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1 Introduction

Despite the lack of direct signals for new physics from the high-energy collision data col-

lected by the LHC experiments, we have a number of solid arguments, both theoretical and

observational, that call for extensions of the Standard Model (SM). The most convincing

of those — related to the origin of neutrino masses, dark matter, baryon asymmetry etc.

— do not necessarily point to new particles at scales accessible at colliders in the foresee-

able future. However, recent years have been also witnessing the arising of several hints

for non-standard phenomena from precision observables involving lepton flavors. Signs of

departure from the universality of leptonic couplings predicted by the SM in semi-leptonic

decays of B mesons have been reported by LHCb and B-factories experiments both in

neutral- and charged-current processes — for recent reviews see [1–3]. If confirmed by fu-

ture data, these discrepancies would certainly require low-scale new physics coupling with

different strength to different lepton families. Another discrepancy that would point to an

analogous conclusion is related to the anomalous magnetic moment of the muon, (g− 2)µ.

The experimental measurements of (g−2)µ have been in tension with the increasingly accu-

rate theoretical calculations within the SM for about 20 years. The discrepancy currently

amounts to about 3.5σ [4–10].1 The situation may be clarified — and the case for new

physics possibly reinforced — by the upcoming results of the new Muon g-2 experiment at

FNAL [14]. It is well known that new particles coupling to muons can easily account for

the (g − 2)µ provided that their mass are few TeV at most — for a recent review see [15].

1See, however, the very recent lattice result of the leading order hadronic vacuum polarization [11],

which, contrary to previous results, could reduce this discrepancy. On the other hand, even if the anomaly

is accounted for by the hadronic vacuum polarization, this would reflect in a deterioration of the EW fit

and the arising of tensions of comparable significance in other observables [12, 13].
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This makes the new physics possibly required by the (g − 2)µ anomaly an ideal target for

direct searches at LHC experiments, which in fact have already reached the sensitivity so

to exclude substantial portions of the parameter space of typical models [15–20].

Interestingly, a 2σ tension between theory and experiments has been recently reported

also for the electron g−2. The (g−2)e has been determined both experimentally and theo-

retically to such an outstanding precision, that matching the SM prediction to the measure-

ment has been used for many years as the most precise way to evaluate the fine-structure

constant α. However, in presence of an alternative and sufficiently precise measurement of

α, one can employ (g − 2)e as a test for new physics too [21]. This has become possible in

recent years and the most precise result, obtained by employing matter-wave interferome-

try with cesium-133 atoms [22], highlighted the discrepancy for (g − 2)e mentioned above.

Expressed in terms of a` ≡ (g− 2)`/2, the present situation can be summarized as follows:

∆aexp
e ≡ aexp

e − aSM
e = −(8.8± 3.6)× 10−13, (1.1)

∆aexp
µ ≡ aexp

µ − aSM
µ = (2.7± 0.7)× 10−9. (1.2)

It is very tempting to speculate about a simultaneous new-physics origin of the results

above, outlining the same mechanism or, at least, a single model able to explain both

discrepancies. In fact, this has been recently attempted in a number of works [23–35].

Although a common explanation has been shown to be possible, the model building task

has proved non-trivial. First, as eqs. (1.1, 1.2) show, the new-physics contributions need

to be positive for ∆aµ and negative for ∆ae. Secondly, the absolute magnitude of ∆aµ and

∆ae do not match the naive scaling ∆aµ/∆ae ∼ m2
µ/m

2
e [21] expected in models where the

chirality flip of the lepton field in the dipole operator is provided by the lepton Yukawa

coupling itself — see discussion below. In fact, such a scaling would result in an absolute

value for ∆ae way too suppressed compared to the experimental range in eq. (1.1). New

physics giving a chirally-enhanced contribution — i.e. featuring the chirality flip inside the

loop — at least to ∆ae is thus required in order to account for eqs. (1.1, 1.2) simultaneously.

The third and perhaps most important challenge model building has to face concerns the

tight experimental limits on lepton-flavor-violating (LFV) processes — see e.g. [36] for a

recent review — in particular µ → eγ. It is clear that any new physics contributing to

both the electron and the muon dipole moment will in general induce the corresponding

µ− e dipole transition.

We can quantify the above difficulties as follows. In an effective Lagrangian approach,

non-standard effects to the leptonic observables of interest (∆a`, µ → eγ, EDMs, etc.)

arise via the dipole operators:

L ⊃ emexp
`

8π2
C``′

(
¯̀σµνPR`

′) Fµν + h.c. `, `′ = e, µ, τ. (1.3)

This effective Lagrangian constitutes a model-independent description of the new-physics

effects we are interested in, so long as the new-physics scale is much larger than the energy

scale associated to our observables, i.e. the lepton masses. In terms of the above Wilson

coefficients — that in our convention have mass dimension GeV−2 — the new-physics
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contribution to the ∆a` reads:

∆a` =
mexp
`

2

(2π)2
Re(C``). (1.4)

In order to fit the experimental results — for illustration we focus here on the central values

in eqs. (1.1), (1.2) — the dipole coefficients need to attain the following numerical values:

Re(Cee) ≈ − 7× 10−5 GeV−2, (1.5)

Re(Cµµ) ≈ 5× 10−6 GeV−2. (1.6)

The flavor-changing couplings instead contribute to LFV processes, in particular to the

radiative decays:

BR(`→ `′γ)

BR(`→ `′νν̄ ′)
=

3α

πG2
F

(
|C``′ |2 + |C`′`|2

)
, (1.7)

where the coefficients C``′ are defined in the basis where the lepton Yukawa matrix Y` is

diagonal. The experimental bound BR(µ→ eγ) < 4.2× 10−13 [37] then translates into the

following constraint:

|Ceµ|, |Cµe| . 10−10 GeV−2. (1.8)

Notice that defining the coefficients in eq. (1.3) we have factored out the dependence

on the lepton masses. Hence, in models where the chirality flip of the lepton fields required

by gauge invariance in eq. (1.3) is due to a lepton mass insertion, the coefficients Cee and

Cµµ should be of the same order 1/Λ2, where Λ is the scale of new physics, with no further

chirality suppression. Nevertheless, eqs. (1.5), (1.6) tell us that this would result in a

contribution to the electron magnetic moment a factor of 15 too small. If, on the other

hand, the chirality flip in eq. (1.3) is due to the insertion of a Higgs vev inside the loop,

one expects an enhancement of the order C`` ∼ yχ/y` where yχ is the coupling of the new

fields to the Higgs and y` is the lepton Yukawa — see e.g. the discussion in [38]. If the

same coupling yχ enters the diagrams for the electron and the muon dipole moment, one

would then obtain ∆aµ/∆ae ∼ mµ/me. Again this is not compatible with the observed

ranges of eqs. (1.1), (1.2): besides the sign, in this case the contribution to the electron

g − 2 would result about a factor 15 too large.

From this discussion, it is clear that suitable new physics contributions should be

flavor-dependent and rather sizable without disturbing the small values of the electron

and muon masses — any loop contributing to dipole operators would generate a radiative

contribution to lepton masses as well — and without being in conflict with LFV constraints.

In fact, eqs. (1.5), (1.6) and eq. (1.8) show that a simultaneous explanation of the two

anomalies requires a relative suppression of the LFV coefficients by more than five orders

of magnitude. In other words, the matrix C``′ and the lepton Yukawa matrix have to be

almost aligned in flavor space, to such extent that the relative misalignment angle can

not exceed O(10−6). A priori there is no reason why generic new physics responsible of
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non-standard g− 2 of leptons should have a flavor structure so perfectly aligned to the SM

lepton mass matrix, unless of course the two sectors share a common origin. Hence we find

it natural to investigate the possibility of a combined explanation of the electron and muon

g − 2 within a model of flavor, i.e. directly arising from the same dynamics behind the

observed lepton masses. Our idea is to focus on flavor models à la Froggatt-Nielsen [39–41]

and calculate the contribution to the lepton g − 2 of the flavons and the mediator fields

that generate the charged-lepton masses.

The rest of the paper is organized as follows. In section 2 we highlight the general

idea and the fundamental ingredients to obtain successful lepton masses and g − 2 from a

flavor model. Section 3 shows how this is realized in a toy model example. In section 4 we

discuss the phenomenology of flavons and mediators and we conclude in section 5.

2 General idea

As discussed in the introduction, the new contributions to the anomalous magnetic moment

must be flavor dependent, but with a different flavor dependence from the SM Yukawa

couplings.2 Although, in principle, it would be possible to assign an ad hoc flavor structure,

both to the magnetic moments and to the Yukawas, it is more satisfactory to try to explain

these observables in terms of a new symmetry in flavor space. Indeed, flavor symmetries

à la Froggatt-Nielsen (FN) have been used for a long time to understand the complex

structure of Yukawa couplings. In this framework, it looks completely natural to use the

same mechanism to explain the new structures of dipole operators.3 Fermion masses and

anomalous magnetic moments, both chirality changing operators, are intimately connected.

Any radiative correction to the fermion masses gives a contribution to the anomalous

magnetic moment if we attach a photon to one of the internal lines. However, the FN

contributions to the Yukawas usually considered are tree-level diagrams while we necessarily

need a loop to generate the dipole operators. In any case, loop corrections to the tree-level

diagrams are always present and, as we will see below, under certain conditions they can

be sizeable with respect to the tree-level diagrams.

Yukawa couplings are accounted for as powers of a dimensionless ratio υ/M ≤ 1,

with υ a scalar vacuum expectation value, singlet under the SM symmetries, and M the

mass of a heavy vector-like mediator with the SM quantum numbers. These contributions

are obtained from tree-level diagrams as shown in figure 1. Nevertheless, the radiative

corrections to this diagram can be large. In particular, we could consider loops involving

the flavons with small vevs, so that we could “replace” two small vevs by an O(1) loop

function. Obviously, this is not so easy, as the flavons carry a flavor charge and they must

break the symmetry to connect the low energy fermionic fields and thus the loop must

also break the symmetry by the same amount. This could be done through the flavon vev

itself. However, as we will see in the following, the above mentioned enhancement can be

2However, for an exception see ref. [32].
3During the completion of this work, an article appeared [42], that also proposes a possible connection

between anomalous magnetic moments and a U(1) flavor symmetry, although in the context of a multi-Higgs

doublet model rather than FN models.
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Figure 1. Froggatt Nielsen (left) and Radiative (right) lepton mass.

υa

χR

υa

φ1 φ1

ℓLℓR
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χR

γ

∆aℓ =

Figure 2. Flavon contribution to (g − 2)`

achieved only if a larger vev of a different flavon field is inserted, being the size of this vev

not fixed if this field does not couple directly to the fermions. In this way, it is possible

to partially compensate the loop suppression and make this loop contribution, with the

correct symmetry-breaking properties, comparable to the tree-level FN diagram.

Now, it is clear that this loop diagram generating a loop correction to the Yukawa would

be the same as the diagram generating the dipole coefficients simply adding a photon, see

figure 2. In general, we expect that the anomalous magnetic moment a` = Cm2
`/M

2 [43]

with C a loop factor if the fermion mass is present at tree-level or C ∼ O(1) if the mass

is generated at loop level [44]. In our flavor symmetry models, we could have radiative

corrections to the mass similar to the tree-level contribution which implies that a large

contribution to a`, with C ∼ O(1), can be expected. Moreover, the measured discrepancies

in the muon and electron magnetic moments, which do not follow this quadratic scaling

with the fermion mass, can also be explained with flavor models where additional flavor

dependence can enter naturally the magnetic moment. The main problem of this construc-

tion, as discussed in the introduction, is to suppress off-diagonal LFV dipole operators

which requires some non-trivial model building.

On the other hand, in flavor symmetry models, the dimensionless Yukawa couplings

depend only on ratios υ/M and therefore can not fix the scale of symmetry breaking or

the mediator masses. Anomalous magnetic moments are dimension 6 operators, and then

the contributions to a` are suppressed, compared to the radiative contribution to the mass,

by the heaviest mass in the loop, i.e. in our flavor models, the mediator mass, M2
χ, or the
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flavon mass, M2
φ. Therefore, this implies that anomalous magnetic moments could provide

a hint on the scale of flavor symmetry breaking if the measured discrepancies are due to

these flavon contributions.

At this point, we would like to emphasize that the relation between anomalous magnetic

moments and radiative corrections to the masses is true for a generic model. In particular,

models with a chiral enhancement in the lepton anomalous magnetic moments can also

have large corrections to the tree-level lepton masses. This is what happens, for instance,

in the MSSM with large tan β or in models with leptoquarks (LQs) where the chirality

flip can be given by a quark mass, e.g. mt, instead of mµ or me. In fact, the required

contributions to the anomalous magnetic moments generically imply a large correction to

the mass, which is usually not taken into account in the literature. For instance, models

with multi-TeV chirality-flipping vector-like leptons or LQs that can explain (g− 2)µ, as is

the case in refs. [38, 45–52], could give a sizable correction to the mass. Assuming the loop

functions in the radiative mass and anomalous magnetic moments to be of the same order,

we can estimate mRAD
µ ∼ ∆aµ M

2
χ/2mµ ∼ 0.05 (Mχ/2 TeV)2 GeV, with Mχ the leptoquark

mass. This large contribution could cancel against a tree level mass contribution with some

degree of tuning, but radiative corrections to the mass should be taken into account in

these analysis.

Notice that, in this work, we concentrate on the charged-lepton sector and we do not

discuss neutrino mixings. The observed neutrino mixings can always be accommodated

with the help of the right-handed neutrino mass matrices in a type-I seesaw mechanism,

possibly with additional breaking of the flavor symmetry. In the following, we apply these

general ideas to explain the measured discrepancies ∆ae and ∆aµ in models of flavor

symmetries. For this, we will construct an explicit example of this mechanism.

2.1 Lepton masses and g − 2 contribution

Assuming a minimal set of fields and couplings, the Yukawa-like interactions responsible

for the masses in a FN framework can be schematically written as:

LY = g`
(
χR `R φ1 + . . . + `L χRH

)
+ h.c., (2.1)

with χR a heavy vector-like mediator with the quantum number of a right-handed lepton

`R,4 φ1 a flavon field carrying non-zero flavor charge, and g` a generic O(1) coupling that,

for illustration purposes, we took to be the same for all interactions. As we will see below,

our results not depending on this choice. Then, the minimal potential should contain the

following couplings:

V (φ) =
∑
i

−µ2
i (φ†iφi) +λi(φ

†
iφi)

2 +
1

2

∑
i 6=j

λij (φ†iφi)(φ
†
jφj) +

[
λ (φ†aφ1)2 + h.c.

]
, (2.2)

where the indices i, j = 1, a, . . . go through all the flavons present in the model. We have

introduced φa as a general complex scalar field that does not couple directly to leptons.

4Obviously one could also consider mediators carrying the quantum numbers of left-handed leptons, or

a combination of right-handed and left-handed mediators with the Higgs not coupling directly to the light

chiral fields. For a detailed discussion of the messenger sector of FN models see [53–56].
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Other quartic terms of the kind (φ†iφj)
2 could also be present in eq. (2.2) provided they

respect the flavor symmetry. The interactions in eq. (2.1) induce a mass term for the

charged leptons through the processes depicted in figure 1. For a diagram with n flavon

insertions, the effective mass is:

mFN
` = gn+1

`

υH√
2
εn−2

(
υ1

Mχ

)2

, (2.3)

where υ1 ≡ 〈φ1〉, Mχ is the heavy mediator mass and ε ≡ υ/Mχ stands for possible

additional insertions of the same φ1 as well as of other flavons generally present in a

complete flavor model. Depending on the number of different flavons and vertices in the

lagrangian, we have to take into account possible degeneracy coefficients, which count for

the possible ways of inserting each flavon. However, they can always be absorbed into the

g` coupling. In figure 1, we show that, together with the FN-diagram, the last vertex of

eq. (2.2) also induces a radiative mass term mRAD
` . The computation of the diagram gives:

mRAD
` = gn+1

`

υH√
2
εn−2

(
υa
Mχ

)2 λ

16π2
I×m(xφ), (2.4)

and the following loop function

I×m(xφ) =
1 + 2 log xφ − x2

φ

(1− x2
φ)2

< 0 , (2.5)

with xφ = µφ1/Mχ, being µ2
φ1

the bilinear coupling in the scalar potential before symmetry

breaking. We must remark here that φ1 is a complex scalar and the FN-operator involves

φ2
1, therefore a bilinear coupling, µ2

i , can not close the loop in figure 1 and we must take

a quartic couplings with two vevs breaking the flavor symmetry. Comparing eqs. (2.3)

and (2.4), they differ for the loop factor λ I×m/(16π2) and the replacement υ1 → υa. The

contribution mRAD
` is comparable with mFN

` if (υa/υ1)2 is big enough to compensate for

the suppression of the loop factor. Note that, if more than two insertions of φ1 are present,

we have to take into account the alternative ways of closing the loop. As a consequence,

typically there is a mismatch between the degeneracy coefficients of the FN and RAD

diagrams that can not be reabsorbed. The function in eq. (2.5) is defined negative; this

means that as long as λ > 0, the two diagrams in figure 1 interfere destructively among

each other.

What we want to emphasize is that the same processes which generates the radiative

contribution to the lepton masses induces a correction to the anomalous magnetic moment

coupling a photon to the loop. It contributes to the anomalous magnetic moment as:

∆a` = gn+1
`

υH√
2

m`

M2
χ

εn−2

(
υa
Mχ

)2 λ

8π2
I×∆a(xφ). (2.6)

where the loop function is given by

I×∆a(xφ) = −
1 + 4x2

φ(1 + 2 log xφ) − x4
φ(5− 4 log xφ)

2(1− x2
φ)4

< 0 . (2.7)

– 7 –
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Figure 3. Mediator mass Mχ as function of xφ for the muon case (left panel) and the electron case

(right panel). We have used eq. (2.9) imposing ∆aexp` − 2σ` < ∆a` < ∆aexp` + 2σ` and c` ∈ [1, 10].

For a given value of ∆a`, we can read the required loop factor, c`, from the bar legend.

Figure 4. Ratio υ1/υa as function of xφ for the muon case (left panel) and the electron case (right

panel). We have used eq. (2.10) with 1/2 < mFN
µ /mRAD

µ < 9/10 and 10/9 < mFN
e /mRAD

e < 2 and

λ ∈ [π/6, 2π]. For a given c`, we can read the required value of λ from the bar legend.

In the mechanism described so far, the realization of the (g − 2) correction is directly

related to the mass generation through a flavor symmetry. This implies that Sign(∆a`) =

Sign(mRAD
` ) as they come from the same diagram. In this framework, the obstacle of

obtaining the experimental sign difference, between ∆aµ and ∆ae, can be nicely overcome.

We can achieve it by requiring Sign(∆aµ) = Sign(mµ) while Sign(∆ae) = − Sign(me).

The rotation to the physical basis where me,mµ > 0 automatically gives ∆ae < 0 and

∆aµ > 0. In particular, the SM contribution to ae will get the chirality change through the

electron mass itself, including both tree and radiative contributions to the mass, while our

new contribution gets the chirality change through the radiative contribution only, with

negative sign after rephasing. As the electron and muon masses are generated through a

destructive interference between the FN and the radiative processes in figure 1, basically

what we need is an opposite cancellation in the muon and electron sectors, i.e. mRAD
µ > mFN

µ

– 8 –
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while mRAD
e < mFN

e . Now, taking g`, υ1 and ε positive in eq. (2.3), this means that the

radiative masses and anomalous moments, as the muon mass before rephasing, are negative

while the electron mass is positive. Altogether, this implies that the radiative and the tree

level contributions must be of the same order. We let mRAD
` , and consequently mFN

` , to be

up to one order of magnitude larger than mexp
` , i.e.

|mRAD
` | = c`m

exp
` with c` ∈ [ 1, 10 ] . (2.8)

Notice that in the following ratios the dependence on the variables of our mechanism is to

great extent simplified [44],

∆a`
mRAD
`

=
|∆a`|
c`m

exp
`

=
2mexp

`

M2
χ

I×∆a(xφ)

I×m(xφ)
, (2.9)∣∣∣∣λmFN

`

mRAD
`

∣∣∣∣ = λ
c` ± 1

c`
=

16π2

I×m(xφ)

(
υ1

υa

)2

, (2.10)

with (+) for the electron and (−) for the muon, where, as before, we take λ > 0. As we

announced before, the ratios mFN/mRAD and ∆a/mRAD do not depend on the choice of

g`, as the same couplings necessarily enter the three observables. From eq. (2.9) we can

directly deduce the dependence of Mχ(xφ) once we impose the experimental bounds on

∆aexp
` together with c` = [1, 10], as shown in figure 3. On the other hand, in figure 4,

we can see that eq. (2.10) gives the relation of υ1/υa(xφ). From figure 4 we see that it is

always true that υa > υ1, as expected from the previous discussion. Notice that, although

a quartic coupling (φ†1φ1)2, present in eq. (2.2), also closes the loop in figure 1, these results

demonstrate the need of the non-trivial quartic coupling (φ†aφ1)2 in the scalar potential.

The results shown in figure 3 and 4 rely exclusively on the level of cancellation between the

FN and radiative diagrams, therefore they can be considered to some extent independent

of the model details. Nonetheless, their validity can only be established within a specific

flavor model. For instance, the required relation between µφ1 and υ(1,a) will be allowed

only for certain regions of the viable parameter space. Our results show superposition over

the muon and electron parameter space for Mχ ∈ [0.6, 2.5] TeV. Consequently, we use the

mechanism described in this section to build a toy model based on a U(1)f flavor symmetry

that accommodates both the muon and electron (g − 2) anomalies.

3 A U(1)f toy model

To give an illustrative realization of the mechanism described in the previous section, let

us consider an Abelian flavor symmetry U(1)f generating the flavor structures. The field

charges, supplemented by the appropriate mediator sector, are specified in table 1. Here

we do not consider the flavor structures involving the τ , as it goes beyond our exemplifying

purposes. Apart from flavor charges, all flavons are SM singlets and mediators have the

quantum numbers of lepton singlets, while the SM Higgs boson does not transform under

the flavor symmetry.

We do not contemplate the presence of mediators of fractional charge. This is a crucial

assumption, as it forbids the possibility for φ(a,b) to participate to the mass generation at

– 9 –
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Field µL µR eL eR χR φ1 φ3 φa φb H

U(1)f −2 0 8 3 1, 2 . . . 6, 7, 8 1 3 2/5 8/5 0

Z2 + + − + ± − − + + +

Table 1. Fields and their flavor symmetry assignments.

me =

+mµ =

φ−
3 φ−

3 φ†
1

−
H+

φ−
1 φ†

3

−
H+

+

φ−
3 φ−

1 φ−
1 H+

φ†
1

−
φ†
1

−
H+

χ−
6e+3 χ+

9 χ−
8 e−8

χ−
1 µ+

−2µ+
0 χ+

−2

χ−
6e+3 χ+

7 χ−
8 e−8

χ−
−1 µ+

−2µ+
0 χ+

−2

Figure 5. FN diagrams entering in the generation of the electron and muon masses. The field

subscripts indicate the U(1)f charge while the superscripts specify the Z2 assignments.

tree-level through the FN mechanism. Besides, two distinct fields φa and φb are required

if they must have fractional charges. A term (φ†aφ1)2, as in eq. (2.2), would require (2q1 −
2qa = 0) and hence the same charge as φ1. Furthermore, in this model we introduce

other two different flavons, φ1 and φ3, to obtain different cancellations between mFN and

mRAD for the electron and the muon. If we have a single flavon, φ1, it is easy to see that

mFN/mRAD is the same for both electrons and muons. Moreover, we need this ratio to be

negative to obtain a cancellation. As we will see below, both conditions are met with the

introduction of φ3.

The Z2 symmetry plays a fundamental role. Any diagram that couples `+ → `+(−),

where superscripts refer to Z2 charges, requires an even (odd) number of insertions. As we

consider only flavons with odd charges, our choice of U(1) charges could allow e+
R → µ+

L

only at the level of (2n+ 1)-insertions and µ+
R → e−L with (2n)-insertions. However the Z2

symmetry prevents any of these flavor-changing couplings that would give rise to µ→ eγ.

For the same reason, it also eliminates any effective vertex µ†ReR and µ†LeL. Thus the

charge assignments in table 1 conserves leptonic flavors.

The effective Lagrangian preserving the charge assignment of the underlying U(1)f
flavor symmetry has the form

L` = gµ

[
µ

(0)
R χ

(1)
R φ†1 + µ

(2)
L χ

(−2)
R H(0)

]
+ ge

[
e

(3)
R χ

(−6)
R φ3 + e

(8)
L χ

(−8)
R H(0)

]
(3.1)

+ g
∑
q

[
χ

(q)
R χ

(q+1)
R φ1 + χ

(q)
R χ

(q+3)
R φ3

]
+ h.c. . (3.2)
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Given the charge assignment in table 1, the most general scalar potential can be written as

V = µ2
1 φ

†
1φ1 + µ2

3 φ
†
3φ3 + µ2

a φ
†
aφa + µ2

b φ
†
bφb

+λ1

(
φ†1φ1

)2
+ λ3

(
φ†3φ3

)2
+ λa

(
φ†aφa

)2
+ λb

(
φ†bφb

)2

+λ13

(
φ†1φ1

)(
φ†3φ3

)
+ λ1a

(
φ†1φ1

)(
φ†aφa

)
+ λ1b

(
φ†1φ1

)(
φ†bφb

)
(3.3)

+λ3a

(
φ†3φ3

)(
φ†aφa

)
+ λ3b

(
φ†3φ3

)(
φ†bφb

)
+ λab

(
φ†aφa

)(
φ†bφb

)
+
(
λ1ab φ

†
aφ
†
bφ

2
1 + λ′13 φ

†
3φ

3
1 + µ′a

2
φ2
a + µ′b

2
φ2
b + h.c.

)
,

where the last two terms are introduced to break explicitly the U(1)f symmetry and allow

to give a small mass to the two Goldstone bosons5 present in the model, while the Z2 is

preserved.6 For simplicity we consider the λs to be real. The flavor symmetry is sponta-

neously broken when the flavons get a nonzero vev at the minimum of the scalar potential.

As detailed in appendix A, the potential in eq. (3.3) allows for a non trivial minimum

with υ3 ∼ −2υ1 and υb ∼ υa, υ(1,a) 6= 0 and υ1 < υa. The mass matrices of the CP-even

(Si) and -odd bosons (Pi) can be diagonalized by two orthogonal matrices as detailed in

appendix A. The relevant (pseudo) scalar masses are

m2
S1
' 2υ2

1

(
2λ1 − λ13 −

9

4
λ′13

)
, m2

P1
' −2 υ2

a

(
λ1ab +

υ2
1

2υ2
a

(λ1ab − 18λ′13)

)
, (3.4)

m2
S2
' 2 υ2

1

(
2λ1 + 4λ13 − 6λ′13 −

5

4

(2λ1a + λ1ab)
2

2λa + λab

)
. (3.5)

These physical masses are related to the µ2
φ1
≡ µ2

1 in figure 3 as m2
S1,2
∼ (2λ1a + λ1ab)υ

2
a +

6λ1υ
2
1 − µ2

φ1
and m2

P1
∼ (2λ1a − λ1ab)υ

2
a + 6λ1υ

2
1 − µ2

φ1
, relations that are valid up to

O(υ2
1/υ

2
a) corrections. Looking at m2

P1
, it is clear that the necessary condition for a mini-

mum is λ1ab < 0.

3.1 Mass generation and (g − 2)`

Using the vertices in eq. (3.1), we can write down the FN diagrams entering in the mass

generation of mµ and me. They are displayed in figure 5, where it is important to notice

that due to the presence of φ3 we have different tree-level diagrams contributing to mµ

and me with different weights for υ3 ∼ −2υ1. From the potential in eq. (3.3) we see that

5It is easy to check that taking µ′
a = µ′

b = 0, the potential has two unconstrained charges and therefore

two global symmetries. Initially, we have four charges q1, q3, qa and qb, i.e. 4 symmetries. Then, only the

last row in eq. (3.3) constrains these charges, (2q1 − qa − qb = 0) and (3q1 − q3 = 0). So, there remain two

global symmetries that are explicitly broken by µ′
a and µ′

b. As can be seen in the appendix, we have two

pseudoscalar masses directly proportional to µ′ 2
(a,b).

6As mentioned in section 2, neutrino masses can be accommodated through the right-handed neutrino

Majorana masses. The breaking of Z2 would be produced by the same flavons breaking lepton number,

coupling only to νR. This allows µ− e mixing in the νR and, hence, in the νL mass matrices. In this way,

the charged-lepton sector would be practically unaffected, with flavor changes in charged-leptons always

proportional to neutrino masses.
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Mχ mS1 mS2 mS3 mS4 mP1 mP2 mP3 mP4 υ1 υ3 υ(a,b) ge

1658 123 337 1245 1430 611 23 18 18 42 −84 262 0.72

λ1 λ3 λ(a,b) λ13 λ1(a,b) λ3(a,b) λab λ′
13 λ1ab µ(1,3) µ(a,b) µ′

(a,b) gµ

5.93 3.31 6.54 6.08 0.97 −0.31 1.82 0.65 −2.50 122 1010 9 0.85

Table 2. Example of a benchmark point. The spectrum mass parameters are given in GeV. The

combination of parameters provides ∆aµ = 1.6× 10−9 and ∆ae = −1.8× 10−13 with a relative size

of the loop contributions (ce, cµ) = (7.1, 1.6).

different quartic couplings can act closing the loop in one of these diagrams for mµ and me.

In our toy model, the λ introduced in eqs. (2.4), (2.6) is given by the sum of different terms

λ→ λ1ab
υb
υa

+ λ1
υ2

1

υ2
a

+ λ′13

υ3υ1

υ2
a

. (3.6)

Nevertheless, the φ(1,3) couple directly to the SM fermions and the size of their vevs are

limited, while the υ(a,b) only enter the masses at loop level and their values can be corre-

spondingly larger. Provided that υa ∼ υb � υ(1,3), only diagrams with two or more φ1,

closed by the quartic coupling λ1ab φ
†
a φ
†
bφ

2
1 can give a contribution to (g − 2)` with the

required enhancement. Then, the total masses are,

mµ = g3
µ

υH√
2
ε2

1

[(
ε3

ε1
+ 1

)
+
λ1ab

16π2

ε2
a

ε2
1

I×m(xφ)

]
∼ g3

µ

υH√
2
ε2

1

[
−1 +

λ1ab

16π2

ε2
a

ε2
1

I×m(xφ)

]
, (3.7)

me = g4
e

υH√
2
ε2

1ε3

[(
2
ε3

ε1
+ 1

)
+
λ1ab

16π2

ε2
a

ε2
1

I×m(xφ)

]
∼ 2 g4

e

υH√
2
ε3

1

[
3− λ1ab

16π2

ε2
a

ε2
1

I×m(xφ)

]
, (3.8)

where ε(1,a) = υ(1,a)/Mχ, we assume a common mediator mass Mχ to simplify the discussion

and, in the second equality, we have taken υ3 ∼ −2υ1. In this equation we can see that, as

we said above, it is the presence of υ3 which provides the negative relative sign and different

cancellation in mµ and me. Now, the corresponding contributions to (g − 2)` read as

∆aµ ∼ g3
µ

λ1ab

8π2

υH√
2

mµ

M2
χ

ε2
a I
×
∆a(xφ) , (3.9)

∆ae ∼ −2 g4
e

λ1ab

8π2

υH√
2

me

M2
χ

ε2
a ε1 I

×
∆a(xφ) . (3.10)

The minimization of the scalar potential requires λ1ab < 0 and the loop function is also

I×m(xφ) < 0, so the radiative diagram gives a positive contribution to the mass. From

eqs. (3.9) and (3.10) one sees that, to obtain Sign(∆aµ) = −Sign(∆ae) in the physical

basis, we need the following condition to be satisfied

1√
3
<

4π√
λ1abI

×
m(xφ)

ε1

εa
< 1 . (3.11)

An example of a set of numerical values of the parameters giving a global minimum,

the corresponding vevs, and the resulting scalar mass spectrum are shown in table 2.
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Notice that as expected there are two light pseudoscalars, i.e. the pseudo Nambu-Goldstone

bosons, with mass of the order of the explicit U(1)f breaking, and a third pseudoscalar

which is instead light because its mass is controlled by the small vev υ1.

4 Phenomenological implications

We have seen that to explain the discrepancies in the muon and electron anomalous mag-

netic moments through a low scale flavor symmetry, a relatively light flavon and mediator

sector is required. In this section we discuss the phenomenology of these light particles

at colliders and precision experiments. Rather than focusing on the specific toy model

presented in section 3, we discuss the general features and phenomenological consequences

of the mechanism outlined in section 2.

In figures 3 and 4, we can see the requirements on the masses and the vacuum expecta-

tion values needed to reproduce the anomalous magnetic moments through this mechanism,

irrespective of the details of the model, as symmetries, charges, and scalar potential. The

figure shows that we can successfully reproduce (g − 2)µ at the 2σ level with a mediator

mass up to 5.7 TeV, although this implies that cµ = 10, i.e. a cancellation of the tree-level

and radiative contributions to the muon mass with a tuning of 10%. In the case of (g− 2)e

at 2σ the maximum allowed mediator mass is 2.5 TeV with a 10% tuning.

If we take both values at 2σ, we can see that we relax both the electron and muon

discrepancies with Mχ ' 2.5 TeV and xφ ' 0.6. This implies ce = 10 and cµ ∈ [2.2, 6.9],

where the cµ range reflects the 2σ range in eq. (1.2). Then, the cancellation is larger for

the electron that for the muon and, as expected, a smaller degree of cancellation would

imply a lighter mediator. For instance, to reproduce the central values with Mχ = 1 TeV

and xφ = 1, it would require cµ = 1.1 and ce = 7.7. Therefore, our explanation of the

muon and electron discrepancies in the anomalous magnetic moments at two sigmas has

a definite prediction: we expect vector-like fermions with the quantum numbers of right-

handed and/or left-handed SM leptons with mass below 2.5 TeV.

The scalar sector is more model dependent, as the exact spectrum depends on the

minimization of the scalar potential as exemplified in appendix A for the toy model. We

can however outline some general features, based on the discussion in section 2. Figures 3

and 4 show that for our mechanism to work we need: (i) a hierarchy between the U(1)f -

breaking vevs with those (“υ1”) entering the tree-level mass diagrams smaller than those

(“υa”) controlling the radiative mass and the contributions to (g−2)`, i.e. υ1 < υa; (ii) the

bilinear terms in the scalar potential µφ of the flavons coupling to leptons of the same order

or smaller than the mediator mass Mχ, unless υ1 � υa. It is thus reasonable to expect at

least one scalar and/or pseudoscalar to be much lighter than the mediators. This is indeed

the case in the explicit example shown in table 2, where the scalar spectrum lies in the

10 GeV–2 TeV range. The light states have in particular to come mostly from the flavons

involved in the FN diagram, thus coupling to light leptons, that in section 2 we denoted as

φ1. Besides, there must be one or more pseudo-Goldstone bosons whose mass is controlled

by explicit U(1)f -breaking terms and thus naturally — although not necessarily — light.
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Given the above discussion, here we focus on the phenomenology of scalar states with

a substantial component of the flavon φ1 entering the tree-level FN diagrams that are in

general expected to have mass of O(100) GeV or lighter.

From figure 1, one can see that the coupling yφ` of a physical state in φ1 to `L`R is

proportional to the FN contribution to the lepton mass:

yφ` ≈ nφ
mFN
`

υ1
, (4.1)

where nφ is the number of φ1 insertions in the diagram. Even considering the maximal tun-

ing we allowed, mFN
` = 10mexp

` (i.e. c` = 10), the ratio mFN
` /υ1 provides a substantial sup-

pression to the couplings to electrons and muons. Indeed, numerically the couplings result

yφe ≈ 2× 10−4

(
nφ
2

)(
ce

10

)(
50 GeV

υ1

)
, (4.2)

yφµ ≈ 4× 10−2

(
nφ
2

)(
cµ
10

)(
50 GeV

υ1

)
. (4.3)

The flavon couples preferably to the heaviest lepton, in our case the muon. Of course,

it would be the tau if the same flavon were involved in the generation of the tau mass.

As a consequence, if produced at colliders either directly or through decays of the me-

diators, our flavon would decay as φ1 → µ+µ− (or τ+τ−) with a branching ratio close

to 100%. A φ1 lighter than about 200 GeV could appear as a di-muon (or di-tau) res-

onance at LEP: e+e− → φ1 → µ+µ−. However, the production cross section depends

on the small coupling to electrons and, due to limited statistics, searches for such kind

of di-fermion resonances performed by LEP experiments are not sensitive to couplings

yeφ . 10−2 [57]. For flavons substantially heavier than the maximum LEP center-of-mass

energy (209 GeV), bounds on the 4-lepton contact interaction [58] translate into a limit

yeφ yµφ . 5 × 10−3 (mφ/400 GeV)2, several orders of magnitude above our typical values

shown in eq. (4.2). It would be interesting to assess the sensitivity of proposed future lep-

tonic colliders — such as the ILC, CLIC, CEPC, and FCC-ee, see e.g. [59] — to leptonic

flavons, a question that we defer to future work.

The FN mediators we considered are heavy vector-like leptons with the quantum num-

bers of the SM lepton singlets, although realizations of our mechanism involving also or

exclusively SU(2) doublet mediators are conceivable. In either case, these new heavy

fermions can be abundantly produced at the LHC via the electro-weak Drell-Yan process

pp→ Z∗/γ∗ → χ+χ−, plus modes involving the neutral states in case of doublet mediators.

In general, vector-like leptons mix with the SM leptons, hence the charged states can decay

to light leptons and SM bosons: χ± → Z (h) `±, see e.g. [60]. In our case a more direct

decay mode involves lighter flavon states: χ± → φ1 `
±, where again with φ1 we denote

a flavon appearing in FN diagrams. Depending on the FN charge of a given mediator,

decays of this kind may occur through a renormalizable O(1) coupling, or again through

an effective coupling arising from mixing of different mediators involving the insertion of

a certain number of flavon and/or Higgs, as one can see from FN diagrams such as in

figure 5. As in general a fewer number of vev insertion is needed than for the decays to SM
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particles, we expect that this mode will be always dominant. The exact quantum numbers

of a given mediator will also determine which lepton the mediator preferably decays into.

Considering that as discussed above flavons decay to pairs of the heaviest lepton they cou-

ple to, the typical signature of this kind of models at the LHC consists of a multi-lepton

final state such as:

pp→ χ+χ− → φ1(→ µ+µ−) `+ φ1(→ µ+µ−) `−, (4.4)

where ` = e, µ and the di-muon invariant mass can reconstruct the mass of the φ1 state.

Of course for models involving the third generation, decay chains of this kind involving

taus are possible and, in particular, flavons coupling to a FN diagram for the tau would

mostly decay into τ+τ−.

Searches based on multi-lepton final states have been performed by the LHC collabo-

rations [61–64], and employed to constrain a variety of new-physics models. In particular

the analysis in [63] was interpreted in terms of production of third generation vector-like

lepton doublets decaying to SM gauge/Higgs bosons and taus/tau neutrinos. A limit on

the mass of the vector-like lepton & 800 GeV was obtained. We expect that reinterpreting

this and other multi-lepton searches in terms of the vector-like lepton production and decay

chain shown in eq. (4.4) would yield a comparable limit, possibly stronger, in the 1 TeV

ballpark, if no taus or neutrinos are present in the final state. An optimized search taking

full advantage of the spectacular six-lepton signature in eq. (4.4) should further increase

the sensitivity.

Finally, we conclude this section by commenting about possible low-energy probes of

our setup. The most obvious observables that could test a combined explanation of both

electron and muon g−2 are LFV processes and the electron EDM. In fact, the suppression

of LFV processes does not need to be complete as in the toy model of section 3, and

any deviation from a perfect flavour alignment of the dipole coefficients C``′ in eq. (1.3)

could be observed by searches for LFV processes, cf. [36] for status and prospects of these

experiments. The same diagrams giving rise to (g−2)e can contribute to the electron EDM

(eEDM). In terms of the usual effective operators such contribution reads

de =
eme

4π2
Im(Cee). (4.5)

The latest experimental limit [65] then implies:

de < 1.1× 10−29 e cm ⇒ |Im(Cee)| < 6× 10−7 GeV−2. (4.6)

Comparing this with eq. (1.5), we can see that the suppression of the imaginary part of

Cee, thus of the overall CP-violating phase of the (g − 2)e diagram, with respect to the

real part must be at the percent level. Therefore, unless the CP-violating phase is exactly

zero, as it is the case if all new couplings are real, the eEDM is an observable where a

non-standard (g − 2)e can be tested, cf. a related discussion in [24].

5 Conclusions

We have proposed a new mechanism to accommodate the experimental (g − 2)` (` = e, µ)

discrepancies within the framework of low-scale flavor symmetry models. In these flavour
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models, that generate the Yukawa couplings through a Froggatt-Nielsen mechanism, the

presence of quartic couplings between flavons can always act to close the loop of two scalar

flavons that contribute to the mass at tree level, and thus both give a radiative correction

to the mass and generate a contribution to the magnetic moment. We stress that a sizeable

contribution of the anomalous magnetic moment, as required by the observed discrepancies,

gives necessarily a contribution to the mass.

In order to obtain a sizable g − 2 correction, compatible with the present discrepan-

cies, we introduce a nontrivial quartic coupling with a second flavon, that acquires a large

VEV though does not participate to the tree level masses. The radiative mass receives the

same enhancement and contributes significantly to the mass generation; this sets a limit

on the size of the g− 2 contribution. The FN and radiative diagrams, with opposite signs,

contribute to the electron and muon masses through a cancellation that accommodates the

experimental difference in sign between the electron and muon magnetic moment discrep-

ancies and, at the same time, contributes to satisfy the experimental limit on searches of

vector-like mediators.

We show that our mechanism can provide a simple explanation of the discrepancies of

the muon (g−2)µ and the electron (g−2)e, simultaneously in a large viable parameter space,

with predicted mediator masses as large as Mχ ∈ [0.6, 2.5] TeV. We give an example of how

this can be achieved in a toy model based on a U(1)f flavor symmetry. The application

to a complete model, including the tau, quarks and neutrino sectors and the study of its

phenomenological consequences in flavor physics is left to future works.

A Minimization of the potential

In order to reduce the number of free parameters, we consider the following relations among

coefficients: λb ∼ λa, λ(1,3)b ∼ λ(1,3)a, λ3a ∼ (λ1a + λ1ab), λ3 ∼ (4λ1 + 6λ13 − 11λ′13)/16,

µ1 ∼ µ3, µb ∼ µa, µ
′
b ∼ µ′a. They are a total of 8 relations that reduce to 10 the number

of free parameters in eq. (3.3). We choose the following representation for the scalar fields

after spontaneous symmetry breaking:

φi = υi + σi + iϕi. (A.1)

The minimization conditions of V in eq. (3.3), with respect to σi read as〈
∂V

∂σa

〉
= 2υa

[
υ2a

(
2λa +

υ2b
υ2a
λab

)
+ υ21

(
λ1a +

υb
υa
λ1ab

)
+ υ23(λ1a + λ1ab)− µ2

a − 2µ′a
2
]

= 0〈
∂V

∂σb

〉
= 2υb

[
υ2b

(
2λa +

υ2a
υ2b
λab

)
+ υ21

(
λ1a +

υa
υb
λ1ab

)
+ υ23(λ1a + λ1ab)− µ2

a − 2µ′a
2
]

= 0〈
∂V

∂σ1

〉
= 2υ1

[
2υ21

(
λ1 +

υ23
2υ21

λ13 + 3
υ3
2υ1

λ′13

)
+ 2υ2a (λ1a + λ1ab)− µ2

1

]
= 0 , (A.2)〈

∂V

∂σ3

〉
= 2υ3

{
υ23
2

[
λ1 + 2

(
υ21
υ23

+
3

4

)
λ13 + 2

(
υ31
υ33
− 11

8

)
λ′13

]
+ 2υ2a (λ1a + λ1ab)− µ2

1

}
= 0

where the symbol 〈· · · 〉 denotes that the fluctuating fields are taken to be zero. We obtain

the required relations among vevs: υb ∼ υa and υ3 ∼ −2 υ1, while (υ1, υa) in terms of the
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λs are given by

υ2
1 = 0 υ2

a = 0 V0 = 0

υ2
1 =

µ2
1

2λ̃1

υ2
a = 0 V1 = −

5

4

µ4
1

λ̃1

υ2
1 = 0 υ2

a =
µ̃2
a

λ̃a
V2 = −

µ̃4
a

λ̃a

υ2
1 =

µ2
1 − 2

λ̃1a

λ̃a
µ̃2
a

2λ̃1 − 10
λ̃2

1a

λ̃a

υ2
a =

2
λ̃1

λ̃a
µ̃2
a − 5

λ̃1a

λ̃a
µ2

1

2λ̃1 − 10
λ̃2

1a

λ̃a

V3 =

−
µ̃4
a

λ̃a
−

5

4

µ4
1

λ̃1

+ 5
λ̃1a

λ̃aλ̃1

µ2
1µ̃

2
a

1− 5
λ̃2

1a

λ̃aλ̃1



, (A.3)

where λ̃1 = λ1 + 2λ13 − 3λ′13, λ̃a = 2λa + λab , λ̃1a = λ1a + λ1ab/2 and µ̃2
a = µ2

a + 2µ′a
2.

The only interesting minimum for us is the non trivial case υ1, υa 6= 0 with υ1 � υa, so we

require V3 to be a global minimum. The 4 × 4 squared mass matrices of the CP-even and

-odd bosons (Si and Pi) are given by

(
M2
S

)
ij

=
1

2

∂2V

∂σi∂σj
,

(
M2
P

)
ij

=
1

2

∂2V

∂ϕi∂ϕj
. (A.4)

Using the potential in eq. (3.3), these matrices acquire the following form

M2
S '



2υ2
1(2λ1 − 3λ′13) −υ2

1(−4λ13 + 3λ′13) 2υaυ1λ̃1a 2υaυ1λ̃1a

−υ2
1(−4λ13+3λ′13)

υ2
1

2
(8λ1+12λ13−21λ′13) −4υaυ1λ̃1a −4υaυ1λ̃1a

2υaυ1λ̃1a −4υaυ1λ̃1a 4υ2
aλa −

υ21
2 λ1ab 2υ2

aλa +
υ21
2 λ1ab

2υaυ1λ̃1a −4υaυ1λ̃1a 2υ2
aλa +

υ21
2 λ1ab 4υ2

aλa −
υ21
2 λ1ab


, (A.5)

M2
P '



−2υ2
aλ1ab + 18υ2

1λ
′
13 3υ1λ

′
13 υaυ1λ1ab υaυ1λ1ab

3υ2
1λ
′
13

υ2
1

2
λ′13 0 0

υaυ1λ1ab 0 4µ′2a −
υ21
2 λ1ab −υ21

2 λ1ab

υaυ1λ1ab 0 −υ21
2 λ1ab 4µ′2a −

υ21
2 λ1ab


. (A.6)

The physical basis is the flavon mass basis

σj = (US)ij Si , ϕi = (UP )ij Pj , (A.7)

defined where M2
S and M2

P are diagonal

M2
S −→ UTS M2

S US = diag
(
m2
S1
, m2

S2
, m2

S3
, m2

S4

)
, (A.8)

M2
P −→ UTP M2

P UP = diag
(
m2
P1
, m2

P2
, m2

P3
, m2

P4

)
. (A.9)

– 17 –



J
H
E
P
0
6
(
2
0
2
0
)
0
8
7

with eigenvalues

m2
S1
' 2υ2

1

(
2λ1 − λ13 −

9

4
λ′13

)
, m2

P1
' −2 υ2

a

(
λ1ab +

υ2
1

2υ2
a

(λ1ab − 18λ′13)

)
,

(A.10)

m2
S2
' 2 υ2

1

(
2λ̃1 −

5

2

λ̃2
1a

λ̃a

)
, m2

P2
' υ2

1

λ′13

2
, (A.11)

m2
S3
' 2υ2

a

(
2λa − λab −

υ2
1

2υ2
a

λ1ab

)
, m2

P3,4
' 4µ′a

2
, (A.12)

m2
S4
' 2υ2

a

(
2λa + λab + 10

υ2
1

υ2
a

λ̃2
1a

λ̃a

)
. (A.13)

where we have expressed µ2
1,a with their value at the minimum using (A.3). The diagonal-

ization matrices, US , UP , at O(υ1/υa) can be written as

US =



2√
5

−
1√
5

0

√
2υ1

υa

λ̃1a

λ̃a

1√
5

2√
5

0
− 2
√

2υ1

υa

λ̃1a

λ̃a

0
5
√

2υ1

υa

λ̃1a

λ̃a
−

1√
2

1√
2

0
5
√

2υ1

υa

λ̃1a

λ̃a

1√
2

1√
2


, UP =



−1 0
υ1√
2υa

0

0 1 0 0

υ1√
2υa

0
1√
2

−
1√
2

υ1√
2υa

0
1√
2

1√
2


.

(A.14)

The computation of the radiative diagram and the contribution to the anomalous magnetic

moment in the flavon mass basis are given by

mRAD
e = 2

g4
e

16π2

υH√
2
ε1 ∆Im , mRAD

µ =
g3
µ

16π2

υH√
2

∆Im, (A.15)

∆ae = 2
g4

e

8π2

υH√
2

me

M2
χ

ε1 ∆I∆a , ∆aµ =
g3
µ

8π2

υH√
2

mµ

M2
χ

∆I∆a. (A.16)

where we have defined

∆I =

4∑
i=1

[
(US)2

1,i I(x2
Si

) − (UP )2
1,i I(x2

Pi
)
]
. (A.17)

In the case Mχ, µφ,1 � m`, the loop functions are

Im(xφ) =
1− x2

φ(1− 2 log xφ)

1− x2
φ

, I∆a(xφ) =
1− 4x2

φ + x4
φ(3− 4 log xφ)

2(1− x2
φ)3

. (A.18)

From eq. (A.14) we see that, up to order O(υ1/υa), we have (US)1,i = (2/
√

5,−1/
√

5, 0, 0)

and (UP )1,i = (−1, 0, 0, 0). Therefore, as already mentioned, in the calculation of mRAD
`

and ∆a` only S1,2 and P1 play a significant role. The eqs. (A.15) and (A.16) are very well

approximated by the Mass Insertion Approximations of eqs. (3.7)–(3.10).
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