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Montréal, Quebec H3A 2T8, Canada

E-mail: jcotler@stanford.edu, kristanj@sfsu.edu,

alex.maloney@mcgill.ca

Abstract: We study aspects of Jackiw-Teitelboim (JT) quantum gravity in

two-dimensional nearly de Sitter (dS) spacetime, as well as pure de Sitter quantum grav-

ity in three dimensions. These are each theories of boundary modes, which include a

reparameterization field on each connected component of the boundary as well as topolog-

ical degrees of freedom. In two dimensions, the boundary theory is closely related to the

Schwarzian path integral, and in three dimensions to the quantization of coadjoint orbits

of the Virasoro group. Using these boundary theories we compute loop corrections to the

wavefunction of the universe, and investigate gravitational contributions to scattering.

Along the way, we show that JT gravity in dS2 is an analytic continuation of JT

gravity in Euclidean AdS2, and that pure gravity in dS3 is a continuation of pure gravity

in Euclidean AdS3. We define a genus expansion for de Sitter JT gravity by summing

over higher genus generalizations of surfaces used in the Hartle-Hawking construction.
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same double-scaled matrix model, which would provide a non-perturbative completion of
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1 Introduction

Our goal is to study simple models of quantum gravity with a positive cosmological con-

stant, where some of the deep questions about quantum cosmology can be addressed in

a simplified — and potentially solvable — setting. We will focus on two theories, in 1+1

and 2+1 dimensions, respectively, where it is possible to make concrete progress on prob-

lems which are intractable in higher dimensions. The first theory is Jackiw-Teitelboim

gravity with a positive cosmological constant, which describes a metric coupled to a scalar

dilaton [1–3]. The second is pure Einstein gravity in three dimensions with a positive

cosmological constant.

These two theories share several features in common which make them ripe targets for

an attack on the difficult problems of quantum cosmology. The first is that they possess

no local degrees of freedom: in both cases the dynamics can be completely reduced to

a theory of constant positive curvature metrics. But nevertheless interesting non-local

degrees of freedom remain. In particular, we will study these theories in de Sitter space,

which possess asymptotic boundaries in the far future and the far past. There are boundary

modes living on each asymptotic boundary, and the resulting boundary dynamics can be

regarded as the gravitational analogue of the edge dynamics which appear in Chern-Simons

description of quantum Hall systems. In addition, these theories possess global degrees of

freedom associated with the moduli space of constant curvature metrics on spacetimes of

non-trivial topology. We will discuss these dynamics both in Lorentzian signature as well as

in Euclidean signature, where (with a certain analytic continuation prescription) they can

be related to dynamics on the moduli space of metrics with constant negative curvature.

The topological nature of low dimensional gravity leads to a second important feature

— they can both be formulated in terms of topological gauge theories. Roughly speaking,
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the gauge theory formulation arises when one thinks of a theory of gravity in a “first order”

formulation, where the metric and connection coefficients are taken to be independent

degrees of freedom, as opposed to the more traditional “second order” formulation where

the connection is defined in terms of the metric. In a first order formulation, JT gravity

can be formulated as a BF theory with PSL(2,R) gauge group, and three dimensional

gravity can be formulated as a Chern-Simons theory with PSL(2; C) gauge group. In both

cases the equations of motion imply that the gauge connection is flat, and the resulting

topological gauge theories therefore have no local dynamics. The boundary degrees of

freedom can then be formulated in terms of the dynamics of large gauge transformations.

The degrees of freedom associated with spacetime topology parameterize the moduli space

of flat connections. This provides a useful route into the quantization of these theories,

and one which we will exploit.

It is important, however, to understand that the gauge theory formulation of a theory

of gravity can only be taken so far. In particular, while the equations of motion of the

gravitational theory match those of a gauge theory, this does not mean that the two

theories are the same at the quantum mechanical level. This is particularly clear in the

path integral formulation, where the quantum mechanical definition of a theory requires

a choice of integration domain in the space of field configurations. In a gauge theory, the

path integral is typically formulated as an integral over gauge connections on a manifold

of fixed topology. This is not, however, what is typically meant by a gravitational path

integral, where the topology of spacetime is allowed to fluctuate. The result is that, while

the gauge theory and metric formulations agree classically — and indeed it is expected

that they agree at all orders in perturbation theory — they should not be taken to be the

same thing at the non-perturbative level. Our point of view, therefore, is that a gauge

theory formulation is a useful tool in attempting to construct a full quantum mechanical

theory, but does not provide a definition of one. Rather, we will use gauge theory as a tool

in our study of perturbation theory, but include a sum over topologies as instructed by the

metric formulation.

One of our goals is to compute the wavefunction of the universe in these simple the-

ories. Our approach will be motivated by Hartle and Hawking [4], who argued that the

wavefunction of the universe can be computed using a path integral. Lorentzian signature

path integrals naturally compute time evolution operators which evolve between states,

but do not in general specify a specific state without some additional prescription, such as

the imposition of boundary conditions at some point in the past. A central observation of

Hartle and Hawking is that there is a natural state which is prepared by a path integral in

Euclidean, rather than Lorentzian signature:

Ψ[h] ∝
ˆ
g∂M=h

[Dg] e−SE . (1.1)

In this expression the wavefunction, regarded as function of some data h defined on a

particular spacelike slice, is computed by performing an integral over Euclidean metrics

g which match with h on this slice. The essential point is that, whereas in Lorentzian

signature there is no natural boundary condition to impose in the far past which singles
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out a preferred state, in Euclidean signature there is a clear natural prescription: one inte-

grates over metrics and field configurations which smoothly “cap off” the geometry. This

naturally generalizes to matter configurations as well; one simply integrates over smooth

field configurations on the Euclidean geometry. In this picture one specifies a state via a

choice of contour of integration through the space of (appropriately complexified) metrics.

We then need to understand which metrics contribute to the Euclidean path integral [4],

and how this contour of integration can be constructed. In the original approach of Hartle

and Hawking, one starts with the de Sitter metric

ds2

L2
dS

= −dt2 + cosh2 t dΩ2
d ,

and makes the complex change of coordinates τ = it to obtain the sphere metric

ds2

L2
dS

= dτ2 + cos2 τ dΩ2
d .

This Euclidean geometry naturally matches on to the Lorentzian de Sitter geometry at the

moment of time symmetry: t = 0, so this Euclidean continuation can be used to compute

the wavefunction on this slice.

This is not the only possibility, however. We can also consider the approach inspired

by Maldacena [5], where one analytically continues LdS as well. Taking LdS = −iLAdS and

r = t + iπ/2, the de Sitter metric becomes the metric in Euclidean Anti-de Sitter (AdS)

space (i.e. the hyperboloid):

ds2

LAdS
= dr2 + sinh2 r dΩ2

d

This metric naturally matches on to the Lorentzian de Sitter geometry at t → ∞, rather

than at t = 0. Thus this naturally computes the wavefunction at future infinity I+,

which coincides with the boundary r → ∞ of Euclidean AdS space. In this sense the

wavefunction of the universe should coincide with the partition function of a CFT dual

to Euclidean AdS, provided one can sensibly analytically continue LAdS → iLdS. In this

formulation, one should interpret the dS/CFT correspondence [6] as the conjecture that the

wavefunction of an asymptotically future de Sitter space universe is the partition function

of a suitably defined Euclidean CFT.1 The CFT under consideration, however, might be

quite strange: for example, in a two-dimensional CFT the continuation LAdS → iLdS

amounts to taking the central charge c = 3LAdS
2G to be pure imaginary. Similar oddities

appear in other dimensions [20].

At first sight the two analytic continuation prescriptions described above appear to be

quite different. Our emphasis in this paper, however, is that in certain contexts they are

identical: Maldacena’s contour is exactly the Hartle-Hawking prescription. The essential

distinction is whether one considers a theory of gravity in first or second order formalism.

The original Hartle-Hawking prescription describes a theory of gravity in the second order

1See also [7–19] for further comments related to this interpretation of the dS/CFT correspondence, as

well as related work.
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formalism, where the metric is consider as the only dynamical variable. In a first order

formulation, however, the analytic continuation τ = it automatically takes us to Euclidean

AdS, rather than dS. This can be seen very easily in the gauge theory formulation described

above. We just need to observe that the gauge group of the gauge theory is the isometry

group of Lorentzian dSd (i.e. SO(d, 1)), which is the same as the isometry group of Euclidean

AdSd. Thus, for example, in the formulation of three dimensional de Sitter gravity as a

Chern-Simons theory the Lorentzian path integral is

Z =

ˆ
[DA]

vol(gauge)
exp {ik3 SCS[A]}

with gauge group PSL(2,C) and coupling constant k3 = LdS
16πG3

. The usual Hartle-Hawking

prescription then instructs us to evaluate the PSL(2,C) Chern-Simons theory on a Eu-

clidean manifold. This is precisely the Chern-Simons formulation of three dimensional

gravity in Euclidean AdS, evaluated with an imaginary Chern-Simons level. Similarly, if

we interpret JT gravity in de Sitter space as a BF theory,

Z =

ˆ
[DA]

vol(gauge)
exp

{
ik2

ˆ
tr(BF )

}
with k2 = 1

4πG2
and gauge group SO(2, 1) = PSL(2,R), then the analytic continuation

again takes us to Euclidean AdS.

The result is that, in our theories of gravity in two and three dimensions, the com-

putation of the wavefunction of the universe is much clearer than in more complicated

theories of gravity. We will begin with a study of this wavefunction in JT gravity, where

many of the techniques that have proven useful in AdS gravity can be naturally general-

ized to de Sitter. In section 2 we will discuss the formulation of JT gravity in a de Sitter

background, and study the Schwarzian theory which governs the boundary dynamics at

the conformal boundary. We will study the gauge theory formulation, which will allow us

to understand the relationship between the traditional Hartle-Hawking construction and

the analytic continuation to Euclidean AdS (i.e. the hyperbolic disk). We will discover

that they are the same to all orders in perturbation theory. Moreover we will compute

the Hartle-Hawking wavefunction of the no-boundary state to all loop-order in the gravita-

tional interaction G2, and to leading order in a genus expansion. We will also study global

dS2 where the gravitational path integral computes a transition amplitude rather than a

wavefunction. This integral is more intricate, and is related to the double hyperbolic cone,

and the final result is in a sense the propagator for a closed universe to leading order in

a genus expansion. We also study the gravitational contribution to scattering in both the

Hartle-Hawking geometry and in global dS2.

We then turn to non-perturbative considerations in section 3, and define a genus expan-

sion for nearly dS2 gravity. This genus expansion is rather subtle in either the Lorentzian

dS metric formulation or in Euclidean AdS. There are no smooth, Lorentzian higher genus

spacetimes of constant positive curvature; meanwhile, in the Euclidean AdS continuation,

the boundary conditions inherited from dS guarantee that the metric will in general develop

conical singularities in the interior. We proceed by exploiting the gauge theory formulation,
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where, once we specify the topology of the spacetime, we simply integrate over flat connec-

tions on that surface subject to boundary conditions. Translated into the metric language,

we integrate over those singular metrics that have a smooth gauge theory description.

From here our discussion closely mirrors the analogous discussion in [21], which ob-

tained the genus expansion of JT gravity in Euclidean AdS and showed that it arises from

a double-scaled matrix integral. That expansion depends on the volumes of moduli spaces

of bordered Riemann surfaces. We find that the de Sitter coefficients are similarly related

to the volumes of moduli spaces of Riemann surfaces with cone points. For cone angles less

than π, these volumes are known to be the continuation of the volumes of moduli spaces of

bordered surfaces. We conjecture that this remains true past cone angles of π. If so, then

we find that the de Sitter genus expansion is, on the nose, the continuation of the AdS ex-

pansion. Furthermore, our expansion comes from a double-scaled matrix integral, the same

double-scaled model discovered for AdS, probed with different operators. Interpreting the

matrix model as a non-unique, non-perturbative completion of the genus expansion, this

gives a fully non-perturbative theory of de Sitter quantum gravity. It allows us in principle

to compute de Sitter transition amplitudes between universes with an arbitrary number of

boundary components.

In section 4 we will discuss the analogous considerations in dS3. While we do not have a

full genus expansion in this case, the discussion of the wavefunction in the Hartle-Hawking

state and the transition amplitude in global de Sitter space is similar to that in dS2.

The resulting boundary theory is richer and can be regarded as an analytic continuation

of the theory of boundary gravitons relevant for AdS3. We will discuss the Chern-Simons

formulation and its uses in computing loop corrections. Given the length of the manuscript,

we conclude with a detailed summary of our results and a discussion in section 5.

Note added. While this work was in progress, the paper [22] appeared, which has some

overlap with our analysis in sections 2 and 3 — they study the Schwarzian dynamics on

the boundary of two-dimensional nearly de Sitter spacetime in the metric formulation, as

well as the prospect of a matrix model completion.

2 Nearly dS2

Many near-extremal black holes in string theory have a near-horizon geometry of the form

AdS2 × X. Unlike near-horizons of the form AdSd>2 × X, AdS2 throats never decouple

in the infrared. There are several ways to understand this. One is that, if AdS2 throats

did decouple, then string theory in the near-horizon geometry would be dual to a CFT1.

However, a CFT1 is almost by definition topological, since the Hamiltonian vanishes by the

trace Ward identity. See e.g. [23] for a related argument using the density of states. This

fact is mirrored in AdS2 gravity, where backreaction of matter fields destroys the AdS2

asymptotics [24]. In the general relativity literature this fact is well-known and is called

the Aretakis instability (see e.g. [25]).

The resolution to all of these difficulties is quite natural [26]. One simply includes the

leading irrelevant deviation from criticality in the infrared. As far as s-wave physics on
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the near-horizon geometry is concerned, the two-derivative approximation to the gravita-

tional sector, the analogue of the Einstein-Hilbert action, is dilaton gravity which can be

parameterized in terms of the action

S =
1

16πG2

ˆ
d2x
√
−g (ϕR+ U(ϕ)) , (2.1)

up to a boundary term. Here ϕ is the dilaton, morally the size of the transverse space X,

and U is its potential. Near the AdS2 throat the gravitational sector universally asymp-

totes [27, 28] to an even simpler theory,

SJT =
1

16πG2

ˆ
d2x
√
−g ϕ0R+

1

16πG2

ˆ
d2x
√
−g ϕ̄

(
R+

2

L2

)
+ (bdy term) . (2.2)

Here ϕ0 (which is a root of U(ϕ)) is the value of ϕ on the extremal horizon, ϕ̄ = ϕ −
ϕ0, and L is the radius of the AdS2. The first term in the action is topological, just

giving the Euler characteristic of the spacetime, and the second term describes Jackiw-

Teitelboim gravity [1–3]. In a slight abuse of terminology, we refer to the action functional

above, including the first term, as Jackiw-Teitelboim theory. It has so-called nearly AdS2

solutions, where the spacetime is asymptotically AdS2 and the dilaton grows near the

boundary, including

ds2 = − r
2

L2
dt2 +

L2dr2

r2
, ϕ =

r

`
. (2.3)

Backreaction may be consistently studied in this context, and in fact the gravitational

path integral for this simple theory reduces to a boundary path integral, often called the

Schwarzian theory2 [27, 30, 31].

In this section we consider the de Sitter version of Jackiw-Teitelboim theory, which

we expect to universally govern the low-energy physics of a near-extremal solution with

dS2 ×X near-horizon geometry. Its action is given by

SJT =
ϕ0

16πG2

ˆ
d2x
√
−g R+

1

16πG2

ˆ
d2x
√
−g ϕ̄

(
R− 2

L2

)
+ (bdy term) . (2.4)

This theory has “nearly dS2” solutions, much like the nearly AdS2 solutions previous

studied in the literature. We will discuss the boundary term shortly.

In this section we have two main goals. The first is to find the analogue of the

Schwarzian path integral, and to use it to compute loop-level contributions to the gravita-

tional path integral and to gravitational scattering. This may be done straightforwardly

when integrating over simple geometries with the topology of the disc or the annulus, like

the capped-off geometry discussed in the Introduction or global dS2.

The second main goal is to deduce the analytic continuation between nearly dS2 gravity

and Euclidean nearly AdS2 gravity, using the simple Hartle-Hawking and global nearly dS2

geometries as prototypes. With this analytic continuation in hand, we can relate the higher

genus contributions to the nearly dS2 path integral to the recent Euclidean results of [21],

which we do in the next section.
2In fact the endpoint of the Aretakis instability may be found and studied using this Schwarzian

theory [29].
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Figure 1. (a) The Penrose diagram for global dS2 with α = 1. In our analysis we consider

fluctuating Cauchy surfaces (depicted as blue curves) near past and future infinity. The left and

right boundaries are identified. The geometries with α < 1 are “squashed” horizontally, while

those with α > 1 are “stretched.” (b) A cartoon of the geometry used in the Hartle-Hawking

construction. The Lorentzian and Euclidean segments are glued together across the circle. The

fluctuating boundary is indicated in blue.

2.1 Basic solutions

To begin, let us write down the basic solutions of Jackiw-Teitelboim gravity that will be

of interest to us throughout this section. These are the global dS2 spacetime, and the

geometry used in the Hawking-Hartle construction.

Setting the de Sitter radius to unity, the field equations are

R = 2 , (DµDν + gµν)ϕ̄ = 0 . (2.5)

The first equation implies that the spacetime has constant positive curvature, and the

second that ∂µϕ̄ is a conformal Killing vector. This in turn implies that εµν∂νϕ̄ is a

Killing vector.

The first solution of interest is the global version of nearly dS2 spacetime, which has

two circle boundaries I±. See figure 1(a) for its Penrose diagram. The background is

specified by

ds2 = −dt2 + cosh2 t dθ2 , ϕ̄ =
sinh t

`
, (2.6)

where ` is a free parameter. Note that the dilaton is necessarily large and negative near one

boundary, and large and positive near the other. The global geometry may be understood in

embedding coordinates. Let Xµ be coordinates on R1,2 with Minkowski metric −(dX0)2 +

(dX1)2 + (dX2)2. The geometry above is the surface X2 = 1, with

X0 = sinh t , X1 = cosh t cos θ , X2 = sinh t sin θ . (2.7)

– 7 –
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As for the dilaton, we see that

ϕ̄ =
X0

`
. (2.8)

So, in the embedding space, ∂µϕ̄ is a constant timelike vector.

Following the standard practice in AdS/CFT, we introduce cutoff slices near conformal

infinity. The relevant boundary conditions here are that on the cutoff slice the induced

metric and dilaton are

dS2 =

(
β±
2π

)2 dθ2

ε2
±
, ϕ̄ = ± 1

ε±J
, (2.9)

where the limit ε± → 0 corresponds to taking the cutoff to conformal infinity. (This

process can be equivalently stated in the language of defining functions and conventional

holographic renormalization.) Here the future and past circles have length β+ and β−
respectively.

In fact, there is a two-parameter family of solutions consistent with these boundary

conditions, all of which have β+ = β−. These backgrounds are parameterized by

ds2 = −dt2 + α2 cosh2 t (dθ + γδ(t)dt)2 , ϕ̄ =
α sinh t

`
, (2.10)

where (α, γ) label the phase space of solutions. What is the interpretation of these solu-

tions? The circle at t = 0 is a geodesic, and its length is 2π|α|. As for γ, it is a “twist,”

and the geometry with nonzero γ can be arrived at by acting with an axial rotation γ on

the geometry with γ = 0.

It is important to note that, although these metrics appear non-smooth, this is an

artifact of the way that we have chosen to write them. Indeed, we can write the metric as

ds2 = −dt2 + α2 cosh2 t dψ2 , ψ = θ + γΘ(t) , (2.11)

with Θ the Heaviside theta function. This coordinate system also has the advantage of

allowing us to deduce the periodicity condition on γ: because ψ is periodic with period

2π, so is γ. Further, it is clear that we may restrict ourselves to positive α. Indeed, the

geometries we have written here are the natural Lorentzian versions of the metric on the

hyperbolic cylinder, with α and γ playing the role of the length and twist parameters which

describe the moduli of constant curvature metrics on the cylinder.

These geometries are all hyperboloids, and can be thought of as the result of gluing a

future half-hyperboloid with t > 0 to a past hyperboloid across a geodesic of length 2πα

with a twist γ. From this point of view, we expect α and γ to be conjugate to each other,

and that the measure over α and γ is simply the Weil-Petersson measure. This is indeed

the case, as we demonstrate in subsection 2.6.

The α = 1 geometry is what is usually meant by global dS2. It has an analytic

continuation t = −iτ to the unit sphere, and so a stable Bunch-Davies vacuum for matter

fields. The geometries with α 6= 1 analytically continue to the space dτ2 + α2 cos2(τ)dθ2,

which has conical singularities at the poles τ = 0, π. It is not clear if there is a stable

vacuum for matter fields propagating in the Lorentzian continuation. However, in this

– 8 –
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section we are largely interested in the gravitational path integral, which seems to be

sensible for general α.

While the metric with α = 1 has isometry group PSL(2; R), this isometry group is

broken at generic α to the U(1) subgroup that generates rotations in θ. At integer α = n,

the isometry group is enhanced again to what is sometimes called PSL(n)(2; R), the group

generated by the vector fields ∂θ and e±inθ∂θ. Note however that while these are symmetries

of the metric, the physical group of symmetries is always broken by the dilaton profile to

the U(1) rotation subgroup.

In ordinary de Sitter spacetime there is a static patch, a region of the global geometry

analogous to a Rindler wedge of Minkowski space, on which one of the boost isometries

of the de Sitter isometry group acts as time translation. Given that nearly dS2 spacetime

is only invariant under rotations, it should not be a surprise that the analogue of the

static patch is slightly different. The would-be static patch of the α = 1 geometry is

parameterized in the embedding coordinates by

X0 = sin θ̃ sinh t̃ , X1 = sin θ̃ cosh t̃ , X2 = cos θ̃ , (2.12)

with θ̃ ∈ (0, π) and t̃ ∈ R. The metric in this patch is time-independent, but the dilaton

is not,

ds2 = dθ̃2 − sin2 θ̃ dt̃2 , ϕ̄ =
sinh t̃ sin θ̃

`
. (2.13)

This geometry has a cosmological horizon at the two points θ̃ = (0, π). We would like to

assign an entropy to this horizon. Ordinarily there is no well-defined notion of entropy in a

time-dependent setting, however in this case we are helped by the fact that the fluctuating

part of the dilaton ϕ̄ vanishes smoothly on the horizon. As a result the area of the horizon

is constant, and taking the standard Bekenstein-Hawking entropy at face value we find the

cosmological entropy

Scosmo =
ϕ0

2G2
, (2.14)

where we have used that the area of the horizon is the value of the dilaton on the horizon

θ̃ = 0 plus the value on the other horizon θ̃ = π. Note that this entropy is independent

of the parameter ` controlling the asymptotic behavior of the dilaton. This is in contrast

with the thermal entropy of nearly AdS2 black holes, whose extremal value is controlled

by ϕ0 and whose leading low-temperature correction is of the form 1
G2β`

.

There is also another geometry of interest, namely the one used in the Hartle-Hawking

construction. See figure 1(b). It is the union of a Lorentzian segment, the future half of

global dS2 with α = 1,

ds2 = −dt2 + cosh2 t dθ2 , ϕ̄ =
sinh t

`
, t ≥ 0 , (2.15a)

glued at t = 0 to a Euclidean hemisphere

ds2 = dτ2 + cos2 τ dθ2 , ϕ̄ = −i sin τ

`
, τ ∈ [0, π/2] , (2.15b)

along the circle at τ = 0. Note that the dilaton goes from being real in the Lorentzian

section to being imaginary in the Euclidean section, crossing zero at the interface.
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2.2 Schwarzian boundary action

There are various ways to derive the Schwarzian boundary action for nearly AdS2 grav-

ity [27, 30–32]. All require the complete Jackiw-Teitelboim action, including the boundary

term. Here we consider several complementary approaches to derive the Schwarzian bound-

ary action for nearly dS2 gravity.

In eq. (2.9) we described the boundary conditions on the metric and dilaton near con-

formal infinity. We must supplement the Jackiw-Teitelboim action (2.4) with a boundary

term in order to ensure a variational principle consistent with the boundary condition,

as well as to have a finite on-shell action. Including this boundary term, the complete

action reads

Sgrav =
ϕ0

4G2
χ+

1

16πG2

ˆ
M
d2x
√
−gϕ̄(R− 2)− 1

8πG2

ˆ
∂M

dx
√
h ϕ̄ (K − 1) . (2.16)

Here χ is

χ =
1

4π

ˆ
d2x
√
−g R− 1

2π

ˆ
dx
√
hK , (2.17)

h is the induced metric on the boundary of the cutoff slice, and K is its extrinsic curvature.

On a Lorentzian manifold with real metric, χ is the Euler characteristic. The Hartle-

Hawking geometry has a complex metric and so we have to be more careful. In any case,

we follow the standard procedure in holographic renormalization where one introduces the

cutoff slices near conformal infinity, evaluates the action including the boundary terms,

and then takes the cutoff to infinity.

Using this action we compute the on-shell action of global dS2 and the mixed

Lorentzian/Euclidean solution we discussed above. First consider global dS2. The back-

grounds obeying the boundary condition (2.9) are

ds2 = −dt2 + α2 cosh2 t(dθ + γδ(t)dt)2 , ϕ̄ =
2πα

βJ
sinh t . (2.18)

The Euler characteristic term vanishes, as does the bulk part of the action. We readily

find for all α and twist γ

Sglobal = 0 . (2.19)

For the mixed Lorentzian/Euclidean geometry employed in the Hartle-Hawking con-

struction, the total geometry has the topology of a disk, and so one might think that we

have χ = 1. This is not quite true. The point is that the topological and metric defini-

tions of the Euler characteristic differ by a phase on spaces with complex metric. For the

Hartle-Hawking geometry (2.15), we have3

χ =

(
1

4π

ˆ Λ

0
dt

ˆ
dθ 2 cosh t− 1

2π

ˆ
dθ cosh Λ tanh Λ

)
+

(
1

4π

ˆ π/2

0
(−idτ)

ˆ
dθ 2 cos τ

)
= (0) + (−i) = −i , (2.20)

3We thank D. Stanford for pointing this out to us.
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where the first term comes from the Lorentzian segment and the second from the Euclidean.

The Lorentzian segment is an annulus and so gives zero contribution. We then see that

χ = −iχT , (2.21)

where χT is the topological Euler characteristic. As for the bulk part of the action, it

vanishes, and after computing the boundary term we then find

SHH = −i ϕ0

4G2
+

π

4G2βJ
. (2.22)

Let us now consider the quantum theory. Integrating out the dilaton, we have a

residual integral over the moduli space of constant curvature metrics on either the annulus

or the disk, depending on whether we are integrating over fluctuations around global dS2,

or the Hartle-Hawking geometry. This moduli space of metrics may be parameterized near

conformal infinity in terms of asymptotic diffeomorphisms acting on the solutions presented

in the last subsection, as in [27]. It may also be parameterized in terms of a fixed R = 2

solution with a fluctuating boundary, as in [30]. We take the latter approach.

2.2.1 The Hartle-Hawking geometry

Consider the Hartle-Hawking geometry. Let us work in conformal coordinates for the

Lorentzian patch, with sec(T ) = cosh(t), and T ∈ [0, π/2). The future boundary is reached

as T → π/2. The metric now reads

ds2 = sec2(T )
(
−dT 2 + dθ2

)
. (2.23)

Let T = T (u), θ = f(u) parameterize the future boundary, with u a periodic variable of

periodicity 2π. Clearly f(u+ 2π) = f(u) + 2π. Imposing the boundary condition (2.9),

guu =

(
β

2π

)2 1

ε2
=
−T ′(u)2 + f ′(u)2

cos2(T (u))
, (2.24)

we find

T (u) =
π

2
− ε 2πf ′(u)

β
+O(ε2) . (2.25)

The extrinsic curvature of the boundary is

K = 1− ε2
(

2π

β

)2(
{f(u), u}+

f ′(u)2

2

)
+O(ε3) , (2.26)

where

{f(u), u} =
f ′′′(u)

f ′(u)
− 3

2

f ′′(u)2

f ′(u)2
(2.27)

is the Schwarzian derivative of f(u) with respect to u. Using the expression for the

Schwarzian and plugging in h = 2π
βε and ϕ̄ = 1

Jε , the action (2.16) evaluates to

S = −i ϕ0

4G
+

1

4GβJ

ˆ 2π

0
du

(
{f(u), u}+

f ′(u)2

2

)
. (2.28)
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This is the Schwarzian action for the single boundary graviton degree of freedom of the

chosen background. The integrand of the action may be alternatively expressed as

{f(u), u}+
f ′(u)2

2
=

{
tan

(
f(u)

2

)
, u

}
. (2.29)

Notice that the Euclidean cap of the geometry completely drops out of the computation.

The PSL(2; R) isometries of dS2 leave the metric invariant but act non-trivially on the

boundary, and thus on the Diff(S1) field f(u), by

tan

(
f(u)

2

)
→

a tan
(
f(u)

2

)
+ b

c tan
(
f(u)

2

)
+ d

. (2.30)

The above field transformations preserve the geometry including the boundary, and so

we identify these field configurations in the remaining path integral over f(u). That is,

f(u) ∈ Diff(S1)/PSL(2; R). The Schwarzian derivative is projective-invariant, and so the

action (2.28) is manifestly invariant under these transformations, which may be viewed as

a gauge symmetry of the model.

The classical trajectory of the model (modulo the PSL(2; R) quotient) is simply

f(u) = u , (2.31)

which has on-shell action

SHH = −i ϕ0

4G
+

π

4GβJ
,

reproducing our earlier result (2.22).

2.2.2 Global dS2

The computation for global dS2 spacetime proceeds similarly. The Euler characteristic

term now vanishes, as does the bulk part of the action after integrating out the dilaton.

It only remains to find the perturbation in the extrinsic curvature near conformal infinity.

The analogue of conformal coordinates is simply

ds2 = sec2(T )
(
−dT 2 + α2dθ2

)
. (2.32)

Near future infinity, we introduce a boundary t = T+(u), θ = f+(u), along with a boundary

near past infinity t = T−(u), θ = f−(u). Here f±(u) are two diffeomorphisms of the circle,

with f±(u + 2π) = f±(u) + 2π. The only effect of general α on the computation of the

future extrinsic curvature is to replace f+ → αf+, and similarly in the past.

Because the dilaton goes from 1/(εJ) on the future boundary to −1/(εJ) on the past

boundary, we then arrive at the boundary effective action

S =
1

4G2J

[
1

β+

ˆ 2π

0
du

(
{f+(u), u}+

α2

2
f ′+(u)2

)
− 1

β−

ˆ 2π

0
du

(
{f−(u), u}+

α2

2
f ′−(u)2

)]
.

(2.33)
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Note that the fields f± do not directly couple to each other, consistent with the fact that

there are independently conserved future and past stress tensors. However, past/future

couplings do arise on account of α, as follows. For general α, the above action is no longer

invariant under fractional linear transformations of f±. The action is only invariant under

U(1) × U(1) transformations, f±(u) → f±(u) + δ±. The diagonal subgroup corresponds

to the U(1) isometry of global dS2, and so it is effectively gauged. Said another way, the

reparameterization fields f± and α are together an element of the quotient space(
Diff(S1)×Diff(S1)× R+

)
�U(1) . (2.34)

The axial U(1) symmetry f+(u)→ f+(u) + δ, f−(u)→ f−(u)− δ is physical and generates

the parameter γ. Indeed, the solutions to the equations of motion of the model consistent

with the boundary conditions and modulo the U(1) quotient are simply

f+(u) = u+ γ , f−(u) = u . (2.35)

The on-shell action is

Sglobal =
πα2

4GJ

(
1

β+
− 1

β−

)
, (2.36)

which seemingly contradicts our earlier result that Sglobal = 0. However, recall that these

geometries solve all of the equations of motion of Jackiw-Teitelboim gravity only when

β+ = β−, in which case Sglobal vanishes. (When β+ 6= β− we still satisfy R = 2, but there

is no solution for the dilaton.)

At integer α = n the isometry group is enhanced from U(1) to PSL(n)(2; R),

and correspondingly the symmetry group of the doubled model (2.33) is enhanced to

PSL(n)(2; R) × PSL(n)(2; R). The diagonal part is effectively gauged, in the sense that

we identify f± modulo

tan

(
nf+(u)

2

)
∼
a tan

(
nf+(u)

2

)
+ b

c tan
(
nf+(u)

2

)
+ d

, − cot

(
nf−(u)

2

)
∼
a
(
− cot

(
nf−(u)

2

))
+ b

c
(
− cot

(
nf−(u)

2

))
+ d

.

(2.37)

Näıvely the axial part is physical, giving a non-compact moduli space of solutions. This is

not quite the case, as we will see later.

Since α indexes a geometric quantity, the length of a minimal geodesic around the

circle, one may work in the sector of geometries with fixed α and in particular α = 1. For

this special case the boundary model is precisely

S =
1

8G2J

ˆ 2π

0
du

(
1

β+

{
tan

(
f+(u)

2

)
, u

}
− 1

β−

{
tan

(
f−(u)

2

)
, u

})
, (2.38)

with f± parameterizing (
Diff(S1)×Diff(S1)

)
�PSL(2; R) . (2.39)

We would like to perform the path integral over these degrees of freedom, as well as the

moduli (α, γ) described above. To do so we require the measure over the reparameterization
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degrees of freedom, and in particular the measure for α. In this second-order formalism this

is difficult to obtain, so we will instead use the description of JT theory as a topological

gauge theory. This will have the advantage of allowing us to efficiently study Jackiw-

Teitelboim gravity on higher-genus surfaces.

2.3 Topological gauge theory for nearly dS2 gravity

Jackiw-Teitelboim gravity with positive cosmological constant may be classically recast as

a PSL(2; R) topological gauge theory [33, 34]. The starting point is to pass to a first-

order description. To do so in higher-dimensional Einstein gravity, one simply rewrites

the Einstein-Hilbert term in terms of first-order variables. The spin connection appears

quadratically and can be integrated out, enforcing the torsion-free constraint and leaving

behind the ordinary Einstein gravity action.

In dilaton gravity this is no longer the case, and one must introduce two additional

fields ta for a = 0, 1 to enforce the torsion-free constraint. These may be grouped into a

single object in the following way. We introduce the generators

JA = (P0, P1,Ω) , (2.40)

in the fundamental representation of the algebra sl(2; R) with

[Pa, Pb] = εabΩ , [Ω, Pa] = εabP
b , (2.41)

and

tr(JAJB) = −1

2
ηAB , ηAB =

−1

1

−1

 . (2.42)

Here ε01 = 1 and we raise and lower the indices a = 0, 1 with the Minkowski metric. The

signature of the Killing-Cartan metric is (+−+), i.e. we are dealing with so(2, 1). We then

group the fluctuating part of the dilaton and the Lagrange multiplier fields ta as

B = taPa + ϕ̄Ω . (2.43)

We similarly group the zweibein ea and abelian spin connection ω = −1
2ε
abωab into an

sl(2; R)-valued one-form,

A = eaPa + ωΩ . (2.44)

In this convention the scalar curvature is given by

d2x
√
−g R = 2dω . (2.45)

One of the insights of [33, 34] is that, on a solution of Jackiw-Teitelboim gravity, infinitesi-

mal local Lorentz transformations and diffeomorphisms act on A and B in the same way as

infinitesimal sl(2; R) gauge transformations, and it is in this sense that A is a connection.

The field strength is

F =
(
dea + ωεabe

b
)
Pa +

(
dω +

εab
2
ea ∧ eb

)
Ω = T aPa +

1

2
(R− 2)vol Ω , (2.46)
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where in passing to the second equality we have introduced the torsion T a and rewritten

the derivative of ω in terms of the scalar curvature R and volume form vol = d2x
√
−g.

Observe that F = 0 is equivalent to the torsion-free constraint and the dilaton equation of

motion R = 2.

As a result we may write the first-order version of (2.4) as

SJT = − ϕ0

8πG2

ˆ
dω +

1

16πG2

ˆ
d2x
√
−g (ϕ̄(R− 2) + 2taTa)

=
ϕ0

4G2
χ+

1

4πG2

ˆ
tr (BF ) ,

(2.47)

where χ is the Euler characteristic. We recognize the second term as a topological gauge

theory with algebra sl(2; R). The equation of motion for B simply sets F = 0, and the

equation of motion for A sets DµB = ∂µB + [Aµ, B] = 0.

One approach to quantizing Jackiw-Teitelboim gravity on nearly dS2 spacetime is to

start in this BF formulation and integrate out B. There is then a residual integral over

flat connections, subject to boundary conditions at conformal infinity. We will carefully

investigate this residual integral shortly, but first, let us map the nearly dS2 backgrounds

discussed in the last subsection to their gauge theory avatars.

2.3.1 The gauge theory description of nearly dS2 spacetime

Let us consider global dS2 with γ = 0 for simplicity. Picking the zweibein to be

e0 = dt , e1 = cosh t dθ , (2.48)

the corresponding gauge configuration is

A = dtP0 − α cosh tdθ P1 + α sinh tdθΩ , (2.49)

or, in the explicit representation

P0 =
1

2

(
1 0

0 −1

)
, P1 =

1

2

(
0 1

−1 0

)
, Ω = −1

2

(
0 1

1 0

)
, (2.50)

we find

A =

(
dt
2

αe−tdθ
2

−αetdθ
2 −dt

2

)
. (2.51)

For the dilaton, one may find a complete solution for B which includes a profile for t1,

B =
α

`
(cosh tP1 + sinh tΛ) =

(
0 αe−t

2`

−αet

2` 0

)
. (2.52)

Observe that B = 1
`Aθ.

The field configuration corresponding to the mixed Lorentzian/Euclidean geometry is

the same for t > 0. At t = 0, it is glued to the continuation with t = −iτ ,

A =

(
− idτ

2
eiτdθ

2

− e−iτdθ
2

idτ
2

)
, (2.53)

for τ ∈ [0, π/2).
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2.3.2 Boundary conditions and on-shell action

We would also like to verify that the on-shell action of these solutions matches the on-shell

action we computed in the second-order formalism in eqs. (2.19) and (2.22). To do so we

must address the question of boundary terms and boundary conditions. The asymptotically

dS2 boundary conditions are, in the gauge theory variables, the statement that near future

infinity t→∞ A and B behave as

A =

(
dt
2 +O(e−t) O(e−t)

−β+etdθ
2π +O(e−t) −dt

2 +O(e−t)

)
, B =

2π

β+J
Aθ +O(e−t) , (2.54)

and near past infinity t→ −∞ as

A =

(
dt
2 +O(et) β−e−tdθ

2π +O(et)

O(et) −dt
2 +O(et)

)
, B =

2π

β−J
Aθ +O(et) , (2.55)

and where the fields are allowed to fluctuate at the indicated orders in e−t or et. These

boundary conditions are modeled upon global dS2, which clearly respects them, upon

performing the appropriate change of coordinate t→ t∓ ln
(
π
β±

)
near t→ ±∞.

In order to ensure a variational principle consistent with these boundary conditions

we supplement the bulk part of the action (2.47) with a boundary term, so that the total

action reads

Sgrav =
ϕ0

4G
χ+

1

4πG2

ˆ
M

tr(BF )− 1

8πG2

ˆ
∂M

dθ ntr(BAθ) , (2.56)

where n = +1 on the future boundary and n = −1 on the past boundary. We can check

that this is the right boundary term by computing the on-shell variation, which is4

δSgrav =
1

4πG2

[ˆ
∂M+

dθ tr

((
2π

β+J
Aθ−B)

)
δAθ

)
−
ˆ
∂M−

dθ tr

((
2π

β−J
Aθ−B

)
δAθ

)]
.

(2.57)

The future term vanishes as Aθ fluctuates at O(e−t) and 2π
β+J

Aθ − B is fixed to be of the

same order. The past term vanishes by an analogous argument.

Now we can reproduce the on-shell action of the Hartle-Hawking and global back-

grounds. To find the on-shell action of the former, we employ a change of coordinates near

future infinity t→ t+ ln
(
β
π

)
so that A respects the boundary condition at large t,

A =

(
dt
2

π
β
e−tdθ

2

−βetdθ
2π −dt

2

)
. (2.58)

The Euler characteristic term gives χ = −i, the bulk term in the action vanishes since A

is flat, and using the boundary condition on B the boundary term can be written as

− 1

4GβJ

ˆ 2π

0
dθ tr(Aθ)

2 . (2.59)

4Our orientation is such that εtθ = 1√
−g .
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We then find

SHH = −i ϕ0

4G2
+

π

4G2βJ
,

reproducing the earlier result (2.22).

The same sort of argument in global dS2, now with t→ t+ln
(
β+
πα

)
near future infinity

and t→ t− ln
(
β−
πα

)
near past infinity, gives

Sglobal =
πα2

4G2J

(
1

β+
− 1

β−

)
,

which matches the result (2.36) we obtained from the Schwarzian boundary action.

2.3.3 Holonomy and minimal length geodesics

Let us reconsider the Hartle-Hawking geometry. The θ-circle is contractible in the total

space. Then the flatness condition implies that the holonomy of A around that circle is

trivial in all representations. In the fundamental representation, we find

P exp

(ˆ 2π

0
dθ Aθ

)
= −I . (2.60)

This configuration is then singular when viewed as an SL(2; R) connection, but non-singular

as a PSL(2; R) = SL(2; R)/Z2 connection, wherein we identify U ∈ SL(2; R) with −U . We

conclude that the global form of the gauge group of Jackiw-Teitelboim gravity with positive

cosmological constant is PSL(2; R), which is also the same form one finds with negative

cosmological constant in Euclidean signature.

As for global dS2, the holonomy in the fundamental representation is

tr

(
P exp

(ˆ 2π

0
dθ Aθ

))
= 2 cos(πα) , (2.61)

which is in general non-trivial. The holonomy is in the elliptic conjugacy class of PSL(2; R).

Earlier we saw that the physical interpretation of α is that the minimal length geodesic

around the circle has length 2πα. (This is also true in the Hartle-Hawking geometry even

though in that case the circle is contractible; there, the circle shrinks to a minimal size 2π

at the end of the Lorentzian segment, and only contracts further in the Euclidean section.)

A similar computation shows that a Lorentzian geometry with hyperbolic holonomy is

singular, with a Milne-like singularity.

The lesson is that smooth Lorentzian geometries have minimal length spacelike

geodesics around the circle. That length is encoded through an elliptic holonomy in the

PSL(2; R) gauge theory description. This is in contrast with smooth Eulicdean geome-

tries of constant negative curvature. The gauge theory description of those geometries is

characterized by hyperbolic holonomies around non-contractible cycles.

There is a minor puzzle at this stage, namely what is the domain of α? From the

spacetime analysis it is clear that α is valued on the real positive line, since it is the

minimal length around the global dS2 bottleneck. However from the holonomy (2.61) (and

recalling that we identify U ∼ −U) it would seem that α is a periodic variable α ∼ α+ 1.
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The resolution to this puzzle is that, as the geometry instructs us, α is valued on the

positive real line. What happens in the gauge theory description is that, in addition to

holonomies, flat connections are also characterized by a winding number. Field configu-

rations with trivial holonomy and different winding number live in different topological

sectors. Indeed, for the Hartle-Hawking geometry we integrate over the winding number

1 sector. In global dS2 integrating over positive α means that we sum over all topological

sectors, and within each sector integrate over elliptic holonomies.

In other words, for the gauge theory description of global dS2 to match the second

order description, we must integrate over the universal cover of PSL(2; R), but only divide

by gauge transformations valued in PSL(2; R).

2.4 The map to Euclidean nearly AdS2 gravity

Jackiw-Teitelboim gravity with negative cosmological constant may also be recast as a

topological gauge theory. In Lorentzian signature the algebra is so(1, 2), but in Euclidean

signature it is so(2, 1), precisely the same as in our Lorentzian analysis with positive cos-

mological constant. The action for nearly AdS2 gravity in Euclidean signature in the

second-order formalism is

SE = − ϕ′0
4G2

χ− 1

16πG2

ˆ
d2x
√
g′ ϕ̄′(R′ + 2)− 1

8πG2

ˆ
dx
√
h′ϕ̄′(K ′ − 1) , (2.62)

where we are distinguishing the dilaton, metric, and curvatures relative to our dS2 analysis

by priming them.

In this subsection we derive a map from the gauge theory description of nearly dS2

gravity to that of Euclidean nearly AdS2 gravity. A part of this map is LAdS → iLdS,

but we must also sort out what happens to the dilaton and holonomies. Our strategy

is to exploit the quantization around genus 0 and 1 surfaces in both Lorentzian dS2 and

Euclidean AdS2 and learn how they map to each other. From this data we find a general

map which defines higher genus contributions to the dS2 path integral by continuation from

Euclidean AdS2, which we discuss later.

Let us pass to the first-order formalism of the Euclidean AdS2 theory. From the spin

connection we define ω′ = 1
2ε
ijω′ij , which is related to the scalar curvature by

d2x
√
g′R′ = 2dω′ . (2.63)

Flat indices are raised and lowered with the Euclidean metric, and we take ε12 = 1. We

also denote the Lagrange multiplier fields enforcing the torsion-free condition as t′i.

Using the same generators introduced earlier, the map between the first-order and the

gauge theory variables may be expressed as

A′ = e′1Ω + e′2P0 + ω′P1 , B′ = t′1Ω + t′2P0 + ϕ̄′P1 . (2.64)

The curvature of A′ is

F ′ = (de′1 + ω′ ∧ e′2)Ω + (de′2 − ω′ ∧ e′1)P0 + (dω′ + εije
′i ∧ e′j)P1

= T ′1Ω + T ′2P0 +
1

2
(R′ + 2)volP1 .

(2.65)
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Up to the boundary term, we then arrive at the first-order action

SE = − ϕ′0
4G2

χ+
1

4πG2

ˆ
tr(B′F ′) . (2.66)

2.4.1 Poincaré disk and boundary conditions

Now consider the Poincaré disk, described by the metric and dilaton

ds′2 = dρ2 + sinh2 ρ dθ2 , ϕ̄′ =
cosh ρ

`′
. (2.67)

The asymptotically Euclidean AdS2 boundary conditions may be imposed by cutting off

the bulk geometry on a boundary close to the conformal boundary, on which the induced

metric and dilaton are

dS′2 =

(
β′

2π

)2 dθ2

ε2
, ϕ̄′ =

1

J ′ε
, (2.68)

with the cutoff going to the conformal boundary as ε → 0. The Poincaré disk respects

these boundary conditions, with the cutoff on a constant-ρ slice eρ = β′

πε and `′ = β′J ′

2π .

In the gauge theory variables, using the zweibein

e′1 = sinh ρ dθ , e′2 = dρ , (2.69)

we find

A′ =

(
dρ
2

e−ρdθ
2

− eρdθ
2 −dρ

2

)
, (2.70)

and we can also solve the equation of motion for the t′i to give

B′ =

(
0 e−ρdθ

2`′

− eρdθ
2`′ 0

)
=

1

`′
A′θ . (2.71)

In these gauge theory variables, the asymptotically Euclidean AdS2 boundary conditions

are, as ρ→∞,

A′ =

(
dρ
2 +O(e−ρ) O(e−ρ)

−β′eρdθ
4π +O(e−ρ) −dρ

2 +O(e−ρ)

)
, B′ =

2π

β′J ′
A′θ +O(e−ρ) . (2.72)

Adding a boundary term to ensure that there is a variational principle consistent with this

boundary condition, we arrive at the complete form of the first-order action

SE = − ϕ′0
4G2

χ+
1

4πG2

ˆ
M

tr(B′F ′) +
1

8πG2

ˆ
∂M

dθ tr(B′A′θ) . (2.73)

In the Poincaré disk the θ-circle is contractible. Non-singularity of the gauge configu-

ration then mandates that the holonomy around the circle is trivial in all representations.

In the fundamental we find

P exp

(ˆ 2π

0
dθ A′θ

)
= −I , (2.74)
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and so we find as before that the global topology of the gauge group is fixed to be PSL(2; R).

Now for the punchline. Comparing the expressions (2.70) and (2.71) for the gauge

field and scalar parameterizing the Poincaré disk with (2.51) and (2.52) for the Lorentzian

segment of the Hartle-Hawking geometry (with α = 1), we see that they match exactly upon

the replacement ρ↔ t. The same correspondence holds for the boundary conditions (2.72)

near the boundary of the Poincaré disk and those (2.54) near future infinity in dS2. In

fact, even the action (2.73) may be mapped to that of the Lorentzian dS2 model (2.56).

After integrating out the scalar, the action is just the topological term plus the boundary

term. Demanding

exp(−SE) = exp(iS) , (2.75)

one finds that with a single future boundary, we must analytically continue

ϕ′0 → ϕ0 , B′ → iB . (2.76)

The first follows from the fact that the Euler term for Euclidean AdS2 gravity gives the

topological characteristic χT , while the Euler term for Lorentzian dS2 gives −iχT .

Comparing the boundary conditions eq. (2.72) for B′ and eq. (2.54) for B we see that

we must continue

J ′ → −iJ . (2.77)

This is expected. Restoring the AdS radius LAdS and dS radius LdS, the natural boundary

conditions on the AdS and dS dilatons are that, on the cutoff slice near conformal infinity,

the dilatons go to

ϕ̄′ =
LAdS

J ′ε
, ϕ̄ =

LdS

Jε
, (2.78)

and indeed under LAdS → −iLdS and J ′ → −iJ the AdS dilaton is mapped to the

dS dilaton.

If we instead mapped the disk to a time-reversed Hartle-Hawking geometry with a

single past boundary, then the continuation acts as J ′ → iJ .

2.4.2 Double trumpet and global dS2

Having understood the mapping from Euclidean AdS2 to the Lorentzian dS2 with the

Hartle-Hawking geometry, we now turn to the analogous story for global dS2 which has

both a future and past boundary.

In fact we may reinterpret global dS2 as the “double trumpet” geometry of [21], whose

analytic continuation computes the semiclassical ramp of nearly AdS2 gravity in [35]. This

double trumpet is a topological annulus described by the metric

ds′2 = dρ2 + b2 cosh2 ρ dθ2 , (2.79)

where θ has periodicity 2π. While this is a constant curvature metric, there is no dilaton

profile on it that solves the dilaton equation of motion subject to the dilaton boundary

condition, and so this background is not a classical trajectory for any size of the boundary

circles. Recall that the field equation for the dilaton states that its derivative is a conformal
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Killing vector. The problem is that there is no conformal Killing vector on the annulus

which is outward pointing on both boundaries.

Comparing the metric (2.79) on the double trumpet with the Lorentzian metric on

global dS2,

ds2 = −dt2 + α2 cosh2 t dθ2 ,

it is reasonable to expect that they can be mapped to each other. Doing so requires some

delicate analytic continuation.

The double trumpet has a minimal length geodesic around the θ-circle at ρ = 0, and

the length is 2πb. (This convention differs slightly from that of [21], with 2πbus = bthem.)

This fact is encoded in the gauge theory description in terms of a hyperbolic holonomy

around the circle, and in the fundamental representation one finds

tr

(
P exp

(ˆ 2π

0
dθ A′θ

))
= 2 cosh(πb) . (2.80)

The geometry has two asymptotic boundaries, reached as ρ → ±∞, and near each of

them one imposes the boundary conditions (2.68), with boundary circles of sizes βR,L. In

the right region, near ρ→∞, we take the coordinate transformation

ρ→ ρ− ln

(
π

βRb

)
(2.81)

so that

ds′2 = dρ2 +

(
βR
2π

)2 (
eρ + b2e−ρ

)2
dθ2 , (2.82)

and we may put the cutoff slice at eρ = 1
εR

. Taking the zweibein to be

e′1 =
βR
2π

(eρ + b2e−ρ)dθ , e′2 = dρ , (2.83)

the connection A′ is

A′ =

(
dρ
2 − π

βR
b2e−ρdθ

2

−βRe
ρdθ

2π −dρ
2

)
. (2.84)

Comparing this with the A (2.51) describing the future half of global dS2 (after chang-

ing t → t − ln
(

π
β+α

)
so as to be consistent with the future boundary condition), we see

that A and A′ match exactly upon making the analytic continuation

b = iα , ρ = t , βR = β+ . (2.85)

Similarly, in the left region of the Euclidean geometry, near ρ→ −∞, we take the coordinate

transformation

ρ→ −ρ+ ln

(
π

βLb

)
(2.86)

so that the cutoff slice is at e−ρ = 1
εL

, and take the zweibein to be

e′1 =
βL
2π

(e−ρ + b2eρ)dθ , e′2 = dρ . (2.87)
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Figure 2. Under the analytic continuation b → iα, J ′R → −iJ , J ′L → iJ , the double trumpet

of [21] is mapped to nearly global dS2.

Analytically continuing as above along with

βL = β− , (2.88)

the connection A′ takes the same form (2.51) appearing in the past half of global dS2,

A =

(
dt
2

β−e−tdθ
2π

− π
β−

α2etdθ
2 −dt

2

)
. (2.89)

Observe that the hyperbolic holonomy around the circle of the double trumpet, (2.80),

is mapped under b → iα to the elliptic holonomy (2.61) characterizing global dS2. See

figure 2.

In nearly global dS2 the dilaton goes from large and negative near past infinity, to

large and positive near future infinity. In the “double trumpet” the dilaton is large and

positive near both conformal boundaries. So, in mapping the double trumpet to nearly

global dS2, we must also analytically continue the dilaton boundary condition J ′ as

J ′R → −iJ , J ′L → iJ . (2.90)

Because we also continue b→ iα, the Euclidean spacetime is actually a double hyperbolic

cone rather than the hyperbolic cylinder. The cones are glued to each other at the tips,

and the cone angles match and are given by 2πα.

2.4.3 Summary: the cosmological constant flipping map

For the disk and annulus we have found a continuation from Euclidean nearly AdS2 ge-

ometries to Lorentzian nearly dS2 geometries. The map has several parts. Firstly, the map

takes the connection A′ (2.64) characterizing the Euclidean geometry to the connection

A (2.44) on the nose. It relates the first-order variables as

(e′1, e′2, ω′) ←→ (ω, e0, e1) , (2.91)
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with the convention that the “radial” component of the Euclidean zweibein is e′2. Under

this map the “radial” coordinate ρ is mapped to time t. This is the “trivial” part of the

map, and it boils down to LAdS → iLdS. Secondly, the mapping specifies an analytic

continuation of the dilaton boundary condition. In the Euclidean geometry the dilaton

goes to 1/(J ′ε) on the boundary, and under the continuation we have

J ′ →

{
−iJ , future

iJ , past
, (2.92)

depending on whether the asymptotic Euclidean AdS2 region is mapped to a future or

past asymptotically dS2 region. Finally, the mapping specifies an analytic continuation of

the holonomy around the boundary circles. The length 2πb around the “bottleneck” of

the double trumpet was mapped to 2πiα, with 2πα the length around the bottleneck of

global dS2.

What about higher genus spacetimes? In the next section we discuss this question in

detail, building upon our results for the disk and annulus above.

For now we note that, unsurprisingly, the boundary Schwarzian actions for the Poincaré

disk and the double trumpet are directly mapped to those for the Hartle-Hawking geometry

and global dS2 respectively. In the conventions above, the Schwarzian boundary action for

Jackiw-Teitelboim gravity on the disk reads

SE = − ϕ′0
4G2

− 1

4G2β′J ′

ˆ 2π

0
du

(
{f(u), u}+

f ′(u)2

2

)
. (2.93)

Under ϕ′0 → ϕ0 and the map above to the future trumpet, J ′ → −iJ , we find

−SE → iS =
ϕ0

4G2
+

i

4G2βJ

ˆ 2π

0
du

(
{f(u), u}+

f ′(u)2

2

)
,

which precisely matches the boundary action (2.28) describing the Hartle-Hawking geom-

etry. In fact, in both theories there is a PSL(2; R) quotient under the action of fractional

linear transformations on tan
(
f
2

)
. Similarly, the Schwarzian boundary effective action for

the double trumpet is [21] in our conventions

SE =
1

4G2

[
1

βRJR

ˆ 2π

0
du

(
{fR(u), u} − b2

2
f ′R(u)2

)
+

1

βLJL

ˆ 2π

0
du

(
{fL(u), u} − b2

2
f ′L(u)2

)]
,

(2.94)

which upon

βR,L → β+,− , fR,L → f+,− , b→ iα , JR → −iJ , JL → iJ , (2.95)

is mapped to the doubled action (2.33) we derived for nearly global dS2.
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2.5 Boundary action from topological gauge theory

For completeness, let us briefly show how one can also get these Schwarzian boundary

actions from the gauge theory formulation of Jackiw-Teitelboim gravity. The derivation in

many respects resembles the one that two of us recently used [36] to rewrite the gravitational

path integral on AdS3 in terms of a boundary path integral.

To start, let us parameterize global dS2 in new coordinates,

ds2 = − dt2

t2 + 1
+ α2(t2 + 1)dθ2 , (2.96)

and pick a zweibein

e0 =
dt√
t2 + 1

, e1 = α
√
t2 + 1dθ . (2.97)

In these coordinates the connection A describing global dS2 reads

A =

(
dt√
t2+1

α
2 (
√
t2 + 1− t) dθ

−α
2 (
√
t2 + 1 + t) dθ − dt

2
√
t2+1

)
. (2.98)

The boundary conditions are now that at t→∞,

A =

(
dt
2t +O(t−2) O(t−1)

−β+t
2π dθ −dt

2t +O(t−2)

)
, B =

2π

βJ
t+O(t0) , (2.99)

and as t→ −∞,

A =

(
−dt

2t +O(t−2) −β−t
2π dθ

O(t−1) dt
2t +O(t−2)

)
, B =

2π

βJ
t+O(t0) . (2.100)

The boundary condition on future infinity of the Hartle-Hawking geometry is the same as

that on future infinity of global dS2.

Since A is a flat connection it may be written

A = Ũ−1dŨ , (2.101)

with Ũ ∈ PSL(2; R). One representative is

Ũ =

(
ρ cos

(
αθ
2

)
ρ−1 sin

(
αθ
2

)
−ρ sin

(
αθ
2

)
ρ−1 cos

(
αθ
2

)) , ρ =

√√
t2 + 1 + t . (2.102)

This Ũ is in general multi-valued around the circle. We may write it in terms of a mon-

odromy and a U whose logarithm is single-valued

Ũ = exp(λθ)U , (2.103)

with

λ =

(
0 α

−α 0

)
, U =

(
ρ

ρ−1

)
. (2.104)

For the Hartle-Hawking geometry, with α = 1, Ũ exhibits a winding property. The

gauge group is PSL(2; R), which is contractible to a circle with π1(PSL(2; R)) = Z. The

map Ũ takes the θ-circle to this group circle.
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2.5.1 Hartle-Hawking

When quantizing around the Hartle-Hawking geometry, the strategy is to integrate out B

so that one is left with the residual action (after imposing the future boundary condition

on B),

S = −i ϕ0

4G2
− 1

4G2βJ

ˆ 2π

0
dθ tr(A2

θ) . (2.105)

One then explicitly parameterizes flat connections as A = U−1dU with

U =

 cos
(
f
2

)
sin
(
f
2

)
− sin

(
f
2

)
cos
(
f
2

)(Λ 0

0 Λ−1

)(
1 Ψ

0 1

)
, (2.106)

where Λ > 0, Ψ ∈ R, and f ∼ f + 2π. The winding property above implies that f obeys

the unconventional boundary condition

f(θ + 2π) = f(θ) + 2π . (2.107)

In terms of the component functions (Λ,Ψ, f), the action reads

S = −i ϕ0

4G2
− 1

4G2βJ

ˆ 2π

0
dθ

(
2Λ′2

Λ2
− f ′2

2
− Λ2f ′Ψ′

)
, (2.108)

where ′ = ∂θ and all fields are evaluated as t→∞.

Imposing the future boundary conditions (2.99) we find that Λ and Ψ are constrained

as t→∞ in terms of f via

Λ =

√
βt

πf ′
, Ψ =

π

βt

f ′′

f ′
, (2.109)

and f is finite. Plugging these constrained values into the action above, we find

S = −i ϕ0

4G2
− 1

8G2βJ

ˆ 2π

0
dθ

(
f ′′(θ)2

f ′(θ)2
− f ′(θ)2

)

= −i ϕ0

4G2
+

1

4G2βJ

ˆ 2π

0
dθ

(
{f(θ), θ}+

f ′(θ)2

2

)
,

(2.110)

which matches the Schwarzian action obtained in (2.28).

In the gauge theory formulation the PSL(2; R) quotient arises rather naturally. In

decomposing A = U−1dU we have introduced a PSL(2; R) redundancy. Both U(θ, t) and

hU(θ, t) give the same connection A for any h ∈ PSL(2; R). So in the residual integral over

U we identify these configurations. This left-action may be absorbed into a redefinition of

the component fields (Λ,Ψ, f). Letting h =

(
d −c
−b a

)
, we find that it acts on f as

tan

(
f

2

)
→

a tan
(
f
2

)
+ b

c tan
(
f
2

)
+ d

, (2.111)

with some more complicated action on (Λ,Ψ). So we find the same Schwarzian boundary

action along with the same PSL(2; R) quotient.
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Figure 3. A topological annulus, with a Wilson loop depicted by a dotted curve. The monodromy

is parameterized by λ.

2.5.2 Global dS2

The quantization on global dS2 proceeds similarly, except now the space is a topological

annulus and thus the moduli space of flat connections is parameterized by a monodromy.

See figure 3. For dS2 spacetimes with future and past trumpets, this monodromy is elliptic.

We write

Ũ+ = exp (λθ)U+ , (2.112)

with U+ and its logarithm single-valued, and the residual integral over flat A becomes an

integral over λ and U . In this parameterization there is a PSL(2; R) redundancy under

λ→ hλh−1 , U → hU , (2.113)

which we may partially fix by taking

λ =

(
0 α

−α 0

)
. (2.114)

Now there is only a residual U(1) redundancy under transformations of the form h =(
cos
(γ

2

)
sin
(γ

2

)
− sin

(γ
2

)
cos
(γ

2

)). Parameterizing U+ in the same way as U above, we see that

Ũ+ =

 cos
(
αθ+f+

2

)
sin
(
αθ+f+

2

)
− sin

(
αθ+f+

2

)
cos
(
αθ+f+

2

)(Λ+ 0

0 Λ−1
+

)(
1 Ψ+

0 1

)
. (2.115)

Here the component fields (Λ+,Ψ+, f+) are all periodic around the circle. Clearly we can

absorb the monodromy into a redefinition of f+ with

αθ + f+ → αf+ , (2.116)
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where the redefined field obeys the Diff(S1) boundary condition

f+(θ + 2π) = f+(θ) + 2π . (2.117)

The future boundary conditions then fix Λ+ and Ψ+ in the same way as in (2.109).

Near past infinity it is convenient to pass over to a different parameterization of

PSL(2; C) elements,

U− =

 cos
(
f−
2

)
sin
(
f−
2

)
− sin

(
f−
2

)
cos
(
f−
2

)(Λ−1
− 0

0 Λ−

)(
1 0

−Ψ− 1

)
. (2.118)

As above we then absorb the monodromy into a redefinition of f− via

αθ + f− → αf− , (2.119)

which obeys

f−(θ + 2π) = f−(θ) + 2π . (2.120)

The past boundary conditions fix Λ− and Ψ− near t→ −∞ as

Λ− =

√
− βt

πf ′−
, Ψ− = − π

βt

f ′′−
f ′−

, (2.121)

with f− finite. Because the past boundary term is flipped relative to the future one (this

is accomplished by the “n” in the boundary term (2.56)), we then find the action

S=
1

4G2J

[
1

β+

ˆ 2π

0
dθ

(
{f+(θ),θ}+α2

2
f ′+(θ)2

)
− 1

β−

ˆ 2π

0
dθ

(
{f−(θ),θ}+α2

2
f ′−(θ)2

)]
,

which matches what we obtained previously (2.33) in the metric formulation. By fixing

the monodromy to take the form in (2.114), we only have a U(1) gauge symmetry of our

reparameterization, which simultaneously acts on the f± as

f±(θ)→ f±(θ) + δ . (2.122)

At integer α the derivation above breaks down, because the PSL(2; R) redundancy is no

longer partially fixed by (2.114). As such, the case of integer α must be treated separately,

and we do so in subsection 2.7. One way to see that integer α is special is that the action

above obtains an emergent axial PSL(n)(2; R) global symmetry for α = n, and so näıvely

the path integral is infinite. Another observation is that, at α = n, Ũ is single-valued

in PSL(2; R).

2.5.3 Aside: fixing α = 1

In the derivation above it is clear that we can fix α to unity in the following way. In the

original path integral over the monodromy λ and group-valued field U , we can introduce a

parameter µ and add the term to the action

S → S + µ
(
tr(λ2)− L

)
, (2.123)

– 27 –



J
H
E
P
0
6
(
2
0
2
0
)
0
4
8

which fixes the monodromy λ up to similarity transform. If L = −1/4 then we arrive

precisely at the α = 1 doubled Schwarzian theory discussed at the end of subsection 2.2.2.

From the gauge theory formulation we see that the only degrees of freedom of that model,

after integrating out the Lagrange multiplier µ, are the reparameterization fields f±. The

gauge symmetry of the model is the simultaneous PSL(2; R) quotient discussed at the end

of 2.2.2.

2.6 Symplectic measure

One advantage of the topological gauge theory description is that we can use it to efficiently

compute the measure for the degrees of freedom living on the boundary of nearly dS2 space-

times. We require this measure to compute the gravitational path integral over fluctuations

around the Hartle-Hawking and global dS2 geometries, and with it in hand we will be able

to use existing results to compute the path integral to all orders in perturbation theory.

For a recent discussion of the derivation of the measure for boundary degrees of freedom

in the context of AdS3 gravity see [36], and for Jackiw-Teitelboim theory in nearly AdS2

spacetime see [21]. Our discussion here is closely related to that of [21], and we arrive at

the same results. Indeed the starting point of our derivation of the boundary measure,

eq. (2.125), is the same as that of [21]. We also refer the reader to the very nice discussion

of [37] in the context of pure AdS3 gravity.

To warm up, consider BF theory with compact, connected gauge group G and level k

on the disk,

SE =
ik

2π

ˆ
tr(BF ) . (2.124)

This theory reduces to the boundary model of a particle propagating in Euclidean time on

G. The integration space of the model is the trivial coadjoint orbit of a Kac-Moody group

at level k [38]. (For recent introductions to coadjoint orbits see e.g. [36, 39].) That coadjoint

orbit is a symplectic space by the Kirillov-Kostant theorem (for instance, see [40, 41]), and

its symplectic form is inherited from the gauge field measure as follows.

After integrating out the adjoint scalar B one is left with a residual integral over

the moduli space of flat spatial connections A = U−1dU . This space is symplectic, with

symplectic form [42]

ω =
k

2π

ˆ
d2x εijtr (dAi ∧ dAj) . (2.125)

The d appearing in dAi is not the exterior derivative. It refers to a formal one-form in

the space of flat connections, satisfying d∂iAj = ∂idAj . One may readily verify that this

ω is gauge-invariant. Parameterizing a general variation of A through a variation of U ,

dU = (dX)U with X ∈ g a vector, we have

ω =
k

2π

ˆ
d2x εijtr (d∂iX ∧ d∂jX) =

k

2π

ˆ 2π

0
dθ tr(dX ∧ dX ′) , (2.126)

where ′ = ∂θ is the angular derivative on the disc. Note that the symplectic form only

depends on the boundary value of the field U , and that morally X is canonically conjugate
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to X ′. This is precisely the Kirillov-Kostant symplectic form on the basic coadjoint orbit

of Kac-Moody [38] at level k whose quantization leads to the vacuum representation.

We have not yet accounted for a gauge redundancy. By parameterizing the connection

as U−1dU we have introduced a redundancy under U(θ) ∼ hU(θ), or equivalently under

X(θ) ∼ hX(θ)h−1 and U(θ) ∼ hU(θ) for h ∈ G. Vectors on the orbit may be understood as

vector fields X(θ) modulo this identification. It may be fixed in a local way, e.g. U(0) = 1,

or equivalently X(0) = 0.

The corresponding gauge-fixed measure may be denoted as [dX]Pf(ω) or more pre-

cisely
(∏

θ>0 dX(θ)
)

Pf(ω). In fact it is equivalent to
∏
θ>0 dµ(U(θ)) with dµ(U) the Haar

measure on G. To motivate this equivalence, note that the symplectic form above is

invariant both under the left action (here X → X,U → Uh−1) and the right action

(X → hXh−1, U → hU). The quotient breaks the right-invariance, but since we have

fixed the quotient in a local way, as long as we are away from θ = 0 the measure is local

and both left- and right-invariant. Parameterizing the integral over U as one over X, the

Pfaffian is proportional to
∏
θ>0

√
g with g the Killing-Cartan metric on g, and so we find

the Haar measure.

There is another point to note before going on. A priori the normalization of the

symplectic form is a choice of convention, but in BF theory there is a very natural choice.

The integration space is a coadjoint orbit of a Kac-Moody group, and we simply fix our

normalization to coincide with that of the Kirillov-Kostant symplectic form. It has the

property that the symplectic volume is very large in the weak coupling limit k � 1.

Further, the symplectic flux is quantized in this convention with
¸
ω ∈ 2πkZ.

Now let us treat the PSL(2; R) topological gauge theory corresponding to nearly dS2

gravity. On the Hartle-Hawking background we have the same expression as above for the

symplectic form on the moduli space of flat connections

ω =
1

4πG2

ˆ 2π

0
dθ tr(dX ∧ dX ′) . (2.127)

(The normalization here is fixed by the value of k we find for the BF description of nearly

dS2 gravity, k = 1
2G2

.) Taking U in (2.106), plugging in the constrained values for Λ and

Ψ (2.109) in terms of f , and computing the variation dX induced by a variation df , we

find a rather nontransparent result. However, plugging it into the expression above and

after integrating by parts, we arrive at the familiar symplectic form

ω =
1

8πG2

ˆ 2π

0
dθ

(
df ′ ∧ df ′′

f ′2
− df ∧ df ′

)
. (2.128)

This is nothing more than the Kirillov-Kostant symplectic form on the integration space

for f , Diff(S1)/PSL(2; R), which may be understood as a coadjoint orbit of the Virasoro

group [38, 43] at central charge C = 6/G2. This measure was conjectured to be the

correct one for the Schwarzian model as obtained from Jackiw-Teitelboim gravity and from

SYK [44], and shown to be the right measure for nearly AdS2 gravity in [21].

The PSL(2; R) quotient may be locally fixed by e.g. f(0) = 0, f ′(0) = 1, f ′′(0) = 0, in

which case the measure above,
∏
θ[df ]δ(f(0))δ(f ′(0) − 1)δ(f ′′(0))Pf(ω), may be expressed
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as
∏
θ>0

df
f ′ [44], and this form of the measure has been put to great use [45] in the study

of the Schwarzian path integral. This is also what one gets from the Haar measure for

PSL(2; R) at each θ > 0,
∏
θ>0 dµ(U(θ)), plugging in the constrained values for Λ and Ψ,

and then reducing the Haar measure to an integral over the component f .

It is a useful fact that Diff(S1)/PSL(2; R) is not only symplectic, but Kähler (see

e.g. [43]). This has the practical consequence here that the measure [df ]Pf(ω)
PSL(2;R) is positive-

definite.

The analysis for global dS2 proceeds in basically the same way. The symplectic form

now reads

ω =
1

4πG2

ˆ 2π

0
dθ tr

(
dX+ ∧ dX ′+ − dX− ∧ dX ′−

)
, (2.129)

where dŨ± = (dX±)Ũ±. Absorbing the monodromy into a redefinition of f± via (2.119)

we arrive at the measure

ω =
1

8πG2

ˆ 2π

0
dθ

(
df ′+ ∧ df ′′+

f ′2+
− α2df+ ∧ df ′+ − α(f ′+df+ − f+df

′
+) ∧ dα− (+→ −)

)
.

(2.130)

For non-integer α the first two terms, and their + → − partners, each comprise

the Kirillov-Kostant symplectic form on the orbit Diff(S1)/U(1) of the Virasoro group

(although the total integration space (f+(θ), f−(θ), α) is not two copies of this orbit, but

instead the space (Diff(S1) × Diff(S1) × R+)/U(1)). For integer α our analysis above is

corrected. The space Diff(S1)/U(1) is Kähler for α < 1, while for α > 1 fluctuations of

f have negative directions. In what follows we address this by rotating the contour of

field integration for the negative modes, effectively flipping the negative directions into

positive ones.

What does the third term in (2.130), and its past partner, correspond to? Let us

consider the fixed variation df+ = dγ, df− = 0, along with dα. The fluctuations of the f±
corresponds to a twist, and since the f± are Diff(S1) fields we have γ ∼ γ + 2π. The part

of the symplectic form sensitive to these fluctuations is the third term, and it gives

ω =
1

2G2
αdα ∧ dγ , (2.131)

and so we see that α2 and γ are canonically conjugate. A similar result for the measure on

the moduli space of the double trumpet was derived in [21]. In fact our symplectic form is

precisely theirs upon the analytic continuation bthem = 2πbus → 2πiα.

As in our discussion of BF theory with compact gauge group, we fix our normalization

of the symplectic form to be the same as that of the corresponding coadjoint orbit. As

before, the symplectic volume is large when the gauge theory is weakly coupled, equiva-

lently that gravitational interactions are weak, G2 → 0. There is one important distinction,

however, which arises with non-compact gauge group. When the gauge group is compact

there is a natural quantization condition on the coupling constant, which is just the usual

statement that the symplectic structure is an element of integer cohomology. In the present

case, however, the phase space Diff(S1)/U(1) has no closed 2-cycles, so there is no quanti-

zation condition to impose. We will therefore simply choose ω to be normalized with the
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factor of 1
G2

written above, although there does not appear to be a unique choice for this

normalization.

2.7 The special case of integer α

In this subsection we carefully treat the case where α = m integer and β+ = β− = β. We

follow the same procedure as in subsection 2.5.2, except that now we cannot partially fix

the PSL(2; R) symmetry. For a general monodromy

λ = λaPa + λ2Ω , (2.132)

we parameterize U near future and past infinity as in (2.106) and (2.118) respectively, and

define the quantities

γ± = λ1 ± λ0 sin(f±)± λ2 cos(f±) . (2.133)

After integrating out B, from (2.56) and the boundary condition on B we find the bound-

ary action

S = − 1

4G2βJ

ˆ 2π

0
dθ
(
tr
(
U−1

+ U ′+U
−1
+ U ′+ + 2λU ′+U

−1
+ + λ2

)
− (+→ −)

)
, (2.134)

which may be written in terms of the component fields as

S = − 1

4G2βJ

ˆ 2π

0
dθ

(
2Λ′2+
Λ2
−
f ′2+
2
− Λ2

+Φ+Ψ′+ − λ1f
′
+ −

2γ′+
f ′+

Λ′+
Λ+
− (+→ −)

)
, (2.135)

where we have defined

Φ± = f ′± + γ± . (2.136)

The future boundary conditions fix Λ+ and Ψ+ as t→∞ to be

Λ± =

√
± βt

πΦ±
, Ψ± = ± π

βt

(
γ′±
f ′±

+
Φ′±
Φ±

)
, (2.137)

with f± finite.

Plugging these values back into the action and after some integrations by parts we

arrive at the boundary action

S = − 1

8G2βJ

ˆ 2π

0
dθ

(
Φ′2+
Φ2

+

− f ′2+ − 2λ1f
′
+ +

2γ′+
f ′+

Φ′+
Φ+
− (+→ −)

)
. (2.138)

The PSL(2; R) redundancy of our description can be shown to act on the various fields as

λ→ hλh−1 , h =

(
d −c
−b a

)
, (2.139)

along with

tan

(
f+

2

)
→

a tan
(
f+
2

)
+ b

c tan
(
f+
2

)
+ d

, − cot

(
f−
2

)
→

a
(
− cot

(
f−
2

))
+ b

c
(
− cot

(
f−
2

))
+ d

. (2.140)
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The crucial feature of this action is that, whereas our boundary action for general α

suggests the appearance of zero modes at integer α, the would-be zero modes are lifted by

the monodromy. To see this let us compute the quadratic action around the critical point

corresponding to dS2. A convenient presentation of that critical point is

f±(θ) = mθ , λ = 0 . (2.141)

Allowing for fluctuations of the reparameterization fields,

f±(θ) = mθ +
∑
n

ε±n e
inθ , (2.142)

and taking λ of the same order as the ε±, we find a quadratic effective action

S = − π

4G2βJ

(∑
n

n2

m2
(n2 −m2)(|ε+n |2 − |ε−n |2) +

4

m

(
λ(+)ε(−) + λ(−)ε(+)

))
, (2.143)

where we have defined the combinations

λ(±) = λ0 ± iλ2 , ε(±) =
ε+±m + ε−±m

2
, ε(0) = ε+0 − ε

−
0 , (2.144)

and used that ε−n = ε∗n.

For α = m, infinitesimal PSL(2; R) transformations leave the λ’s invariant and act as

δε+m = −δε−m , δε+−m = −δε−−m , δε+0 = δε−0 . (2.145)

The quadratic action above is then manifestly invariant. The combinations ε± are the

would-be zero modes; they are lifted through their coupling to the monodromy. The only

exact zero modes are ε(0) and λ1. Both are expected. The first is the Goldstone boson

corresponding to spontaneously broken axial rotations. The λ1 zero mode can be thought

of as a fluctuation of α. When β+ = β− the on-shell action vanishes, and so fluctuations

of α are also a zero direction.

These facts have their counterparts in the symplectic measure, now including the com-

plete monodromy. Evaluating the symplectic form (2.129) to quadratic order in fluctuations

around the global dS2 critical point described above, we find

ω =
1

4G2

(
i
∑
n

n

m2
(n2 −m2)(dε+−n ∧ dε+n − dε−−n ∧ dε−n ) (2.146)

+ 4idλ(+) ∧ dε(−) − 4idλ(−) ∧ dε(+) + 4dε(0) ∧ dλ1 +
3i

2m
dλ(−) ∧ dλ(+)

)
.

The second line tells us that the gauge-invariant fluctuations ε(0),(+),(−) of the past and

future reparameterizations are conjugate to the monodromy.
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2.8 Gravitational scattering

In this manuscript we dedicate most of our attention to the study of the gravitational path

integral in nearly dS2 spacetime and in dS3. However it is worth noting that the boundary

path integrals obtained in this work can be used to compute gravitational scattering. This

is well-known in nearly AdS2 gravity [27, 30, 31], and more recently in AdS3 [36]. Using a

relation between the Schwarzian theory and two-dimensional Liouville theory the authors

of [46] obtained integral expressions for gravitational scattering in nearly AdS2 which hold

to all orders in perturbation theory in G2. Here we sketch how gravitational scattering

works in global dS2 with α = 1.

The basic idea is the following. Suppose we have a minimally coupled scalar field χ

propagating in the global α = 1 dS2 spacetime with metric

ds2 = −dt2 + cosh2 t dθ2 . (2.147)

Using the natural holographic dictionary appropriate for de Sitter spacetime, there is a

dual operator O± of dimension ∆ on the future and past boundaries satisfying

∆(1−∆) = m2 , (2.148)

and let us restrict our attention to m2 ∈ [0, 1/2] so that ∆ ∈ [0, 1]. For simplicity we will

also take β± = 2π. The isometries of dS2 act as conformal transformations on the boundary,

which constrain the boundary-to-boundary propagator for χ. From that propagator one

reads off the two-point function of boundary operators [6]

〈O+(θ1)O+(θ2)〉 = 〈O−(θ1)O−(θ2)〉∗ =
1(

2 sin
(
θ12
2

))2∆
,

〈O+(θ1)O−(θ2)〉 = 〈O−(θ1)O+(θ2)〉∗ =
cos(π∆)(

2 cos
(
θ12
2

))2∆
.

(2.149)

The latter is, up to the cos(π∆) proportionality factor, the former with θ2 → θ2 + π. This

property is sometimes called the “KMS” symmetry of de Sitter.

The two-point functions 〈O+(θ1)O−(θ2)〉 are comprised of an operator of dimension ∆

in the future, and another operator of dimension ∆ in the past. Denoting λ±(θ) to be the

sources conjugate to O± via the bulk-to-boundary dictionary, the effect of integrating out

χ at the classical level is to rewrite its action as a pure boundary term,

iSχ =
1

2

ˆ 2π

0
dθ1dθ2

∑
i,j=+,−

λi(θ1)λj(θ2)〈Oi(θ1)Oj(θ2)〉 . (2.150)

At fixed α, the moduli space of R = 2 metrics on global dS2 may be generated by simply

acting on the basic geometry −dt2 + α2 cosh2 tdθ2 with asymptotic symmetries which act

as independent local conformal transformations f±(θ) on the future and past boundaries.

The classical field theory of χ on any one of these metrics may be similarly rewritten as a
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boundary term, which is just the reparameterization of the action above,

iSχ =
1

2

ˆ 2π

0
dθ1dθ2

∑
i,j=+,−

λi(θ1)λj(θ2)
(

(f ′i(θ1)f ′j(θ2))∆〈Oi(fi(θ1))Oj(fj(θ2))〉
)
. (2.151)

This gives us an effective coupling between sources for the boundary operators O± and the

reparameterization fields. The operator in question is a bilocal Bij(θ1, θ2; ∆) with

B++(θ1, θ2; ∆) =

 f ′+(θ1)f ′+(θ2)

4 sin2
(
f+(θ1)−f+(θ2)

2

)
∆

,

B−−(θ1, θ2; ∆) =

 f ′−(θ1)f ′−(θ2)

4 sin2
(
f−(θ1)−f−(θ2)

2

)
∆

,

B+−(θ1, θ2; ∆) = cos(π∆)

 f ′+(θ1)f ′−(θ2)

4 cos2
(
f+(θ1)−f−(θ2)

2

)
∆

.

(2.152)

One may readily verify that these bilocal operators are invariant under the simultaneous

PSL(2; R) transformation

tan

(
f+

2

)
→

a tan
(
f+
2

)
+ b

c tan
(
f+
2

)
+ d

, − cot

(
f−
2

)
→

a
(
− cot

(
f−
2

))
+ b

c
(
− cot

(
f−
2

))
+ d

, (2.153)

which is a gauge symmetry of the α = 1 model.

How do we interpret these bilocal operators? Suppose that we turn on a source λ±(θ)

on the boundary, say delta localized at 2n points. Within the free scalar theory of χ

we would obtain a boundary 2n-point function of O’s which is just the generalized free-

field result, computed from Witten diagrams with n boundary-to-boundary propagators.

Consider a single one of these diagrams, in which a boundary-to-boundary propagator

attaches θ1 to θ2, θ3 to θ4 and so on. Now consider the correlation function of n bilocals

within the Schwarzian theory, stitched in the same order.

Since G2 → 0 is the weak coupling limit of the Schwarzian theory, as G → 0 this

correlation function simply reduces to the product of n bilocal operators evaluated on the

classical trajectory, which is f± = θ. In this limit we then recover free field theory in dS.

However, in perturbation theory in G2 there are new diagrams in which the reparameteri-

zation field is exchanged between the various bilocals. These diagrams exactly correspond

to the gravitational Witten diagrams in Jackiw-Teitelboim theory. One way to think about

the matter is that the non-gravitational Witten diagram is “dressed” by an infinite sum of

gravitational corrections which are all computed by the Schwarzian model. See figure 4.

There is one complication in global dS2 which is not present in the usual nearly AdS2

story. Namely, there is a U(1) manifold of α = 1 de Sitter solutions with a relative twist

between past and future. This twist is invisible in correlation functions of all past or all

future operators, but appears in mixed future/past correlators.
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Figure 4. (a) A Witten diagram, with a spatial slice of dS2 drawn as a disc. The solid lines are

scalars, and there is a single scalar exchange. This process is encoded in the boundary Schwarzian

description as an operator, the reparameterized four-point function, endowing it with a coupling

to the reparameterization field. (b) The expectation value of the matter four-point function in the

Schwarzian theory dresses the process with an infinite number of corrections involving exchanges

of the reparameterization modes, indicated with dotted lines.

Given a diagram D which depends on n+ future angles θi and n− past angles ψm,

D(θi, ψm), computed from global dS2 with zero twist, the diagram evaluated in the back-

ground with twist γ is D(θi + γ, ψm). Integrating over the twist zero mode D contributes

to an observable as

1

2π

ˆ 2π

0
dγD(θi + γ, ψm) . (2.154)

We expect that there is a similar story for α 6= 1. We leave it for future study.

2.8.1 One-loop correction to two-point function

To illustrate the machinery let us compute the one-loop contribution to the two-point

function of boundary operators. That is, we want 〈Bij(θ1, θ2; ∆)〉 to O(G2). See the two

diagrams in figure 5. This correction to the past-past and future-future two-point function

can be obtained from analytic continuation of existing results in the ordinary Schwarzian

model, while the past-future correction cannot.

To compute them we require the propagator of the reparameterization field as well as

the linear and quadratic couplings of the bilocal to the reparameterization field. Expanding

around the critical point

f±(θ) = θ + ε±(θ) , (2.155)

the quadratic effective action is when β+ = β− = β

S = − 1

8G2βJ

ˆ 2π

0
dθ
(

(ε′′2+ − ε′2+)− (ε′′2− − ε′2−)
)
. (2.156)
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Figure 5. The two one-loop diagrams that correct the two-point function at O(1/C) = O(G2).

Letting C = π
4G2βJ

, the propagators are

〈ε+(θ)ε+(0)〉= 〈ε−(θ)ε−(0)〉∗=
i

2πC

(
−(|θ|−π)2

2
+(|θ|−π)sin |θ|+1+

π2

6
+

5

2
cos(θ)

)
〈ε+(θ)ε−(0)〉= 〈ε−(θ)ε+(0)〉∗= 0 . (2.157)

Note that ε+ and ε− do not directly couple to one another.

The bilocal operators have linearized and quadratic couplings to the ε fields, e.g.

B++(θ1, θ2; ∆) =

 1

2 sin
(
θ12
2

)
∆

exp
(
B1 · ε+ +B2 · ε+ +O(ε3+)

)
, (2.158)

with

B1 · ε+ = ∆

(
ε′+(θ1) + ε′+(θ2)− cot

(
θ12

2

)
(ε+(θ1)− ε+(θ2))

)
,

B2 · ε+ = −∆

2

(
ε′+(θ1)2 + ε′+(θ2)2 − 1

2
csc2

(
θ12

2

)
(ε+(θ1)− ε+(θ2))2

)
,

(2.159)

and similar couplings to the other components of the bilocal.

After a straightforward computation we obtain

〈 f ′+(θ1)f ′+(θ2)

4 sin2
(
f+(θ1)−f+(θ2)

2

)
∆〉

=

 1

2 sin
(
θ12
2

)
2∆(

1 +
∆

C
C1(θ1, θ2) +O(C−2)

)
,

〈 f ′+(θ1)f ′−(θ2)

4 cos2
(
f+(θ1)−f−(θ2)

2

)
∆〉

=

 1

2 cos
(
θ12
2

)
∆(

1 +
∆

C
C2(θ1, θ2) +O(C−2)

)
,

(2.160)
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Figure 6. The tree-level exchange diagram which contributes the O(1/C) correction to the con-

nected four-point function of two different scalar operators V and W .

and in the second line we have not yet integrated over the twist. The corresponding formu-

lae for the past-past and past-future two-point functions are just the complex conjugates

of those above. The corrections C1 and C2 are for θ1 > θ2

C1(θ1, θ2) =
i

2π

1

4 sin2
(
θ12
2

)2

(
θ12(θ12 − 2π)(∆ + 1) + (∆θ12(θ12 − 2π)− 4∆− 2) cos(θ12)

+ 2 + 4∆ + 2(π − θ12)(2∆ + 1) sin(θ12)

)
, (2.161)

C2(θ1, θ2) = 0 .

The correction to the future-past two-point function vanishes in the special case where

β+ = β− essentially because in this case the propagators for ε+ and ε− are equal and

opposite. However the correction is more generally nonzero.

Note that the leading quantum corrections break the “KMS” symmetry of de Sitter

propagators, and further that the correction to the future-future two-point function breaks

conformal invariance. Relatedly the corrections have a factor of βJ relative to the tree-level

result. In the context of black holes with nearly dS2 near-horizon, one has βJ � 1 and so

the quantum correction is enhanced.

2.8.2 Tree-level exchange

We can also compute the tree-level exchange diagram that appears in the gravitational

scattering of two different scalars dual to operators we denote as V and W . See figure 6.

That is, we compute to O(1/C) the correction to the two-point function of bilocals,

〈V+(θ1)V−(θ2)W+(θ3)W−(θ4)〉 = 〈B+−(θ1, θ2; ∆V )B+−(θ3, θ4; ∆W )〉 , (2.162)

where ∆V is the dimension of V and ∆W the dimension of W . Ignoring the integral over

twist in both the numerator and denominator, we represent the 1/C correction to this
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four-point function as

〈B+−(θ1, θ2; ∆V )B+−(θ3, θ4; ∆W )〉
〈B+−(θ1, θ2; ∆V )〉〈B+−(θ3, θ4; ∆W )〉

= 1 +
∆V ∆W

C
F(u1, u2, u3, u4) +O(C−2) . (2.163)

For θ1 > θ3 and θ2 > θ4,

F(θ1,θ2,θ3,θ4) =
i

8π

1

sin( θ122 )sin( θ342 )

(
4(cos(θ13)−cos(θ24))cos

(
θ13+θ24

2

)
+2(2π−θ13−θ24)

[
(θ13−θ24) cos

(
θ12

2

)
cos

(
θ34

2

)
−2sin

(
θ12−θ34

2

)]
+cos

(
θ12−θ34

2

)(
6cos(θ13)−4(π−θ13)sin(u13)−(13→ 24)

)
(2.164)

+sin

(
θ12−θ34

2

)(
6sin(θ13)+4(π−θ13)cos(θ13)+(13→ 24)

))
.

2.9 Partition functions

To complete this section we compute the path integral for the Schwarzian theory on the

boundary of the Hartle-Hawking geometry, as well as on global dS2. The former computes

the Hartle-Hawking wavefunction of the universe in the no-boundary state, to leading

order in the genus expansion, and the latter corresponds to a transition amplitude between

one-universe states.

To begin let us recall what one finds for Jackiw-Teitelboim gravity on the hyperbolic

disc, i.e. on Euclidean nearly AdS2. There one finds an integral over a Diff(S1)/PSL(2; R)

field f(τ), with

Zdisc(βJ
′) = eS

′
0

ˆ
[df(τ)]Pf(ω)

PSL(2; R)
exp

(
−
ˆ β

0
dτH

)
,

H = − 1

8πG2βJ ′

(
{f(τ), τ}+

2π2

β2
f ′(τ)2

)
, S′0 =

ϕ′0
4G2

.

(2.165)

Here H is the energy of the Schwarzian mode. This object is the thermal partition function

of the Schwarzian model, which we would naively interpret as

Zdisc(βJ
′) = trSch(e−βH) . (2.166)

This path integral is one-loop exact [44], with the result

Zdisc(βJ
′) =

1√
2π

1

(2βJ ′)3/2
e
S′0+ π

4G2βJ
′ , (2.167)

in our normalization of the symplectic form. The essential point is that the integration

space Diff(S1)/PSL(2; R) of the Schwarzian theory is symplectic, and so the integral is

invariant under a BRST-like Grassmann-odd symmetry Q. The space is not only symplec-

tic, but Kähler, with a Kähler metric that is invariant under the flow generated by the

Hamiltonian of the model. There is a natural Q-exact positive-definite term (the term is

gijV
iV j + . . . for gij the metric and V i = ωij∂jH which generates Hamiltonian flow) which
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may be added to the action with large coefficient, and used to localize the model to its

critical points.

Interpreting the disc partition function as a sum over states and performing the inverse

Laplace transform, one finds a continuous density of states

Zdisc(βJ
′) =

ˆ ∞
0

dE ρ(E)e−βE , ρ(E) =
eS
′
0
√
G2

2π3/2J ′
sinh

(√
πE

G2J ′

)
. (2.168)

However as pointed out in [44] this result is not consistent with a Hilbert space interpre-

tation of the trace. In quantum mechanics one can have a continuous density of states, as

long as there is an additional parameter X so that the density describes a number of states

per unit X. There is no such parameter here.

For this and other reasons the authors of [21] interpret the disc partition function

differently. Instead they regard it as the leading approximation to the average thermal

partition function within an ensemble of Hamiltonians,

Zdisc =
〈

tr
(
e−βH

)〉
MM

′
,0
, (2.169)

where the average on the right-hand-side is taken within a matrix model of L×L Hermitian

Hamiltonians H as L→∞. This is notated by the subscript MM
′
, where the MM stands

for matrix model, and the bar denotes that we are taking a scaling limit. The prime is

in keeping with our notation for Euclidean AdS quantities, in this case a matrix model.

The 0 subscript is present since in matrix integrals there is a genus expansion in powers of

e−S
′
0 , and we are considering the genus 0 term. In this interpretation the density of states

in (2.168) is the leading approximation in powers of e−S
′
0 to the density of states of the

matrix model.

2.9.1 Hartle-Hawking

The path integral of JT gravity on the Hartle-Hawking geometry is rather similar. It is

ZHH = eS0

ˆ
[df(τ)]Pf(ω)

PSL(2; R)
exp

(
i

8πG2J

ˆ β

0
dτ

(
{f(τ), τ}+

2π2

β2
f ′(τ)2

))
, S0 =

ϕ0

4G2
,

(2.170)

where we have rescaled θ = 2πτ
β and f(θ) → β

2πf(u) in order to make it clear that the

model is on a circle of physical size β. The model is invariant under rotations τ → τ + δ,

generated by

R = − 1

8πG2βJ

(
{f(τ), τ}+

2π2

β2
f ′(τ)2

)
. (2.171)

Then

ZHH(βJ) = eS0

ˆ
[df(τ)]Pf(ω)

PSL(2; R)
exp

(
−i
ˆ β

0
dτ R

)
. (2.172)

By comparing these expressions for those with the hyperbolic disc partition func-

tion (2.165), we see that the path integrals above is simply given by Zdisc under

S′0 → S0 , J ′ → −iJ , (2.173)
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under which H → iR. Then (under S′0 → S0)

ZHH(βJ) = Zdisc(−iβJ) . (2.174)

Naively comparing eqs. (2.172) and (2.165) we would then interpret this Schwarzian path

integral as computing the trace of exp(−iβH), however this is not quite right. At the

level of the partition function the analytic continuation J ′ → −iJ can be absorbed into a

redefinition of β → −iβ, since the two only appear together through the combination βJ .

At the level of the boundary Schwarzian model, ZHH then computes the trace of eiβH .

In the next section we will arrive at a genus expansion for nearly dS2 gravity, which

comes from a matrix model. As with nearly AdS2 we will interpret the path integral ZHH

as computing

ZHH =
〈

tr
(
eiβH

)〉
MM,0

. (2.175)

The subscript is MM, rather than MM
′
, to denote that we are a priori dealing with different

scaled matrix models. Implicitly β has some small positive imaginary part so that eiβH is

well-behaved at high energy, and so that the gravitational path integral is convergent.

Given the continuation (2.174) we can simply read off ZHH from Zdisc. However for

completeness let us obtain it at one-loop order by direct computation. We do so in terms

of the original field f(θ). The model has a boundary condition and redundancy,

f(θ + 2π) = f(θ) + 2π , tan

(
f

2

)
∼
a tan

(
f
2

)
+ b

c tan
(
f
2

)
+ d

, (2.176)

and its field equation is simply
{

tan
(
f
2

)
, θ
}′

= 0. Modulo the quotient, there is a unique

critical point of the model obeying the boundary condition,

f0 = θ . (2.177)

Expanding in fluctuations around it,

f = θ +
∑
n

εne
inθ , ε−n = ε∗n , (2.178)

the PSL(2; R) quotient may be used to fix

ε−1,0,1 = 0 . (2.179)

The quadratic effective action and symplectic form are

S = −iS0 +
π

g
− 2π

g

∑
n>1

n2(n2 − 1)|εn|2 ,

ω =
2iβJ

g

∑
n>1

n(n2 − 1)dε∗n ∧ dεn .
(2.180)
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We then have

ZHH = e
S0+πi

g

∏
n>1

ˆ (
d2εn

4βJ

g
n(n2 − 1)

)
exp

(
−2πi

g
n2(n2 − 1)|εn|2

)
= e

S0+πi
g

∏
n>1

(
−2iβJ

n

)
=

1√
2π(−2iβJ)3/2

e
S0+πi

g .

(2.181)

This precisely matches the disc result (2.167) under S′0 → S0 and J ′ → −iJ .

This should be understood as the wavefunction of the universe in the Hartle-Hawking

state, 〈βJ |HH〉, to leading order in the genus expansion. Interpreting ZHH as trSch(eiβH)

and inverting, we find the same density of states as from the disc,

ZHH(βJ) =

ˆ ∞
0

dE ρ(E)eiβE , ρ(E) =
eS0
√
G2

2π3/2J
sinh

(√
πE

G2J

)
. (2.182)

Similarly, we may consider the path integral on the time-reversed version of the Hartle-

Hawking geometry with a single past boundary of size β. Using similar methods as above

one finds that it is given by the analytic continuation Zdisc(iβJ), i.e. the complex conjugate

of ZHH, and we assign it a matrix model interpretation via

Z∗HH(βJ) =
〈

tr
(
e−iβH

)〉
MM,0

. (2.183)

Here β has small negative imaginary part.

2.9.2 Global dS2

Now for global dS2. As above, interpreting the path integral Zglobal in terms of an

ensemble average, we have that Zglobal is the leading approximation to the connected

two-point function,

Zglobal(β+J, β−J) =
〈

tr
(
eiβ+H

)
tr
(
e−iβ−H

)〉
MM, conn, 0

, (2.184)

where Im(β+) > 0 and Im(β−) < 0. By connected, we mean we are computing the second

cumulant with respect to the scaled matrix ensemble (and in particular, extracting the

genus zero contribution).

The path integral for Zglobal is again one-loop exact. It is

Zglobal =

ˆ ∞
0

dα

ˆ
[df+df−]Pf(ω)

U(1)
exp

(
i

(
1

g+

ˆ 2π

0
dθ

(
{f+, θ}+

α2

2
f ′2+

)
− (+→ −)

))
,

(2.185)

where g± = 4G2β±J . The boundary conditions and quotient read

f±(θ + 2π) = f±(θ) + 2π , f± ∼ f± + δ . (2.186)

There is a family of critical points modulo the quotient,

f+,0 = θ + γ , f−,0 = θ , (2.187)
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Figure 7. Future and past dS2 trumpets.

where γ ∼ γ + 2π. Expanding in fluctuations we write

f+ = θ + γ +
∑
n 6=0

ε+n e
inθ , f− = θ +

∑
n 6=0

ε−n e
inθ , ε±−n = (ε±n )∗ , (2.188)

where we have used that the diagonal combination of n = 0 modes may be set to zero

by the quotient and the axial combination is already accounted for with γ. The effective

action and symplectic form to quadratic order in fluctuations is

S = πα2

(
1

g+
− 1

g−

)
− 2π

∑
n>0

n2(n2 − α2)

(
|ε+n |2

g+
− |ε

−
n |2

g−

)
,

ω =
1

2G2

(
i
∑
n>0

n(n2 − α2)
(
d(ε+n )∗ ∧ dε+n − d(ε−n )∗ ∧ dε−n

)
+

1

2
αdα ∧ dγ

)
.

(2.189)

It is convenient to divide the integral into one over the reparameterization modes on

the future circle, one over the modes on the past circle, and a residual integral over (α, γ).

In this way one thinks of global dS2 as the sewing of a future half of dS, a “trumpet”

geometry in the language of [21], to a past “trumpet.” See figure 7. Each half or trumpet

is characterized by the parameter α, and the parameter γ corresponds to the fact that this

gluing may be performed with some twist. In the computation below we find the integrand

at non-integer α. This integrand is a smooth function of α. This suggests that at the

special points α = m we find the same result for the one-loop determinant as when taking

α → m. Indeed this is the case as may be shown using the quadratic effective action and

measure discussed in subsection 2.7. As a result, the analysis below suffices for all α.

The “future trumpet” path integral is the part of the integral for global dS2 over the

reparameterization modes on the future circle, and is given by

ZF (βJ, α) =

ˆ
[Df+]

U(1)
exp

(
i

g+

ˆ 2π

0
dθ

(
{f+(θ), θ}+

α2

2
f ′+(θ)2

))
, (2.190)

where we identify f+(θ) ∼ f+(θ) + δ. Here [Df+] is the symplectic measure for f+ we
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described above. This path integral ZF is also one-loop exact, and is given by

ZF = e
iπα2

g+

∏
n>0

ˆ (
d2ε+n

n(n2 − α2)

G+

)
exp

(
−2πi

g+
n2(n2 − α2)|ε+n |2

)
= e

iπα2

g+

∏
n>0

(
−2iβJ

n

)
=

1√
2π(−2iβJ)1/2

e
iπα2

g+ .

(2.191)

There is also a “past trumpet” factor given by its complex conjugate,

ZP (βJ, α) = Z∗F (βJ, α) . (2.192)

The path integral for global dS2 is a gluing together of these past and future trumpet

factors. Now we come to an ambiguity. From the symplectic form (2.189), we see the

measure for α and γ has absolute value αdαdγ
2G2

. However it is not clear at this stage what

the sign of the measure should be.

Allowing for both signs, we then have

Zglobal =

ˆ ∞
0

±dαα
2G2

ˆ 2π

0
dγ ZF (β+J, α)ZP (β−J, α)

= ±
ˆ ∞

0

dαα
√
g+g−

exp

(
πiα2

(
1

g+
− 1

g−

))
= ∓ i

2π

√
β+β−

β+ − β−
.

(2.193)

Interpreting the result as a transition amplitude between a past circle and a future circle,

we see that the amplitude is enhanced when the two circles have similar size.

A natural observable in a matrix model is the “resolvent,”

R(λ) = tr

(
1

λ−H

)
=

ˆ ∞
0

dE
ρ(E)

λ− E
. (2.194)

Using the matrix model interpretation of Zglobal in (2.184), by an integral transform, we

can extract the connected genus-0 two-point function of resolvents to be

R0,2(λ1, λ2) ≡
ˆ ∞

0
dE1dE2

〈
ρ(E1)

λ1 − E1

ρ(E2)

λ2 − E2

〉
MM, conn, 0

=

ˆ ∞
0

dβ+dβ− e
−iβ+λ1+iβ−λ2Zglobal(β+J, β−J)

= ∓ 1

4
√
−λ1

√
−λ2(

√
−λ1 +

√
−λ2)2

.

(2.195)

Here we take λi to be real and negative, and evaluate the contour integral by rotating β+

and β− to the positive and negative imaginary axes respectively.

For a large L matrix models with a single cut, the function R0,2 only depends on the

endpoints of the cut, and has a universal form. See e.g. [47]. Further, R0,2 simplifies in the

double-scaled limit, in which one end of the cut is at E = 0 and the other is at positive

infinity, in which case R0,2 becomes precisely the expression above with the + sign.

For this reason we fix our convention for the symplectic measure to give us this sign.

That is, we take the integration measure over α and γ to be −αdαdγ
2G2

. Then the path integral
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over global dS2 takes exactly the form predicted by random matrix theory. Furthermore

it is the analytic continuation of a computation in Euclidean AdS2, the path integral over

the double trumpet of [21], which they find to be

Z0,2(β1J
′, β2J

′) =
1

2π

√
β1β2

β1 + β2
. (2.196)

Here β1 and β2 are the sizes of the asymptotic circles. Clearly with this choice of sign

Zglobal = Z0,2(β1J
′ → −iβ+J, β2J

′ → iβ−J) =
i

2π

√
β+β−

β+ − β−
, (2.197)

reproducing the result above. The two path integrals may even be related at intermediate

steps. Matching their normalization of the symplectic measure to ours, the integral for

Z0,2 takes the form

Z0,2 =

ˆ ∞
0

db b

2G2 × (2π)
ZT (β1J

′)ZT (β2J
′) , ZT (βJ ′) =

1√
2π(2βJ ′)1/2

e
− b2

8πG2βJ
′ ,

(2.198)

where ZT is the path integral over the Schwarzian mode on the boundary of a Euclidean

AdS2 “trumpet.” Note that our trumpet is the analytic continuation of theirs,

ZF (βJ) = ZT (−iβJ) , ZP (βJ) = ZT (iβJ) , (2.199)

and that under the continuation b→ 2πiα the measure is transformed into ours −(2π)αdα2G2

(after integrating over γ). So the integral for Z0,2 maps exactly to ours eq. (2.193)

for Zglobal.

The global de Sitter amplitude (2.197) diverges when the future and past boundaries

have the same renormalized length β+ = β−. But, recalling that global nearly de Sitter

spacetimes always have β+ = β−, we see that this divergence is physical: it is exactly when

we go on-shell. It is tempting to then regard the global amplitude as a propagator for a

closed universe.

Finally, consider the α = 1 double Schwarzian theory discussed briefly in subsec-

tion 2.5.3. That case has a PSL(2; R) × PSL(2; R) symmetry, and the diagonal part is

quotiented out. The axial PSL(2; R) is a global symmetry of the model, and thus there is

a PSL(2; R) manifold of critical points. Up to the axial quotient they are characterized by

tan

(
f+

2

)
=
a tan

(
θ
2

)
+ b

c tan
(
θ
2

)
+ d

, f− = θ . (2.200)

The path integral evaluates to

Zα=1 =
vol(PSL(2,R))

2π(2β+J)3/2(2β−J)3/2
exp

(
iπ

4G2J

(
1

β+
− 1

β−

))
. (2.201)

Up to the infinite volume of the PSL(2; R) moduli space, this is the result we found above

for the future Hartle-Hawking geometry evaluated at β+, times its complex conjugate

evaluated at β− (corresponding to the past Hartle-Hawking geometry).
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3 A genus expansion

3.1 Physical interpretation of higher genus nearly dS2 spacetimes

Our goal is to understand whether there is de Sitter version of the topological expansion

of [21], where the path integral of JT gravity is organized as a genus expansion. We will

first recall a few features of the higher genus contributions to the Euclidean path integral of

JT gravity, before discussing their Lorentzian analogues. We will conclude that, with the

proper analytic continuation, the Euclidean gravity path integral of [21] can be interpreted

as the preparation of a Hartle-Hawking state for Lorentzian de Sitter universes with an

arbitrary number of boundaries.

3.1.1 Quotients of H2 and dS2

We begin by recalling the geometry of the Euclidean metrics with higher genus that con-

tribute to the path integral of JT gravity with a negative cosmological constant. By

integrating out the dilaton, the integral over the space of metrics reduces to an integral

over constant negative curvature Euclidean geometries with R = −2. All such geometries

are locally H2, and can be written as quotients of H2 by some subgroup Γ of the isometry

group SO(2, 1) of hyperbolic space. This gives a constant negative curvature Euclidean

surface Σ = H2/Γ. As a group, Γ is just the fundamental group π1(Σ) of our surface, and

the choice of embedding of Γ into SO(2, 1) parameterizes the moduli of the surface Σ. In

the gauge theory language, the embedding of π1(Σ) into SO(2, 1) is the holonomy map,

which associates to each non-contractible cycle an element of the gauge group SO(2, 1).

In order to understand the generalization to de Sitter space, we note that H2 can be

represented as a coset of SO(2, 1) group manifold, as

H2 = SO(2, 1)/SO(2) . (3.1)

In other words, we identify each point in H2 with an equivalence class of elements g ∈
SO(2, 1), with the identification

g ∼ gR (3.2)

where R is an element of some fixed subgroup SO(2) ⊂ SO(2, 1). One way of understanding

this coset is to recall that H2 is a homogeneous symmetric space, which can be identified

with its isometry group modulo the stabilizer of a point. The isometry group of H2 is

SO(2, 1), and the stabilizer of a point is SO(2). To see this, we can just think of the

hyperboloid −T 2 +X2 +Y 2 = −1, and note that the point (T,X, Y ) = (1, 0, 0) is invariant

under rotations in the (X,Y ) plane. Our conclusion is that H2 is the quotient of SO(2, 1)

by a one-dimensional subgroup of elliptic elements of SO(2, 1).

The advantage of this description is that it makes the SO(2, 1) isometries of H2 com-

pletely explicit — they are given by left multiplication by an element L ∈ SO(2, 1),

which takes

g 7−→ Lg . (3.3)

The constant negative curvature metric on H2 is tr (A⊗A), where A = g−1dg is the

usual left-invariant one-form on the SO(2, 1) group manifold. We can now consider the
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quotient of H2 by a discrete subgroup Γ of the isometry group. This can be represented as

a double quotient

Σ = Γ\SO(2, 1)/SO(2) . (3.4)

This is a two-dimensional Euclidean geometry with constant negative curvature R = −2.

In order for Σ to be smooth, we must require the action of every (non-identity) element γ

of Γ to be fixed-point free. This means we must have

γg 6= gR (3.5)

for any g ∈ SO(2, 1) and R ∈ SO(2). Since R is an elliptic element, this means that γ cannot

be conjugate to an elliptic element of SO(2, 1): it must be either parabolic or hyperbolic.

Note that associated to each γ ∈ SO(2, 1) there is an element of the fundamental group

π1(Σ). If γ is hyperbolic, then there is a minimum length geodesic homologous to this

element, with length bγ = cosh−1 1
2tr(γ).5 If γ is parabolic then our surface Σ has a cusp

singularity; we must remove this point from our surface, and γ is the holonomy of the path

around this point. In the double-coset description given here, the moduli space of surfaces

is the moduli space of embeddings of Γ into SO(2, 1).

In the topological gauge theory the geometry is characterized by a flat PSL(2; R) bundle

over Σ. The constant curvature is not manifest in this description. To recover it, one must

use the map described in subsection 2.4 to convert the PSL(2; R) connection into the first

order variables, and this in turn into metric data. What is manifest are the holonomies

around the various cycles. The generators of Γ are mapped to the holonomies around

non-contractible cycles, and the underlying smoothness of Σ to the statement that the

holonomy around any trivial cycle is trivial.

In order to understand the analytic continuation of this construction to de Sitter space,

we recall that dS2 is characterized by a number α. For α = 1, dS2 can be identified with

the coset

dS2 = SO(2, 1)/SO(1, 1) . (3.6)

As before, we identify each point in dS2 with an equivalence class of elements g ∈ SO(2, 1),

with the identification

g ∼ gR (3.7)

where R now is an element of some fixed subgroup SO(1, 1) ⊂ SO(2, 1). This is because

dS2 is a homogeneous symmetry space with SO(2, 1) isometry. The difference is that now

the stabilizer of a point is SO(1, 1). This can be seen by representing de Sitter space as

−T 2 + X2 + Y 2 = 1, and noting that the point (T,X, Y ) = (0, 1, 0) is invariant under

boosts in the (T, Y ) plane. Our conclusion is that dS2 is the quotient of SO(2, 1) by a

one-dimensional subgroup of hyperbolic elements of SO(2, 1).

We can now construct quotients of dS2 just as we did for hyperbolic space, by taking

the left quotient by some subgroup of SO(2, 1). In particular, for any subgroup Γ of SO(2, 1)

5In this formula (and in later expressions below) we have used the fact that SO(2, 1) = PSL(2,R), so

represent elements γ ∈ SO(2, 1) as a 2× 2 matrices in PSL(2,R).
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we may consider the space-time

Γ\SO(2, 1)/SO(1, 1) . (3.8)

This is a two-dimensional spacetime with Lorentzian signature and constant positive curva-

ture R = 2. There is one important difference with the hyperbolic construction, however.

In order for the action of an element γ ∈ SO(2, 1) to be fixed-point free on dS2, we must have

γg 6= gR (3.9)

where now R ∈ SO(1, 1) is hyperbolic. This means that any hyperbolic element γ, when

acting on dS2, will have fixed points. In order to obtain a smooth quotient without fixed

points, each element of Γ must be either a parabolic or elliptic element of SO(2, 1).

There is one important subtlety that arises which distinguishes the H2 =

SO(2, 1)/SO(2) case from that of dS2 = SO(2, 1)/SO(1, 1). The group SO(2, 1) has a

non-contractible circle, and is homeomorphic to the solid torus. SO(2) similarly has a

non-contractible circle, so when we perform the quotient to obtain H2 we obtain a smooth

simply connected space. SO(1, 1), on the other hand, is itself simply connected, which is

why the resulting quotient dS2 = SO(2, 1)/SO(1, 1) is topologically non-trivial. However,

we could instead consider the universal cover SO(2, 1) of SO(2, 1). This is not a matrix

group, but it allows us to construct a more general family of solutions. In this case we

would interpret dS2 itself as the double quotient

dS2 = Z\SO(2, 1)/SO(1, 1) . (3.10)

The Z here is generated by an elliptic element γ of SO(2, 1) which introduces a non-

contractible spatial cycle of length a = cos−1 1
2tr(γ). If we do not perform the left quotient

by Z, then we instead obtain the universal cover of dS2, which has metric −dt2 +cosh2 tdθ2

where the θ coordinate is uncompactified. This is a perfectly reasonable Lorentzian geom-

etry with R = 2. Indeed, from this point of view we can choose any subgroup Z ⊂ SO(2, 1)

to obtain the family of locally de Sitter geometries with α 6= 1 considered earlier, where

θ ∼ θ + 2πα.

In order to construct a quotient of de Sitter which is fixed point-free, one then needs

to consider the double quotient

Γ\SO(2, 1)/SO(1, 1) (3.11)

where the subgroup Γ of SO(2, 1) contains only parabolic or elliptic elements. Because

SO(2, 1) is not a matrix group it is difficult to classify all such Γ. However, it is easy to

show that if we replace SO(2, 1) with SO(2, 1), i.e. we consider quotients of the α = 1 de

Sitter space, then Γ must be abelian.6 Thus the only smooth quotients of dS2 are those

by an abelian group: it is impossible to construct a smooth, Lorentzian R = 2 metric on a

6This can be seen by noting that the commutator of an elliptic element A =
(

cos θ sin θ
− sin θ cos θ

)
with another

element B =
(
a b
c d

)
obeys tr

(
ABA−1B−1

)
= 2 + sin2 θ

[
(a− d)2 + (b+ c)2)

]
. This implies that the either

a = d and b = −c, in which case B commutes with A, or else the commutator ABA−1B−1 is hyperbolic.
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quotient of dS2 with non-abelian fundamental group. We expect that this is also true for

the double quotients of SO(2, 1). This is very much in contrast with the Euclidean case,

where one can obtain a smooth R = −2 metric on an arbitrary higher genus Riemann

surface Σ.

The question, then, is can we still obtain a sensible Lorentzian interpretation of the

higher genus contributions to the JT gravity path integral? We have ruled out the simplest

possibility, that we sum over smooth Lorentzian R = 2 surfaces of arbitrary genus. Those

surfaces simply do not exist. We could imagine summing over Lorentzian surfaces with

singularities, but it is not clear what kinds of singularities we should allow and which ones

we should forbid.

One might wonder if we could instead work in Euclidean signature. We have seen that

in the BF formulation of JT gravity, the natural continuation of de Sitter JT gravity is not

to a theory with positive cosmological constant, but rather one with negative cosmological

constant, namely the Euclidean AdS2 version of JT gravity. In that theory one has a genus

expansion in which one sums over constant negative curvature surfaces with asymptotic

regions. Perhaps we could define a genus expansion by continuation from the AdS genus

expansion, in which these hyperbolic surfaces play the role of higher genus versions of

the Maldacena contour. This does not work either. The culprits are the elliptic elements

γ in the quotient construction above, which in the gauge theory language correspond to

elliptic holonomies around the boundary circles. The would-be Euclidean AdS higher genus

geometries are double quotients

Γ\SO(2, 1)/SO(2) ,

where Γ contains precisely these elliptic elements. As we discussed above, this double

quotient is fixed-point free only when Γ contains parabolic or hyperbolic elements, and so

these surfaces are necessarily singular.7

3.1.2 Gauge theory characterization

Since neither the Lorentzian dS nor the Euclidean AdS higher genus geometries are non-

singular, we elect to define the de Sitter JT path integral on higher genus surfaces using the

topological gauge theory description. The idea is to consider a surface of fixed topology,

and to integrate over the moduli space of flat PSL(2; R) connections on it subject to the

asymptotically dS2 boundary conditions. In general we may allow for genus g surfaces with

a number of asymptotically nearly dS2 regions; some in the past, and some in the future.

Non-singularity in this setting simply means that the holonomy around each contractible

cycle is trivial. There is then no obstruction to performing the path integral at fixed genus.

One way to summarize the analytic continuation of Euclidean AdS2 to dS2 JT gravity

is that, starting from the PSL(2; R) topological theory, the same flat connection corresponds

to two different metrics on the same spacetime. One is of Euclidean signature with R = −2,

and the other Lorentzian with R = 2. Non-singularity of the gauge configuration does not

guarantee that the metric descriptions are everywhere smooth. Indeed at nonzero genus,

7The exception is when Γ is trivial, which corresponds to the hyperbolic disk here or to global dS2

with α = 1.
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the discussion in the last subsection implies that both the Euclidean and Lorentzian metrics

constructed from the same flat connection will develop singularities. These singularities

are always conical in Euclidean signature, and the analogue of conical in Lorentzian.

Defining the path integral this way we are effectively allowing ourselves in the metric

formulation to sum over some types of singularities but not others. To get some intuition for

this recall that the continuation of global dS2 was the hyperbolic cylinder under b→ 2πiα,

where b is the length of the minimal geodesic around the cylinder. The ensuing space is a

double hyperbolic cone, where two cones each with a cone point of angle 2πα are joined

at the tips. We allow this cone point, provided that the spacetime does not end at it but

instead continues into another cone of the same opening angle. The crucial feature is that

this background is completely non-singular in the gauge description. There, nothing is

shrinking to zero size at the tips since there is no metric and so no way to measure size.

There is simply a non-contractible cycle around which there is an elliptic holonomy. It

is only when we extract a metric that one finds, from the point of view of said metric,

that this cycle shrinks to zero size and then expands again. Of course in the Lorentzian

description, one simply has global dS2 which is smooth everywhere.

In the next subsection we will evaluate the JT path integral over these spacetimes.

Before doing so, let us further discuss some interpretation of these higher genus spacetimes.

Recall that we would like to interpret the Euclidean path integral a la Hartle-Hawking,

as preparing a quantum state — the wave function of the universe — in the Hilbert space

of the Lorentzian theory. In the metric formulation, we construct a state by gluing a Loren-

ztian geometry onto a Euclidean geometry. The resulting geometry has mixed-signature,

where Lorentzian and Euclidean geometries are glued together along a spacelike slice. In

the original Hartle-Hawking procedure the future half of Lorentzian dS2 is glued to a Eu-

clidean hemisphere along the surface of vanishing extrinsic curvature, t = 0.

In the first-order formulation there are two seemingly different ways to glue in a Eu-

clidean segment, both of which are different from the standard picture in the metric for-

mulation. One can either construct the geometry by gluing a future region of Lorentzian

dS onto a hyperbolic disk (with the asymptotic region removed), or one could simply glue

I+ onto the Euclidean disk. Although apparently different, these constructions are com-

pletely equivalent. In subsection 2.9 we saw that they lead to the same path integral. In

the latter, the Euclidean gravity path integral on the disk computes a partition function

Zdisk(βJ), which is related to the de Sitter wave function via the analytic continuation

ΨHH(βJ) = Zdisk(−iβJ), which we computed directly from the Lorentzian description.

The first of these constructions is the first-order analogue of the Hartle-Hawking con-

tour, while the second is the analogue of the Maldacena contour. In the gauge theory these

approaches are identical: both spacetimes are described by the same, real PSL(2; R) connec-

tion, from which we can extract the two metrics. Note that, while in the metric formulation

we had to perform the gluing across a surface of vanishing extrinsic curvature in order to

ensure that the total geometry was smooth, in the gauge theory formulation we only require

that the PSL(2; R) connection is flat with trivial holonomy around trivial cycles.

From this point of view we may discuss metric interpretations for our higher genus

surfaces as higher genus analogues of the Hartle-Hawking and Maldacena contours. In
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Figure 8. Our higher genus geometries. We begin with some smooth surface equipped with a flat

PSL(2; R) connection, pictured in the middle. It has asymptotic boundaries, around which there

are elliptic holonomies characterized by αi. From this connection we may obtain a mixed-signature

metric, pictured on the left. It has Lorentzian dS2 regions glued to an intermediate R = −2 surface

Σ with cone points. The Lorentzian regions have minimal geodesics of lengths 2παi, matching the

cone angles of Σ. Equivalently, we can extract a Euclidean R = −2 geometry pictured on the right,

in which the asymptotic regions are replaced with hyperbolic cones of opening angles 2παi glued

to the circles at I±.

the former, we fill in I+ and I− with n asymptotically future and past Lorentzian dS2

regions, where n is the number of connected components of the boundary. They are

characterized by n elliptic elements of SO(2, 1), which in the gauge theory description are

exactly the holonomies around the asymptotic circles. We then glue all of these regions

to an intermediate genus g surface Σ. This surface is most naturally described in the

Euclidean R = −2 continuation, i.e. as a quotient of H2, but from our point of view it is

merely a surface equipped with a flat PSL(2; R) bundle. In order for this surface to be

glued to the asymptotic regions it must have the same elliptic holonomies around some

cycles; that is, it must have n cone points. In the total spacetime we glue the trumpets to

Σ, and the whole construction is pictured on the left-most diagram of figure 8.

The other approach, the analogue of the Maldacena contour, is to fill in the I+ and

I− with n asymptotically H2 disks. Due to the elliptic holonomies at infinity, these asymp-

totic regions will have conical singularities in their interior. We glue these to the same

intermediate surface Σ described above, as in the right-most diagram of figure 8.

As we have emphasized these seemingly different approaches are really one and the

same, since we are dealing with the same flat PSL(2; R) bundle. As far as a metric in-

terpretation goes, the “Hartle-Hawking” geometry glues Lorentzian R = 2 regions to a

Euclidean R = −2 surface, while in the “Maldacena” contour the geometry is Euclidean

with negative curvature throughout. We elaborate on this below.
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3.1.3 Complex metrics

Here we elaborate on the Maldacena contour perspective on the metric formulation of

nearly-dS2 gravity. This discussion has significant overlap with that of [22]. That is, we

can deform the time coordinate of the nearly-dS2 metric configurations along a complex

contour to arrive at Euclidean nearly-AdS2 metrics in (−,−) signature. As such, we can

view Lorentzian nearly-dS2 gravity and Euclidean nearly-AdS2 gravity as equivalent to one

another under a deformation of the complex time contour.

We will carry out these contour deformations in the cases of the nearly-dS2 Hartle-

Hawking geometry which will become the Euclidean nearly-AdS2 disk, and the global de

Sitter geometry which will become the Euclidean nearly-AdS2 double trumpet.

First, we consider the Hartle-Hawking geometry. The complex metric is

τ ∈ [0, π/2] :

{
ds2 = dτ2 + cosh2(τ) dθ2

ϕ = −2πi
βJ sinh(τ)

, t ≥ 0 :

{
ds2 = −dt2 + cosh2(t) dθ2

ϕ = 2π
βJ sinh(t)

.

(3.12)

The real-time segment is glued at t = 0 to the imaginary time segment at τ = 0. In fact,

the Euclidean part is just the Lorentzian part at imaginary time t = −iτ , and so the total

geometry may be understood as a complex time contour as in figure 9. Deforming the time

contour as t as in that figure, we obtain the disk geometry in Euclidean nearly-AdS2 in

(−,−) signature:

ds2 = −
(
dρ2 + sinh2(ρ) dθ2

)
, ϕ = −2πi

βJ
cosh(ρ) . (3.13)

Note that no singularities obstruct this continuation. This mapping from the Hartle-

Hawking geometry in dS to the Euclidean disk in AdS was in fact the original conception

of the Maldacena contour [5]. The only new ingredient in two dimensions is that we also

have to keep track of the dilaton profile, which also continues smoothly, albeit with a

factor of i.

Next, let consider global de Sitter. The metric and dilaton are

ds2 = −dt2 + α2 cosh2(t) dθ2 , ϕ =
α

βJ
sinh(t) . (3.14)

This geometry is not complex, which is due to the fact that the global de Sitter geometry

is the only solution to the equations of motion of nearly-dS2 JT gravity. Deforming the

time contour as per figure 10, we obtain

ds2 = −(dρ2 + α2 sinh2(ρ) dθ2) , ϕ = − i α
βJ

cosh(ρ) , (3.15)

which is the union of two hyperbolic cones in (−,−) signature. Notice that the de Sit-

ter geometry is non-singular, whereas the corresponding Euclidean nearly-AdS2 geometry

has a double cone point. Thus the de Sitter continuation resolves the singularity of the

double cone.

We expect that a more general version of the analysis above works for higher-genus

spacetimes.
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Figure 9. Depiction of the change of complex time contour to go from the Hartle-Hawking

geometry in Lorentzian nearly-dS2 in (−,+) signature to the disk in Euclidean nearly-AdS2 in

(−,−) signature.

Figure 10. The change of complex time contour to go from the global de Sitter geometry in

Lorentzian nearly-dS2 in (−,+) signature to the double trumpet geometry in Euclidean nearly-

AdS2 in (−,−) signature. The global de Sitter geometry is the only classical solution to nearly-dS2

JT gravity.

3.2 Higher genus amplitudes

In this subsection we compute the path integral of JT gravity over the higher genus surfaces

obtained above. First, let us develop some notation. Suppose we have a geometry where

I+ is composed of n+ circles, and I− of n− circles. Let n = n+ + n− count the connected

components of the boundary. Let βa, with a = 1, . . . , n+ denote the sizes of the future

circles, and βm with m = n++1, . . . , n the sizes of the past circles. Each of these asymptotic
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circles is characterized by an elliptic holonomy. The bulk spacetime fills in these circles in

the following way. We glue asymptotically dS2 “trumpets” to each of these circles. If we

let the trumpet go to a geodesic boundary, then the holonomy is encoded in the length

2παi of this geodesic. We then glue in an intermediate genus g surface Σ. Metrically, this

surface is most naturally described as hyperbolic with conical singularities of angles 2παi.

We then glue the trumpets to Σ. See figure 8.

The other way of building the higher genus surface is the analogue of the Maldacena

contour. We instead attach hyperbolic disks to I+ and I−. The elliptic holonomies around

the asymptotic circles guarantees that these disks are hyperbolic cones with angles 2παi.

We then glue to Σ. Importantly, both of these constructions correspond in the topological

gauge theory description to the same PSL(2; R) gauge field, and so the same path integral.

Since all of the boundaries are glued to the same intermediate surface, we are comput-

ing a connected spacetime diagram. We parameterize this contribution to the transition

amplitude as

Zg,n+,n−(βaJ, βmJ)/(eS0)2g+n−2 . (3.16)

As defined, Zg,n+,n− does not depend on S0. Now, if we want to consider the sum over all

connected genus g contributions to the n boundary amplitude, we have

Ψconn
n+,n−(βaJ, βmJ) '

∞∑
g=0

Zg,n+,n−(βaJ, βmJ)

(eS0)2g+n−2
. (3.17)

The factor (eS0)−2g−n+2 comes from the Euler characteristic term in the action, S0χ. Recall

that for the Hartle-Hawking geometry, even though the geometry was a topological disk,

we found χ = −i. The Lorentzian part of the geometry, a topological annulus, gave zero

contribution, while the Euclidean part, a topological disk, gave −i times the topological

characteristic of the disk. In these more general geometries the Lorentzian trumpets, each

being a topological annulus, give zero contribution to the topological Euler characteristic.

The only contribution comes from Σ, and so we have χ = −iχT , where χT is the topological

Euler characteristic χT = 2− 2g−n. In this way the contribution of genus g surfaces with

n boundaries is weighted as above. This is the genus expansion of nearly dS2 gravity.

The full n boundary amplitude Ψn+,n−(βaJ, βmJ) contains both connected and dis-

connected contributions. Thus, we can express Ψn+,n−(βaJ, βmJ) using the standard trick

of constructing a generating function:

Ψn+,n−(βaJ,βmJ) (3.18)

' δn

δξ(β1J) · · ·δξ(βnJ)

∣∣∣
ξ=0

exp

( ∞∑
k=1

1

k!

ˆ ∞
0
dx1 · · ·

ˆ ∞
0
dxk ξ(x1) · · ·ξ(xk)Ψconn

n+,n−(x1, . . . ,xk)

)
.

We are now in a position to compute the Zg,n+,n− ’s. In subsection 2.9 we computed the

gravitational path integral on the Hartle-Hawking geometry. This is the analogue of the

disc partition function of JT gravity on Euclidean nearly AdS2. Factoring out the Euler

term, the gravitational path integral was

Z0,1,0 =

ˆ
[df ]Pf(ω)

PSL(2; R)
eiSsch , Ssch =

1

g

ˆ 2π

0
dθ

(
{f(θ), θ}+

f ′(θ)2

2

)
, (3.19)
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with g = 4G2βJ , and the result was

Z0,1,0 =
1√

2π(−2iβJ)3/2
e
iπ
g . (3.20)

The path integral for the version with one past asymptotic boundary, Z0,0,1, is merely the

complex conjugate of Z0,1,0.

To obtain the higher genus contributions we divide up the path integral into the con-

tributions from the Lorentzian dS2 regions, and from the surface Σ. To get the former we

need the path integral on the dS2 version of the future and past “trumpets” at fixed α.

We computed these in subsection 2.9 with the result

ZF (βJ, α) = ZP (βJ, α)∗ = ZT (−iβJ, 2πiα) =
1√

2π(−2iβJ)1/2
e
iπα2

4G2βJ .

Here ZT is the path integral over the Schwarzian mode on a trumpet for JT gravity on

Euclidean AdS2 [21] (after matching normalizations of the symplectic measure).

In terms of the trumpet Z’s, the path integral on global dS2 which is Z0,1,1 in the

notation here, is given by a stitching of future and past trumpets in eq. (2.193). This

stitching depends on the symplectic measure for α and the twist γ. Up to a sign, the

measure we get from the symplectic form on flat connections is

∓dαdγ α
2G2

.

The minus convention is what one finds under the continuation under b → 2πiα. Indeed

we found that with this convention Z0,1,1 may be consistently interpreted as arising from

a matrix integral, and further it is the continuation of the “double trumpet” path integral

in Euclidean AdS2 [21]. In what follows we continue to use the minus convention.

Before considering more complicated surfaces, consider Z0,2,0, i.e. the amplitude for

two future universes produced from nothing. There is also Z0,0,2, given by its complex

conjugate Z∗0,2,0. Stitching together two future trumpets we have

Z0,2,0 = −(2π)

ˆ ∞
0

dαα

2G2
ZF (β1J, α)ZF (β2J, α) =

1

2π

√
β1β2

β1 + β2
. (3.21)

This is also the continuation of the double trumpet under Z0,2,0(β1J, β2J) =

Z0,2(−iβ1J,−iβ2J).

At the end of subsection 2.9 we interpreted the global dS2 partition function as coming

from a double scaled matrix model. Assuming such a correspondence we thereby extracted

the connected two-point function of resolvents at genus 0, namely R0,2. We can also extract

R0,2 from Z0,2,0, or Z0,0,2. Interpreting

Z0,2,0(β1J, β2J) =
〈

tr
(
eiβ1H

)
tr
(
eiβ2H

)〉
MM, conn, 0

, (3.22)

using the notation explained in subsection 2.9, we would then have

R0,2(λ1, λ2) = −
ˆ ∞

0
dβ1dβ2e

−iβ1λ1−iβ2λ2Z0,2,0(β1J, β2J)

=
1

4
√
−λ1

√
−λ2(

√
−λ1 +

√
−λ2)2

,
(3.23)
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for negative real λi. (We will discuss how the minus sign arises in the next subsection.)

This is the same result we found from the path integral on global dS in eq. (2.195). This is

a nice consistency check on our interpretation: assuming that Z0,1,0 and Z0,2,0 arise from

probing the same matrix model with different observables, we then ought to find the same

correlation functions of resolvents whether the boundaries are in the future or the past.

In more complicated cases there is now an intermediate surface Σ with n holes. The

surface gives a topological contribution, the volume of the moduli space of flat connections

on Σ with prescribed elliptic holonomies around the holes. Equivalently, it is the volume

of the moduli space of hyperbolic cones with n cone points of angles 2παi. This volume is

computed with respect to the Weil-Petersson measure. We denote it as

Ṽg,n(α1, . . . , αn). (3.24)

We then arrive at our expression for the path integral on the total geometry

Zg,n+,n−(βa, βm) = (−1)n(2π)n
ˆ ∞

0

dα1 α1

2G2
. . .

dαn αn
2G2

Ṽg,n(α1, . . . , αn) (3.25)

× ZF (β1J ;α1) . . . ZF (βn+J ;αn+)ZP (βn++1J ;αn++1) . . . ZP (βnJ ;αn) .

The factor of (−1)n comes from the fact that we take the measure for each α to be −dαα.

It may be interpreted as inserting a factor (−1)E into the path integral, where E counts

the number of independent elliptic holonomies integrated over.

Let us make a brief aside, before returning to the computation of the Zg,n+,n− ’s. The

leading dependence of Zg,n+,n− on G2 as G2 → 0 is

G−n2 ×G−3g−n
2 ×Gn2 = G

− 3
2

(2g+n−2)+n
2

2 = G
− 3χ−n

2
2 . (3.26)

It arises in the following way. The first G−n2 is the manifest G−n2 in the measure over the n

α’s. It comes from the normalization of the Weil-Petersson symplectic form over the space

of flat connections, which goes as 1/G2, eq. (2.127). The precise normalization chosen there

is a matter of convention, but the fact that it goes as 1/G2 is physical. The second factor

comes from the volume Ṽg,n which is computed with respect to the same symplectic form

and so goes as O(G−3g−n+3
2 ), coming from the integral over 3g + n − 3 internal lengths.

The final factor of Gn2 comes from the integral, after changing variables α →
√
G2α and

using that as G2 → 0 the volume Ṽg,n(α1, . . . , αn) → Ṽg,n(0) goes to a nonzero constant,

the moduli space of genus g hyperbolic surfaces with n punctures. We interpret this effect

as a renormalization of the Euler term in the action,

S0 −→ S0 +
3

2
log(#G2) . (3.27)

(The precise number depends on the choice of convention for the normalization of the

symplectic form.) In eq. (2.14) we found the cosmological entropy of the “static patch” of

nearly dS2 to be 2S0. It is tempting to guess that the effect above also renormalizes the

cosmological entropy, although to see if that is the case one would need to look at genus

corrections to the static patch entropy.
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To compute the genus expansion coefficients we require the volumes Ṽg,n. These are in

general unknown. There is significant evidence that they are the analytic continuation of

the Weil-Petersson volumes Vg,n of the moduli space of bordered surfaces, i.e. of R = −2

surfaces with geodesic boundaries of lengths b1, b2, .., bn. The latter play a pivotal role both

in JT gravity on Euclidean AdS2 and in the topological recursion of a certain double-scaled

matrix model. Following previous work [48], we conjecture that the two are related by

Ṽg,n(α1, . . . , αn) = Vg,n(2πiα1, . . . 2πiαn) . (3.28)

One piece of evidence for this statement comes from the α → 0 limit. To see this, let

us recall a central observation of Mirzakhani [49, 50] that the moduli space of bordered

Riemann surfaces Mg,n(b1, . . . , bn) is symplectomorphic to the moduli space of punctured

Riemann surfaces Mg,n. This is proven by considering the symplectic reduction of the

natural
(
S1
)n

bundle over Mg,n(b1, . . . , bn) defined by the boundary circles. Roughly

speaking, one imagines shrinking the boundary lengths bi → 0; in this limit, a hyperbolic

element γ of PSL(2,R) with tr(γ) = 2 cosh
(
bi
2

)
becomes parabolic, and the resulting

surfaces has a cusp at which a point is removed. This cusped surface is the same one that

arises in the α→ 0 limit.8

A stronger piece of evidence, which in fact subsumes this observation, comes from

Tan, Wong, and Zhang [52]. They proved that the conjecture eq. (3.28) holds as long as

αi ≤ 1/2, i.e. the cone angles are less than or equal to π. Their methods break down for

larger cone angles. See [48, 51] for some discussion. With this in mind, our conjecture is

really the statement that the volume of genus g surfaces with cone points remains analytic

as a function of opening angles past π.

The volumes Vg,n are rather difficult to compute directly. See [53] for the first com-

putation of V1,1 (see also the nice computation of [37] in the language of AdS3 gravity).

However, Mirzakhani showed that the volumes obey a recursion relation [49, 50] which

allows their efficient computation up to any desired g and n. One output of this recursion

relation is that the volumes are polynomials in the lengths-squared of the geodesic borders.

If our conjecture is right, then the volumes Ṽg,n satisfy a related recursion relation and

may be easily calculated.

Assuming this is indeed the case, then as an example of our formulas we compute the

connected part of the Hartle-Hawking nearly dS2 wavefunction up through genus two. We

require the volumes V1,1 and V2,1, which in our normalization of the symplectic form (in

the convention of [21] we have αthem = 1
4πG2

) are9

V 1,1(2πiα) =
π(1− α2)

48G2
, V2,1(2πiα) =

π4(1− α2)(3− α2)(435− 96α2 + 5α4)

2211840G4
2

.

(3.29)

8In fact, it was observed by [51] that if we take one of the bi → 2πi then there is a sense (made precise

in [51]) in which the marked point is removed entirely! Our proposal can be regarded as an extension of

this to α 6= 1.
9Each genus one surface with one border is related by a Z2 symmetry to another such surface. This

symmetry is a large gauge transformation from the point of view of the topological gauge theory, and

so in the path integral we only account for volume of moduli space modulo it. The resulting volume is

denoted as V 1,1.
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A striking feature of these volumes is that they become negative for sufficiently large α.

Recall that the continuation of the Weil-Petersson measure over hyperbolic holonomies, bdb,

becomes negative for elliptic holonomies, −(2π)2αdα. Assuming that the conjecture (3.28)

is correct, it is tempting to speculate that the origin of these negative volumes is that for

sufficiently large α the dominant contribution to the volume comes from regions of moduli

space where the holonomies around the internal cycles are elliptic. In any case we then find

Ψconn
HH (βJ) = eS0

√
−iβJ
16π

(
e
iπ
g

(−iβJ)2
− e−2S0

π + ig

12G2
(3.30)

− e−4S0
435π4 + 676iπ3g − 556π2g2 − 232iπg3 + 40g4

184320G4
2

+O(e−6S0)

)
.

More generally, there would be a simple analytic continuation that relates the genus

expansion coefficients above to those Zg,n of JT gravity on Euclidean AdS2 [21]. Since

the Vg,n’s are polynomials, the integrand of the Zg,n+,n− ’s in eq. (3.25) would be analytic

away from infinity and we can deform the contour of integration from the real α axis to

the negative imaginary α axis, i.e. along the positive real b = 2πiα axis. Matching the

normalization of the symplectic form, one can easily show that our expression (3.25) for

the higher genus integrals is related to that of [21] (see their eq. (127)) by

Zg,n+,n−(βaJ, βmJ) = Zg,n(−iβaJ, iβmJ) , (3.31)

which extends our result above for the disk and for global dS2.

3.3 Matrix model interpretation

In the analysis above we have written a genus expansion for the path integral of JT grav-

ity with positive cosmological constant. The expansion coefficients depend on the Weil-

Petersson volumes of hyperbolic cones. At the end we made a conjecture that these volumes

are for all cone angles αi the continuation of the Weil-Petersson volumes of moduli spaces

of bordered Riemann surfaces. If that is indeed the case, then the genus expansion coeffi-

cients of nearly dS2 gravity are the continuation of those of nearly Euclidean AdS2 gravity.

In this subsection, following [21] and assuming that the above conjecture is true, we show

that the nearly dS2 expansion comes from a double-scaled matrix integral. Much like the

case of AdS2 gravity, this matrix integral gives a non-unique, non-perturbative completion

of nearly dS2 gravity.

To begin let us consider a one-matrix model following [21]. We start with a model of

a single L × L Hermitian matrix H characterized by a real potential V . Matrix averages

are given by

〈O(H)〉MM =

´
dH e−Ltr(V (H))O(H)´
dH e−Ltr(V (H))

, (3.32)

and we take the large L limit. A fundamental property of a matrix model is its density of

eigenvalues ρ(E), computed by

ρ(E) =

〈
L∑
i=1

δ(E − λi)

〉
MM

, (3.33)
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where λi is the ith eigenvalue, for i = 1, . . . , L. Since there are L eigenvalues, we must

have
´
dE ρ(E) = L. Suppose we consider a matrix model with a density of eigenvalues

given by

ρ(E) = κ
γeS

′
0

2π2
sinh

(
2π
√

2γ

√
a2 − (E − a)2

2a

)
+ · · · , (3.34)

for E ∈ [0, 2a] where a is fixed by the normalization condition, and κ is some constant.

The ellipses denote terms which go to zero as L goes to infinity, and also terms subleading

in powers of 1/eS
′
0 where eS

′
0 � 1. We then take L → ∞, which sends a → ∞. Normally

the double scaling limit is the combination of sending L → ∞ along with a redefinition

of energy so that the spectrum begins at E = 0. Since we have shifted the spectrum, the

double scaling limit here is merely L→∞, giving

ρ(E) = κ
γeS

′
0

2π2
sinh

(
2π
√

2γE
)
. (3.35)

This is the form of the density of states one obtains from nearly AdS2 gravity in

eq. (2.168) with

γ =
1

8πG2J ′
, κ = 8(πG2)3/2 . (3.36)

Since we are considering eS
′
0 � 1, we have that eS

′
0 becomes the genus expansion parameter

of the double-scaled matrix model.

More generally it is known that a double-scaled matrix model has a genus expansion

of the form 〈
tr(e−β1H) · · · tr(e−βnH)

〉
MM, conn

'
∞∑
g=0

Zκ,γg,n (β1, . . . , βn)

(eS
′
0)2g+n−2

. (3.37)

The subscript MM indicates that we are taking expectation values in the double-scaled

limit of the matrix model, the subscript “conn” that we taking the connected part, and the

' indicates that this series is asymptotic. In the above equation, Zκ,γg,n (βi) depends on its

inputs as well as κ and γ. One of the results of [21] is that the genus expansion coefficients

Zg,n(βi) of JT gravity on Euclidean AdS2 are simply the Zκ,γg,n ’s evaluated on the parameters

in eq. (3.36) that specify the density of states one finds from nearly AdS2 gravity. Soon it

will be useful that we can analytically continue to complex βi for Re(βi) > 0.

A fact of crucial importance is that the Zκ,γg,n are not all independent. They are de-

termined via the Eynard-Orantin topological recursion relations [54–56], which for the

double-scaled density of states above are related to the Mirzakhani recursion relation for

the Vg,n’s [49, 50]. We refer the reader to the nice summary of both in section 2 of [21].

Indeed, the genus expansion of AdS JT gravity obeys these topological recursion relations

with the leading density of states (3.35). It may then be understood as the genus expansion

of the double-scaled matrix model above. Further, the coefficients are analytic functions

of βi in the domain Re(βi) > 0.

Now we turn to the de Sitter expansion. Our approach is to posit that it comes from

a double-scaled matrix model, and to then show that this assumption is consistent and

leads to the same matrix model one encounters in AdS JT gravity. We begin with the
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dictionary that maps gravitational observables to matrix integrals. Following our discus-

sion in subsection 2.9, we posit that“inserting” a future boundary of size β corresponds

to probing the matrix model with tr(eiβH), and a past boundary to inserting tr(e−iβH).

Further, recall that with this interpretation, the “disc” partition function of de Sitter JT

gravity, the path integral on either the future or past Hartle-Hawking geometry, encodes

the same density of states (3.35) as AdS JT gravity under S′0 → S0 and J ′ → J .10

Given n+ future boundaries of sizes βa and n− past boundaries of sizes βm, with

Im(βa) > 0 and Im(βm) < 0, the genus expansion (3.37) implies that we may rotate the

βi’s in the complex plane to obtain〈
tr
(
eiβ1H

)
. . .tr

(
eiβn+H

)
tr
(
e−iβn++1H

)
. . .tr

(
e−iβnH

)〉
MM,conn

'
∞∑
g=0

Zκ,γg,n (−iβa, iβm)

(eS
′
0)2g+n−2

.

(3.38)

Note that the arguments −iβa and iβm still have positive real part, so that we remain in

the domain where the Zg,n’s are analytic functions of their arguments. Using eqs. (3.17)

and (3.31), we see that the connected transition amplitudes lead to the series

Ψconn(βaJ, βmJ) '
∞∑
g=0

Zg,n+,n−(βaJ, βmJ)

(eS0)2g+n−2
'
∞∑
g=0

Zg,n(−iβaJ, iβmJ)

(eS0)2g+n−2
. (3.39)

Since the Zg,n’s coincide with the matrix model expansion coefficients Zκ,γg,n , we see that

the genus expansion of Ψ is precisely that of the matrix model above with S′0 → S0 and

J ′ → J , so that to all orders in the genus expansion

Ψconn(βa, βm) '
〈

tr
(
eiβ1H

)
. . . tr

(
eiβn+H

)
tr
(
e−iβn++1H

)
. . . tr

(
e−iβnH

)〉
MM, conn

.

(3.40)

That is, the genus expansion of de Sitter JT gravity coincides with the genus expan-

sion of the observables in (3.38) of the double-scaled matrix model above. Further, these

expansions are asymptotic, while the matrix integral is in principle well-defined. From this

point of view, the matrix model provides a non-unique, non-perturbative completion of de

Sitter JT gravity.

For another perspective more in line with our analysis in subsection 2.9, we can also

extract the genus expansion for the correlation functions of resolvents. In the matrix model

these are given by

〈R(λ1) . . . R(λn)〉MM, conn '
∞∑
g=0

Rg,n(λn)

(eS0)2g+n−2
, (3.41)

where the Rg,n’s obtained from AdS JT gravity are given by the integral transform

Rg,n(λi) = (−1)n
ˆ ∞

0
dβ1 . . . dβn e

β1λ1+...+βnλnZg,n(βiJ
′) , (3.42)

10In Euclidean AdS JT gravity, the value of the dilaton on the boundary determines J ′. The analytic

continuation from Euclidean AdS JT gravity to de Sitter JT gravity with a future boundary takes J ′ → −iJ ,

and β′ → β. However, the genus expansion only depends on the combination βJ , not β or J separately.

We are exploiting this fact here.
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where the λi are real and negative. Interpreting the genus expansion coefficients of de

Sitter JT gravity as above,

Zg,n+,n−(βaJ,βmJ) =
〈

tr
(
eiβ1H

)
. . .tr

(
eiβn+H

)
tr
(
e−iβn++1H

)
. . .tr

(
e−iβnH

)〉
MM,conn,g

,

(3.43)

the Rg,n’s should also be given by the integral transform

Rg,n(λi) = in+(−i)n−
ˆ ∞

0
dβ1 . . . dβn e

β′1λ1+...+β′nλnZg,n+,n−(βaJ, βmJ) , (3.44)

where β′a = −iβa and β′m = iβm. The factors of i and −i arise in the following way. Given

the dictionary above, we express Zg,n+,n− as

Zg,n+,n− =

ˆ ∞
0

dE1 . . .dEn e
iβ1E1+...+iβn+En+−iβn++1En++1−...−iβnEn 〈ρ(E1) . . .ρ(En)〉MM,conn,g .

(3.45)

A single integral over a future β produces

i

ˆ ∞
0

dβ e−iβ(λ−E) =
1

λ− E
, (3.46)

and similarly for integrals over the past β’s. To see that (3.44) should give Rg,n we simply

recall the definition of the resolvent,

R(λ) =

ˆ
dE

ρ(E)

λ− E
.

Using (3.31), we then have

Rg,n(λi) = in+(−i)n−
ˆ ∞

0
dβ1 . . . dβn e

β′1λ1+...+β′nλnZg,n(−iβaJ, βmJ)

= (−1)n
ˆ ∞

0
dβ′1 . . . dβ

′
n e

β′1λ1+...+β′nλnZg,n(β′iJ) ,

(3.47)

where in the second equality we rotated the contour of integration. This last expression

coincides with (3.42), which demonstrates that one finds the same correlation functions of

resolvents from Euclidean AdS and dS JT gravity.

In subsection 2.9 we noted that the symplectic measure over α could be taken to

be either minus or plus dαdγ α
2G2

. In our discussion above we consistently chose the minus

sign, which is the sign for which the global dS2 path integral is the continuation of the

path integral on the hyperbolic cylinder. Assuming a matrix model description, a suitable

integral transform of the global dS2 path integral gave R0,2. For that choice we found an

R0,2 which matches the universal form of a double-scaled matrix model with a single cut,

while for the other choice one finds minus that universal form. It is not clear if there is

a matrix model interpretation for this other sign. However, we note in passing that if we

were to take this other choice of sign for the symplectic measure and still conjecture (3.28),

then the genus expansion coefficients of de Sitter JT gravity would be related to those of

AdS JT gravity as

Zg,n+,n−(βaJ, βmJ) = (−1)nZg,n(−iβaJ, iβmJ) ,
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apart from the special cases of genus 0 with either one or two boundaries. Translating these

expansion coefficients into correlation functions of resolvents, it is not too hard to verify

that these coefficients are consistent with the topological recursion relations of Eynard and

Orantin, once we account for the fact that in this setting R0,2 is changed by a sign.

4 dS3

In this section we study various aspects of pure gravity in three-dimensional de Sitter space-

time. While our main focus is to set up a framework to compute scattering and loop correc-

tions in global dS3, along the way we obtain corresponding results for the Hartle-Hawking

geometry and an inflating patch. We rely throughout on the Chern-Simons description

of three-dimensional gravity [57–59], which in many ways resembles the topological gauge

theory description of Jackiw-Teitelboim gravity on nearly dS2 spacetime. Our results for

dS3 gravity parallel those obtained for Lorentzian AdS3 gravity in [36] (which in turn are

related to an effective field theory for large c CFT with sparse spectrum [60]). The dS3

results can also be obtained by an analytic continuation from Euclidean AdS3 gravity, as

we discuss along the way.

Pure three-dimensional gravity with positive cosmological constant is described by the

Einstein-Hilbert action

S =
1

16πG3

ˆ
d3x
√
−g(R− 2) , (4.1)

up to a boundary term. Its equations of motion possess dS3 solutions with unit radius of

curvature. The action is classically equivalent to a non-compact Chern-Simons theory with

algebra sl(2; C) [57, 58]. The gauge field of the Chern-Simons description is related to the

dreibein eAM and spin connection ωABM as

AAM = ωAM + ieAM , (4.2)

where

ωAM =
1

2
εABCωBCM . (4.3)

Here M = 0, 1, 2 is a spacetime index and A,B,C = 0, 1, 2 are flat indices, which are raised

and lowered with the Minkowski metric ηAB. We then define

AM = AAMJA , (4.4)

where JA are the generators of SL(2; C) in the fundamental representation, satisfying

[JA, JB] = εABCJ
C , tr(JAJB) =

1

2
ηAB , tr(JAJBJC) =

1

4
εABC . (4.5)

Explicitly, we take

J0 =
1

2

(
−i 0

0 i

)
, J1 =

1

2

(
0 −i
i 0

)
, J2 =

1

2

(
0 1

1 0

)
. (4.6)

Evaluated on a solution of Einstein’s equations, infinitesimal diffeomorphisms and local

Lorentz transformations act on AM as infinitesimal sl(2; C) gauge transformations. It is in
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this sense that A is a connection. In terms of A, the action is a difference of Chern-Simons

terms with imaginary level,

S = SCS[A]− SCS[Ā] , (4.7)

with

SCS[A] =
ik

4π

ˆ
tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, k =

1

4G3
, (4.8)

again up to a boundary term. Here Āmay be understood to be either the complex conjugate

of A, i.e. ĀM = (AAM )∗(JA)∗, or instead (AAM )∗JA, since both assignments lead to the same

action and equations of motion. In what follows we use ĀM = (AAM )∗(JA)∗. In terms of the

Chern-Simons gauge field, the Einstein’s equations and torsion-free constraint are simply

the equations of motion that follows from the Chern-Simons action, namely that the field

strength vanishes.

There are subtleties that arise in the study of Chern-Simons theory with non-compact

gauge group, complex gauge group, and complex level (for instance, see [61–64]). Näıvely

all of those subtleties arise here. However, as we will see, the asymptotically dS3 boundary

conditions ameliorate the situation, leaving us with a rather benign quantum mechanical

model on the boundary of topologically simple spacetimes like inflating or global dS3. This

model has “boundary graviton” degrees of freedom living on each connected component of

the boundary, as well as monodromy degrees of freedom on global dS3.

A particularly useful feature of the Chern-Simons description of gravity is that it allows

us to compute the measure of the path integral. See e.g. [21, 36, 37, 65–67] for discussions in

the context of AdS3 gravity and Jackiw-Teitelboim gravity. Below we deduce the measure

for both the boundary gravitons, as well as for the monodromies, each of which is crucial

for the computation of the path integral on dS3 spacetimes.

4.1 Preliminaries

4.1.1 Global dS3

Global dS3 space is described by the metric

ds2 = − dt2

t2 + 1
+ (t2 + 1)sech2(y)(dy2 + dθ2) , (4.9)

where (y, θ) are cylindrical coordinates on a round unit-sphere. Here t, y ∈ R and θ ∼ θ+2π

is the longitudinal angle on the S2. This spacetime has conformal boundaries at t→ ±∞,

given by a past sphere and a future sphere. See figure 11 for the Penrose diagram.

Using the dreibein

e0 = − dt√
t2 + 1

, e1 =
√
t2 + 1 sech(y)dy , e2 =

√
t2 + 1 sech(y)dθ , (4.10)

one finds

A =

(
idt√
t2 + 1

+ tanh(y)dθ

)
J0 + sech(y)

(
i
√
t2 + 1 dy + tdθ

)
J1

+ sech(y)
(
−tdy + i

√
t2 + 1 dθ

)
J2 ,

(4.11)
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Figure 11. The Penrose diagram for dS3. The fluctuating spatial boundaries at past and future

infinity are depicted in blue.

or equivalently,

A =

(
dt

2
√
t2+1
− i

2 tanh(y)dθ i sech(y)
2 (

√
t2 + 1− t)dw̄

i sech(y)
2 (

√
t2 + 1 + t)dw − dt

2
√
t2+1

+ i
2 tanh(y)dθ

)
, (4.12)

where w = θ+ iy is a complex coordinate on the sphere at constant time. This connection

is flat and therefore may locally be written as

A = Ũ−1dŨ , (4.13)

and one representative for Ũ is

Ũ =
√

sech(y)

(
ρ cos

(
w
2

)
iρ−1 sin

(
w̄
2

)
iρ sin

(
w
2

)
ρ−1 cos

(
w̄
2

)) , (4.14)

with

ρ =

√√
t2 + 1 + t . (4.15)

Observe that this Ũ is double-valued, with Ũ(θ + 2π, y, t) = −Ũ(θ, y, t). Correspond-

ingly the holonomy of A around the contractible θ-circle (the θ-circle shrinks to zero size at

the north and south poles of the sphere, i.e. as y → ±∞) in the fundamental representation

is non-trivial,

P
(
ei
´ 2π
0 dθ Aθ

)
= −I , (4.16)

and A is singular as an SL(2; C) connection, or for that matter as a connection for any

cover of SL(2; C). However, A is non-singular as a PSL(2; C) = SL(2; C)/Z2 connec-

tion, wherein we identify U ∈ SL(2; C) with −U . Thus, in order for global dS3 to be
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a non-singular configuration, we require the gauge group to be precisely PSL(2; C). This

is analogous to pure gravity with negative cosmological constant, which, upon requir-

ing that global AdS3 be a non-singular configuration, can be described in the Chern-

Simons formulation as a gauge theory with gauge group either PSL(2; R)× PSL(2; R) [68]

or SO(2, 2) = (SL(2; R)× SL(2; R))�Z2
.

While Ũ is single-valued around the θ-circle, its logarithm is not. To see this, we write

out Ũ in a type of Gauss parameterization,

Ũ = exp (λθ)U , (4.17)

where

λ = −iJ1 ,

U =

(
cosh

(y
2

)
−i sinh

(y
2

)
i sinh

(y
2

)
cosh

(y
2

) )(iρ√sech(y) 0

0 (iρ
√

sech(y))−1

)(
1 ρ−2 sinh(y)

0 1

)
.

(4.18)

There is a monodromy characterized by λ, and both U and its logarithm are single-valued.

These values for λ and U are to be understood as representatives. By parameterizing A

this way, we have introduced a PSL(2; C) redundancy under λ → hλh−1, U → hU , for

h ∈ PSL(2; C). The invariant data in the monodromy is given by

tr(λ2) = −1

4
. (4.19)

One notable feature of global dS3 is that its on-shell action is divergent. Regulating

the divergence as one does in AdS holography, by integrating in t up to cutoff slices at

t = ∓ ln ε with ε � 1, one finds that the on-shell action has a quadratic divergence ∼ ε−2

and a logarithmic divergence. The logarithmic divergence is physical, and reads

Sclassical = − 1

G3
ln ε . (4.20)

This divergence encodes the fact that, after suitably canceling the divergence (which can

be done at the expense of introducing a scale µ), the classical gravitational approximation

to the bulk path integral takes the form

eiSclassical = (Rµ)
2C
3 , C = i

3

2G3
, (4.21)

where R is the radius of the boundary sphere. This is the form of the partition function of

a two-dimensional CFT with central charge C on two copies of S2. Thus we see that the

central charge of asymptotically dS3 gravity is pure imaginary, which can also be deduced

from a Brown-Henneaux-inspired analysis [6, 69].

4.1.2 Hartle-Hawking

There is also a dS3 version of the Hartle-Hawking geometry. It is the union of the future

half of global dS3 above, described by the connection (4.12)

A =

(
dt

2
√
t2+1
− i

2 tanh(y)dθ i sech(y)
2 (

√
t2 + 1− t)dw̄

i sech(y)
2 (

√
t2 + 1 + t)dw − dt

2
√
t2+1

+ i
2 tanh(y)dθ

)
,
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Figure 12. The Penrose diagram for the inflating patch of dS3, depicted in light blue. The

constant-time slices (i.e., “flat slicings”) are shown in gray.

with w = θ + iy for t ≥ 0, glued to a Euclidean hemisphere described by the metric

ds2 =
dτ2

1− τ2
+

1− τ2

cosh2 y
(dy2 + dθ2) , τ ∈ [0, 1] , (4.22)

with τ = it. The connection A in the Euclidean segment is

A =

(
− idτ

2
√

1−τ2 −
i
2 tanh(y)dθ sech(y)

2 (i
√

1− τ2 − τ)dw̄
sech(y)

2 (i
√

1− τ2 + τ)dw idτ
2
√

1−τ2 + i
2 tanh(y)dθ

)
. (4.23)

The on-shell action has a logarithmic divergence that is half of that in global dS3,

Sclassical = − 1

2G3
ln ε . (4.24)

Supposing that there is a dual CFT on the future sphere, we infer that its sphere partition

function is

ZS2 = (Rµ)
C
3 ≈ eiSclassical , C = i

3

2G3
, (4.25)

which gives the same central charge we found for global dS3.

4.1.3 Inflating patch

One may also consider an inflating patch of global dS3, as pictured in figure 12. (The

inflating patch is also called the flat slicing.) This patch has only one boundary, the one-

point uncompactification of the future sphere, which shrinks to zero size in the far past.

The metric describing the patch is

ds2 = −dt
2

t2
+ t2dzdz̄ , (4.26)
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where t > 0, and z = x + iy is a complex coordinate on R2. Here x is a non-compact

variable. The relation between these coordinates and those before can be expressed by way

of embedding coordinates. The global dS3 hyperboloid is described as a surface in R1,3, by

points XM satisfying −(X0)2 + (X1)2 + (X2)2 + (X3)2 = 1. To go from this hyperboloid

to the global spacetime (4.9) we take

X0 = t , X1 = tanh(y)
√
t2+1 , X2 = sech(y)cos(θ)

√
t2+1 , X3 = sech(y)sin(θ)

√
t2+1 .

(4.27)

The inflating patch (4.26) corresponds instead to

X0 = −(1 + |z|2)t− t−1

2
, X1 = x t , X2 = y t , X3 =

(1− |z|2)t+ t−1

2
,

(4.28)

where t > 0. Note that the coordinates t and y in (4.27) are different from the coordinate

y in (4.28). The inflating patch does not globally cover de Sitter space, and only covers

the upper right half of the Penrose diagram as depicted in blue in figure 12.

Using the dreibein

e0 =
dt

t
, e1 = tdy , e2 = tdx , (4.29)

we arrive at a gauge configuration

A =
idt

t
J0 + tdz J1 + itdz J2 , (4.30)

or equivalently

A =

(
dt
2t 0

it dz −dt
2t

)
. (4.31)

This may be parameterized as

A = U−1dU , (4.32)

where a representative for U is

U =

( √
it 0√
it z 1√

it

)
. (4.33)

In fact, this U has a winding property which can be made manifest by the decomposition

U =

cos
(
φ
2

)
− sin

(
φ
2

)
sin
(
φ
2

)
cos
(
φ
2

) (√it 0

0 1√
it

)(
1 (2t)−1

0 1

)
, φ = 2 arctan(z) . (4.34)

In this parameterization, φ is an angular variable, φ ∼ φ+ 2π. We see that at fixed y, the

line x is mapped to the circle φ, with limx→±∞ φ = ±π.

4.2 The map to Euclidean AdS3 gravity

In subsection 2.4 we explicitly demonstrated a mapping between JT gravity on nearly

dS2 spacetime to Euclidean JT gravity on nearly AdS2 spacetime. This mapping holds
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at arbitrary genus, and also for the non-perturbative completions of the dS2 and AdS2

theories via a double-scaled matrix model. There is a similar such mapping between pure

dS3 gravity and pure Euclidean AdS3 gravity, which we elucidate in this subsection. This

map was discussed previously by [13], where it was used to formulate a sum over geometries

to compute the wave function of the universe for geometries which asymptote to a torus

at future infinity.

As is well-known, Euclidean AdS3 gravity may be recast as a Chern-Simons the-

ory [57, 58]. Our starting point is the Einstein-Hilbert action

SE = − 1

16πG3

ˆ
d3x
√
g′(R′ + 2) , (4.35)

augmented with a suitable boundary term. Here we denote the metric, curvature, and

so on with primes, to distinguish them from the de Sitter quantities discussed in the last

subsection. The Einstein-Hilbert action may be rewritten in terms of linear combinations

of the first-order variables (e′AM , ω
′A
BM ),

(A′M )A = i(ω′AM + i e′AM ) , (Ā′)AM = −i(ω′AM − i e′AM ) , (4.36)

with

ω′AM =
1

2
εABCω′BCM (4.37)

where M = 1, 2, 3 is a spacetime index and A,B,C = 1, 2, 3 are flat indices that are raised

and lowered by δAB. Our convention for the epsilon tensor with flat indices is ε123 = 1.

We decompose the gauge fields as

A′M = A′AMJ
′
A (4.38)

where the J ′A are the generators of su(2) in the fundamental representation. Because the

A′AM are complex, A′M is an adjoint vector of the complexification of su(2), sl(2; C). Below

we will use the explicit basis

J ′1 =
1

2

(
1 0

0 −1

)
, J ′2 =

1

2

(
0 1

1 0

)
, J ′3 =

1

2

(
0 i

−i 0

)
. (4.39)

These are related to the sl(2; C) generators in the Lorentzian dS3 analysis in (4.6) by

J ′1 = −iJ0 , J ′2 = J2 , J ′3 = −J1 . (4.40)

In any case the Einstein-Hilbert action may be rewritten in terms of A′, Ā′ in (4.36) as a

difference of Chern-Simons actions

SE = SCS[A′]− SCS[Ā′] , (4.41)

where

SCS[A′] = − ik
4π

ˆ
tr

(
A′ ∧ dA′ + 2

3
A′ ∧A′ ∧A′

)
, k =

1

4G3
, (4.42)

up to a boundary term.
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Let us consider the particular case of the Euclidean AdS3 geometry with S2 boundary,

which we will map to the future half of global dS3. The corresponding metric is

ds′2 =

(
r2 dΩ2

2 +
dr2

r2 + 1

)
. (4.43)

As in our dS3 analysis we write the sphere metric in cylindrical coordinates,

dΩ2
2 = sech2(y)(dy2 + dθ2) . (4.44)

To compute A and Ā for this metric, we use the dreibein

e′1 =
dr√
r2 + 1

, e′2 = r sech(y)dy , e′3 = r sech(y)dθ , (4.45)

which gives us

A′ =

(
i dr√
r2 + 1

+ tanh(y)dθ

)
iJ ′0 + sech(y)

(√
r2 + 1 dθ + ir dy

)
iJ ′1

+ sech(y)
(
−
√
r2 + 1 dy + ir dθ

)
iJ ′2 . (4.46)

In matrix form, A′ reads

A′ =

(
dr

2
√
r2+1

− i
2 tanh(y)dθ i sech(y)

2 (
√
r2 + 1− r)dw̄

i sech(y)
2 (

√
r2 + 1 + r)dw − dr

2
√
r2+1

+ i
2 tanh(y)dθ

)
, (4.47)

where w = θ+ iy. This precisely agrees with the connection in (4.12) describing the future

half of global dS3 upon replacing r with t. Since the connections in the two analyses are

identical, they evidently satisfy the same boundary conditions as r →∞ and t→∞ upon

interchanging r ↔ t.

Furthermore, we have that in the fundamental representation,

P
(
ei
´ 2π
0 dθ A′θ

)
= −I . (4.48)

The θ circle is contractible in the total geometry, shrinking to zero size at the poles of

the sphere at constant time. The flatness condition implies that this Wilson loop ought

to be trivial in all representations. Thus A′ is singular as a SL(2; C) connection or as a

cover thereof, but non-singular as a PSL(2; C) = SL(2; C)/Z2 connection. Thus we see

that both for Euclidean AdS3 gravity and Lorentzian dS3 gravity the gauge group of the

Chern-Simons formulation is PSL(2; C) (see [68, 70]).

To match the Euclidean AdS3 action in (4.42) with the dS3 action in (4.8), we send

LAdS → iLdS. This takes −SAdS3 → i SdS3 , as needed. So indeed, analogous to the dS2

analysis above, dS3 gravity is precisely an analytic continuation of Euclidean AdS3 gravity,

at least for global dS3 and Hartle-Hawking, and their various slicings. We anticipate that

such a correspondence via analytic continuation will hold on spacetimes of non-trivial

topology (as in e.g. [13]).

We have phrased the analytic continuation in terms of the first order formalism, but

can likewise make contact with the second order formalism. Since we have defined the
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gauge field in terms of first-order data in two different ways depending on whether we are

in Lorentzian dS3 or Euclidean AdS3, the two cases have different protocols to translate

back to the metric formalism. In particular, for dS3 we obtain the dreibein via

(e0, e1, e2) = (2i tr(AJ0), −2i tr(AJ1), −2i tr(AJ2)) . (4.49)

Likewise, for Euclidean AdS3,

(e′1, e′2, e′3) = (−2 tr(A′ J ′0), −2 tr(A′ J ′1), −2 tr(A′ J ′2)) . (4.50)

4.3 Boundary actions

We proceed with a path integral quantization of the PSL(2; C) Chern-Simons theory. We

take the “constrain first” approach [71], separating the direction y from the others xi as

A = Aydy + Ãidx
i . (4.51)

Now including boundary terms, the bulk action on a spacetime M may then be written as

Sgrav = S[A]− S[Ā] + Sbdy , (4.52)

with11

S[A] =
ik

2π

ˆ
M
dy ∧ tr

(
−1

2
Ã ∧ ∂yÃ+AyF̃

)
,

Sbdy = − k

4π

ˆ
∂M

d2xn tr(Ã2) + (c.c.) ,

(4.53)

where F̃ = d̃Ã + Ã ∧ Ã and d̃ = dxi ∂
∂xi

is the exterior derivative in the x-directions. The

number n = ±1 appearing in the boundary term is +1 when ∂t is outward-pointing on a

component of the boundary, and −1 when ∂t is inward-pointing. The term S[A] is the or-

dinary Chern-Simons functional after addition of a suitable boundary term. The boundary

term is required to enforce a variational principle consistent with the asymptotically dS3

boundary conditions. These boundary conditions depend on whether we have global dS3

or an inflating patch, and we will describe them shortly.

In what follows we integrate out Ay, which enforces the constraint F̃ = 0, leaving us

with an integral over the moduli space of flat connections on constant-y slices. The space

of flat connections depends on the topology of the constant-y slice. For an inflating patch,

those slices are topological discs, and quantization leads to a boundary chiral WZW action.

For global dS3 the slice is a topological annulus, and quantization leads to a sector of a

WZW model. In each case, we then impose asymptotically dS3 boundary conditions, which

introduces current constraints on the boundary WZW model. The resulting boundary path

integral is closely related to the quantization of the first exceptional coadjoint orbit of the

Virasoro group. It is an analogue of the Schwarzian action, in one dimension higher.

11We choose an orientation so that εtyθ = 1√
−g in global dS3 and εtyx = 1√

−g in an inflating patch.
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4.3.1 Boundary action for inflating patch

We begin with deriving a boundary action for the inflating patch, which is conceptually

simpler and technically easier than the global case. The derivation amounts to integrating

over fluctuations around an inflating patch of dS3, meaning the spacetime described by the

metric (4.26). This is closely related to the quantization of AdS3 gravity around a massless

BTZ geometry, and we refer the reader to [36] for more details.

In the background of the inflating patch, the asymptotically dS3 boundary conditions

are that A asymptotes to

A =

(
dt
2t +O(t−2) O(t−1)

itdw +O(t−1) −dt
2t +O(t−2)

)
, (4.54)

as t → ∞, and A is allowed to fluctuate at the indicated powers in 1/t. The connec-

tion (4.31) clearly respects these boundary conditions. The on-shell variation of the total

action, including the boundary term, is

δSgrav = −k
π

ˆ
dx dy tr(Az̄δAx) + (c.c.) . (4.55)

We gauge-fix Ay to its value for the inflating patch,

Ay =

(
0 0

−t 0

)
, (4.56)

and the residual integral is taken over the moduli space of flat connections Ã on constant-y

slices. These are topological disks parameterized by t ≥ 0 and the non-compact variable

x. The flat connections may be decomposed as

Ã = U−1d̃U . (4.57)

The map U has a winding property as we discussed above. To take care of the winding

property and to impose boundary conditions, it is convenient to pass over to an explicit

parameterization of PSL(2; C) elements. We decompose U as

U =

cos
(
φ
2

)
− sin

(
φ
2

)
sin
(
φ
2

)
cos
(
φ
2

) (Λ 0

0 Λ−1

)(
1 Ψ

0 1

)
, (4.58)

where Re(Λ) > 0, and components φ,Ψ ∈ C and φ ∼ φ+ 2π. We account for the winding

property by demanding that, at fixed t, y, the map φ takes the line x to the circle, with

lim
x→±∞

φ(x) = ±π . (4.59)

We accomplish this by parameterizing φ = 2 arctan(F ), with F a diffeomorphism of the

line at fixed y.

Evaluating the bulk action (4.52) on a flat connection (4.57) gives a chiral WZW model

on the boundary,

S = S+ + SWZ , (4.60)
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where

S+ =
k

2π

ˆ
∂M

dxdy tr
(
(U−1)′∂̄U

)
+ (c.c.)

SWZ = − ik

12π

ˆ
M

tr
(
U−1dU ∧ U−1dU ∧ U−1dU

)
+ (c.c.)

(4.61)

are the kinetic and Wess-Zumino terms respectively. Here ∂̄ = 1
2(∂x+ i∂y) and ′ = ∂x. The

boundary term leads to the tr((U−1)′U ′) contribution to the kinetic term. Plugging in the

parameterization (4.58) we find

S+ = − k

2π

ˆ
dxdy

(
2Λ′∂̄Λ

Λ2
− 1

2
φ′∂̄φ+

Λ2

2
Ψ′φ′ +

iΛ2

4
(∂yΨφ

′ + Ψ′∂yφ)

)
+ (c.c.)

SWZ = − ik
8π

ˆ
M
dΛ2

+ ∧ dΨ ∧ dφ+ (c.c.)

(4.62)

so that the total action reads

S = − k

2π

ˆ
dxdy

(
2Λ′∂̄Λ

Λ2
− 1

2
φ′∂̄φ+ Λ2φ′∂̄Ψ

)
+ (c.c.) . (4.63)

The next stop is to solve the asymptotically dS3 boundary conditions (4.54). Solving the

bottom left component of A for Λ, and solving the diagonal components for Ψ, we find

that as t→∞

Λ =

√
2it

φ′
, Ψ =

i

2t

φ′′

φ′
, (4.64)

with φ finite. Plugging these constrained values into the action (4.63) and integrating by

parts, we arrive at the boundary effective action

S =
iC

24π

ˆ
dxdy

(
φ′′∂̄φ′

φ′2
− φ′∂̄φ

)
+ (c.c.) =

iC

24π

ˆ
dxdy

F ′′∂̄F ′

F ′2
+ (c.c.) , (4.65)

where C = i3LdS
2G3

is the (imaginary) classical central charge of dS3 gravity, where we have

restored the de Sitter radius.

Eq. (4.65) gives us the action for the path integral over the boundary gravitons of the

inflating patch, represented by the φ field. The path integral has weight exp(iS), i.e.

Z =

ˆ
[dφ] exp (iS) =

ˆ
[dφ] exp

(
− C

24π

ˆ
dxdy

(
φ′′∂̄φ′

φ′2
− φ′∂̄φ

)
− (c.c.)

)
, (4.66)

with a suitable measure for φ which we will derive shortly. This model is the analytic

continuation of Euclidean AdS3 gravity in the Poincaré patch, per our discussion in sub-

section 4.2.

Recently, two of us [36] obtained the boundary path integral for Lorentzian AdS3. That

theory has the same form as (4.66) with two differences. For the AdS3 theory (i) C is real,

given by C = 3LAdS
2G3

, and (ii) φ is real. The AdS3 theory is in fact the path integral quanti-

zation of the first exceptional coadjoint orbit of the Virasoro group, Diff(S1)/PSL(2; R) [38].

As recently emphasized in [64], the Chern-Simons formulation of Euclidean AdS3 gravity
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differs from that of Lorentzian AdS3. The Euclidean version is a constrained PSL(2; C)

Chern-Simons theory, and the Lorentzian theory is a constrained PSL(2; R) × PSL(2; R)

Chern-Simons theory. The Euclidean analysis differs slightly from the Lorentzian version.

(In [36] various Euclidean computations were done by first taking the Lorentzian boundary

path integral, Wick-rotating, and then computing, rather than starting from the gravita-

tional theory in Euclidean signature.)

Repeating the analysis of [36] for the PSL(2; C) Chern-Simons description of Euclidean

AdS3 gravity, we find exactly the same path integral above except with C = 3LAdS
2G3

. We

then see that the Euclidean AdS3 and Lorentzian dS3 results are related by the simple

analytic continuation LAdS → iLdS.

Moreover, this dS3 model is a path integral quantization of a coadjoint orbit of the

complexified Virasoro group D̂iffC(S1), i.e. the centrally extended group of complex diffeo-

morphisms of the circle satisfying φ(θ+ 2π) = φ(θ) + 2π with φ ∈ C. The relevant orbit is

DiffC(S1)/PSL(2; C).

4.3.2 Boundary action for global dS3

We now consider the quantization of fluctuations around global dS3. Here there are two

boundaries and constant-y slices are topological annuli, which degenerate at the poles of the

sphere. As a result we find boundary graviton degrees of freedom on each boundary, along

with a quantum mechanical monodromy which is pinned down by boundary conditions at

the poles.

It seems reasonable that this quantization may be performed by gluing together past

and future patches, along the lines of the multi-boundary analysis for Jackiw-Teitelboim

gravity in [21]. Here we elect to perform a direct quantization in order to treat subtleties

that arise in the integral over the monodromy, similar to our treatment of nearly dS2 gravity

at integer values of α.

In global dS3 there are two boundaries, and thus two boundary terms and two boundary

conditions. The boundary conditions are that near the t→∞ future conformal boundary,

A asymptotes to

A =

(
− i

2 tanh(y)dθ + dt
2t +O(t−2) O(t−1)

it sech(y)dw +O(t−1) i
2 tanh(y)dθ − dt

2t +O(t−2)

)
, (4.67)

and near the t→ −∞ past conformal boundary, A asymptotes to

A =

(
− i

2 tanh(y)dθ − dt
2t +O(t−2) −it sech(y)dw̄ +O(t−1)

O(t−1) i
2 tanh(y)dθ + dt

2t +O(t−2)

)
, (4.68)

where A is allowed to fluctuate at the indicated powers in 1/t. The connection (4.12)

describing global dS3 clearly respects these boundary conditions. The on-shell variation of

the total action, including the boundary term, is then given by

δSgrav = −k
π

(ˆ
∂M+

dydθ tr(Aw̄δAθ)−
ˆ
∂M−

dydθ tr(AwδAθ)

)
+ (c.c) . (4.69)
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We gauge-fix Ay to its value for global dS3,

Ay = −sech(y)

2

(
0

√
t2 + 1− t√

t2 + 1 + t 0

)
, (4.70)

and then the residual integral is taken over the moduli space of flat connections Ã on slices of

constant y. Away from the poles of the sphere y → ±∞, constant-y slices are topologically

global dS2, i.e. annuli. The θ-circle is contractible only at the poles. Consequently the

most general flat connection has monodromy parameterized by

Ã = Ũ−1d̃Ũ , Ũ = exp (λ(y)θ)U , (4.71)

where λ(y) ∈ sl(2; C) and U ∈ PSL(2; C) is single-valued. Further, because the θ-circle is

contractible at the poles, we enforce the boundary condition that the monodromy goes to

the value

lim
y→±∞

tr(λ(y)2) = −1

4
(4.72)

that we found above for global dS3.

The integral over flat connections then becomes a functional integral over U and λ. In

terms of these fields the total action becomes

S = S+[U ]− S−[U ] + SWZ[U ] + Sλ[U ;λ] , (4.73)

where S+ and SWZ were given in (4.61) (upon the replacement x→ θ), S− takes the same

form as S+ except on the past boundary, and the coupling Sλ is given by

Sλ = −k
π

ˆ
dθdy tr

(
λ(y)

(
(∂̄U+)U−1

+ − (∂U−)U−1
−
) )

+ (c.c.) , (4.74)

where U± are the asymptotic values of U as t → ±∞. In order to write out the action

in terms of component fields and to impose the asymptotically dS3 boundary conditions,

we pass to an explicit parameterization of PSL(2; C) elements. A general element Ũ+ ∈
PSL(2; C) (we use a + subscript here since this parameterization is the natural one near

future infinity) with monodromy may be parameterized as

U+ =

cos
(
φ+
2

)
− sin

(
φ+
2

)
sin
(
φ+
2

)
cos
(
φ+
2

) (Λ+ 0

0 Λ−1
+

)(
1 Ψ+

0 1

)
, (4.75)

with φ+,Ψ+ ∈ C and Re(Λ+) ≥ 0. For example, the representative in eqs. (4.14), (4.18)

describing global dS3 is parameterized by

Λ+ = ρ
√
i sech(y) ,

Ψ+ = ρ−2 sinh(y) ,

φ+ = iy ,

(4.76)
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and λ = −iJ1. Near past infinity it is more convenient to employ an alternate parameter-

ization

U− =

cos
(
φ−
2

)
− sin

(
φ−
2

)
sin
(
φ−
2

)
cos
(
φ−
2

) (Λ−1
− 0

0 Λ−

)(
1 0

−Ψ− 1

)
. (4.77)

As an example, the representative U in (4.18) is parameterized by

Λ− = ρ−1
√
−i sech(y) ,

Ψ− = ρ2 sinh(y) ,

φ− = −iy .
(4.78)

The − fields are related to the + fields by

Λ− =

√
1

Λ2
+

+ Λ2
+Ψ2

+ , Ψ− = −
Λ4

+Ψ+

1 + Λ4
+Ψ2

+

, tan

(
φ−
2

)
=

tan
(
φ+
2

)
− Λ2

+Ψ+

tan
(
φ+
2

)
Λ2

+Ψ+ + 1
.

(4.79)

In terms of the component fields we find that the total action (4.73) reads

S = − k

2π

ˆ
dθdy

(
2Λ′+∂̄Λ+

Λ2
+

− 1

2
φ′+∂̄φ+ + Λ2

+(γ+ + φ′+)∂̄Ψ+ −
2γ′+
φ′+

∂̄Λ+

Λ+
− iλ1∂̄φ+

− (+→ −)

)
+ (c.c.) , (4.80)

where λ = λAJA and

γ± = iλ1(y)∓ iλ0(y) sin(φ±)± λ2(y) cos(φ±) . (4.81)

After imposing the boundary conditions we find that as t → ∞ the components Λ+ and

Ψ+ are constrained in terms of φ+ as

Λ+ =

√
2it sech(y)

γ+ + φ′+
,

Ψ+ =
1

2t

(
sinh(y) + i cosh(y)

(
γ′+
φ′+

+
(γ+ + φ′+)′

γ+ + φ′+

))
,

(4.82)

with φ+ finite. Similarly, as t→ −∞ the components Λ− and Ψ− are constrained in terms

of φ− as

Λ− =

√
2it sech(y)

γ− + φ′−
,

Ψ− =
1

2t

(
− sinh(y) + i cosh(y)

(
γ′−
φ′−

+
(γ− + φ′−)′

γ− + φ′−

))
,

(4.83)

with φ− finite. Substituting these expressions into (4.80) and after suitably integrating by

parts, we arrive at the relatively simple expression for the boundary effective action

S =
iC

24π

ˆ
dθdy

(
Φ′+∂̄Φ+

Φ2
+

− (φ′+ + 2iλ1)∂̄φ+ +
2γ′+
φ′+

∂̄Φ+

Φ+
− (+→ −)− 2

)
+ (c.c.) ,

(4.84)
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where

Φ± = φ′± + γ± . (4.85)

In this path integral quantization the φ± are periodic in θ, and the monodromy fluc-

tuates around its value for global dS3, which satisfies tr(λ2) = −1/4. It is convenient to

repackage this monodromy into a winding boundary condition for the φ±,

φ±(θ + 2π, y) = φ±(θ, y) + 2π , (4.86)

and for λ to fluctuate around zero. With this choice, one parameterization for global dS3 is

λ = 0 , φ± = θ , (4.87)

which is indeed a critical point of the action. The on-shell action has a logarithmic diver-

gence, coming from the −2 in the Lagrangian, corresponding to the classical central charge

of dS3 gravity. In this form we regulate it by integrating within a distance ε of the poles

of the sphere, y ∈ [ln ε,− ln ε], so that the on-shell action is, after using k = 1
4G3

,

S = − 1

G3
ln ε .

This precisely matches the logarithmic divergence we noted in eq. (4.20).

4.3.3 Hartle-Hawking

The quantization on the Hartle-Hawking background is essentially the same as for global

dS3, or at least its future half, upon taking the monodromy to be trivial. The end result

is that the effective action is

S =
iC

24π

ˆ
dθdy

(
φ′′∂̄φ′

φ′2
− φ′∂̄φ

)
+ (c.c.) , (4.88)

where at fixed y the φ field is an element of DiffC(S1),

φ(θ + 2π, y) = φ(θ, y) + 2π , (4.89)

and moreover we have chosen a convention so that φ is finite at the poles of the sphere

y → ±∞. The critical point of the model corresponding to the classical background

is simply

φ = θ , (4.90)

and the on-shell action evaluated on this configuration has a logarithmic divergence

S = − 1

2G3
ln ε ,

as it ought to.
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4.3.4 PSL(2; C) quotient

In the path integral quantizations presented above we have introduced a redundancy. In

the inflating patch, by writing Ã = U−1d̃U , the configurations U(xi, y) and h(y)U(xi, y)

give the same Ã for any h(y) ∈ PSL(2; C). Consequently we identify those configurations

in the path integral over U . With h =

(
d c

b a

)
, we identify φ as

tan

(
φ

2

)
∼
a tan

(
φ
2

)
+ b

c tan
(
φ
2

)
+ d

, ad− bc = 1 , (4.91)

or equivalently

F ∼ aF + b

cF + d
, (4.92)

where a, b, c, d are functions of y. There is also a complicated identification on the com-

ponents Λ and Ψ, which is consistent with the identification on φ and the asymptotic

constraints (4.64).

There is a similar story for global dS3. There we decomposed flat connections as

Ã = Ũ−1d̃Ũ with Ũ = exp (λ(y)θ)U . In this case we have introduced a redundancy under

λ(y)→ h(y)λ(y)h−1(y) , U → h(y)U . (4.93)

This leads to the identification

λ ∼ hλh−1 , tan

(
φ+

2

)
∼
a tan

(
φ+
2

)
+ b

c tan
(
φ+
2

)
+ d

, − cot

(
φ−
2

)
∼
a
(
− cot

(
φ−
2

))
+ b

c
(
− cot

(
φ−
2

))
+ d

.

(4.94)

Observe that the transformation law of φ− is that its S-transform, tan
(
φ−
2

)
→ − 1

tan
(
φ−
2

) =

− cot
(
φ−
2

)
, is identified with its image under fractional linear transformations.

In the Hartle-Hawking geometry φ is subject to the same PSL(2; R) quotient as φ+.

4.3.5 The boundary graviton measure

We would like to know the correct measure for the boundary graviton degrees of freedom,

the reparameterization field φ appearing for the inflating patch of dS3 and the future/past

reparameterizations φ± living on the boundaries of global dS3.

The derivation of the measure proceeds in almost the same way as in our analysis of

nearly dS2 gravity. There we considered BF theory, which after integrating out B reduces

to an integral over flat connections A. The flat measure on the space of flat connections

reduces to the boundary measure we studied for nearly dS2.

Consider Chern-Simons theory with compact, connected gauge group G and Chern-

Simons level k on the Lorentzian cylinder. This model reduces to a boundary G chiral WZW

model at level k, which can be thought of as the path integral quantization of a coadjoint

orbit of the corresponding Kac-Moody group [38]. Separating the time component At from
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the others Ã = Aidx
i, and after integrating out At, one is left with a residual integral over

the moduli space of flat spatial connections Ã = U−1d̃U . At fixed time, this space of flat

connections is symplectic, with a symplectic form identical to what one finds in BF theory

(with A→ Ã)

ω =
k

4π

ˆ
d2x εijtr

(
dÃi ∧ dÃj

)
. (4.95)

The total integration space of the Chern-Simons theory amounts to promoting the flat

connections under consideration to functions of time. As in our nearly dS2 analysis, we

parameterize a variation of Ã through a variation of U , namely dU = (dX)U with X ∈ g

a vector. We then have

ω =
k

4π

ˆ
d2x εijtr (d∂iX ∧ d∂jX) =

k

4π

ˆ 2π

0
dθ tr(dX ∧ dX ′) , (4.96)

as before. Here ′ indicates the angular derivative on the cylinder.

As in our discussion of BF theory we have to account for a gauge redundancy. Doing

so in a local way by taking U(0) = 1, or equivalently X(0) = 0, the gauge-fixed measure

at fixed time is identical to that in the BF case, namely (
∏
θ dX(θ)) δ(X(0))Pf(ω). This

measure is equivalent to
∏
θ>0 dµ(U(θ)) with dµ the Haar measure on G. Because G is

compact, this measure is positive-definite.

Now let us restore time. We now have a gauge redundancy under U(θ, t) ∼ h(t)U(θ, t),

which can be still be fixed in a local way, e.g. U(0, t) = 1. The gauge-fixed measure may be

denoted as [dX(t)]Pf(ω), or more precisely
∏
t

[
(
∏
θ>0 dX(θ, t))Pf(ω)

]
=
∏
θ>0,t dµ(U(θ, t)).

Next we review the case of pure AdS3 gravity on the Lorentzian cylinder, which is

a little bit more involved than the WZW example above. This AdS3 setting was dis-

cussed by two of us in [36]. Using the PSL(2; R) × PSL(2; R) Chern-Simons description

of three-dimensional gravity, one arrives at a PSL(2; R) × PSL(2; R) chiral WZW model

on the boundary, supplemented with constraints that encode the asymptotically AdS3

boundary conditions. The boundary degrees of freedom are reparameterization fields

φ(θ, t) and φ̄(θ, t), where at fixed time both φ and φ̄ are elements of the quotient space

Diff(S1)/PSL(2; R). This space is the first exceptional coadjoint orbit of the Virasoro group,

with Kirillov-Kostant symplectic form [38, 43, 72]

ω =
CAdS

48π

ˆ 2π

0
dθ

(
dφ′ ∧ dφ′′

φ′2
− dφ ∧ dφ′

)
, (4.97)

where CAdS = 3
2G3

is the classical central charge of AdS3 gravity. (There is a corresponding

term for φ̄.) In this setting, there is a PSL(2; R) gauge symmetry under

tan

(
φ

2

)
∼
a tan

(
φ
2

)
+ b

c tan
(
φ
2

)
+ d

. (4.98)

It may be fixed locally, say by taking φ(0) = 0, φ′(0) = 1, and φ′′(0) = 0. The measure at

fixed time is (
∏
θ dφ(θ)) δ(φ(0))δ(φ′(0)−1)δ(φ′′(0))Pf(ω). Stanford and Witten [44] showed

that the gauge-fixed measure is local away from θ = 0, given by
∏
θ>0

dφ(θ)
φ′(θ) (this measure
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was used in previous work [45] on the Schwarzian path integral) by explicit computation.

In the path integral quantization of the coadjoint orbit, the field φ(θ) is promoted to a

function of time, and after fixing the PSL(2; R) gauge symmetry locally (say via φ(0, t) =

0, φ′(0, t) = 1, φ′′(0, t) = 0), the measure becomes
∏
θ>0,t

dφ
φ′ .

In [36] it was shown (inspired by [38]) that the Haar measure on PSL(2; R), after

imposing the AdS3 boundary conditions, reduces to precisely
∏
θ>0,t

dφ
φ′ . However, using

the methods below, one can get the Kirillov-Kostant symplectic form (4.97) directly from

the flat Chern-Simons measure (4.95).

Now let us attack the case of interest, dS3 gravity in the PSL(2; C) Chern-Simons

formulation. Let us consider an inflating patch for simplicity. After integrating out Ay,

the space of flat connections Ã at constant y is symplectic with

ω =
ik

4π

ˆ
dtdx εijtr

(
dÃi ∧ dÃj

)
+ (c.c.) , k =

1

4G3
. (4.99)

Parameterizing Ã = U−1d̃U and writing out a variation of U as above, U−1dU = dX,

we find

ω =
ik

4π

ˆ
dx tr

(
dX ∧ dX ′

)
+ (c.c.) . (4.100)

Using the constraints (4.64), we find that asymptotically a dφ induces a variation dX =

(dU)U−1 so that after some integration by parts eq. (4.100) becomes

ω =
C

48π

ˆ
dx

(
dφ′ ∧ dφ′′

φ′2
− dφ ∧ dφ′

)
+ (c.c.) , C = i

3

2G3
. (4.101)

In this form we recognize ω as the Kirillov-Kostant symplectic form. Because of the bound-

ary condition on φ, the field φ is at constant time an element of DiffC(R)/PSL(2; C), with

imaginary central charge. This space may be viewed as a coadjoint orbit of D̂iffC(R).

4.3.6 Monodromies

As we have seen, global dS3 is more difficult to analyze than the inflating patch. In the

global case we decompose Ã = Ũ−1d̃Ũ with Ũ = exp(λ(y)θ)U . The symplectic form on

the space of flat connections at fixed y is now

ω =
ik

4π

ˆ
d2x εijtr

(
dÃi ∧ dÃj

)
+ (c.c.)

=
ik

4π

ˆ 2π

0
dθ tr

(
dX̃+ ∧ dX̃ ′+ − dX̃− ∧ dX̃ ′−

)
+ (c.c.) ,

(4.102)

where dX̃ = (dŨ)Ũ−1.

We have not found an enlightening presentation for this measure in terms of the bound-

ary reparameterization modes φ± and the monodromy λ. Let us focus on a few simple

cases. The simplest is to set the monodomy λ and its variations to vanish. Using the same

methods as above for the inflating patch, we find after some integration by parts that

ω =
CdS

48π

ˆ 2π

0
dθ

(
dφ′+ ∧ dφ′′+

φ′2+
− dφ+ ∧ dφ′+ −

(
dφ′− ∧ dφ′′−

φ′2−
− dφ− ∧ dφ′−

))
+ (c.c.) .

(4.103)
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The second simplest case is to expand perturbatively around the dS3 critical point. Specif-

ically, we expand around the dS3 solution

φ± = θ +
∑
n

ε±n e
inθ , (4.104)

and take ε±n and λ to be of the same infinitesimal order. We readily find the symplectic

form to quadratic order in fluctuations,

ω=
CdS

24

[
i

∑
n 6=−1,0,+1

n(n2−1)
(
dε+−n∧dε+n −dε−−n∧dε−n

)
(4.105)

+4idλ1∧dε(0)−4dλ(+)∧dε(−)+4dλ(−)∧dε(+)− 3i

2
dλ(−)∧dλ(+)

]
+(c.c.) ,

where we have defined

ε(0) ≡ ε+0 − ε
−
0 , ε(±) ≡

ε+±1 + ε−±1

2
, λ(±) = λ2 ± λ0 . (4.106)

There is a lot of information here to unpack. In this perturbative setting, infinitesimal

PSL(2; C) transformations act as

δε+0 = δε−0 , δε+±1 = −δε−±1 , (4.107)

while the λ’s and the combinations ε−1,0,1 defined above are gauge-invariant. We then see

that the perturbative symplectic form (4.105) is gauge-invariant, as the first line receives

no contribution from the n = −1, 0, 1 modes, and the second line entails gauge-invariant

quantities. Further, the gauge-invariant combinations of n = −1, 0, 1 modes, ε(0),(+),(−),

are conjugate to the monodromy.

The gauge-invariant degrees of freedom are then the n 6= −1, 0, 1 fluctuations of the

reparameterization fields ε±n , and the conjugate (ε(0), λ(1)), (ε(+), λ(−)) and (ε(−), λ(+)).

The final simple case we can analyze is the nonlinear measure on the “twist” ε(0) and

λ1. Let us choose a convention whereby φ± are initially periodic around the circle with

λ = −iαJ1. The monodromy and φ± appear through the combination αθ+ φ±, and so we

perform the field redefinition αθ + φ± → αφ±. The new fields φ± obey φ±(θ + 2π, y) =

φ±(θ, y) + 2π. Consider the particular fluctuation dα, dφ+ = dγ, dφ− = 0. We readily

compute the contribution to the measure to be

ωWP =
CdS

24
αdα ∧ dγ + (c.c.) . (4.108)

Up to a constant, this is the Weil-Petersson measure, as in our nearly dS2 analysis. In this

parameterization one has

Ũ+ =

cos
(
αφ+

2

)
− sin

(
αφ+

2

)
sin
(
αφ+

2

)
cos
(
αφ+

2

) (Λ+ 0

0 Λ−1
+

)(
1 Ψ+

0 1

)
, (4.109)

so that γ lives on the complex cylinder with γ ∼ γ + 2π.

– 79 –



J
H
E
P
0
6
(
2
0
2
0
)
0
4
8

The gravitational interpretation of this field configuration is the following. It is topo-

logically an annulus, obtained by gluing a future dS3 patch to a past dS3 patch. When

γ and α are real, the gluing is performed across a geodesic of length ∼ α, and where the

angle on the past circle is related by a shift γ to the angle on the future circle.

4.4 Gravitational path integrals

In this subsection we put the pieces together from the last subsection and compute loop

corrections to the gravitational path integral on an inflating patch and for global dS3.

Similar computations, albeit in a slightly different context, were performed in [12, 13, 73].

4.4.1 Inflating patch

We would like to compute loop corrections to the central charge of gravity in an inflating

patch of de Sitter, as well as the spectrum of local operators on the boundary. To get both

at once, let us use the trick of putting the theory on the boundary of the inflating patch on

a torus of complex structure τ by identifying z ∼ z + 2π and z ∼ z + 2πτ . On the infinite

plane, the field φ maps the constant-y surface, i.e. the line x, to the circle. We keep this

property intact, so that the boundary conditions on φ are

φ(x+ 2π, y) = φ(x, y) + 2π ,

φ(x+ 2πRe(τ), y + 2πIm(τ)) = φ(x, y) .
(4.110)

The field φ is subject to the “gauge symmetry” (4.91), and the symplectic form on the

integration space at fixed y is given by (4.101).

The computation of the torus partition function of this model to one-loop order

closely imitates the analysis in [36] for pure AdS3 gravity (which reproduces previous

results [74, 75]). The unique critical point of the model (modulo the PSL(2; C) quotient) is

φ0 = x− Re(τ)

Im(τ)
y . (4.111)

Its action is

S0 = −πC
12

(τ − τ̄) , (4.112)

so that the classical approximation to the partition function is

Zclassical = eiS0 = |q|−
C
12 , q = e2πiτ . (4.113)

We expand in fluctuations around the critical point φ = φ0 + ε, and we then decompose ε

into Fourier modes on the torus,

φ = φ0 +
∑
n,m

εm,ne
in

(
x−Re(τ)

Im(τ)
y
)

+ imy
Im(τ) . (4.114)

Here ε is complex and so we further decompose it into real and imaginary parts, Rε and

Iε. Letting Rεm,n and Iεm,n denote the Fourier modes of Rε and Iε, we have εm,n =
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Rεm,n + iIεm,n and Rε∗m,n = Rε−m,−n, Iε∗m,n = Iε−m,−n. The quadratic approximation to

the action (4.65) is then

S = S0 +
πiC

3

∑
n>1,m

n(n2 − 1)E†m,nDm,nEm,n +O(ε3) , (4.115)

where

Dm,n =

(
nIm(τ) nRe(τ)−m

nRe(τ)−m −nIm(τ)

)
, Em,n =

(
Rεm,n
Iεm,n

)
. (4.116)

The matrix Dm,n has the nice feature that

det(Dm,n) = −|nτ −m|2 , (4.117)

the eigenvalues of the scalar Laplacian on the torus. We may use the PSL(2; C) freedom

to set

εm,n=−1,0,1 = 0 . (4.118)

The quadratic action is completely real and so to path integrate eiS , we rotate the contour

of field integration. Equivalently we define the Gaussian integral by analytic continuation.

Now we turn to the measure. Evaluating the symplectic form (4.101) on the critical

point, we find

ω =
C

6

∑
n

n(n2 − 1)dRεn ∧ dIε−n , Pf(ω) =
∏
n>1

∣∣∣∣36n(n2 − 1)

∣∣∣∣2 (4.119)

and so the relevant one-loop measure is

[dφ] =
∏

n>1,m

d2Rεm,nd
2Iεm,n

∣∣∣∣C3 n(n2 − 1)

∣∣∣∣2 , (4.120)

and the one-loop partition function reads

ZHH = |q|−
C
12

∏
n>1,m

ˆ
d2Rεm,nd

2Iεm,n

∣∣∣∣C3 n(n2−1)

∣∣∣∣2 exp

(
−πC

3
n(n2−1)E†m,nDm,nEm,n

)

= |q|−
C
12

∏
n>1,m

1

|nτ−m|2
= |q|−

C+13
12

∞∏
n=2

1

|1−qn|2
. (4.121)

The final result is the character of the vacuum representation of the Virasoro algebra with

central charge

c1-loop = C + 13 = i
3

2G3
+ 13 . (4.122)

We see that the model on the future patch has a spectrum of operators given by the

identity and its Virasoro descendants, and that the one-loop renormalization of the central

charge is finite and real. In fact, the one-loop renormalization of the central charge by 13

is the same for pure AdS3 gravity [36, 75]. Restoring the radius, the result there is

c =
3LAdS

2G3
+ 13 , (4.123)
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which matches the one we find above under the simple analytic continuation LAdS →
iLdS. One also has the same spectrum of local operators, the identity and its Vira-

soro descendants.

The torus partition function of the model obtained from Lorentzian AdS3 gravity is

one-loop exact [36], by a similar localization argument used by Stanford and Witten [44]

for the Schwarzian path integral. The crucial feature is that one has a phase space path

integral, where the phase space is Kähler with a metric invariant under the Hamiltonian

flow. Those same features persist in this model, since we are dealing with the coadjoint

orbit DiffC(S1)/PSL(2; C).

Indeed, a closely related result has appeared in the literature previously [13], where

the authors studied the wavefunction for universes which asymptote to a torus at future

infinity. The wave function was studied as a function of τ , and both perturbative and

non-perturbative contributions were evaluated using the continuation to Euclidean AdS.

The result was a wavefunction that diverged as τ → i∞, which in that case arose from the

sum over Euclidean AdS saddle points with torus boundary.

4.4.2 Global dS3

Now we treat global dS3. We take the same approach as in the last subsection, putting the

theory on a torus and dropping the constant term in the action (4.84), which encodes the

contribution of the classical central charge C to the partition function on S2 ∪ S2. This

procedure is a bit artificial, and so at the end we take a degeneration limit so as to find

ourselves back on the sphere. We note that, as we now have a pair of fields φ±, the result

of the computation will be a bit different from that on the inflating patch discussed above.

We start from a convention where φ± are periodic around θ and λ = −iJ1. The

boundary condition on λ implies that λ1 is fixed at the poles of the sphere. We then move

to a convention where φ± obey the boundary condition

φ±(θ + 2π, y) = φ±(θ, y) + 2π ,

φ±(θ + 2πRe(τ), y + 2πIm(τ)) = φ±(θ, y) ,
(4.124)

and λ fluctuates around zero. We take the monodromy to be periodic in y, but do not

allow λ1 to have a constant mode.

There is a manifold of critical points of the model modulo the PSL(2; R) quotient,

φ+,−0 = φ−,0 + γ, , φ−,0 = θ − Re(τ)

Im(τ)
y , λ = 0 , (4.125)

parameterized by a twist γ. We then perturb around this solution with φ+ = φ+,0 + ε+

and φ− = φ−,0 + ε−, taking ε± and λ to be of the same order. Decomposing these into

Fourier modes as before,

φ+ = φ+,0 +
∑
n,m

ε+m,ne
imy
Im(τ)

+in
(
θ−Re(τ)

Im(τ)
y
)
,

φ− = φ−,0 +
∑
n,m

ε−m,ne
imy
Im(τ)

+in
(
θ−Re(τ)

Im(τ)
y
)
,

(4.126)
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we further decompose

ε±m,n = Rε±m,n + iIε±m,n , (Rε±m,n)∗ = Rε±−m,−n , (Iε±m,n)∗ = Iε±−n,−m . (4.127)

We also decompose the fluctuations of the monodromy into Fourier modes

λA =
∑
m

λAme
imy
Im(τ) , λAm = RλAm + iIλAm , (4.128)

with

(RλAm)∗ = RλA−m , (IλAm)∗ = IλA−m . (4.129)

The boundary condition on the monodromy amounts to the statement that there is no

m = 0 mode for λ1. Infinitesimal PSL(2; R) transformations act as

δε+m,0 = δε−m,0 , δε+m,±1 = −δε−m,±1 , (4.130)

and the monodromy is invariant. The linearized gauge-invariant combinations are

ε(0)
m = ε+m,0 − ε

−
m,0 , ε(±)

m =
ε+m,±1 + ε−m,±1

2
. (4.131)

The m = 0 modes of ε
(0)
m are already accounted for with the integral over the manifold of

critical points.

The quadratic approximations to the action and symplectic form read

S =
πiC

3

[ ∑
n>1,m

n(n2 − 1)
(
E+†
m,nDm,nE

+
m,n − E−†m,nDm,nE

−
m,n

)
−
∑
m

[
(τ −m)

(
λ(+)
m ε

(−)
−m + λ(−)

m ε
(+)
−m

)
+
i

2
mλ1

mε
(0)
−m + (c.c.)

] ]
(4.132)

ω =
C

6

[∑
n

n(n2 − 1)
(
dRε+n ∧ dIε+−n − dRε−n ∧ dIε−−n

)
+

(
idλ1 ∧ dε(0) − dλ(+) ∧ dε(−) + dλ(−) ∧ dε(+) − 3i

8
dλ(−) ∧ dλ(+) − (c.c.)

)]
,

where

λ(±)
m = λ0

m ± λ2
m , (4.133)

and in the symplectic form we are only considering contributions from a constant-y slice.

The matrix Dm,n is given in (4.116), and

E±m,n =

(
Rε±m,n
Iε±m,n

)
. (4.134)

For the |n| > 1 modes, this is just a doubled version of the path integral at future infinity.

The remaining reparameterization modes, except for the zero modes, are lifted by the

coupling to the monodromy. The remaining zero modes are already parameterized through
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γ. Computing the functional determinant we find that the one-loop approximation to the

path integral is

Z =

(
|q|−

C+1
12

∞∏
n=1

1

|1− qn|2

)2

(4.135)

where we have included by hand the classical central charge. This partition function is the

square of a character of an ordinary Verma module.

Let us briefly discuss how the different parts of this result arise. There is an implicit

infinite volume prefactor coming from the manifold of critical points labeled by γ, which

we regularize. The determinant that arises from integrating out the |n| > 1 modes of the

reparameterization fields is ∏
n>1,m

1

|nτ −m|4
, (4.136)

which leads to the part of the infinite product in (4.135) from n = 2 to infinity. Integrating

out the modes of the monodromy leads to an infinite product of delta functions for the

gauge-invariant modes ε
(0),(+),(−)
m , and the integral over those modes picks up a factor∏

m

1

|τ −m|4
, (4.137)

which leads to a multiplicative factor of 1
|1−q|4 . This accounts for the n = 1 contribution

to the product in (4.135).

For computational ease we have put our dS3 model “by hand” on boundary tori. How-

ever, the true global dS3 model lives on boundary spheres. We recover the corresponding

sphere partition function from a degeneration of the tori (see [36] for details for a similar

analysis in AdS3), giving us the global dS3 partition function

Z = (Rµ)2c/3 , c = C + 1 , (4.138)

where R is the radius of each of the boundary spheres.

5 Concluding remarks

5.1 Summary

We dedicated most of our attention in this manuscript to the path integral of Jackiw-

Teitelboim gravity in two-dimensional nearly de Sitter spacetime. This theory of gravity

has a small phase space of connected, purely Lorentzian solutions. The only saddle points of

the model are global nearly dS2 spacetimes which have circle boundaries at future and past

infinity. All have the shape of a Lorentzian hyperboloid. These geometries are characterized

by two canonically conjugate quantities: the length 2πα of the minimal length geodesic

around the “bottleneck,” and the twist γ of the angle on the future circle relative to the

angle on I−. (This twist is the de Sitter analogue of the “time shift” in [76].) See figure 13.

As is familiar from worldsheet string theory, to define a genus expansion we must

continue to Euclidean signature. One might think of defining a continuation modeled on

the Hartle-Hawking construction, where instead of gluing a Euclidean hemisphere to the
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Figure 13. Schematic diagram of global dS2. The asymptotic boundaries have lengths β+ and β−,

there is a minimal length geodesic of length 2πα, and there is a twist γ.

geodesic t = 0 slice of global dS2, we glue in some other constant positive curvature smooth

Euclidean geometry of higher genus. However, such geometries do not exist. In this work we

have exploited another analytic continuation, originally due to Maldacena [5], of Lorentzian

dS to Euclidean AdS. In this scheme, rather than gluing in a Euclidean hemisphere to the

t = 0 slice, one attaches Euclidean AdS directly to I+. Inspired by this, we showed

that Jackiw-Teitelboim gravity in dS2 may be analytically continued to Jackiw-Teitelboim

gravity in Euclidean AdS2, provided that one works in the first-order formalism.

The first-order presentation of the Lorentzian nearly dS2 theory and the Euclidean

nearly AdS2 theory may each be written as a PSL(2; R) BF theory. To two theories are

mapped to one other under a permutation of the first-order variables and a suitable analytic

continuation of the dilaton boundary condition.12 In Euclidean AdS, the path integral in

the first order formulation is not quite the same as the corresponding path integral in

the metric formulation. The topological gauge theory integrates over metrics continuously

connected to a single representative, and so has no sum over topologies, whereas the metric

formulation does contain such a sum. This being said, the two formulations, expanded

around a given geometry, are expected to agree to all orders in perturbation theory. Thus

to match the first order formalism to the metric formulation, one includes an additional

sum over topologies in the BF theory “by hand.”

12 In nearly AdS2 the dilaton goes to 1/(J ′ε) with ε → 0 as the boundary is sent to conformal infinity.

In nearly dS2 spacetime, the dilaton goes from a large negative value near past infinity, −1/(Jε), to a large

positive value near future infinity, 1/(Jε). When mapping a Euclidean AdS boundary to a component of

I− one takes J ′ → iJ , and J ′ → −iJ for a component of I+.
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To define a genus expansion for de Sitter JT gravity, we first carefully studied the

Hartle-Hawking geometry and global dS2 from a variety of perspectives. In the metric

formulation it is easy to find a Schwarzian-like boundary action for fluctuations around both

spacetimes, and we verified that one finds the same action in the first-order formulation.

One advantage of the first order formalism is that we can use it to compute the nonlinear

measure for the path integral, as is well-known in the context of BF theory [42], and

which was analyzed recently for AdS3 [36] and nearly AdS2 gravity [21]. We then relate

the Hartle-Hawking and global dS2 backgrounds, and the Schwarzian-like models on their

boundaries, to corresponding backgrounds and models of Euclidean nearly AdS2 gravity.

JT gravity on the Hartle-Hawking geometry is mapped to Euclidean AdS2 JT gravity on

the Poincaré disk, via the 2d version of the Maldacena contour. In the BF formulation

this mapping between the two models is consistent, as both the Hartle-Hawking geometry

and the Poincaré disk are characterized by a trivial holonomy at infinity. JT gravity on

global dS2 is mapped to JT gravity on the “double trumpet” geometry of [21], which is the

Euclidean hyperbolic cylinder. However, this map is not immediate, and involves another

ingredient in the continuation from Euclidean AdS to dS.

Let us recall one of the key points of [21]. Smooth Euclidean R = −2 geometries with

multiple asymptotic regions are characterized by minimal geodesics of lengths bi, along

which the asymptotic regions are glued to an intermediate surface. In the BF formulation,

there is a hyperbolic PSL(2; R) holonomy around each asymptotic circle, and the path

integral includes a suitable integral over these b’s. In the present paper, we found that the

situation is reversed in de Sitter. The asymptotic de Sitter regions are characterized by

elliptic holonomies around the asymptotic circles. In mapping the double trumpet to global

dS, we must not only analytically continue the dilaton boundary condition, but we must

also analytically continue the length of the Euclidean “bottleneck” as b→ 2πiα, where 2πα

is the length of the Lorentzian “bottleneck.” We were then confronted by the question of

what integration measure to use over α. We found that there were two consistent definitions

of the path integral, depending on whether we took the measure over α to be either minus

or plus (2π)2αdα. The choice with a minus sign amounts to putting a factor of (−1)E

into the path integral, where E counts the number of independent elliptic holonomies.

Crucially, for that choice, the integration measure over b (namely bdb) continues directly to

the measure over α, and in fact the path integral for the double trumpet is then mapped

exactly to the path integral of global dS2. In what follows we elect to choose the α measure

to be −(2π)2αdα.

After the continuation, the double trumpet becomes a singular R = −2 space. It

is composed of two hyperbolic cones with cone angles 2πα, glued to each other at the

tips. However, we stress that while the space is singular a Riemannian manifold, it is a

completely smooth gauge configuration. From the gauge theory point of view it is simply

an annulus endowed with a smooth, flat PSL(2; R) bundle.

Indeed, one way to describe the map from Euclidean AdS2 to dS2 is that, by going

to the topological gauge theory description, the same PSL(2; R) gauge field corresponds to

two different metrics. One is Lorentzian with curvature R = 2, and the other Euclidean

with R = −2. When one metric has a cone point, the other is smooth. In the global
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dS2 case, the PSL(2; R) connection describing the double hyperbolic cone admits a smooth

metric everywhere.

With all of these results in hand we can define the de Sitter genus expansion. Take

I+ to have n+ circles of sizes β+
a , and I− to have n− circles of sizes β−m. The gravitational

path integral with these boundary conditions computes a transition amplitude, which de-

pends on the number of boundary circles and their sizes. We sum over bulk surfaces that

fill in the boundaries. In the topological gauge theory description these surfaces are sim-

ply characterized by smooth, flat PSL(2; R) bundles, with elliptic holonomies around the

asymptotic circles. Locally, there are two smooth metric descriptions. Inevitably, once

the bulk surface has more than two boundaries or has genus g > 1, neither of these met-

ric descriptions is smooth everywhere. Elliptic holonomies guarantee cone points in the

Euclidean R = −2 description, while hyperbolic holonomies guarantee the analogue of

cone points in the Lorentzian R = 2 description. For practical purposes we simply define

the path integral at fixed genus using the topological gauge theory, but if we wanted to

think in terms of spacetime geometry, then the natural procedure is to use different metric

descriptions in different regions as need be.

One way to regard these geometries recalls the Hartle-Hawking construction. Take n+

future de Sitter trumpets and n− past trumpets, each of which is characterized by a mini-

mal length geodesics with lengths 2παa and 2παm, or equivalently by elliptic holonomies.

We then glue in an intermediate surface Σ. From the point of view of the Euclidean con-

tinuation, the intermediate surface has R = −2 surface with cone points, characterized by

the same elliptic holonomies. We then glue Σ to the dS trumpets. See figure 8. While this

procedure might appear singular, it is not: the gauge connection is everywhere smooth. In

the metric description, we could simply use the Lorentzian R = 2 description slightly past

the gluing, in terms of which the cone point is merely a bottleneck.

Another way to think about the bulk geometry is analogous to the Maldacena contour,

in which one uses the Euclidean R = −2 description throughout. We have the same

intermediate surface Σ, but we replace the asymptotic dS2 regions with n hyperbolic disks

Di attached to I+ and I−. The elliptic holonomies guarantee that these disks are in fact

hyperbolic cones of angles 2παi. The tips of these cones are then glued to the tips of Σ.

Near the tips the Euclidean R = −2 description breaks down, but the Lorentzian R = 2

description is perfectly smooth.

One might wonder if there is a smooth Lorentzian R = 2 description throughout.

However, there is not. At generic points in the moduli space of Σ there are hyperbolic

holonomies around the internal cycles. In the Euclidean description these cycles remain

finite size, but in the Lorentzian description they shrink to zero size at points, and the

Lorentzian metric there has the analogue of conical singularities, locally of the form

ds2 = −dt2 + b2t2du2 , u ∼ u+ 1 . (5.1)

The transition amplitude then has a genus expansion. The term at genus g with n+

future and n− past boundaries with n = n+ +n− is, for some convention for volumes (here

we have in mind the more general topologies, not the Hartle-Hawking geometries or global
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dS2, whose path integrals are given by slightly different expressions),

Zg,n+,n−(βaJ,βmJ) = (−1)n(2π)2n

ˆ ∞
0

α1dα1 . . .αndαnṼg,n(α1, . . . ,αn) (5.2)

×ZF (β1J,α1) . . .ZF (βn+J,αn+)ZP (βn++1J,αn++1) . . .ZP (βnJ,αn) ,

where ZF is the integral over the Schwarzian mode on one of the circles at I+, and ZP
is the integral over the Schwarzian mode on one of the circles at I−. ZP is in fact the

complex conjugate of ZF . The factor of Ṽg,n refers to the volume of the moduli space of flat

connections on the intermediate surface Σ. These Σ may be described metrically as genus

g hyperbolic cones with n cone points of angles 2παi. Ṽg,n is the Weil-Petersson volume of

the moduli space of such surfaces. It has been proven [52] that in the region αi ≤ 1/2, the

Ṽg,n’s are in fact the continuation of the Weil-Petersson volumes Vg,n of moduli spaces of

genus g hyperbolic surfaces with geodesic borders of lengths bi, with

Ṽg,n(α1, . . . , αn) = Vg,n(b1 → 2πiα1, . . . bn → 2πiαn) , αi ≤
1

2
. (5.3)

However once one of the cone angles opens up past π, the proof of [52] breaks down. See

also [48, 51] for a discussion.

Now as we have seen the natural description of Σ is not in terms of a metric, but in

terms of a flat PSL(2; R) bundle. From that point of view Σ is a genus g surface with n

holes, and elliptic holonomies around the holes. What do the volumes Ṽg,n correspond to

in the gauge theory description? To answer this it is worthwhile to back up a step, and

revisit the gauge theory description of the more tame Vg,n’s. We refer the reader to an

elegant computation of V1,1 by Kim and Porrati [37]. Rather than considering a hyperbolic

metric on a one-holed torus, they compute the volume of the moduli space of flat PSL(2; R)

connections on a one-holed torus with the condition that the holonomy H around the hole

is hyperbolic and fixed via tr(H) = 2 cosh(b/2). In the metric interpretation the hole

is homotopic to a geodesic boundary of length b. As in our computations, they integrate

using the symplectic measure on flat connections, which is equivalent to the Weil-Petersson

measure. The resulting volume precisely reproduces V1,1, and indeed it had to be the case.

For our Ṽg,n’s we have in mind the analogous computation where the holonomies around

the holes are elliptic rather than hyperbolic, with tr(H) = 2 cos(πα). From this point of

view α = 1/2 is clearly special, but there does not seem to be an obstruction to continuing

past it. There is one subtle point here: from the Lorentzian R = 2 metric, it is clear that

we integrate over all positive α. (In global dS2, α is the length of the “bottleneck” and

can be arbitrarily large.) Thus these elliptic holonomies are valued in the universal cover

of PSL(2; R), rather than PSL(2; R). In any case, there seems to be no problem in defining

Ṽg,n beyond for all α, and indeed this definition is what the JT path integral hands us.

In this work, we follow a conjecture that the Ṽg,n’s are analytic functions of their

arguments past the αi = 1/2 boundary. If this is indeed the case, then there is a direct

analytic continuation between the genus expansion of Lorentzian de Sitter JT gravity and

that of [21] for Euclidean AdS2.
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In the rest of our discussion let us assume that this continuation holds. Then the

Lorentzian dS2 and Euclidean AdS2 genus expansions are related up to a continuation of

the dilaton boundary condition J , described in Footnote 12. We then find

Zg,n+,n−(βaJ, βmJ) = Zg,n(−iβaJ, iβmJ) , (5.4)

where the Zg,n’s are the expansion coefficients for Euclidean AdS2 at genus g with n

boundaries. Since the Zg,n’s may be generated from a matrix integral [21], it follows that the

genus expansion de Sitter JT gravity is likewise captured by a matrix integral. Specifically,

the matrix integral computes the de Sitter transition amplitudes. The dictionary would be

Zg,n+,n−(βaJ,βmJ) =
〈

tr
(
eiβ1H

)
. . .tr

(
eiβn+H

)
tr
(
e−iβn++1H

)
. . .tr

(
e−iβnH

)〉
MM,conn,g

.

The right-hand-side is an average within the putative double-scaled matrix model, “conn”

denotes the connected part, and we take the genus g contribution in the usual sense of the

genus expansion in matrix integrals. See subsections 2.9 and 3.2 for further discussion.

Now let us discuss the genus expansion parameter in de Sitter JT gravity. There is a

topological term
S0

4π

ˆ
d2x
√
−g R , S0 =

ϕ0

4G2
, (5.5)

in the Lorentzian action. Here ϕ0 is the value of the dilaton on the horizon of the “static

patch.” It is related to the classical cosmological entropy of the “static patch” of nearly dS2

(see subsection 2.1) as Scosmo = 2S0. Naively this term evaluates to the Euler characteristic

of the spacetime. However, as we saw for the Hartle-Hawking geometry, it in fact evaluates

to iχT with χT = 2g + n − 2 the topological characteristic. As a result genus g surfaces

with n boundaries contribute to the path integral as (e−S0)2g+n−2, with e−S0 the small

genus expansion parameter. The connected part of the amplitude between n− past and n+

future boundaries is then

Ψn+,n−,conn(βaJ, βmJ) '
∞∑
g=0

Zg,n+,n−(βaJ, βmJ)

(eS0)2g+n−2
. (5.6)

This series expansion is asymptotic, and so de Sitter JT gravity begs for a non-perturbative

completion. Given that the coefficients of its genus expansion are analytic continuations

of the coefficients for the genus expansion of Euclidean AdS2, one attractive, (non-unique)

non-perturbative completion is the matrix integral of [21] which generates the latter coeffi-

cients. One would simply probe the double scaled matrix model with insertions of tr
(
eiβH

)
and tr

(
e−iβH

)
.

Another way to realize an average over Hamiltonians is with annealed or quenched

disorder as in the SYK model [77–79]. It is already known that the SYK model exhibits

gravitational physics, in that it has a Schwarzian limit at low temperature and large N ,

as one finds in Euclidean AdS2 [27, 30, 31]. So one might wonder whether there is an

SYK-inspired model which imitates gravitational physics in nearly dS2. At the level of the

matrix model, the continuation suggested by gravity is that a future boundary corresponds
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to tr(e−βH) with the coupling J of SYK analytically continued as J → −iJ . This is

accomplished by considering

ˆ
dJi1...iq exp

− ∑
i1<···<iq

J2
i1...iq

2J 2

(ˆ [dχ]eiSE [χ;Ji1...iq ]

)
, (5.7)

where the χi are N real quantum mechanical fermions, SE [χ; J ] is the Euclidean action of

SYK on a thermal circle of size β, and J 2 = (q−1)!J2

Nq−1 . This model has a dynamical mean

field description with large N equations which can be mapped to those of Euclidean SYK.

However, the ensuing model does not seem to bear a resemblance to gravitational physics

in nearly dS2. The path integral Z = e−S is purely real, whereas we saw that with a single

future boundary the JT path integral is complex, with ZHH ∼ eS0
´

[Df ] exp(iSsch[f ]) and

Ssch[f ] the Schwarzian action. However, it is possible that there is some modification that

connects to nearly-dS2 physics.

This all being said, there is significant evidence that the right microscopic completion

is in terms of a disordered system like random matrix theory. Consider the transition

amplitude with fixed boundary conditions near I±, where one might imagine that there is

a dual QFT living on I+ ∪ I−. Crucially, each connected component of the boundary is

endowed with an independently conserved stress tensor. See e.g. [80] for a discussion in AdS

holography. This fact implies that there is an independent rotation symmetry associated

with each component of the boundary, U(1)n in two dimensions with n boundaries, which

is broken down to at most a single U(1) symmetry by the spacetime which connects the n

components of the boundary. This in turn implies that, if there is a dual QFT description,

there are no local interactions between degrees of freedom on one boundary component

and degrees of freedom on another.

However, from the bulk spacetime we infer the existence of nonzero correlations be-

tween different components of the boundary. As we just saw, these correlations cannot be

mediated by local interactions. For a theory in Euclidean signature, the only options we

know concretely are to (i) sacrifice locality (or perhaps for it to be broken at a high energy

scale compared to the dS radius), or (ii) consider an ensemble of theories, or perhaps some

combination of (i) and (ii). To see that an ensemble may generate such correlations, con-

sider a QFT with two sets of degrees of freedom, χ1 and χ2, with a simultaneous coupling

λ for an operator O,

S ⊃ λ
ˆ
dθ1O1(θ1) + λ

ˆ
dθ2O2(θ2) . (5.8)

Averaging over λ with annealed Gaussian disorder13 and integrating it out, the combined

effective action now has non-local interactions

S ⊃
(ˆ

dθ1O1(θ1)

)(ˆ
dθ2O2(θ2)

)
. (5.9)

Said another way, certain nonlocal interactions may be understood as coming from joint

disorder averages over ensembles of local theories. Furthermore, an appealing feature of an

13One can also implement quenched disorder, but the corresponding calculation is more subtle.
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ensemble is that it seems broad enough to encapsulate not just a boundary theory on say

a single circle, or two circles, but instead to describe an arbitrary number of components

for I± all at once, for instance through averages of the form 〈tr(eiβ1H) · · · tr(e−iβnH)〉MM.

There have been previous hints (see e.g. [11]) in the literature that the holographic dual

to de Sitter gravity is a disordered system. Certainly, when one computes cosmological

correlators one averages over boundary conditions on I+, which can be thought of as

integrating over sources for a dual CFT. The indications for disorder here are of a related,

but somewhat different vein, since they are visible even before performing an average over

boundary conditions.

In the last part of the present paper we studied pure gravity in three-dimensional de

Sitter spacetime. Three-dimensional gravity is also topological, with the Chern-Simons

formulation playing the same role as the BF theory in two dimensions. In Lorentzian

AdS3 it was recently appreciated in [36] (see also [81]), correcting previous work [82], that

one can obtain the path integral for the boundary gravitons of AdS3. The resulting theory

is, in a sense, the quantization of the Schwarzian theory that arises in nearly Euclidean

AdS2. The integration space of the latter is a coadjoint orbit of the Virasoro group,

Diff(S1)/PSL(2; R), which is symplectic, and the Schwarzian path integral is morally of the

form
´

[dq dp]e−H . The integration space on the boundary of global AdS3 is, at constant

time, (two copies of) the space Diff(S1)/PSL(2; R), and its path integral is morally of the

form
´

[dq(t)dp(t)]ei
´
dt(pq̇−H) [38]. Theories of this kind, built from a phase space M, are

sometimes called the path integral quantization of M. (Indeed, for M that admit quanti-

zation, this is the path integral version of geometric quantization (see e.g. [40, 66, 83]).)

The story for dS3 parallels that of Lorentzian AdS3. The model on the boundary

of dS3 is a path integral quantization of a complexified version of the Schwarzian model

on the boundary of nearly dS2, where “time” is one of the Euclidean directions at future

infinity. Borrowing heavily from the techniques two of us used to study AdS3 [36], above

we obtained boundary path integrals for an inflating patch of dS3 as well as global dS3,

and computed the one-loop approximation to the path integral for each.

A nice technical result is the path integral for global dS3, eq. (4.135). This result ap-

pears to factorize into contributions coming from each boundary, which may be somewhat

surprising. The theory on the boundary of global dS3 has a reparameterization mode on

each boundary, corresponding to the boundary gravitons, along with a monodromy degree

of freedom. (The path integral quantization resembles that of Chern-Simons theory on the

annulus [71], since the space at fixed latitude on the constant-time slice sphere is a topo-

logical annulus.) The reparameterization modes are not coupled by local interactions, but

they are coupled to each other through the monodromy. Further, all fields are subject to a

redundancy that simultaneously involves the degrees of freedom living on I±. Accordingly,

this model fails to “factorize” between the two boundaries, in a related way as nearly AdS2

gravity [76].

However, this non-factorization was previously known. It is a general feature in Chern-

Simons theory with compact gauge group G and level k on the annulus, which is equivalent

to a G WZW model at level k [71]. The Hilbert space of the model is
⊕

λHλ⊗Hλ̄, where

λ labels the unitary highest-weight Kac-Moody representations with group G and level
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k, and λ̄ is the conjugate representation. This Hilbert space clearly does not factorize:

left-movers in the representation λ, which live on one boundary, are tied to right-movers

in the conjugate representation, living on the other boundary.

This non-factorization is important to keep in mind when interpreting the path integral

for global dS3 eq. (4.135). There, we effectively restricted ourselves to a single represen-

tation through our boundary condition on the monodromy, which in the language of our

dS2 analysis would correspond to fluctuating around α = 1. If we had restricted to a more

general α, we would have instead found

Z =

(
|q|−

Cα2+1
12

∞∏
n=1

1

|1− qn|2

)2

, (5.10)

which is the character of a highest-weight representation of two copies of Virasoro with

central charge c = C + 1 and dimension h = h̄ = C(1−α2)
24 . This is of course consistent with

the result for compact G mentioned above.

We have emphasized that nearly dS2 and dS3 gravity can be regarded as suitable ana-

lytic continuations of Euclidean nearly-AdS2 and Euclidean AdS3 gravity. We extensively

used this continuation to interpret the backgrounds we summed over in the nearly dS2

genus expansion. However, we stress that the de Sitter transition amplitudes may not be

automatically obtained by continuation of the Euclidean path integral. Indeed, while the

“disk” amplitude of dS2 JT gravity follows from continuation, we saw that subtleties arise

beyond the disk. Already for global dS2, the path integral depends on a choice of inte-

gration measure for the variable α, and depending on that choice the de Sitter transition

amplitude matches the continuation from Euclidean signature up to a sign. The situation

is even more intricate at higher genus or with more boundaries. Our implicit point of

view throughout is that to compute dS observables we must still perform the honest dS

computation. This is in accord with the analysis in [62, 84].

5.2 Discussion

Let us conclude with an outlook on some directions for future study.

One striking feature of our boundary path integrals is that the bulk Lorentzian time is

emergent. While the boundary theories are Euclidean, they describe real-time gravitational

contributions to scattering. This is particularly emphatic in global de Sitter, in which we

can compute scattering from past to future infinity. Of course, emergent time is a prominent

feature of various proposals for the dS/CFT correspondence [6–8, 85, 86]. In light of recent

developments in AdS/CFT which explore the emergence of space from entanglement in

the dual CFT (see e.g. [87–97]), it should be fruitful to import these ideas to study the

emergence of time in de Sitter. There have been suggestions over the years that time in

global de Sitter arises from some appropriate notion of entanglement between the past

and future boundary theories (see, for instance, [98–101]). The basic intuition is that

the global de Sitter Penrose diagram resembles the AdS BTZ black hole Penrose diagram

rotated by 90 degrees, and that one may study the emergence of space in the latter through

AdS/CFT [87]. In the absence of an example of a dS/CFT duality where the gravitational
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theory lives on global dS, sharper analyses may be premature. Nevertheless, the boundary

path integrals in nearly dS2 and dS3 give a direct boundary description of the gravitational

degrees of freedom and so may provide a fertile testing ground in the interim. In any case,

it appears there are immediate opportunities to import recent work at the intersection of

quantum information and quantum gravity into de Sitter. See [102] for some recent steps

in this direction.

Our nearly-dS2 and dS3 boundary graviton theories possess a diagrammatic expansion

which computes the gravitational corrections to scattering. We discussed the dictionary

for nearly dS2 gravity in subsection 2.8. There is a corresponding story for dS3, although

we did not present it in the main text. Recall that the model on the boundary of an

inflating patch of dS3 is just the analytic continuation of a model on the boundary of the

Poincaré patch of Euclidean AdS3 under LAdS → iLdS. The model arising from Euclidean

AdS3 computes Virasoro identity blocks [36, 103–109], and provides another method to

calculate Virasoro Wilson lines [110–115]. Under analytic continuation, these blocks encode

gravitational corrections to correlation functions on I+. One could also couple our theories

to matter fields, as in [116]. It would also be interesting to study quantum supergravity

in nearly-dS2 and dS3 with a similar approach as we used above. We expect SUSY to be

broken, as in [117], although perhaps not so badly. The natural guess is that for nearly dS2

supergravity one finds the continuation of the super-Schwarzian theory [118] under C → iC

with C the coupling in front of the Schwarzian action. In dS3 one would expect to find a

continuation of a path integral quantization of the super-Virasoro group [36, 119–121]. If

that is the case, then these boundary models would secretly be supersymmetric, but under

new non-Hermitian supercharges on account of the continuation.

It appears promising that our higher genus analysis of dS2 gravity may shed light on an

analogous genus expansion of dS3. Of course, the latter is markedly more complicated —

for instance, the asymptotic spacelike surfaces can be higher-genus Riemann surfaces, and

the intermediate interpolating regions are characterized by an appropriate moduli space of

3-manifolds. Nonetheless, several lessons from the dS2 case may carry over. For example,

a suitable analytic continuation of Euclidean AdS3 higher genus partition functions, along

the lines explained in section 4 above, should yield corresponding higher genus dS3 wave

functions of the universe. However, almost all of the work on Euclidean AdS3 higher genus

partition functions (see e.g. [67, 75, 122–125]) examines higher genus asymptotic 2-surfaces,

but not higher genus interpolating 3-manifolds. It is as of yet unclear how to incorporate

such 3-manifolds systematically. One may envision such a genus expansion as coming from

the genus expansion of some (possibly scaled) matrix quantum mechanics, which describes

a non-unique, non-perturbative completion of both pure gravity in AdS3 and dS3, akin to

the 2d case explained in this paper.

Coadjoint orbits of infinite dimensional groups and their quantization provide a unified

description of the boundary models for nearly dS2 and dS3 gravity obtained in this work,

as well as for nearly AdS2 and pure AdS3 gravity [36, 44, 81, 126]. In these settings the

gravitational dynamics has no bulk modes, only having boundary and topological degrees

of freedom. The boundary modes have an integration space which, in two dimensions, is

precisely a coadjoint orbit of an infinite dimensional group. It is well-known that Hamilto-
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nian flow on coadjoint orbits can be interpreted as fluid equations [41, 127]. The connection

to fluid dynamics is no accident. Fluid dynamics captures conservation laws, and these

coadjoint orbit path integrals are ultimately theories of the boundary stress tensor.

It is sometimes said that classical gravity can be thought of as the hydrodynamics of

some microscopic degrees of freedom comprising spacetime. In this manuscript we have

arrived at path integrals for the “hydrodynamics” of low-dimensional de Sitter spacetimes.

These theories may perhaps be viewed as lying between the macroscopic and microscopic,

in a realm we can refer to as “mesoscopic,” to borrow terminology from condensed matter

physics. While the Schwarzian path integral and the coadjoint orbit quantizations are UV-

finite, and so do not require UV-completion in the usual sense of effective field theory, they

clearly do not give a complete accounting of the physics one expects to find in a consistent

theory of quantum gravity. For example, in JT gravity one finds a different Schwarzian

model on the boundary of spacetimes of different topology, and the genus expansion sums

over these different theories. Further, the spectrum of states one finds from these theories

is continuous, and so does not resolve the black hole spectrum into discrete microstates.

Rather, these boundary path integrals compute loop corrections around a fixed topology,

giving a course-grained description at energies well below the Planck scale.

Beyond perturbation theory we have a proposed matrix model, which would give a

non-perturbative completion of nearly dS2 gravity. It encapsulates topology change among

other features. Crucially, the matrix model we arrived at is the same as the one relevant

for nearly AdS2 gravity in [21]. In the AdS2 setting one “inserts” a boundary of size β

by probing the matrix model with tr(e−βH). To make contact with de Sitter, inserting a

future boundary corresponds to probing the matrix model with tr(eiβH) and inserting a

past boundary corresponds to probing with tr(e−iβH).

There is some evidence [21] that this matrix model is dual to a minimal string, given

by a non-unitary (2, p) minimal model coupled to Liouville theory and worldsheet gravity

in the p → ∞ limit. The claim of [21] is that insertions of tr(e−βH) in the matrix model,

i.e. insertions of asymptotically AdS2 boundaries, correspond to studying the minimal

string on surfaces with boundary components of fixed lengths βi. With this in mind one

might wonder whether the putative matrix model description of nearly dS2 gravity has a

minimal string dual. We intend to return to this question in future work.
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