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1 Introduction

In most of the frameworks aiming to a solution of the flavour puzzle, fermion masses

are field-dependent quantities assuming specific values once the vacuum of the theory is

selected. Yukawa couplings depends on the vacuum expectation values (VEVs) of a set of

scalar fields ϕ, new dynamical degrees of freedom predicted or postulated in the underlying

theory. For example, in string theory coupling constants are naturally field-dependent

objects and the scalar fields ϕ can be moduli, describing shape and size of compactified

extra dimensions. In a bottom-up perspective, the couplings of ϕ to the Standard Model

(SM) fermions are often constrained by flavour symmetries and the observed pattern of

fermion masses and mixing angles represents the effect of breaking a symmetry group

acting in generation space. The scalar fields ϕ, called flavons in this context, have non-

trivial transformation properties under the group, acquire non-vanishing VEVs ϕ0 and

break the flavour symmetry. The observed fermion masses are shaped by the flavons

VEVs ϕ0, due to the restricted functional dependence of Yukawa couplings on ϕ. In this

class of models, the new scalar degrees of freedom are mandatory, given the absence of

realistic unbroken flavour symmetries [1]. In string theories, flavour symmetries can arise

from isometries of the compactified space or from selection rules [2–4], thus restricting the

choice of possible flavour groups and flavon representations.
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It would be highly desirable to test this scenario, by directly accessing to VEVs, masses

and couplings of the new scalar sector. The characteristic scale of the flavour symmetry

breaking sector is unknown and often assumed to be very large, to avoid problems with

new potential sources of flavour-changing neutral currents. The typical coupling constants,

arising from higher dimensional operators suppressed by the flavour scale, can be very

small, further reducing the prospect of detectability of the new degrees of freedom.

Large scales and small scalar couplings leading to scalar-mediated non-standard neu-

trino interactions (NSI) can in principle be tested in neutrino oscillations. Scalar NSI are

known to modify neutrino masses when neutrinos propagate in matter [5], at variance with

NSI mediated by vector particles that affect the Wolfenstein potential. The framework is

analogous to that of mass-varying neutrinos [6, 7], invoked to link neutrino and dark energy

densities, whose impact on neutrino oscillations has been analyzed in [8, 9]. General NSI,

also including scalar interactions, have been studied in ref. [10]. More recently, scalar NSI

have been reconsidered in ref. [11] as a possible source of deviations in neutrino oscillations.

Important features have been pointed out in refs. [12] and [13].

Neutrinos inside an infinite region filled by electrons with constant electron number

density n0
e, experience a mass shift

δmν = −n0
e

Re(Ze)Zν

M2
, (1.1)

where Ze and Zν are the couplings of the scalar field to electrons and neutrinos in a

two-component spinor notation and M is the mass of the scalar particle. To produce a

shift of few meV in a region with an electron number density close to the one in the sun,

an effective coupling Re(Ze)Zν/M2 ≈ 104 GeV−2 is required. This is more than eight

orders of magnitude larger than the Fermi constant, representing the first big obstacle

in our task. The reason why a very large effective interaction is needed resides in the

different energy dependence between scalar and vector NSI, the former being depleted

by an approximate factor mν/E compared to the latter. An immediate possibility that

comes to mind to enhance the effective coupling is to consider a very light scalar mediator.

Here comes the second obstacle, related to the inevitable finite size L of the region with

a non-negligible electron number density. As pointed out in ref. [12], when the Compton

wavelength λ = ~/(Mc) of the mediator becomes larger than L, the effective coupling

constant approaches Re(Ze)ZνL2c2/~2. There is no more gain in lowering the scalar mass

below ~/(Lc). The third obstacle is represented by the formidable limits that current

tests of gravity set on the coupling of an ultralight scalar to electrons. Both tests of the

inverse square law (ISL) of gravity and of the equivalence principle (EP) are very effective

in bounding |Re(Ze)|, which, in the region of interest, cannot exceed too much the tiny

value 10−25. Neutrino interactions to light scalars are less severely bounded, but important

limits exist from the well-established free-streaming property of neutrinos following their

decoupling in the early universe.

In the light of the previous discussion, the perspective of detecting scalar NSI through

their effect in neutrino oscillations seem very reduced, even more so if studied in the con-

text of a specific model, where the pattern of couplings is largely dictated by symmetry
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considerations. The purpose of the present work is to investigate in detail this possibility,

by examining some representative class of models of lepton masses based on flavour sym-

metries. In section 2 we shortly review the formalism of scalar NSI, following closely the

discussion of ref. [12] and [13]. We also include new considerations on the existing limits

on electron and neutrino couplings to a very light scalar particle. In section 3 we analyze

scalar NSI in the context of models of lepton masses based on flavour symmetries. Here

the discussion is completely general and covers the case of theories containing multiple

scalars and allowing non-canonical kinetic terms. This considerably extends the existing

formalism. In section 4 we analyze models with an abelian flavour symmetry group. We

first discuss a toy model, to show the main problems related to the detectability of a signal,

and then we move to an example where observable scalar neutrino NSI are possible. In sec-

tion 5 we consider models of lepton masses based on modular invariance. We consider this

application particularly relevant, given the opportunity of directly testing the dynamics of

the modulus, the unique symmetry breaking parameter of this class of theories. We derive

in full generality the modulus-lepton coupling and we apply the formalism to a case study

in section 6. Finally in section 7 we discuss our results, stressing strengths and limitations

of our analysis.

2 Neutrino masses and scalar interactions

In view of the very recent developments and for the sake of clarity, we shortly review in this

section the discussion of ref. [12] and [13], which is very relevant for our analysis. We also

complement this review with additional considerations on the existing limits on electron

and neutrino couplings to a very light scalar particle.

We consider a set of real scalars ϕα interacting with electrons and neutrino, with field

dependent masses me,ν(ϕα). By expanding me,ν(ϕ) around the minimum ϕ0
α up to first

order in the fluctuations, we have me,ν(ϕ) = me,ν + Ze,να ϕα + . . ..1 Assuming Majorana

neutrinos and adopting the two-component spinor notation, the Lagrangian reads:

L = i
∑

f=e,ec,ν

f σµ∂µf +
1

2
∂µϕα∂

µϕα −
1

2
M2
αϕ

2
α

− (me + Zeαϕα)ece− 1

2
ν(mν + Zναϕα)ν + h.c.+ . . . . (2.1)

Here e and ec describe the first generation charged leptons, while ν is a multiplet in

generation space. Similarly, for each α, Zeα is a number, while Zνα is a 3×3 symmetric

matrix. In a more general setting, electron and neutrinos have non-canonical kinetic terms,

depending on the fields ϕα, which induce an additional dependence of the electron and

neutrino interaction on ϕα. After standard field redefinitions, which will be described in

the next section, it is always possible to put the Lagrangian into the form (2.1) given above,

which we use as a starting point of our discussion. The equations of motion of neutrinos

1We set me,ν = me,ν(ϕ0) and, to simplify the notation, we redefine the fluctuation (ϕα − ϕ0
α) as ϕα.
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and scalars are:

iσµ∂µν̄ − (mν + Zναϕα)ν = 0

−(� +M2
α)ϕα −

(
Zeαece+

1

2
νZναν + h.c.

)
= 0 . (2.2)

Assuming a static unpolarized background with negligible neutrino number density, the

second equation becomes

(∇2 −M2
α)ϕα = Re(Zeα)ne(~x) , (2.3)

solved by

ϕα(~x) = −Re(Zeα)

∫
d3x′

e−Mα|~x− ~x′|

4π|~x− ~x′|
ne(~x

′) . (2.4)

By making use of the first equality in eq. (2.2), as a result of the scalar exchange we get a

shift of the neutrino mass matrix given by:

δmν(~x) =
∑
α

Zναϕα(~x) . (2.5)

To understand the qualitative behavior of this solution it is instructive to consider the

simple case of a constant electron number density n0
e, vanishing outside a spherical region

of radius R centered at the origin. Evaluating ϕα at ~x = 0 we find:

ϕα(0) = − n0
e

M2
α

Re(Zeα)F (MαR)

F (MαR) = 1− e−MαR(1 +MαR) ≈

{
1 Mα � 1/R

M2
αR

2/2 Mα � 1/R
. (2.6)

If the Compton wavelength ~/(Mαc) is smaller that R, we have the 1/M2
α suppression

expected form a Yukawa potential, while for ~/(Mαc) much larger than R, the potential

due to the scalar exchange is indistinguishable from the Coulomb one and proportional to

(3R2 − |~x|2)/6 in the interior of the sphere. This distinction, stressed in ref. [12], is very

important for the application examined here. For fixed values of the coupling constants,

the potential cannot be made arbitrarily large by taking tiny scalar masses. Any realistic

physical system has a finite size R and when Mα becomes much smaller than 1/R, the

behaviour 1/M2
α is cut off and replaced by R2. For example in the Sun (Earth) we have

R ≈ 6.955×105(6.378×103) Km, which corresponds to 1/R ≈ 2.84×10−16(3.09×10−14) eV.

Neutrinos at the center of the above idealized region experience a mass shift

δmν(0) = −n0
e

∑
α

Re(Zeα)

M2
α

F (MαR)Zνα . (2.7)

In our application we are interested in a spherically symmetric, not necessarily con-

stant, matter distribution: ne(~x) = ne(r), like the one in the sun or in the Earth. In this

case the solution (2.4) can be made more explicit [12]:

ϕα(r) = −Re(Zeα)

Mαr

[
e−Mαr

∫ r

0
x ne(x) sinh(Mαx)dx+ sinh(Mαr)

∫ +∞

r
x ne(x)e−Mαxdx

]
.

(2.8)
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Figure 1. Dependence of the factors F (MαR) and F (MαR)/(MαR)2 on the scalar mass Mα for

the sun, from eq. (2.9), choosing n0e = 1011eV3. We take R = 6.955 × 105 Km and ne(r) from

refs. [14, 15]. The vertical blue dotted line denotes Mα = 1/R ' 2.84× 10−16 eV.

We can still write the shift of the neutrino mass matrix at the center of the region as in

eq. (2.7), with the factor n0
eF (MαR) given by

n0
eF (MαR) = M2

αR
2

∫ 1

0
ye−(MαRy) ne(Ry)dy , (2.9)

where we assumed ne(r) vanishing for r > R. The electron number density ne is given by

ne = Yeρ/mp, where ρ is the density of the matter, mp = 938.27 MeV is the proton mass,

Ye = Ne/(Nn + Np) is the electron fraction (or the number of electrons per nucleus), and

Ye ∼ 0.5 for neutral matter. Typical values for the matter density are ρcrust ' 3g/cm3 in

the Earth’s crust, and ρsun ' 150g/cm3 in the sun core. Consequently the electron number

density in the sun (earth) is of order n0
e = 1011eV3 (109eV3).

Throughout this paper we use eq. (2.9) as a definition of F (MαR), by choosing as a

reference density n0
e = 1011 eV3 for the sun. Of course, only the product n0

eF (MαR) has a

physical meaning and the choice of n0
e is purely conventional. We have computed F (MαR)

for different values of Mα in the center of the sun using the electron density distribution

from [14, 15]. From figure 1 we see that the factor F (MαR) tends to a constant value when

Mα � 1/R and is approximately proportional to M2
αR

2 for Mα � 1/R. The asymptotic

behavior of F (MαR) agrees well with eq. (2.6) derived under the assumption of constant

electron density. From eq. (2.9) we see that this asymptotic behavior of F (MαR) should

generally hold true for any physical system with spherically symmetric matter density

distribution and finite size.
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Scalar interaction of electrons and neutrinos are severely constrained. As we will see,

the scalar masses we are interested cover the region from 10−4 eV to 10−22 eV. In this

range the main bounds on the relevant couplings come from astrophysics and cosmology

and they will be recalled in the next sub-sections.

2.1 Limits on electron coupling

A first bound on the electron-scalar coupling αeϕ = |Ze|2/4π comes from stellar cooling

through the bremsstrahlung process e + 4He → e + 4He + ϕ. It applies to scalar particles

sufficiently light to be produced in stars, typically Mϕ smaller than (1 ÷ 103) KeV and

reads [16]:

αeϕ < 1.4× 10−29 , (2.10)

which translates into

|Ze| < 1.3× 10−14 . (2.11)

In the scalar mass range we are interested in, the strongest constraint on the electron

coupling comes from the existing bounds on the fifth force. Indeed, if Mα is very small,

a long range force between electrons arises, described by the modification to the Newton

potential:

δV (r) = −1

r

∑
α

[Re (Zeα)]2

4π
N1N2Z1Z2e

−Mαr , (2.12)

for two test bodies containing N1,2 atoms of atomic numbers Z1,2. Here only spin indepen-

dent interactions induced by the scalar couplings are shown. For pseudoscalars interaction,

spin dependent interactions would be induced by the exchange of flavon ϕα in the non-

relativistic limit. As a consequence, even if the mass of the new particles is very small

or exactly zero, they do not mediate a long-range force between unpolarized bodies. Ex-

perimental bounds are derived either from tests of the inverse-square law (ISL) or of the

equivalence principle (EP). In the former case the charges of two test bodies are the masses

m1,2 = N1,2A1,2u, Ai being the mass numbers and u = 0.9315 GeV the atomic mass unit.

Tests of the EP assume charges other than the masses of the two test bodies. Several

choices are possible and in our case the charges are given by N1,2Z1,2. The deviations from

the Newton potential are parametrized by:

δVISL(r) = −Gm1m2

r
αe−r/λ , (2.13)

in tests of ISL, while in the EP case we have:

δVEP(r) = −Gm1m2

r
α̃
Z1

A1

Z2

A2
e−r/λ . (2.14)

where G is the gravitational constant.

To make connection with our framework, we assume dominance of the lightest scalar

and denote its mass and coupling Mϕ = ~/(λc) and Ze, respectively. We can make use of

the experimental bounds with the dictionary

α =
Z1Z2

A1A2

[ReZe]2

4πGu2
, α̃ =

[ReZe]2

4πGu2
. (2.15)
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λ (m) 10−4 10−2 102 104 106 108 1010 1012

Mϕ/2 (eV) 9.87×10−4 9.87×10−6 9.87×10−10 9.87×10−12 9.87×10−14 9.87×10−16 9.87×10−18 9.87×10−20

α 1.07×10−1 5.02×10−4 2.29×10−3 4.76×10−4 5.22×10−6 6.62×10−9 1.06×10−8 4.87×10−8

α̃ − − 1.42×10−8 4.39×10−9 6.11×10−10 7.87×10−13 7.87×10−13 7.87×10−13

|ReZe| 1.98×10−19 1.36×10−20 3.22×10−23 1.79×10−23 6.69×10−24 2.40×10−25 2.40×10−25 2.40×10−25

Table 1. Limits on the coupling strength between matter and a scalar particle ϕ, Mϕ = (~c)/λ,

adapted from refs. [17, 18]. For Mϕ< 1.55×10−14 eV, the limits on α̃ and |ReZe| are dominated by

the results of the MICROSCOPE experiment [19]. The scalar interaction is assumed to affect elec-

trons only. To extract the bounds on Ze, we have chosen the representative value Z1Z2/A1A2 = 0.2.

Typical values of the parameter Z1Z2/A1A2 are between 0.16 and 0.22. In table 1 we show

the present bounds [17] on α and α̃ for some values of λ and the corresponding limit on

Ze, taken as the most restrictive one.

For a fifth force with a range larger than approximately the terrestrial diameter

λ0 ≈ 1.27× 107 m (corresponding to a scalar mass smaller than about 1.55 × 10−14 eV,

the strongest bound on α̃ has been set by the MICROSCOPE collaboration [19], that

has constrained the Eötvös parameter δ(Ti, P t) = 2(aT i − aPt)/(aT i + aPt) in the range

(−1± 13)× 10−15, where aT i,P t are the free-fall accelerations of the two test bodies in the

Earth gravitational field. In our set up and in the limit λ � λ0 the Eötvös parameter is

well approximated by:

δ(Ti, P t) = α̃

(
ZT i
AT i
− ZPt
APt

)
ZEarth

AEarth
. (2.16)

From ZEarth/AEarth = 0.4870 and (ZT i/AT i − ZPt/APt) = 0.05704 we get the following

90% CL limit on |α̃|: |α̃| < 7.87× 10−13, which translates into

|ReZe| < 2.4× 10−25 , (2.17)

the strongest bound to date, for scalar masses below 1.55× 10−14 eV [20, 21].

2.2 Limits on neutrino coupling

For very light scalar mediators, limits on scalar-mediated neutrino interactions come mostly

from cosmology. One of the main predictions of the standard cosmological model is the

existence of a cosmic background of thermal relic neutrinos. Weak interactions kept the

neutrino background in equilibrium with the cosmological plasma in the early universe.

When the temperature of the universe dropped below 1 MeV, neutrinos decoupled and

entered the so-called free-streaming regime. This picture is strongly supported by obser-

vations. Such free-streaming regime can be modified if sufficiently strong scalar-mediated

neutrino interactions are present. The modifications depend on the scalar mass Mϕ. If Mϕ

is much larger than the plasma temperature T , scalar exchange can be efficiently modelled

by an effective four-neutrino interaction. The characteristic interaction rate Γ of scalar-

induced neutrino interactions is proportional to |Zν |4T 5/M4
ϕ, faster than the expansion

rate of the universe at high temperatures. This causes a delay of neutrino decoupling and
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free-streaming, which becomes incompatible with CMB data, unless |Zν | is sufficiently

small [22–26]. Ref. [24] obtains the bound:

|Zν |2

M2
ϕ

< (63 MeV)−2 ≈ 2.16× 107 GF , (2.18)

where Zν is assumed to be flavour-independent, and GF is the Fermi coupling constant.

If Mϕ is much smaller than the plasma temperature T , the rate Γ is proportional to

|Zν |4T , smaller than the expansion rate of the universe at high temperatures. Neutrino

decouples as in the standard picture, but when the temperature becomes sufficiently small,

neutrinos recouple to the cosmological plasma once more and lose their free-streaming. If

this happens too early in the history of the universe, CMB observations are affected. This

leads to the bound [23, 27–29]:

|Zνii| < 1.2× 10−7 . (2.19)

Finally, if ϕ is light and decays of the type νi → νjϕ are allowed, cosmological observations

lead to the limit [23, 27]:

|Zνij | < 2.3× 10−11

(
0.05

m(eV)

)2

, (2.20)

where m is the heavier mass of a given neutrino pair connected by Zνij .
A scalar particle ϕ interacting with neutrinos can be kept in equilibrium with the

universe plasma during big bang nucleosynthesis (BBN). If full equilibrium is reached, ϕ

would contribute to Neff with ∆Neff = 4/7. Even though limits on ∆Neff from BBN are

milder than those obtained from CMB observations and still allow for ∆Neff = 4/7, if we

require that ϕ does not go in thermal equilibrium before the neutrino decoupling, we get

the limit [30]:

|Zνii| < 4.6× 10−6 , (2.21)

which is less stringent than the one in eq. (2.19).

When the temperature of the background medium is high and the coupling of the light

scalar ϕ to the background is strong enough, as for instance in supernovae and in early

universe, ϕ develops a non-negligible thermal mass [13]. This can significantly weaken the

constraint discussed in eq. (2.18). Also the neutrino mass shift δmν can be affected, but

this last effect is negligible in the case of the Earth and Sun environments, the main focus

of our analysis.

In summary, strongly interacting neutrinos are compatible with cosmology provided

they decouple early enough or recouple late enough. In our application the lightest scalar

ϕ will have a mass smaller than the recombination temperature, about 0.1 eV and the

relevant bound is the one derived while Mϕ < T , eqs. (2.19), (2.20). In this we differ from

ref. [12], that applies the stronger bound |Zν |2/M2
ϕ < (3 MeV)−2, independently of the

scalar mass range. This will result in different conclusions.
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2.3 Limits on ultralight boson masses

Limits on ultralight boson masses can also be inferred from purely gravitational systems.

Given the smallness of the gravitational coupling, observable effects can only be expected

if some coherent enhancement takes place. For very light bosons, such an enhancement

can occur around a spinning black hole. Bosons can form bound states with the black

hole, with an exponentially growing occupation number. If confined in the vicinity of a

Kerr black hole, the boson wave function can extract energy and angular momentum from

it, eventually spinning down the black hole. Such superradiance effect is only relevant

when the boson Compton wavelength ~/(Mϕc) is comparable with the black hole size

≈ GMBH/c
2:

GMϕMBH

~c
≈ 1 . (2.22)

Considering stellar black holes, MBH ≈ (5 ÷ 50)M�, and supermassive black holes

MBH ≈ (1÷ 300)× 106M�, the range of boson masses that can be probed is approxi-

mately (3÷ 30)× 10−12 eV and (10−16 ÷ 4× 10−19) eV, respectively. By studying rapidly

spinning astrophysical black holes, we can potentially exclude or confirm the existence of

light massive bosons. The main experimental signatures are the lack of rapidly spinning

black holes and monochromatic gravitational waves that the boson-black hole system can

emit either during a transition between two levels or through annihiliation of bosons into

gravitons. Through the observation of spin in stellar black holes, ref. [31] have excluded

scalar particles with mass in the range:

6× 10−13 eV < Mϕ < 2× 10−11 eV . (2.23)

Ref. [32] analyzed the spin of both stellar and supermassive black holes and have excluded

the scalar mass ranges:

7× 10−20 eV < Mϕ < 10−16 eV , 7× 10−14 eV < Mϕ < 2× 10−11 eV . (2.24)

These bounds apply to spin zero particles, independently on their non-gravitational cou-

plings, which are assumed to be vanishing or negligible. In our study we will adopt the

exclusion region in eq. (2.24).

3 Scalar NSI from flavour symmetries

In this section we show that scalar NSI naturally arise in models based on flavour sym-

metries, which aim at an understanding of fermion masses. In particular, in a large class

of such models, it is always possible to cast the relevant part of the Lagrangian in the

form given in eq. (2.1). Our starting point is the lepton sector of a generic flavour model,

where all masses are field dependent quantities. Being interested in processes with typical

energies well below the electroweak scale, we set the Higgs multiplet to its vacuum expec-

tation value (VEV) v/
√

2. On the contrary, the flavon fields ϕ are assumed to be much

lighter than the energy scale relevant to neutrino oscillations. For this reason we keep ϕ

as dynamical fields in our low-energy theory.
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Throughout this paper we assume Majorana neutrinos, analogous results hold in the

case of Dirac neutrinos. Majorana neutrino masses can arise through the see-saw mecha-

nism or directly from a local higher dimensional Weinberg operator. Using the two com-

ponent notation for spinors we have:

L =
i

2

∑
f

[
f Kf (ϕ)σµ∂µf − (∂µf) σµKf†(ϕ)f

]
+

1

2
Hαβ(ϕ)∂µϕα∂

µϕβ − V (ϕ)

− v√
2

[
ec Y(ϕ)e+ e Y†(ϕ)ec

]
− v2

2ΛL

[
ν C(ϕ)ν + ν C†(ϕ)ν

]
+ . . . , (3.1)

where dots denote additional terms related to gauge interactions, to be accounted for in

a general discussion of neutrino oscillations in matter. The matrices Kf (ϕ) + Kf†(ϕ)

(f = e, ec, ν) and H(ϕ) are positive definite and H(ϕ) is real symmetric. Flavour indices

are understood, Y(ϕ) and C(ϕ) are complex and C(ϕ) is symmetric. They all depend on

a set of dimensionless real scalar fields ϕα. Canonical dimensions can be recovered by

redefining ϕα → ϕα/Λ, Λ being the characteristic scale of flavour dynamics. ΛL is the

scale of B − L breaking, which we keep independent from Λ.

The defining matrices Kf (ϕ), H(ϕ), Y(ϕ), C(ϕ) and the scalar potential V (ϕ) are

constrained by the flavour symmetry of the theory. The latter can be global or local and

can be linearly or non-linearly realized. For example, if the transformations of the flavour

symmetry group Gf are global and linearly realized, their action on the fields f and ϕ can

be described by:

f → Ωff , ϕ→ Ωϕϕ , (3.2)

with unitary (Ωf ) and orthogonal (Ωϕ) matrices. To guarantee invariance under Gf , the

matrices Kf (ϕ), H(ϕ), Y(ϕ) and C(ϕ) should satisfy:

Ω†fK
f (Ωϕϕ) Ωf = Kf (ϕ) , ΩT

ϕH(Ωϕϕ) Ωϕ = H(ϕ) , (3.3)

ΩT
ecY(Ωϕϕ) Ωe = Y(ϕ) , ΩT

ν C(Ωϕϕ) Ων = C(ϕ) . (3.4)

The scalar potential V (ϕ) obeys:

V (Ωϕϕ) = V (ϕ) . (3.5)

IfKf (ϕ) = H(ϕ) = 1, the kinetic terms are canonical. This is not the most general case and

in general flavour symmetries allow for non canonical kinetic terms. If the flavour symmetry

is continuous and local, there are additional gauge interactions beyond the SM ones. The

associated gauge bosons are expected to mediate flavour changing neutral currents and here

we assume they are sufficiently heavy and do not play any role in neutrino oscillations in

matter. If the symmetry is non-linearly realized, as for the case of the modular group, the

matrices Kf (ϕ), H(ϕ), Y(ϕ), C(ϕ) and the scalar potential V (ϕ) have to satisfy properties

which will be specified in concrete examples.

We are interested in Yukawa trilinear interactions of the scalar particles with neutrinos

and with electrons. To analyze them, we proceed through a series of standard steps. In

detail, we expand the functions Kf (ϕ) (f = e, ec, ν), H(ϕ), V (ϕ), Y(ϕ) and C(ϕ) around
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the VEVs ϕ0
α, to the first order. Then we move to a basis where the fermion fields have

canonical kinetic terms. We use the equation of motion to cast all interactions in the

Yukawa form. Finally, we move to the mass eigenstate basis for the scalar fields and for

the charged leptons. We get:

L = i
∑

f=e,ec,ν

f σµ∂µf +
1

2
∂µϕα∂

µϕα −
1

2
ϕαM

2
αβϕβ (3.6)

− ec(me + Zeαϕα)e− 1

2
ν(mν + Zναϕα)ν + h.c.+ . . . ,

where the matrices me and M2
αβ = M2

αδαβ are diagonal and positive definite:

me = UTecm
′
eUe , mν = UTe m

′
νUe , M2 = ΩTM ′

2
Ω ,

Zeα = UTecZeγ
′Ue Ωγα , Zνα = UTe Zνγ

′Ue Ωγα . (3.7)

Notice that we made on neutrinos the same transformation Ue as in the left-handed charged

lepton sector so that in this basis the neutrino mass matrix is diagonalized by the PMNS

matrix. The primed matrices refer to the basis where all fields are canonically normalized.

They are given by:

m′e =
v√
2
Y ′0 , m′ν =

v2

ΛL
C′0 ,

Zeα
′ =

v√
2

[
Y ′α0 −

1

2

(
Y ′0K ′

e†
α0 +K ′

ec

α0

∗
Y ′0
)]

, (3.8)

Zνα
′ =

v2

ΛL

[
C′α0 −

1

2

(
C′0K ′

ν†
α0 +K ′

ν
α0
∗C′0
)]

,

M ′
2
αβ = V ′αβ0 ,

where K ′fα0, Y ′0, C′0, Y ′α0, C′α0 and V ′αβ0 are built in the following way. Starting from the

defining Lagrangian, eq. (3.1), we expand the functions Kf (ϕ), Y(ϕ), C(ϕ), Hαβ(ϕ) and

V (ϕ) around the minimum ϕ0
α of the scalar potential V (ϕ):

Kf (ϕ) =Kf
0 +Kf

α0 ϕ
′
α+. . . , Y(ϕ) =Y0+Yα0 ϕ

′
α+. . . , C(ϕ) = C0+Cα0 ϕ

′
α+. . . ,

Hαβ(ϕ) =Hαβ0+. . . , V (ϕ) =V0+Vαβ0 ϕ
′
αϕ
′
β+. . . , (3.9)

where ϕ′α = ϕα − ϕ0
α and we use the notation Kf

0 = Kf (ϕ0), Kf
α0 = (∂Kf/∂ϕα)(ϕ0) and

similarly for the other quantities. We put kinetic terms in a canonical form through a

combination of a unitary matrix T and a rescaling (D0)−1/2:

1

2
(Df

0 )−1/2T f
†
(Kf

0 +Kf†
0 ) T f (Df

0 )−1/2 = 1 ,

(Dϕ
0 )−1/2TϕT H0 T

ϕ(Dϕ
0 )−1/2 = 1 . (3.10)
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Finally, we define the primed quantities by moving to the basis where kinetic terms are

canonically normalized:

K ′
f
α0 = (Df

0 )−1/2T f
†
Kf
α0T

f (Df
0 )−1/2 ,

Y ′0 = (Dec

0 )−1/2T e
cTY0 T

e(De
0)−1/2 ,

C′0 = (Dν
0)−1/2T νTC0 T

ν(Dν
0)−1/2 , (3.11)

Y ′α0 = (Dec

0 )−1/2T e
cTYα0 T

e(De
0)−1/2 ,

C′α0 = (Dν
0)−1/2T νTCα0 T

ν(Dν
0)−1/2 ,

V ′αβ0 = [(Dϕ
0 )−1/2TϕT ]αα′ Vα′β′0 [Tϕ(Dϕ

0 )−1/2]β′β .

The fields undergo the overall transformation (to simplify the notation here ϕ stands for

the fluctuation ϕ− ϕ0):

f → T f (Df
0 )−1/2Uf f , ϕ→ Tϕ(Dϕ

0 )−1/2Ω ϕ . (3.12)

In particular we are interested in the interaction with the electron (first generation charged

lepton) and the Lagrangian of eq. (3.6) specializes as follows:

L = i
∑

f=e,ec,ν

f σµ∂µf +
1

2
∂µϕα∂

µϕα −
1

2
ϕαM

2
αβϕβ (3.13)

− ec1 [(me)11 + (Zeα)11 ϕα] e1 −
1

2
ν(mν + Zναϕα)ν + h.c.+ . . .

and coincides with that of eq. (2.1). From eq. (3.8) we see that in this class of models

scalar NSI arise not only from the field-dependence of Yukawa couplings, but also from

non-canonical kinetic terms allowed by the flavour symmetry. These give rise to addi-

tional interaction terms between leptons and scalars, which have to be properly included

to analyze the impact of scalar exchange.

4 Models with abelian flavour symmetries

We discuss here two models of lepton masses based on continuous abelian flavour sym-

metries. We first analyze a very simple model, to illustrate the difficulties arising when

looking for observable effects generated by scalar NSI. Then we move to a more complex

model, where the prospects of a detectable signal are more promising.

4.1 A toy model

It is instructive to analyze a simple model with an abelian flavour symmetry group U(1).

Lepton doublets of the three generations are assigned a common charge q/2, while the

overall charge of the bilinear ec1e1 is denoted by p. Both q and p are positive integers. We

neglect intergenerational mixing in the charged lepton sector and we consider canonical

kinetic terms, to start with. If the symmetry is spontaneously broken by a single flavon ϕ,

carrying a negative unit of the abelian charge, the relevant Lagrangian reads:

L = i
∑

f=ec1,e1,ν

f σµ∂µf −
[
y0v√

2

(ϕ
Λ

)p
ec1 e1 +

v2

2ΛL

(ϕ
Λ

)q
ν C0 ν + h.c.

]
, (4.1)
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where y0 and the matrix elements C0ij are of order one (it is not restrictive to assume

y0 > 0), ΛL is the scale associated to the breaking of B−L and Λ is the cutoff scale. When

ϕ acquires the VEV ϕ0, mass and interaction terms are generated:

me1 =
y0v√

2

(ϕ0

Λ

)p
, mν =

v2

ΛL

(ϕ0

Λ

)q
C0 , Ze =

1√
2
p
me1

ϕ0
, Zν =

1√
2
q
mν

ϕ0
. (4.2)

With the above charge assignment, the mass matrix for light neutrinos is of anarchical type,

compatible with present data. The field ϕ is complex and both scalar and pseudoscalar

interactions are induced.2 If the U(1) symmetry is local, the pseudoscalar component of ϕ

gets eaten by the gauge vector boson via the Higgs mechanism. The scalar component of

ϕ describes a physical particle which can be very light. For instance, in a supersymmetric

realization, ϕ can parametrize a nearly flat direction, with a resulting very light scalar

degree of freedom and a large VEV ϕ0. The latter might help suppressing both the coupling

Ze, as we see from eq. (4.2), and the interaction induced by gauge vector boson exchange.

We denote Mϕ the mass of the scalar particle.

As discussed in section 2.1, the interactions of a very light scalar particle are severely

constrained. In the model under discussion the parameters α̃ and λ probed by the experi-

ments testing long range forces are given by:

α̃ =
p2m2

e1

8πGu2ϕ2
0

, λ =
~

Mϕc
. (4.3)

The shift δmν(0) of the neutrino mass matrix at the center of a spherical region of radius

R with spherically symmetric electron density ne(r) is given by:

δmν(0) = −n0
e

pq me1mν

2ϕ2
0

F (MϕR)

M2
ϕ

, (4.4)

where the combination n0
eF (MϕR) is given in eq. (2.9). We can replace the dependence on

ϕ0 by that on α̃ by making use of eq. (4.3) and obtain:

δmν(0) = −4πn0
eGu

2α̃
q mν

p me1

F (MϕR)

M2
ϕ

. (4.5)

In figure 2, in the plane (Mϕ, α̃), we show contours corresponding to |δmν(0)/mν | = 0.001

and |δmν(0)/mν | = 0.0001, probably below threshold for observation with the present

accuracy. We have chosen q/p = 1 and R ≈ 6.955× 105 Km, to estimate the effect in the

sun. We see that not even extremely small scalar masses Mϕ allow to satisfy the bound

on α̃ and, at the same time, to produce a sizable effect in δmν(0). This is due to the

finite region where matter effects take place, at the origin of the cutoff F (MϕR) in δmν(0)

and responsible for the flat behavior of the red curve in figure 2. We also see that, to

deplete |Ze| below the present upper bound, we would need a value of ϕ0/p much larger

than the Planck scale. Essentially no room for an observable effect is left by the existing

constraints in this model. Notice that in figure 2 we let the exclusion region from black

2A factor of 1/
√

2 accounts for the real scalar component in the coupling constants Ze,ν .
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Figure 2. The red (blue) contour shows |δmν(0)/mν | = 0.001(0.0001), for q/p = 1. The combina-

tion n0eF (MαR) is the one of eq. (2.9), with ne(r) from refs. [14, 15]. The vertical bands in purple are

excluded from black hole superradiance. The other colored regions are excluded by tests of the New-

ton law: yellow from test of ISL and blue and pink from tests of the EP for interaction range larger

than 1cm, see the discussion in sections 2.1 and 2.3. Also shown are two dashed contours of ϕ0/p.

hole superradiance to extend up to α̃ = 1, where non-gravitational interactions become

as important as the gravitational ones. In the whole range of scalar masses analyzed

here, these large values of α̃ are already excluded by other constraints. Here and in the

following plots, the effectiveness of superradiance constraints is exploited in a range where

the scalar-electron coupling α̃ is smaller than one by many order of magnitudes.

If we turn on non-canonical kinetic terms, the picture remains qualitatively unchanged.

The U(1) symmetry allows the kinetic functions

Ke(ec)(ϕ) = 1 + be(e
c) |ϕ|2

Λ2
+ . . . , (Kν)ij(ϕ) = δij + bνij

|ϕ|2

Λ2
+ . . . . (4.6)

Here the bf coefficients are generically of order one and dots stand for higher order contri-

butions in the |ϕ|2/Λ2 expansion. We see that the effect of the new terms is to modify the

effective couplings Ze and Zν by subleading contributions. We now have:

Ze =
1√
2

[
p
m̂e1

ϕ0
− (be + be

c
)
m̂e1

ϕ0

(
ϕ2

0

Λ2

)
+ . . .

]
Zν =

1√
2

[
q
m̂ν

ϕ0
−
(
m̂ν

ϕ0
b
′ν + b

′νT m̂ν

ϕ0

)(
ϕ2

0

Λ2

)
+ . . .

]
(4.7)

Here b
′ν is also a matrix with generic, order one entries. The new contributions are sublead-

ing, unless p and/or q vanish. To suppress the electron-scalar interaction we would need

p = 0, but in this case the electron mass would be adjusted by hand and not explained by

the symmetry.
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ec l Higgs ϕ1 ϕ2

U(1)1 p 0 0 −1 0

U(1)2 −q/2 q/2 0 0 −1

Table 2. Charge assignement for a model invariant under U(1)1×U(1)2.

We could also contemplate the possibility of a mixing between ϕ and the Higgs particle

h. The lepton masses are those of eq. (4.2), while the couplings Ze,νϕ are obtained by the

replacement:

p→ p cos θ −
√

2ϕ0

v
sin θ , q → q cos θ −

√
2ϕ0

v
sin θ . (4.8)

Here θ denotes the mixing angle between interaction and mass eigenstates in the (ϕ, h)

sector. For any value of p and ϕ0, we can look for an angle θ such that Zeϕ is reduced to

the tiny value 10−25. For example, if ϕ0 ≈ 1010 GeV and p is of order one, we need an

angle θ ≈ 10−8, tuned to an extremely good precision to achieve the desired cancellation.

In particular, while in this example p/
√

2ϕ0 and sin θ/v are both individually of order

10−10 GeV−1, their difference is required to be twelve order of magnitudes smaller. If

such a miraculous cancellation takes place, by choosing Mϕ = 10−16 eV we would obtain

δm ≈
√

∆m2
atm.

We conclude that, within U(1) models with a single flavon, observable effects induced

by scalar NSI can only occur at the price of a severe fine tuning.

4.2 A variant

In this section we show that in abelian flavour models it is possible to achieve observable

effects. We consider a model invariant under the abelian symmetry U(1)1×U(1)2. Lepton

doublets of the three generations are neutral under U(1)1 and have a common charge

q/2 under U(1)2, while the bilinear ec1e1, neutral under U(1)2, have an overall charge p

under U(1)1 (q and p are positive integers as before). This can be realized via the charge

assignment shown in table 2.

We assume here canonical kinetic terms. Even though the flavour symmetry allows for

non-canonical contributions, these would not play a dominant role in a large portion of the

parameter space. At the same time, by allowing for extra parameters, they would obscure

our discussion. In this limit we have:

Y(ϕ) = y0

(ϕ1

Λ

)p
, C(ϕ) =

(ϕ2

Λ

)q
C0 , (4.9)

giving rise to masses:

me1 =
y0v√

2

(
ϕ0

1

Λ

)p
, mν =

v2

ΛL

(
ϕ0

2

Λ

)q
C0 , (4.10)

where ϕ0
1 and ϕ0

2 denote the VEVs of ϕ1 and ϕ2 respectively. Also in this case the pseu-

doscalar components of ϕ1,2 are eaten up by the gauge vector bosons of U(1)1×U(1)2,
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assumed to be very heavy. Denoting by θ the mixing angle between mass and interaction

bases in the scalar sector, we have (here sθ ≡ sin θ and cθ ≡ cos θ):

Ze1 = p
cθ√

2

me1

ϕ0
1

, Ze2 = p
sθ√

2

me1

ϕ0
1

, Zν1 = −q sθ√
2

mν

ϕ0
2

, Zν2 = q
cθ√

2

mν

ϕ0
2

. (4.11)

The modification of the Newton potential due to scalar exchange is:

δV (r) = −N1N2Z1Z2

4πr

[
(Ze1)2e−M1r + (Ze2)2e−M2r

]
, (4.12)

where M1,2 are the scalar masses. To evade the bounds coming from long range forces,

while leaving room for sizable scalar NSI we assume M1 � M2. We look for a region

of the parameter space where ϕ1 is sufficiently heavy not to appreciably contribute to

δV (r), and ϕ2 is sufficiently light to induce significant scalar NSI effects. For instance, for

M1 ≥ 10−4 eV and ϕ0
1 = 1016 GeV, the contribution of the scalar ϕ1 to δV (r) is beyond the

accuracy of the present tests of ISL and EP. In this region of parameter space we have:

α̃ =
p2s2

θm
2
e1

8πGu2(ϕ0
1)2

, λ =
~
M2c

. (4.13)

The shift δmν(0) of the neutrino mass matrix at the center of a spherical region of radius

R with spherically symmetric electron number density ne(r) is given by:

δmν(0) = −n0
e

sθcθ pq me1mν

2ϕ0
1ϕ

0
2

[
F (M2R)

M2
2

− F (M1R)

M2
1

]
, (4.14)

where the combinations n0
eF (M1,2R) are given in eq. (2.9). To estimate the observability

of such an effect, we work in the region M1 ≥ 10−4 eV and ϕ0
1 = 1016 GeV, where the

contribution to δmν(0) from ϕ1 exchange is negligible. Then the neutrino mass shift can

be expressed as

δmν(0) = ±n
0
eF (M2R)

φ0
2M

2
2

√
8πGu2α̃ mν , (4.15)

with φ0
2 ≡ 2ϕ0

2/(qcθ). As in the previous case, we analyze the effect induced by the sun,

taking R ≈ 6.955 × 105 Km. Since ϕ0
1 is fixed, from eq. (4.13) the bounds on α̃ can be

directly translated in bounds on the combination sθp, shown in figure 3. In the plane

(M2, sθp) we display contours corresponding to |δmν(0)/mν | = 0.1, which we tentatively

take as threhsold for observability, for several choices of the combination φ0
2.

We see that for M2 < 7× 10−14 eV, for sufficiently small sθ and ϕ0
2, there can be room

for detectable effects in neutrino oscillations due to scalar NSI mediated by flavons. We

exploited the fact that the bound coming from long range forces depend on ϕ0
1 but not on

ϕ0
2. We can maximize ϕ0

1 while lowering ϕ0
2 to enhance δmν . However, the VEV ϕ0

2 cannot

be arbitrarily small. Indeed mν ≈ (ϕ0
2/Λ)qv2/ΛL, and the requirement of having the scale

of breaking of the lepton number ΛL larger than 1 TeV leads to ϕ0
2 > 106 GeV for q = 1

and ϕ0
2 > 1012 GeV for q = 2, when assuming Λ = 1018 GeV. In figure 3, this bound is

represented by φ0
2 > 106 GeV since φ0

2 ' 2ϕ0
2/q for small sθ and it is of the same order of

magnitude as ϕ0
2.
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Figure 3. For fixed values of ϕ0
1 = 1016 GeV and φ02 ≡ 2ϕ0

2/(qcθ), contours |δmν(0)/mν | = 0.1.

The combination n0eF (MαR) is the one of eq. (2.9), with ne(r) from refs. [14, 15]. The vertical

bands in purple are excluded from black hole superradiance. The other colored regions are excluded

by tests of the Newton law: yellow from test of ISL and blue and pink from tests of the EP, see the

discussion in sections 2.1 and 2.3. In the brown region ΛL < 1 TeV, see text.

The region of parameter space allowing detectable effects via scalar NSI needs some

amount of fine tuning. Indeed, while M1,2 and sθ are free input parameters, avoiding fine

tuning to achieve M2 � M1 requires the approximate relation M1 ≈ M2/sθ. This can be

derived by the most general real symmetric 2×2 mass matrix in the scalar sector:(
m2 µ2

µ2 M2

)
, (4.16)

with (m2, µ2)�M2. We have M2
1 ≈M2, M2

2 ≈ m2−µ4/M2 and sθ ≈ µ2/M2. Fine tuning

is avoided if the smallest eigenvalue M2
2 does not require a precise cancellation between m2

and µ4/M2, that is M2
2 ≈ µ4/M2 or M1 ≈M2/sθ. In our model it is not possible to satisfy

this relation. Indeed, from figure 3 we see that the ratio M2/sθp is typically much smaller

than M1 ≥ 10−4 eV, assumed to escape limits from long range forces due to ϕ1 exchange.

We conclude that a considerable cancellation should take place between m2 and µ4/M2,

to reproduce a small M2.

Barring naturalness considerations, this model shows that observable effects in matter

neutrino oscillations associated to scalar NSI as predicted by flavour models are indeed

possible. They require a very light scalar degree of freedom with a tiny coupling to electrons,

due to the extremely strong bounds on long range forces. A comparatively larger coupling

to neutrinos is needed to achieve observability. In the above model these ingredients are
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related to the different VEVs of the scalars responsible for electron and neutrino masses

and to the small mixing between the two.

5 Modular invariant models

In this section we shortly review the formalism of supersymmetric modular invariant the-

ories [33, 34] applied to flavour physics [35] and we derive the linearized fermion-modulus

interactions. The Lagrangian L depends on a set of chiral supermultiplets φ comprising

the modulus φ1 = Λτ (Imτ > 0) and other superfields φi (i > 1):

L =

∫
d2θd2θ̄ K(φ, φ̄) +

∫
d2θ W (φ) +

∫
d2θ̄ W (φ̄) . (5.1)

The Lagrangian is invariant under transformations γ of the homogeneous modular group

Γ = SL(2,Z):

τ → γτ =
aτ + b

cτ + d
, φi → (cτ + d)−kiρ(γ)ijφj (i, j > 1) , (5.2)

where a, b, c, d are integers obeying ad − bc = 1 and ρ(γ) is a unitary representation

of the group Γ′N = Γ/Γ(N), obtained as a quotient between the group Γ and a principal

congruence subgroup Γ(N), the integer N being the level of the representation.3 In general

ρ(γ) is a reducible representation and all superfields belonging to the same irreducible

component should have the same weight ki. Some of the superfields φi (i > 1) may

describe flavons, gauge singlets with the scalar component acquiring a large VEV 〈φi〉. We

adopt a minimal Kähler potential:

K(φ, φ̄) = −hΛ2 log(−iτ + iτ) +
∑
i>1

(−iτ + iτ)−kiφīφi . (5.3)

In the following, we denote by (φi, ψi) the spin-(0, 1/2) components of the chiral superfields

φi.
4 The terms bilinear in the fermion fields read [37]:

LF = LF,K + LF,2 , (5.4)

with

LF,K = iKj̄iψ
j̄
σ̄µDµψ

i , LF,2 = −1

2

[
Wij −Wl(K

−1)lm̄Km̄ij

]
ψiψj + h.c. , (5.5)

where unbarred(barred) indices in K and W stand for derivatives with respect to holomor-

phic (anti-holomorphic) fields. The covariant derivative is:

Dµψ
i = ∂µψ

i +
(
K−1

)im̄
Km̄kl∂µφ

kψl . (5.6)

3Following ref. [36], we consider here homogeneous finite modular groups Γ′
N instead of their inhomoge-

neous counterpart ΓN .
4The distinction between superfields and their scalar components should be clear from the context.
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With our choice of the Kähler potential, eq. (5.3), the Kähler matrix Kīj reads:

Kīj =

 h
ξ2

+
∑
l>1

kl(kl + 1)

ξkl+2Λ2
φlφl −

ikj

ξkj+1Λ
φj̄

iki
ξki+1Λ

φi
1
ξki
δij

 , (5.7)

where we define ξ = −iτ + iτ . We assign vanishing weight to the fields that acquire a non

vanishing VEV, such as the flavons. Under this assumption, when fields are set to their

VEVs, the Kähler matrix Kīj is diagonal. Such a case can be easily generalized, without

affecting most of our considerations. The transformation that makes the kinetic terms

canonical is:

φ1 →
〈ξ〉√
h
φ1 , φi → 〈ξ〉ki/2φi, ψi → 〈ξ〉ki/2ψi i > 1, (5.8)

where 〈ξ〉 stands for the VEV of ξ.

By expanding the Lagrangian around the VEV (〈τ〉, 〈φi〉), after rescaling the fields to

make the kinetic term canonical, we get:

L = iψσ̄µ∂µψ −
1

2

[
〈Wij〉〈ξ〉(ki+kj)/2ψiψj

+
2kl√
hΛ

φ1ψlσ
µ∂µψl + 〈Wij1〉

〈ξ〉(ki+kj+2)/2

√
h

φ1ψ
iψj

+〈Wijl〉〈ξ〉(ki+kj)/2φlψiψj + h.c.

]
+ . . . . , (5.9)

where only terms linear in φi are shown and ψ are now restricted to lepton fields. We can

use the equations of motion to eliminate derivative interactions from the above Lagrangian.

We get:

L = iψσ̄µ∂µψ −
1

2

[
〈Wij〉〈ξ〉(ki+kj)/2ψiψj

+ [〈Wij1〉〈ξ〉Λ− i(ki + kj)〈Wij〉]
1√
hΛ
〈ξ〉(ki+kj)/2φ1ψ

iψj

+〈Wijl〉〈ξ〉(ki+kj)/2φlψiψj + h.c.

]
+ . . . . (5.10)

In addition, we have canonical kinetic terms for scalar fields and a generic scalar mass term.

In a complete generic setup, the scalar fields responsible for flavour symmetry breaking

are both the modulus and the flavons. We start by considering minimal models where

flavons are absent and, besides Lagrangian parameters, lepton masses depend only on the

modulus VEV 〈φ1〉 = 〈Λτ〉. If the only field responsible for flavour symmetry breaking

is the modulus φ1, the superpotential for the charged lepton and the neutrino masses,

possibly after seesaw, can be written as:

W = Eci Y
e
ij(φ1)LjHd +

1

2ΛL
LiY

ν
ij (φ1)LjHuHu , (5.11)
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where both Y e
ij(φ1) and Y ν

ij (φ1) are combinations of modular forms. We can decompose

the complex modulus φ1 into real and imaginary part

φ1 =
1√
2

(u1 + iv1) . (5.12)

We assume a generic mixing between u1 and v1, due to some underlying mechanism. Their

mass matrix is a general symmetric real matrix with eigenvalues Mu,v, diagonalized through

the orthogonal transformation:

u1 → cos θ u1 + sin θ v1 , v1 → − sin θ u1 + cos θ v1 , (5.13)

corresponding to φ1 → e−iθφ1. Comparing with the general formalism, we find:

Zeu = − 1√
2
e−iθT e11, Zev = − i√

2
e−iθT e11 ,

Zνu = − 1√
2
e−iθT ν , Zνv = − i√

2
e−iθT ν , (5.14)

where

T e = UTEcX
eUE , T ν = UTEX

νUE . (5.15)

The matrices Xe and Xν are defined as:

Xe
ij =

[
i(kE

c

i + kLj )Y e
ij(〈φ1〉)− Y e

1ij(〈φ1〉)〈ξ〉Λ
] 1√

hΛ
〈ξ〉(k

Ec

i +kLj )/2vd ,

Xν
ij =

[
i(kLi + kLj )Y ν

ij (〈φ1〉)− Y ν
1ij(〈φ1〉)〈ξ〉Λ

] 1√
hΛ
〈ξ〉(k

L
i +kLj )/2 v

2
u

ΛL
(5.16)

with Y e
1ij =

∂Y eij
∂φ1

and Y ν
1ij =

∂Y νij
∂φ1

. The unitary transformations UE , UEc diagonalize the

charged lepton mass matrix M e, while UE also acts on neutrinos:

UTEcM
eUE = diag(me

1,m
e
2,m

e
3) , M e

ij = Y e
ij(〈φ1〉)〈ξ〉(k

Ec

i +kLj )/2vd ,

UTEM
νUE = mν , Mν

ij = Y ν
ij (〈φ1〉)〈ξ〉(k

L
i +kLj )/2 v

2
u

ΛL
. (5.17)

In this basis, the neutrino mass matrix is diagonalized by the physical lepton mixing matrix:

UTPMNSm
νUPMNS = diag(mν

1 ,m
ν
2 ,m

ν
3). The exchange of u1 and v1 leads to deviations from

the Newton law. If the u exchange is dominant, we have

α̃u =
[ReZeu]2

4πGu2
=

[Re(e−iθT e11)]2

8πGu2
, (5.18)

otherwise

α̃v =
[ReZev ]2

4πGu2
=

[Im(e−iθT e11)]2

8πGu2
. (5.19)

The correction to the light neutrino mass matrix is given by

δmν(0) = −n0
e

[
Re(Zeu)

M2
u

F (MuR)Zνu +
Re(Zev)

M2
v

F (MvR)Zνv
]

= −n
0
e

2

[
Re(e−iθT e11)

F (MuR)

M2
u

− iIm(e−iθT e11)
F (MvR)

M2
v

]
e−iθT ν . (5.20)
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5.1 Modular invariant models with flavons

We extend here the previous results to the case where also flavons with vanishing weight

are present. We assume that charged lepton Yukawa couplings depend on a set of flavons

φ, while neutrino Yukawa couplings only depend on the modulus φ1:

W = Eci Y
e
ij(φl)LjHd +

1

2ΛL
LiY

ν
ij (φ1)LjHuHu (l 6= 1) . (5.21)

Decomposing the scalar fields in real and imaginary components:

φl =
1√
2

(ul + ivl) (l = 1, 2, . . .), (5.22)

a generic orthogonal transformation acting on the basis (ul, vl) is needed to diagonalize the

scalar mass matrix:5

ui → Ω
(uu)
ij uj + Ω

(uv)
ij vj vi → Ω

(vu)
ij uj + Ω

(vv)
ij vj , (5.23)

we have:

Zeun =
1√
2

(T em)11(Ωuu + iΩvu)mn Zevn =
1√
2

(T em)11(Ωuv + iΩvv)mn

Zνun =
1√
2
T ν1 (Ωuu + iΩvu)1n Zνvn =

1√
2
T ν1 (Ωuv + iΩvv)1n (5.24)

where

T em = UTEcX
e
mUE , T ν1 = UTEX

ν
1UE . (5.25)

The matrices Xe
m and Xν

1 are defined as:

(Xe
1)ij =

i√
hΛ

(kE
c

i + kLj )Y e
ij(〈φl〉)〈ξ〉

(kE
c

i +kLj )/2vd ,

(Xe
l )ij = −Y e

lij(〈φl〉)〈ξ〉
(kE

c

i +kLj )/2vd (l > 1) ,

(Xν
1 )ij =

[
i(kLi + kLj )Y ν

ij (〈φ1〉)− Y ν
1ij(〈φ1〉)〈ξ〉Λ

] 1√
hΛ
〈ξ〉(k

L
i +kLj )/2 v

2
u

ΛL
(5.26)

with Y e
lij =

∂Y eij
∂φl

and Y ν
1ij =

∂Y νij
∂φ1

. As before, the unitary transformations UE , UEc diago-

nalize the charged lepton mass matrix M e, while UE also acts on neutrinos:

UTEcM
eUE = diag(me

1,m
e
2,m

e
3) , M e

ij = Y e
ij(〈φl〉)〈ξ〉

(kE
c

i +kLj )/2vd ,

UTEM
νUE = mν , Mν

ij = Y ν
ij (〈φ1〉)〈ξ〉(k

L
i +kLj )/2 v

2
u

ΛL
. (5.27)

Knowledge of the couplings in eq. (5.24) allows to estimate the shift in the neutrino mass

matrix due to a region with non-vanishing electron number density, along the same lines

described in the previous section.

5Orthogonality requires the relations Ω(uu)Ω(uu)T + Ω(uv)Ω(uv)T = Ω(vu)Ω(vu)T + Ω(vv)Ω(vv)T = 1 and

Ω(uu)Ω(vu)T + Ω(uv)Ω(vv)T = 0.
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L Ec1 Ec2 Ec3 N c Hu,d Y3(τ)

SU(2)L ×U(1)Y (2,−1/2) (1, 1) (1, 1) (1, 1) (1, 0) (2,±1/2) (1, 0)

Γ3 3 1 1′′ 1′ 3 1 3

kI 1 1 1 1 1 0 +2

Table 3. Representations and modular weights of matter superfields in the benchmark model of

ref. [35]. Also shown are the level-3 weight-2 modular forms Y3(τ).

6 A case study

We apply the previous results to an explicit modular invariant model of lepton masses [35],

that has been shown [38] to successfully reproduce the observed masses and mixing angles.6

The model is realized at level N = 3. Representations and weights of the supermultiplets

are listed in table 3. Neutrinos get their masses via the type I see-saw mechanism.

In a standard notation, see table 3, the superpotential for the charged lepton sector is

given by:

We = αEc1(LY
(2)
3 )1Hd + βEc2(LY

(2)
3 )1′Hd + γEc3(LY

(2)
3 )1′′Hd , (6.1)

where Y3(τ) denote the irreducible triplet of level-3 weight-2 modular forms. The charged

lepton mass matrix reads:

me =

αY1(τ) αY3(τ) αY2(τ)

βY2(τ) βY1(τ) βY3(τ)

γY3(τ) γY2(τ) γY1(τ)

 vd . (6.2)

The superpotential relevant to neutrino masses is:

Wν = g1((N c L)3SY
(2)
3 )1Hu + g2((N c L)3AY

(2)
3 )1Hu +

1

2
ΛL((N cN c)3S

Y )1 . (6.3)

The Dirac neutrino mass matrix mD and heavy Majorana neutrino mass matrix mN take

the following form

mN =

2Y1(τ) − Y3(τ) − Y2(τ)

−Y3(τ) 2Y2(τ) − Y1(τ)

−Y2(τ) − Y1(τ) 2Y3(τ)

ΛL ,

mD =

 2g1Y1(τ) (−g1 + g2)Y3(τ) (−g1 − g2)Y2(τ)

(−g1 − g2)Y3(τ) 2g1Y2(τ) (−g1 + g2)Y1(τ)

(−g1 + g2)Y2(τ) (−g1 − g2)Y1(τ) 2g1Y3(τ)

 vu . (6.4)

The light neutrino mass matrix is mν ' −mT
D(mN )−1mD. Charged lepton masses can

be reproduced by adjusting the parameters α, β and γ, while neutrino masses and the

lepton mass matrix UPMNS depend also on additional five parameters: one overall scale,

6In ref. [38] the model is labelled as D10.
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sin2 θ12 sin2 θ13 sin2 θ23 δCP /π α21/π α31/π

0.3105 0.0224 0.5631 1.4821 1.3089 1.4541

m1(eV) m2(eV) m3(eV) ∆m2
21(eV) ∆m2

31(eV) |mee|(eV)

0.0409 0.0418 0.0647 7.39× 10−5 2.522× 10−3 0.0223

Table 4. Values of neutrino masses and mixing parameters at the best fit point, eq. (6.5), obtained

from the latest global fit of NuFIT v4.1 [39, 40].

the complex combination g2/g1 and the τ VEV. An excellent fit [38] to neutrino masses

and mixing angles is obtained by the choice:7

Re(τ) = 0.476 , Im(τ) = 1.299 ,

|g2/g1| = 1.210 , arg(g2/g1) = 4.752 ,
|g1|2v2

u

ΛL
= 0.020 eV , (6.5)

αvd = 102.253MeV , βvd = 1753.220MeV , γvd = 0.501MeV ,

for normally ordered neutrino mass spectrum. This model can also accommodate inverted

ordering neutrino mass spectrum which is somewhat disfavored by the present data,8 and

we shall not discuss this case in the present work. Neutrino masses and mixing parameters

at the best fit point, eq. (6.5) are shown in table 4.

We evaluate the shift δmν(0) in eq. (5.20) at the center of the sun, taking

R = 6.955× 105 Km and ne(r) from refs. [14, 15], by assuming the v1 component of the

modulus sufficiently heavy to escape existing bounds on v couplings. The u1 exchange is

dominant, eq. (5.18) applies and δmν(0) is saturated by the first contribution in eq. (5.20):

δmν(0) = −n
0
e

2
Re(e−iθT e11)

F (MuR)

M2
u

e−iθT ν . (6.6)

The other possible case, when u1 decouples and v1 dominates both the long range force and

the mass shift δmν(0), is obtained from the former case through the parameter redefinition

θ → π/2+θ, Mu →Mv. Thus, without loss of generality, we can focus on the u1-dominated

scenario. Expressing Re(e−iθT e11) in terms of α̃, we find the neutrino mass shift δmν(0) is

given by

δmν(0) = ±n0
e

√
2πGu2α̃u

F (MuR)

M2
u

e−iθT ν , (6.7)

where the “+” and “−” signs correspond to θ − arg(T e11) = arccos(
√

8πGu2α̃u/|T e11|) and

θ − arg(T e11) = π − arccos(
√

8πGu2α̃u/|T e11|) respectively. From the eqs. (5.14)–(5.16), we

see that T ν is of order mν/Λ. To obtain an observable effect while keeping |Re(Zeu)| =

|Re(e−iθT e11)|/
√

2 close to 10−25, we need Λ ≈ 109 GeV and Mu ≤ 10−16 eV. The scalar

neutrino coupling is of order mν/Λ ≈ 10−20, safely below the current limits. At the same

7These values, updating those in ref. [38], are obtained from the latest global fit of NuFIT v4.1 [39, 40].

For other global fits, see [41].
8The combination of oscillation and nonoscillation neutrino data favors normal ordering at 3.2 − 3.7σ

level [41].
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104Δm21
2 [eV2]

sin2θ12

Figure 4. ∆m2
21 and sin2 θ12 versus Mu for Λ = 5 × 109 GeV (left panel) and versus Λ for

Mu = 10−22 eV (right panel). We set h = 1 and the angle θ has been tuned to suppress the scalar-

electron coupling below the experimental bound. Solid(dashed) line for plus(minus) sign in eq. (6.7),

respectively. The darker(lighter) green and orange bands show the present 1σ(3σ) allowed region

from [39, 40]. The combination n0eF (MαR) is the one of eq. (2.9), with ne(r) from refs. [14, 15].

The vertical bands in purple are excluded from black hole superradiance.

time, since |T e11| ≈ me/Λ ≈ 10−12, the phase difference |θ − arg(T e11)| should be kept very

close to π/2. It turns out that in the model under study, arg(T e11) ≈ π
2 at the best fit

point, such that the angle θ is require to be around 0 or π. This means there is almost no

mixing between u1 and v1.

Figure 4 shows the most important deviations from scalar NSI. They affect the solar

oscillation parameters ∆m2
21 and sin2 θ12. In these plots we have fixed |ReZeu| =

√
4πGu2α̃

such that the bounds on α̃ extracted from the tests of ISL and EP are satisfied. This is

always possible by tuning the angle θ. The smaller Λ, the higher the degree of the tuning re-

quired. For Λ larger than about 1011 GeV, ∆m2
21 and sin2 θ12 are essentially unchanged due

to the smallness of the scalar-neutrino coupling and the saturation effect due to the factor

F (MR). For 108 GeV ≤ Λ ≤ 1010 GeV the neutrino mass shift δmν(0) can become compa-

rable to the leading order neutrino mass matrix, and some cancellation between them can

occur, producing a dip in sin2 θ12. For fixed and sufficiently small values of the scalar mass,

such as Mu = 10−22 eV, the deviations for ∆m2
21 and sin2 θ12 can be very large, as shown

in the right panel. One of the reason for such a behavior is that the model predicts nearly

degenerate m1,2 neutrino masses with a mass difference of about 0.0009 eV, see table 4. It

suffices to perturb these masses in one part over one hundred to upset the prediction for

∆m2
21 and similarly for sin2 θ12. Moreover, as we see from the right panel of figure 4, for

sufficiently small values of Λ, the neutrino mass shift δmν(0) dominates over the leading

order neutrino mass matrix and the neutrino mixing parameters receive huge corrections.

In figure 5 we estimate the region of the parameter space already excluded by the

experimental data of ∆m2
21 and sin2 θ12 at 3σ level [39, 40]. An accurate determination

of such a region would require a full simulation of neutrino oscillations in the sun, with
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Figure 5. Exclusion regions in the plane (Mu,Λ) from the data of ∆m2
21 (left panel) and sin2 θ12

(right panel), see text for explanation. The blue and green areas are for the plus and minus signs

in eq. (6.7) respectively. The vertical bands in purple are excluded from black hole superradiance.

neutrino masses and mixing angles varying along the sun profile, which goes beyond the

scope of this work. In our estimate, we compare the values of ∆m2
21 and sin2 θ12 evaluated

at the center of the sun with the results of the most recent global fit and we declare

excluded the parameters leading to a deviations larger than 3 σ. The angle θ is tuned to

keep the scalar-electron coupling at the largest value allowed by the current bounds, while

the parameter h is fixed to 1. Within this simple-minded approach, we see that a sizable

portion of the parameter space of the model is already excluded by the present data. We

see that ∆m2
21 is more effective than sin2 θ12 to constrain the model.

The above results apply to a specific model, but probably some lessons can be extended

to the full class of modular invariant models. If the only flavon is the modulus, models in

this class have the same number of extra parameters, beyond those required to fit oscillation

data. From dimensional analysis we expect a similar dependence of the coupling Ze and Zν

on the lepton masses and the cutoff scale Λ. Thus we foresee qualitatively similar effects

from scalar NSI. Moreover, since in this class of models m1 and m2 are typically very

close, independently on the type of mass hierarchy, we expect that large deviations in the

(∆m2
21, sin

2 θ12) sector due to scalar NSI are possible. If we consider also models falling

in the framework discussed in section 5.1, where charged leptons and neutrinos get their

masses from two different scalar sectors, characterized by different flavour scales, it might

be possible to alleviate the fine tuning required to adequately suppress the scalar-electron

coupling.

7 Discussion

New scalar particles are naturally expected in most of SM extensions attempting to explain

the flavour puzzle. Common to these extensions is the concept that the observed Yukawa

couplings originate from the VEVs of field-dependent quantities. The new scalar particles

mediate new, so far undetected, interactions among the SM fermions, described by higher-

– 25 –



J
H
E
P
0
6
(
2
0
2
0
)
1
3
4

dimensional operators depleted by the scale of flavour dynamics. To avoid new detectable

sources of flavour changing neutral currents, such scale is often assumed to be much larger

than the electroweak scale. Nevertheless at least a portion of the parameter space of the

above scenario can still be tested in present experiments. Indeed, in the lepton sector

scalar exchange gives rise to scalar NSI, resulting is a shift of the neutrino mass matrix

when neutrinos propagate in a medium with non-vanishing electron number density. If

sufficiently large, this shift could alter the standard picture of neutrino oscillations and

lead to an observable effect, for instance in solar neutrino oscillations.

In the center of a spherical region of radius R with uniform electron number density

n0
e neutrinos experience a mass shift

δmν(0) = −n0
e

Re(Ze)Zν

M2(R)
, (7.1)

where Ze and Zν are the couplings of the scalar field to electrons and neutrinos and M(R) is

the effective scalar mass, approximately equal to max(M, ~/(Rc)). The important point that

M(R) is not simply the mass of the scalar particle, but a scale bounded by the inverse size

of the region where electrons are concentrated, has been recently highlighted in ref. [12]. To

maximize the effect we are led to consider extremely light scalar mediators. In the sun the

smallest value of M(R) is approximately ~/(Rc) ' 2.84× 10−16 eV, realized for any scalar

mass M smaller than or equal to ~/(Rc). Scalar masses in the window (10−19 ÷ 10−16) eV

are excluded by experiments looking for super-massive black-hole superradiance.

Even in presence of the huge enhancement provided by such small mediator mass, the

size of the effect is severely bounded by the existing limits on scalar-electron and scalar-

neutrino couplings. For tiny scalar masses, the limits on scalar-electron couplings are

dominated by the negative results of the search for new long-range forces. In the present

work we included the results of the MICROSCOPE experiment that, for scalar masses

below about 1.5 × 10−14 eV, has set the strongest bound on the scalar-electron Yukawa

coupling: |ReZe| < 2.4× 10−25. Scalar-neutrino couplings are constrained by cosmological

data. In the history of the universe, scalars with masses of the order 3 × 10−16 eV or

below can be treated as massless, their interaction rate is proportional to the universe

temperature T and become relevant only after neutrino decoupling. From CMB data the

bounds |Zνii| < 1.2× 10−7 and |Zνij | < 2.3× 10−11[0.05/m(eV)]2 [m = max(mi,mj) (i 6= j)]

follow. They are stringent, but much less than the one adopted by ref. [12]: |Zν |2/M2 <

(3 MeV)−2 or |Zν | < 10−22×M(eV)/(3×10−16). The different set of bounds adopted here

is at the origin of new numerical results and different conclusions. If no further restrictions

other than the experimental ones apply to the relevant parameters, from eq. (7.1) we see

that there is a considerable region in parameter space where the shift of neutrino masses

due to scalar NSI is observable in solar neutrino oscillations.

Although the previous conclusion is rather encouraging, it is highly desirable to verify

whether such region of parameters is favoured or not in physically motivated extensions

of the SM. For this reason, in this paper we have analyzed scalar NSI in a specific class

of models, aiming at the description of lepton masses and mixing parameters within the

framework of broken flavour symmetries. In this context the scalar particles are nothing
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but the flavons, or the modulus in modular invariant models. A detectable effect from

scalar NSI would allow us to access the otherwise elusive dynamics of the flavon sector.

We have proceeded under the working assumption that in these models the mass of

one of the flavons or modulus can be as small as 3×10−16 eV. Such a fantastic suppression

compared to other known scales might pose a new hierarchy problem, but is not contra-

dicted by experiments. Concerning the couplings of such a light scalar, in the class of

models investigated here the functional dependence of Yukawa couplings is constrained by

the flavour symmetry and the relevant parameters Ze and Zν cannot take arbitrary values.

Very roughly, at the level of order of magnitudes, in the presence of a single scalar field ϕ

acquiring the VEV ϕ0 we have:

Ze ≈ me

ϕ0
≈ 5× 10−20

(
1016

ϕ0(GeV)

)
,

Zν ≈ mν

ϕ0
≈ 5× 10−27

(
mν(eV)

0.05

)(
1016

ϕ0(GeV)

)
. (7.2)

A rough estimate of the expected shift, gives the result:

δmν(0)

mν
≈ −0.006

(
n0
e(eV3)

1011

)(
3× 10−16

M(eV)

)2(
1016

ϕ0(GeV)

)2

. (7.3)

From eqs. (7.2) we see that, for reasonable values of the scalar VEV ϕ0, the electron-

scalar coupling cannot satisfy the bound set by the MICROSCOPE experiment. To verify

the existence of parameters allowing an observable effect and not excluded by the present

limits, we have explored more carefully specific symmetry realizations. We have analyzed

two models where scalar NSI can be potentially detected. In the first model the flavour

symmetry is abelian. The second one is modular invariant and provides an excellent fit

to the observed neutrino masses and lepton mixing angles in terms of five parameters.

In both models the electron-scalar coupling is suppressed below the existing limits by a

mixing angle describing the fraction of the ultra-light scalar that couples to the electron.

In the first model the neutrino-scalar coupling can be even enhanced with respect to the

estimate in eq. (7.2) by the VEV of an independent scalar multiplet. In general, the desired

suppression might also be induced by an appropriate mixing between the flavon/modulus

and the Higgs field. In both models observable effects are achievable in solar neutrino

oscillations while respecting all experimental bounds. Modular invariant models typically

predict nearly degenerate m1,2 neutrino masses, with m2 − m1 of the order of 1 meV,

independently on the type of mass hierarchy, As a consequence, even small corrections to

the neutrino mass matrix induced by scalar NSI, can result in sizable effect at the level of

the solar oscillation parameters (∆m2
21, sin

2 θ12).

The major obstacle to observability is represented by the extremely small value of

the scalar-electron coupling, requiring an additional suppression factor beyond the one

provided by the scalar VEV in eq. (7.2). The ingredients of such extra suppression are

present in most of the existing constructions, being related to the expected mixing in

the scalar sector. Though almost unavoidably present, such a mixing must however be

accurately tuned to provide the desired set of couplings. The region of parameter space
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surviving the experimental bounds is limited, but has not yet shrunk to zero. The scalar

sector of models based on flavour symmetries is often designed only to produce a suitable

set of VEVs and its dynamics is neglected in most of the cases, especially if the involved

breaking scales are very large. The detection of effects from scalar NSI would represent

a major accomplishment and would open the way to directly access the flavon dynamics.

Moreover the shift of the predicted neutrino mass matrix is closely related to the flavour

symmetry pattern, thus providing additional precious information.
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