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1 Introduction

The main production mode of the Higgs boson at the Large Hadron Collider (LHC) is

via gluon fusion. In perturbative Quantum Chromo Dynamics (QCD) the production is

mediated by a quark loop that couples to the final-state Higgs. The quark-Higgs coupling

is proportional to the quark mass, hence the largest contribution is given by corrections

involving a top-quark. Being mediated by a quark loop, the leading-order (LO) corrections

require the computation of one-loop amplitudes while the next-to-leading-order (NLO)

corrections require the computation of two-loop amplitudes and so on. The inclusive LO

corrections to Higgs production have been computed in the full theory at LO in [4] and

at NLO in [5, 6]. On the other hand, the computation of the higher order corrections is

much more challenging, and complete results in the full theory are not yet available. The

computation can be considerably simplified in the limit where the top quark is assumed to

be infinitely heavy, while the other quarks are assumed to be massless. This limit is known

as the Higgs Effective Field Theory (HEFT). The next-to-next-to-leading-order (NNLO)

QCD corrections have been computed in the HEFT in [7–9] while, more recently, the cor-

responding next-to-next-to-next-to-leading-order (N3LO) corrections have been computed

in [10, 11].
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In addition to inclusive cross-sections, differential cross sections play an important

role in the study of the properties of the Higgs boson. In particular, the Higgs may

couple to particles not predicted by the Standard Model, and many such effects will be

best studied by observing the transverse momentum (pT ) distribution of the Higgs [12–

26], particularly at high pT . In the full theory the Higgs plus jet production cross section

and the pT distribution are only known at LO. At NLO, the top-quark contributions

have been computed in [27], while the top-bottom interference was computed in [28] by

combining the HEFT with an asymptotic expansion around small bottom-mass. At higher

perturbative order no result is available in the full theory, and only partial results are

known in the HEFT. More specifically, the NNLO corrections to the Higgs plus one jet

production and the Higgs pT distribution are known in the HEFT. However, while the

HEFT approximation works well for inclusive observables, it diverges very rapidly for high-

energy differential observables, such as the high pT distribution of the Higgs (see e.g. [29]

and references therein).

To this date no complete result for the Higgs plus jet amplitudes at NLO is available

in the full theory. The first step in this direction has been taken in [1] and, more recently,

in [2, 3], where the planar master integrals and one of the two non-planar families of master

integrals at two loops have been computed in terms of one-dimensional generalized power

series. This technique is not constrained in any way to a particular kinematic region or a

specific configuration of the relevant masses, and allows for the efficient computation of the

master integrals while keeping the full dependence on all the mass scales. In this paper,

we apply this technique to compute the remaining family of non-planar master integrals.

Besides the NLO QCD corrections to Higgs plus jet production, these master integrals

are an ingredient of the NLO corrections to Higgs decay to three partons, and are also a

building block of the NNLO inclusive corrections to Higgs production in the full theory,

where the Higgs plus jet amplitudes appear as the single real radiation contribution.

The paper is organised as follows. In section 2 we define the non-planar integral family

computed in this paper. In section 3 we review the differential equations method for

dimensionally regulated Feynman integrals, and we discuss the structure of the differential

equations of our integral family. In section 4 we describe our solution strategy, i.e. we

solve differential equations along contours in the space of kinematic invariants in terms

of generalized power series. In section 5 we show how the expansion strategy is used to

evaluate the master integrals in a very large sample of points in the physical region, for

both the top- and bottom-quark contributions. In section 6 we draw our conclusions and

we discuss directions for future work.

2 The integral family

As discussed in ref. [2], six seven-propagator integral families contribute to the two-loop

QCD contribution to H + jet production. Of these families, four are planar and have been

computed in ref. [1], and of the non-planar, one was computed in ref. [2] and the remaining

one, denoted family G, will be the topic of the present paper.
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Figure 1. The integral family with momenta and propagator labels.

That integral family is defined by

Ia1a2a3a4a5a6a7a8a9 = e2γEε
∫ ∫

dDk1d
Dk2

(iπd/2)2
P−a88 P−a99

P a11 P a22 P a33 P a44 P a55 P a66 P a77

(2.1)

with

P1 = −(k1 − k2)2, P4 = m2 − (k2−p3)2, P7 = m2 − (k1+p1+p2)
2,

P2 = m2 − (k2+p1+p2)
2, P5 = m2 − k21, P8 = m2 − k22, (2.2)

P3 = −(k1−k2+p3)2, P6 = m2 − (k1+p2)
2, P9 = −(k1−k2−p1)2.

Only P1-P7 can appear as genuine propagators, so we have a8 and a9 restricted to the

non-positive integers. The kinematics is p21 = p22 = p23 = 0 and additionally

s ≡ (p1+p2)
2, t ≡ (p1+p3)

2, u ≡ (p2+p3)
2, p24 = (p1+p2+p3)

2 = s+t+u, (2.3)

where m2 denotes the squared mass of the quark that couples to the Higgs, and p24 the

squared mass of the Higgs.

By using integration-by-parts (IBP) [30–33] reduction methods [34, 35], we identify a

set of 84 master integrals for this family, whose diagrams are shown in figure 2. With those

master integrals we defined a basis of Feynman integrals which is presented in appendix A.

3 Differential equations for the integral family

Given a basis of N master integrals ~I(ε, ~s), where ε is the dimensional regulator defined

by D = 4− 2ε and ~s = {s1, . . . , sn} is a set of n Lorentz invariants, it is possible to define

a closed system of linear, first order differential equations [36–40] for ~I(ε, si) that in full

generality reads,

∂si
~I(ε, ~s) = Msi(ε, ~s)

~I(ε, ~s), (3.1)

where ∂si ≡ ∂
∂si

and Msi is a set of N ×N matrices.
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31 32,33 36,3734,35 38,39 40-42

43-46 50-5247-49 53-57 58-62 63-66

80-8476-7972-757167-70

28-3025-2722-2419-211817

16151413

3

12

8,9

10,11

6,74,521

Figure 2. The 84 master integrals. Shown on the figure is the sector, i.e. the set of propagators, to

which the master integrals belong. Higher powers of propagators, numerators, or prefactors are not

shown. External momenta are labelled using pij = pi+pj and p4 = p1+p2+p3. Masses (internal as

well as external) are indicated with a thicker line.

The choice of the basis integrals is not unique, and by performing a basis change
~B = T~I the differential equations transform according to,

∂si
~B(ε, ~s) =

(
TMsiT

−1(ε, ~s)−T∂siT
−1(ε, ~s)

)
~B(ε, ~s) . (3.2)

In ref. [41] it was conjectured that with a proper basis choice it is possible to cast the

differential equations for Feynman integrals in the following simplified form,

∂si
~B(ε, ~s) = εAsi(~s)

~B(ε, ~s) , (3.3)

where the dependence on ε is factorised out, and the matrices Asi(~s) depend only on the

invariants ~s. Such a system of differential equations is said to be in canonical form, and the

basis ~B is referred to as the canonical basis. A canonical system of differential equations

is equivalent to the following equation in differential form,

d ~B(ε, ~s) = ε dÃ(~s) ~B(ε, ~s) , (3.4)
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where, by construction, the matrix Ã satisfies

∂siÃ(ε, ~s) = Asi(ε, ~s) . (3.5)

The differential equation (3.4) can be formally solved in terms of a path-ordered ex-

ponential

~B(ε, ~s) = P exp

(
ε

∫
γ
dÃ(~s)

)
~B(ε, ~s0) , (3.6)

where γ is an integration path connecting a boundary point ~s0 to ~s, and P is the path-

ordering operator. In dimensional regularization we are generally interested in a solution

around ε = 0. By performing the expansion for small ε, the path-ordered exponential

translates to iterated integrals over the entries of Ã(~s). Specifically, the solution to all

orders of ε is

~B(ε, ~s) = ~B(ε, ~s0) +
∑
k≥1

εk
k∑
j=1

∫
0≤tj≤...≤t1≤1

γ∗(dÃ(t1)) . . . γ
∗(dÃ(tj)) ~B

(k−j)(~s0) , (3.7)

where γ : [0, 1]→ Rn and γ∗(dÃ(ti)) = ∂Ã(ti)
∂ti

dti, while ~B(i)(~s) denotes the i-th coefficient

of the ε-expansion.

So far we made no assumptions on the class of functions arising from the iterated

integrals of eq. (3.7). A large class of master integrals admits a canonical basis such that

the matrix Ã(~s) is a Q-linear combination of logarithms of rational or algebraic arguments.

This form also implies that the transformation T(ε, ~s) to the canonical basis is rational or

algebraic. The logarithms can be chosen in such a way that there are no Q-linear relations

between them. In the literature, the arguments of the independent logarithms are typically

referred to as letters, while the set of letters is referred to as the alphabet.

If the alphabet contains only rational functions, the solutions can be directly expressed

in terms of multiple polylogarithms [42], which are defined recursively as,

G(a1, a2, . . . , an, x) =

∫ x

0

dt

t− a1
G(a2, . . . , an, t), (3.8)

with G(, x) ≡ 1 and G(~0n, x) ≡ log(x)n

n! . On the other hand, the general case where the

alphabet contains algebraic functions is much less understood. In some cases it is possible

to rationalize the algebraic functions by a suitable reparametrization of the invariants,

reducing in this way the problem to a rational one. If a rational parametrization is not

available, it is possible, in some case, to define an ansatz for the solution in terms of

polylogarithms of suitably chosen (algebraic) arguments. The unknown parameters of

the ansatz are then fixed by solving the differential equations and by imposing boundary

conditions (see e.g. [1, 2, 43–47]). Nonetheless, in the general algebraic case, it is not

known whether the differential equations always admit a solution in terms of multiple

polylogarithms.

More recently, a lot of progress has been made in the study of Feynman integrals

which evaluate to elliptic generalizations of multiple polylogarithms (eMPLs) [1, 11, 48–

80]. However, while in some cases it is possible to define a basis that casts the differential
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equations in canonical form (see e.g. [75, 76, 80, 81]), little is known about their gen-

eral analytic properties and how to systematically solve them in terms of elliptic multiple

polylogarithms.

As we will see in the next sections, the differential equations for the integral family

considered in this paper depend on complicated algebraic functions. Moreover some equa-

tions are coupled, and their solution involves functions of elliptic type. In this case finding

a closed form solution for the integrals seems to be out of reach with current technology.

Nonetheless, having phenomenological applications in mind, we follow a different approach,

based on the series solution of the differential equations along contours in the space of the

kinematic variables [3].

3.1 Canonical integrals

We denote the set of Lorentz invariants as ~s = {s1, s2, s3, s4} = {s, t, p24,m2}. The first 71

master integrals of the basis chosen for family G are such that the system of differential

equations are in canonical form. Namely, they satisfy eq. (3.4). The matrix Ã can be

constructed by using the following iterative definitions,

Ã1 ≡
∫

As1ds1 , Ãi ≡
∫ (

Asi − ∂si
i−1∑
j=1

Aj

)
dsi , i = 2, . . . , 4 , (3.9)

and taking

Ã(ε, ~s) =

4∑
i=1

Ãi(ε, ~s). (3.10)

For this integral family, the matrix Ã(~s) is a Q-linear combination of 76 logarithms de-

pending on 11 different square roots. The full set of letters and square roots is presented

in appendix B. Because the letters contain numerous non-simultaneously rationalizable

square roots, it is not manifest that the basis integrals admit polylogarithmic solutions at

all orders in ε. We will nonetheless refer to the integral sectors composed of the first 71

integrals as the polylogarithmic sectors. This is motivated by the fact that it was shown in

refs. [1, 2] that the planar Higgs + jet integral families, and the non-planar integral fam-

ily F, have similar canonical subsectors, for which polylogarithmic results were explicitly

obtained at weight 2.

It will also be interesting to study the problem of finding polylogarithmic solutions for

these sectors by using the methods recently put forward in [47].

3.2 Elliptic integrals

In the following we will use the notation Bi−Bj to denote the range of integrals Bi, Bi+1,

. . . , Bj . Similarly, we will use the notation ~Bi−j to denote the vector (Bi, Bi+1, . . . , Bj).

Integrals B72−B84 introduce functions of elliptic type. The appearance of functions of

elliptic type can be observed at the level of the maximal cut, which gives an indication of

the type of functions which appear in the full solution for the integrals in a given sector.

When the maximal cut of an integral is elliptic, we expect that the integral cannot be

– 6 –
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expressed [60, 63, 82–84] in terms of multiple polylogarithms. Let us discuss the maximal

cut for integrals B72−B84. These integrals define three integral sectors, i.e. B72−B75,

B76−B79 and B80−B84. Performing the maximal cuts of the basic integral in each of

these sectors in d = 4 we get, using the loop-by-loop Baikov representation [63, 82],1 the

univariate integrals,

B72−B75 : Cut(I0111111100) =

∫
dz

s
√(

(z+p24)
2−4m2p24

) (
(z+t)2+4m2tu/s

) , (3.11)

B76−B79 : Cut(I1101111100) =

∫
dz

s
√(

(z+p24)
2−4m2p24

) (
(z+u)2+4m2tu/s

) , (3.12)

B80−B84 : Cut(I1111111100) =

∫
dz

s z (z+p24−s)
√

(z+t)2+4m2tu/s
. (3.13)

The first two of these evaluate to elliptic integrals of the first kind, while the latter evaluates

to a combination of logarithms. This corresponds to the two elliptic curves,

y2 =
(
(z+p24)

2−4m2p24
) (

(z+t)2+4m2tu/s
)
,

y2 =
(
(z+p24)

2−4m2p24
) (

(z+u)2+4m2tu/s
)
, (3.14)

being present in the results.

The integrals B72−B75 are planar, and indeed that sector is equivalent to the sector

of the integral A66 discussed in refs [1, 3]. Likewise the integrals B76−B79 are merely a

crossing thereof with p1 ↔ p2, corresponding to t ↔ u. The fact that eq. (3.13) does not

evaluate to elliptic integrals does not mean that such structures are absent in the un-cut

integrals, as elliptic curves would appear at the sub-maximal cuts corresponding to the

sectors B72−B75 and B76−B79.

The appearance of functions of elliptic type can be also observed by analyzing the

relevant system of differential equations. Integrals B72−B84 satisfy,

∂

∂si
~B72−84(~s, ε) =

∞∑
j=0

εjA′
(j)
si (~s) ~B72−84(~s, ε) + ~G72−84(~s, ε), (3.15)

where the vector ~G72−84(~s, ε) depends on the canonical integrals ~B1−71(~s, ε), and the ho-

mogeneous matrix has the schematic form,

A′
(0)
si (~s) =



∗ 0 0 ∗ 0 0 0 0 0 0 0 0 0

∗ 0 0 ∗ 0 0 0 0 0 0 0 0 0

∗ 0 ∗ ∗ 0 0 0 0 0 0 0 0 0

∗ 0 0 ∗ 0 0 0 0 0 0 0 0 0

0 0 0 0 ∗ 0 0 ∗ 0 0 0 0 0

0 0 0 0 ∗ 0 0 ∗ 0 0 0 0 0

0 0 0 0 ∗ 0 ∗ ∗ 0 0 0 0 0

0 0 0 0 ∗ 0 0 ∗ 0 0 0 0 0

∗ 0 0 ∗ ∗ 0 0 ∗ 0 0 0 0 0

∗ 0 0 ∗ ∗ 0 0 ∗ 0 0 0 0 0

∗ 0 0 ∗ ∗ 0 0 ∗ 0 0 0 0 0

∗ 0 0 ∗ ∗ 0 0 ∗ 0 0 0 0 0

∗ 0 0 ∗ ∗ 0 0 ∗ 0 0 0 0 0



, (3.16)

1The maximal cut can also be computed by using the loop-by-loop approach in momentum space [60].
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where the lines separate the 3 elliptic sectors. In [60] it was observed that the homogeneous

differential equation of a given integral is solved by the maximally cut integral. This implies

that, when the maximal cut is elliptic, the solution of the integral can be expressed in terms

of iterated integrals over functions of elliptic type. As seen from eqs. (3.11) and (3.12),

we encounter this scenario for integrals B72−B75 and B76−B79. On the other hand, the

maximal cut of sector B80−B84 is logarithmic. However, as seen from eq. (3.16), this sector

couples to the lower elliptic sectors via inhomogeneous terms of the differential equations,

implying that these integrals can be expressed in terms of iterated integrals over the same

functions of elliptic type.

We remark that the presence of multiple elliptic curves renders the functional form of

the solution an open problem (but see e.g. [75] for progress in this direction).

4 Series expansion along contours

We consider the series expansion strategy outlined in [2, 3] (see also [11, 85–90] for the ap-

plication of expansion methods to single scale processes, and [91–96] for expansion meth-

ods applied to multiscale problems in particular kinematic limits). The strategy relies

on parametrizing the integrals along straight line segments, for which we solve the corre-

sponding differential equations in terms of one-dimensional generalized series. We briefly

review the strategy here, and highlight aspects that are specific to the integral family under

consideration. We start from the system of differential equations of the basis defined in

appendix A, which has the form,

d ~B = M ~B , (4.1)

where M =
∑

si
Msi(ε, ~s)dsi, and where we otherwise suppress variable dependence in the

notation. For convenience, we put m2 = 1 without loss of generality. We consider a generic

line parametrized as,

~γ(λ) = {γs(λ), γt(λ), γp24(λ)} . (4.2)

The differential equations along this line take the form,

∂

∂λ
~B = Mλ

~B , (4.3)

where Mλ =
∑

si
Msi(ε, ~s)

∂γsi
∂λ . Next, we expand the differential equations in ε to obtain

a system for each order in ε. In particular, we let,

~B =
∞∑
k=0

B(k)εk, M =
∞∑
k=0

M(k)εk . (4.4)

Note that both expansions start at finite order for our choice of basis. The system of

differential equations now takes the following form, order-by-order in ε,

∂

∂λ
~B(i) = M

(0)
λ
~B(i) +

i∑
k=1

M
(k)
λ
~B(i−k) , (4.5)

– 8 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
3

where we separated out the homogeneous part M
(0)
λ
~B(i) from the inhomogeneous part.

The homogeneous matrix M(0) determines the sequence in which the individual integrals

should be integrated, and which integrals are coupled.

Let us consider first the polylogarithmic sectors and review the series solution strategy

for those. The system of differential equations becomes simply,

∂

∂λ
~B(i) = M

(1)
λ
~B(i−1) , (4.6)

where M
(1)
λ = ε

(
∂Ã/∂λ

)
, and Ã was defined in eq. (3.4). Hence, the work for the polylog-

arithmic sectors amounts to solving a sequence of first order differential equations without

homogeneous parts. The general solution is easily found from a single integration,

~B(i)(λ) =

∫ λ1

λ0

M
(1)
λ
~B(i−1)dλ+ ~B(i)(λ0) . (4.7)

Importantly, we solve the integration by performing series expansions in λ. The only alge-

braic terms in our basis and in the matrices are square roots, so that the expansions of the

matrix elements are in terms of integer and half-integer powers of λ. After integrating, the

series expansions will also contain logarithmic terms. Therefore, in general each integration

in eq. (4.7) is of the form, ∫
λq log(λ)p , (4.8)

where q is an integer or half-integer, and p is a non-negative integer. It may easily be verified

that such integrals evaluate to sums of terms of the same type, by using integration-by-parts

identities to reduce the power of the logarithm inside the integral.

As shown in eq. (3.16), we simplified our basis in such a way that in each elliptic sector

at most 2 integrals are coupled together, specifically the pairs of integrals B72, B75 and B76,

B79. These integrals can be solved by combining their first order differential equations into

second order differential equations. Integrals B74 and B78 can be solved from their first

order differential equation, but, in contrast to the polylogarithmic sectors, their differential

equations have a homogeneous component. Lastly, integrals B73, B77, B80, B81, and B82

satisfy a first order differential equation without a homogeneous component, and can be

solved in the same manner as the polylogarithmic integrals. For completeness, we discuss

solving these two cases next.

Consider a first order differential equation with homogeneous component of the form,

f ′(λ) + a(λ)f(λ) + b(λ) = 0 . (4.9)

The solution to the homogeneous part is easily found to be,

µ(λ) = e−
∫
a(λ)dλ , (4.10)

up to an arbitrary multiplicative constant. The full solution to eq. (4.9) is then given in

terms of µ(λ) by,

f(λ) = µ(λ)

[
−
∫

b(λ)

µ(λ)
dλ+ c

]
. (4.11)

– 9 –
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Now, consider a second order differential equation of the form,

f ′′(λ) + a(λ)f ′(λ) + b(λ)f(λ) + c(λ) = 0 . (4.12)

Given two solutions µ1(λ) and µ2(λ) to the homogeneous part of the differential equation,

the general solution can be written using the method of variation of parameters as

f(λ) =µ1(λ)

∫
µ2(λ)c(λ)

µ1(λ)µ′2(λ)− µ2(λ)µ′1(λ)
dλ − µ2(λ)

∫
µ1(λ)c(λ)

µ1(λ)µ′2(λ)− µ2(λ)µ′1(λ)
dλ

+ d1µ1(λ) + d2µ2(λ) , (4.13)

where d1 and d2 are complex constants to be fixed from boundary conditions. The re-

maining challenge is to find two distinct homogeneous solutions µ1(λ) and µ2(λ) that are

not related by a rescaling. From the well-known Frobenius method (see e.g. [97] for an

extensive review of the method), it follows that we may always find one series solution of

the form µ1(λ) = λr + λr
∑∞

k=1 µ1,kλ
k. The values for r and µ1,k may be found up to

the desired order in λ by plugging µ1(λ) into the homogeneous differential equation as an

ansatz, and solving order-by-order in λ for the unknowns. The lowest order in λ gives a

quadratic equation in r called the indicial equation. By picking r to be the largest root of

the indicial equation, it is guaranteed that we may solve for the remaining unknowns µ1,k
with k ≥ 1.

It remains to find a second homogeneous solution. This may be done in the following

way. First we write the second homogeneous solution µ2(λ) as µ2(λ) = µ1(λ)h(λ). Plugging

this expression into the homogeneous part of eq. (4.12), we find a new equation,

µ1(λ)h′′(λ) + h′(λ)
(
a(λ)µ1(λ) + 2µ′1(λ)

)
= 0 , (4.14)

which we recognize as a first order homogeneous differential equation for h′(λ), which we

know how to solve. This way, we obtain the second homogeneous solution µ2(λ). Thus we

may now use eq. (4.13) to compute the full solution to eq. (4.12).

4.1 Boundary conditions

To fix our system of differential equations we need a suitable boundary point. Similar

to [2], we work in the heavy mass limit parametrized by,

γhm(λ) = {sλ, tλ, p24λ} , (4.15)

where λ is a line parameter that goes to zero. Using the method of asymptotic expansions

in the parametric representation [98–103], we may obtain values of our basis integrals in

the heavy mass limit. The final result turns out to be very simple,

lim
λ→0

B1(γhm(λ)) = e2γEεΓ(1 + ε)2(m2)−2ε , lim
λ→0

Bi(γhm(λ)) = 0 for i = 2, . . . , 84 .

(4.16)

We note that the homogeneous solution of the differential equation for B78 along γhm(λ) is

proportional to λ, and hence we are not able to determine the boundary constant for B78

directly from eq. (4.16). It may be verified that B78 is also zero at order λ1 in the heavy

mass limit, and hence the constant multiplying the homogeneous solution may be put to

zero for this integral.
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4.2 Convergence of the series

A trait of the expansion strategy is that each expansion at a given point along a line has

a limited range of convergence. Namely, each expansion at a given point is valid up to the

distance of the point to the nearest singularity. Thus, to obtain results along a given line,

numerous expansions along segments of the line have to be patched together in order to

reach a given point in phase space. In particular, to cross a singularity we may perform

an expansion at the singularity, and fix its boundary conditions from an expansion at a

neighbouring point along the line. We employ the following strategy for deciding along

which line segments to expand:

• First we create a list A of all singularities of the matrix elements of Mλ on the line

γ(λ) along which we seek to integrate. By singular point we mean any non-analytic

point of the differential equations. In our case, these are the zeros of the denominators

of the matrix elements, and the zeros of the square roots.

• Some of the singularities may be complex. We replace each complex singularity

λsing = λsingre + iλsingim in the list A by three real points: λsingre − λsingim , λsingre and

λsingre + λsingim .

• Next, we consider a Möbius transformation λ = g(λ′) for each triplet (a, b, c) of

neighbouring points in A, such that g−1({a, b, c}) = {−1, 0, 1}. Note that a series (in

λ′) centered at λ′ = 0 will have a radius of convergence greater than or equal to 1.

• To obtain results along γ(λ) from λ0 to λ1, we have to match expansions along

neighbouring line segments, which are expressed in terms of Möbius transformed line

parameters, say λ′ and λ′′. We may find a matching point between two neighbouring

expansions by solving λ′ = −λ′′, assuming λ′′ corresponds to the line segments lying

on the right.

• In general, one may find that this condition picks λ′ and λ′′ to be very close to 1

and -1, respectively, where both series may be very slowly converging. This can be

solved by adding additional expansion points along the line segments. In particular,

we may consider new expansion points between -1 and 1, such that upon matching

neighbouring expansions, neither gets evaluated further than a certain fraction of the

distance to the nearest singularity. We will refer to the inverse of this fraction by

the parameter k. For example, with k = 2, the expansion points are chosen such

that no series is evaluated beyond half its radius of convergence. The situation is

illustrated in figure 3. By choosing higher values of k, we will increase the precision

of the results, since the expansions along each line segment are evaluated closer to

the origin.

We note that in general we may encounter both spurious, physical, and non-physical singu-

larities. The spurious singularities are singularities that only appear in the elements of M,

but which are not singularities of the basis integrals themselves. The physical singularities

are threshold singularities, in our case s = 4m2 and p24 = 4m2. For those, it is important
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Figure 3. These figures illustrate subdivisions of an expansion in the unit interval [-1,1] with

singularities at −1, 0 and 1, in terms of additional expansions, such that each expansion can be

matched to the next one at a fixed fraction of the distance to its nearest singularities. The numbers

on top are the matching points between neighbouring expansions, while the numbers at the bottom

indicate the expansions points for (a) k = 2: moving at most half the distance to the nearest

singularity, (b) k = 3: moving at most one-third the distance to the nearest singularity.

to cross the singularity according to Feynman prescription, which tells us to interpret s

and p24 as having an infinitesimally small positive imaginary part. Furthermore, we should

make sure to assign the same imaginary part to the square roots in our basis that are

associated with physical singularities. Specifically, some of our basis integrals have the

prefactors
√

4m2 − p24 and
√

4m2 − s, which are analytically continued as
√

4m2 − p24 − iδ
and
√

4m2 − s− iδ for an infinitesimally small δ > 0. Lastly, there are also non-physical

singularities, which can arise from rational prefactors in the basis, or from square roots

in the basis that do not correspond to physical singularities. Since these singularities are

introduced by the basis choice, we are free to assign every non-physical root in the basis

the standard branch, i.e. we consider the argument to carry the imaginary part +iδ.

To improve the convergence of our series solutions, we compute their diagonal Padé

approximants and evaluate those instead at each (matching) point. Since we are dealing

with generalized series that may in general include powers of logarithms, we collect first on

powers of logarithms and compute the Padé approximant for each series that multiplies a

given power.

5 Results for top and bottom quarks

In this section we present explicit results that were obtained using the expansion method

described in the previous section. Specifically, we used our method to compute the integrals

in 10000 points covering the physical region given below, for both the top- and bottom-

quark corrections, and we present plots thereof. We compute the integrals in the physical
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0


(l,z) = (1,0)(l,z) = (0,0)

(l,z) = (0,1) (l,z) = (1,1)

1/(n+1)

s = 4 m
2

Figure 4. Depiction of lines along which we produce samples in the physical region of the top.

The black lines ~0 → (1/(n+ 1), n/(n+ 1)) → (1/(n+ 1), 1/(n+ 1)) are computed first to obtain

boundary values for n horizontal lines, depicted in grey. The horizontal lines are themselves used to

produce n evenly spaced samples, denoted by blue dots. The particle production threshold s = 4m2

is depicted by a dashed red line. Depicted is the case with n = 10. The actual plots are produced

with n = 100.

region given by

s > 0 , t < 0 , s+ t− p24 > 0 . (5.1)

We may map that region to the unit square by using the parametrization,

s =
p24
z
, t =

p24 l (z − 1)

z
. (5.2)

Since we chose to work with m2 = 1, the value for p24 is given by m2
H/m

2
q where mH denotes

the mass of the Higgs particle, and mq denotes the mass of the internal quark. For the top

quark we approximate the ratio by p24 = 13/25, while for the bottom quark we consider

the ratio p24 = 323761/361.

For the case of the top quark, the particle production threshold s = 4m2 corresponds to

z = 13/100. For the sake of the presentation of the plots, we use a Möbius transformation

to map z = 13/100 to 1/2, while keeping z = 0 and z = 1 fixed. Thus, we consider the fol-

lowing parametrizations of the physical regions of the top and bottom quark contributions,

top (l, z)t : s =
87− 74z

25z
, t =

87 l (z − 1)

25z
, p24 =

13

25
,

bottom (l, z)b : s =
323761

361z
, t =

323761 l (z − 1)

361z
, p24 =

323761

361
. (5.3)

To produce plots in these regions we seek to compute n2 evenly spaced points on the unit

square for all basis integrals, and in particular we let n = 100, so that we obtain 10000
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integrals of the top sector of Family G in the case of a virtual bottom (resp. top) quark running in

the loop.

points in total. We explain next how we obtained results in these points. For convenience

we use the notation a → b to denote a line, we denote coordinates in the physical regions

by pairs (l, z), and we denote the heavy mass limit by ~0. The following discussion applies

to both the top and bottom region, given their respective set of (l, z)-coordinates.

All of the results are derived using series expansions up to order O(λ50). First we set

k = 3, and move from the heavy mass limit to the point (1/(n+ 1), n/(n+ 1)). Then, we

continue by moving along a vertical line (1/(n+1), n/(n+1))→ (1/(n+1), 1/(n+1)). This

vertical line may be used to obtain values at the points (1/(n+1), y/(n+1)) for y = 1, . . . , n.

We may then consider n horizontal lines (1/(n + 1), x/(n + 1)) → (n/(n + 1), x/(n + 1))

for x = 1, . . . , n, to obtain values at the points (x/(n + 1), y/(n + 1)), for x, y = 1, . . . , n.

The situation is depicted in figure 4, for the simpler case where n = 10. We computed the

expansions along the horizontal lines with k = 2, in order to reduce the number of line

segments needed and to save computation time. By working with k = 3 for the first two
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lines, we made sure that the precision of the expansions along the horizontal lines is not

limited by the precision of the expansions along the first two lines.

The resulting plots of integrals B80 − B84 for the top- and the bottom-quark are

provided in figure 5. Note that as l and z range from zero to one, we travel across the

full physical region defined in eq. (5.1). For the plots we let n = 100, and therefore the

variables l and z range from 1/101 to 100/101. Thus, in the plots a small part of the

physical region is cut off at the boundary. In terms of the variables s and t, the plotted

regions are given by:

top :

(
1387

2500
≤ s ≤ 8713

25

)
∪
(

52

101
− 100

101
s ≤ t ≤ 13

2525
− s

101

)
,

bottom :

(
32699861

36100
≤ s ≤ 32699861

361

)
∪
(

32376100

36461
− 100

101
s ≤ t ≤ 323761

36461
− s

101

)
.

(5.4)

Note that it is also possible to obtain numerical samples at points on the boundary of the

physical region where the integrals are finite, see for example ref. [104].

We computed the boundary data for the horizontal lines of the top and bottom physical

regions on a laptop using a single core. We computed all horizontal lines on a cluster with

48 cores. The run for the horizontal lines of the top quark and the run for the horizontal

lines of the bottom quark, both took a few hours to complete on the cluster.

5.1 Cross-checks of the expansions

We have performed several checks of our results. The first class of cross-checks was per-

formed by evaluating multiple points by reaching them along different contours. The error

that is accumulated while transporting results is different based on the chosen contour.

Therefore, the difference of the results obtained through different contours gives a very

good estimate of the precision of the results. In table 1 we present the results of a num-

ber of cross-checks that were performed in this way. The maximum relative error that we

encountered among all the points that were checked, is of order O(10−25), indicating that

the results are valid up to at least 25 significant digits.

For the top-quark integrals we compared our results against FIESTA [105] for multiple

points of the physical region finding full agreement within the Monte Carlo error reported

by FIESTA. For the physical region of the bottom quark we checked most of the integrals

against FIESTA and SecDec [106]. However, for some of the integrals, these programs

encounter numerical instabilities. In those cases we have performed different checks. Firstly

we cross checked our results against FIESTA in the point (s = 53, t = −11, p24 = 23,m2 =

1) finding full agreement. This provides a direct check of the analytic continuation past

the thresholds s = 4m2 and p24 = 4m2. In addition, we have performed a numerical

cross-check against a private code [107] for the numerical evaluation of multi-loop integrals

in momentum space using the loop tree duality [108] (for related work on the loop tree

duality see also [109–112]). In particular, we compared integrals B72 and B76 in the point

(10/101, 10/101)b = (s = 32699861/3610, t = −29462251/36461, p24 = 323761/361,m2 = 1)

finding full agreement. Lastly, for one of the internal cross-checks we transported the results
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Line(s). Evaluated at #Segments (k = 2) Max relative error

~0→
(

1
101 ,

1
101

)
t

Endpoint 16 O(10−28)

~0→
(

1
101 ,

1
101

)
b

Endpoint 31 O(10−26)

~0→
(

s=53
t=−11
p24=23

)
→
(
100
101 ,

45
101

)
b

Endpoint 47 O(10−25)(
x

101 ,
100
101

)
t
→
(
x

101 ,
1

101

)
t

for x=1,...,100

(
x

101 ,
y

101

)
t

for x,y=1,...,100

2568 O(10−25)(
45
101 ,

45
101

)
b
→
(

1
101 ,

100
101

)
t

Endpoint 21 O(10−27)

Table 1. This table presents a number of internal cross-checks of our results. In the first column

we give additional lines along which we computed results, different from the lines in figure 4. These

results were then compared to the results that we generated for the plots, which were computed in

the manner illustrated in figure 4. For the lines starting from ~0, we fixed the boundary conditions

in the heavy mass limit, while for the lines in the last two rows we fixed the boundary conditions

from the results that we generated for the plots. In the last column we give highest value of the

relative error
∣∣∣B(ε-order)

i,cross-check/B
(ε-order)
i,plot

∣∣∣− 1 for all integrals i = 1, . . . , 84, and ε-orders 0 to 4.

for the bottom-quark integrals from the point
(

45
101 ,

45
101

)
b

along a straight line to the point(
1

101 ,
100
101

)
t
. We compared this to the results that were obtained in the point

(
1

101 ,
100
101

)
t

by

transporting directly from the heavy mass limit, and found a relative deviation of O(10−27).

This cross-check is indicated by the last row in table 1.

6 Conclusion

In this paper we computed a family of two-loop non-planar master integrals relevant for the

QCD corrections to Higgs plus one jet production in the full theory. Our result, together

with [1–3], provide the full set of master integrals required for the computation of the NLO

corrections to Higgs plus one jet production, and the NLO corrections to the pT distribution

of the Higgs. Moreover, our results provide the full set of master integrals relevant for the

NLO corrections to Higgs decay to three partons, and the single-real radiation contributions

to the NNLO corrections to inclusive Higgs production.

The computation was performed by using the differential equations method. More

specifically, we defined an integral basis such that most of the integrals satisfy differential

equations in canonical form. Three integral sectors are coupled, and their solution involve

functions of elliptic type. Having phenomenological applications in mind, we solved the

differential equations along contours in the space of kinematic invariants, in terms of one-

dimensional generalized power series. More specifically, given a boundary point where

the value of the integrals is known, we defined the differential equations along a contour

connecting a boundary point to a new point of the kinematic regions. In this way the

problem was effectively reduced to one with a single scale, and finding the series solution

was algorithmic. We showed that this method is efficient, and can be repeated in order to

compute the integrals in any point of the kinematic regions. The analytic continuation of
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the series solution across the physical thresholds is straightforward, as it requires only the

analytic continuation of logarithms and square roots.

In order to show the generality of our approach, we computed the master integrals for

both the top- and bottom-quark mass. Moreover, we explicitly obtained results for a large

set of points covering our physical regions. The typical evaluation time is of the order of

1 second per integral, with a relative accuracy of order 10−24, on a single CPU core. If

needed, the numerical precision can be made arbitrarily high by increasing the truncation

order of the power series. These features render our methods well suited for Monte Carlo

phase-space integrations.

We remark that the applicability of our methods does not rely on the number of phys-

ical scales, specific kinematic configurations, or a particular form of the differential equa-

tions. For this reasons, we believe that our approach will be relevant for the computation

of several processes of phenomenological interest.
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A Canonical basis and basis for elliptic sectors

In this section we provide the set of 84 basis integrals used in this paper, written in terms

of the set of master integrals depicted in figure 2 and defined as in eq. (2.1).

The canonical basis for the first 71 integrals is,

B1 = ε2I0,2,0,0,2,0,0,0,0 ,

B2 = ε2r2r6I0,2,0,0,2,0,1,0,0 ,

B3 = ε2r1r5I0,2,0,1,0,2,0,0,0 ,

B4 = ε2sI1,2,0,0,2,0,0,0,0 ,
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B5 = ε2r2r6

(
1

2
I1,2,0,0,2,0,0,0,0 + I2,2,0,0,1,0,0,0,0

)
,

B6 = ε2tI0,2,1,0,0,2,0,0,0 ,

B7 = ε2r3r7

(
1

2
I0,2,1,0,0,2,0,0,0 + I0,2,2,0,0,1,0,0,0

)
,

B8 = ε2(p24 − s− t)I1,0,0,2,0,2,0,0,0 ,

B9 = ε2r4r8

(
1

2
I1,0,0,2,0,2,0,0,0 + I2,0,0,1,0,2,0,0,0

)
,

B10 = ε2p24I0,2,1,0,2,0,0,0,0 ,

B11 = ε2r1r5

(
1

2
I0,2,1,0,2,0,0,0,0 + I0,2,2,0,1,0,0,0,0

)
,

B12 = ε3sI0,2,0,0,1,1,1,0,0 ,

B13 = − ε2r1r2r5r6I0,2,0,1,2,0,1,0,0 ,

B14 = ε3sI1,2,0,0,1,1,0,0,0 ,

B15 = ε3tI0,2,1,0,0,1,1,0,0 ,

B16 = ε3(p24 − s− t)I1,0,0,2,1,1,0,0,0 ,

B17 = ε3(p24 − t)I0,2,1,0,1,1,0,0,0 ,

B18 = ε3(s+ t)I1,0,0,2,0,1,1,0,0 ,

B19 = ε3(s− p24)I0,2,1,0,1,0,1,0,0 ,

B20 = ε2m2(s− p24)I0,3,1,0,1,0,1,0,0 ,

B21 = ε2
r2r6

4(s− 2p24)

(
4
(
m2s+ p44 − p24s

)
I0,2,1,0,2,0,1,0,0

+ 4m2(s− p24)I0,3,1,0,1,0,1,0,0 + 6ε(p24 − s)I0,2,1,0,1,0,1,0,0 − 3p24I0,2,1,0,2,0,0,0,0
)
,

B22 = ε3(p24 − s)I1,1,0,1,2,0,0,0,0 ,

B23 = ε2m2(p24 − s)I1,1,0,1,3,0,0,0,0 ,

B24 = ε2
r1r5

4(p24 − 2s)

(
4m2I1,1,0,1,3,0,0,0,0(p

2
4 − s) + 4m2p24I1,2,0,1,2,0,0,0,0

+6ε(s− p24)I1,1,0,1,2,0,0,0,0 − 4p24sI1,2,0,1,2,0,0,0,0

+ 4s2I1,2,0,1,2,0,0,0,0 − 3sI1,2,0,0,2,0,0,0,0
)
,

B25 = ε3(p24 − t)I0,1,1,1,0,2,0,0,0 ,
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B26 = ε2m2(p24 − t)I0,1,1,1,0,3,0,0,0 ,

B27 = ε2
r1r5

4(p24 − 2t)

(
4m2(p24 − t)I0,1,1,1,0,3,0,0,0 + 4m2p24I0,2,1,1,0,2,0,0,0

+ 6ε(t− p24)I0,1,1,1,0,2,0,0,0 − 4p24tI0,2,1,1,0,2,0,0,0

+ 4t2I0,2,1,1,0,2,0,0,0 − 3tI0,2,1,0,0,2,0,0,0
)
,

B28 = ε3(s+ t)I1,1,0,1,0,2,0,0,0 ,

B29 = ε2m2(s+ t)I1,1,0,1,0,3,0,0,0 ,

B30 = − ε2 r1r5
4(p24 − 2(s+ t))

(
4(m2p24 − (s+ t)(p24 − s− t))I1,1,0,2,0,2,0,0,0

+ 4m2(s+ t)I1,1,0,1,0,3,0,0,0 + 3(−p24 + s+ t)I1,0,0,2,0,2,0,0,0

− 6ε(s+ t)I1,1,0,1,0,2,0,0,0) ,

B31 = ε3sr1r5I0,2,0,1,1,1,1,0,0 ,

B32 = ε4(p24 − t)I0,1,1,1,1,1,0,0,0 ,

B33 = ε3(p24 − t)r1r5I0,2,1,1,1,1,0,0,0 ,

B34 = ε4(s+ t)I1,1,0,1,0,1,1,0,0 ,

B35 = ε3(s+ t)r1r5I1,1,0,2,0,1,1,0,0 ,

B36 = ε4(p24 − s− t)I1,1,1,0,1,1,0,0,0 ,

B37 = − ε3r2r3r9I1,2,1,0,1,1,0,0,0 ,

B38 = ε4tI1,0,1,1,0,1,1,0,0 ,

B39 = − ε3r2r4r10I1,0,1,2,0,1,1,0,0 ,

B40 = ε4(p24 − s)I1,1,1,1,0,1,0,0,0 ,

B41 = ε3r3r4r11I1,1,1,1,0,2,0,0,0 ,

B42 =
1

4
ε2
(

4ε
1

t

(
m2(p24 − s)2 + p24t(−p24 + s+ t)

)
I1,1,1,2,0,1,0,0,0

+ 2ε(2m2(p24 − s) + t(−p24 + s+ t))I1,1,1,1,0,2,0,0,0

+
3(−2m2p24 + 2m2s+ p24t)

p24 − 2t
I0,2,1,0,0,2,0,0,0

− 6ε
(p24 − t)(2m2(p24 − s)− p24t)

t(p24 − 2t)
I0,1,1,1,0,2,0,0,0
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+
4m2(p24 − t)(2m2(p24 − s)− p24t)

t(p24 − 2t)
I0,1,1,1,0,3,0,0,0

+
4(m2p24 + t(t− p24))(2m2(p24 − s)− p24t)

t(p24 − 2t)
I0,2,1,1,0,2,0,0,0

+ 6ε
(s+ t)(−2m2p24 + 2m2s+ p24t)

t(p24 − 2(s+ t))
I1,1,0,1,0,2,0,0,0

+
3(p24 − s− t)(−2m2p24 + 2m2s+ p24t)

t(p24 − 2(s+ t))
I1,0,0,2,0,2,0,0,0

− 4m2(s+ t)(−2m2p24 + 2m2s+ p24t)

t(p24 − 2(s+ t))
I1,1,0,1,0,3,0,0,0

+
4(2m2(p24 − s)− p24t)(m2p24 − (s+ t)(p24 − s− t))

t(p24 − 2(s+ t))
I1,1,0,2,0,2,0,0,0

)
,

B43 = ε4(p24 − s)I0,1,1,1,1,0,1,0,0 ,

B44 = ε3(s− p24)r2r6I0,1,1,1,1,0,2,0,0 ,

B45 = ε3(p24 − s)r1r5I0,2,1,1,1,0,1,0,0 ,

B46 = ε2
(
m2(p24 − s)2I0,2,1,1,1,0,2,0,0 − 2(2m2p24 + 2m2s− p24s)I0,1,0,2,1,0,2,0,0

+ ε(p24 − s)
(
sI0,1,1,1,1,0,2,0,0 − p24I0,2,1,1,1,0,1,0,0

))
,

B47 = − ε3r2r14I0,2,1,0,1,1,1,0,0 ,

B48 = − ε2r2r3r9
(
m2I0,3,1,0,1,1,1,0,0 − εI0,2,1,0,1,1,1,0,0

)
,

B49 = sε3
(
(−m2 − p24 + s)I0,2,1,0,1,1,1,0,0 − I−1,2,1,0,1,1,1,0,0 + I0,2,0,0,1,1,1,0,0

− I0,2,1,−1,1,1,1,0,0 + I0,2,1,0,1,1,0,0,0 + I0,2,1,0,1,1,1,−1,0) ,

B50 = − ε3r2r15I1,0,0,2,1,1,1,0,0 ,

B51 = − ε2r2r4r10
(
m2I1,0,0,3,1,1,1,0,0 − εI1,0,0,2,1,1,1,0,0

)
,

B52 = ε3s
(
−m2I1,0,0,2,1,1,1,0,0 + I0,0,0,2,1,1,1,0,0 − I1,0,−1,2,1,1,1,0,0 + I1,0,0,1,1,1,1,0,0

+ I1,0,0,2,0,1,1,0,0 − I1,0,0,2,1,1,1,−1,0) ,

B53 = ε4I0,1,1,1,0,1,1,0,0(s+ t) ,

B54 = ε3r1r5 (sI0,1,1,2,0,1,1,0,0 − tI0,2,1,1,0,1,1,0,0) ,

B55 = − ε3r2r3r9I0,1,2,1,0,1,1,0,0 ,

B56 =
1

2
ε3
(
(2m2s+ 2m2t− p24s)I0,1,1,2,0,1,1,0,0 + (2m2s+ 2m2t− p24t)I0,2,1,1,0,1,1,0,0

)
,

– 20 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
3

B57 = ε2
(
2(p24 + s)

(
m2I0,1,1,1,0,3,0,0,0 − εI0,1,1,1,0,2,0,0,0

)
+ ε(s+ t)

(
(p24 − s)I0,1,2,1,0,1,1,0,0 + I0,0,2,1,0,1,1,0,0

+ I0,1,2,0,0,1,1,0,0 − I0,1,2,1,0,1,1,−1,0
)
,

B58 = ε4(p24 − t)I1,1,0,1,1,1,0,0,0 ,

B59 = ε3r1r5
(
(−p24 + s+ t)I1,1,0,2,1,1,0,0,0 + sI1,2,0,1,1,1,0,0,0

)
,

B60 = − ε3r2r4r10I2,1,0,1,1,1,0,0,0 ,

B61 =
1

2
ε3
(
(2m2(p24 − t) + p24(−p24 + s+ t))I1,1,0,2,1,1,0,0,0+

+ (2m2p24 − 2m2t− p24s)I1,2,0,1,1,1,0,0,0
)
,

B62 = − ε2
(
−2m2(p24 + s)I1,1,0,1,0,3,0,0,0 + 2p24εI1,1,0,1,0,2,0,0,0

−p24εI2,1,0,1,1,1,0,−1,0 + 2sεI1,1,0,1,0,2,0,0,0 + tεI2,1,0,1,1,1,0,−1,0
)
,

B63 = ε4I1,1,1,1,1,0,1,0,0(s− p24)2 ,

B64 = r3r12ε
4I1,1,1,1,0,1,1,0,0 ,

B65 = ε2
{
ε
(3m2(p24 − s) + t(−2p24 + s+ t))

p24 − 2(s+ t)
I1,1,0,1,0,2,0,0,0

+
(p24 − s− t)(3m2(p24 − s) + t(−2p24 + s+ t))

2(s+ t)(p24 − 2(s+ t))
I1,0,0,2,0,2,0,0,0

− (2m2(p24 − s)− p24t)(m2p24 − (s+ t)(p24 − s− t))
(s+ t)(p24 − 2(s+ t))

I1,1,0,2,0,2,0,0,0

− 1

4(p24 − 2t)(s+ t)

[
6ε(p24 − t)(2m2(s− p24) + p24t)I0,1,1,1,0,2,0,0,0

+ 4m2(p24 − t)(2m2(s− p24) + p24t)I0,1,1,1,0,3,0,0,0

+ t(6m2(p24 − s) + t(4t− 5p24))I0,2,1,0,0,2,0,0,0

− 2(m2p24 + t(t− p24))(2m2(p24 − s)− p24t)I0,2,1,1,0,2,0,0,0
]

− ε2t(I1,1,0,1,0,1,1,0,0 + I1,1,1,1,−1,1,1,0,0 + (s− p24)I1,1,1,1,0,1,1,0,0)

+ ε
1

2(s+ t)

[
2εt(p24 + s+ 2t)I0,1,1,1,0,1,1,0,0 + 2εt(p24 − 2s− t)I1,1,1,1,0,1,0,0,0

+ 2εt(s− p24)I1,1,1,1,0,1,1,0,−1 + t(p24s− 2m2(s+ t))I0,1,1,2,0,1,1,0,0

+ t(p24t− 2m2(s+ t))I0,2,1,1,0,1,1,0,0 + t(s− p24)I1,1,0,1,2,0,0,0,0

− 1

2
p24tI0,2,1,0,2,0,0,0,0 + t2I0,2,1,0,0,1,1,0,0 + stI1,2,0,0,1,1,0,0,0
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− t(2m2(p24 − s) + t(−p24 + s+ t))I1,1,1,1,0,2,0,0,0

− (m2(p24 − s)2 + p24t(−p24 + s+ t)I1,1,1,2,0,1,0,0,0
]

+ m2

(
2m2(s− p24) + p24t

p24 − 2(s+ t)
+ t

)
I1,1,0,1,0,3,0,0,0

}
,

B66 = − 2ε4((s− p24)I1,1,1,1,0,1,1,0,−1 + (p24 + t)I0,1,1,1,0,1,1,0,0) ,

B67 = r1r5ε
2

[
− 2m2(s+ t)

p24 − 2(s+ t)
I1,1,0,1,0,3,0,0,0

− 2(m2p24 − (s+ t)(p24 − s− t))
p24 − 2(s+ t)

I1,1,0,2,0,2,0,0,0

+
2m2(t− p24)
p24 − 2t

I0,1,1,1,0,3,0,0,0 +
3(p24 − s− t)

2(p24 − 2(s+ t))
I1,0,0,2,0,2,0,0,0

− 2(m2p24 + t(t− p24))
p24 − 2t

I0,2,1,1,0,2,0,0,0 +
3t

2p24 − 4t
I0,2,1,0,0,2,0,0,0

+ ε

(
3(s+ t)

p24 − 2(s+ t)
I1,1,0,1,0,2,0,0,0 + (s− p24)(I1,1,1,2,0,1,0,0,0 + I1,1,1,2,0,1,1,0,−1)

+ 2t(εI1,1,1,1,0,1,1,0,0 + I0,1,2,1,0,1,1,0,0 − I0,2,1,1,0,1,1,0,0 + I1,0,1,2,0,1,1,0,0)

+ p24I0,1,1,2,0,1,1,0,0 +
3(p24 − t)
p24 − 2t

I0,1,1,1,0,2,0,0,0

)]
,

B68 = ε4
(
(p24 − s− t)I1,1,1,1,1,1,−1,0,0 − (p24 − s)(p24 − s− t)I1,1,1,1,1,1,0,0,0

+ (p24 − t)I1,1,1,0,1,1,0,0,0 + tI1,1,1,1,0,1,0,0,0

+ s(I0,1,1,1,1,1,0,0,0 − I1,1,0,1,1,1,0,0,0 − I1,1,1,1,1,1,0,−1,0)) ,

B69 = ε4(p24 − t) (I1,1,1,1,1,1,0,−1,0 − I1,1,1,0,1,1,0,0,0) ,

B70 = ε4r4r13I1,1,1,1,1,1,0,0,0 ,

B71 = ε3r1r5
(
2ε(p24 − s− t)I1,1,1,1,1,1,0,0,0 + (p24 − s− t)I1,1,1,1,0,2,0,0,0

+ (p24 − t)I1,2,1,1,1,1,0,−1,0 − sI1,2,1,0,1,1,0,0,0
)
.

In addition, we made the following choice of basis for the elliptic sectors,

B72 = ε4sr2I0,1,1,1,1,1,1,0,0 ,

B73 = ε4sI0,1,1,1,1,1,1,0,−1 ,

B74 = ε3s2I0,2,1,1,1,1,1,0,0 ,

B75 = ε4sr2I0,1,1,1,1,1,2,0,0 ,

B76 = ε4sr2I1,1,0,1,1,1,1,0,0 ,
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B77 = ε4sI1,1,−1,1,1,1,1,0,0 ,

B78 = ε3s2I2,1,0,1,1,1,1,0,0 ,

B79 = ε4sr2I1,1,0,1,2,1,1,0,0 ,

B80 = ε4s
(
I1,1,1,1,1,1,1,−1,0(s− p24) + I1,1,1,1,1,1,1,−2,0

)
,

B81 =
1

2
ε4s
(
(s− p24)I1,1,1,1,1,1,1,0,−1 + tI1,1,1,1,1,1,1,−1,0 + 2I1,1,1,1,1,1,1,−1,−1

)
,

B82 = ε4r2r4r10
(
(p24 − s)I1,1,1,1,1,1,1,0,0 − I1,1,1,1,1,1,1,−1,0

)
,

B83 = ε4r2r6
(
(s− p24)I1,1,1,1,1,1,1,0,−1 − tI1,1,1,1,1,1,1,−1,0

)
,

B84 = − ε4r2r3r9I1,1,1,1,1,1,1,−1,0 .

The factors labelled by {ri} are the following square roots,

r1 =
√
−p24 , r2 =

√
−s ,

r3 =
√
−t , r4 =

√
−p24 + s+ t ,

r5 =
√

4m2 − p24 , r6 =
√

4m2 − s ,

r7 =
√

4m2 − t , r8 =
√

4m2 − p24 + s+ t ,

r9 =
√

4m2
(
p24 − s− t

)
+ st , r10 =

√
4m2s+ t

(
p24 − s− t

)
,

r11 =
√

4m2t+ p24s− s2 − st , r12 =
√

4m2s
(
−p24 + s+ t

)
− p44t ,

r13 =
√
−4m2st+ p44(s+ t)− p64 , r14 =

√
m4(−s) + 2m2t

(
−2p24 + s+ 2t

)
− st2 ,

r15 =
√
m4(−s) + 2m2(s+ 2t)

(
−p24 + s+ t

)
− s

(
−p24 + s+ t

)
2 . (A.1)

The labelling has been chosen such that the radicands of the roots are irreducible poly-

nomials. In the basis elements of the polylogarithmic sectors, namely B1, . . . , B71, the 15

roots only appear in the following 11 combinations,

{r2r6, r1r5, r3r7, r4r8, r2r3r9, r2r4r11, r3r4r10, r2r14, r2r15, r3r12, r4r13} . (A.2)

It may also be verified that the same 11 combinations are sufficient to express all products

of roots appearing in the letters. Hence, in principle is it possible to combine them and

work with a reduced set of 11 independent square roots for the polylogarithmic sectors.

In the choice of basis for the elliptic sectors, the root r2 appears separately. Therefore,

there are 12 independent combinations of roots in the full basis of the family.

– 23 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
3

B Alphabet of the polylogarithmic sectors

The full alphabet for the polylogarithmic sectors of family G is given by the following

76 letters,

l1 =m2 , l2 = p24 ,

l3 = s , l4 = t ,

l5 = s+ t , l6 = p24 − s ,
l7 = p24 − t , l8 = − p24 + s+ t ,

l9 = 4m2 − p24 , l10 = 4m2 − s ,
l11 = 4m2 − t , l12 = 4m2 − p24 + s+ t ,

l13 =m2s+ p44 − p24s , l14 =m2p24 + s(s− p24) ,
l15 =m2p24 + t(t− p24) , l16 =m2(s+ t)2 − p24st ,
l17 = t(−p24 + s+ t)− 4m2s , l18 = − 4m2t− p24s+ s2 + st ,

l19 = 4m2(p24 − s− t) + st , l20 = p44t− 4m2s(−p24 + s+ t) ,

l21 =m2p24 − (s+ t)(p24 − s− t) , l22 = − 4m2st− p64 + p44(s+ t) ,

l23 =m2(p24 − t)2 + p24s(−p24 + s+ t) , l24 =m2(p24 − s)2 + p24t(−p24 + s+ t) ,

l25 =
−p24 + r1r5
−p24 − r1r5

, l26 =
−s+ r2r6
−s− r2r6

,

l27 =
−t+ r3r7
−t− r3r7

, l28 =
−p24 + 2s+ r1r5
−p24 + 2s− r1r5

,

l29 =
−p24 + 2t+ r1r5
−p24 + 2t− r1r5

, l30 =
−p24 + 2(s+ t) + r1r5
−p24 + 2(s+ t)− r1r5

,

l31 =
s
(
p24 − 2m2

)
+ p24r2r6

s
(
p24 − 2m2

)
− p24r2r6

, l32 =
−tp24 + r3r12
tp24 − r3r12

,

l33 =
2p24m

2 − 2tm2 − sp24 + sr1r5
2p24m

2 − 2tm2 − sp24 − sr1r5
, l34 =

−4m2 + p24 − s− t+ r4r8
−4m2 + p24 − s− t− r4r8

,

l35 =
−2(s+ t)m2 + sp24 + sr1r5
−2(s+ t)m2 + sp24 − sr1r5

, l36 =
2
(
p24 − s

)
m2 − tp24 + tr1r5

2
(
p24 − s

)
m2 − tp24 − tr1r5

,

l37 =
−st+ r2r3r9
−st− r2r3r9

, l38 =
t
(
p24 − s− t

)
+ r3r4r10

t
(
p24 − s− t

)
− r3r4r10

,

l39 =
−4
(
p24 − s− t

)
m2 − st+ r2r7r9

−4
(
p24 − s− t

)
m2 − st− r2r7r9

, l40 =
s
(
p24 − s− t

)
+ r2r4r11

s
(
p24 − s− t

)
− r2r4r11

,

l41 =
−
(
4m2 − s

)
p24 + r1r2r5r6

− (4m2 − s) p24 − r1r2r5r6
, l42 =

−
(
4m2 − t

)
p24 + r1r3r5r7

− (4m2 − t) p24 − r1r3r5r7
,

l43 =
−s
(
m2 + t

)
+ r2r14

−s (m2 + t)− r2r14
, l44 =

−2(s+ t)m2 + st+ r2r3r9
−2(s+ t)m2 + st− r2r3r9

,

l45 =
−p24

(
4m2 − p24 + s+ t

)
+ r1r4r5r8

−
(
4m2 − p24 + s+ t

)
p24 − r1r4r5r8

, l46 =
sm2 + t

(
2p24 − s

)
+ r2r14

sm2 + t
(
2p24 − s

)
− r2r14

,
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l47 =
−p64 + (s+ t)p44 − 2m2st+ p24r4r13
−p64 + (s+ t)p44 − 2m2st− p24r4r13

, l48 =

(
−2p24 + s+ 2t

)
m2 − st+ r2r14(

−2p24 + s+ 2t
)
m2 − st− r2r14

,

l49 =
2
(
−p24 + s+ 2t

)
m2 − st+ r3r6r9

2
(
−p24 + s+ 2t

)
m2 − st− r3r6r9

, l50 =
−
(
−2p24 + s+ 4t

)
m2 + st+ r6r14

−
(
−2p24 + s+ 4t

)
m2 + st− r6r14

,

l51 =
q1 + r1r2r3r5r9
q1 − r1r2r3r5r9

, l52 =
q2 + r2r8r11
q2 − r2r8r11

,

l53 =
q3 + r3r8r10
q3 − r3r8r10

, l54 =
q4 + r4r7r10
q4 − r4r7r10

,

l55 =
q5 + r1r3r5r12
q5 − r1r3r5r12

, l56 =
q6 + r2r15
q6 − r2r15

,

l57 =
q7 + r4r6r11
q7 − r4r6r11

, l58 =
q8 + r2r15
q8 − r2r15

,

l59 =
q9 + r6r15
q9 − r6r15

, l60 =
q10 + r1r2r3r5r9
q10 − r1r2r3r5r9

,

l61 =
q11 + r1r4r5r13
q11 − r1r4r5r13

, l62 =
q12 +

(
s− p24

)
r3r4r10

q12 −
(
s− p24

)
r3r4r10

,

l63 =
q13 + r1r3r4r5r10
q13 − r1r3r4r5r10

, l64 =
q14 + r1r2r4r5r11
q14 − r1r2r4r5r11

,

l65 =
q15 + r1r3r4r5r10
q15 − r1r3r4r5r10

, l66 =
q16 +

(
p24 + t

)
r2r4r11

q16 −
(
p24 + t

)
r2r4r11

,

l67 =
q17 +

(
m2 − p24

)
r2r15

q17 −
(
m2 − p24

)
r2r15

, l68 =
q18 + q19r1r2r4r5r11
q18 − q19r1r2r4r5r11

,

l69 =

(
q20 + 2r2r9r12
q20 − 2r2r9r12

)(
q21 + p24r2r9r12
q21 − p24r2r9r12

)
,

l70 =

(
q22 + p24r3r10r13
q22 − p24r3r10r13

)(
q23 + 2r3r10r13
q23 − 2r3r10r13

)
,

l71 =

(
q24 + p24r2r11r13
q24 − p24r2r11r13

)(
q25 + 2r2r11r13
q25 − 2r2r11r13

)
,

l72 =

(
q26 + 2r4r11r15
q26 − 2r4r11r15

)(
q27 + q28r4r11r15
q27 − q28r4r11r15

)
,

l73 =

(
q29 + p24r4r10r12
q29 − p24r4r10r12

)(
q30 + 2r4r10r12
q30 − 2r4r10r12

)
,

l74 =

(
q31 + 2r3r9r14
q31 − 2r3r9r14

)(
q32 +

(
m2 + t

)
r3r9r14

q32 − (m2 + t) r3r9r14

)
,

l75 =

(
q33 + 2r2r3r4r9r13
q33 − 2r2r3r4r9r13

)(
q34 + p24r2r3r4r9r13
q34 − p24r2r3r4r9r13

)
,

l76 =

(
q35 + p24r2r3r4r11r12
q35 − p24r2r3r4r11r12

)(
q36 + 2r2r3r4r11r12
q36 − 2r2r3r4r11r12

)
,

where qi are the following polynomials:

q1 = − stp24 − 4m2
(
p24 − s− t

)
p24 ,

q2 = − 2(s− t)m2 − s
(
−p24 + s+ t

)
,

q3 = − 2(s− t)m2 − t
(
p24 − s− t

)
,
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q4 = − 2
(
p24 − 2s− t

)
m2 − t

(
−p24 + s+ t

)
,

q5 = 4m2s
(
−p24 + s+ t

)
− tp44 ,

q6 = s
(
−p24 + s+ t

)
−m2(s+ 2t) ,

q7 = − 2
(
p24 − s− 2t

)
m2 − s

(
−p24 + s+ t

)
,

q8 = − 2p44 + (3s+ 2t)p24 − s
(
m2 + s+ t

)
,

q9 = s
(
−p24 + s+ t

)
−m2

(
−2p24 + 3s+ 4t

)
,

q10 = − 2
(
(s− t)p24 − s(s+ t)

)
m2 − stp24 ,

q11 = − p64 + (s+ t)p44 − 2m2
(
−p44 + (s+ t)p24 + st

)
,

q12 = − t
(
p24 + s

) (
p24 − s− t

)
,

q13 = − 2
(
(s− t)p24 + t(s+ t)

)
m2 − tp24

(
p24 − s− t

)
,

q14 = − 2
(
(s− t)p24 − s(s+ t)

)
m2 − sp24

(
−p24 + s+ t

)
,

q15 = − 2
(
−p44 + (s+ t)p24 + st

)
m2 − tp24

(
p24 − s− t

)
,

q16 = −
(
p24 − t

) (
4tm2 − s2 + sp24 − st

)
,

q17 = − sm4 −
(
s2 + ts+ 2tp24

)
m2 − sp24

(
p24 − s− t

)
,

q18 = 2
(
(t− s)p64 +

(
s2 − 5ts− 2t2

)
p44 + t

(
6s2 + 5ts+ t2

)
p24 + st2(s+ t)

)
m2

+ sp24
(
p64 − (3s+ t)p44 + (2s+ t)2p24 − 2s3 − t3 − 3st2 − 4s2t

)
,

q19 = −
(
p24 − 2s− t

) (
p24 + t

)
,

q20 = − 8s
(
−p24 + s+ t

)
m2 − t

(
−p44 − s2

)
,

q21 = stp44 + 2m2
(
p24 − s− t

) (
p44 + s2

)
,

q22 = t
(
p24 − s− t

)
p44 + 2m2s

(
p44 + t2

)
,

q23 = p64 − (s+ t)p44 + t2p24 − t
(
t(s+ t)− 8m2s

)
,

q24 = − sp64 +
(
−2tm2 + s2 + st

)
p44 − 2m2s2t ,

q25 = − p64 + (s+ t)p44 − s2p24 + s
(
−8tm2 + s2 + st

)
,

q26 = − sm4 − 2(s+ 4t)
(
p24 − s− t

)
m2 − 2s

(
−p24 + s+ t

)
2 ,

q27 = − 2tm6 + (s+ 4t)
(
p24 − s− t

)
m4 + 2(s+ 2t)

(
−p24 + s+ t

)
2m2

− s
(
−p24 + s+ t

)
3 ,

q28 = −m2 − p24 + s+ t ,

q29 = t
(
p24 − s− t

)
p44 + 2m2s

(
2p44 − 2(s+ t)p24 + (s+ t)2

)
,

q30 = t
(
2p44 − 2(s+ t)p24 + (s+ t)2

)
− 8m2s

(
−p24 + s+ t

)
,

q31 = − sm4 + 2t
(
−4p24 + 3s+ 4t

)
m2 − 2st2 ,

q32 = 2
(
−p24 + s+ t

)
m6 + t

(
−4p24 + 3s+ 4t

)
m4 + 2t2

(
−2p24 + s+ 2t

)
m2 − st3 ,

q33 = p84 − 2(s+ t)p64 + (s+ t)2p44 + 8m2stp24 + st
(
st− 8m2(s+ t)

)
,

q34 = − st
(
p24 − s− t

)
p44 − 2m2

(
p84 − 2(s+ t)p64 + (s+ t)2p44 + s2t2

)
,

q35 = − st
(
p24 − s− t

)
p44 − 2m2

((
s2 + t2

)
p44 − 2s2(s+ t)p24 + s2(s+ t)2

)
,

q36 =
(
s2 + t2

)
p44 − 2s

(
−4tm2 + s2 + st

)
p24 + s(s+ t)

(
−8tm2 + s2 + st

)
.
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[112] R. Runkel, Z. Szőr, J.P. Vesga and S. Weinzierl, Causality and loop-tree duality at higher

loops, Phys. Rev. Lett. 122 (2019) 111603 [Erratum ibid. 123 (2019) 059902]

[arXiv:1902.02135] [INSPIRE].

– 32 –

https://doi.org/10.1007/JHEP04(2018)047
https://arxiv.org/abs/1802.02524
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.02524
https://doi.org/10.1007/JHEP03(2018)048
https://arxiv.org/abs/1801.09696
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.09696
https://doi.org/10.1007/JHEP01(2019)176
https://arxiv.org/abs/1811.05489
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.05489
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9711391
https://doi.org/10.1007/JHEP12(2011)076
https://arxiv.org/abs/1111.2589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2589
https://doi.org/10.1140/epjc/s10052-019-6653-3
https://arxiv.org/abs/1809.04325
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.04325
https://doi.org/10.1016/S0370-2693(99)01061-8
https://arxiv.org/abs/hep-ph/9907471
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9907471
https://doi.org/10.1140/epjc/s10052-011-1626-1
https://arxiv.org/abs/1011.4863
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.4863
https://doi.org/10.1140/epjc/s10052-012-2139-2
https://arxiv.org/abs/1206.0546
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.0546
https://arxiv.org/abs/2005.04195
https://inspirehep.net/search?p=find+EPRINT+arXiv:2005.04195
https://doi.org/10.1016/j.cpc.2016.03.013
https://arxiv.org/abs/1511.03614
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.03614
https://doi.org/10.1016/j.cpc.2017.09.015
https://arxiv.org/abs/1703.09692
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.09692
https://doi.org/10.1103/PhysRevLett.123.151602
https://doi.org/10.1103/PhysRevLett.123.151602
https://arxiv.org/abs/1906.06138
https://doi.org/10.1103/PhysRevLett.123.151602
https://arxiv.org/abs/1906.06138
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.06138
https://doi.org/10.1088/1126-6708/2008/09/065
https://arxiv.org/abs/0804.3170
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.3170
https://doi.org/10.1007/JHEP12(2019)163
https://arxiv.org/abs/1904.08389
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.08389
https://doi.org/10.1007/JHEP10(2010)073
https://arxiv.org/abs/1007.0194
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0194
https://doi.org/10.1103/PhysRevLett.122.111603
https://arxiv.org/abs/1902.02135
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.02135

	Introduction
	The integral family
	Differential equations for the integral family
	Canonical integrals
	Elliptic integrals

	Series expansion along contours
	Boundary conditions
	Convergence of the series

	Results for top and bottom quarks
	Cross-checks of the expansions

	Conclusion
	Canonical basis and basis for elliptic sectors
	Alphabet of the polylogarithmic sectors

