0.040

λ2 = 26.4± 4.9

λ3 = (26.8± 13.2) · 103

λ4 = 3.01± 0.17

λ5 = −23.4± 5.4

PDF4LHC 1.53
BNP = 1.93± 0.47

c0 = (3.66± 2.09) · 10−2

λ1 = 0.218± 0.041

λ2 = 17.9± 4.5

λ3 = (9.26± 8.38) · 102

λ4 = 2.54± 0.17

λ5 = −15.5± 4.7

CT14 1.59
BNP = 2.35± 0.61

c0 = (2.27± 1.33) · 10−2

λ1 = 0.277± 0.029

λ2 = 24.9± 2.9

λ3 = (12.4± 3.2) · 103

λ4 = 2.67± 0.13

λ5 = −23.8± 2.9

HERA20(N3LO) 1.06
BNP = 1.94± 0.41

c0 = (3.35± 0.68) · 10−2

λ1 = 0.326± 0.024

λ2 = 10.1± 1.6

λ3 = (2.73± 0.91) · 102

λ4 = 1.70± 0.19

λ5 = −6.5± 2.4

NNPDF31(N3LO) 1.13
BNP = 1.62± 0.24

c0 = (3.42± 1.04) · 10−2

λ1 = 0.282± 0.017

λ2 = 9.7± 1.3

λ3 = (3.17± 0.83) · 102

λ4 = 2.42± 0.13

λ5 = −6.1± 1.6

Table 5. Values of χ2 and NP parameters obtained in the fit of DY set of the data with different

PDF inputs. Each set of PDF provide the corresponding value of αs(MZ).

The TMD distributions with NNPDF31 and HERA20 show a χ2 value better than

all the other, e.g. table 5. These PDFs have also less tension between high- and low-

energy data. For this reason, in the next sections we will consider only PDFs from these

extractions. Nonetheless, we preferably select NNPDF31 set in the global SIDIS and DY

analysis. The reason is that NNPDF31 distribution is extracted from the global pool of

data, whereas HERA20 uses exclusively data from HERA. At the same time, we must

admit that HERA20 distribution provides a spectacularly low values of χ2 in our global fit.

5.2 Impact of exact values for x1,2 and power corrections

As discussed in section 2.5, the factorization formula eq. (2.59) for DY contains three

types of power corrections. The corrections related to TMD factorization cannot be tested,

without extra modeling. The corrections due to fiducial cuts must be included without

restrictions. Thus it is possible to test only power corrections due to the presence of qT /Q

terms in the exact definition of x1,2, eq. (2.49). The amount of this correction is obtained

comparing the fits of the DY data with

(exact)x1,2 =

√
Q2 + q2

T

s
e±y vs. (approx.)x1,2 =

Q√
s
e±y.

The approximate values for x1,2 lead to higher values of χ2. In particular, with the ap-

proximate x1,2 for the NNPDF31 set we have obtained χ2/Npt = 1.35 and 1.27 at NNLO
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and N3LO respectively. In the case of HERA20 set, we obtain χ2/Npt = 1.03 and 1.13.

Comparing these values to the ones reported in table 5 (1.14 and 1.13; 0.95 and 0.06,

respectively), we conclude that the quality of fit is worse.

The deterioration of the fit quality takes place in both high- and low- energy parts of

the data. In the ATLAS experiment (that is the most precise set at our disposal, with

Npt = 55), we observe the changes in χ2/Npt: 1.82→ 2.83 for NNPDF31 and 1.90→ 2.27

for HERA20. For the fixed target experiments we have χ2/Npt: 0.91→ 1.31 for NNPDF31

and 0.71→ 0.97 for HERA30 (here Npt = 260). We have also observed that the value of χ2

worsens mainly due to the change in the shape of cross-section, whereas the normalization

part slightly reduces the χ2. The values NP parameters varies within the error-bands and

the change in the central values is not significant.

Therefore, we conclude that exact values of x1,2 (2.49) considerably improve the quality

of the fit. This conclusion is in agreement with the theory expectations presented in

section 2.5.

5.3 Uncertainties due to collinear PDFs

The model in eq. (2.84) is not sensitive to changes of the NP parameters at small-b. For

this reason, the error-band on the TMD distribution vanishes for b . 0.5GeV−1. The only

way to modify the TMD distribution in this region is to vary the values of collinear PDF.

In section 5.1 we have demonstrated that the quality of the fit, as well as the values of

extracted NP parameters, essentially depend on the collinear PDF and in our extraction we

have used the central values of PDF sets, ignoring the uncertainties of PDF determination.

These uncertainties are however large and could cover the gap among different TMD fits

if taken into account. Unfortunately, the incorporation of the PDF uncertainties into the

analysis is extremely demanding in terms of computer time, especially for the full data set.

In order to provide a quantitative estimate of the PDF-bias, in this section we consider only

the NNPDF31 data set with NNLO TMD evolution for the fit of DY data. We postpone

to future work a similar analysis for the other PDF sets.

Thus, we have performed a fit for each one of the 100 replicas of the NNPDF31 collinear

distributions. The minimization of the χ2 is done with a simplified procedure in order to

speed up the computation, because for many replicas the search of χ2-minimum took much

longer time in comparison to the central value minimization. It appears that the data

is very demanding on the collinear PDF input. So, for some (distant from the central)

replicas the fit does not converge (yielding χ2/Npt > 5) or produces extreme values of

NP parameters (e.g. BNP < 0.7GeV). The values of NP parameters that run into the

boundary of the allowed phase space region were discarded (almost 30% of total replicas).

The resulting distribution of NP parameters gives an estimate of the sensitivity for PDF

distribution. The NP parameters and their uncertainties that we have obtained are the

following

BNP = 1.7± 0.30, c0 = 0.297± 0.006, (5.1)

λ1 = 0.266± 0.066, λ2 = 10.6± 3.1, λ3 = 158.± 133.,

λ4 = 2.55± 0.91, λ5 = −7.12± 3.92.
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Figure 8. The size of the uncertainty bands for unpolarized TMDPDFs due to collinear PDF

uncertainty (red band) and due to experimental uncertainties (blue band), for d and s-quarks at

different values of x. Both bands are weighted to the TMPDF obtained with NNPDF31 collinear

distribution.

These values are compatible with the typical values for NP parameters presented in table 5,

see also figure 6 and figure 7.

In figure 8 we show the comparison of error-bands on the TMDPDF, obtained from

the error-propagation from the experiment to NP parameters (blue band), and from the

PDF uncertainty (red band), as described above. The main difference in these bands is

that the PDF-uncertainty band is sizable already at b = 0, and for larger b these bands

expand similarly. The PDF-uncertainty band is different for different flavors, and larger for

non-valence partons. The resulting estimation for the (predicted) cross-section is shown in

figure 9. For the high energy case, the uncertainty is of order of 1%, while at low energies

it reaches 20-40%.

The bands that we show here certainly do not accurately represent the uncertainties

of TMDPDF, since many of PDF replicas do not fit the data. It implies that the TMD

distributions can be used as a tool for the restriction of collinear PDFs together with the

standard collinear observables. At the current stage, we can only conclude that the uncer-

tainties of TMDPDF at small-b (that are out of control in the current model) are sizable.

For an accurate estimation of these errors one has to apply more sophisticated techniques,

such as reweighing of PDF values [98] by TMD extraction, or even joint fits of TMD

distributions and collinear distributions, which are beyond the scope of the present work.

6 Fit of SIDIS

In this section, we use the unpolarized TMDPDF and TMD evolution, extracted in the

fit of DY data, to fit the SIDIS data. The main aim is to test the universality of the

TMD evolution, and TMDPDF. Namely, the SIDIS data should be easily fitted adjusting

only the parameters of TMDFF. Indeed, we have found that the TMDFF in eq. (2.85)

(with a 4-parameter ansatz) together with the TMDPDF and D (extracted from DY data)

provide a very good description of the available SIDIS data. This is one of the main
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Figure 9. The size of the uncertainty bands for predicted cross-section due to collinear PDF

uncertainty (red band) and due to experimental uncertainties (blue band), at low and high-energies.

Both bands are weighted to the prediction obtained with NNPDF31 collinear distribution.

PDF & FF sets χ2/Npt Parameters for d1

HERA20 & DSS 0.76
η1 = 0.290± 0.014

η2 = 0.469± 0.016

η3 = 0.459± 0.027

η4 = 0.496± 0.027

HERA20 & JAM19 0.93
η1 = 0.164± 0.012

η2 = 0.286± 0.016

η3 = 0.223± 0.027

η4 = 0.341± 0.018

NNPDF31 & DSS 1.00
η1 = 0.257± 0.009

η2 = 0.480± 0.010

η3 = 0.455± 0.017

η4 = 0.540± 0.020

NNPDF31 & JAM19 1.65
η1 = 0.141± 0.012

η2 = 0.293± 0.017

η3 = 0.224± 0.028

η4 = 0.373± 0.018

HERA20 & DSS (N3LO) 0.88
η1 = 0.282± 0.010

η2 = 0.466± 0.012

η3 = 0.468± 0.021

η4 = 0.504± 0.025

NNPDF31 & DSS (N3LO) 1.31
η1 = 0.245± 0.011

η2 = 0.475± 0.011

η3 = 0.463± 0.020

η4 = 0.556± 0.019

Table 6. Values of χ2 and NP parameters obtained in the fit of SIDIS data with different FF

inputs. The TMD evolution parameters and TMDPDF parameters are fixed from the fit of DY

data (see table 5), and labeled by the PDF set. The visual presentation of this table is given in

figure 10.

results of the present work that demonstrates the complete universality of TMD factorization

functions. Another test of the TMD universality has been provided in [21], that is in the

fit of pion-induced DY, and it has been used in studies of the TMD distributions with

jets [99–101]. To our best knowledge, the test presented here is made for the first time,

because in the previous studies DY and SIDIS cases were considered or independently or

simultaneously [18]. Also we discuss the dependence on the collinear unpolarized FF, and

the impact of power corrections.

6.1 Dependence on FF

In contrast to collinear PDFs, there are not too many extraction of collinear FFs. We have

considered three sets of collinear FFs. Namely, DSS set3 (that is a composition of pion

3We are thankful to R. Sassot for providing us the actual grids for DSS FFs.
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0.246 0.296 0.345 0.477 0.552 0.627 0.475 0.57 0.665 0.497 0.58 0.662

Figure 10. Comparison of NP parameter for unpolarized TMDFF extracted in different fits. The

values above the red-dashed line are extracted in fit of SIDIS data with fixed TMD evolution and

TMDPDF, see table 6. The values below the red-dashed line are extracted in global fit of DY and

SIDIS data, see table 9. The vertical dashed lines and gray boxes correspond to average mean and

standard deviation of the results of the global fit. The input collinear distributions are marked in

the right column.

FFs from [102] (DSS14) and kaon FFs from [103] (DSS17)), the JAM19 set [104] and the

NNFF10 set [87]. All these extractions are made with NLO collinear evolution (a2
s).

The comparison of fits with different FFs, and some of TMDPDF (together with TMD

evolution) extracted in the previous section are presented in table 6. The NNFF set is not

presented in the table due to the low quality of the predictions, as it is described below.

As it is seen from table 6, the TMD factorization perfectly describes the low-qT SIDIS

data with TMDPDF and TMD evolution fixed by DY measurements. It is one of the main

result of the present analysis.

The values of χ2/Npt are rather small (e.g. 0.76 for combination of HERA20 & DSS),

which may indicate an over-fit problem. However, this is not the case for the following

reason. The main source of low-χ2 is the COMPASS data set. The COMPASS data have

very large uncorrelated systematic uncertainty for a great amount of points. Here, the

systematic uncertainty is (much) larger than the statistical uncertainty, and therefore, the

COMPASS data points form smooth lines with huge uncorrelated uncertainty band. As a

result, the contribution of each point to the χ2-value is small.

The values of χ2 depend on the input TMDPDF and TMD evolution (compare NNLO

and N3LO cases) in a reasonable amount. This is mainly due to the different values of

c0 constant in these cases. We recall that the SIDIS measurements are made at much

lower energy in comparison to DY, and thus they are more sensitive to D at large-b. Later

in section 7 we show that in the joint fit of SIDIS and DY data, the uncertainty of the

evolution factor at large-b is reduced.

The difference between DSS and JAM collinear FFs sets is of minor importance. It is

due to the fact low-energy data are less sensitive to the small-b part of the TMD distribu-

tions (and thus to collinear distributions). Given in addition that the data are not very

precise, the uncertainty in FF sets are compensated by the NP function DNP . The effect

of compensation is clear from the very different values of ηi constants for DSS and JAM19

set. Note, that in all cases we obtain a positive and sizable b2-term in DNP (parameter

η4). It could indicate a hidden issue in the values of collinear FFs. However, we conclude
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that contrary to DY case, the SIDIS TMD data are not very restrictive on the values of

collinear FFs.

The NNFF distributions are not able to fit the data with a χ2/Npt better than ∼ 6.8.

The reason of such an enormous discrepancy is obvious. The NNFF1.0 extraction is made

from the ee-annihilation data only [87], and thus is sensitive only to particular combinations

of quark-flavors. The flavour separation is thus made a posteriori assuming exact iso-spin

symmetry. As a result, the FF for sea quarks have very small (and even negative) values. In

the processes where the production of a hadron is dominated by the sea-quark channel, the

cross-section obtained with NNFF10 collinear FF is much smaller then the experimental

one. A crystal clear example is the process p→ K−, where both valence quarks of K−, ūs,

are sea-quarks for the proton, and thus the dominant channel is the production of K− from

u and d quarks. However, FF for u and d-quarks in K− are negative in NNFF extraction,

and the resulting cross-section appears to be negative as well. The situation improves,

if we select only the processes with dominant valence channel, e.g. d → π±, in this case

we obtain χ2/Npt ∼ 2.2. The COMPASS measurement can be also considered separately

with the NNFF1.1 set of FF for charged hadrons [86], in this case we obtain χ2/Npt ∼ 1.6.

In any case, we have found that NNFF sets of FF are not suitable for the description of

SIDIS data.

The uncertainties on NP parameters presented in table 6 are unrealistically small.

Given the fact that the data is not very accurate, it indicates a significant underestimation

of the uncertainty for TMDFF. We guess that the underestimation of uncertainties is caused

mainly by the function bias of DNP . To resolve the situation one could use a more flexible

ansatz, e.g. by inclusion of more NP-parameters. Unfortunately, this strategy is not very

efficient. Already with the current set of parameters we have very low χ2, and the increase

of the number of parameters could lead to an over-fit problem. Also, the computation time

with a bigger number of parameters increases.

6.2 Impact of power corrections

Considering the expression for the SIDIS cross-section eq. (2.31) we distinguish four types

of power corrections: (m/Q) the corrections due to non-zero produced mass, (M/Q) the

corrections due to non-zero target mass, (qT /Q) the qT /Q-terms in the expression for

cross-section and (xSzS) the qT /Q-terms in the expressions for xS and zS , eq. (2.15). In

order to test the impact of these corrections, we have performed the (central value) fits

including corrections in different combinations. The resulting values of χ2/Npt are reported

in table 7.

Let us summarize the observations:

• Produced mass corrections. The produced mass-corrections are not necessary ex-

tremely small, as it is typically assumed. These corrections appear in the ratio with

other kinematic variables through the variable ς2, eq. (2.11). In most part of data bins

the value of ς2 is negligible, ς2 ∼ 10−3, but for some low-energy and low-z bins it can

reach ς2 ∼ 10−2. For example, the HERMES bin with 0.2 < z < 0.4, 0.2 < x < 0.35

– 41 –



J
H
E
P
0
6
(
2
0
2
0
)
1
3
7

include (m/Q) yes no yes yes no no

include (M/Q) yes yes no yes no no

include (qT /Q) in kinematics yes yes yes no no no

include (qT /Q) in xS , zS yes yes yes yes yes no

χ2/Npt 1.00 1.00 1.09 1.06 1.16 1.31

Table 7. Comparison of results of the fit with different combination of power suppressed terms. The

fit is made only for the central values, with fixed TMD evolution and TMDPDF as in NNPDF3.1,

with DSS collinear FF.

with produced kaon has ς2 ∼ 0.04. As it is clear from table 7, current data are not

sensitive to these corrections. The difference in χ2/Npt is of the order 10−3.

• Target mass corrections. The target mass corrections appear through the variable

γ2 in eq. (2.11) and at low Q it has a rather significant size, e.g. for some bins in

HERMES data γ2 ∼ 0.13, for some bins in COMPASS data γ2 ∼ 0.06. Therefore,

one can expect up 10% impact of γ2 for certain bins. Note, that the dependence on

γ2 is non-linear and is different in different edges of the bin. Checking the values

in table 7, we observe that the target mass correction produces a small but visible

effect on the fit quality especially for HERMES data where the change in χ2/Npt is

1.09→ 1.24.

• qT /Q correction in kinematics. This correction cannot be large due to the cuts on

the data sets that we have performed. For qT ∼ 0.25Q which is the highest value

of qT that we have considered, we can have (qT /Q)2 ∼ 0.06. In addition, the first

correction of this type to the cross section is linear in (qT /Q)2 and it can be easily

compensated by a change of the non-perturbative parameters in DNP. Indeed, we

observe that the impact on the χ2 is small.

• qT /Q correction in xS and zS . For qT ∼ 0.25Q (which is the maximum considered qT
), the difference between exact xS and x is ∼ 0.06, and much smaller between zS and

z. Nonetheless, this correction changes the shape of the cross-section in a way that

is difficult to compensate by NP parameters. Thus, the inclusion of this correction

visibly improves the agreement. Let us note that the same conclusion has been made

for the DY case, in section 5.2.

We conclude that the impact of each individual correction is rather small, but the inclusion

of any of them improves the agreement between theory and data. Most relevant effects

are the target mass correction and the ones due to xS and zS . Accounting of all effects

simultaneously leads to a qualitative improvement in χ2-values.

We also admit that the inclusion of power corrections considerably affect the val-

ues of parameters η (especially η1,4). The values of parameters η1,4 varies in the range

(−10,+25)%. The values of parameters η2,3 varies in the range (−4,+8)%. It shows that

our estimation of uncertainties on parameters presented in table 6 are extremely underes-

timated. Possibly, the main source of underestimation is the bias of our model, which is
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Figure 11. The value of χ2/Npt depending on the cuts of the data for SIDIS. The theory prediction

is calculated with NNPDF31 & DSS set at NNLO. The numbers on vertical lines shows the number

of points in the cut data set.

not surprising since we have only 4 parameters for all partons flavors and particle kinds.

The tests of power corrections suggest that the real error-band on the extracted TMDFF is

an order of magnitude larger.

6.3 Limits of TMD factorization for SIDIS

In ref. [19] we tested the limits for TMD factorization using the DY data, showing that the

natural limit of the leading power TMD factorization is δ ' 0.2− 0.25, where δ = qmax
T /Q

and qmax
T is the maximum value of the transverse momentum in the data sets included in

the fit. We have tested the same boundary using the SIDIS data and the result of the global

fit (presented in the next section) evaluating the χ2 (without minimization) for different

selections of SIDIS data. We have considered two possible cuts on data selection 〈Q〉 > 1

and 〈Q〉 > 2 , eq. (3.1), and the result is shown in figure 11.

The values of χ2/Npt grow when δ > 0.25. The same effect has been observed in

ref. [19] for DY. Therefore, we conclude that our earlier estimation of the validity interval

of TMD factorization as δ . 0.2 − 0.25 holds also in the SIDIS case. It is interesting to

observe that the channel with the fastest growth of χ2/Npt is d → K− (and the next is

p→ π+), which could indicate a possible tension in the description of this reaction.

The inclusion of data at 〈Q〉 < 2GeV almost doubles the values of χ2/Npt (e.g.

χ2/Npt = 1.19 for δ = 0.25). Taking into account the large uncertainties of the COM-

PASS measurement, it shows that the factorization is broken down at such low values of

Q. This is an expected result, since in this region the power corrections dominate the

cross-section. In section 7.1, we show data and our predictions including the low-Q bins

and up to δ = 0.4.

7 Global fit of DY and SIDIS data

The fit of SIDIS data shows perfectly the universality of the TMD distributions and a good

agreement between theory and experiment. Performing a global fit of DY and SIDIS data

we essentially reduce the uncertainty for D. The resulting sets of TMDPDF, TMDFF and
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RAD extracted from the global fit represent the SV19 TMD distributions (at NNLO and

N3LO). As an input for this set we have used NNPDF31 and DSS collinear distributions,

because these sets are in good agreement with the global set of collinear observables, and

show the best values of χ2 (see discussions in the previous sections).

7.1 Agreement between theory and data

Table 8 shows the distribution of the χ2-values per individual experiments. In total we

have considered 1039 points, 457 for DY and 582 for SIDIS. They form three large subsets:

DY at high energy, DY at low energy, and SIDIS (at low energy). The worst χ2 values are

concentrated in the high energy DY subset, because of the very high precision of Z-boson

production data measured at LHC. Simultaneously, these data robustly restrict the values

of TMD distributions (TMDPDF and RAD) at b . 1GeV−1. The lowest χ2 is for SIDIS

data and especially for COMPASS data (χ2/Npt = 0.65, with Npt = 390 that is more than

the third part of the total data), due to large uncorrelated systematic uncertainty (see

discussion in section 6.1).

Altogether we obtain the global value of χ2/Npt = 0.95 and 1.06 for NNLO and N3LO

respectively. These values can be compared to 1.55 (for Npt,total = 8059) and 1.02 (for

Npt;SIDIS = 477 that is close to our data selection) obtained in the global fit of DY and

SIDIS in ref. [18]. The increase of χ2/Npt between NNLO and N3LO cases does not indicate

a reduction of the fit quality. This change in χ2 happens mainly because of COMPASS data,

for which the χ2-value increase 0.65 → 0.85. On the contrary, the χ2-value for ATLAS

data reduces 2.12 → 1.82 (mostly due to the improvement in the total normalization).

Therefore, we conclude that both NNLO and N3LO fits are in agreement, although N3LO

shows a better agreement with high-energy data.

In table 8 we also present the values of the difference in the normalization between

theory and data due to the correlated shift (see definition in (4.18)). The measurements

in the table 8 without this value (e.g. CMS) are normalized to the total cross-section.

Note, that the shift value is common to the full data subset (e.g. for all 195 point of

COMPASS d→ h+).

Finally, we have some more considerations on each data set:

• The high energy DY data have a common deficit of 2-5% in the normalization, which

has been already observed in [20]. It can be caused by different sources, being the

main ones the collinear PDF (e.g. in the case of HERA20 PDF the deficit is much

smaller, 0-3%). Another source is the presence of corrections due to fiducial cuts that

are linear in qT , as discussed in section 2.2.3. This deficit is responsible for a larger

value of χ2 for this sub-set. The nuisance parameter decomposition for high energy

DY is 1.51 = 1.28 + 0.23, where the last number is the penalty contribution to χ2

due correlated uncertainties.

• The low energy DY data are significantly underestimated by the TMD factorization

formula. However, this underestimation is within the expected correlated system-

atic uncertainties of the data. This is a known issue of fixed target experiments.

The underestimation has been also observed for the pion-induced DY [21] (E615 and

E537 experiments), and for the same low-energy DY experiments (E228 and E605)

– 44 –



J
H
E
P
0
6
(
2
0
2
0
)
1
3
7

NNLO N3LO

Data set Npt χ2/Npt 〈d/σ〉 χ2/Npt 〈d/σ〉
CDF run1 33 0.64 7.1% 0.65 6.6%

CDF run2 39 1.32 1.4% 1.46 0.6%

D0 run1 16 0.75 −1.3% 0.81 −1.9%

D0 run2 8 1.38 — 1.65 -

D0 run2 (µ) 3 0.62 — 0.69 —

Tevatron total 99 0.98 1.08

ATLAS 7 TeV 0.0 < |y| < 1.0 5 1.67 — 0.77 —

ATLAS 7 TeV 1.0 < |y| < 2.0 5 6.00 — 4.10 —

ATLAS 7 TeV 2.0 < |y| < 2.4 5 1.51 — 1.31 —

ATLAS 8 TeV 0.0 < |y| < 0.4 5 2.37 2.0% 3.40 1.2%

ATLAS 8 TeV 0.4 < |y| < 0.8 5 2.90 2.0% 3.25 1.2%

ATLAS 8 TeV 0.8 < |y| < 1.2 5 1.12 2.2% 1.44 1.3%

ATLAS 8 TeV 1.2 < |y| < 1.6 5 1.91 2.8% 1.39 1.9%

ATLAS 8 TeV 1.6 < |y| < 2.0 5 1.23 3.5% 0.48 2.6%

ATLAS 8 TeV 2.0 < |y| < 2.4 5 2.48 4.2% 1.91 3.3%

ATLAS 8 TeV 46 < Q < 66 GeV 3 0.38 −0.2% 0.49 −1.1%

ATLAS 8 TeV 116 < Q < 150 GeV 7 0.76 0.2% 0.95 −0.4%

ATLAS total 55 2.04 1.79

CMS 7 TeV 8 1.25 — 1.25 —

CMS 8 TeV 8 0.77 — 0.76 —

CMS total 16 1.01 1.00

LHCb 7 TeV 8 2.32 4.6% 2.04 4.0%

LHCb 8 TeV 7 4.12 4.5% 3.52 3.8%

LHCb 13 TeV 9 0.81 5.1% 0.72 4.4%

LHCb total 24 2.28 1.98

High energy DY total 194 1.44 1.32

PHE200 3 0.28 −0.1% 0.30 −0.7%

E228-200 43 1.01 35.3% 1.12 34.6%

E228-300 53 0.91 28.8% 1.01 27.8%

E228-400 76 0.87 20.1% 0.95 18.9%

E772 35 1.86 8.9% 1.93 7.9%

E605 53 0.57 20.7% 0.60 19.5%

Low energy DY total 263 0.97 1.04

HERMES (p→ π+) 24 2.20 1.7% 3.06 2.2%

HERMES (p→ π−) 24 1.12 0.6% 1.45 0.9%

HERMES (p→ K+) 24 0.71 −0.1% 0.66 0.0%

HERMES (p→ K−) 24 0.69 0.0% 0.66 0.0%

HERMES (d→ π+) 24 0.57 0.3% 0.78 0.8%

HERMES (d→ π−) 24 0.74 0.5% 0.97 0.7%

HERMES (d→ K+) 24 0.52 −0.1% 0.53 0.0%

HERMES (d→ K−) 24 1.27 0.0% 1.17 0.1%

HERMES total 192 0.98 1.16

COMPASS (d→ h+) 195 0.62 3.3% 0.77 5.1%

COMPASS (d→ h−) 195 0.68 −2.3% 0.92 -0.5%

COMPASS total 390 0.65 0.85

SIDIS total 582 0.76 0.95

Total 1039 0.94 1.05

Table 8. Distribution of the values of χ2 over data set in the global fit of SIDIS and DY. The

column 〈d/σ〉 report the average normalization deficit of the cross-section (multiplicity) as defined

in (4.18).

– 45 –



J
H
E
P
0
6
(
2
0
2
0
)
1
3
7

Figure 12. Differential cross-section for the Z/γ∗ boson production measured by ATLAS at

different values of y and s. The solid lines are absolute prediction. The dashed lines are the theory

prediction shifted by 〈d/σ〉 that is indicated on each case together with the values of χ2/np for

given data set. Blue (red) color corresponds to the theory prediction at NNLO (N3LO). The ratio

boxes shows same plot weighted by the shifted theory prediction at NNLO. Vertical dashed lines

show the part of the data included in the fit (to the left of the line).

in ref. [85]. Note, that in ref. [85] the high-qT part of the measurements has been

considered (in collinear factorization), and the observed discrepancy is an order of

magnitude larger. Also, the present fit has somewhat lesser deficit in the normaliza-

tion (by 5− 6%) in comparison to previous one [20]. We connect it to the corrected

shape of ζ-line at large-b.

• SIDIS data do not show any problem with the total normalization. This statement

is in some contradiction to the literature. In [18] the authors report a significant

contribution of normalization to χ2 from the HERMES data (the COMPASS data

was normalized exactly). In ref. [105] an enormous discrepancy between theory and

data in the collinear factorization limit has been observed too.

In figures 12–21 we present all the data points used in the fit together with the theory

prediction lines. In these figures we also show the data points that were not included in the

fit due to the cutting conditions eq. (3.1), (3.2), (3.3) in order to demonstrate the behavior

of TMD factorization beyond its limits.
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Figure 13. Differential cross-section for the Z/γ∗ boson production measured by ATLAS, CMS,

LHCb and PHENIX at different values of s and Q. The figure elements are the same as in figure 12.

Figure 14. Differential cross-section for the Z/γ∗ boson production measured by CDF and D0 at

different values of s. The figure elements are the same as in figure 12.
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Figure 15. Differential cross-section of DY process (dσ/dqT [fb/GeV] vs. qT [GeV]) measured by

E288 at different values of s and Q. The solid (dashed) lines are the theory prediction at NNLO

(N3LO) shifted by the average systematic shift (see table 8). Filled (empty) point were (not)

included in the fit of NP parameters.

Figure 16. Differential cross-section of DY process (dσ/dqT [fb/GeV] vs. qT [GeV]) measured by

E605 and E772 at different values of s and Q. The solid (dashed) lines are the theory prediction

at NNLO (N3LO) shifted by the average systematic shift (see table 8). Filled (empty) point were

(not) included in the fit of NP parameters. For clarity the data of E772 is multiplied by the factors

indicated in the plot.

– 48 –



J
H
E
P
0
6
(
2
0
2
0
)
1
3
7

Figure 17. Unpolarized SIDIS multiplicities (4.4) (multiplied by z2) for production of pions off

proton/deuteron measured by HERMES in different bins of x, z and pT . Solid (dashed) lines show

the theory prediction at NNLO (N3LO). Filled (empty) point were (not) included in the fit of NP

parameters. On the top of the table the value of χ2/Npt for each channel is presented, the value in

brackets being the χ2/Npt for shown set of the data (empty and filled points together). For clarity

each pT bin is shifted by an offset indicated in the legend.
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Figure 18. Unpolarized SIDIS multiplicities (4.4) (multiplied by z2) for production of kaons off

proton/deuteron measured by HERMES in different bins of x, z and pT . Solid (dashed) lines show

the theory prediction at NNLO (N3LO). Filled (empty) point were (not) included in the fit of NP

parameters. On the top of the table the value of χ2/Npt for each channel is presented, the value in

brackets being the χ2/Npt for shown set of the data (empty and filled points together). For clarity

each pT bin is shifted by an offset indicated in the legend.
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Figure 19. Unpolarized SIDIS multiplicities (4.4) (multiplied by z2) for production of positively

charged hadrons off deuteron measured by COMPASS in different bins of x, z, Q and pT . Solid

(dashed) lines show the theory prediction at NNLO (N3LO). Filled (empty) point were (not) in-

cluded in the fit of NP parameters. For clarity each pT bin is shifted by an offset indicated in the

legend. The continuation of the picture is in figure 21.
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Figure 20. Unpolarized SIDIS multiplicities (4.4) (multiplied by z2) for production of negatively

charged hadrons off deuteron measured by COMPASS in different bins of x, z, Q and pT . Solid

(dashed) lines show the theory prediction at NNLO (N3LO). Filled (empty) points were (not)

included in the fit of NP parameters. For clarity each pT bin is shifted by an offset indicated in the

legend. The continuation of the picture is in figure 21.
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Figure 21. Continuation of the plots 19 and 20.

7.2 Values of NP parameters

The extracted values of NP parameters are in the table 9. The central values of parameters

do not shift much with respect to individual fits of DY and SIDIS data. The main effect

of the global fit is the reduction of uncertainties for RAD and TMDPDF by ∼ 40 − 50%.

In figures 6, 7 and 10 we show the values of NP parameters obtained in all fits of this

work. Generally, the parameters obtained in different fits are in agreement, except λ3,4,5

that mainly serve for the fine-tune of TMDPDF to LHC data.

All NP parameters are correlated. The correlation matrices for NP parameters are

shown in figure 22. The explicit numeric expression for correlation matrices is given in

appendix D. Ideally, one would expect the complete independence of NP parameters con-

tributing to RAD, TMDPDF and TMDFF. In this case the correlation matrices would

have a block-diagonal form. In reality, we observe correlations among the blocks related

to independent functions. In the case of NNLO these correlations are not large, and the

block-diagonal structure is evident. The biggest (anti-)correlation is between c0 and λ1,

with the correlation matrix element −0.67, with the rest being much smaller. The source of

this correlation is evident — it is due to the precise Z-boson production measurements by
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Figure 22. The correlation matrices for NP parameters obtained in the global fit of DY and SIDIS.

Numbers indicate the values of matrix elements with correlation higher then 0.3.

χ2/Npt NP-parameters

0.95 (NNLO)

RAD BNP = 1.93± 0.17 c0 = (3.91± 0.63)× 10−2

TMDPDF
λ1 = 0.198± 0.019 λ2 = 9.30± 0.55 λ3 = 431.± 96.

λ4 = 2.12± 0.09 λ5 = −4.44± 1.05

TMDFF
η1 = 0.260± 0.015 η2 = 0.476± 0.009

η3 = 0.478± 0.018 η4 = 0.483± 0.030

1.06 (N3LO)

RAD BNP = 1.93± 0.22 c0 = (4.27± 1.05)× 10−2

TMDPDF
λ1 = 0.224± 0.029 λ2 = 9.24± 0.46 λ3 = 375.± 89.

λ4 = 2.15± 0.19 λ5 = −4.97± 1.37

TMDFF
η1 = 0.233± 0.018 η2 = 0.479± 0.025

η3 = 0.472± 0.041 η4 = 0.511± 0.040

Table 9. Values of χ2 and NP parameters obtained in the global fit of DY and SIDIS data. The

collinear distributions are NNPDF31 and DSS.

LHC. In the N3LO case the correlation are much stronger. The biggest (anti-)correlation

is between c0 and λ1, with correlation matrix element −0.82, with some other elements

reaching ±0.5 and it indicates a possible tension in our description of the data at N3LO.

8 Comments on the extracted TMD distributions

The non-perturbative distributions extracted in this work show several features that are

interesting for theory investigations. For instance, the RAD that measures the properties

of the soft gluon exchanges and that is inclusively sensitive to the QCD vacuum structure.

The factorization theorem ensures that the values of BNP and c0 are totally uncorrelated

from the rest of TMD parameters, because they are of complete different origin. As we have

an extraction of these parameters from data we can expect that a certain correlation is re-

introduced in the fitting process. In figure 22 (see also appendix D) we check this statement

in the present global fit and we find that it is qualitatively verified in our DY+SIDIS fit.
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Figure 23. (Left) Comparison of NNLO RAD extracted in DY fit (NNPDF31), and global fit of

DY and SIDIS (NNPDF31& DSS). Shaded area shows the 1σ-uncertainty band. The dashed lines

show the extraction made in refs. [18] and [19] at LO and NNLO of RAD correspondingly. (right)

Distribution of replica points in different fits of RAD. Dashed lines show the mean values of RAD

extracted in the global fit of DY and SIDIS.

In the figure the only non-perturbative parameters which show a higher (anti)correlation

with the RAD are c0 and λ1 in the TMDPDF. Apart from this, the independence of the

RAD parameters from the rest of TMD is certainly a success of the ζ-prescription, which

allows a clear separation of all these effects. In the rest of this section we report some

specific comment for each of the functions that we have extracted.

8.1 Non-perturbative RAD

In figure 23 (left) we plot the RAD as a function of b with its uncertainty band. We present

only the RAD extracted with NNPDF31 fits, but the picture does not change significantly

for all other PDF sets. In this figure we can test the universality of the RAD looking at

its extraction in DY and DY+SIDIS. At small b the perturbative structure of the RAD

dominates and we find practically no difference in its behavior as coming from different

fits. The difference between these two cases happens at large b and it is at most of 10%.

The 1σ-uncertainty bands of DY and global fit do not strictly overlap, which possibility

indicates their underestimation.

In the same figure 23 (left) we also compare our RAD with the one obtained in [18]

and [19]. In refs. [18, 19] a different shape of NP ansatz for RAD has been used, with a

quadratic behavior at large-b. Such an ansatz has been used often, and (as we have also

checked) it is able to describe the data. Nonetheless we disregard it because the global

χ2/Npt is worse (1.11 and 1.34 at NNLO and N3LO, correspondingly), with much larger

correlation among parameters. Additionally, the linear asymptotic behavior used in our

ansatz is supported by non-perturbative models, e.g. [64]. Possibly, the uncertainty band

is biased by this model, and the realistic band is larger by a factor two at most.

In figure 23 (right) we show the scattering of replicas in (BNP, c0)-plane collected from

all fits. It is clear that the parameters BNP and c0 are strongly anti-correlated (see also

figure 22) and this is a consequence of the non-perturbative model, since the variation

of c0 can be compensated by a variation of BNP up to b4-corrections. The replicas of
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Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates

the relative size of the uncertainty band.

the global fit (orange points) are scattered in a much smaller area and this provides a

∼ 40% smaller error-bands on parameters. Generally, the inclusion of the SIDIS data

drastically constraints the values of BNP, and for that reason they are very important for

the determination of RAD. We conclude that the RAD extracted in the global fit is more

reliable, in comparison to the one done using DY data only.

The RAD that we have extracted is valid for all distributions and it has been used

also to describe the pion-induced DY [21]. For further reduction of the uncertainty of the

RAD one should consider more precise low- and intermediate-energy processes, such as

up-coming JLab12 measurements, and the future EIC.

8.2 TMD distributions

The quark TMDPDF and TMDFF are extracted simultaneously including high QCD per-

turbative orders for the first time to our knowledge. The non-perturbative parameters

obtained using the PDF set NNPDF31 and the fragmentation set DSS are reported in

table 9. Within one set of PDF the error induced from the PDF replicas dominates the

experimental error of TMD. Thus, the error that we have reported on TMD parameters

is certainly underestimated. To determine a realistic uncertainty band, one must invent

a flexible ansatz for NP-part of TMD distributions that does not contradict the known

theory. It appears to be a non-trivial task, which we leave for a future study.

The TMD distributions show a non-trivial intrinsic structure. An example of distribu-

tions in (x, b)-plane is presented in figure 24. Depending on x the b−behavior apparently

changes. We observe (the same observation has been made in ref. [18]) that the unpolarized

TMDFF gains a large b2-term in the NP part. It could indicate a non-trivial hadronisation

physics, or a tension between colinear and TMD distributions. The study of its origin

should be addressed by future studies.

9 Conclusion

Standing the TMD factorization of DY and SIDIS cross-section, one identifies at least three

non-perturbative QCD distributions in each cross-section — two TMD parton distributions
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and a non-perturbative rapidity anomalous dimension (RAD). These functions should be

extracted from the experimental data. Given such a large number of phenomenological

functions, their universality plays a crucial role. In this work, we have shown that the

TMD distributions and RAD are indeed universal functions.

In order to confirm the universality statement, we have firstly extracted the RAD (D)

and the unpolarized TMDPDF (f1) from the DY data, and secondly we have used them

to describe the SIDIS data (extracting in addition the unpolarized TMDFF, D1). To our

best knowledge, this is the first clear-cut demonstration of the universality of the TMD

non-perturbative components. This demonstration is the main result of this work. The

subsidiary results are the values of extracted unpolarized TMD distributions and RAD, that

could be used to predict and describe the low-qT spectrum of current (LHC, COMPASS,

RHIC) and future (EIC, LHeC) experiments.

The sets of data included in this analysis contain in total 1039 points (almost equally

distributed between SIDIS, 582 points, and DY, 457 points). We have the data from fixed

target DY measurements, Tevatron, RHIC, LHC, COMPASS, and HERMES. Unfortu-

nately, only low-energy measurements are available for SIDIS data. At the moment, we

have not included any data from HERA multiplicities because they do not accomplish the

kinematical requirements for the TMD factorization. Contrary to some observations in the

literature [14, 18], we have not found any problem with the normalization of HERMES

and COMPASS data, although the systematic experimental errors quit precision to the

final result.

The data analysis is made with the current theory state-of-art, including all known

perturbative QCD orders, i.e. N3LO for the hard part and the evolution, and NNLO for the

collinear matching. The NNLO and N3LO predictions are very close to each other, which

is a good signal indicating that the perturbative part of the cross-section is saturated. We

have also collected all recent modifications and updates of the TMD factorization approach,

such as target-mass corrections, frame-corrections, and exact evolution solution at large-b.

Individually these aspects are subtle, however, cumulatively, they are sizable. In section 2

we have presented a comprehensive collection of theory expressions used in this work.

Let us also mention that the N3LO evolution, as well as a non-trivial QCD matching for

TMDFF (NNLO vs. LO) is used here for the first time. An open issue is represented by

power corrections, which, given the current status of the art can be included only partially,

as discussed in section 2. More work concerning this problem should be addressed in

the future.

The definition of matching scales and the evolution/modeling separation is done ac-

cording to ζ-prescription. The ζ-prescription is equivalent to the popular CSS-scheme

since it satisfies the same set of differential equations. Nonetheless, this equivalence is

strict only within an all-order perturbation theory and it is numerically violated for any

truncated series. The origin for this discrepancy is well-understood [11] — it comes from

spurious contributions in the CSS formalism that vanish in the exact perturbation theory.

At LO and NLO, the numerical value of spurious contributions is large, but it is tiny at

N3LO [11]. Therefore, the ζ-prescription provides a faster convergence and an improved

stability of the perturbative series, as shown in figure 3. Additionally, but not less impor-
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tantly, the ζ-prescription grants a strict separation of perturbative and non-perturbative

pieces and thus it allows a stronger universality of the phenomenological functions, fig-

ure 22 and appendix D. In particular, the RAD extracted here can be used in the analysis

of jet-production [99–101]. The success of the present global fit confirms the reliability of

the ζ-prescription.

Many points of the TMD phenomenology are discussed quantitatively for the first time

(to our best knowledge). We critically consider each detail of the factorization that have

a disputable nature, f.i. power corrections to collinear variables. We demonstrated that

the inclusion of these details improves the agreement between theory and the data. A

particularly important check made here for the first time is the test of the limit of the

TMD factorization approximation for SIDIS. In the DY case, the phenomenological limit

of TMD factorization is qT . 0.25Q, as it has been shown in ref. [19]. We have found that

SIDIS also obeys this rule. This piece of information is important because it opens the

door to reliable predictions of SIDIS experiments.

The estimation of the uncertainty for extracted distributions is made by the replica

method that gives a reliable error-propagation of experimental errors. On top of it one

should include the uncertainty of other theoretical ingredients, and in particular the

collinear PDF error. We have checked that the prediction of the TMD factorization is

crucially sensitive to the values of collinear PDFs. It indicates that our extraction has a

considerable additional uncertainty due to the uncertainty of the collinear input. However,

we were not able to accurately quantify the size of this uncertainty band, due to the high

computational costs of such analysis. We leave this study for the future.
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A Expression for |CV |

The hard coefficient for TMD factorization formula is the square of the hard matching

coefficient for quark current |CV |2. At NLO hard matching coefficient reads

CV (q, µ) = 1 + asCF

(
− ln2

(
−q2

µ2

)
+ 3 ln

(
−q2

µ2

)
− 8 +

π2

6

)
+O(a2

s). (A.1)

The expression for NNLO can be found f.i. in refs. [106, 107], and at N3LO in [30].

The hard coefficient for SIDIS and DY kinematics differ only by the sign of q2 that is

space-like (times-like) for DY (SIDIS). Since in our work µ2 = Q2 the expression simplifies.
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In particular, in the DY kinematics the logarithms turns to ln(−1) = ±iπ, whereas in the

case of SIDIS logarithm vanish. The NNLO expression for DY hard coefficient is

|CV (−Q2, Q2)|2 = 1 + asCF

(
−16 +

7π2

3

)
+ a2

sCF

[
CF

(
511

4
− 83π2

3
− 60ζ3 +

67π4

30

)
+CA

(
−51157

324
+

1061π2

54
+

626ζ3

9
− 8π4

45

)
+Nf

(
4085

162
− 91π2

27
+

4ζ3

9

)]
, (A.2)

where CF (= 4/3) and CA(= 3) are quadratic Casimir eigenvalues of fundamental and

adjoint representation of SU(3). Nf is the number of active quark flavors. The NNLO

expression for SIDIS hard coefficient is

|CV (Q2, Q2)|2 = 1 + asCF

(
−16 +

π2

3

)
+ a2

sCF

[
CF

(
511

4
− 13π2

3
− 60ζ3 +

13π4

30

)
+CA

(
−51157

324
− 337

54
+

626ζ3

9
+

22π4

45

)
+Nf

(
4085

162
+

23π2

27
+

4ζ3

9

)]
. (A.3)

One can see that the difference between SIDIS and DY hard coefficients is

|CV (Q2, Q2)|2 − |CV (−Q2, Q2)|2 = −2π2asCF + π2a2
sCF

[
CF

(
32− 8π2

3

)
(A.4)

+CA

(
−233

9
+

2π4

3

)
+Nf

38

9

]
+O(a3

s).

These corrections are known as (π2as)
n-corrections. They could be resummed to all or-

ders [108]. However, in the case of vector-boson production the correction coming from

(π2as)
n is not significant (of order of next-to-given order correction [108]).

B Perturbative expression for D

The rapidity anomalous dimension (RAD) D(µ, b) is generally non-perturbative function,

which can be computed perturbatively only at small-b, see e.g. [24, 28] for NNLO and

N3LO computations. RAD satisfies the integrability condition (2.68) which can be seen as

renormalization group equation,

µ2dD(µ, b)

dµ2
=

Γcusp(µ)

2
. (B.1)

Consequently, the ans -order of RAD contains logarithms up to order Lnµ. We define

Dpert(µ, b) =

∞∑
n=1

ans (µ)

n∑
k=0

Lkµd
(n,k), (B.2)
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where d(n,k) are numbers, and

Lµ = ln

(
µ2b2

4e−2γE

)
. (B.3)

The values for d(n,k) for k > 0 can be computed from (B.1) in the terms of Γi, βi and d(n,0).

Here, and in the following we define beta-function, and coefficients of Γcusp as

µ2das(µ)

dµ2
= −β(as) = −

∞∑
n=0

an+2
s (µ)βn, Γcusp(µ) =

∞∑
n=0

an+1
s (µ)Γn. (B.4)

The leading terms are β0 = 11
3 CA −

2
3Nf , Γ0 = 4CF , and d(1,0) = 0. The values of d(2,0)

and d(3,0) were computed in [4, 24] and [27, 28] respectively. The β-function coefficients are

known up to β4 [31] and the Γi are known up to Γ3-order for the quark case, see [32–34]

and references within.

The series (B.1) has a small convergence radius since the expansion variable (asLµ)

gets fastly bigger then 1 with the increase of b. To improve the convergence properties of

RAD we use the resummed expression [11, 39, 58]. In this case we write

Dresum(µ, b) =

∞∑
n=0

ans (µ)dn(X), X ≡ β0as(µ)Lµ. (B.5)

The functions dn satisfy the set of equations

β0d
′
n(X)−

n∑
k=0

βk((n− k)dn−k(X) +Xd′n−k(X)) =
Γn
2
, (B.6)

where d′n(X) = ∂dn(X)/∂X. The boundary conditions are dn(X = 0) = d(n,0). These

equations are to be solved recursively starting from the equation at n = 0. The solutions

of (B.6) are

d0(X) = − Γ0

2β0
ln(1−X), (B.7)

d1(X) =
1

2β0(1−X)

[
− β1Γ0

β0
(ln(1−X) +X) + Γ1X

]
, (B.8)

d2(X) =
1

(1−X)2

[
Γ0β

2
1

4β3
0

(
ln2(1−X)−X2

)
+
β1Γ1

4β2
0

(
X2 − 2X − 2 ln(1−X)

)
(B.9)

+
Γ0β2

4β2
0

X2 − Γ2

4β0
X(X − 2) + d(2,0)

]
,

d3(X) =
1

(1−X)3

[
− Γ0β

3
1

6β4
0

(
ln3(1−X)− 3

2
ln2(1−X)− 3X ln(1−X) +X3 − 3

2
X2

)
+
β2

1Γ1

2β3
0

(
ln2(1−X) +

X3

3
−X2

)
− β2β1Γ0

2β3
0

(
X ln(1−X) +

2

3
X3−X2

)
−β1Γ2

2β2
0

(
ln(1−X) +

X3

3
−X2+X

)
+

X2

12β2
0

(β3Γ0(3− 2X) + 2β2Γ1(3−X))

+
Γ3

6β0
X(3− 3X +X2)− 2β1d

(2,0)

β0
ln(1−X) + d(3,0)

]
(B.10)
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At X → 1 this expression has a pole, that is equivalent to Landau pole. This show the

convergence radius of this expansion b ' 2e−γEΛ−1
QCD ≈ 4GeV−1.

C Expression for ζµ

The concept of the special null-evolution line plays a central role in ζ-prescription. The

ζ-prescription, the double evolution and properties of TMD evolution have been elaborated

in ref. [11]. In this appendix, we present the expressions for the special null-evolution line

ζpert and ζNP that were used in the fit.

The definition of the special null-evolution line is discussed in the section 2.4. Param-

eterizing an equipotential line as (µ, ζµ(b)), one finds the following equation

Γcusp(µ) ln

(
µ2

ζµ(b)

)
− γV (µ) = 2D(µ, b)

d ln ζµ(b)

d lnµ2
. (C.1)

The special null-evolution line is the line that passes thorough the saddle point (µ0, ζ0) of

the evolution field. The saddle point is defined as

D(µ0, b) = 0, γF (µ0, ζ0) = 0. (C.2)

Note, that this boundary condition guarantees the finiteness of ζµ(b) for all non-singular

values of µ.

Originally the ζ-prescription has been implemented in the perturbative regime

only [19]. This part is the most important since it gives the cancellation of double-

logarithms in the matching coefficient. However, at large-b, non-perturbative corrections

to RAD become large and can not be ignored (although they can be seen as a part of NP

model, but it introduces an undesired correlation between fNP and D). Therefore, one

have to solve equation (C.1) with a generic non-perturbative RAD. Such solution can be

found but its numerical implementation is problematic at very small-b. The problem is

that it is very difficult to obtain the cancellation of perturbative logarithms for the exact

solution because at b→ 0, because the numerical values of logarithms are huge. Therefore,

a good practice is to use the perturbative solution at very small-b, (and hence cancel all

logarithm exactly) and turn to the exact solution at larger b. This is implemented in the

ansatz eq. (2.91).

In the following sections we provide expressions for ζexact
µ and ζpert

µ that were used in

the fit procedure.

C.1 Perturbative expression

The perturbative solution eq. (C.1) is conveniently written as

ζpert
µ (b) =

µ

b
2e−γEev(µ,b), (C.3)

where

v(µ, b) =
∞∑
n=0

ans (µ)vn(Lµ), (C.4)
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with Lµ defined in eq. (B.3). The general expression for vn can be found in [11] (see

eq. (5.14)). We apply the boundary condition eq. (C.2), which in the perturbative regime

turns into requirement of finiteness of vn at Lµ → 0. The values of vn up to NNLO are

v0(Lµ) =
γ1

Γ0
, (C.5)

v1(Lµ) =
β0

12
L2
µ −

γ1Γ1

Γ2
0

+
γ2 + d(2,0)

Γ0
, (C.6)

v2(Lµ) =
β2

0

24
L3
µ +

(
β1

12
+
β0Γ1

Γ0

)
L2
µ +

(
β0γ2

2Γ0
+

4β0d
(2,0)

3Γ0
− β0γ1Γ1

2Γ2
0

)
Lµ (C.7)

+
γ1Γ2

1

Γ3
0

− γ1Γ2 + γ2Γ1 + d(2,0)Γ1

Γ2
0

+
γ3 + d(3,0)

Γ0
.

The definition of perturbative coefficients is given in eq. (B.2), (B.4) and

γV (µ) =

∞∑
n=1

ans (µ)γn. (C.8)

Similarly, to RAD the ζpert
µ (b) can be resummed in terms of asLµ (see appendix A in [11]).

However, this is not necessary when using our ansatz eq. (2.91), because the perturbative

expression turns into exact much before the problems with convergence occur.

C.2 Exact expression

The evolution field, the equipotential line ζµ and the position of the saddle point (µ0, ζ0),

depend on values of b, which is treated as a free parameter. This fact calls for some attention

when implementating of the ζ-prescription exactly. The lesser problem is that additional

numerical computations are required to determine the position of saddle-point and the

values of the line for different non-perturbative models of D. The greater problem is that

at larger b the value of µ0 decreases and at some large value of b (typically b ∼ 3GeV−1)

µ0 is smaller than ΛQCD. Due to this behavior, it is impossible to determine the special

null-evolution line at large-b numerically. However, the special null-evolution line is still

uniquely defined by the continuation from smaller values of b.

In ref. [21] a simple solution of this problem has been found. The central idea is to

use the non-perturbative RAD as generalized coordinates (as,D) instead of (µ, b). We

introduce the function g as

ζexact
µ (b) = µ2e−g(as(µ),D(µ,b))/D(µ,b). (C.9)

It satisfies the following linear equation in partial derivatives

2D + 2β(as)
∂g(as,D)

∂as
− Γcusp(as)

∂g(as,D)

∂D
+ γV (as) = 0. (C.10)

The saddle point boundary condition eq. (C.2) turns into

g(as, 0) = 0. (C.11)
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The equation (C.10) can be solved exactly, but the application of boundary condition

eq. (C.11) requires the solution of functional equation with transcendental functions.

On another hand, the values of as used in the ζ-prescription are always small, since

they are evaluated at the hard scale Q, see (2.73). Therefore, it is natural and numerically

accurate to consider the expansion in as. Note, that such an expansion already incorporates

the non-perturbative corrections exactly. Denoting

g(as,D) =
1

as

Γ0

2β2
0

∞∑
n=0

ans gn(D), (C.12)

We find

g0 = e−p − 1 + p, (C.13)

g1 =
β1

β0

(
e−p − 1 + p− p2

2

)
− Γ1

Γ0
(e−p − 1 + p) +

β0γ1

γ0
p, (C.14)

g2 =

(
Γ2

1

Γ2
0

− Γ2

Γ0

)
(cosh(p)− 1) +

(
β1Γ1

β0Γ0
− β2

β0

)
(sinh(p)− p) (C.15)

+

(
β0γ2

Γ0
− β0γ1Γ1

Γ2
0

)
(ep − 1),

g3 =

(
β1(β1Γ1 − β2Γ0)

12β2
0Γ0

− β3Γ0 − 2β2Γ1 + β1Γ2

12β0Γ0
− Γ3

1

3Γ0
+

Γ1Γ2

2Γ2
0

− Γ3

6Γ0

)
(e2p+2e−p−3)

+

(
Γ3

1

Γ3
0

− Γ1Γ2

Γ2
0

− β2Γ1

β0Γ0

)
(cosh(p)− 1)

+
β0

Γ0

(
γ1Γ2

1

Γ2
0

− γ2Γ1

Γ0
− γ1Γ2

Γ0
+ γ3

)
ep(ep − 1)

+

(
β1γ2

Γ0
− β1γ1Γ1

Γ2
0

− β0γ3

Γ0
+
β0γ1Γ2

Γ2
0

)
(ep − 1)2

2
+

β3

2β0
(e−p + p− 1) (C.16)

+
β1

2β0

(
β2

β0
− β1Γ1

β0Γ0
+

Γ2

Γ0

)
(ep − p− 1).

where p = 2β0D/Γ0. The expressions (C.13)–(C.16) provide a very accurate approximation,

since as is evaluated at µ = Q and typically as = g2/(4π)2 ∼ 10−2. Most importantly this

expression is valid for all values of b, even when the saddle point is below ΛQCD.

Let us mention that g2 and g3 exponentially grow at large-D. It demonstrates that

at large−D the series is an asymptotic series. However, this effect takes a place when

D ∼ 3 − 5 which corresponds to typical values for b ∼ 20 − 25GeV−1. It does not cause

any problem but effectively cuts the Hankel integral (practically, the integration converges

much earlier).
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D Correlation matrices in the numeric form

Here we present the explicit expression for correlation matrices shown in figure 22. The

NNLO fit yields the following matrix

corrNNLO=



1 −.632 .179 −.360 .075 .056 .147 −.553 .259 .197 −.338

−.632 1 −.676 .165 .513 .196 −.075 .312 −.104 .027 −.159

.179 −.676 1 −.001 −.825 .049 −.460 −.051 .052 .013 .213

−.360 .165 −.001 1 .097 .163 −.582 .165 .025 .011 .155

.075 .513 −.825 .097 1 .221 .320 −.047 .118 .066 −.262

.056 .196 .049 .163 .221 1 −.570 −.089 .197 .075 −.101

.147 −.075 −.460 −.582 .320 −.570 1 −.063 −.100 −.179 .061

−.553 .312 −.051 .165 −.047 −.089 −.063 1 −.115 −.024 .466

.259 −.104 .052 .025 .118 .197 −.100 −.115 1 .292 .252

.197 .027 .013 .011 .066 .075 −.179 −.024 .292 1 −.590

−.338 −.159 .213 .155 −.262 −.101 .061 .466 .252 −.590 1


. (D.1)

The N3LO fit yields the following matrix

corrN3LO=



1 −.812 .606 −.038 −.374 .228 −.335 −.114 .387 .125 .381

−.812 1 −.850 −.016 .628 −.470 .444 −.063 −.321 −.086 −.613

.606 −.850 1 .023 −.781 .659 −.750 .182 .418 .087 .726

−.038 −.016 .023 1 −.011 −.174 −.256 .103 .266 .354 −.010

−.374 .628 −.781 −.011 1 −.343 .625 −.128 −.374 −.097 −.610

.228 −.470 .659 −.174 −.343 1 −.724 .282 .204 −.061 .646

−.335 .444 −.750 −.256 .625 −.724 1 −.261 −.511 −.167 −.638

−.114 −.063 .182 .103 −.128 .282 −.261 1 .438 .487 .560

.387 −.321 .418 .266 −.374 .204 −.511 .438 1 .798 .574

.125 −.086 .087 .354 −.097 −.061 −.167 .487 .798 1 .159

.381 −.613 .726 −.010 −.610 .646 −.638 .560 .574 .159 1


. (D.2)

The enumeration of rows and columns in matrices corresponds to the NP parameters

ordered as {BNP, c0, λ1, λ2, λ3, λ4, λ5, η1, η2, η3, η4}.
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constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].

[32] S. Moch et al., Four-loop non-singlet splitting functions in the planar limit and beyond,

JHEP 10 (2017) 041 [arXiv:1707.08315] [INSPIRE].

[33] S. Moch et al., On quartic colour factors in splitting functions and the gluon cusp

anomalous dimension, Phys. Lett. B 782 (2018) 627 [arXiv:1805.09638] [INSPIRE].

[34] R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop quark form factor

with quartic fundamental colour factor, JHEP 02 (2019) 172 [arXiv:1901.02898]

[INSPIRE].

[35] F. Landry, R. Brock, P.M. Nadolsky and C.P. Yuan, Tevatron Run-1 Z boson data and

Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016

[hep-ph/0212159] [INSPIRE].

– 66 –

https://doi.org/10.1140/epjc/s10052-018-5557-y
https://arxiv.org/abs/1706.01473
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.01473
https://doi.org/10.1007/JHEP06(2019)028
https://doi.org/10.1007/JHEP06(2019)028
https://arxiv.org/abs/1902.08474
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.08474
https://doi.org/10.1007/JHEP10(2019)090
https://doi.org/10.1007/JHEP10(2019)090
https://arxiv.org/abs/1907.10356
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.10356
https://arxiv.org/abs/1912.07550
https://inspirehep.net/search?p=find+EPRINT+arXiv:1912.07550
https://doi.org/10.1007/JHEP06(2014)155
https://arxiv.org/abs/1403.6451
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6451
https://doi.org/10.1103/PhysRevD.93.054004
https://arxiv.org/abs/1511.05590
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05590
https://doi.org/10.1103/PhysRevD.93.011502
https://arxiv.org/abs/1509.06392
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.06392
https://doi.org/10.1007/JHEP09(2016)004
https://arxiv.org/abs/1604.07869
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.07869
https://doi.org/10.1103/PhysRevLett.118.022004
https://arxiv.org/abs/1604.01404
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.01404
https://doi.org/10.1103/PhysRevLett.118.062001
https://doi.org/10.1103/PhysRevLett.118.062001
https://arxiv.org/abs/1610.05791
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.05791
https://doi.org/10.1007/JHEP10(2019)083
https://arxiv.org/abs/1908.03831
https://inspirehep.net/search?p=find+EPRINT+arXiv:1908.03831
https://doi.org/10.1007/JHEP06(2010)094
https://arxiv.org/abs/1004.3653
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.3653
https://doi.org/10.1103/PhysRevLett.118.082002
https://arxiv.org/abs/1606.08659
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.08659
https://doi.org/10.1007/JHEP10(2017)041
https://arxiv.org/abs/1707.08315
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08315
https://doi.org/10.1016/j.physletb.2018.06.017
https://arxiv.org/abs/1805.09638
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.09638
https://doi.org/10.1007/JHEP02(2019)172
https://arxiv.org/abs/1901.02898
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.02898
https://doi.org/10.1103/PhysRevD.67.073016
https://arxiv.org/abs/hep-ph/0212159
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0212159


J
H
E
P
0
6
(
2
0
2
0
)
1
3
7

[36] J.-w. Qiu and X.-f. Zhang, Role of the nonperturbative input in QCD resummed Drell-Yan

QT distributions, Phys. Rev. D 63 (2001) 114011 [hep-ph/0012348] [INSPIRE].

[37] G. Bozzi et al., Transverse-momentum resummation: A Perturbative study of Z production

at the Tevatron, Nucl. Phys. B 815 (2009) 174 [arXiv:0812.2862] [INSPIRE].

[38] S. Catani et al.i, Vector boson production at hadron colliders: hard-collinear coefficients at

the NNLO, Eur. Phys. J. C 72 (2012) 2195 [arXiv:1209.0158] [INSPIRE].
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