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study the variation of those entanglement measures with respect to the uniform density of

heavy static fundamental quarks present in the boundary theory. In particular, we notice
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sis we observe an occurrence of logarithmic divergence proportional to the quark density
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1 Introduction

Quantizing gravity by following the standard rule of local quantum field theory encoun-

ters many troubles. Several studies on this issue indicate that the microscopic degrees

of freedom of gravity is fundamentally different in nature as compared to that of other

fundamental interactions. A strong evidence for adopting such idea originates from the

Bekenstein-Hawking (BH) entropy of blackhole [1, 2] that quantifies the microscopic data

of the blackhole spacetime and most importantly turns out to be proportional to the sur-

face area of the blackhole event horizon whereas in all other non-gravitational theories,

entropy is proportional to the volume. Such unusual properties of gravitational degrees of

freedom leads to a proposal called holographic principle that suggests as unlike the case of

usual field theory, the information of microscopic degrees of freedom contained in a d + 1

dimensional gravitational theory is not proportional to the volume of the spacetime but to

the area of a d dimensional boundary enclosing that space time [3, 4]. A concrete example

of holographic principle discovered in string theory is known as AdS/CFT correspondence

that relates a quantum theory of gravity in d+1 dimensional spacetime with negative cos-

mological constant to a non-gravitational theory with conformal invariance living on the

d dimensional boundary of that spacetime [5–8]. There has been a further generalization
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known as gauge/gravity correspondence which is mostly made out of phenomenological

perspective (see [9] and references therein). By now, it has been highly admitted that the

quantum information theory plays a key role to understand such holographic nature of

gravity. In favor of this connection, there has been several proposals that relate various

measures of entanglement in the boundary theory to certain kind of geometrical quantities

in the dual bulk spacetime.

A lot of progress has been made to build up a good knowledge of various measures of

entanglement in non-relativistic quantum information theory [10]. The most well-studied

measure of bipartite entanglement is known as entanglement entropy (EE) which is orig-

inally defined as the von Neumann entropy of the bipartite system. EE measures the

nonlocal correlations between two entangled systems by quantifying the loss of information

as one of the systems becomes inaccessible to the observer. EE satisfies a number of im-

portant physical properties including the area law and the strong sub-additivity condition.

To explore the relation between quantum information and holography, an appropriate gen-

eralization of such entanglement measures in quantum field theory (QFT) was very much

required. For a general d + 1 dimensional QFT, the computation of EE goes beyond the

scope of analytical method. However, in 1 + 1 dimensional conformal field theory (CFT),

EE is computed for single interval in an infinite system using the replica trick method and

it turns out to be proportional to the central charge of the theory [11, 12]. Same analysis

holds for 1+1 mass deformed CFT. Moreover, the computation of EE in a finite system as

well as for multiple disjoint intervals is also accomplished and a formal extension of various

results to higher dimensional CFT has also been proposed [13, 14].

Extending the idea of Bekenstein-Hawking entropy, Ryu and Takayanagi (RT) [15]

conjecture a holographic prescription that establishes a direct relation between the entan-

glement entropy in the boundary field theory and a geometric quantity, i.e. the area of

a spatial minimal surface in the dual bulk spacetime. The holographic formula given by

Ryu-Takayanagi has been generalized in a covariant manner in [16] to derive the time de-

pendence of EE, while the correction due to the higher derivative terms in the Lagrangian

of gravitational action is given in [17]. Holographic EE and mutual information of an

infinite strip in large N gauge theory having finite temperature and also finite chemical po-

tential has been proposed in [18–20]. Further, The quantum correction to the holographic

entanglement entropy was first introduced in [21]. By imposing a large central charge limit

in the holographic CFT, a proof of RT conjecture of holographic entanglement entropy for

multiple disjoint intervals is given in [22].

EE is a suitable measure to determine the strength of entanglement of a pure bipartite

state. For mixed bipartite state (e.g. thermal state), if we compute the von Neumann

entropy by using the holographic RT method, the final result contains both thermal entropy

as a leading divergent term and also the entanglement entropy as sub-leading finite term.

For a large N gauge theory at finite temperature and at finite chemical potential, such

observation on EE is already mentioned in [19]. Therefore, it is desired to analyze some

holographic measure other than entanglement entropy which could exclusively estimate the

mixed entanglement in a QFT. Recently, a new geometric quantity, the entanglement wedge

cross section (EWCS) [23] has been proposed to be holographic dual of entanglement of
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purification (EoP) which is known to be a good measure of mixed entanglement in the

quantum information theory [24]. To define EoP, let us consider a bipartite system in a

given mixed state ρAB such that ρAB ∈ HA⊗HB, withHA andHB being the Hilbert spaces

for the subsystems A and B respectively. In order to purify this mixed state one needs to

enlarge the original Hilbert space by considering additional degrees of freedom, so that the

purification takes the following form, ρAB = TrĀB̄|ψ >< ψ|, where |ψ >∈ HAĀ ⊗ HBB̄.

However this way of constructing a purification is not unique and the EoP is defined as

von Neumann entropy for minimal entanglement between the subregions A and B,

Ep(ρAB) = min
ρAB=TrĀB̄ |ψ〉〈ψ|

SρAĀ
. (1.1)

In [23, 25] the holographic dual to EoP has been conjectured as equal to the area of the

minimal cross section inside the entanglement wedge connecting the two subregions, called

the entanglement wedge cross section.

It is important to note that this connection between EoP and the EWCS is yet to be

proved. Nevertheless, the conjecture is based on several common properties satisfied by

both EoP and the EWCS. As an example, in [24] it has been shown that EoP is constrained

by the following inequality involving the mutual information (MI),

I(A,B)

2
≤ Ep(ρAB). (1.2)

The same relationship holds true between EWCS and MI in the context of AdS3/CFT2,

thereby establishing the above conjecture [23]. Further, holographic analysis has been done

in support of the above inequality between EWCS and MI in non-relativistic theories with

hyper-scaling violation [26], in confining theories as well as in three-dimensional Chern-

Simons matter theory with fundamental flavor [27].

Connection between quantum information theory and gravity witnesses a major im-

provement once an equivalence between quantum complexity and space time geometry is

proposed. In this context, a very intriguing question to ask is how to quantify the cost of

generating a particular state in the boundary field theory in terms of dual bulk geometry.

A plausible explanation to this question was first addressed by Suskind in the context of

black hole physics [29]. In free quantum field theories the computation of quantum com-

plexity has been performed by adopting a geometric approach due to Nielson [30]. By

definition, complexity counts the minimum number of unitary operators/quantum gates to

construct a target state |ψT 〉 starting from a simple reference state |ψR〉. The construction
of such target state staring from ground state of the free theory, coherent state and also the

thermo-field double state has been successfully achieved and also the complexity is com-

puted appropriately [31–33]. Such analysis turns out to be very difficult to perform in the

presence of interaction and it is actually impossible to extend in strongly coupled theories.

However in recent time, there has been various proposals for holographic computation of

the complexity in the boundary theory. In particular, two independent holographic con-

jectures are proposed, e.g. the complexity equals volume conjecture or CV-duality and and

the complexity equals bulk action or CA-duality. According to the CV-duality, the com-

plexity of the boundary theory is proportional to the volume of co-dimension one hyper
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surface in the dual bulk geometry [34, 35]. On the other hand, the statement for the CA-

duality suggests a direct relation between complexity and the total action evaluated for

the Wheeler-DeWitt patch in the bulk [36, 37]. Motivated by these, another proposal for

computing complexity of any subregion in the boundary has been proposed as the subre-

gion volume complexity and it measures the complexity of a mixed quantum state in the

boundary theory on a constant time slice in terms of the volume of the entanglement wedge

inside the RT surface [38, 39]. The mixed quantum state can be obtained by reducing the

total system on a given pure state to a particular subregions on the boundary. A general-

ization of subregion volume complexity in order to include the time dependent cases can

be found in [40]. In this analysis, apart from the power law divergence the authors also

obtain a new logarithmic divergence in the result for complexity using the CA-duality.

It has been quite certain that the gauge/gravity duality offers simplistic ways to

understand quantum information theory from the perspective of QFT and it also offers a

better understanding of the relation between the information theory and the holographic

nature of gravity. The holographic prescription for computing EE, EWCS and also quantum

complexity are remarkably simple but thoroughly insightful. The analysis of such useful

measures of entanglement turns out to be even more interesting if we consider different

modifications on the boundary field theory to make it more realistic. Due to gauge/gravity

duality these modifications affects the dual bulk geometry significantly and consequently

holographic calculation of different entanglement measures receives non trivial corrections.

Examples of such modification includes addition of massive relevant operator to the free

theory, deformation of shape for the entangling region in the boundary or addition of some

extra degrees of freedom apart from the usual matter content of the boundary theory.

To emphasize the effect of deformation/back reaction on the entanglement structure

in the boundary theory we review few earlier works. Following RT method, holographic

EE for a CFT with planar defect has been first discussed in [41]. In another example, EE

has been calculated for spherical entangling surface by considering similar kind of planner

defects in super conformal theory where the deformation in the CFT side can be thought

of as dual to M2 and M5 probe branes in the bulk [42]. Similar analysis has been done

for mass deformed field theory and as a consequence a new universal term which diverges

as the logarithm of the UV cut-off has been obtained [43]. In [44], considering massive

back reacted flavor in SYM theory as realized by the D3/D7 brane set up in the bulk,

EE is evaluated for both slab and ball shape entangling surface by doing a perturbative

expansion in Nf/Nc. The correction to entanglement entropy due to shape modification of

the entangling surface was obtained in [45–47]. Also in [45] considering relevant deformation

of the boundary field theory, a computation of subregion volume complexity has been done

which reports an universal UV divergent term in the final result for complexity.

It is important to note that although the effect of back reaction on EE and complexity

in boundary theory has been analyzed in few occasions, to the best of our knowledge, there

has been hardly any work available in the literature that talks about what happens to

EoP in the presence of back reaction. This serves as a prime motivation to carry forward

this particular project. In this work, we consider d dimensional strongly coupled large Nc

gauge theory at finite temperature in presence of a uniform distribution of large number
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Nf of externally added heavy flavor quarks. The back reaction imparted to the gauge

theory by the external heavy quarks is significant if Nf ∼ N2
c or more than that. Within

the context of gauge/gravity duality, the dual description to back reacting plasma with

quark density consists of a uniform distribution of string cloud such that one end of each

string is attached to the boundary while the string itself is extended deep into the bulk

along the radial direction. Here we have considered the string cloud distribution to be

homogenous and ignored any interaction between them, however their back reaction to

the geometry was included in the bulk metric resulting a d + 1 dimensional deformed

AdS blackhole geometry [48, 49]. With this background we holographically study the

entanglement entropy, entanglement of purification and quantum complexity of strongly

coupled large Nc gauge theory at finite temperature and attempt to capture the effect of

back reaction due to the presence of external heavy flavor quark on each of them. It is very

important to note that the gauge/gravity duality offers technics to identify various universal

hydrodynamical properties of strongly coupled holographic plasma. Most importantly, such

universal properties show qualitative agreement at the experimental level with strongly

coupled QGP medium [50–52]. Since the hydrodynamical descriptions of both strongly

coupled holographic plasma and QGP rely on a underlying microscopic structure, it is very

relevant question to ask what happens if mixed bipartite entanglement structure prevails

in those microscopic theories. Within the framework of gauge/gravity duality our present

paper attempts a systematic study to address this issue. Moreover, we emphasize the

effect of back reaction in the strongly coupled holographic plasma in the context of mixed

bipartite entanglement which, we hope, may shed some light to understand the mixed

bipartite entanglement structure in the QGP in the presence of other heavy quarks.

The organization of the paper is as follows. In section 2 we briefly discuss about

the back reacted strongly coupled plasma and its gravity dual. In section 3, we present

the computation of holographic entanglement entropy. The details of EWCS is discussed

in section 4. Further, we elaborate upon subregion complexity in section 5. Finally we

conclude in section 6.

2 Gravitational background dual to quark cloud model

After the pioneering work [53], there has been a lot of attempts to study the characteristics

of strongly coupled gauge theory by using the probe approximation. However, going beyond

probe approximation is hardly achievable except very few cases as the appropriate gravity

background dual to the back reacted boundary theory is very hard to compute. One of

the authors of the present work has been able to construct a gravitational background

which is dual to the strongly coupled large Nc gauge theory back reacted by the presence

of a uniform distribution of external heavy quarks [48]. As previously mentioned, the

quark degrees of freedom on the boundary are dual to the the homogeneous distribution

of strings in the bulk producing a nontrivial deformation of the AdS-BH metric. The d+1

dimensional gravitational action is given as [48],

S =
1

4πGd+1

∫
dxd+1√g (R− 2Λ) + SM , (2.1)
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where, SM stands for the matter part of the action arising due to the presence of uniform

distribution of strings,

SM = −1

2

∑

i

Ti
∫

d2ξ
√
−hhαβ∂αX

µ∂βX
νgµν . (2.2)

In the above action, gµν represents the target spacetime and hαβ is the intrinsic metric of

the string world-sheet and Ti representing the tension of the ith string. Varying this action

with respect to the space-time metric leads to

Rµν −
1

2
Rgµν + Λgµν = 8πGµνTµν (2.3)

with,

Tµν = −
∑

i

Ti
∫

d2ξ
1√
| gµν

√
−hαβhαβ∂αX

µ∂βX
νgµνδ

d−1
i (x−Xi) (2.4)

The density function repressing the distribution of the uniform string cloud is given as,

b(x) = T
N∑

i=1

δ
(d−1)
i (x−Xi),

where it is assumed that the tension for each of the strings are equal to T with N being

the total number of strings. Averaging over the (d − 1) spatial dimensions the constant

string density can be defined as,

b̃ =
1

Vd−1

∫
b(x)dd−1x =

T N

Vd−1
,

where Vd−1 is the volume of the (d − 1) dimensional space. In the limit Vd−1 → ∞, we

consider very large value of N to keep N/Vd−1 finite. The non vanishing components of

Tµν are

T00 = − b̃

r3
gtt Trr = − b̃

r3
grr (2.5)

The ansatz for the AdS-BH metric can be written as,

ds2 = −V (r)dt2 +
dr2

V (r)
+

r2

R2
δijdx

idxj , (2.6)

with the explicit form of V (r), given as,

V (r) = K +
r2

R2
− 2m

rd−2
− 2bRd−3

(d− 1)rd−3
, (2.7)

where the value of K is equal to 0, 1,−1 for the d − 1-dimensional boundary to be flat,

spherical or hyperbolic respectively. In this paper we have decided to work with K = 0.

Moreover, in the above expression the string cloud density is represented by the dimension

less quantity b = b̃R.
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It turns out to be very useful to write the metric in terms of the radial coordinate

z = R2

r to get,

ds2 =
R2

z2

(
−h(z)dt2 + d~x2 +

dz2

h(z)

)
, (2.8)

where the spatial coordinate of the boundary is represented by the d−2 dimensional vector

~x. The function h(z) reads as,

h(z) = 1− 2m

R2d−2
zd − 2b

(d− 1)Rd−1
zd−1. (2.9)

It is useful to write equation (2.9) as the following,

h(z) =

[
1− ρ

(
z

zH

)d−1

+ (ρ− 1)

(
z

zH

)d
]
, (2.10)

where, ρ is a dimensionless quantity defined as

ρ =
2bzd−1

H

(d− 1)Rd−1
, (2.11)

The Hawking temperature of the deformed AdS black is now expressed as,

T = − 1

4π

d

dz
h(z)

∣∣∣∣∣
z=zH

=
(d− ρ)

4πzH
. (2.12)

In this parametrization the range of ρ is found to be 0 ≤ ρ ≤ d, where the minimum

value corresponds to zero quark density while the maximum defines the zero black hole

temperature. The thermal entropy can be calculated as [48],

S =

∫
T−1dM, (2.13)

M being the ADM mass of the black hole given in terms of the integration constant m

as appeared in the above solution as, M =
(d−1)mVd−1

8πGd+1
. Moreover the entropy density is

given as,

s =
R2d−2

4Gd+1

1

zd−1
H

(2.14)

The above result for entropy density suggests the following definition of an effective tem-

perature Tf ,

Tf =
d

4πzH
, (2.15)

such that now the thermal entropy density s is proportional to T d−1
f . Also, as we will

see in section 3 that the low temperature entanglement entropy contains a term which is

proportional to T d−1
f . So it is more appropriate to work with the effective temperature

rather than the actual temperature as given in eq. (2.12). This particular deformed AdS

black hole background is thermodynamically stable as well as geometrically stable up to

tensor and vector perturbation [48].
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3 holographic entanglement entropy

In this section using prescription by Ryu-Takayanagi, we will study the holographic entan-

glement entropy of a strongly coupled SYM plasma at finite temperature along with an

uniform distribution of heavy fundamental quark. Given a bipartite quantum state, entan-

glement entropy quantifies the amount of entanglement between any subsystem A and it’s

compliment B on a constant time slice in the d dimensional boundary theory. In general,

the subsystem A can be of any shape, here we consider it to be an infinitely long strip

with finite width l. In the dual gravity side, a hypersurface with minimal area extending

into the bulk with boundary same as that of the subsystem A can be constructed. This

hypersurface with minimal area is known as the Ryu-Takayanagi surface γA. According to

the proposal, EE is given by the area of the RT surface divided by the Newton’s constant,

SA =
Area[γA]

4GN
. (3.1)

In the following we define the strip like entangling region as,

x ∈
[
− l

2
,
l

2

]
; yi ∈

[
−L

2
,
L

2

]
; i = 1, . . . , d− 2. (3.2)

The profile of the extremal hyper surface is defined by the radial dependance of the coor-

dinate x = x(z)

and the corresponding area functional to be minimized is given by,

A = 2Ld−2Rd−1

∫
dz

zd−1

√(
dx

dz

)2

+
1

h(z)
. (3.3)

Note that x is cyclic in the above action (3.3) and as a consequence of that one can obtain a

first integral of motion to be determined by using the boundary condition, limx→∞ z = zt.

Here we define zt as the turning point for the corresponding minimal surface.

Using this fact, we obtain,

x′ =
h(z)−

1

2

√(
zt
z

)2d−2 − 1
. (3.4)

Further, we introduce a dimensionless coordinate u defined as u = z
zt
, so that the area

functional A can be expressed as the following integral,

A =
2Ld−2Rd−1

zd−2
t

∫ 1

0

du

ud−1

1√
h(u) (1− u2d−2)

. (3.5)

The relation between turning point zt in the bulk and the width of the strip l in the

boundary theory is given as,

l

2
= zt

∫ 1

0

ud−1du√
h(u) (1− u2d−2)

(3.6)
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Figure 1. Plot of the turning point zt with respect to the width l for different values of the

dimension d given a fixed ρ = 4 and zH = 1. This behavior indicates that the RT hypersurface

extends deep inside the bulk geometry and hence gets close to the BH horizon for higher values of

the dimension.

The shape of the RT surface can be best understood from the plot of the turning point zt
as a function of the width l as given in figure 1. We see that the minimal surface reaches to

the horizon much quickly as a function of increasing width l for higher values of dimension.

Using the Euler’s beta function, the above two integrations can be evaluated and the area

functional takes the form as,

A =
2

d− 2

Ld−2Rd−1

ǫd−2
+

2Ld−2Rd−1

zd−2
t

[
Γ
(
−d+2
2d−2

)
Γ
(
1
2

)

(2d− 2)Γ
(

1
2d−2

)

+
∞∑

n=1

n∑

k=0

Γ
(
n+ 1

2

)
Γ
(
nd−d−k+2

2d−2

)
ρk(1− ρ)n−k

(2d− 2)Γ(k + 1)Γ(n− k + 1)Γ
(
nd−d−k+2

2d−2 + 1
2

)αnd−k

]
,

(3.7)

where α = zt
zH

. Note that the first term in the bulk area functional given in (3.5) has

some IR divergence that can be translated via holographic duality to a UV cut-off ǫ in the

boundary. Similarly, the width of entangling region l is obtained as,

l

2
= zt




∞∑

n=0

n∑

k=0

Γ
(
n+ 1

2

)
Γ
(
nd+d−k
2d−2

)
ρk(1− ρ)n−k

(2d− 2)Γ(k + 1)Γ(n− k + 1)Γ
(
nd+d−k
2d−2 + 1

2

)αnd−k


 (3.8)

As prescribed by the RT conjecture, by using the area functional, one can compute the

entanglement entropy of the strip in the boundary. To express the entanglement entropy in

terms of boundary parameters by using analytical method, we need to solve (3.8) for zt as a

function of l. However, this procedure works only in the high and low temperature regimes.

The high and low temperature regime of the boundary theory can be best understood in

terms of an intrinsic length which we consider to be the width of the entangling surface

l. By low temperature we actually mean the limit: Tf ≪ 1/l or Tf l ≪ 1. On the other

– 9 –
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hand the high temperature limit, with the similar line of argument can be realized by the

limit Tf l ≫ 1. We have already observed that the thermal entropy of the deformed AdS

blackhole is proportional to T d−1
f . Therefore while defining the high and low temperature

limit in obtaining the analytic expression of entanglement entropy we would expect the

effective temperature Tf is more appropriate as compared to the original temperature T .

In the absence of heavy quarks, Tf and T coincide with each other.

3.1 EE at low effective temperature

In the low effective temperature limit, most of the contribution for holographic entangle-

ment entropy comes from entangling surface which has a turning point very close to the

boundary. This can be effected by taking zt ≪ zH or α ≪ 1. Keeping terms up to order

αd in the low effective temperature limit, one can solve equation (3.8) for zt to get,

1

zt
=

2

l




√

π
Γ
(

d
2d−2

)

Γ
(

1
2d−2

)


+ ρ




√
π

2d(2d− 2)

Γ
(

1
2d−2

)

Γ
(

d
2d−2

)


αd−1

+(1− ρ)




√
π

2(d+ 1)

Γ
(

2d
2d−2

)

Γ
(

1
d−1 + 1

2

)


αd +O(α2d−2)




(3.9)

We solve (3.9) for zt in terms of l by using a perturbative method that suggests solving

the equation at any order of α and using the obtained result as an input at the next order.

Proceeding this way we obtain the final expression for zt given as,

zt =
l

2




Γ
(

1
2d−2

)

√
πΓ

(
d

2d−2

)





1−

1

2d(2d− 2)



Γ
(

1
2d−2

)

Γ
(

d
2d−2

)




2



l

2zH

(√
π
Γ( d

2d−2)
Γ( 1

2d−2)

)




d−1

ρ

− 1

2(d+ 1)




Γ
(

2d
2d−2

)
Γ
(

1
2d−2

)

Γ
(

d
2d−2

)
Γ
(

1
d−1 + 1

2

)







l

2zH

(√
π
Γ( d

2d−2)
Γ( 1

2d−2)

)




d

(1−ρ) +O
(
(l/zH)2d−2

)

 .

(3.10)

The area functional in the low effective temperature up to order (zH l)d is given as,

A = A0 +Rd−1

(
L

l

)d−2

S0

(
1 + ρS2

(
l

zH

)d−1

+ (1− ρ)S1

(
l

zH

)d

+O
(
(l/zH)2d−2

))
,

(3.11)
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where, A0 is the diverging term and the other constant terms S0, S1, S2 are given below,

S0 =
2d−2π

d−1

2 Γ
(
−d+2
2d−2

)

(d− 1)Γ
(

1
2d−2

)



Γ
(

d
2d−2

)

Γ
(

1
2d−2

)




d−2

S1 = 2−(d+1)π− d
2

Γ
(

1
2d−2

)d+1

Γ
(

1
d−1 + 1

2

)
Γ
(

d
2d−2

)d




Γ
(

1
d−1

)

Γ
(
−d+2
2d−2

) +
(d− 2)

(d+ 1)

2
1

d−1

√
π
Γ

(
1 +

1

2d− 2

)


S2 = 2−dπ−( d−1

2 )



Γ
(

1
2d−2

)

Γ
(

d
2d−2

)




d+1 

Γ
(

d
2d−2

)

Γ
(
−d+2
2d−2

) +
(d− 2)

2d(d− 1)


 (3.12)

Using the RT proposal, we finally express the holographic entanglement entropy of the

boundary strip within the low- effective temperature regime.

SA =
2

d− 2

Ld−2Rd−1

ǫd−2
+

Rd−1

4Gd+1
N

(
L

l

)d−2

× S0

(
1 + ρS2

(
4πTf l

d

)d−1

+ (1− ρ)S1

(
4πTf l

d

)d

+O
(
(Tf l)

2d−2
))

. (3.13)

We have a few remarks regarding the final form of the holographic entanglement entropy

at low temperature. In order to analyze the result obtained for holographic entanglement

entropy at low temperature limit we first enunciate the fact that ρ = d(1− T
Tf
) signifies a

dimensionless quantity that scales as O(1). Hence it does not contribute to any power of

Tf in all correction terms present in the expression for holographic entanglement entropy.

• Note that, the final expression of holographic entanglement entropy in the low tem-

perature regime is modified due to the presence of heavy quark as compared to the

one obtained for strongly coupled SYM plasma at finite temperature [18]. A similar

modification is also observed in [19] for charged strongly coupled plasma where the

leading order correction is proportional to the dth power of some effective temperature

defined appropriately for charged plasma. However, in our case, the leading order

correction is proportional to T d−1
f . The reason for this difference can be understood

from the behavior of the blackening function h(z) for the deformed AdS-blackhole

background given in (2.9). The extremal surface relevant for the holographic compu-

tation of EE at low effective temperature lies close to the boundary where the leading

term in the blackening function behaves as zd−1 and hence dominates over the mass

term proportional to zd. Hence it is expected that in the low effective temperature

limit, the maximum contribution to EE comes from terms involving quark density,

which turns out to be proportional to T d−1
f .

• It is also important to note that the parameter ρ we have introduced here varies

from 0 to d and also it is proportional to the quark density b. Now to retain the

appropriate zero quark density (ρ → 0) limit in EE, it is necessary to keep the

sub-leading contribution proportional to T d
f in the expression of EE.
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Figure 2. Plot of ∆SA = (SA(Tf , ρ)− SA(Tf = 0, ρ = 0)) as a function of width l for different

values of ρ. The plot clearly shows increasing behavior of EE at finite temperature as ρ increases.

3.2 EE at high effective temperature limit

The high temperature limit of holographic entanglement entropy can be realized by choos-

ing the RT surface approaching near the horizon of the bulk geometry. In other words, in

this case we must consider the limit zt → zH in order to see the high temperature effects.

However, in this limit, the series expansions of the integrands in (3.5) and in (3.6) we

have explicitly used to obtain both l and A, become divergent. Nevertheless, the following

combination of A and l is finite and well-behaved.

A− Ld−2Rd−1

zd−1
t

l =
2Ld−2Rd−1

zd−2
t

∫ 1

0
du

√
h(u)√

1− u2d−2

(1− u2d−2)

ud−1
(3.14)

Using the prescribed above combination (3.14), we express the finite part of the area

functional,

A=
Ld−2Rd−1

zd−1
t

l

+
2Ld−2Rd−1

zd−2
t





√
πΓ

(
− d−2

2d−2

)

(2d− 2)Γ
(

1
2d−2

) +

∫ 1

0
du

( √
1−u2d−2

ud−1
√
h(u)

− 1

ud−1
√
1−u2d−2

)
 ,

(3.15)

which is finite in the limit zt → zH as anticipated. Replacing zH by the temperature Tf

we get the final result for the EE at high temperature as,

SA ≈ Rd−1

4Gd+1
N

[
V

(
4πTf

d

)d−1
{
1 + 2

(
d

4πTf l

)
S̃(ρ, d)

}]
, (3.16)

where V = lLd−2 is the (d− 1) dimensional volume of the strip and S̃(ρ, d) is given as,

S̃(ρ, d) =

{ √
πΓ(− d−2

2d−2)

(2d− 2)Γ( 1
2d−2)

+

∫ 1

0
du

(√
1− u2d−2

√
h(u)ud−1

− 1

ud−1
√
1− u2d−2

)}
. (3.17)
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• Note that EE at high effective temperature we obtain in (3.16) contains leading order

term proportional to T d−1
f which is exactly similar to the behavior of thermal entropy

as computed in section-2. Since at high temperature, the boundary field theory is in

the thermal regime, the maximum contribution to the EE comes from the thermal

fluctuations. From the perspective of dual bulk gravity, taking the high temperature

limit implies that the RT surface extends to the region which is very close to the

horizon. Hence the similarity between the thermal entropy and the EE in the high

effective temperature limit is expected and also agree with the result obtained in [19].

• We observe that in high temperature regime, the leading order correction in the finite

part of the holographic entropy is independent of heavy quark density b. However,

the sub leading contribution depends on b via the parameter ρ. We present this sub

leading correction to the finite part of HEE for d = 4.

S̃(ρ = 0) = −0.33, S̃(ρ = 1) = −0.024, S̃(ρ = 2) = 0.32,

S̃(ρ = 3) = 0.75, S̃(ρ = 4) = 1.67.
(3.18)

For a specific choice of dimension d = 4, the dimensionless parameter ρ solely depends

on the density of heavy quarks. Now, as we increase the value of quark density, ρ

also increases. Correspondingly, the sub leading contribution to the finite part of EE

also monotonically increases. We noted similar behavior of S̃ for d = 5 and d = 6.

4 Entanglement wedge cross section in d dimension

Generally, a more appropriate microscopic description of a strongly coupled large Nc gauge

theory at finite temperature is given by mixed entangled state which carries the informa-

tion of both classical and quantum correlation. RT conjecture for black hole background

estimates the both thermal and quantum correlation in the dual strongly coupled large

Nc gauge theory at finite temperature and within specific approximation the final result

clearly attributes to the entanglement entropy as well as the thermal entropy. However,

extracting the sole contribution of the quantum correlation for the mixed bipartite entan-

glement for a strongly coupled field theory has been awaited for long time. Recently a

new conjecture is proposed to study entanglement of purification as a suitable measure of

mixed entanglement of a strongly coupled field theory by virtue of a computing a novel

holographic dual called entanglement wedge cross section [23, 25].

To define the entanglement wedge, one needs two non overlapping subsystems A and

B on the boundary of some bulk geometry M. Let’s denote the minimal RT surface for

the region (A ∪ B) by γAB such that γAB ≡ (γ2l+D ∪ γD) (see figure 3 for details). Then

the entanglement wedge is defined by the volume of the bulk geometry with boundary

(A∪B ∪ γAB). The entanglement wedge cross section is the minimal area surface ΓW that

completely separates the two subregions A, B with it’s boundary ending on γAB. In the

following, we calculate the entanglement wedge cross section in a d+1 dimensional deformed

AdS-BH geometry dual to d dimensional strongly coupled large Nc gauge theory at finite

temperature in the presence of a uniform heavy quark density by using the holographic

– 13 –
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Figure 3. Schematic diagram of two disjoint subregions of width l separated by a distance D for

the computation of EWCS.

prescription presented in [26, 27]. Here we consider two parallel infinitely long strips with

equal width l describing the two subregions A and B which are separated by a distance D.

The two subregions are considered in a particular configuration which is symmetric around

x = 0, x being one of the spatial directions such that,

A = {l +D/2 > x > D/2;−L/2 < yi < L/2, i = 2, 3, . . . ., d− 2}
B = {−l −D/2 < x < −D/2;−L/2 < yi < L/2, i = 2, 3, . . . ., d− 2} .

(4.1)

In this configuration the minimal area surface Σmin that separates A and B will be given by

the vertical surface at x = 0 (see [54] for asymmetric choice of cross section). The induced

metric on this constant time slice is given as,

ds2Σmin
=

R2

z2

(
d~x2d−2 +

dz2

h(z)

)
, (4.2)

Then the entanglement wedge cross section can be calculated as,

EW =
Ld−2Rd−1

4Gd+1
N

∫ zt(2l+D)

zt(D)

dz

zd−1
√
h(z)

=
Ld−2Rd−1

4Gd+1
N

∞∑

n=0

n∑

k=0

(
1

nd− d− k + 2

)
Γ
(
n+ 1

2

)
ρk(1− ρ)n−k

Γ(k + 1)Γ(n− k + 1)Γ
(
1
2

)

×
{
zt(2l +D)nd−d−k+2

znd−k
H

− zt(D)nd−d−k+2

znd−k
H

}
.

(4.3)

In the previous section while studying the low and high effective temperature behaviour

of EE, we had only one length scale corresponding to the width of the rectangular strip-

like entangling region and the two limiting temperatures are defined whether Tf ≪ 1
l or

Tf ≫ 1
l . However, in this computation there is another length scale D corresponding to the

separation between the two subregions as previously mentioned, and hence the following

set of choices can be considered: (i) Tf ≪ 1
l , Tf ≪ 1

D , which is the usual low effective

temperature limit where the temperature is much smaller in comparison to both the length
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scales associated to l and D, (ii) Tf ≫ 1
l , Tf ≪ 1

D under which the effective temperature

is large in comparison to the length scale associated to l but it is small with respect to the

length scale associated to D. So this limit corresponds to the usual high temperature limit.

Lastly, we mention the third possibility defined as (iii) DTf ≫ lTf or Tf ≫ 1
l , Tf ≫ 1

D .

This particular limit is not relevant for our purpose since it corresponds to a disentangling

phase to two subregions and the EWCS becomes identically equal to zero and thus we

exclude it from our present analysis.

4.1 EWCS in low effective temperature

As explained above, to obtain the analytic form of EWCS in low effective temperature limit

we follow DTf ≪ lTf ≪ 1. In this case the turning points for both of the RT surfaces,

γD and γ2l+D lies far away from the horizon of the black hole, zt ≪ zH . Hence one can

ignore all the higher order terms and terminate the infinite series in (4.3) up to the order

(1/zH)d. Now using the approximate expression for both zt(D) and zt(2l + D) as given

in (3.10) the final result for EWCS is given as,

EW
low =

Ld−2Rd−1

4Gd+1
N

{
E0

(
1

Dd−2
− 1

(D + 2l)d−2

)
+ ρE1l

(
4πTf

d

)d−1

− (1− ρ)E2l(l +D)

(
4πTf

d

)d
}
,

(4.4)

where E0, E1, E2 are all O(1) constants and only depends on d with the following explicit

expressions,

E0 =
2d−2π

d−2

2

d− 2



Γ
(

d
2d−2

)

Γ
(

1
2d−2

)




d−2

E1 =
1

2
√
π



Γ
(

1
2d−2

)

Γ
(

d
2d−2

) −
Γ
(

1
2d−2

)3

d(2d− 2)Γ
(

d
2d−2

)3




E2 =




1

2π(d+ 1)



Γ
(

1
2d−2

)

Γ
(

d
2d−2

)




3
Γ
(

d
d−1

)

Γ
(

d+1
2d−2

) −
Γ
(

1
2d−2

)2

4πΓ
(

d
2d−2

)2


 .

(4.5)

As expected, the first term in the right hand side of (4.5) increases as the separation

distance D between the two subregions decreases and in the limit D → 0, EWCS diverges.

In the following, we make some comments regarding the correction terms in the analytical

expression of EW
low due to the back reaction on the AdS BH geometry.

• We observe the leading order correction term appearing in (4.5) is proportional to

the dimensionless quark density parameter ρ. Similar to the result of entanglement

entropy at low effective temperature, this leading order correction term is propor-

tional to the volume of the entangling hypersurface. Also at a fixed temperature the

above result for EWCS shows increasing behavior with ρ.
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• However, unlike the behavior of entanglement entropy, in the limit of vanishing quark

density, the EWCS decreases with increasing effective temperature Tf . Also note that

in the same vanishing quark density limit, the above result at low effective tempera-

ture correctly reproduces the result obtained earlier for the AdS-BH geometry in [26].

• Again as already observed in the EE calculation, to make the zero quark density

(ρ → 0) limit appropriate, we also require to keep a sub-leading correction term

which is proportional to T d
f .

4.2 EWCS in high effective temperature

As previously mentioned, the sensible way to take the high temperature limit along with

maintaining the entanglement between A and B follows the inequality DTf ≪ 1 ≪ lTf

which translates to considering the following two approximations: (i) zt(D) ≪ zH and

(ii) zt(2l + D) → zH . Hence using the first approximation among the above two, we can

replace the infinite series in (4.3) associated to the second term inside the curly bracket by

the leading order term in (1/zH) as effected by considering n, k = 0. However for infinite

series related to the first term inside the curly bracket, we must ensure it’s convergence for

large values of n as zt(2l + D) approaches zH . To do this we first evaluate the sum over

the index k and then consider the low ρ limit to get the infinite sum as,

∞∑

n=0

{
Γ
(
n+ 1

2

)

(nd−d+2)Γ(n+1)
(1−nρ) +

(2n+ 1)Γ
(
n+ 1

2

)

2(dn+1)Γ(n+1)

(
zH
zt

)
ρ+O(ρ2)

}
zt(2l +D)nd−d+2

zndH
.

(4.6)

Now in the large n limit the above infinite sum behaves as,

ρ

d

1√
n

zt(2l +D)nd−d+1

znd−1
H

− ρ

d

1√
n

zt(2l +D)nd−d+2

zndH
+O

(
1

n3/2

zt(2l +D)nd−d+2

zndH

)
. (4.7)

We notice that the first two terms individually are not convergent as each of them varies

as 1/
√
n. However due to the presence of the relative sign between the first two terms

in (4.7), such divergences eventually get canceled to give finite result in the large n limit.

Now to test the finiteness of EW for arbitrary ρ, we consider a particular dimension

d = 4 and hence the maximum value allowed for ρ, becomes four. For this chosen value of

d, it is possible to exactly evaluate the integral in (4.3). We have plotted the result as a

function of the dimensionless variable lTf for four different values of D
l (see figure 4). In

this plot we observe that for each value of the ratio D
l , the wedge cross section converges

to a finite value. We also see that the smaller the ratio D
l is, the lower the corresponding

cross-section becomes. Notice that as the ratio D
l decreases and approaches to zero, the

condition for high effective temperature limit mentioned above is attained more accurately.

Since EWCS is a monotonically increasing function of ρ and it turns out to be finite for the

maximum allowed value of ρ for a given particular dimension d = 4, we conclude that for

arbitrary values of ρ, the wedge cross section in high temperature limit must converge to a

finite value. The final result of the entanglement wedge cross section at high temperature
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Figure 4. Variation of EW with respect to the dimensionless quantity lTf for different values

of D/l, indicating the decreasing behavior of EWCS as the effective temperature increases (with

l = 1).

is given as,

EW
high =

Ld−2Rd−1

4Gd+1
N

T d−2
f




−



2
√
πΓ

(
d

2d−2

)

Γ
(

1
2d−2

)




d−2(
1

DTf

)d−2

+ C
(
4π

d

)d−2

− ρ

(
d− 2

8
√
πd(d− 1)

)

Γ
(

1
2d−2

)

Γ
(

d
2d−2

)




3(
4π

d

)d−1

(DTf )

−(1− ρ)

(
d− 2

8π(d+ 1)

) Γ
(

2d
2d−2

)

Γ
(
1
2 + 1

d−1

)



Γ
(

1
2d−2

)

Γ
(

d
2d−2

)




3(
4π

d

)d

(DTf )
2





,

(4.8)

where we introduce C as,

C =
∞∑

n=0

n∑

k=0

(
1

nd− d− k + 2

)
Γ(n+ 1

2)ρ
k(1− ρ)n−k

Γ(k + 1)Γ(n− k + 1)Γ(12)
(4.9)

The behavior of the EW
high with respect to the presence of back reaction in the bulk

geometry is summarized as:

• The most significant term in the above result (4.8) is the second term that varies as

the area of the subregions even at finite temperature. Contrary to the results obtained

for the holographic entanglement entropy at high effective temperature (3.16) which

accommodates a volume dependance for the leading order correction term, here we

observe EWCS contains an area dependent leading order correction term. Similar

observation is perviously reported in [26].

• It is important to note that at both high and low temperature limits, EWCS increases

with the quark density ρ which can be explicitly shown by plotting the measure as a

function of dimensionless quantity DTf for different ρ (see figure 4). Also from the

same plot it is clear that the critical distance of separation between the two subregions
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Figure 5. Variation of EW with dimensionless quantity DTf for different values of ρ. Again we

see the increasing behavior of EWCS with ρ which is similar to the variation of EE.

increases with ρ (we will see this again in the next subsection), thus corresponds to

the increase of entanglement and hence the EWCS.

• Further, for both regime of the effective temperature, the variation of EWCS with

lTf for different values of D/l as shown in figure 4, indicates that the temperature at

which the quantity drops discontinuously to zero increases as the ratio D/l decreases.

4.3 Critical distance between the strips

In this section we will study the phase transition occurring between two spatially disjoint

subregions A and B. The transition we are going study here happens from a bipartite

entangled phase associated to the direct product of the Hilbert spaces of region A and B
respectively to the one with zero entanglement due to the increase of separation between

A and B beyond a particular critical value.

For pure AdS geometry this kind of phase transition occurs as the ratio D/l becomes

greater than a critical value. However for AdS-BH background, if the distance of separation

D is greater than a particular critical value Dc then the two subregions will always be in

a disentangled phase irrespective of the width l. One interesting aspect of EWCS is that

it can capture this phase transition such that in a disentangled phase, the EWCS drops

discontinuously to zero value [26, 27].

In this regard we emphasize that as described in figure 5, for each choice of ρ, EWCS

behaves as a monotonically decreasing function of D(assuming Tf = 1) and it discontinu-

ously drops down to zero value until D reaches to a critical value Dc. Moreover, from the

same figure we note that Dc is a monotonically increasing function of ρ. Alternatively, sim-

ilar behavior of Dc with respect to ρ can be studied by analyzing the holographic mutual

information(HMI) as a measure of the total correlation of the theory. It turns out that as

D approaches to the critical value, the corresponding HMI decreases and finally becomes

zero, however in a continuous manner unlike the behavior of EWCS at around Dc. HMI of
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Figure 6. (A) The critical distance Dc between two specially disjoint regions increases with ρ for

two values of the dimension d = 4, 5. (B) The corresponding plot shows the variation of EW , I/2

with temperature for a fixed ρ = 4 and dimension d = 4. Both EW and I show decreasing behavior

with temperature.

the two subregions A and B is given as,

I(l, D) = 2S(l)− S(2l +D)− S(D).

I(l, Dc) = 0 (4.10)

Since this phase transition phenomenon happens for a large value of strip width l, one

can approximate S(l) and S(2l + D) by the earlier obtained analytic expressions at high

effective temperature (3.16), while for S(D) we will use the corresponding low effective

temperature result (3.13), to get the required condition as,

(
2
S̃(d, ρ)

zd−2
H

− Dc

zd−1
H

)
− S0

Dd−1
c

− ρS0S2
Dc

zd−1
H

− (1− ρ)S0S1
D2

c

zdH
= 0, (4.11)

where for explicit expression of S̃, S0, S1 and S2 (see (3.17), (3.12) respectively). In order

to obtain the critical value of distance of separation Dc we solve the above equation for

two different choices of dimension, i.e d = 4 and d = 5. In figure 6a, we have plotted

the critical distance Dc as a monotonically increasing function of ρ for both d = 4 and

d = 5. As we can see from the plot that the outcome of this alternative analysis associated

to HMI reconfirms that Dc increases monotonically with respect to ρ. Finally, to verify

the validity of the inequality between HMI and the EWCS as mentioned in (1.2), we have

plotted both I/2 and EW as a function of a dimensionless temperature TfD in figure 6b.

It is clearly evident from the above figure that the plot which corresponds to the variation

of I/2 as a function of TfD (in blue) lies below the plot showing the variation of EWCS

(in brown) for every possible values of the dimensionless parameter, thereby satisfying the

inequality in (1.2). Both HMI and EWCS decrease as TfD increases and they approach

to zero beyond a particular value of D(Tf = 1) indicating the transition point as already

mentioned.

– 19 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
1

5 Subregion volume complexity at finite quark density

Ryu-Takayanagi prescription provides us a nice holographic prescription to study the en-

tanglement structure of the boundary theory by analyzing the area of a co-dimension two

minimal surface as a geometric measure in the dual bulk theory. It came out as a natural

curiosity whether we can generalize further such connection between a bulk geometrical

quantity other than the area of RT surface and an appropriate measure associated to the

quantum information in the dual boundary theory. Along this line of thought, the author

in [38] introduces the idea of considering a co-dimension one spacelike volume bounded

by the co-dimension two Ryu-Takayanagi hypersurface and comes up with a proposal that

the mentioned volume is holographically dual to the quantum complexity of the bound-

ary theory. The subregion volume complexity is a particular version of the “complexity

equals volume” conjecture (previously mentioned in the introduction) and it computes the

complexity of a mixed quantum state defined on the subregion (entangling region) of the

boundary theory. In this section following [38], we wish to compute the modification to

the volume complexity of an infinite strip like subregion in the boundary theory due to the

presence of the uniform distribution of heavy quarks. More precisely, the correspondence

between co-dimension one space like volume in the d+1 dimensional bulk and the subregion

volume complexity in the d dimensional boundary theory is encoded as follows,

CV =

[
V

G
(d+1)
N R

]
, (5.1)

where R is the radius of the AdS spacetime and G
(d+1)
N is the d+ 1 dimensional Newton’s

constant. Again we define the embedding of the minimal RT surface as x(z) and the

corresponding enclosed volume is given as,

V = 2

∫ L
2

−L
2

dd−2y

∫ zt

0
dz

√
g

∫ x(z)

0
dx = 2Ld−2

∫ zt

0
dz

√
g x(z). (5.2)

In the above expression,
√
g is the d-dimensional volume element evaluated from the met-

ric (2.8) at constant time slice and x(z) can be obtained from equation (3.4) as,

x(z) =

∫ zt

z
dz′

h(z′)−
1

2

√(
zt
z′

)2d−2 − 1
. (5.3)

In terms of the dimensionless variable u defined in the previous sections, the above integral

can be re-casted as,

V =
2Ld−2Rd

zd−2
t

∫ 1

0

1√
h(u)ud

du

∫ 1

u

u′d−1

√
h(u′)(1− u′2d−2)

du′, (5.4)

One can split the second integral in the r.h.s. and use the integral form of l as given in (3.5)

to rewrite the above as,

V =
2Ld−2Rd

zd−2
t

[
l

2zt

∫ 1

0

1√
h(u)ud

du

︸ ︷︷ ︸
I1

−
∫ 1

0

(
1√

h(u)ud

∫ u

0

u′d−1

√
h(u′)(1− u′2d−2)

du′
)
du

︸ ︷︷ ︸
I2

]
.

(5.5)
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Using the series expansion of 1/
√
h(u) one can evaluate the above two definite integral and

they are given as,

I1=
l

2

(
zd−2
t

d− 1

1

ǫd−1
+

ρ

2

zd−2
t

zd−1
H

log

(
ǫ

zt

))
(5.6)

+
l

2zt

{
− 1

d− 1
+

1− ρ

2
αd +

∞∑

n=2

n∑

k=0

Γ
(
n+ 1

2

)
ρk(1− ρ)n−kαnd−k

Γ(k + 1)Γ(n− k + 1)Γ
(
1
2

)
(nd− d− k + 1)

}
,

I2=
l

2zt

∞∑

p=0

p∑

q=0

(
Γ
(
p+ 1

2

)
ρq(1− ρ)p−q

Γ(q + 1)Γ(p− q + 1)Γ
(
1
2

)
)(

1

pd− q − d+ 1

)
αpd−q (5.7)

−
∞∑

n=0

n∑

k=0

∞∑

p=0

p∑

q=0

{ √
π

(2d− 2)

(
Γ
(
n+ 1

2

)
Γ
(
p+ 1

2

)
ρk+q(1− ρ)n+p−k−q

Γ(k + 1)Γ(q + 1)Γ(n− k + 1)Γ(p− q + 1)Γ
(
1
2

)
Γ
(
1
2

)
)

×
Γ
(
nd+pd−k−q+1

2d−2

)

Γ
(
nd+pd−k−q+1

2d−2 + 1
2

)
(

1

pd− q − d+ 1

)
αnd+pd−k−q

}
,

where ǫ is the UV regulator in the boundary theory. The multiple infinite sum appearing

in the above result is hard to compute exactly for arbitrary values of the set of parameters

present in the theory. Also one needs to check the convergence of the infinite sums present

in (5.7). Hence in the following subsections, we have considered the low and high effective

temperature limit on the volume and correspondingly evaluated the integrals and verified

the convergence of the infinite sums.

5.1 Volume complexity at low temperature

In the low temperature limit (α → 0), one can terminate the infinite sum appearing in the

above expression for the volume keeping terms upto d-th power in α so that the final result

for the volume at low temperature is given as,

V =
Ld−2lRd

(d− 1)

1

ǫd−1
+Rd

(
L

l

)d−2 ρ

2

(
4πlTf

d

)d−1

log
(ǫ
l

)

+Rd

(
L

l

)d−2
{
V0 + V1ρ

(
4πlTf

d

)d−1

+ V2(1− ρ)

(
4πlTf

d

)d

+O (Tf l)
2d−2

}
,

(5.8)

where, V0/1/2 are O(1) constants and depends only on the dimension d. The explicit forms

are given in appendix A. Again the leading order correction term is proportional to the

quark density ρ and it also varies as the volume of the entangling hypersurface as expected.

In the above result at low temperature, we get a logarithmic UV divergent term with a ρ

dependent coefficient apart from the usual power law divergence at the boundary z → 0.

Also notice that the logarithmic divergence is devoid of any dependance on the dimension

d which indicates that this divergence will be present irrespective of the dimension of the

space time. It is very important to note that the ρ dependent terms appeared so far in

various expressions of HEE and EWCS are basically non-trivial corrections of the quantum

entanglement arising in the thermal plasma due to the presence of the back reaction we
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have considered. However, by looking at the logarithmic term in the expression of low

temperature limit of the subregion volume complexity, one may appreciate that this terms is

actually a universal term combining both UV cut-off and also the IR cut-off of the boundary

theory. By IR cut-off we mean the low temperature/large length scale defined by l.1

5.2 Volume complexity at high effective temperature

The high temperature limit is effected as usual by the limit zt → zH and we find that the

subregion volume complexity diverges. This diverging result is appearing from the large

values of the indices denoted as n and p contained in the multiple sums in I1 and I2 as

given in (5.6) and (5.7). It is more useful to express I1 by not using the infinite series

expansion of the term (1/
√
h),

I1 =
l

2

(
zd−2
t

d− 1

1

ǫd−1
+

ρ

2
αd−2 log

(
ǫ

zt

))
− l

2zt

(
1

d− 1

)
+

l

2zt
Y(α, d, ρ) +

l

2zt

∫ 1

0

du√
h
,

(5.9)

where we have denoted Y(α, d, ρ) as the following integral,

Y(α, d, ρ) =

∫ 1

0
du

(
1

ud
√
h
− 1

ud
− ρ

2u
αd−1 − 1√

h

)
. (5.10)

Notice that in (5.9) we have added and subtracted a term l
2zt

∫ 1
0

du√
h
in order to make the

definite integral Y(α, d, ρ) finite in the high temperature limit (α → 1). As an example, in

the following we list a few values of Y(α = 1, d, ρ) in d = 4 as,

Y(d = 4, ρ = 1) = −1.004, Y(d = 4, ρ = 2) = −1.422, Y(d = 4, ρ = 3) = −1.770 (5.11)

The final result for I1 in the high effective temperature limit is given as,

I1 =
l

2

(
zd−2
H

d− 1

1

ǫd−1
+

ρ

2
log

(
ǫ

zH

))
− l

2zH

(
1

d− 1

)
+

l

2zH
Y(α, d, ρ) +

l

2zH

∫ 1

0

du√
h
.

(5.12)

Now, turning our attention to I2, we note that, unlike I1 in this case we encounter double

integration in terms of the variables u and u′ respectively. In contrary to the choice of

methodology we followed in evaluating I1, here to evaluate the u′ integration in I2 as given

in (5.5), we must use series expansion of 1/
√
h(u′),

I2 =
∞∑

p=0

p∑

q=0

Γ(p+ 1
2)ρ

q(1− ρ)p−q

Γ(q + 1)Γ(p− q + 1)Γ1
2

(
1

pd− q + d

)
αpd−q

×
∫ 1

0

du√
h(u)

upd−q
2F1

(
1

2
,
pd− q + d

2d− 2
,
pd− q + d

2d− 2
+ 1;u2d−2

)
.

(5.13)

In the high temperature limit, α → 1, after computing the u′ integration of I2 as given

in (5.13) the value of the upper limit of u variable of the existing integral of I2, i.e u = 1

1This comment we appended here came to our notice after a communication with Aron Wall.
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sources possible divergence in the final expression. So to figure out the divergent terms we

make a series expansion of the integrand in the above expression of I2 near u = 1 and get

the following,

I2 =





l

2zt

∫ 1

0

du√
h
−
√

2

d−1

1√
δ

∞∑

p=0

p∑

q=0

Γ
(
p+ 1

2

)
(d− δ)q(1−d+ δ)p−q

Γ(q + 1)Γ(p− q + 1)Γ
(
1
2

) + Finite terms



 ,

(5.14)

where in the expression the first two terms are the only divergent pieces in I2. Note that we

have replaced ρ by (d−δ) in the above expression such that δ is a non-zero positive number.

It is also important to note that the divergent terms contained in (5.14) correspond to only

δ 6= 0, whereas analogue expression for such divergence corresponding to δ = 0 has been

separately mentioned later in (5.17). In the above equation (5.14), the first term cancels

exactly with the final term of (5.12) which was initially considered to make equation (5.10)

finite in the limit α → 1. The other divergent term in (5.14) with double sum turns out

to be proportional to the infinite part of the width l which can be easily verified from

equation (3.6) by performing a series expansion of the integrand near u = 1, namely,
(

l

2zH

)

infinite

=

(√
2

d− 1

) ∞∑

p=0

p∑

q=0

Γ
(
p+ 1

2

)
(d− δ)q(1− d+ δ)p−q

Γ(q + 1)Γ(p− q + 1)Γ
(
1
2

) (5.15)

So in the final result for the divergent part of I2 is given as,
(
I
(ρ=d−δ)
2

)

infinite

=
l

2zH

∫ 1

0

du√
h
− 1√

δ

(
l

2zH

)

infinite

. (5.16)

Finally, for ρ = d (or equivalently δ = 0), the diverging terms in I2 can be obtained as,
(
I
(ρ=d)
2

)

infinite

=
l

2zH

∫ 1

0

du√
h
+

√
2d

d− 1

l

2zH
+

(
− 2

√
2

d
√
d− 1

)(
l

2zH

)

infinite

. (5.17)

Again the first term in (5.17) cancels the last term in (5.12) and we are left with two infinite

terms expressed in terms of the width l as shown in the above result. The whole point of

the above analysis is to express the diverging terms appearing in the IR scale (large length

scale) by an intrinsic parameter of the boundary theory which in this case is given by the

width l of the entangling surface.

6 Conclusion

In this paper our primary motivation is to find out the effects of finite quark density in

the boundary theory on three different measures related to quantum information theory.

After doing this analysis, we come up with the following observations.

• The first measure is the computation of entanglement entropy at low and high effec-

tive temperature using the prescription by Ryu and Takayanagi. We have explicitly

observed from (3.16) and (3.18) that the EE shows increasing behavior with quark

density for a given temperature. The same behavior can also be realized from the

plot of EE with respect to l for different values of ρ in figure 2.
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Figure 7. Plot of zt vs l for different values of ρ.

• Similar to EE, an increasing behavior of EWCS with the quark density has also been

obtained and can be realized graphically from figure 5. Regarding the computation

of entanglement wedge cross section in the presence of any kind of back reaction has

not been reported elsewhere prior to our present work.

• Finally, the low temperature result (5.8) for subregion volume complexity, in partic-

ular the leading order correction term proportional to the quark density ρ, suggests

the complexity for the subregion increases with ρ for a given temperature.

• Interestingly, the behavior for all the above three measures with respect to the quark

density can be realized from the profile of the entangling surface into the bulk ge-

ometry. In figure 7, we have plotted the turning point zt as a function of the strip

width l for different values of the quark density ρ. One can observe that the RT

surface extends deep into the bulk and reach near the horizon for smaller values of l

when the corresponding quark density ρ is relatively lower. On the other hand, for

higher values of ρ this extension into the bulk is relatively slower with respect to the

width l. As a result the area of the RT surface as well as the volume enclosed by

it will be larger for higher ρ. Meaning, both EE and volume complexity increases

with the quark density. Regarding the behavior of EWCS, referring to figure 3, the

RT surface γD for the separation region with width D, the turning point for low

quark density denoted by zsmall ρ
t (D) will be greater than the corresponding value

for higher density zlarge ρ
t (D). So for the phase transition to take place, separation

between the two subregions needs to take higher value as the corresponding quark

density becomes large. Hence the EWCS also increases with the quark density ρ.

• By considering the zero quark density limit in the final expressions of all the three

measures we could successfully reproduce the corresponding result for AdS-BH back-

ground. In this regard it is important to keep the sub-leading correction terms also

in order to get the exact AdS-BH results.

• In the computation of subregion volume complexity we have obtained a log divergent

term with coefficient which is proportional to the quark density of the boundary
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theory. So the occurrence of this term is only because of the finite back reaction of the

finite heavy quark to the super Yang-Mills thermal plasma that we considered here.

It is also important to note that the argument of this logarithm is a dimensionless

ratio between the UV cut-off ǫ and the strip width l, where l is some IR cut-off of

the theory. Hence the coefficient of both log (ǫ) which is a UV divergence, and log (l)

which on the other hand is associated with some IR aspects of the theory, has exactly

the same coefficient. In that sense the coefficient of the log term carries information

about the system at all energy scale and not just the UV regime.

Before closing, we would like to mention that if one could find out the quantitative change

in the boundary theory due to the presence of back reaction even in a special case as d = 4

large N N = 4 super Yang-Mills thermal plasma, it would be very interesting to verify our

results from the CFT perspectives. In particular, to understand the field theoretic origin

of realizing the logarithmic universal term appearing in the result of subregion complexity

would be very interesting. We leave this way of performing field theoretic analysis for our

future work. As mentioned in the introduction, we hope that the universal features of

various entanglement measures and subregion volume complexity would be very important

to understand the quantum correlation in a realistic system such as quark-gluon plasma.
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A Subregion volume complexity at low effective temperature

The d dependent constant terms V0,V1,V2 as appearing in the expression for the co-

dimension one volume of the RT hypersurface at low effective temperature (5.8) are

given below,

V0=

21−dπ
1

2
− d

2

(
Γ
[

1

−2+2d

]

Γ
[

d
−2+2d

]
)−1+d{

2πΓ
[

d
−2+2d

]2 − (−1 + d+ 2π)Γ
[

1
−2+2d

]
Γ
[
1
2 + d

−2+2d

]}

(−1 + d)2Γ
[

1
−2+2d

]
Γ
[
1
2 + d

−2+2d

]

(A.1)

V1=
1

2

{
−

16(−2 + d)π3Γ
[

d
−2+2d

]4

d(−1+d)3Γ
[

1
−2+2d

]3
Γ
[
1
2+

d
−2+2d

] +
2πΓ

[
d

−2+2d

](
Γ
[

1−2d
−2+2d

]
−Γ

[
2−3d
−2+2d

]2
Γ
[

d
−2+2d

])

(−1 + d)2Γ
[
2−3d
2−2d

]
Γ
[

1
−2+2d

]
Γ
[
1
2 + d

−2+2d

]

+ log

[
Γ
[

1
−2+2d

]

2
√
πΓ

[
d

−2+2d

]
]
+

[
πΓ

[
d

−2 + 2d

]2(8(1 + d2 + 2d(−1 + π)− 4π)πΓ
[
1−2d
2−2d

]

d(−1 + d)3Γ
[
1−2d
2−2d

]
Γ
[

1
−2+2d

]

−
d(−1 + d)Γ

[
1

−2+2d

] {
ψ(0)

[
1−2d
2−2d

]
− ψ(0)

[
d

2−2d

]}

d(−1 + d)3Γ
[
1−2d
2−2d

]
Γ
[

1
−2+2d

]
)]}

(A.2)
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V2 =

√
πΓ

[
d

2(−1+d)

]

Γ
[

1
2(−1+d)

]
{
Γ

[
1

−2 + 2d

]2
+

2π
(−1+d)2

Γ
[

d
−2+2d
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Γ
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1
−2+2d
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(1 + d)Γ
[

1+d
−2+2d
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Γ
[
1
2 − d

−1+d

]
[
(−2 + d)Γ

[
1+d

−2+2d

]

Γ
[

d
−1+d

]

+ Γ

[
d

−1 + d

](
(1 + d)Γ

[
1 + d

−2 + 2d

]
+ 2(1 + d2 + 4π − 2d(1 + π))Γ

[
1

2
− d

−1 + d

])

−
(−1 + d)Γ

[
d

−2+2d

]

Γ
[
1
2 − d

−1+d

]
]
+

8(−2 + d)π2Γ
[

d
−2+2d

]3
Γ
[

d
−1+d

]

(−1 + d)2(1 + d)Γ
[

1+d
−2+2d

]
Γ
[
1
2 + d

−1+d

]
}

(A.3)
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