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1 Introduction and summary

It is widely believed that Einstein’s theory of gravity must admit an adequate UV com-

pletion when we approach length scales comparable to Planck length. Such a putative UV

complete theory of quantum gravity, at large length scales, must reduce to the weakly cou-

pled, two derivative Einstein’s theory, which has been exhaustively verified in the IR, by

several experiments. However, at intermediate length scales, we may encounter a regime,

where gravity is still weakly coupled and the quantum corrections are suppressed, but

higher derivative corrections to Einstein equations cannot be ignored.1 In this regime,

gravity would be described by an arbitrary diffeomorphism invariant classical theory

L = Lg (gµν , Rµνλσ,∇αRµνλσ,∇β∇αRµνλσ + . . . ) + Lm, (1.1)

where, the gravity part of the Lagrangian would admit a derivative expansion, as follows

Lg = R+
(
α1R

2 + α2RµνR
µν + α3RµναβR

µναβ
)

+ higher derivatives (1.2)

Here, in (1.1), Lm represents the matter part the theory.2 Any non-minimal coupling to

gravity, i.e., the terms involving curvature and the matter fields are also included in Lm.

Note that, the specific values of the coefficients α1, α2 and α3 depend on the details of the

UV complete theory. These are dimension full constants and therefore must be proportional

to the (square of) some fundamental length scale of the UV complete theory. For example,

in the case of string theory, all of these coefficients will have the form αi ∼ l2sα̃i where ls
is the string length and α̃is are some numbers. The limit that we shall consider here, is

the one, where the length scale associated with the curvatures of the space-time and those

associated with the variations of the matter fields, are much larger compared to ls. In

other words, all the higher derivative corrections will be more and more suppressed, with

the increase in the number of derivatives.

We know that the two derivative Einstein’s theory admits black holes solutions with

Killing event horizons. These solutions can be understood as macroscopic manifestation

of an ensemble of many microscopic degrees of freedom of the more fundamental theory

of gravity, in thermodynamic equilibrium, at finite temperature. If this statistical picture

of the black hole is correct, then stationary black hole solutions should exist even after we

add higher derivative corrections to the gravity action. Also, within these higher derivative

1Such an intermediate regime exists, for instance, in string theory, which is a prominent candidate for

the UV complete theory of quantum gravity. In string theory, within this regime, the string coupling

gs → 0, implying the quantum corrections are suppressed. While, the ratio `s/R is non-negligible, R being

the length scale associated with space-time curvatures, while `s is the string length. Whether such an

intermediate regime exists in the real world, or whether Einstein’s description is a good description right

up to the Planck scale, can only be answered with precision experiments of the future.
2Note that, there would certainly be some phenomenological restrictions on Lm. For example, it should

reduce to the standard model Lagrangian at large length scales. Besides this, Lm here also incorporates all

the matter fields, that may be required to make the higher derivative theory of gravity (1.2) well defined.

For instance, It was pointed out in [2], that causality constraints on tree level graviton three point functions

imply that Lm should incorporate higher spin fields.
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theories of gravity, we should be able to construct macroscopic quantities, such as entropy,

for the black hole solutions, which will satisfy the laws of thermodynamics.

In two derivative theory of Einstein’s gravity, we have a candidate for entropy that

satisfies both the first and second laws of thermodynamics. The entropy, in this case, is

given by the area of a ‘time-slice’ of the event horizon [3–5] (also see [6–8]). We shall denote

the even horizon with H and the time-slice of it with Hv. The second law, for this entropy,

followed from the famous area increase theorem for black holes [3, 6], which assumes that

the matter energy-momentum tensor obeys the null-energy condition. Throughout our

discussion in this note, we shall assume this condition to be valid for the matter part of

the Lagrangian Lm.

This concept of entropy was generalized to stationary black hole solutions in higher

derivative theories of gravity in [9, 10], in such a way that it satisfied the first law of

thermodynamics.3 We shall refer to this construction of entropy as Wald entropy SW .

Now, the first law of thermodynamics relates the infinitesimal shifts in the parameters of

two different but nearby equilibrium configurations. Therefore, the Wald entropy, whose

construction was solely based on consideration of first law alone, does not unambiguously

extend to dynamical situations. Indeed, as it was pointed out in [13–15], there were ambigu-

ities associated with Wald entropy, for non-stationary black hole solutions with dynamical

event horizons. All these ambiguities vanished for stationary solutions. We shall refer to

these ambiguities as the JKM ambiguities.

Unlike, two derivative Einstein’s theory, it is not a priori clear whether Wald entropy

satisfies the second law of thermodynamics. In this note, we would like to explore this

question further.

In the weakest version, the second law could be stated as follows. Consider two equi-

librium configurations (in our case two black hole solutions, not necessarily close by in any

sense) B1 and B2 such that if one perturbs B1 in certain ways it is possible to reach B2

eventually. Then the entropy evaluated on the solution B2 must be strictly greater than

the entropy of B1.

Though the above formulation of the second law does not really need a definition of

entropy away from stationarity, clearly it refers to dynamics. One way towards a proof

would be to show that there exists some extension of Wald entropy to dynamical situations

so that the second law is satisfied. It is natural to expect that this extension (if at all

possible) might fix those ambiguities related to the definition of entropy, which only arises

in non-stationary situations (i.e. the JKM ambiguities).

Now it is very difficult to analyze dynamical black hole solutions even in two derivative

Einstein’s theory of gravity. People usually take recourse to several perturbation schemes,

around the stationary solutions that are known exactly. In this context, the simplest

situation that comes to mind is the case where some stationary black hole is slightly

perturbed by some external agent so that the resulting dynamical black hole metric could be

decomposed as a sum of stationary part and the time-dependent part with small amplitude.

Then one can analyze the equations in an expansion in terms of the amplitude. Note that

3See [11, 12] for the latest reviews of black hole thermodynamics in higher derivative theories of gravity.
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under this approximation, it is not possible to study violent processes such as the formation

of black holes or the merger of two black holes. Throughout this note, we shall work only up

to linear order in the amplitude of fluctuations, and therefore, our results would not directly

apply to these violent scenarios. See [16–18], where similar questions relating to entropy

and the second law, for processes involving the merger of black holes have been addressed.

In [1] the author has used this expansion to construct one ‘out of equilibrium’ extension

of Wald entropy, which, up to linear order in amplitude expansion, is monotonically in-

creasing at every instant of ‘time’ and therefore satisfies the second law in a stronger sense

(also see [19–22]). This locality in time is not entirely unexpected in this type of set-up

where the space-time is ‘near’ some equilibrium or stationary solution at every instant of

time. Following the same intuition, we could also say that for such slow enough, ‘near-

equilibrium’ time evolution, where we could assume that different sub-regions of a large

macroscopic system are in approximate equilibrium with its immediate neighbourhood, at

every instant of time, we should also expect a spatial locality, in the formulation of sec-

ond law. This expectation is completely consistent with the scenario in Einstein’s theory of

gravity, where the area increase theorem is valid locally, for every infinitesimal area element

of a ‘time-slice’ of the horizon. Our expectation for a local, stronger form of second law, is

very much motivated by this example of Einstein’s theory. Now, in a more general setting

involving higher derivative corrections to Einstein’s equation, during slow time evolutions,

besides entropy production in every infinitesimal sub-region, we have to be also open to the

possibility that entropy could be redistributed between the neighbouring regions, by flowing

in or out via some spatial current. The necessity of having such non-zero spatial current for

entropy, and the existence of a strong ultra-local form of the second law of thermodynamics,

in higher derivative theories of gravity as well, are the key points of our investigation here.

In this note, we shall demonstrate that it is possible to formulate the second law in its

strongest form, so that at least for ‘slow enough’ dynamical situations, entropy is produced

at every point of the evolving space-time, up to a possible inflow and outflow via some

spatial current.4 We will explicitly construct this spatial current for entropy flow, in the

most general four derivative theory of gravity.

Let us now outline the organization of this note, along with a brief summary of the

key arguments and results in the various sections.

At first, in section 2, we shall review the paper [1] in detail. The author in [1] has

shown that at the leading order in amplitude expansion, certain ‘time-time’ component of

the equation of motion of any higher derivative theories of gravity could always be written

as two ‘time derivatives’ acting on some quantity. Then he could further argue that if one

identifies the integral of this quantity (the expression on which the two time derivatives are

4An entropy current with non-negative divergence certainly exists in near-equilibrium states for theories

that do not include dynamical gravity [23–26]. In the case of gravity, where the space-time itself becomes

the fundamental dynamical object, the concept of locality might become a bit confusing. The locality in

space-time in some sense becomes analogous to some form of locality in the space of fundamental fields of

non-gravitational theories. However, the kind of perturbation that we are considering here, there is always

a stationary base metric which could play the role of the background and the above-mentioned issues could

be avoided.
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acting) over Hv, with the entropy of the gravitational theory, then it will satisfy the second

law at least at the leading order within this approximation. Following [1] we have first

set up an appropriate coordinate system, thus defining the ‘time’ mentioned above. Next,

by using a symmetry of the horizon geometry (referred to as ‘boost symmetry’ in [1]), we

have classified the terms that can appear in that particular ‘time-time’ component of the

equations of motion, according to their weight under this boost transformation. We shall

see that the argument and construction in [1] smoothly goes through for all the higher

weight terms except the one that appears at zero boost weight.

This point was noted in [1] and it has been argued that if these ‘zero boost terms’ are

not of the correct form (i.e., two time derivatives acting on some quantity) it would amount

to the violation of the first law itself, once viewed in the ‘physical version’ formulation of

it [15, 27] (also see [28–32]). Therefore, though the central argument in [1] naively break

down for these special ‘zero boost terms’, it must work out in actual theories, where the

physical process version of the first law is valid.

Note that the formulation of the ‘physical process version’ of the first law uses exactly

the same setup as the one used in [1]. Here also one perturbs the stationary black hole

out of equilibrium and lets it settle to another nearby stationary solution with slightly

shifted parameters. The first law is a relation between these shifts of parameters, which

characterize the two equilibrium solutions.5 In the arguments leading to this physical

version of the first law, the external agent which drives the system out of equilibrium is

a very specific one — some small matter (associated with a small shift in matter stress

tensor) entering the system through asymptotic infinity. The similarity between the two

set-up of the second law and the physical process version of the first law is very suggestive

of the fact that the structural nature of the terms in entropy, which play a major role in

the proof of the physical process version of first law, would also be extremely important

in the proof of the second law. We shall refer to such terms as ‘zero boost terms’, the

justification of such terminology would be explained later in the main text.

After this extensive review of [1], we shall closely study how the physical version of

the first law constrains these ‘zero boost terms’. We shall find that locally the required

‘time-time’ component of the equation of motion (let us denote this ‘time as v and the

relevant component of the equation of motion as Evv) need not have the form specified

form which is naively implied by the physical process version of the first law. This naive

expectation would be that the zero boost terms in Evv, has two ‘time’ derivatives acting on

some local quantity (let us denote it as Jv) defined on the horizon. This naive expectation

is not accurate, since any term that could be expressed as a single ‘time’ derivative acting

on the spatial divergence of some space current (denoted here as J i) may also be present

in Evv, without affecting the first law. This is because the physical process version of the

first law deals with a total change in entropy ( along with the charge and mass) as the

black hole evolves from one equilibrium to another. The total entropy always comes with

5We would like to emphasize that though the proofs of both first law and second law use the same set-up,

they are very different in terms of details. In particular, Wall’s construction could fix many more terms in

entropy (usually denoted as JKM ambiguities in literature) that do not contribute to the first law at all.
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integration overall spatial section of the horizon Hv. In that case, any such total divergence

term would just integrate to zero.

It should be noted that such a term will not affect the argument of [1], which proves

a weaker version of the second law, in which the total entropy (integrated over Hv) has

been considered. This weaker form is a local statement in time (i.e, total entropy increases

at every instant of time) but not in space. At every stage of the arguments in [1], the

integration over the spatial sections of the horizon played an important role.

Once we have realized that, it is possible to introduce the notion of a spatial entropy

current, without affecting the proof of both the first law and the second law (even a strong

ultra-local form of it), the next immediate question is whether such a spatial entropy

current is necessary. In other words, we should investigate that, if we were to write down

an ultra-local version of the second law, largely following the procedure of [1], can we do it

without introducing the entropy current, in any higher derivative theory of gravity. In more

practical terms, we need to check whether the relevant ‘zero boost terms’ in the equation

of motion Evv for a given higher derivative theory of gravity, does indeed have terms which

give rise to the spatial entropy current J i. To answer this question, we specialize to four-

derivative theories of gravity. In section 3.1, we explicitly compute the relevant component

of the equations of motion and we see that there has to be a spatial entropy current in

some of these four derivative theories, if we want a completely local version of the second

law to be true. This is the central result of our note. Besides achieving manifest locality,

our procedure of constructing the entropy current might play a crucial role in providing an

alternative proof of the second law, without invoking the ‘physical process’ version of the

first law, the use of which has been a necessary input for the proof presented in [1]. We

would like to investigate this possibility further in future work.

In this context, the four-dimensional Gauss-Bonnet theory requires a special mention.

We have discussed this case in details in section 3.6. It is well known that in four dimensions

Gauss-Bonnet action is a total derivative and therefore does not contribute to the equation

of motion. However, from Wald’s analysis, we know that the entropy of the black holes in

Gauss-Bonnet theory does receive correction which is proportional to the intrinsic Ricci-

scalar evaluated on the two-dimensional spatial section of the horizon. Integration of this

quantity over a compact two dimensional manifold results in a topological quantity, the

Euler characteristics, that does not change under small continuous deformation of the

horizon caused due to the perturbation. This is perfectly consistent with the fact that 4-d

Gauss-Bonnet term does not introduce any correction to the equation of motion and so

(following the argument of [1]) no correction to the change in total entropy during time

evolution. However, if we are thinking of in terms of the entropy density (i.e., the same

intrinsic Ricci scalar without the integration over all spatial sections of the horizons), it

does evolve with time. But, this entropy density, clearly, would not satisfy the ultra-local

version of the second law. However, the validity of the local version of the second law is

restored, if we also consider a spatial entropy current. It is satisfying to check that, for

the 3 + 1 dimension the v-derivative of the Ricci scalar is identical to the time derivative

of the divergence of a spatial current (given in terms of the extrinsic curvatures of Hv).
These two contributions from the entropy density and the spatial entropy current, to the

– 6 –
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equation of motion, cancel out each other. This cancellation is off-shell and specific to

3 + 1 dimensions only. Thus, in this simple example, it is easy to recognize the necessity

of the entropy current, even before performing the detailed calculation. As we will see in

more detail in section 3.6, this example also helps us to identify an ambiguity present in

the definition of the entropy current.

In section 3.2, section 3.3 and section 3.4, we go on to develop a general algorithm

for constructing the spatial components of the entropy current for arbitrary four derivative

theory. From this exercise, we learn that the most general form of the relevant equation

of motion Evv, which is consistent with the boost symmetry, has a structure that is more

general compared to what would be essential for defining the entropy current. In other

words, the fact we have an entropy current and consequently a local second law, puts

very non-trivial constrains on the most general possible structure of Evv.
6 Although at

the moment we do not have a precise explanation regarding the physical origin of these

constraints, we believe that these may arise due to some residual gauge freedom. We think

understanding the exact mathematical reason behind these constrains, would lead us to

a proof of the local second law through the construction of the entropy current, without

invoking the first law at all.

This general algorithm has also helped us to understand the ambiguities related to the

construction of the current more clearly. In section 3.7, we report on one of the primary

sources of such ambiguities. Finally in section 4, we conclude and discuss possible future

directions.

Before concluding this section, we would like to mention that, the notion of an entropy

current for black hole dynamics in higher derivative theories of gravity, is not completely

new in this note. This idea has been previously introduced in [33–35]. In [33, 34] it was

primarily motivated by the entropy current, constructed in the context of the fluid gravity

correspondence [23]. While in [35], the entropy current was constructed exploiting the

membrane-gravity duality, using an expansion in inverse powers of space-time dimension.

Although, the exact context of these constructions are different from our considerations

here, but there are some similarities in the basic idea (see section 4 for further discussions

on this). The exact relation between our construction and that reported in these papers is

a topic of our current investigation and we hope to report on it in the near future.

2 A comprehensive review of [1]

As we have discussed in section 1 in an arbitrary diffeomorphism invariant theory of gravity,

a proof of the second law for dynamical black holes was provided in [1]. Let us review the

details of the proof here, which would serve as a useful prelude to the subsequent discussion

of our entropy current.

Let us first choose a coordinate system. Let ∂v be the null generators of the event

horizon, where v is the affine parameter. Let ∂is denote the rest of the spatial tangents of

the horizon. Integral curves of ∂is are the spatial coordinates along the constant v slices

6As we have mentioned above, an explicit calculation for the four derivative theories demonstrates that,

these constraints are automatically met for these theories.
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of the horizon. Then from every point on the horizon, we shoot off a set of null geodesics,

making a precise angle with the coordinates on the horizon. We label each of these new sets

of null geodesics (null everywhere) by the coordinates of the point at which it intersects

the horizon. We denote the affine parameter along the null geodesics to be r which is the

coordinate, away from the horizon. The most general metric with this choice of coordinates

would have the following structure (see appendix of [36])

ds2 = 2dv dr − r2X(r, v, xi) dv2 + 2r ωi(r, v, x
i) dv dxi + hij(r, v, x

i) dxi dxj (2.1)

Here we have chosen the horizon to be at r = 0 (a choice for the origin of the affine

parameter along each null geodesic ∂r). Note that this choice of gauge is slightly different

from that of [1]. We have set grv = 1 throughout space-time, but in [1] this condition was

set only on the future horizon H. In appendix A of [36], it was demonstrated that this

choice of metric (2.1), is possible without any loss of any generality, even for dynamical

black holes. We would also like to emphasize that this difference in gauge choice, do not

affect the arguments in [1], in any way. We shall work with this slight difference in this note,

simply because we prefer to work with a metric where the gauge fixing is more complete.

Given the form of the metric (2.1), let us now outline the broad strategy of the proof

of second law provided in [1].

2.1 Strategy of the proof of second law of black hole thermodynamics

The general strategy of the proof follows that of area increase theorem for dynamical

black holes in Einstein gravity [3, 6]. Following [1] we shall consider small time-dependent

fluctuations about stationary black holes. Let us denote the amplitude of the fluctuation

to be ε. All the analysis would be linear in the amplitude (denoted by ε) of this fluctuation.

Let us denote a v-slice of the horizon of the dynamical black hole to be Hv. In [1]Hv has

been considered to be compact, an assumption which played an extremely important role

in the proof. This assumption ensured certain boundary terms to vanish. Therefore, even

if the horizon was non-compact, but those boundary terms continued to vanish, the proof

of [1] is completely valid. However, in the present paper, our local statement of the second

law should not be sensitive to the compact nature of the horizon or depend on the vanishing

of such boundary terms. Then, under the approximations considered here, let us schemat-

ically write down the entropy of the black hole, in an out of equilibrium scenario, to be

S =

∫
Hv

√
h(1 + sn) (2.2)

where

sn = sHD
w + sc.

Here sHD
w are the corrections to the area law, coming from the Wald entropy formula due

to the presence of the higher derivative corrections to the Einstein-Hilbert action. Note

that, in this notation the Wald entropy is given by7

SW =

∫
Hv

√
h(1 + sHD

w ) =

∫
Hv

∂L
∂Rµνρσ

εµνερσ, (2.3)

7Here, we have treated the area term corresponding to Einstein theory separately, to facilitate compre-

hension for our readers who are familiar with the area increase theorem.
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where εµν are the bi-normal to Hv, the co-dimension−2 spatial slicing of the horizon. Here,

sc are further corrections to the Wald entropy, which are a part of the JKM ambiguity.

One of the central idea of the proof, is to choose an appropriate sc so as to ensure ∂vS ≥ 0.

This in turn, therefore, fixes the ambiguity.

Now let us act (2.2) with a v-derivative, which can be moved inside the integral in the

r.h.s., since the integral is over a v-slice of the horizon. We have

∂vS =

∫
Hv
∂v

(√
h(1 + sn)

)
≡
∫
Hv

√
h ϑ, (2.4)

where hij is the induced metric on Hv, and

ϑ = ϑE +
1√
h
∂v

(√
hsn

)
,

with ϑE being the contribution coming from the area form, which is present even in

pure Einstein gravity without any higher derivative corrections. We can show that ϑE =
1
2h

ij∂vhij is the expansion of the congruence of the null generators of the horizon [8].

Following the proof of the black hole area increase theorem [3, 6] for Einstein gravity,

the general strategy for proving ∂vS ≥ 0, is to demonstrate that ∂vϑ ≤ 0. This, together

with the additional physical expectation8 ϑ|v→+∞ → 0, implies that ϑ ≥ 0, for all v ≥ 0.

Now at linear order in amplitude both inequalities (i.e., ∂vS ≥ 0 and ∂vϑ ≤ 0), must

be some equality relation since terms linear in amplitude (ε) could have any sign depending

on the sign of ε. In other words, the only way the inequalities could be satisfied is to set

them to zero at linear order in ε.

∂vϑ = O
(
ε2
)

(2.5)

We shall try to choose sn such that ∂vϑ = O
(
ε2
)

is ensured. More precisely, by

equation (2.5), what we mean is the following.

• We shall consider only those dynamics where every metric component GAB, that are

not already fixed by our gauge choice, could be decomposed as

GAB = G
(0)
AB + ε δGAB

where G
(0)
AB is the non-dynamical part of the metric and has a time-like Killing vector

with a Killing horizon. δGAB is time-dependent. ε is the small parameter encoding

the amplitude of dynamics, which could be of either sign but always small. All terms

quadratic or higher-order in ε would be neglected.

• We further demand that G
(0)
AB is an exact solution of the Einstein equation with

appropriate higher derivative corrections and also relevant matter stress tensor. Ad-

ditionally, GAB also solves the same equations but up to corrections of order O
(
ε2
)
.

8Here, the physical expectation is that the dynamical black hole will settle to a stationary metric with

a Killing horizon at v →∞, leading to the vanishing of ∂vS at v →∞.
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• Now our goal is to construct an sn out of G
(0)
AB and δGAB such that if we just blindly

evaluate ∂vϑ and impose equations of motion it turns out to be order O
(
ε2
)

(or just

vanishes within our approximation).

One of the key points of [1] is to provide an algorithm to construct such an sn in all possible

higher derivative theories of gravity.

At this stage we would like to emphasize that equation (2.5) is a necessary condition for

second law, but certainly not sufficient, even within this perturbative treatment. Sufficiency

would demand a particular sign for the coefficient of the O
(
ε2
)

term and in those special

space-time points where this coefficient also vanishes, one has to keep track of even the

higher-order terms. However, as it is the case in [1], in this note we shall confine ourselves to

computations only up to order O(ε). They themselves turn out to be constraining enough

to fix a large part of ambiguities that are there in the form of gravitational entropy for

higher derivative theories.

Now let us process equation (2.5) little further, which will finally tell us how, manip-

ulating a particular component of equations of motion, we could construct some sn that

satisfies equation (2.5).

∂vϑ = ∂vϑE + ∂v

(
1√
h
∂v

(√
hsn

))
= −Rvv + ∂v

(
1√
h
∂v

(√
hsn

))
+O

(
ε2
)

= −Tvv + EHD
vv + ∂v

(
1√
h
∂v

(√
hsn

))
+O

(
ε2
)

(2.6)

Here Tvv denotes the vv component of the matter stress tensor and EHD
vv is the vv component

of the higher derivative corrections to the gravity part of the equations of motion. In the

second line we have used the fact

∂vϑE = −Rvv +O
(
ε2
)

This is essentially the Raychaudhury equation for the congruence of null geodesics and this

is an off-shell equation — it does not require the metric to satisfy any particular equation

of motion. We have used the equation of motion while going from second to the last line

of equation (2.6)

Rvv + EHD
vv = Tvv (2.7)

In all of our analysis this the only place where we shall use the on-shell condition on the

metric components.

Now let us analyze the ε dependence of Tvv. We would like to argue that Tvv is also of

order O(ε2) and therefore does not contribute within our approximation.

In the case of higher derivative theory, the definition of matter stress tensor might

become a bit confusing. Our convention is the following. If we vary the action with respect

to the metric fluctuation, the resultant two-indexed tensors could be categorized in two

different classes; terms that depend only on the metric components and terms that along
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with the metric components, also depend on the matter fields. All the higher derivative

terms that are of the first category, are together called as EHD
AB and the matter stress tensor

TAB consists of all the terms in the second category.

Clearly, if we want to know the ε dependence of Tvv, we need to fix the ε dependence

of the matter fields. Let Φ denotes all the matter fields (collectively) and let’s assume that

it also admits the following expansion.

Φ = Φ(0) + ε δΦ

Here δΦ encodes the dynamics and Φ(0) is the value of Φ on the stationary situation i.e.,

when all field configurations, including both metric and the matter fields, admit a Killing

vector. As in the case of metric, we want Φ(0) to satisfy the equations of motion (on the

background of stationary metric G
(0)
AB) for the matter field exactly and δΦ up to linear

order in ε.

We shall consider only those matter stress tensors that satisfy the null energy condition.

In our context, it implies that as long as the matter fields satisfy their equations of motion

(in any smooth background geometry that need not be dynamical), the vv component of

the stress tensor is always non-negative.

Tvv ≥ 0

We would like to stress again that the validity of the above condition requires only the

matter fields to be on-shell, but the metric need not be. Now one can argue that in a

stationary situation (i.e., in the limit of ε → 0) Tvv simply vanishes (see appendix B for

the details). Any quantity that satisfies some positivity condition and also vanishes in a

stationary situation, must be quadratic in the amplitude of dynamics since the linear term

could have either sign. It follows (exactly for the same reason as in equation (2.5)) that

Tvv is also of order O
(
ε2
)

at every order in derivatives.

Now equation (2.6) could be simply satisfied for some choice of sn, provided EHD
vv has

the following off-shell form9

EHD
vv ‖offshell = ∂v

(
1√
h
∂v

(√
h ς
))

+O(ε2). (2.8)

If equation (2.8) is true, then one could just choose
[∫
Hv

√
h sn

]
to be minus of[

−
∫
Hv

√
h ς
]

up to correction of order O(ε2).

Let us pause here for a moment, to make an important observation about a very special

situation. Imagine a situation in which, a fluctuation in the matter field with a very small

amplitude sources the metric, through its energy-momentum tensor. The first correction to

9Note it is very important that the form predicted in (2.8) is an off-shell requirement on EHD
vv . Since we

have already argued that Tvv is of order O
(
ε2
)
, equations of motion for the metric (2.7) ensures that on-

shell EHD
vv must be of order O

(
ε2
)
. In other words, just like the solutions of any other differential equations,

on-shell we do not have the freedom of determining the ε dependence of terms involving large number of

derivatives, once the lower derivatives are fixed. However, our final goal is to construct an expression for

sn and we can actually achieve this goal by treating EHD
vv off-shell, where the naive ε counting works.

– 11 –



J
H
E
P
0
6
(
2
0
2
0
)
0
1
7

the zeroth-order stationary metric is entirely due to back-reaction from this source. In such

a situation, the first change in the matter fields is of order ε, and the energy-momentum

tensor is of order ε2; but, the first correction to the metric would be of order ε2. The

O(ε) piece for the metric would be trivially zero, in this special case, when the boundary

conditions are chosen suitably. So everything we have said so far, for the O(ε) coefficient

in the metric remains true, but trivially true.

Now, in this special case, since the first correction to the metric occurs at O(ε2), all

our conclusions in this note, regarding the linearized corrections to metric, would then be

applicable to the O(ε2) terms. The only crucial difference would be that, instead of the

equality (2.5), we would now get an inequality for the coefficient of ε2 in ∂vϑ, i.e. ∂vϑ|ε2 ≤ 0.

This happens because of (2.6), where, due to the null-energy condition, Tvv now contributes

positively, at the same order at which the metric receives its first corrections. The cancella-

tion between EHD
vv and ∂v

(
1√
h
∂v

(√
hsn

))
is realized in exactly the same way as discussed

earlier. This, in turn, implies that ∂vS ≥ 0, the inequality being important even for the

linear (first non-trivial) corrections to the metric. Note that, this situation is perhaps

physically important, since this is one of the simplest situations where we can realize a

dynamical event horizon, by throwing a tiny amount of matter towards the black hole.

In [1], author has explicitly shown that equation (2.8) is true. As we have mentioned

in the introduction, he has used the transformation property of EHD
vv under certain boost

symmetry for his proof. His key argument works barring few ‘leading terms’ in EHD
vv , for

which the author has used the ‘physical process formulation’ of the first law as an extra

input. As we shall see below, for particularly these terms the integration over the constant

v slices of the horizon turns out to be very crucial.

2.2 An entropy for non-stationary horizons obeying the second law

In this subsection, we shall review the arguments in [1], which establishes that most of the

terms in EHD
vv could be recast in the form (2.8).

2.2.1 A residual coordinate redefinition freedom

Let us recall that in (2.1), the coordinate v constitutes an affine parameter along the null

generators of the horizon, while the coordinate xi labels the individual generators. But

this definition does not completely fix the coordinates on the horizon H. We still have the

freedom of the following two classes of coordinate redefinition.

1. We can perform an affine re-parametrization of the generators of horizon H, through

the transformation

v → ṽ = v p1(xj) + p2(xj). (2.9)

Note that, an arbitrary re-parametrization of this form (2.9), may not be compatible

with the gauge choice as used in (2.1). Therefore, along with the transformation (2.9),

it may be required to transform the r coordinate as well, so that the gauge choice

of (2.1) is retained, even after the coordinate transformation (2.9). This point is

explicated further below, in a special case of (2.9).
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2. We can also relabel the generators as follows

xi → x̃i = f i(xj). (2.10)

The transformation (2.10) does not change the constant v slices of the horizon; consequently

Hv is invariant under it. Also, for the choice of the metric (2.1), covariance under (2.10)

may be implemented by ensuring that all the spatial i-indices are covariant; especially, the

covariant derivatives along xi, should be compatible with the metric hij . For this reason,

ensuring invariance (covariance) of entropy (or the second law) under (2.10) is relatively

easy. However, covariance under (2.9) is extremely non-trivial and leads to constraints,

that were exploited in [1] to fix the form of EHD
vv and hence the correction to the entropy.

In [1] only a special case of (2.9) was considered under which p1 = a, p2 = 0, so that v

is re-scaled as v → ṽ = av, a being a constant. Now, in order to ensure that our coordinate

redefinition is compatible with the gauge choice of (2.1), we must rescale the r coordinate

suitably. For instance, in order to ensure that grv = 1 everywhere, even after rescaling v,

we must simultaneously rescale10

v → ṽ = av, r → r̃ =
1

a
r. (2.11)

In the new coordinates (2.11) the metric takes the following form

ds2 = 2 dṽ dr̃ − r̃2 X

(
λr̃,

ṽ

λ
, xi
)
dṽ2

+ 2r̃ ωi

(
λr̃,

ṽ

λ
, xi
)
dṽ dxi + hij

(
λr̃,

ṽ

λ
, xi
)
dxi dxj

(2.12)

Note that, for the parametrization (2.1), the metric looks almost invariant under this co-

ordinate transformation (2.11), however, the arguments of the metric functions are appro-

priately scaled. In particular, on the horizon H, the induced metric in the new coordinates

takes the following form

ds2
H = 2 dṽ dr̃ + hijdx

i dxj , (2.13)

which has an identical structure as compared to that in the old coordinates.

2.2.2 Structural form of EHD
vv

At first, let us enlist the various derivatives and functions that may occur in EHD
vv , for

any general diffeomorphism invariant theory of gravity (1.1). These building blocks for

constructing EHD
vv include

1. The metric functions X, ωi and hij .

2. The covariant derivative ∇i with respect to xi, compatible with the metric hij , which

can act on the above metric functions.

3. The partial derivatives ∂r and ∂v, which may also act on the metric functions.

10In [1], this rescaling has been referred to as ‘boosts’, while the quantities invariant under this rescaling

has been referred to as ‘boost invariant’.
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Let us immediately note that among these building blocks, it is only ∂v and ∂r that trans-

form non-trivially under the coordinate rescaling (2.11). These transform as

∂r → ∂r̃ = λ∂r, ∂v → ∂ṽ =
1

λ
∂v (2.14)

As is apparent from (2.12), the rest of the building blocks of EHD
vv , which include the metric

functions and the covariant derivative ∇i, remain invariant under (2.11).

Let us now note that under the coordinate rescaling (2.11), EHD
vv , being the vv-

component of a covariant tensor, must transform as

EHD
vv → EHD

ṽṽ =
1

λ2
EHD
vv . (2.15)

Let us define the weight of a quantity to be the power of λ by which the quantity rescales

under the transformation (2.11). In this sense, the weight of EHD
vv is −2.

Now, from the transformation property of the building blocks, it is clear that only ∂v
has a negative weight under (2.11). Hence, it follows that, every term in EHD

vv must have

at least two ∂v. At linear order in ε, the most general schematic structure of any term in

EHD
vv would be

E(m,n,k) = ∂kr [(∂v∂r)
mP ] ∂k+2

v [(∂v∂r)
nQ] +O(ε2), (2.16)

where m,n and k are positive integers including zero. Here we have kept all the ∂r and ∂v
derivatives explicit.11 P and Q are appropriate structures built out of rest of the building

blocks, which consist of the metric functions and ∇i acting on them. They do not contain

any further ∂v or ∂r derivatives. Thus the most general structure of EHD
vv would be

EHD
vv =

∑
m,n,k

E(m,n,k) (2.17)

The upper limits of these sum would be fixed by the number of derivative on the metric in

the gravity Lagrangian (1.1).

Now we shall manipulate E(m,n,k) to demonstrate that EHD
vv as given by (2.17) can

be cast into the form (2.8). At first, we shall consider E(m,n,k) for k 6= 0, and derive

a recursion relation for this quantity. This recursion relation would be used to derive a

general structure for E(m,n,k) and hence for EHD
vv . Certain terms corresponding to the case

k = 0 would require special treatment, and after invoking the ‘physical process’ version

of the first law, we shall demonstrate that entire sum (2.17), and hence the most general

form of EHD
vv , can be cast into the form (2.8). This would complete our objective as laid

out in section 2.1, thus proving the second law of thermodynamics in the linearized case.

This would also provide us with an explicit construction to compute the corrections to the

Wald entropy, for an arbitrary theory (1.1).

At first, let us note that, any term of the form ∂mv ∂
n
r P , where n ≥ m and P does

not contain any further ∂r or ∂v derivative, would generically be non-zero once evaluated

11It may seem at first glance that the term in (2.16) is already second order in ε for any non-zero m,

since in that case, it becomes a product of two terms, on which some v-derivative has acted. However, it

should be noted that when both the derivatives (∂v∂r) act together on P , it can be non-zero on H even in

equilibrium, i.e. it can be an O(ε0) term (see appendix A).
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on the Killing horizon of the stationary solution. On the other hand, such terms would

vanish on the Killing horizon if m > n (see appendix A for a demonstration of this fact).

Therefore, it follows that, in a dynamical situation, when the amplitude of the time-

dependent perturbation ε is small, (∂mv ∂
n
r P ) must be of order O (ε), whenever m > n.

Consequently, all terms of the product form (∂mv ∂
n
r P )(∂m

′
v ∂n

′
r Q) with m > n and m′ > n′,

are of order O
(
ε2
)
, and therefore, can be neglected in our linearized analysis.

Now let us turn our attention back to the expression (2.16), for k 6= 0. In (2.16),

we can take the v-derivatives acting on the term involving Q and transfer them onto the

term involving P at the expense of a minus sign and a total derivative term. By repeating

this operation, even on the terms that are generated due to previous such operations, it is

possible to reduce (2.16) to the following recurrence relation

E(m,n,k) = ∂2
v

( k−1∑
p=0

(−1)p ∂k−pr

[
(∂v∂r)

m+pP
]
∂k−pv [(∂v∂r)

nQ]

)
+ (−1)k∂v

([
(∂v∂r)

m+kP
]
∂v [(∂v∂r)

nQ]

)
− E(m+1,n,k−1)

(2.18)

Now, we can use this recursion relation (2.18) itself, to evaluate E(m+1,n,k−1)

E(m+1,n,k−1) =
k−2∑
p=0

(−1)p ∂2
v

(
∂k−p−1
r

[
(∂v∂r)

m+p+1P
]
∂k−p−1
v [(∂v∂r)

nQ]

)
+ (−1)k−1∂v

([
(∂v∂r)

m+kP
]
∂v [(∂v∂r)

nQ]

)
− Em+2,n,k−2

(2.19)

Using the recursion relation repeatedly, we can recast E(m,n,k) into the form

E(m,n,k) =

k−1∑
q=0

k−q−1∑
p=0

(−1)q+p ∂2
v

(
∂k−q−pr

[
(∂v∂r)

m+q+pP
]
∂k−q−pv [(∂v∂r)

nQ]

)
(2.20)

+

(
(−1)k − (−1)k−1 + (−1)k−2 − . . .︸ ︷︷ ︸

k-terms

)
∂v

([
(∂v∂r)

m+kP
]
∂v [(∂v∂r)

nQ]

)

Hence, after performing the sum in the second term, we have

E(m,n,k) =

k−1∑
q=0

k−q−1∑
p=0

(−1)q+p ∂2
v

(
∂k−q−pr

[
(∂v∂r)

m+q+pP
]
∂k−q−pv [(∂v∂r)

nQ]

)
+ k(−1)k∂v

([
(∂v∂r)

m+kP
]
∂v [(∂v∂r)

nQ]

) (2.21)

Note that, inside the sum, the first term has the structure ∂2
v

(
∂`rX

(`)
) (

∂`v Y
(`)
)
, where the

lowest value of ` = 1. If we now, plug in (2.21) back into the sum (2.17), a similar structure

of this first term would be maintained, again with ` starting from 1. Note that, here, we are

only considering values of k starting from 1, in the sum (2.17). As we mentioned previously,

the k = 0 terms needs to be treated separately.
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But now, let us also note from (2.16), that the k = 0 term can always be recast into the

same form as the second term in (2.21). This is true only in the linearized approximation.

Thus, from (2.17) and (2.21) it is clear that, at linear order in amplitude, EHD
vv could

always be written in the following form

EHD
vv = ∂v [A ∂v B] + ∂2

v

[∑
k=1

(
∂krA

(k)
) (

∂kv B
(k)
)]

+O(ε2)

= ∂v [A ∂v B] + ∂v

[(
1√
h

)
∂v
∑
k=1

√
h
(
∂krA

(k)
) (

∂kv B
(k)
)]

+O(ε2)

(2.22)

where A, B, A(k) and B(k) are appropriate structures as implied by (2.17) and (2.21),

which do not transform under rescaling (2.11). Let us re-emphasize that, although (2.21)

has been derived under the assumption k 6= 0, the form of EHD
vv in (2.22), also incorporates

the k = 0 term, in the sum (2.17).

As argued above (also see appendix A), we know that the action of a v-derivative,

which does not appear with a compensating r-derivative, on a quantity that is invariant

under the rescaling (2.11), must be of O(ε) on H, in the amplitude expansion. This is

because, such a quantity should vanish on the Killing horizon, and so must be at least O(ε)

for dynamical horizons. Consequently, whenever one or more ∂v act on any one of these

A, B, A(k) or B(k), it must be O(ε). This also justifies appropriate incorporation of the

factors of
√
h in (2.22). We do not get any additional terms due to these factors of

√
h,

since we are working in the linearized approximation in ε.

Thus to conclude, we have obtained a precise structural form of EHD
vv in (2.22). At

this stage, we observe that the second term of EHD
vv in (2.22) is already in the desired

form (2.8). So our objective would be accomplished, if we are able to argue that the first

term in (2.22), can also be written in the form (2.8), i.e. as two v-derivatives acting on a

quantity which is invariant under the rescaling (2.11).

2.2.3 The physical process version of first law and its implications

In [1] it was argued that the structure of the quantities A and B in (2.22), must be such,

that EHD
vv has the form (2.8). This conclusion followed from the physical process version of

the first law of black hole thermodynamics [15, 27] (also see [30, 37]), which was assumed to

be applicable to the theory of gravity under consideration. It was demonstrated in [1], that

if A and B in (2.22) did not have the requisite structures, then the physical process version

of the first law would be invalidated. Let us now review this argument, as presented in [1].

Let us consider a stationary black hole, which is perturbed by small fluctuations in the

matter sector. The amplitude of such perturbations is assumed to be small. For instance,

this could be some small amount of matter falling into the black hole. The matter stress

tensor would back-react onto the metric and produces fluctuations in it, which would also be

small. These fluctuations would result in a non-stationary fluctuating black hole. However,

in a physical situation, it may be expected that, at late times, these fluctuations would die

down and the black hole would again become stationary. Such a dynamical process, where

the black hole is stationary, both at early and late times, is referred to as a ‘physical process’.
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The new stationary black hole at late times would have slightly different parameters

compared to the one at early times (such as mass or angular momentum). The overall shift

in the mass (energy) of the black hole would be given by integrating specific component

of the energy-momentum tensor over the horizon. This shift in mass, must be related to

the shift in entropy of the black hole through the first law of black hole thermodynamics

T∆S = ∆E . Therefore, we can express the change in entropy during this physical process

∆S, to the integrated energy-momentum tensor, in the following way

∆S = −2π

κ

∫
H

∆Tab ξ
a dΣb (2.23)

Here, ∆Tab is the part of the energy-momentum tensor that has initiated the dynamics

of the black hole horizon. ξa is the generator of the future horizon H; it is a Killing

generator at early and late times, when the black hole is stationary. Also, dΣb is the area

element along the horizon. The parameter κ is the surface gravity of the black hole and is

proportional to the temperature of the black hole.12

The equation (2.23) is referred to as the physical process version of the first law of black

hole thermodynamics. For a more complete and detailed discussion of this, see section (2)

of [15]. We should note that because the initial and final states are stationary, the ∆S

in (2.23) is expected to be given by the change in Wald entropy, which, by construction,

satisfies the usual form of the first law for stationary black holes. However, whether

Wald entropy does satisfy the physical process version of the first law (2.23) does not

immediately follow from its construction, and we require additional arguments to establish

this, see [27, 30] for recent developments.

This version of the first law (2.23) now enables us to make further deductions regarding

the structural form of A and B appearing in (2.22). With our choice of coordinates (2.1), ξa

is related to the affinely parametrized null generators of the horizon ∂v, in the following way

ξa∂a = κ v ∂v (2.24)

While, in our coordinates (2.1), the area element on the horizon H is given by

dΣb∂b = −
√
h dd−2x dv ∂v (2.25)

Using (2.24) and (2.25) back in (2.23), we have

∆S = 2π

∫
H

√
h dd−2x dv v ∆Tvv = 2π

∫
H

√
h dd−2x dv v (Rvv + EHD

vv ) (2.26)

Here, we have used the equation of motion to rewrite the stress tensor in terms of geometric

quantities. Now, if entropy S has the form (2.2), ∆S in (2.26) can be split into two parts

∆S = ∆SE+∆SHD. ∆SE being the change in the integrated area of Hv, responsible for the

12It turns out that the combination ∆Tabξ
adΣb itself is of the order of amplitude of the perturbation.

Therefore, as long as we are working at linear order in the amplitude of perturbation, the difference in the

value of κ for the initial and final stationary black holes is negligible. Thus, within this approximation, κ

can be taken to be constant throughout the duration of the physical process.
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change in entropy in two derivative Einstein theory, while ∆SHD is the change in entropy

due to higher derivative terms. Clearly, the terms proportional to Rvv on the r.h.s. of (2.26),

must be equal to ∆SE on the l.h.s. of (2.26). This is manifest in the limit when the higher

derivative corrections to Einstein’s gravity vanish. Using (2.22), we can therefore write

∆SHD = 2π

∫
H

√
h dd−2x dv v (EHD

vv )

= 2π

∫
H

√
h dd−2x dv v ∂v

[
A ∂v B +

(
1√
h

)∑
k=1

∂v

(√
h ∂krA

(k) ∂kvB
(k)
)]

+O
(
ε2
)

(2.27)

It is extremely important for the subsequent arguments to realize that ∆SHD must be non-

zero in general, and should be expressible in terms of some geometrical quantity integrated

over Hv. This is clear from the fact that for arbitrary higher derivative corrections to

Einstein’s gravity sn in (2.2) is non-zero even for stationary black holes. In the stationary

case, it is expected to be given by Wald entropy (2.3), which in general is different than

area of the horizon. Thus, if sn is non-trivial, it is expected that, in general, in a dynamical

scenario, ∆SHD must be non-trivial. In fact, as pointed out earlier, ∆SHD should be given

by change in the corresponding Wald entropy, since the state both at early and late times

are stationary states.

Now the contribution from the second term in (2.27) vanishes. This can be seen by

manipulating the term as follows.∫
H

√
h dd−2x dv v ∂v

[
1√
h
∂v(
√
h X)

]
=

∫
H
dd−2x dv ∂v

[
v ∂v(

√
h X)− (

√
h X)

]
+O

(
ε2
)

=

∫ v=∞

v=−∞
dv ∂v

(∫
Hv

dd−2x
[
v ∂v(

√
h X)− (

√
h X)

])
+O

(
ε2
)

=

[ ∫
Hv

dd−2x v ∂v(
√
h X)−

∫
Hv

dd−2x(
√
h X)

]v=∞

v=−∞

(2.28)

where

X =

N∑
k=1

[(
∂krA

(k)
) (

∂kv B
(k)
)]

+O
(
ε2
)

(2.29)

Note that both the terms in the last line of equation (2.28) contain more than one ∂v
derivatives on expressions that are invariant under the rescaling (2.11). Therefore, they

must vanish in the two limits of far past and far future, where we have a stationary black

hole with a Killing horizon. It follows that, these terms do not contribute to ∆SHD in (2.27).

Hence, (2.27) can be always reduced to an integral of the form

∆SHD = 2π

∫
H

√
h dd−2x dv v ∂v [A ∂v B] (2.30)

Again by performing an integration by parts, we obtain

∆SHD = 2π

[∫
Hv

√
h dd−2x v (A ∂v B)

]v=∞

v=−∞
− 2π

∫
Hv

√
h dd−2x dv [A ∂v B] (2.31)
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However, to have a consistent first law, the second term also should be write-able as a total

∂v derivative so that the v integration of this term from infinite past to infinite future finally

would give the net change of some geometric quantity — entropy, defined on the constant

v slices of the horizon.13 Naively this is possible if A is of the form

[
some constant/

√
h

]
and B has the form

[√
h B̃

]
where B̃ is a scalar under {xi} → {yi} = yi ({~x}).

If it is indeed the case that A is always a constant times
(

1/
√
h
)

(let’s choose the

constant to be one without any loss of generality), then the schematic form of EHD
vv

EHD
vv = ∂v

∂v
(√

h B̃
)

√
h

+ ∂v

[(
1√
h

)
∂v

(√
h

N∑
k=1

∂krA
(k) ∂kvB

(k)

)]
+O(ε2) (2.32)

If EHD
vv does have the form of equation (2.32), not only the ‘physical process version’ of the

first law but also the second law as argued in [1] will be true with the following identification

for correction to the total entropy (see equation (2.8)).

δSHD =

∫
Hv

[
B̃ +

N∑
k=1

∂krA
(k) ∂kvB

(k)

]
(2.33)

Note that B̃ is the only term that is non-zero even in equilibrium. This term must match

with Wald entropy.14 Rest of the terms (for k ≥ 1) vanish on stationary metric and

therefore are part of JKM ambiguities.

So in summary, [1] has given a constructive proof for the second law for dynamical

black hole solutions in higher derivative theories of gravity provided the physical process

formulation of the first law is true for these solutions. The validity of the ‘physical process

formulation of the first law’ requires a very specific structure for a certain term in the

equation of motion (the first term in (2.22) must take the form of the first term in (2.32)),

which does not follow from the boost-symmetry (2.11) alone (the only symmetry that

is considered in [1]).15 For the convenience of reporting, we shall refer to the first term

in (2.32) (or the first term in (2.22)) as the ‘zero boost term’. This nomenclature is inspired

by the fact that B̃ in (2.32) (or A and B in (2.22)) does not have any v or r derivative. Apart

from this, there is absolutely no other physical motivation behind this nomenclature. The

reader must not confuse the phrase ‘zero boost term’ to be a synonym for boost invariant

13At this stage, by ‘geometric quantity’ we simply mean some expression in terms of the metric compo-

nents and their derivatives that is invariant under any diffeomorphism, mixing only the spatial coordinates

of the constant v slices of the horizon.
14Though we have explained the argument here, specializing to higher derivatives theories, it is trivially

true for two derivative theories of gravity where B̃ is simply 0, and entropy is simply given by S =
∫
Hv

√
h.

15This special structure of the first term in (2.32) has only been verified in specific theories of gravity

where the physical process version of the first law has been proven (for instance, see [15]). To our knowledge,

a complete proof demonstrating this special structure of the zero boost term in a general higher derivative

theory of gravity does not exist. It would be interesting to explore, if it is possible to arrive at such a proof

using the residual gauge transformations (2.9), which is more general than the boost symmetry (2.11) (see

section 4 for further discussion).
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term. By boost invariant terms we shall continue to mean such terms which are invariant

under the rescaling symmetry (2.11).

3 An entropy current for four derivative theories of gravity

In the previous section 2, we have reviewed the proof of the second law for linearized

fluctuations, following [1]. As emphasized earlier, this proof is designed to prove a second

law for the ‘total entropy’ of the system. The proof crucially involves an integration over

the full spatial slice of the horizon, which defines the ‘total entropy’. Therefore, it is

insensitive to any total (spatial) derivative term, that may be present in the integrand,

which is derived from the equation of motion. This drawback exists even in the proof for

the physical version of the first law.

In this section, we shall carefully re-examine this particular subtlety. In explicit exam-

ples of four-derivative theories of gravity, we shall demonstrate that such total derivative

terms do exist if we follow the algorithm of [1], and their inclusion would naturally lead to a

construction of an entropy current. With the help of this entropy current, we can immedi-

ately prove an ultra-local version of second law, associated with any dynamical horizon H.

Let us now elaborate this point further. In (2.32), we have shown that a special

structure for EHD
vv is necessary for the validity of both the second law, as well as the

physical process version of the first law. As we have explained in section 2, the structure

of the second term in (2.32) is fixed by the ‘boost symmetry’ (2.11), up to higher-order

corrections in the amplitude of fluctuations ε. But the same is not true for the first term

in (2.32), which we have named as ‘zero-boost terms’ of EHD
vv .

In section 2, we have argued that the physical version of the first law, and consequently,

the second law, would be true if the ‘zero boost term’ in EHD
vv has the following schematic

structure (see (2.32))

EHD
vv

∣∣
zero boost

∼ ∂v
(

1√
h
∂v

(√
h B̃

))
, (3.1)

where B̃ is some scalar, which is invariant under spatial diffeomorphism.

However, the above form of the zero-boost term, though sufficient for the validity of

the physical process version of the first law 15 and the second law, it is neither necessary,

nor does it follow in any way, from the boost-symmetry (2.11). In this section, to begin

with, our goal is just to verify (3.1). We shall explicitly compute the equation of motion,

and in particular the zero-boost terms, in all possible four-derivative theories of gravity.

From this explicit computation in four derivative theories of gravity we will show that (3.1)

is not true in general. There exist cases where the zero boost terms in EHD
vv could not be

recast in the above form. In fact, the zero boost terms in EHD
vv consists of additional terms,

which can never be cast into the form (3.1).

Being motivated by this observation, we investigate the structural nature of the zero

boost terms of EHD
vv , to understand why such additional terms do not affect validity of the

first and the second law. The possibility of non-zero spatial components of the entropy

current arises here very naturally. Finally, through a general algorithm, we shall establish
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that, the zero boost terms of EHD
vv for every four derivative theories of gravity, could be

rendered into a form, which guarantees an ultra-local version of the second law, in terms

of an entropy current with non-zero spatial components.

3.1 Explicit calculation of EHD
vv and the entropy current for theories with four

derivative corrections to Einstein gravity

In this subsection, we shall compute the ‘vv’-component of the equation of motion, Evv, for

all possible four derivative theories of gravity. We shall immediately find that it is possible

to rearrange the terms so that up to corrections of order O(ε2) it takes the form

Evv = − ∂v
[

1√
h
∂v

(√
hJv

)
+∇iJ i

]
+O

(
ε2
)
. (3.2)

Once we could rewrite Evv in this form,16 it is very natural to identify Jv with the entropy

density and J i as the spatial entropy current, capturing the in-flow and out-flow of entropy.

Vanishing of Evv at order O (ε) would then correspond to a locally conserved entropy

current and therefore an ultra-local version of the second law (see section 2 for details of

this argument).17 More explicitly, once Evv has the form (3.2), the standard arguments

outlined in section 2 would imply that18

1√
h
∂v

(√
hJv

)
+∇iJ i = O(ε2). (3.4)

There are only three possible covariant terms which can appear in the gravity La-

grangian with 4-derivatives on the metric. These are given by: R2, RµνR
µν , RµνσλR

µνσλ.

16Note that for Einstein gravity Evv takes the simple form

EEinstein
vv = − ∂v

[
1√
h
∂v
(√

h
)]
.

Hence, when we consider higher derivative corrections to Einstein’s equations, the terms in this equation

arising out of these corrections also has a similar form

EHD
vv = − ∂v

[
1√
h
∂v
(√

h J̃v
)

+∇iJ i
]

+O
(
ε2
)
,

where Jv − J̃v = 1. For most of our analysis, especially in the abstract manipulations, we have used EHD
vv ,

instead of Evv.
17The calculations here clearly suggest about the existence of an entropy current for some of these higher

derivative theories. However, it requires a bit of clever manipulation. See the following subsections for a

more algorithmic method which clearly exhibits that we need the spatial entropy current, which in turn

provides us with an ultra-local version of the second law.
18If we consider special processes where the metric is entirely sourced by a small matter energy-momentum

tensor, so that both the first correction to the metric as well as the matter energy-momentum tensor are of

O(ε2) (the O(ε) correction to the metric being zero), then for the ε2 coefficient, (3.4) would be modified to

the inequality (
1√
h
∂v
(√

hJv
)

+∇iJ i
) ∣∣∣

ε2
≥ 0. (3.3)

Note that, while deducing this inequality, we have assumed that there exist other matter fields satisfying

the null energy condition. See section 2.1 for a more detailed discussion of this point.
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In the following subsections, we shall separately consider three different four derivative

theories of gravity

1. Ricci scalar squared theory: I(1) =

∫
ddx
√
−g (R+ a1R

2),

2. Ricci tensor squared theory: I(2) =

∫
ddx
√
−g(R+ a2RµνR

µν),

3. Riemann tensor squared theory: I(3) =

∫
ddx
√
−g(R+ a3RµνρσR

µνρσ),

and explicitly compute the ‘vv’-component of the respective equations of motion, Evv,

for each of them. After some algebraic manipulations on Evv, in each of these cases, we

shall write down the entropy current, It is then trivial to combine these results, to give us

the entropy current for any arbitrary four derivative theory of gravity. The final result is

tabulated in table 1.

For each of the three four-derivative theories mentioned above, if we just evaluate the

equation of motion on our gauge fixed metric (2.1), it turns out to be an extremely com-

plicated expression, even after we restrict it to the horizon. In general, just by inspection,

it is quite difficult to rearrange the terms to arrive at the form (3.2). However, we know

that in stationary situations, at least Jv should reduce to the well-known form of Wald

entropy and the rest of the terms must be such that they vanish in a stationary situation.

We shall use this fact to guide our intuition about the form of the entropy density and

then finally deduce the form of the entropy current. More precisely, we shall obtain the

following constituents for Jv

Jv =
√
h (sw + sc) (3.5)

where sw is the Wald entropy density for the stationary black holes defined as

sw =
∂L

∂Rµνρσ
εµνερσ, (3.6)

where εµν are the bi-normal to Hv, the co-dimension−2 spatial slicing of the horizon. Also,

sc is the non-stationary correction to sw. As we have argued before, sc will vanish once we

take stationary limit. Let us also define the contribution to sw from the higher derivative

part of the action as sHD
w

sHD
w =

∂LHD

∂Rµνρσ
εµνερσ. (3.7)

At this point, let us clarify one subtlety regarding the split mentioned in (3.5). It turns

out that if we evaluate sw on any dynamical metric, along with the terms that contribute

in stationary situation, it will also have terms that vanish in the stationary limit. For

convenience, let us name such terms as ‘off-equilibrium’ structures. Such off-equilibrium

terms in the entropy suffer from the well-known class of JKM ambiguities, which arises

as soon as we try to extrapolate Wald’s formalism to non-stationary solutions. In our

identification of the entropy density, we have used the fact that, in the stationary limit, it

should reduce to Wald entropy. As we will see in the later sections, this requirement also

fixes one class of ambiguities, in defining the entropy current.
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For convenience, let us separate out the contribution of Wald entropy density sHD
w to

EHD
vv and define the quantity EHD

vv
∗

as follows

EHD
vv
∗ ≡ EHD

vv + ∂v

[
1√
h
∂v

(√
h sHD

w

)]
(3.8)

Then, from the definition (3.5) it follows that

EHD
vv
∗

= − ∂v
[

1√
h

(
∂v
√
h sc

)
+∇iJ i

]
+O

(
ε2
)
. (3.9)

It turns out that, in the examples that we consider, algebraically it is comparatively easier

to recast EHD
vv
∗

in the form (3.9), instead of dealing with the full EHD
vv .

We would like to emphasize here that, the procedure adopted in this subsection, is a set

of intuitive manipulations and educated guess-work. It gives us an explicit demonstration

that for the theories that we consider here, it is possible to lift both the first and the second

law to an ultra-local form, by entertaining the possibility of non-zero spatial components of

the entropy current, which captures the effect of the inflow and outflow of the entropy from

any arbitrary local sub-region. However, at this stage, we would not be able to say, whether

the spatial components of the current is an absolute necessity, or there exist other possible

rearrangements of terms, such that we can avoid the spatial components of the current

altogether. In the later subsections, we shall repeat the same analysis more systematically,

and for the four derivative theories, we shall be able to quantify these ambiguities involved

in defining the entropy current more precisely. We shall conclude that, although there are

some ambiguities in defining the entropy current, its non-zero spatial components are an

unavoidable feature of the ultra-local form of the second law.

3.1.1 Ricci scalar square theory

The action for Ricci scalar square theory is

I(1) =

∫
ddx
√
−g (R+ a1R

2) (3.10)

where a1 is an arbitrary constant. The equations of motion which follows from the ac-

tion (3.10), is given by

Eµν = Rµν −
1

2
gµνR+ EHD

µν = 0, (3.11)

where

EHD
µν = a1

(
2RRµν − 2DµDνR+ 2gµνD

ρDρR−
1

2
gµνR

2

)
(3.12)

are the higher derivative corrections to the Einstein equation. The explicit form of the

vv-component of the equations of motion, on the horizon, is

Evv = Rvv + EHD
vv , (3.13)

where

EHD
vv = a1 (2RRvv − 2DvDvR) . (3.14)
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The Wald entropy for this theory happens to be

Sw =

∫
Hv
dd−2x

√
h (1 + 2 a1R). (3.15)

Once we have the Wald entropy, we could compute EHD
vv
∗
. In this case it simply vanishes

implying that we do not need to add any current, neither do we get any correction to

entropy density, beyond what is given by the Wald entropy.

3.1.2 Ricci tensor square theory

In this theory, the Ricci tensor square is added to the Einstein-Hilbert action, as a higher

derivative correction. We have

I =

∫
ddx
√
−g (R+ a2RµνR

µν) (3.16)

The equations of motion, for this theory are given by

Eµν = Rµν −
1

2
gµνR+ EHD

µν = 0, where

EHD
µν = a2

(
2RαβRµανβ −DµDνR+DαDαRµν +

1

2
gµν D

αDαR−
1

2
gµν RαβR

αβ

) (3.17)

The explicit form of the vv-component of the equations of motion on the horizon, is as

given below

Evv = Rvv + EHD
vv = 0,

EHD
vv = a2

(
2RαβRvαvβ −DvDvR+DαDαRvv

)
.

(3.18)

The Wald entropy for this theory is given by

Sw =

∫
Hv
dd−2x

√
h (1 + 2 a2Rrv), (3.19)

so that sHD
w = 2 a2Rrv . Once we have obtained the Wald entropy, we can compute EHD

vv
∗
.

Using the form of the metric (2.1) and the formulae provided in appendix C, we evaluate

EHD
vv
∗

explicitly in terms of metric functions and their derivatives.

EHD
vv
∗

= a2 ∂v

[
1√
h
∂v
(√
hKK̄

)]
+ a2 ∂v

[
∇i
(
∇iK + hij∂vωj − 2∇jKij

)]
. (3.20)

Now, we could easily re-express EHD
vv
∗

in the form of (3.9). Subsequently, it is straightfor-

ward to identify the current as

Jv = −sHD
w − a2KK̄,

J i = a2

(
2∇jKij −∇iK − hij∂vωj

)
.

(3.21)
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3.1.3 Riemann tensor square theory

The action for Riemann tensor square theory is

I =

∫
ddx
√
−g(R+ a3RµνρσR

µνρσ)

The corresponding equations of motion are

Eµν = Rµν −
1

2
gµνR+ EHD

µν = 0, (3.22)

where

EHD
µν = a3

(
4RαβRµανβ − 2DµDνR+ 4DαDαRµν − 4RαµRνα

− 1

2
gµνRαβγσR

αβγσ + 2Rαβσµ Rναβσ

)
.

(3.23)

The vv-component of the equations of motion is

Evv = Rvv + EHD
vv = 0,

EHD
vv = a3

(
4RαβRvαvβ − 2DvDvR+ 4DαDαRvv − 4RαvRvα

+ 2Rαβσv Rvαβσ

)
.

(3.24)

The Wald entropy for this theory will be

sw =

∫
Hv
dd−2x

√
h (1− 4 a3Rrvrv),

such that sHD
w = −4 a3Rrvrv.

Once we have Wald entropy, it is easy to compute EHD
vv
∗
. Using the form of the

metric (2.1), and the formulae provided in appendix C, we can evaluate EHD
vv
∗
, explicitly

in terms of metric functions and their derivatives. We find that

EHD
vv
∗

= 4 a3 ∂v

[
1√
h
∂v

(√
hKijK̄

ij
)]

+ 4 a3 ∂v
[
∇i
(
hij∂vωj − ∇jKij

)]
, (3.25)

which has been expressed in the structural form (3.9). From this, it is again straightforward

to read off the entropy current to be

Jv = − sHD
w − 4 a3KijK̄

ij ,

J i = −4 a3

(
hij∂vωj − ∇jKij

)
.

(3.26)

3.2 The most general structure of the ‘zero boost term’ in EHD
vv

Determining the equation of motion and in particular, its ‘vv’-component, given the coor-

dinate choice in (2.1), are, in principle, a straightforward task. But, it becomes increasingly

tedious with the number of derivatives present in the action. Also, as we will see in sec-

tion 3.4, the unambiguous definition of the spatial components of the entropy current arises
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1 Ricci scalar square theory: EHD
vv = −∂vΘ +O[ε]2

I =
∫
ddx
√
−g
(
R+ a1R

2
)

Θ = 2 a1√
h
∂v

(√
h R

)

EHD
vv = −∂vΘ− ∂v

(
∇iJ i

)
+O[ε]2

2 Ricci tensor square theory:

Θ = a2√
h
∂v

[√
h
(
2Rrv − K̄K

)]
I =

∫
ddx
√
−g (R+ a2RµνR

µν)

Ji = a2

[
2∇jKij −∇iK − ∂vωi

]

EHD
vv = −∂vΘ− ∂v

(
∇iJ i

)
+O[ε]2

3 Riemann tensor square theory:

Θ = 4 a3√
h
∂v

(√
h
(
−Rrvrv + K̄ijK

ij
))

I =
∫
ddx
√
−g
(
R+ a3RµνσλR

µνσλ
)

Ji = 4a3

[
∇jKij − ∂vωi

]

Table 1. Table showing the higher derivative corrections to Einstein’s equations, for all possible

4-derivative theories of gravity.
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out of the zero boost term in EHD
vv . This implies that, for the construction of the entropy

current, we do not need the equation of motion in its every detail. What we need is a very

specific set of terms in EHD
vv , namely the terms that could be written in the form of the

first term in (2.22). For convenience, we are re-writing (2.22) here again

EHD
vv = ∂v [A ∂v B]︸ ︷︷ ︸(

=EHD
vv

∣∣
zero boost

) +
1√
h
∂2
v

∑
k≥1

√
h
(
∂krA

(k)
)(

∂kv B
(k)
)

︸ ︷︷ ︸(
=EHD

vv

∣∣
higher boost

)
+O(ε2) . (3.27)

In this subsection, we would like to develop an algorithm that would isolate out these zero-

boost terms in EHD
vv . The most important feature of these terms is that at linear order in

amplitude expansion of the perturbations, it is always possible to rewrite them as

EHD
vv

∣∣∣∣
zero boost

= ∂v [A∂vB] ∼ A∂2
vB +O(ε2) , (3.28)

where both A and B are boost invariant quantities and they are non-vanishing on the

stationary solutions. Hence here our main focus would be to search for terms of the form

A∂2
vB in the ‘vv’-component of the linearized equation of motion, EHD

vv . However, before

proceeding to extract the zero boost terms from EHD
vv , let first point out an important

ambiguity in defining the zero boost terms, through the structure (3.28).

Generating terms like A∂2
vB from the k = 1 terms in (3.27). Before proceeding

further with the zero boost terms, we would like to discuss one subtle point that will be

important in our attempt to separate out the k = 0 terms (i.e. the zero boost sector)

from the k 6= 0 ones in (3.27). Recall that our final goal is to determine the form of the

boost invariant terms A and B in (3.27) and we plan to do that by keeping track of the

terms of form A∂2
vB in the linearized EHD

vv . However, the strategy mentioned above to

uniquely extract out the zero boost terms from linearized EHD
vv would be unsuccessful if

there is a possibility of generating terms of the form A∂2
vB (with A and B being boost

invariant) from the second term in equation (3.27). As we will see now, there is indeed

such a possibility of contamination arising from the term k = 1 in the summation on the

r.h.s. of (3.27). Let us analyze this term more carefully

EHD
vv

∣∣∣∣
k=1

=
1√
h
∂2
v

[√
h
(
∂rA

(1)
)(

∂v B
(1)
)]

+O(ε2)

= 2
(
∂v∂rA

(1)
)(

∂2
v B

(1)
)

+
(
∂rA

(1)
)(

∂3
v B

(1)
)

+O(ε2) .

(3.29)

In (3.29) above the first term is precisely of the form ∼ X∂2
vY , where

(
∂v∂rA

(1)
)

and B(1)

respectively can be added to A and B of the zero boost terms. Thus, the terms of our

interest A∂2
vB, which we are looking for in EHD

vv can be contaminated by terms generated

from ∂v
[
B(1) ∂v

(
∂v∂rA

(1)
)]

. This clearly demonstrates that it is impossible to uniquely

determine A and B, appearing in the first term of (3.27), just by looking at the terms of

the form A∂2
vB alone in EHD

vv ; it would be difficult to know if they arise from k = 0 or

k = 1 terms in our classification (3.27) for the terms in EHD
vv .
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Candidate terms Derivative counting Boost weight

1. hij zero zero

2. ωi one zero

3. X two zero

Table 2. The basic building blocks.

With this subtlety in mind, let us also comment on the way to tackle this issue. We can

subtract off the contributions coming from the k = 1 terms, that are of the same form as

the k = 0 terms in (3.27). This could be done easily by noting that whenever such a term is

generated from k = 1 piece, it will also generate the second term in equation (3.29). Hence

to determine A and B unambiguously and construct EHD
vv

∣∣
zero boost

, we will have to isolate

out few special terms of the form (∂rX)(∂3
vY ) in EHD

vv , with X and Y being boost invariant.

Note that, due to the structural nature of the terms, a similar issue may also arise

from the k = 2 term in (3.27). However, we are not discussing the k = 2 case in greater

detail here, because such terms would not arise in four derivative theories of gravity. This

is because, there are a total of six derivatives in the k = 2 terms.

Algorithm to uniquely extract the terms like A∂2
vB from linearized EHD

vv . Our

job will now be to develop an algorithm, to determine the most general structure of this

k = 0 ‘zero boost term’ appearing in (3.29), keeping in mind the above-mentioned subtlety.

It is clear from our previous discussions that for constructing the entropy current, which

satisfies the strongest form of the second law, we need the knowledge of the zero boost term

in EHD
vv , only on the horizon H. This in turn means that, the gvi = r ωi component of the

metric (2.1) can appear in the zero boost term, only after differentiation with one ∂r,

and the gvv = r2X component can appear only after the action of two ∂r. The spatial

components of the metric hij can appear without any derivative acting on it. So the basic

building blocks, for constructing the zero boost term on the horizon, are given in table 2.

Let us first concentrate on terms of the form
(
X∂2

vY
)

and isolate such terms in EHD
vv

when we have a four derivative theory of gravity. These terms in EHD
vv can be constructed

by applying ∂r, ∂v and∇i on these building blocks,19 so that the total number of derivatives

are always equal to four,20 when we restrict to the four derivative theories of gravity.

19To begin with the structures that appear in EHD
vv will have only ∂i. However, we know that EHD

vv

is a scalar with respect to the coordinate transformation that only mixes the {xi} coordinates among

themselves. If we want to construct scalars out of the horizon data with spatial derivatives on the three

building blocks, it must be combined with appropriate spatial derivatives of hij so that it finally becomes

a covariant derivative with respect to hij . This covariance with respect to the mixing of {xi} tells us that

just spatial derivatives of hij need not be taken as any independent data.

Also note that in our set-up r and v are genuinely distinguished coordinates and we do not demand

any covariance with respect to the transformation that mixes these two coordinates among themselves and

others. Therefore the derivatives with respect to r and v would remain as simple ∂r and ∂v.
20In this derivative counting ωi and X must be taken as one derivative and two derivative data, respec-

tively.
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Candidate structures Derivative counting Boost weight

1.
(
∇j1 · · · ∇jp

)
(∂r∂v)

m1hij p+ 2m1 zero

2. (∂r∂v)
m2
(
∇j1 · · · ∇jq

)
ωi q + 2m2 zero

3. (∂r∂v)
m3 (∇j1 · · · ∇jr)X r + 2m3 zero

Table 3. ‘Equilibrium’ and ‘boost-invariant’ structures built out of the basic building blocks.

Candidate structures Derivative counting Boost weight

1.
(
∇j1 · · · ∇jp

)
∂2
v(∂r∂v)

m1hij p+ 2m1 + 2 two

2. ∂2
v(∂r∂v)

m2
(
∇j1 · · · ∇jq

)
ωi q + 2m2 + 2 two

3. ∂2
v(∂r∂v)

m3 (∇j1 · · · ∇jr)X r + 2m3 + 2 two

Table 4. The list of ‘off-equilibrium’ and ‘boost-weight= 2’ data built out of the basic building

blocks.

For convenience, we shall now classify the data in two categories:

1. equilibrium data and 2. off-equilibrium data.

As it is clear from the names, ‘equilibrium data’ are those structures that are non-vanishing

even in a stationary situation, whereas ‘off-equilibrium data’ vanishes when stationary

limits are taken. Now, from the discussion in appendix A it follows that ‘equilibrium data’

must be ‘boost-invariant’ and therefore could have definite structures and their appropriate

products as listed in table 3.

On the other hand, the ‘off-equilibrium data’ are not boost-invariant, i.e., the total

number of ∂v should be more than the total number of ∂r, when we consider these two

derivatives as operators acting on the three basic building blocks listed above. In general

there are many possibilities for such ‘off-equilibrium data’. However, here we are interested

in a very specific term in EHD
vv , where the total number of ∂v’s is exactly two more than the

number of ∂r’s ( again considering them as operators on the basic building blocks and not

directly on the metric components). Also both of these two extra ∂v’s must be acting on

the same structure, otherwise it would generate a term which is second order in terms of

the amplitude expansion we are considering here. ‘Off-equilibrium data’ with this property

could have the following structures in general as given in table 4.

Finally, we have to contract the ‘equilibrium data’ and ‘off-equilibrium data’ appro-

priately to get the scalar term in EHD
vv . Since in this note we are focusing only on the

four-derivative theories of gravity, every term in EHD
vv contains four-derivatives on the met-

ric components. So the relevant equilibrium data can have a maximum of two derivatives

acting on the metric components, the possible structures are listed in table 5. Following

the same argument to maintain the derivative counting, the relevant ‘off-equilibrium data’

are listed below in table 6.

Now our job is to contract these two sets of data as given in table 5 and table 6, to get

the candidate scalar terms in EHD
vv , maintaining the count of total number of derivatives
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Equilibrium and boost-invariant data Number of derivatives

1. Tensor structures:

T
(1)
ij ≡ ∂r∂v hij 2

T
(2)
ij ≡ ∇iωj 2

T
(3)
ij ≡ Rij 2

2. Vector structure: V
(1)
i ≡ ωi 1

3. Scalar Structure: S(1) ≡ X 2

Table 5. Relevant equilibrium and boost invariant data with maximum number of derivatives= 2,

in four-derivative theories of gravity.

Off-equilibrium and boost-weight= 2 data Number of derivatives

1. Tensor structures:

T
(4)
ij ≡ ∇i∇j

(
∂2
v hkl

)
4

T
(5)
ij ≡ ∇i

(
∂2
v hjk

)
3

T
(6)
ij ≡ ∂2

v (∂r∂vhij) 4

T
(7)
ij ≡ ∂2

v (∇iωj) 4

T
(8)
ij ≡ ∂2

vhij 2

2. Vector structure: V
(2)
i ≡ ∂2

vωi 3

3. Scalar Structure: S(2) ≡ ∂2
vX 4

Table 6. Relevant off-equilibrium data with maximum number of derivatives= 4 and boost-weight=

2, in four-derivative theories of gravity. Let us emphasize that within the tensor structures there

are three types of terms: (i) 4-index structure: T
(4)
ij , (ii) 3-index structure: T

(5)
ij , (iii) 2-index

structure: T
(6)
ij , T

(7)
ij and T

(8)
ij .

equal to four. This could be done systematically as outlined below:

• The four-indexed tensor structure T
(4)
ij itself has four derivatives. Therefore the free

indices have to be contracted with zero derivative ‘equilibrium-data’ or just among

themselves. Now, there is no ‘equilibrium-data’ that has zero derivatives, see table 5.

Therefore, self contraction of the indices in T
(4)
ij is the only possibility here and it

could be done in two ways leading to two different scalar structures:

T1 = hijhkl∇i∇j
(
∂2
v hkl

)
, T2 = hikhjl∇i∇j

(
∂2
v hkl

)
• The three-indexed ‘off-equilibrium data’ T

(5)
ij has three derivatives and therefore it

has to be contracted with one derivative ‘equilibrium data’ (V
(1)
i = ωi). Here also,

two different types of contractions are possible leading to two different scalars:

T3 = hijhklωi∇j
(
∂2
v hkl

)
, T4 = hikhjlωi∇j

(
∂2
v hkl

)
• The two ‘off-equilibrium’ tensor structures with 2 indices, T

(6)
ij and T

(7)
ij , themselves

have four derivatives and therefore the free indices have to be contracted among
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themselves. In each case there is only one way the contraction could be done. The

resultant scalars are

T5 = hij∂2
v (∂r∂vhij) , T6 = hij∂2

v (∇iωj)

• The last ‘off equilibrium’ tensor structure T
(8)
ij has two derivatives. It has to be

contracted with two derivative ‘equilibrium-data’ and also the equilibrium data must

have even number (in this case it could be either zero or two) of free indices so that

contraction is possible. Here we get the following structures:

T7 = X hij
(
∂2
vhij

)
,

T8 = hijhkl (∇iωj)
(
∂2
vhkl

)
, T9 = hikhjl (∇iωj)

(
∂2
vhkl

)
,

T10 = hijhkl (ωiωj)
(
∂2
vhkl

)
, T11 = hikhjl (ωiωj)

(
∂2
vhkl

)
,

T12 = hijhkl (∂r∂vhij)
(
∂2
vhkl

)
, T13 = hikhjl (∂r∂vhij)

(
∂2
vhkl

)
• The ‘off-equilibrium’ vector data, V

(2)
i , is a three-derivative structure therefore it has

to be contracted with one derivative ‘equilibrium data’ V
(1)
i = ωi, leading to the

following scalar structure

T14 = hijωi∂
2
vωj

• The ‘off-equilibrium’ scalar data, S(2), itself is a four-derivative and no contraction

is needed.

T15 = ∂2
vX

• Considering possible contractions between the ‘equilibrium data’ T
(3)
ij (given in terms

of the intrinsic curvature of Hv), and the ‘off equilibrium’ tensor structure T
(8)
ij , we

can also get two more terms as given below

T16 = hik hjlRkl ∂2
vhij ; T17 = hij hklRkl ∂2

vhij .

• Finally, as we have already mentioned in the beginning of this subsection, to deter-

mine the boost-invariant A and B in (3.27) unambiguously, we also need to keep

track of terms of the form (∂rX)(∂3
vY ) where X and Y are boost invariant. These

are the terms which will contribute to the k = 1 sector of linearized EHD
vv . Although,

we are interested in finding out the k = 0 zero-boost sector of the same, we need to

track these specific k = 1 terms (see (3.29)) as they will be needed to separate out

the boost-invariant A and B in (3.27). In case of four-derivative theories we have

only two possibilities for these terms as listed below

T̃1 = hijhkl(∂rhij)(∂
3
vhkl), T̃2 = hikhjl(∂rhij)(∂

3
vhkl) . (3.30)

It is important to note that in this list of structures we have not counted hij and the

determinant of hij as independent structures. All possible occurrences of these two pieces

of data are automatically taken care of in the way we have listed our data. For example hij
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T1 = hijhkl∇i∇j
(
∂2
v hkl

)
T2 = hikhjl∇i∇j

(
∂2
v hkl

)
T3 = hijhklωi∇j

(
∂2
v hkl

)
T4 = hikhjlωi∇j

(
∂2
v hkl

)
T5 = hij∂2

v∂r∂vhij T6 = hij∂2
v (∇iωj)

T7 = X hij
(
∂2
vhij

)
T8 = hijhkl (∇iωj)

(
∂2
vhkl

)
T9 = hikhjl (∇iωj)

(
∂2
vhkl

)
T10 = hijhkl (ωiωj)

(
∂2
vhkl

)
T11 = hikhjl (ωiωj)

(
∂2
vhkl

)
T12 = hijhkl (∂r∂vhij)

(
∂2
vhkl

)
T13 = hikhjl (∂r∂vhij)

(
∂2
vhkl

)
T14 = hijωi∂

2
vωj

T15 = ∂2
vX T16 = hik hjlRkl ∂2

vhij

T17 = hij hklRkl ∂2
vhij

T̃1 = hijhkl(∂rhij)(∂
3
vhkl) T̃2 = hikhjl(∂rhij)(∂

3
vhkl)

Table 7. Listing the seventeen Ti’s and two T̃i’s, the possible 4-derivative scalar data with boost

weight = 2. They are candidate terms that appear in EHD
vv for 4-derivative theories of gravity. The

seventeen Ti terms will contribute to k = 0 sector, and the two T̃i terms will contribute to k = 1

sector of EHD
vv .

could only occur in contraction of other indices and all possible contractions of indices are

already counted in our listing. Finally, all the nineteen possible candidate terms (seventeen

of the Ti’s and two of the T̃i’s) to appear in EHD
vv

∣∣
zero boost

, are listed in table 7.

At this stage our claim is that the first term in (3.27), i.e., the term of the form

∂v (A∂vB) ∼ A∂2
vB+O(ε2), for any four-derivative theory could always be expressed as a

sum of these seventeen terms listed in table 7 with constant coefficients. Further, we claim

that the contribution of the k = 1 piece from the second term of (3.27) (written in the

form of a sum over several k values) could also be expressed in terms of these seventeen

structures plus two more, listed in equation (3.30)

EHD
vv = −

17∑
i=1

ai Ti −
2∑
i=1

ãi T̃i + · · · , (3.31)

where · · · denote the terms that do not matter for the proof of the physical process version

of the first law. The negative sign on the r.h.s. of (3.31) is chosen for convenience. The

specific values of these seventeen ai and two ãi coefficients appearing in (3.31), will of course

vary from theory to theory. As we have mentioned before, the above classification of terms

have been done keeping in mind the four derivative theories of gravity. The most general

four derivative theory of pure gravity could have three more terms apart from the standard

two derivative term in Einstein gravity. In table 8 we are listing the values of ai’s and

ãi’s for each of these three cases. These set of values of the ai coefficients are obtained by

comparing (3.31) with the explicit calculation of EHD
vv for each of the three four derivative

theories of gravity, which was performed in section 3.1.1, section 3.1.2 and section 3.1.3.
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Different theories(
I(i) =

∫
ddx
√
−g L(i)

) The calculated values of the coefficients

ai and ãi’s

1.
L(1) = R2

(Ricci scalar squared)

a1 = 2, a2 = −2, a3 = 0, a4 = 0,

a5 = 4, a6 = −4, a7 = 1,

a8 = −2, a9 = 4, a10 = 3/2,

a11 = −3, a12 = 4,

a13 = −10, a14 = 6, a15 = 2,

a16 = 2, a17 = −1,

ã1 = 1, ã2 = −3.

2.
L(2) = RµνR

µν

(Ricci tensor squared)

a1 = 1/2, a2 = −1, a3 = −(1/2),

a4 = 1, a5 = 1, a6 = 0,

a7 = 1/2, a8 = −(1/2), a9 = 1,

a10 = 1/2, a11 = −1, a12 = 1,

a13 = −2, a14 = 2, a15 = 1,

a16 = 0, a17 = 0,

ã1 = 1/4 , ã2 = −(1/2).

3.
L(3) = RµνρσR

µνρσ

(Riemann tensor squared)

a1 = 0, a2 = −2, a3 = −2,

a4 = 4, a5 = 0, a6 = 4, a7 = 1,

a8 = 0, a9 = 0, a10 = 1/2,

a11 = −1, a12 = 0, a13 = 2,

a14 = 2, a15 = 2, a16 = 0, a17 = 0,

ã1 = 0, ã2 = 1..

Table 8. Explicit calculation for each of the three theories produces these values of the coefficients

ai, appearing in EHD
vv = −

∑17
i=1 ai Ti −

∑2
i=1 ãi T̃i , for 4-derivative theories of gravity.

3.3 Constraints on the ‘zero boost terms’ in EHD
vv

A very specific structure for the zero boost terms in EHD
vv is predicted in (3.1). This struc-

ture does not follow automatically just from the boost transformation property, which we

have used to classify terms in the previous subsection. Clearly, imposing (3.1) would im-

pose further constraints on the seventeen coefficients mentioned above. In this subsection,

we shall first find those constraints. We shall list the most general possible structure for B̃,

defined in (3.1), which is a two-derivative scalar with vanishing boost weight. According to

the terminology of the previous subsection it must be an ‘equilibrium data’. It turns out
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Candidate terms for B̃

Equilibrium data: 1. hij (∂r∂vhij),

2. hij ∇i ωj ,

3. hij ωi ωj ,

4. R,

5. X,

Off-equilibrium data: 6. hij hkl (∂vhij) (∂rhkl),

7. hik hjl (∂vhij) (∂rhkl)

Table 9. Possible structures that can appear in B̃: each of them has two derivatives and boost

weight= 0.

that B̃ could have only five independent structures which are non-vanishing at equilibrium

(see table 9).

Using linear combinations of the independent structures presented in table 9 we can

now write down the most general structure of B̃, if it exists, as follows

B̃ = A1 h
ij∂r∂vhij +A2 h

ij∇iωj +A3 h
ijωiωj +A4 X +A5R . (3.32)

The first term in B̃ needs a special attention. This is the term whose contribution to EHD
vv

could get mixed with some the k = 1 term (see equation (3.27) and the discussion after

that). To see this more explicitly, let us write down the contribution to EHD
vv coming from

the term B̃ = A1 h
ij∂r∂vhij

∂v

(
1√
h
∂v

(√
h B̃

))
∼ A1 ∂v

(
1√
h
∂v

(√
h hij∂r∂vhij

))
= A1

(
T5 +

T12

2
− T13

)
.

(3.33)

It can be easily checked that the terms T12 and T13 could also be generated as k = 1 terms in

EHD
vv from the following two off-equilibrium candidates for B̃ (see the list of off-equilibrium

data in table 9)

(i) hijhkl (∂vhij) (∂rhkl) , (ii) hikhjl (∂vhij) (∂rhkl) .

We assume that in EHD
vv , these two terms mentioned above contribute with coefficients A6

and A7 respectively as written below21

EHD
vv

∣∣
k=1

= −A6

(
2T12 + T̃1

)
−A7

(
2T13 + T̃2

)
. (3.34)

21To obtain the expressions in (3.36) we have used the following relations

∂v

(
1√
h
∂v
(√

h hijhkl (∂vhij) (∂rhkl)
))

= 2 T12 + T̃1 ,

∂v

(
1√
h
∂v
(√

h hikhjl (∂vhij) (∂rhkl)
))

= 2T13 + T̃2 .
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From the above equation it is clear that A6 and A7 could be simply fixed by comparing

the coefficients of T̃1 and T̃2 respectively in the k = 1 sector of (3.31) and (3.34),

A6 = ã1 , A7 = ã2 . (3.35)

We have now extracted out the k = 1 part of EHD
vv in (3.34) which has the form of A∂2

vB,

as desired from (3.27). Next, we subtract off (3.34) from (3.31) and obtain the part of EHD
vv

that is entirely generated from zero boost sector. This could be written as

EHD
vv

∣∣
zero boost

= −
11∑
i=1

ai Ti − (a12 − 2 ã1)T12

− (a13 − 2 ã2)T13 −
17∑
i=14

ai Ti .

(3.36)

At this point, it is important to note that although in (3.31) there were nineteen terms

to begin with, the zero boost sector EHD
vv

∣∣
k=0

is constructed out of seventeen terms Ti’s

appearing on the r.h.s. of (3.36). We, therefore, have to deal with seventeen coefficients as

well. The easiest way to understand this is by realizing that the coefficients ã1 and ã2 do

not count as additional ones since they will always appear in the combination (a12 − 2 ã1)

and (a13 − 2 ã2) respectively.22

On the other hand, from (3.32) we know that the number of free coefficients in B̃

thus turns out to be five, namely the Ai’s (for i = 1, · · · , 5). As of now the Ai’s are free

coefficients and we want to solve them in terms of the ai’s appearing in (3.36). To do that,

we first substitute B̃ from (3.32) in (3.1) and write it in terms of the basis of Ti structures,

as listed in table 7 and obtain the following

EHD
vv

∣∣
zero boost

∼ − ∂v
(

1√
h
∂v

(√
h B̃

))
= −

[
A1

(
T5 +

T12

2
− T13

)
+A2

(
T6 +

T8

2
− T9

)
+A3

(
2T14 +

T10

2
− T11

)
+A4

(
T15 +

T7

2

)
−A5

(
T16 −

T17

2
+ T1 − T2

)]
.

(3.37)

22In what follows, whenever we refer to the seventeen coefficients ai’s, it will be implied that there are

actually nineteen coefficients (the ai’s and the ãi’s) but the two coefficients ã1 and ã2 will always appear

being paired with a12 and a13 respectively, see (3.36), and hence the independent coefficients will be counted

as seventeen.
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In deriving (3.37), we have used the following relations

∂v

(
1√
h
∂v

(√
hhij ∂r∂vhij

))
= T5 +

T12

2
− T13 ,

∂v

(
1√
h
∂v

(√
hhij ∇iωj

))
= T6 +

T8

2
− T9 ,

∂v

(
1√
h
∂v

(√
hhij ωiωj

))
= 2T14 +

T10

2
− T11 ,

∂v

(
1√
h
∂v

(√
hX

))
= T15 +

T7

2
,

∂v

(
1√
h
∂v

(√
hR

))
= −

(
T16 −

T17

2
+ T1 − T2

)
.

(3.38)

We now compare (3.37) with (3.36) and equate the coefficients of Ti’s on both sides, which

gives us seventeen relations between the Ai (i = 1, · · · , 5) and aj (j = 1, · · · , 17), ãi (i =

1, 2).23 We can solve the five Ai’s in terms of the ai’s and then we will be left with twelve

constraints on the coefficients ai’s which ensure the consistency of (3.1). These twelve

constraints on ai’s are listed below,

a1 = a16, 2a10 =−a11, a14 = 4a10, a15 = 2a7, 2a17 =−a1,

a2 =−a1, a3 = 0, a4 = 0, a6 = 2a8, 2a8 =−a9 ,

2(a12−2 ã1) =−(a13−2 ã2), a5 = 2(a12−2 ã1) . (3.39)

Finally, we would like to check whether the ai’s as given in table 8 satisfy the constraints

given in (3.39). Remember that in the previous subsection, we have already calculated the

allowed values of the ai’s for each of the three different 4-derivative theory of gravity, see

table 8. Upon inspection, we can convince ourselves that for Ricci scalar squared theory the

constraints in (3.39) are satisfied, where as for both of the other two four derivative theories

of gravity, namely the Ricci tensor squared and the Riemann tensor squared theories, the

constraints in (3.39) are simply not satisfied. Therefore, we convince ourselves that the

constraints obtained in (3.39) are not correct, as they are not satisfied by the results

obtained by explicit calculation of EHD
vv which is the content of table 8 for the most general

four derivative theory of gravity. We should keep this in mind that these constraints were

derived from demanding the consistency of (3.1). As a result, we are led to the conclusion

that the general structure of EHD
vv in the zero boost sector, as predicted in (3.1), is not

generically true for the most general four derivative theory of gravity.

3.4 The general strategy for constructing the entropy current maintaining the

boost symmetry

From the analysis of the previous subsection, we have established the fact that the zero

boost terms in EHD
vv does not always follow the structure predicted in (3.1). Motivated

by this observation, in this subsection our goal will therefore be to explore what are the

23As we have mentioned before, we have seventeen coefficients on the r.h.s. of (3.36), and not nineteen,

because the coefficients (a12 − 2 ã1) and (a13 − 2 ã2) always comes in this particular combination.
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further structures, if any, that we could allow for the zero boost terms in EHD
vv without

affecting the proofs for the physical version of the first law and second law.

As we have explained before, the first law is a statement about the total change in the

thermodynamic parameters like entropy, energy etc., characterizing two nearby equilibrium

solutions connected by dynamics. Hence its formulation always involves an integration over

all space and therefore is usually insensitive to any boundary terms. The same is true for

black hole mechanics. The total change in entropy as described in (2.31) has an integration

over the spatial slices of the horizon. If the horizon is compact, this integration would be

insensitive to any boundary term that appears in EHD
vv . It follows that the zero boost term

in EHD
vv , in addition to the term already mentioned in (3.1), could also have a structure of

the form

EHD
vv

∣∣
zero boost

∼ − ∂v
(
∇iJ i

)
= − ∂v

(
1√
h
∂i

(√
hJ i

))
(3.40)

where J i is some spatial current with boost weight 1 (i.e., it must contain an explicit ∂v
that could not be paired up with any ∂r). On compact horizons such a term would clearly

integrate to zero and therefore will not contribute to the total change in entropy (see the

derivation of (2.31)).

It is worth noting that the compatibility with the first law also allows a term, generically

of the form ∇iY i in EHD
vv where Y i is some arbitrary vector quantity, i.e. a spatial current

with boost weight equal to 2. However, the manipulation that follows from (2.16) shows

that working up to linear order of amplitude perturbations we could always re-arrange

the terms in EHD
vv (including the possible ∇iY i term) in a form where there is an overall

∂v outside.24 It is important to stress that although the first law itself does not require

this rearrangement as in (3.41), it is a must to proceed towards an argument for the

second law. Therefore, in our classification, we shall not consider such terms for which this

rearrangement is not true. This, in particular, allows us not to consider the term that we

have just mentioned above in (3.40) as a possible term in EHD
vv .

Combining equations (3.1) and (3.40), it follows that, both the first and the second law

would be satisfied, at least at the linear order in amplitude of time-dependent perturbations,

provided the zero boost terms in EHD
vv has the following form

EHD
vv

∣∣
zero boost

∼ − ∂v
(

1√
h
∂v

(√
h B̃
)

+∇iJ i
)
. (3.42)

Interestingly, we should note that on the r.h.s. of (3.42), the term inside the parenthesis

(i.e. ignoring the overall ∂v), looks exactly like the divergence of a ‘four-current’, let us call

it SA, such that it’s v and i components are respectively given by

EHD
vv

∣∣
zero boost

∼ − ∂v
(
∇ASA

)
,

such that Sv(k=0) = B̃ , Si(k=0) = J i ,
(3.43)

24This can be schematically presented as

EHD
vv

∣∣
zero boost

∼ ∇iY i ∼ ∂v
(
∇iỸ i

)
+O(ε2), (3.41)

where Ỹ i is some spatial vector with boost weight equal to one, since one ∂v is extracted from Y i which

has boost weight equal to one.
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Candidate terms for Ji

1. ∂vωi

2. hjk∇j (∂vhki)

Off-equilibrium data: 3. hjk∇i (∂vhjk)

4. hjk ωj (∂vhki)

5. hjk ωi (∂vhjk)

Table 10. Possible structures that can appear in Ji: each one of them has two derivatives and

boost weight= 1.

where, the index A = v, xi and we have also used k = 0 as a subscript in SA(k=0) to denote

the fact that we are only looking at the zero boost terms in EHD
vv .

Next, we would like to see how the seventeen structures, listed in table 7 in section 3.2,

should combine so that the zero boost terms in EHD
vv could be recast in the form of (3.42).

In other words, if the form of EHD
vv as proposed in (3.42) is correct, we will be using that

to derive the constraints that the seventeen coefficients ai should satisfy. As it appears

in (3.42), B̃ is a boost invariant scalar data and J i is a vector data with boost weight

one. In the previous subsection, we have already argued the most general structure of B̃

in (3.32). Now J i is an off-equilibrium data and from the counting of boost-weight we

could see it must have exactly one ∂v derivative, which is not paired with an ∂r provided

we are considering them as operators acting on the three basic building blocks, namely

hij , ωi and X. Taking all these facts into account, we could construct the five possible

structures for a candidate term in Ji, as listed in table 10 below.

It is now straightforward to write down the most general form of J i using linear

combinations of the structures written in table 10

J i = B1 h
ij∂vωj +B2 h

ilhjk∇j (∂vhkl) +B3 h
ilhjk∇l (∂vhjk)

+B4 h
ilhjk ωj (∂vhkl) +B5 h

ilhjk ωl (∂vhjk) ,
(3.44)

where the coefficients Bi for i = 1, · · · , 5, are, as of now, arbitrary constant coefficients.

Our aim will now be to fix them in terms of the coefficients ai’s (i = 1, · · · , 17), just like

the coefficients Ai’s, appearing in (3.32), were fixed in the previous subsection. To achieve

this we will calculate the second term on the r.h.s. of (3.42), with J i being substituted

from (3.44). We express the resulting expression in terms of the Ti’s, listed in table 7, and

obtain the following relation

EHD
vv

∣∣(Ji part)

zero boost
∼ − ∂v

(
∇iJ i

)
= −

[
B1

(
T6 + T4 −

T3

2

)
+B2 T2

+B3 T1 +B4 (T4 + T9) +B5 (T3 + T8)

]
.

(3.45)
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In deriving (3.45) we have used the following relations

∂v
[
∇i(hij∂vωj)

]
= T6 + T4 − (T3/2) , ∂v

[
∇i(hilhjk∇j (∂vhkl))

]
= T2,

∂v

[
∇i(hilhjk∇l (∂vhjk))

]
= T1 , ∂v

[
∇i(hilhjkωj (∂vhkl))

]
= T4 + T9,

∂v

[
∇i(hilhjkωl (∂vhjk))

]
= T3 + T8 . (3.46)

Once we have obtained (3.37) and (3.45), we shall combine them to obtain a complete

expression for the zero boost part (i.e. k = 0) of EHD
vv in terms of the Ti’s as follows

EHD
vv

∣∣
zero boost

= −
[
A1

(
T5 +

T12

2
− T13

)
+A2

(
T6 +

T8

2
− T9

)
+A3

(
2T14 +

T10

2
− T11

)
+A4

(
T15 +

T7

2

)
(3.47)

−A5

(
T16 −

T17

2
+ T1 − T2

)
+B1

(
T6 + T4 −

T3

2

)
+B2 T2 +B3 T1

+B4 (T4 + T9) +B5 (T3 + T8)

]
.

It is obvious from the r.h.s. of (3.47) above that we still have ten undetermined coef-

ficients, five of the Ai’s and five of the Bi’s. We therefore conclude that, if we want the

first term in (3.27), to have a form such that it is compatible with the physical process

version of the first law, then it can have twelve independent coefficients (Ai, Bi) for any

four derivative theories of gravity. On the other hand, just from the consideration of boost

symmetry, a total of seventeen terms are allowed in EHD
vv , see (3.31). Clearly, even after the

inclusion of the spatial current in (3.42), the compatibility with the physical version of the

first law would imply some constraints between ai’s (though it would certainly be less in

number than what we have derived in the previous subsection). A naive counting suggests

that there must be (17 − 10) = 7 relations among the seventeen possible coefficients ai.

However, as it turns out, there is a redundancy in our counting of independent structures

that could appear in the expression of entropy density (B̃) and spatial entropy current (J i).

In other words, not all of the ten Ai, Bi’s are independently and one of them, the term

with A2 as coefficient, can be absorbed into others by redefining some of the Bi coefficients.

It is easy to check that if we redefine the coefficients B1, B4 and B5 in the following way,

B̂1 = B1 +A2 , B̂4 = B4 −A2 , B̂5 = B5 +
A2

2
, (3.48)

the term with coefficient A2 in (3.47) disappears and we are left with

EHD
vv

∣∣
zero boost

= −
[
A1

(
T5 +

T12

2
− T13

)
+A3

(
2T14 +

T10

2
− T11

)
+A4

(
T15 +

T7

2

)
−A5

(
T16 −

T17

2
+ T1 − T2

)
+ B̂1

(
T6 + T4 −

T3

2

)
+B2 T2 +B3 T1 + B̂4 (T4 + T9)

+ B̂5 (T3 + T8)

]
.

(3.49)
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As the independent terms on the r.h.s. of (3.49) has now been reduced to nine, we

should obtain eight relations among the coefficients ai, which are given by

a4 = a6 + a9, a3 = −a6

2
+ a8, a16 = −2 a17, a15 = 2 a7,

a11 = −a14

2
, a10 =

a14

4
, 2 (a12 − 2 ã1) = a5 , a13 − 2 ã2 = a5 .

(3.50)

Furthermore, once the ai’s satisfy the identities given in (3.50), we can solve the Ai’s and

Bi’s in terms of the ai’s, as given below25

A1 = a5 , A3 =
a14

2
, A4 = 2 a7 , A5 = 2 a17 ,

A2 = free/undetermined,

B1 = a6 −A2, B2 = a2 − 2 a17 , B3 = a1 + 2 a17 , B4 = a9 +A2 ,

B5 = a8 −
A2

2
.

(3.51)

It is worth mentioning that in deriving the identities in (3.50) and the solutions in (3.51)

we have not assumed any particular form of the four derivative gravity Lagrangian. In

other words these relations are true for any four derivative theory of gravity.

Once we have obtained the coefficients Ai and Bi, one can readily derive the entropy

density B̃ and the entropy currents J i in terms of the coefficients ai. Since specific values for

the set of coefficients ai corresponds to specific four derivative theories of gravity, (see ta-

ble 8), we can substitute them for ai’s in (3.51) to obtain the specific values of Ai and Bi for

each of the three individual four derivative theories of gravity. We present them in table 11.

Finally, we conclude this sub-section with the following remarks:

• More details on the redundancy in the parameter A2: we have already men-

tioned before that our analysis in this subsection to classify possible candidate terms

in the zero boost sector of EHD
vv solely based on boost symmetry, cannot fix the co-

efficient A2 in (3.47). As a result it remained undetermined in (3.51). We have also

seen that this redundancy in fixing A2 is actually related to a proper count of the

independent data in B̃ and J i.

In order to make it explicitly manifest, let us now consider the specific terms written

below and their combinations as candidates for B̃ and J i26

B̃(∗) = hij∇iωj , J i(∗) = −hij∂vωj + hilhjkωj∂vhkl −
1

2
hilhjkωl∂vhjk ,

and with this choices it can be shown that

1√
h
∂v

(√
h B̃(∗)

)
+∇iJ i(∗) = 0 . (3.52)

25In (3.51) we are still writing in terms of the coefficients B1, B2, B3, instead of writing them in terms

of the redefined B̂1, B̂2, B̂3. This makes the appearance of the undetermined coefficient A2 explicit, and is

just a matter of convenient choice for us.
26Note that this B̃(∗) appears in the expression of B̃ in (3.32) with the coefficient A2.
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Different theories(
I(i) =

∫
ddx
√
−g L(i)

) Values of the coefficients Ai, Bi

1 L(1) = R2

(Ricci scalar squared)

A1 = 4, A2 = undetermined,

A3 = 3, A4 = 4, A5 = −2,

B1 = −4−A2, B2 = 0, B3 = 0,

B4 = 4 +A2, B5 = −2− (A2/2).

2 L(2) = RµνR
µν

(Ricci tensor squared)

A1 = 1, A2 = undetermined,

A3 = 1, A4 = 2, A5 = 0,

B1 = −A2, B2 = −1, B3 = 1/2,

B4 = 1 +A2, B5 = −(1/2)− (A2/2).

3 L(3) = RµνρσR
µνρσ

(Riemann tensor squared)

A1 = 0, A2 = undetermined,

A3 = 1, A4 = 4, A5 = 0,

B1 = 4−A2, B2 = −2, B3 = 0,

B4 = A2, B5 = −(A2/2).

Table 11. Ai, Bi’s for different 4-derivative theories of gravity.

The interesting thing to note about the combination written in (3.52) is that it

identically vanishes without any use of the gravity equations of motion and therefore

we could add the v-derivative of this combination (so that it has the appropriate

boost weight= 2) to any expression for EHD
vv , without affecting the equation of motion

and dynamics. Because of this, among the twelve terms that appeared on the r.h.s.

of (3.47) above we could hope to fix only eleven of them by comparing with the EHD
vv of

a given four derivative theory, (3.31).27 Also, for the same reason, we have seen that

in each of the three cases tabulated in table 11, the coefficient A2 could not be fixed

as it could combine with few spatial currents to give vanishing contribution to EHD
vv .

• The redundancy in A2 is fixed by matching the equilibrium limit of B̃ with

the equilibrium Wald entropy density: having realized the fact that only boost

symmetry alone can not fix the coefficient A2, let us now focus on the implications

27Actually, we can make use of this redundancy to reorganize (3.32) and (3.44) with the following re-

definition of B̃ and J i

B̃ → B̃ ; J i → J i + α∗A2 J
i
(∗), (3.53)

where α∗ being a tunable free parameter and thus enabling us to fix the value of the coefficient A2 to any

specific number. In particular by making the choice of α∗ = 1, we can even make the coefficient A2 not

contributing to (3.47), as in that case, as A2 disappears from EHD
vv .
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of this redundancy in the coefficient A2 beyond boost symmetry and try to explore

if there is any other principle that can fix it. Looking at the table 9 and (3.32), we

remind ourselves that, by construction, the scalar structures appearing in B̃ does not

vanish when evaluated on a stationary solution. Most importantly, the term that ap-

pears in B̃, (3.32), with coefficient A2 is generically non-zero in the equilibrium limit.

Therefore the redundancy in the coefficient A2 discussed in detail above, implies that

possible different choices of A2 would amount to having different expressions for the

equilibrium entropy density, sw, of the same configuration. Though the difference

does not persist in the expression of total entropy SW , since this density turns out

to be a total derivative term: (∇ · ω) in this case.

Motivated by the arguments given above and based on general grounds, we should,

therefore, also require that once the equilibrium limit is considered, the entropy den-

sity B̃ in (3.32), should reproduce the appropriate Wald entropy density. This should

be satisfied by the B̃ apart from being constructed following the boost symmetry. As

we will see now, at least for the cases that we are studying in this note, this additional

requirement uniquely fixes the ambiguity related to the coefficient A2. Thus, the im-

portant point to note here is that the Wald’s formula (3.6) picks up a very specific

value for A2 for every case that we have discussed here, and in some sense fixes this

ambiguity which clearly could not be fixed just by imposing first or second law of

thermodynamics even in its ultra-local version. For example, in R2 theory, once we

demand matching with (3.6), A2 gets fixed to a specific numerical value A2 = −4,

implying that there is no spatial current, which is actually consistent with what we

have found in subsection 3.1.28

The consistency with Wald’s formula in the equilibrium limit, forces the entropy den-

sity B̃, that we have obtained in this subsection, to reduce to the stationary limit

of sHD
Wald (see (3.7)), which we derived in subsection 3.1, up to the ambiguity of A2.

More precisely, if we take the expressions of sHD
Wald as computed in subsections 3.1.1,

section 3.1.2 and section 3.1.3 and simply remove the terms that would vanish in

stationary situations (for example, a term like KK̄ would be ignored), the resultant

expressions should exactly match with the corresponding B̃’s derived in this subsec-

tion with a specific choice of the coefficient A2 for every case.29 It turns out that

they indeed match provided we choose the coefficient A2 to be as follows:

1. for R2 theory: A2 = −4,

2. for RµνR
µν theory: A2 = −1,

3. for RµναβR
µναβ theory: A2 = 0.

28A first glance at the non-zero values of the coefficients B1, B4 and B5 for the R2 theory in table 11

might naively suggest that there is a non-zero current for the R2 theory. However once we make the choice

of A2 = −4 in order to match with the equilibrium Wald entropy density sHD
w , it can be verified that there

is no spatial current in this case, but a finite non-equilibrium correction scor to sHD
w , see (3.5).

29Though a mismatch at this stage would have been a serious contradiction with the existing literature

and Wald’s formalism, we still do not have any abstract proof for it, applicable to any higher derivative

theories of gravity. According to our understanding, this would essentially amount to showing a step by

step equivalence between the proof of physical version of the first law and the Wald formalism. We could

not find it in literature and leave it for future work.
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Different theories(
I(i) =

∫
ddx
√
−g L(i)

) Expressions for B̃ , J i

1. L(1) = R2

B̃ = 4hij ∂r∂vhij − 4hij∇iωj
+ 3hij ωiωj + 4X − 2R

J i = 0

2. L(2) = RµνR
µν

B̃ = hij ∂r∂vhij + hij ωiωj + 2X

J i = −hilhjk∇j (∂vhkl)

+ 1
2 h

ilhjk∇l (∂vhjk) + hilhjk ωj (∂vhkl)

− 1
2 h

ilhjk ωl (∂vhjk)

3. L(3) = RµνρσR
µνρσ

B̃ = hij ωiωj + 4X

J i = 4hij ∂vωj − 2hilhjk∇j (∂vhkl)

Table 12. B̃ and J i’s for different four derivative theory of gravity. While writing the expressions

we have used the values for the coefficient A2 in each of the three cases as following: (i) for R2

theory: A2 = −4, (ii) for RµνR
µν theory: A2 = 0, and (iii) for RµναβR

µναβ theory: A2 = 0.

This matching serves as a consistency check for our results. Therefore, once we use

the values of the coefficient A2 for different cases, as written above, in table 11 and

further using (3.32) and (3.44) the specific expressions for B̃ and J i can be derived

as listed in table 12.

• Constraints on ai’s satisfied: in section 3.2 we computed the specific values of the

coefficients ai’s and tabulated them in the table 8 for three different four derivative

theories of gravity. It is now straightforward to check that the constraints derived

in (3.50) are indeed satisfied by all of the four derivative theories of gravity. In other

words, the physical process version of the first law holds for all of these theories once

we allow for the spatial current term in EHD
vv , (3.42).

3.5 Einstein-Gauss-Bonnet gravity in d ≥ (4 + 1)

The Einstein-Gauss-Bonnet theory has been extensively studied as a prototype of higher

derivative corrections to Einstein’s gravity and has been accorded significant importance

in the relevant literature. It is also a theory with 4-derivative correction to Einstein’s

gravity, where the 4-derivative term is a specific combination of the three terms, that has

been discussed in section 3.1.1, section 3.1.2 and section 3.1.3. This linear combination is

such that, although the Einstein-Hilbert action has 4-derivatives corrections, the equations

of motion that follow from it, only have two derivatives on the metric, just like Einstein

equations. Since the Gauss-Bonnet term is simply a specific linear combination of the four

derivative terms discussed in the previous sections, the analysis for the Einstein-Gauss-

Bonnet theory can be done quickly by considering the same linear combination of the

results we obtained before. In this section, we state our results explicitly for this theory.

The Einstein-Gauss-Bonnet theory is non-trivial in any dimensions greater than 3 + 1.

In 3+1 dimension the 4-derivative term is a total derivative (and is, therefore, a topological
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surface term). In lower dimensions, it vanishes as an identity. Let us first consider this

theory in space-time dimensions d ≥ 4 + 1; we shall discuss the special case of d = 3 + 1 in

the next subsection.

The action for Einstein-Gauss-Bonnet theory is given by

I =

∫
ddx
√
−g
(
R+ agb

(
R2 − 4RµνR

µν +RµνρσR
µνρσ

))
, (3.54)

where agb is a constant Gauss-Bonnet parameter. The corresponding equations of motion

are

Eµν = Rµν −
1

2
gµνR+ EHDµν = 0, (3.55)

where

EHDµν = agb

(
2RRµν − 4RαβRµανβ − 4Rµ

αRνα + 2Rαβσµ Rναβσ

− 1

2
gµν(R2 − 4RαβR

αβ +RαβγρR
αβγρ)

)
.

(3.56)

The explicit vv-component of the equations of motion is

Evv = Rvv + EHD
vv = 0,

EHD
vv = agb

(
2RRvv − 4RαβRvαvβ − 4RαvRvα + 2Rv

αβσRvαβσ

) (3.57)

By explicitly computing EHD
vv in terms of the metric components (2.1) and their deriva-

tives, it is possible to rewrite Evv for the Einstein-Gauss-Bonnet theory into the form (3.2).

Subsequently, we can read off the entropy current from it and we have

Jv =
(
1 + 2agb(R− 2K̄ABK

AB + 2KK̄)
)

J i = −4agb∇j (Khij −Kij)
(3.58)

Note that, this entropy density and spatial entropy current for the Einstein-Gauss-

Bonnet theory has been constructed following the philosophy of section 3.1. In the next

subsection we shall do a systematic study of this entropy current, concentrating particularly

in d = (3 + 1) space-time dimensions, where the Gauss-Bonnet term becomes topological.

3.6 The Einstein-Gauss-Bonnet theory in d = 3 + 1

The Gauss-Bonnet theory in (3 + 1) space-time dimensions needs a separate discussion. In

this case, the Gauss-Bonnet term becomes a total derivative term and therefore it does not

contribute to the equations of motion, i.e. EHD
vv = 0 identically. However, if one uses the

Wald entropy as the equilibrium definition of black hole entropy (2.3), there is a finite non-

vanishing contribution to it even from the topological Gauss-Bonnet part of the Lagrangian.

The Wald entropy density sHD
w (see (3.7)) for this case, is given by the Ricci scalar of the

co-dimension-2 spatial slice of the horizon Hv,

sHD
w = 2 agbR , (3.59)
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where agb is the Gauss-Bonnet parameter appearing in (3.54). Since Hv, in this case, is

a 2-dimensional manifold, the integrated total entropy SW becomes the topological Euler

number of Hv.
Once we consider dynamical black hole solutions in this theory and restrict ourselves

to consider perturbations characterized by small amplitudes around a stationary config-

uration, the total integrated Wald entropy SW doesn’t change with time as long as the

perturbation is small and therefore, does not affect the topology of Hv. However, if we

consider the local Wald entropy density sw (without being integrated on the spatial slice

Hv), it does indeed change with time and therefore has a non-zero contribution to ∂v(
√
h B̃).

With these in mind let us look at (3.42), which is the main result of this note and rewrite

it here again for convenience

EHD
vv

∣∣
zero boost

∼ − ∂v
(

1√
h
∂v

(√
h B̃

))
− ∂v

(
∇iJ i

)
. (3.60)

From the above discussion it is clear that for (3 + 1) space-time dimensions, the l.h.s.

of (3.60) vanishes identically. However, the first term on the r.h.s. is non-zero, making

us wonder how to make sense of this equation if we had not included the second term on

r.h.s. involving the spatial entropy current. As we will see, both the terms on the r.h.s. of

the above equation are non-zero but they will precisely cancel each other, and that is how

this equation will be satisfied. In other words, we are left with verifying that the r.h.s. .

of (3.60) vanishes identically without using any on-shell gravity equations of motion, up to

O(ε2) corrections.

We start by noting that the values of the coefficients ai presented in table 8 are achieved

by explicitly computing the EHD
vv for different four derivative gravity theories and for our

metric choice (2.1), but most importantly, the results are not limited to the space-time

dimensions we are working in. Therefore the same results (presented in table 8) holds

for (3 + 1)-dimensional space-time as well. The specific values of these coefficients for

Gauss-Bonnet theory turns out to be the following:

a16 = 2, a17 = −1, ai = 0 (for all i = 1, · · · , 15) ,

such that, EHD
vv = a16 T16 + a17 T17 = 2

(
Rij − 1

2
hijR

)
∂2
vhij .

(3.61)

However, for 2-dimensional space-time one can show that the following relation is identically

true,

Rij − 1

2
hijR = 0 . (3.62)

This is true because, in 2-dimensional space we could always choose a coordinate system

where the metric is conformally flat and Einstein tensor vanishes on any 2-dimensional

conformally flat space-time.

Let us now consider the expression (1/
√
h) ∂v(

√
hR). It is well-known that the linear

variation of Ricci scalar around any metric generates a term proportional to the Einstein

tensor plus a total derivative term. Because of the fact mentioned above, without doing
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any further calculation, we could say

1√
h
∂v

(√
h R

)
=

(
Rij − 1

2
hijR

)
(∂vhij) +∇iZi , (3.63)

where Zi is some spatial current characterizing the total derivative term, which could

be easily fixed as follows. Using table 11 we could find the list of values for Ai, Bi for

Gauss-Bonnet theory

A5 = −2, B2 = 2, B3 = −2, (3.64)

leading to the following expression for Zi

Zi = 2∇j
(
Kij − hijK

)
(3.65)

Again in (3 + 1)-dimensions, where {i, j} indices run over {1, 2}, the first term in the r.h.s.

of (3.63) identically vanishes. Therefore, we can immediately rewrite (3.63) as

1√
h
∂v

(√
hR

)
−∇iZi = 0, (only in (3 + 1)-dimensions)

This looks exactly like a divergence of a four-current and identically vanishes in (3 + 1)-

dimensions. In this particular case of (3 + 1)-dimensional space-time, the above expression

has exactly the same status as that of (3.52), or the structure multiplying the coefficient

A2 in the expression of EHD
vv (3.47), see also (3.37) and (3.38). In other words, in (3 + 1)-

dimension we are free to add {R, Zi} to the expression of entropy density and spatial

entropy current respectively, with any arbitrary overall coefficient. Such an addition will

not affect the ultra-local version of the second law or the physical process version of the

first law and this is true for all theories as long as we are restricting ourselves to (3 +

1) dimensions. However, just like in case of A2, the Wald entropy formalism fixes that

arbitrary coefficient to a very specific value.

To summarize, the main physical interpretation that one can draw from the arguments

presented above is the following. For Gauss-Bonnet theory in (3 + 1) dimensions EHD
vv

vanishes identically and that is related to the fact that the total integrated Wald entropy

SW is not changing due to time-dependent perturbations. This is because the Wald entropy

SW in this case is given by topological Euler number of the 2-dimensional Hv and we are

considering small amplitude approximation for the perturbations, which are too weak to

change the topology of Hv. However, even in that approximation, the local change of

entropy density is not vanishing. This necessitates the introduction of the idea of a spatial

entropy current, that quantifies the inflow or outflow of local entropy density and cancels

the change in local entropy density, within any infinitesimal region in Hv. This analysis,

at least for the situation considered in this subsection, therefore plays an important role in

motivating the need for a spatial entropy current.

3.7 Comments on entropy current for higher boost terms in EHD
vv

Once we have analyzed the zero-boost terms, the next immediate question is to analyze

the contribution of higher boost terms of EHD
vv , to the entropy current (3.43). As we
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have observed in section 2, the arguments in [1] for second law, works smoothly, for all

the higher-boost terms in EHD
vv . The contribution from these higher boost terms, to the

total entropy falls within the class of JKM ambiguities, and they do not contribute to the

physical process version of the first law. Unlike the zero-boost terms, nothing necessitates

the existence of a spatial component of the current for these higher boost terms. Both the

first and second law would remain valid, if we simply declare that these terms would just

modify the entropy density as in (2.33), and they do not affect the spatial components of

the current. However, the spatial components of the current could still exist, even for the

higher boost terms as we now demonstrate.

Before we proceed it is worth clarifying that we will not be doing an exhaustive clas-

sification of all such possible higher boost terms in EHD
vv . Our aim here is just to present

an argument based on analyzing a candidate term as an example that justifies the above-

mentioned statement. We postpone a more detailed study of this aspect to future work.

Schematically, the higher boost terms have the following structure (see (2.22) or (3.27))

EHD
vv

∣∣
higher boost

∼ ∂2
v

[
∂krA

(k) ∂kvB
(k)
]

+O
(
ε2
)
, (3.66)

where A(k) and B(k) are boost-invariant. Now it turns out that the same higher boost term

could be recast in different ways, up to corrections that are quadratic or higher-order, in

the amplitude of the dynamics. This allows us to absorb certain higher boost terms (the

ones that have at least one ∇i) either entirely within the correction to entropy density, or

partially in entropy density and partially in the spatial components of the current. Let us

explain this ambiguity more specifically.

Consider a typical higher boost term in EHD
vv , as in (3.66), where the term ∂kvB

(k) could

be expressed as divergence of a spatial current with boost-weight k > 1,

∂kvB
(k) ∼ ~∇ · ~J (k),

and substituting it in the expression of EHD
vv we find

EHD
vv

∣∣
higher boost

∼ ∂2
v

[
∂krA

(k) ~∇· ~J (k)
]

(3.67)

= ∂v

(
~∇·
[
∂v

(
~J (k) ∂krA

(k)
)])

+∂2
v

[
− ~J (k) · ~∇

(
∂krA

(k)
)]

+O
(
ε2
)
. (3.68)

On one hand, from the first line of (3.67), we can conclude that the contribution of this

term to entropy current is simply30

From (3.67): Svk≥1 = − ∂krA(k) ~∇ · ~J (k), Sik≥1 = 0 . (3.69)

with no spatial current. On the other hand, from the second line (3.68), we may infer

that, this term contributes to the spatial components of the entropy current, apart from

30The quantity SA has been introduced in (3.43). The subscript k ≥ 1 in SA is to denote that this is the

contribution from the higher boost terms in EHD
vv .
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the contribution to the entropy density, which is different from the previous case (3.69).

That is, we can write the contribution to entropy current also in the following way

From (3.68): Svk≥1 = ~J (k) · ~∇
(
∂krA

(k)
)
, ~Sk≥1 = − ∂v

(
~J (k) ∂krA

(k)
)
. (3.70)

We would like to emphasize that the above manipulation, which is essentially an inter-

change of ∂v and ~∇, crucially uses the fact that any term, generated due to the non zero

commutator of these two types of derivatives, would be of higher-order in amplitude. This

is because the commutator itself is of boost weight one, for higher boost terms,

∂v(~∇. ~Jk) ∼ ~∇.(∂v ~Jk) + (∂v Γiij) J
(k)j ∼ ~∇.(∂v ~Jk) +O(ε2) . (3.71)

Also note that, this is true only for the higher-boost terms, and in particular, not true

for the boost invariant terms, for which the presence non-zero spatial entropy current was

unambiguous.

The two different choices of entropy density in (3.69) and (3.70), are related by a total

spatial derivative, as expected. This ensures that, in the integrated (weak) version of the

second law, this difference would have no impact. However, in the ultra-local version, where

we demand the entropy to be produced at every point in space and time, this difference

is significant. This leads to an ambiguity in the definition of our entropy current, which

cannot be fixed, merely from the transformation property of EHD
vv under boost (2.11).

It is possible that, if we keep track of the higher order terms in amplitude expansion,

this ambiguity may be removed. Alternatively, it is also possible that some suitable ex-

tension of the boost symmetry, like (2.9), which preserves our global choice of coordinates,

might constraint the structure of our entropy current further, and consequently fix this

ambiguity. We would like to explore this point further in our future work.

4 Discussions and future directions

In this note, we have demonstrated that the intricacies in the arguments involved in the

proof of the physical process version of the first law, and the second law, naturally lead us to

the notion of a spatial entropy current on the horizon. This spatial entropy current captures

the inflow or outflow of entropy from any sub-region of Hv — the horizon v-slice. For most

of our analysis in this note, we consider dynamical black holes which can be treated within

the linearized approximation, where the amplitude of the ‘time’ dependent metric fluctua-

tions, about a given stationary black hole solution, is small. Under this approximation, we

are able to establish that the entropy density and the spatial components of the entropy

current, constructed through our algorithm, satisfy an ultra-local stronger version of the

second law of black hole thermodynamics. The validity of this local form of the second

law is ensured by the equations of motion for the higher derivative theories of gravity, and

therefore, true for any metric that solves these classical equations, at the linearized level.

The construction of our entropy current is not unique. All the ambiguities in defining

the current can be traced back to the fact that there exist certain terms Tamb which can

be simultaneous written in two ways. We can write Tamb = 1√
h
∂v

(√
hJ v

)
, but also we
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can write the same term as Tamb = −∇iJ i, for some choice of J v and some choice of J i.
Obviously, it follows that J v must have at least one spatial derivative, while J i must have

at least one v-derivative. If we have such terms, appearing in the equation of motion as

∂vTamb, then it becomes unclear whether to write it as Tamb = 1√
h
∂v

(√
hJ v

)
and consider

it to be a part of the entropy density. Or to write it as Tamb = −∇iJ i and interpret it

to be being a part of the spatial components of the entropy current. A third possibility is

to split this term up, into the entropy density and the entropy current. In section 3.7, we

have discussed these kind of ambiguities in detail.

Again, if we indeed have terms like Tamb which can be written in both these ways, we

can always add a 0 = ∂v

(
1√
h
∂v

(√
hJ v

)
+∇iJ i

)
, to the equation of motion, and subse-

quently include J v and J i into the definition of the entropy density and the spatial entropy

current. Neither the equation of motion nor any of the laws of thermodynamics would be

affected by this operation. This kind of ambiguity arises, for example, in the Einstein-

Gauss-Bonnet theory in 3+1 dimensions, discussed in detail in section 3.6.31 If a term like

Tamb is such that, J v is non-zero on stationary solutions, then it would contribute to Wald

entropy as well. In such a case, the ambiguity corresponding to this term may be removed

by demanding that our entropy reduces to Wald entropy on stationary solutions. But if J v

vanishes in equilibrium then this additional criterion would remain ineffective in fixing it.

It should also be noted that it may be possible to write down a particular term simulta-

neously in both the forms, only at the linearized order in perturbations. Such an equivalence

may cease to be true once we proceed to consider corrections which are higher-order in am-

plitudes. In that case, these ambiguities would only be a linear order artifact and would

disappear once we are able to construct the full non-linear current. However, some of these

ambiguities of the entropy current may remain, even in the full non-linear construction.

Having highlighted the ambiguities of the entropy density and the corresponding cur-

rent, we must point out that, every member of this ambiguous class, have the property that

the total entropy reduces to Wald entropy for stationary black holes. For the non-stationary

dynamical black holes, all these entropy density and currents also satisfy a local second

law. Hence, every such entropy density and entropy current are perfectly well defined

macroscopic entities that can provide excellent effective thermodynamics description of the

system. Some additional microscopic information is likely to make one of them special, and

it can stand out as the correct definition of entropy density and entropy current away from

equilibrium. Therefore, despite these ambiguities, it appears to us, that the notion of the

spatial components of the entropy current and a local second law on a dynamical horizon

is a concept of significant importance in the thermodynamic description of black holes.

This note is essentially a series of observations, on the evolution of black hole entropy

in dynamical scenarios, in a specific set of examples of higher derivative theories of gravity.

Through explicit calculations, we have been able to test our hypothesis about the spatial

components of the entropy current, only in four derivative theories of gravity. This is a small

step towards formulating an ultra-local version of the second law in gravitational theories

(if it exists in a full non-perturbative sense) and deciphering all its physical ramifications.

31Also see the ambiguity related to the parameter A2, discussed in detail in section 3.4.
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Clearly, there are several directions in which this work needs to be extended, so that a

more complete picture of this whole mechanism may emerge. Here is a brief list of related

questions, which we would like to investigate in the near future.

1. The reader may have noticed that, throughout this note, we have used the word ‘time’

under a quotation mark. This is because our ‘time’ here is not really a parameter

along a time-like vector field; rather, it is the affine parameter along a ‘distinguished’

null direction that generates the event horizon. Therefore, the expression appearing in

the local version of the second law is not the d+1 dimensional32 covariant divergence

of a covariant current. This is quite unlike the standard way in which the local version

of the second law is expressed, for near-equilibrium dynamics of non-gravitational

theories, where the d+ 1 dimensional Lorentz covariance is manifestly maintained.

On the event horizon, we do not have a time-like direction, so the question of Lorenz

invariance does not arise here. However, our construction has used a specific choice

of coordinates and physically we expect some form of invariance should exist once we

choose a different coordinate system — for example, a different spatial slicing of the

null generators.

It would be extremely important to explore whether any such invariance exists and

if it exists, then how does it control our construction.

2. Another question related to the above is as follows. We have seen that our con-

struction of the spatial entropy current mainly involves the ‘zero boost terms’ in the

equation of motion. For this construction to work, these ‘zero boost terms’ were re-

quired to have a specific form. This requirement may be viewed as a set of constraints

on the most general structure of the relevant component of the equation of motion

(see section 3.3 and section 3.4). The physical origin of these constraints is, at the mo-

ment, unclear. We suspect that the reason behind these constraints could be the set

of residual gauge invariance, expressed in (2.9), which is a generalization of the boost

symmetry (2.11). Whether this suspicion is true, or there is a completely different

reason for these constraints must be investigated through explicit computations.

3. The ‘zero boost terms’ in the equation of motion, which are central to our analysis

in this note, are also relevant for the physical process version of the first law, and

hence, control the definition of entropy in stationary situations.

Now, it is well known that Wald’s formalism [9, 10] also determines this same equilib-

rium entropy in a covariant fashion using the conserved Noether current correspond-

ing to the diffeomorphism symmetry. It would be extremely interesting to clearly

establish a connection between these two methods. In particular, if it is possible to

identify our spatial current within Wald’s construction, it would probably lead to

a more satisfying covariant construction of the entropy current. This may help us

32Remember if we are working in D + 1 dimensional space-time, then the current is expected to have

d + 1 components, with d = D − 1. This is because this current would be defined on the event horizon,

which is a co-dimension one surface.
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arrive at an abstract proof for the existence of this entropy current and the local

second law, for any higher derivative theory of gravity.

In absence of any such concrete proof, it would be quite useful to gather more data,

simply by repeating the exercise presented in this note, for theories of gravity with

6 or more derivatives.

4. Another obvious generalization would be to extend our construction to non-linear

order in amplitude ε. This can potentially fix the ambiguity related to the construc-

tion of the spatial components of the entropy current, which arises for higher boost

(k ≥ 0) terms (see the discussion in section 3.7).

But more importantly, it might provide us with further insights, which can help us

formulate a non-perturbative proof of second law for higher derivative theories. For

Einstein’s theory, entropy production is ensured by the famous ‘horizon area increase

theorem’, which is proved for any dynamical situation, in full non-perturbative way.

It would be nice to have a similar proof (or a clean counter-example) for higher

derivative theories of gravity.

5. Naively, it might seem that, at non-linear order, we do not have to worry about the

second law, since for Einstein’s theory itself, the entropy production takes place at

quadratic order in amplitude. Now because higher derivative corrections are always

suppressed compared to the leading order piece corresponding to Einstein’s theory,

they cannot reverse the sign which guarantees entropy production.

However, if we are interested in an ultra-local form, then during a non-trivial ‘time’

evolution, the contribution to entropy due to Einstein’s theory could vanish locally at

a given point. Then, for the question of entropy production and the second law, we

must take the higher-derivative corrections seriously. See [36] for the construction of

entropy in dynamical black holes for the Einstein-Gauss-Bonnet theory, where these

subtle issues have been addressed. The construction of entropy in [36] did not yield

a second law, for the most generic dynamical situation. But, in [36] this idea of a

spatial entropy current was not used. It would be very interesting to revisit [36], and

check if the obstruction is resolved when the spatial entropy current is incorporated

into the statement of the second law.

6. Within the framework of gauge gravity duality, a precise correspondence exists be-

tween slowly varying fluctuations of a black hole and the hydrodynamic fluctuations

of the boundary fluid. Since the boundary fluid dynamics comes equipped with a

local entropy current, there exists a dual of this current, for the black hole in the

bulk [23, 33, 34]. This dual also constitutes a gravitational entropy current, in this

particular context. In [23], the construction has been done for two derivative Ein-

stein’s theories. While in [33, 34], it has been extended to higher derivative theories

of gravity, following Wald’s formalism of Noether current. All these constructions use

the derivative expansion extensively and their validity is restricted to this particular

case of fluid-gravity correspondence. Therefore, although these constructions of the
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entropy current relate to horizon dynamics, it subtly uses the asymptotic AdS condi-

tions, which ensures black-brane solutions exist and the fluid-gravity correspondence

could be formulated in a clean fashion. For example, the entropy current constructed

in these papers is clearly a (3+1) dimensional current (for 5 bulk dimension) with

one component (the entropy density) clearly along with a time-like direction. This is

achieved by lifting the null coordinate along the horizon, to the time-like direction of

the boundary through the fluid-gravity map. This time-like direction also serves to

formulate an unambiguous statement of the second law, in terms of the divergence

of this entropy current.

On the other hand, our construction is completely confined to the horizon, it does

not have any time-like direction, to begin with. As we have explained before, in ab-

sence of any Lorentz symmetry it is not straight-forward to interpret our result as a

covariant ‘four’-current. Also, we do not need any assumption about the asymptotic

structure of spatial infinity.

Our construction looks quite different from what has been done in [23, 33, 34]. But it

is also clear that there must be some relation between these two constructions. This

question is a topic of our ongoing investigation.

7. Very recently, one candidate entropy current has been constructed in [35], for Gauss-

Bonnet theory within the framework of membrane-gravity duality, in an expansion

in inverse powers of space-time dimension D. This is a duality that gives a precise

correspondence between the dynamics of a membrane (a time-like hyper-surface, em-

bedded in flat space-time) and that of the horizon, in the large D expansion. Unlike

our construction, which does not rely on any duality, in [35] the entropy current

has been constructed in the dual picture of the membrane. Their entropy current is

entirely confined within the membrane and has the usual property of Lorentz invari-

ance. In their case, the non-negative divergence of the entropy current follows from

the membrane dynamics governed by those membrane equations, which have been

derived from the dual gravity picture.

Moreover, within their approximation, the authors of [35] have also shown that the

existence of a Killing vector is a consequence of no entropy production. They have

also demonstrated that the charge corresponding to this conserved entropy current

reduces to the well-known expression of Wald entropy, in a stationary situation.

It would be extremely interesting to see how the entropy current of [35] compares

with ours. In particular, we would like to explore, if this membrane-gravity duality

can be used to formulate a principle which can fix the ambiguities of the entropy

density and spatial entropy current.
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A A general stationary metric can have v dependent components

In a black hole usually, the Killing generators of the horizon cannot be affinely parametrized

maintaining the Killing conditions. In other words, the components of the stationary metric

are independent of the Killing coordinate — τ , but they are not independent of the affine

parameter v along the generators of the Killing horizons. Though in a stationary metric

with a Killing horizon, the Killing vector field — ∂τ and the affinely parametrized null gen-

erators ∂v are proportional to each other and there exists a precise relation between them.

In this appendix, we shall use this relation to fix the v dependence of the stationary metric.

More precisely, we would like to determine how the components of a generic stationary

metric, written in the gauge of (2.1), could depend on the v-coordinate.

Consider a generic stationary black hole with a Killing horizon, i.e, there exists a

coordinate τ such that

1. All metric components are independent of τ

2. ∂τ is time-like everywhere outside the horizon.

3. ∂τ becomes null on the event horizon.

Now we could do exactly the same construction as in case of the metric (2.1), the only

difference being that now the coordinates on the horizon would be ∂τ and ∂i, instead of

the affinely parametrized ∂v. Let ρ be the coordinate that denotes distances away from

the horizon. Now also we could choose ρ to be the affine parameter along the set of

null geodesics, intersecting the horizon at fixed angles with ∂τ and ∂i and labelled by the

coordinates of the intersection point. Following the same logic as before, the metric in τ ,

xi and ρ coordinate will have almost the same structure as that of (2.1). The ττ and τi

components of the metric will again vanish on the horizon (ρ = 0) owing to the fact that

it is a null hyper-surface. But since ∂τ is not affinely parametrized, unlike (2.1), the first ρ

derivative of the (ττ) component of the metric (let us denote it by gττ (ρ, xi)) will not vanish

on the horizon. However, for stationary black holes, ∂ρgττ is related to the temperature of

the black hole and the zeroth law of Black hole mechanics ensures

[
∂ρgττ |ρ=0 ≡ C

]
is a

constant, i.e., independent of the spatial coordinates xis. Putting all these facts together

we finally write the most general stationary metric in our gauge.

ds2 = 2 dτ dρ−
(
ρ C + ρ2X(ρ)

)
dτ2 + 2ρ ωi(ρ) dτ dxi + hij(ρ) dxidxj (A.1)

Now we have to transform this metric to the gauge of (2.1) where the null coordinate along

the horizon is an affine parameter of the null generators v. Our final goal is to find out

how the metric components of an arbitrary stationary metric will depend on v.
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The coordinate transformation which fulfills this objective is given by

ρ =
C

2
r v, τ =

2

C
log

(
C v

2

)
(A.2)

The metric in the new coordinate takes the following form

ds2 = 2 dv dr − r2X (Crv/2) dv2 + rωi (Crv/2) dv dxi + hij (Crv/2) dxi dxj (A.3)

To get the above metric, we have crucially used the fact that C is independent of v and xi

(C is independent of ρ by construction).

The most important noteworthy feature of this metric (A.3) is that the metric com-

ponents are explicitly dependent on the v-coordinate, although it describes a stationary

black hole because it is a mere coordinate transformation of the most general stationary

metric (A.1). However, though imposing the condition of stationarity on the general form

of the metric (2.1), does not imply that the metric functions X, ωi and hij should be

independent of the v coordinate, there are some constraints on the v dependence of the

stationary metrics. Here the metric components never depend on r and v independently,

but always on the product rv. In other words, on any metric of the form (A.3), with

components depending only on the product rv, we could always apply the inverse of the

coordinate transformation (A.2) to take it to a form where redefined coordinate — τ is

manifestly the Killing coordinate.

Now for the proof of second law, it is crucial that the ∂v of entropy vanishes on

stationary black holes attained at v →∞. Naively the form of the stationary metric (A.3)

contradicts this step of the argument. But note that any ∂v derivative on the metric

components in (A.3), will also bring down a factor of r and therefore will vanish on H (the

hyper-surface at r = 0), unless there is also one ∂r derivative present along with every ∂v
derivative. Thus we may conclude that, the terms of the form ((∂r∂v)

mP ), where P is a

function of the metric components in (2.1) and their ∇i derivatives (without any ∂r or ∂v
derivatives), can be non-zero on a generic Killing horizon. Note that, all such terms are

invariant under the λ scaling (2.11). It also implies that the terms of the form (∂nr ∂
m
v P ),

with m > n must vanish on a Killing horizon. This is because, as is apparent from (A.3),

the higher number of v-derivatives would give rise to factors of r, which will force the entire

term to zero on the r = 0 hyper-surface.

B Arguments leading to vanishing of Tvv on any Killing horizon

In this section we would like to argue that the vv component of the matter stress tensor

vanishes on Killing horizons.

We shall use the boost transformation property of Tvv to reach this conclusion. Note

that just like the gravity part of the equation of motion (i.e., Evv or EHD
vv ) , matter stress

tensor itself is a covariant with nice transformation properties under any coordinate trans-

formation, in particular the λ scaling described in equation (2.11). Tvv should transform

exactly the way Evv or EHD
vv transforms, namely

Tvv → Tṽṽ =
1

λ2
Tvv (B.1)
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Now we shall consider only those stress tensors that are regular on the event horizons

at least in those coordinate systems where the full dynamical metric is regular, everywhere

apart from the black hole singularity. This is certainly the case in the coordinate system we

have chosen in our metric (2.1). It follows that Tvv must admit a Taylor series expansion

around the horizon at r = 0. Equation (2.11) and equation (B.1) together suggest the

following expansion for Tvv

Tvv =
1

v2

∞∑
k=0

(rv)k w(k)(~x) (B.2)

where w(k) s are scalar functions of only the spatial coordinates {xi}, (i,e., they are both

boost invariant and also invariant under any coordinate transformation that mixes only

the {xi} coordinates among themselves). Exactly on the horizon only the leading terms of

the above expansion will contribute.

Tvv
∣∣
horizon

=
w(0)(~x)

v2
(B.3)

Note that both (B.2) and (B.3) do not need any stationarity for their validity.

Now let us specialize to stationary cases. Here we have a Killing vector (∂τ ). All

relevant fields including the matter fields are independent of this τ coordinate and the

same is true for Tvv, as well. In terms of equation it implies

∂τTvv
∣∣
stationary

= 0 (B.4)

From equation (A.2) it follows

∂τ =
C

2
(v ∂v − r ∂r) (B.5)

Equation (B.5) clearly contradicts equation (B.4) unless w(k) = 0 for every k. It follows

that Tvv vanishes identically on any configuration with a Killing vector.

We would like to emphasize that in the above arguments the key elements are

1. The existence of the event horizon (or more precisely a null hyper-surface at r = 0)

so that the horizon-adapted coordinate choice in the metric (2.1) and consequently

the boost symmetry is meaningful.

2. Stationarity or the existence of a Killing vector, which is proportional to the null

generators of the horizon.

We have not used the fact that Tvv is stress tensor, neither the fact that the field configura-

tion (including the metric) satisfies any particular equation. What we have argued is that

whenever there is one Killing vector field, the vv component of any covariant tensor identi-

cally vanishes in the vicinity of the horizon (where the Taylor expansion in equation (B.2)

makes sense) and it is a completely off-shell statement.

– 55 –



J
H
E
P
0
6
(
2
0
2
0
)
0
1
7

C Conventions, notations and useful formulae

In this appendix we summarize our conventions, write down various notations and collec-

tively represent several important formulae that we have used in the note.

• The coordinate choice:

xµ = The full space-time coordinates in (d+ 1)-dimensions : {v, r, xi},
v = The Eddington-Finkelstein type time coordinate,

r = The radial coordinate,

xi = The (d− 1) spatial coordinates,

• The choice for the space-time metric:

ds2 = 2 dv dr − r2X(r, v, xi) dv2 + 2 r ωi(r, v, x
i) dv dxi

+ hij(r, v, x
i) dxidxj

(C.1)

• Useful notations and conventions:

1. H = The co-dimension one horizon, which we choose to be at the radial coordi-

nate r = 0,

2. Hv = The co-dimension two, constant v-slice of the horizon,

3. h = Determinant of the induced metric, hij , on H,

4. The total integrated Wald entropy at equilibrium is defined as

SW = − 2π

∫
Hv
dd−2x

√
h

∂L
∂Rµνρσ

εµνερσ = − 2π

∫
Hv
dd−2x

√
h sw ,

where εµν = Bi-normal to Hv,

5. sw = ∂L
∂Rµνρσ

εµνερσ = The Wald entropy density,

6. SHD
W , sHD

w = Contributions to integrated Wald entropy (SW ) and Wald entropy

density (sw) from the higher derivative part of the gravity Lagrangian LHD.

It can be shown that: sw = 1 + sHD
w , such that for Einstein gravity one obtains

sw = 1.

7. The density of time variation of Wald entropy is denoted by ϑ, defined as

∂vSW =

∫
Hv
dd−2x

√
hϑ ; ϑ = ϑE + ϑHD,

such that ϑE = 1√
h
∂v(
√
h) = contribution from Einstein gravity, and ϑHD =

1√
h
∂v(
√
h sHD

w ) = contribution from higher derivative part of the Lagrangian

LHD,

8. sc = correction to the entropy density which vanish on stationary solutions,
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9. EHD
vv = ‘vv’ component of the equation of motion, getting contribution only

from the higher derivative part of the Lagrangian LHD,

• Useful definitions:

1. The extrinsic curvatures of the horizon H:

(a). Kij =
1

2
∂vhij ; Kij = −1

2
∂vh

ij ,

(b). Kij =
1

2
∂rhij ; Kij = −1

2
∂rh

ij .

2. The trace of the extrinsic curvatures:

(a). K =
1

2
hij∂vhij =

1√
h
∂v
√
h ,

(b). K =
1

2
hij∂rh

ij =
1√
h
∂r
√
h .

• Expressions for the components of Riemann tensors, Ricci tensors and Ricci scalar

on the horizon:

Rrvrv = X +
1

4
ω2

Rrvri = −∂rωi +
1

2
ωjKij

Rrvvi = −1

2

(
∂vωi + ωjKij

)
Rrirj = −∂rKij +KikK

k
j

Rrivj = −∂rKij +
1

2
∇jωi −

1

4
ωiωj +KjkKki

Rvivj = −∂vKij +KikKkj

Rijvk = ∇jKik −∇iKjk −
1

2
ωiKjk +

1

2
ωjKik

Rijrk =

(
∇j −

1

2
ωj

)
Kik −

(
∇i −

1

2
ωi

)
Kjk

Rijkl = Rijkl −KikKjl −KikKjl +KilKjk +KilKjk

(C.2)

where ∇i is the covariant derivative with respect to the induced metric hij .

• Expressions for the components of Ricci tensors on the horizon:

Rrr = −∂rK −Kij K
ij

Rrv = −X − 1

2
ω2 − ∂rK −Kij Kij +

1

2
∇i ωi

Rri = ∂rωi −
1

2
Kji ωj +

(
∇j −

1

2
ωj

)
Kji −

(
∇i −

1

2
ωi

)
K

Rvv = −∂vK −Kij Kij (C.3)

– 57 –



J
H
E
P
0
6
(
2
0
2
0
)
0
1
7

Rvi = −1

2
∂vωi −

1

2
Kji ωj +

(
∇j +

1

2
ωj

)
Kji −

(
∇i +

1

2
ωi

)
K

Rij = Rij − 2 ∂rKij +
1

2
(∇jωi +∇iωj − ωi ωj)−KKij −KKij

+ 2
(
Kik Kkj +Kjk Kki

)
• Expressions for the Ricci scalar on the horizon:

R = R− 2X − 3

2
ω2 − 4 ∂rK + 2(∇ · ω)− 2 K̄ijKij − 2 KK (C.4)

D Detailed expressions

D.1 Expressions of Riemann tensors and Ricci tensors off the horizon

As we will compute the ‘vv’-component of the equations of motion EHD
vv , we will need the

following expressions for the components of Riemann tensors and Ricci tensor calculated

off the horizon, i.e. without imposing r = 0,

Rrvrv = X +
1

4
ω2

Rrviv =
1

2
∇i(2rX + r2∂rX) +

1

2
∂v(ωi + r∂rωi) +

r2

2
(2X + r∂rX)ωjK̄ij

− r(∂vωj)K̄ji −
r2

2
(∇jX)K̄ji +

r

4
(ωj(ωj + r∂rωj))(ωi + r∂rωi)

− r

4
(ωj + r∂rω

j)(∇jωi −∇iωj −K〉|)

4Rvivj = r2 (∇mωi) (∇mωj) + r2 (∇iωm) (∇jωm)− r2(∇mωi)(∇jωm)

− r2(∇mωj)(∇iωm)− 2r(∇mωi)Kmj − 2r(∇mωj)Kmi + 4 KimKmj (D.1)

+ r2(∇iωm)Kjm + 2r(∇jωm)Kim + 2 K̄ij
[
r2ω2(2rX + r2∂rX)

+ r2X(2rX + r2∂rX)− r3(ω · ∇)X − 2 r2ωm(∂vωm)− (∂vr
2X)

]
+ (ωj + r∂rωi)

[
2 rωmKim − r2(ω · ∇)ωi + r2ωm(∇iωm) + (∇ir2X)

]
+ 4r2 (r2X + rrω2)(ωi + r∂rωi)(ωj + r∂rωj)

+ (ωi + r∂rωi)
[
2 rωmKjm − r2(ω · ∇)ωj + r2ωm(∇jωm) + (∇jr2X)

]
− r2(2X + r∂rX) [∇iωj +∇jωi]
+ 2r2∇i∇jX + 2(2rX + r2∂rX)Kij − 4 ∂vKij
+ 2r ∇i(∂vωj) + 2 r∇j(∂vωi)

Rvv = r2(X + ω2)

[
1

2
(2X + 4rX + r2∂2

rX) +
1

2
(ωi + r∂rω

i)(ωi + r∂rωi)

+
1

2
K̄(2rX + r2∂rX)

]
− r2(ω · ∇)(2X + r∂rX)− rωi(∂v(ωi + r∂rωi))

− r3(2X + r∂rX)(ωiK̄ijωj) + 2 r2(∂vωi)ωjK̄ij + r3(∇jX)ωiK̄ij

− r2

2
(ωi(ωi + r∂rωi))

2 + r2ωi((ω + r∂rω) · ∇)ωi (D.2)
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− r2(ωi + r∂rω
i)(ω · ∇)ωi +

r2

2
(∇iωj)(∇iωj)−

r2

2
(∇jωi)(∇iωj)

− ∂vK −KijKij +
r2

2
(∇2X) +

1

2
(2rX + r2∂rX)K

+ r∇i(∂vωi)−
r2

2
K̄(ω · ∇)X − r2

2
K̄(∂vX)− r2K̄ωi(∂vωi)

+
r2

2
((ω + r∂rω) · ∇)X − r2

2
(2X + r∂rX)(∇ · ω)

D.2 Relevant terms on the horizon H, to compute EHD
vv for different theories

Rαv Rαv = (∂vK)
(
2X + ω2 −∇ · ω + 2 ∂vK̄

)
Rv

αβγ Rvαβγ = ωiωj∂vKij − 2∇iωj∂vKij + 4 ∂vKij ∂vKij

Rαβ Rvαvβ = −
(
X +

ω2

4

)
(∂vK)−Rij ∂vKij − (∇iωj)∂vKij

+
1

2
ωiωj∂vKij + 2 ∂rKij ∂vKij

DvDvR = ∂2
vR− 2 ∂2

vX − 3ωi∂2
vωi + 3ωiωj∂vKij

+ 2 ∂2
v(∇ · ω)− 4 ∂r∂

2
vK − 2Kij∂2

vKij

− 2K ∂2
vK − 4 ∂vKij ∂vKij − 4 ∂vK ∂vK̄

DαD
αRvv =

(
3

2
ω2 −∇ · ω + 4X

)
(∂vK) + (ω · ∇)∂vK

− 2ωi∇j(∂vKij)− 2 ∂r∂
2
vK − ωi ∂2

vωi −∇2(∂vK)

+ 2∇i(∂2
vωi)−K∂2

vK − 4 ∂rKij ∂vKij .

(D.3)

Note that, to obtain the last two expressions above we need to first evaluate DµDνRαβ
where the indices µ, ν runs over the full space-time coordinates: v, r, xi and Dµ is covariant

derivative with respect to the full space-time metric gµν .

D.3 Ricci scalar square theory

Following the discussions in sections 3.1 and section 3.1.1 here we write down the detailed

expressions for various quantities for the Ricci Scalar squared theory.

The ‘vv’-component of EHD
µν from (3.14)

EHD
vv = a1

[
∂v

(
1√
h
∂v(
√
h ( 3ω2 − 4 (∇ · ω) + 4X )

)
− 2R ∂vK − 2 ∂2

vR (D.4)

+ 8∂r∂
2
vK + 4 K̄ij ∂2

vKij + 4 K̄ ∂2
vK + 8 ∂vK̄ij ∂vKij + 16 ∂vK ∂vK̄

]
+O[ε2] .

From (3.15) we know the Wald entropy density as

sHD
w = 2 a1R , (D.5)

and therefore, we immediately obtain

∂v

(
1√
h
∂v

(√
h sHD

w

))
= 2 a1 ∂v

(
1√
h
∂v

(√
h

(
R− 2X − 3

2
ω2 − 4 ∂rK

+ 2(∇ · ω)− 2 K̄ijKij − 2KK̄
)))

.

(D.6)

– 59 –



J
H
E
P
0
6
(
2
0
2
0
)
0
1
7

We can now use (3.8) and after some algebraic manipulation we obtain

EHD
vv
∗

= O[ε2]. (D.7)

Finally, comparing with (3.9) we see that for Ricci scalar squared theory there is no spatial

entropy current

J i = 0. (D.8)

D.4 Ricci tensor squared theory

The ‘vv’-component of EHD
µν for Ricci tensor squared theory, following (3.14) as discussed

in section 3.1.2, comes out to be

EHD
vv = a2

[
∂v

(
1√
h
∂v

(√
h
(
ω2 + 2X − 2∇ · ω + 2 ∂vK̄ + K̄ K + 2 K̄ij Kij

)))
+ ∂v

(
∇i
(
2hij ∂vωj + ωiK − hij ∇jK − 2ωj Kij

))
− 2 ∂v

(
∇i∇j

(
Kij −K hij

))] (D.9)

From (3.19) we recognize that the Wald entropy density coming from the higher derivative

part of the Lagrangian is

sHD
w = 2 a2Rrv (D.10)

and therefore we compute

∂v

(
1√
h
∂v

(√
h sHD

w

))
= 2 a2 ∂v

(
1√
h
∂v

(√
h

(
−X − 1

2
ω2 − ∂rK

− K̄ij Kij +
1

2
∇iωi

)))
.

(D.11)

Using the definition as given in (3.8) we calculate the following

EHD
vv
∗

= a2 ∂v

[
1√
h
∂v
(√
h K̄ K

)
+∇i

(
hij ∇jK + hij ∂vωj − 2∇jKij

)]
, (D.12)

where to derive this we have used the identity

∂v

[
1√
h
∂v
(√
h∇ · ω

)]
= ∇i

(
hij ∂vωj − 2Kijωj + ωiK

)
(D.13)

Therefore the spatial entropy current turns out to be

Jv = −sHD
w − a2 K̄ K ,

J i = a2

(
2∇jKij − hij ∇jK − hij ∂vωj

)
.

(D.14)
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D.5 Riemann tensor squared theory

Following the same steps as followed in the previous subsections for the cases of Ricci scalar

squared and Ricci tensor squared theory, we compute the ‘vv’-component of equations of

motion for Riemann tensor squared theory, previously discussed in section 3.1.3, as follows

EHD
vv = a3

[
∂v

(
1√
h
∂v

(√
h
(
ω2 + 4X − 4∇ · ω + 4 K̄ij Kij

)))
+ 4 ∂v

(
∇i
(
2hij ∂vωj + ωiK − hij ∇jK − 2ωj Kij

))
− 4 ∂v

(
∇i∇j

(
Kij −K hij

))] (D.15)

We take note of the fact that in this case the Wald entropy density for the higher derivative

part of the Lagrangian is

sHD
w = −4 a3Rrvrv (D.16)

and using this we compute

∂v

(
1√
h
∂v

(√
h sHD

w

))
= −4 a3 ∂v

(
1√
h
∂v

(√
h

(
X +

1

4
ω2

)))
. (D.17)

Next we compute EHD
vv
∗

defined in (3.8) as given below,

EHD
vv
∗

= 4 a3 ∂v

[
1√
h
∂v
(√
h K̄ij Kij

)
+∇i

(
hij ∂vωj −∇jKij

)]
. (D.18)

Finally we are now at a stage to write down the expressions for the components of the

entropy current

Jv = −sHD
w − 4 a3 K̄ij Kij ,

J i = 4 a3

(
∇jKij − hij ∂vωj

) (D.19)
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