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predicts the masses of the superpartner particles and of the extra Higgs states of the MSSM:

while the sparticles are predicted to be comparatively heavy (above the present LHC bound

but within reach of future colliders), the spectrum has the characteristic feature that the

lightest new particles are the extra MSSM Higgses. We show that this effect is rather

robust with respect to many deformations of the GUT boundary conditions, but turns

out to be sensitive to the exactness of top-bottom Yukawa unification. Nevertheless, with

moderate deviations of a few percent from exact top-bottom Yukawa unification (stemming

e.g. from GUT-threshold corrections or higher-dimensional operators), the scenario still

predicts extra MSSM Higgs particles with masses not much above 1.5 TeV, which could

be tested e.g. by future LHC searches for ditau decays H0/A0 → ττ . Finding the extra

MSSM Higges before the other new MSSM particles could thus be a smoking gun for a

Yukawa unified SO(10) GUT.
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1 Introduction

Grand Unified Theories (GUTs) [1–3] present an attractive setup for Physics Beyond the

Standard Model (BSM). While gauge coupling unification in GUT is necessary for consis-

tency, the unification of Yukawa couplings is optional, depending on the GUT operators

generating the Yukawa interactions. Conversely, barring a numerical accident, Yukawa

unification at high energies might indicate a bigger gauge symmetry.

The most convenient setup for Yukawa unification are supersymmetric (SUSY) GUT

models; while supersymmetry helps with gauge coupling unification by modifying the renor-

malization group (RG) slopes, it can also help with Yukawa unification indirectly via loop-

threshold corrections at the SUSY scale MSUSY [4–7].

The simplest example of some Yukawa couplings unifying would be b-τ unification

in the 3rd family within the context of SU(5) GUTs [8]. An even more restrictive and

predictive setup is that of t-b-τ(-ν) unification, which is most straightforwardly achieved in

SO(10), where all SM fermions of one family, with an addition of a right-handed neutrino,

constitute a single irreducible representation 16 of SO(10). In such a setup, the neutrino

3rd family coupling also has the same value as the top, bottom and tau Yukawa coupling,

coming from the operator 163 ·163 ·10, where 163 contains the entire Standard Model (SM)

3rd family and the Minimal Supersymmetric SM (MSSM) Higgs doublets are contained in

the representation 10. Henceforth, we shall refer to this scenario simply as t-b-τ unification

and omit the ν, despite its coupling also unifying.
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In this work we study t-b-τ unification and assume its origin to be in a SUSY SO(10)

GUT. Below the GUT scale, we take the effective theory to be a softly broken MSSM. In

such a framework, GUT symmetry would impose relations between the soft breaking terms

of the MSSM at the GUT scale. The attractive phenomenological feature of such a setup

is that Yukawa unification with GUT-like boundary conditions for the soft terms results

potentially in a predictive sparticle spectrum.

In the most direct “vanilla” approach, SO(10) symmetry would result in all the sfermion

mass parameters to unify in a single value m16, the soft Higgs masses to unify in m10,

universal gaugino masses M1/2, and a universal factor a0 for the proportionality between

the Yukawa and A-matrices. The only other SUSY parameters in the theory would then

be the ratio of the MSSM Higgs vacuum expectation values (VEVs) tan β, and the sign

of the coupling µ of the term Hu · Hd in the superpotential. It is known that for t-b-τ

unification tan β has to be large (∼ 50) due to the top-bottom mass hierarchy mt � mb.

Recall that with no SUSY threshold corrections, the Yukawa coupling ratio yτ/yb tends to

run via renormalization group equations (RGEs) to a GUT value of 1.3 (see e.g. [9]), and

µ < 0 gives the correct sign in the threshold correction of yb to help lower this ratio to 1,

see e.g. [10, 11]. For this reason we consider µ < 0 to be the better motivated setup for

t-b-τ unification. Interestingly enough, fits to low energy data within this specific setup,

at least to our knowledge, have not really been attempted, mostly due to the region being

disfavored by RGE estimates showing no electroweak symmetry breaking (EWSB), to be

discussed later. In this paper, we investigate this “vanilla” region and find it viable from the

point of view of EWSB. Furthermore, we obtain good fits to the low energy Yukawa data

and the SM Higgs mass, resulting in a predictive sparticle spectrum. The most striking

feature of the entire setup is the prediction of a typically ∼ TeV mass for the additional

neutral and charged Higgses in the MSSM, a prediction which is now being tested by the

LHC. The extra Higgs prediction is very sensitive especially to top-bottom unification, and

is very hard to observe with a bottom-up approach, especially if the mass mA0 is assumed

a priori as in some studies, e.g. [12].

To be more specific in what our setup achieves, and to put our results in context, it is

necessary to survey the existing extensive literature on the topic of t-b-τ unification. Many

early studies [13–21] predate the Higgs mass measurement in 2012, or even the top quark

mass measurement in 1995. Beside considering the viability of Yukawa unification, they

also had to contend with predicting the top quark or Higgs mass, e.g. [6, 21, 22], or were

considering naturalness based criteria [23].

In the literature, a number of important issues have been identified:

1. The µ term: µ > 0 or µ < 0?

The Higgs connecting coupling µ from the superpotential is present in the potential

V of the Lagrangian only via |µ|. Assuming no additional CP violation, µ ∈ R, so

the choice of the sign of µ is free.

Historically, the case with µ > 0 was investigated far more in-depth, see [23–36]. The

µ < 0 case was studied in e.g. [37–42], while both cases of Sign(µ) were considered

in [43–47].
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The main preference for µ > 0 in the literature stems from considerations of the

anomalous magnetic moment of the muon gµ − 2, see e.g. motivation in [31]. This

was measured to be above what the Standard Model predicts (see e.g. PDG [48]),

and µ > 0 would provide a SUSY contribution in the positive direction, potentially

explaining the discrepancy. Despite this there are indications that a fit of gµ − 2 for

µ > 0 with universal gaugino masses is difficult to achieve in SO(10) [30].

The study of µ > 0 scenarios, typically within parametrization as close as possible to

the constrained MSSM (CMSSM, a.k.a. mSUGRA) with universal gaugino masses,

furthermore showed that there is a preferred “funnel” region for the soft MSSM

parameters [28], and that the universal gaugino mass parameter should be quite

small: M1/2 . 500 GeV [27]. Consequently, these scenarios prefer a light gluino

mg̃ . 450 TeV [34] and suggest an upper bound on the attainable gluino mass of

around mg̃ < 2 TeV [30], a constraint coming from fitting the SM Higgs mass. Due

to the non-observation of such low gluino mass scenarios at the LHC, the possibility

of increasing its mass was investigated in subsequent works: it was found in [26]

that the gluino mass can be raised to 2-3 TeV by relaxing the Yukawa unification

to be approximate at a few % level, or to introduce a split in the squark mass

parameters [33]. Note that all these results are specific to the preferred soft parameter

region for µ > 0.

From the point of view of a fit to the data, however, it was already realized a long

time ago that µ < 0 is preferred, see e.g. [38, 45], since it gives the correct sign to the

threshold corrections to the yb Yukawa coupling. Since the sign of the contribution

to gµ − 2 depends on Sign(µM2), see e.g. [49], this prompted a consideration of non-

universal gaugino masses, see [37–39, 41–43], with M2 < 0. Such boundary conditions

can most conveniently be achieved by considering Yukawa unification within the

context of the Pati-Salam symmetry instead of fully unified SO(10), see [13, 35–

38, 50] for various Pati-Salam setups and studies of Yukawa unification. Another

possible approach to gµ − 2 with µ < 0 is to only demand that the gµ − 2 prediction

is no worse than in the Standard Model, see [40]. This last case still considered

non-universal gaugino masses due to EWSB considerations, see next point.

2. EWSB and the split between m2
Hd

and m2
Hu

at MGUT.

Another issue in Yukawa unification models important for their consistency turns

out to be electroweak symmetry breaking. In a softly broken MSSM, a necessary

condition for EWSB is to obtain m2
Hu

< 0 at the SUSY scale. This is typically

automatically achieved by RGE running from MGUT, where this parameter value is

positive; the scenario where RG running triggers EWSB is referred to as radiative

EWSB (REWSB). Another necessary non-tachyonicity condition, however, also re-

quires m2
Hd

> m2
Hu

at the SUSY scale. Assuming the equality m2
Hd

= m2
Hu

at the

GUT scale, the m2
Hd

is driven down faster than the m2
Hu

essentially due to the for-

mer having positive contributions to its beta function from both yb and yτ , while the

latter has only contributions from yt (and potentially from yν), cf. [47].
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For this reason, most models in the literature introduce a split m2
Hd

> m2
Hd

already at

the GUT scale [27–33, 37–45, 51]. The simplest way to achieve this is by imposing the

split ad hoc, which is called “just so” Higgs splitting and assumes m2
Hd,u

= m2
0 ±∆

at the GUT scale, e.g. [27, 29], with the relative split amounting to ∼ 13 %. An

alternative mechanism to generate this split is by D-term splitting [17, 28, 41–45],

which also splits up the other soft scalar masses in a particular way due to D-term

contributions to the masses. Attempts to avoid m2
Hd

slipping below the value of m2
Hu

have also been studied in the context of adding right-handed neutrinos or introducing

a first/third scalar mass split in the GUT boundary conditions, see [51], both options

essentially modifying the RGE beta functions for m2
Hd

and m2
Hu

.

The well known issue regarding REWSB with m2
Hd

= m2
Hu

at the GUT scale has been

studied in [6, 17, 52, 53], and reiterated later in e.g. [31] based on an approximate

expression for m2
Hd
−m2

Hu
at low scales taken from [54]. It should be noted, however,

that these papers use semi-analytic formulas for RGEs running from the GUT scale to

the SUSY scale, which hold only approximately. In the context of the GUT boundary

condition m2
Hd

= m2
Hu

, successful REWSB was achieved for the case of non-universal

gaugino masses [47, 55], while the old arguments for the universal gaugino mass case

are reiterated. On the other hand, successful REWSB was found for the case of

CMSSM with µ < 0 in [46], albeit with only approximate Yukawa unification due to

their bottom-up approach of running Yukawa parameters.

In contrast to most considerations in past works presented above, we find that ex-

act Yukawa unification with universal gaugino mass terms and m2
Hu

= m2
Hd

is in

fact possible. We show this explicitly by performing the RGE running numerically;

although we use 2-loop RGEs for the MSSM + soft terms for (most) results, the

1-loop RGE solutions already confirm this qualitative picture. While we agree with

prior analyses that RG running just below the GUT scale causes m2
Hu

> m2
Hd

in

the running parameters, this relation reverses later by RG running a few orders of

magnitude above the SUSY scale, thus achieving successful REWSB. This holds true

at least in a large part of the soft parameter space. Crucially, however, the running

value of m2
Hd
−m2

Hu
is typically below (1 TeV)2 at the SUSY scale, causing the extra

MSSM Higgs bosons to be the lightest part of the sparticle spectrum.

3. Experimental constraints and considerations.

The most obvious type of prediction studied in Yukawa unification models is the

MSSM spectroscopy, see [24, 36, 44, 56, 57] for studies which focus on this.

Constraints on the masses and mixing of the SUSY partners come e.g. from FCNC

processes induced via SUSY loop effects [25]. An important process studied in this

regard is b → sγ, see e.g. [20, 30–32, 39, 41–43, 45, 46, 58, 59], usually considered

in the context of B meson decays such as B → Xsγ. Typically the most stringent

constraint, however, comes from the meson decay Bs → µµ [30–32, 35, 39, 41–43, 60].

Two more observables that are not directly measured in accelerators have also re-

ceived attention: the gµ − 2 of the muon, see e.g. [37, 41–43, 46] and [59] in the b-τ
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context, and the relic abundance of the neutralino dark matter (DM), see [31, 34–

36, 41–43, 45, 58, 60, 61].

Studies which fit GUT models to the experimental data usually consider some or all

of these constraints. It was found in many specific realizations of Yukawa unification,

however, that potential experimental tensions can usually be relieved by relaxing

the demand for exact Yukawa unification and impose it only at a level of some %.

This essentially works due to relaxing constraints on the superpartner masses. Such

scenarios have been dubbed “quasi-unification”, see e.g. [25, 35–37, 50, 55, 61, 62].

Alternative setups to improve fits have also been tried, such as splitting the A-

terms [63], considering 4 Higgs doublets instead of 2 [64], introducing certain extra

vector-like fermions motivated by an E6 GUT context [65], or introducing an entire

vector-like family of SM fermions [66].

In this paper, as motivated earlier, we consider µ < 0 and numerically find a good solu-

tion for REWSB despite the relation m2
Hd

= m2
Hu

and universal gaugino masses. In the

literature, as far as we are aware, the only case directly comparable with ours is in [46],

with the limitation that the SM Higgs mass was not yet measured at the time. One of the

scenarios they consider successful (including EWSB) is the CMSSM (implying universal

gaugino masses and no GUT split between m2
Hd

and m2
Hu

) with µ < 0. They use, however,

a bottom-up approach for Yukawa RGE, and therefore consider only the quasi-unification

scenario with a parameters scan. They consequently do not find the low MSSM Higgs mass

effect, since it is very sensitive to exact unification, as we show in this paper.

Given the effect of the low extra Higgses we study in this paper, the most acute

experimental constraints would come from two possible sources. The first is the Bs → µ+µ−

decay, with the extra Higgs contribution estimated as, see e.g. [67],

B(B0
s → µ+µ−) ≈ 5 · 10−7

(
tanβ

50

)6 (300 GeV

MA

)4

, (1.1)

compared to the PDG measured value of (3.2 ± 0.7) · 10−9 [48]. The second constraint is

the increasingly competitive LHC searches for ditau decays H0/A0 → τ+τ− of the neutral

MSSM Higgses, see [68, 69], with current bounds implying mA & 1.5 TeV (for tan β = 50).

Given this most recent estimate and future trends of bounds, we find the ditau search to

be comparable or more stringent than the Bs → µ+µ− process; we thus focus only on the

ditau decay in this paper for simplicity. The other parts of the SUSY spectrum in our

setup are heavy, larger than 4 TeV for gluinos and squarks, far above the present ATLAS

and CMS bounds but within reach of future colliders such as the FCC-hh or SppC.

The organization of the paper is as follows: in section 2 we introduce our notation and

conventions, and analyze the salient points regarding EWSB and the masses of the extra

Higgs bosons in the MSSM. In section 3, we perform an RGE analysis of the quantity m2
Hd
−

m2
Hu

relevant for both those aspects and perform a sensitivity analysis to deformations of

various parameter relations around an example point. In section 4, we perform a more

general investigation of the CMSSM parameter space and show that the masses of the

extra Higgses are predicted to be low in general. Finally, in section 5, we analyze how
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constraints from the LHC challenge exact Yukawa unification and how a quasi-unification

scenario helps in this regard. Then we conclude. For completeness, we also include two

appendices. In appendix A the general 1-loop RGEs for a softly broken MSSM with right-

handed neutrinos are presented. In appendix B a simplified version of the RGEs neglecting

the Yukawa couplings of the first 2 families is given.

2 MSSM, EWSB and the Higgs masses — Conventions

In this section we briefly summarize the situation with EWSB and Higgs masses in the

MSSM, which facilitates a more detailed analysis in later sections. Throughout the pa-

per we use the right-left (RL) convention for the Yukawa matrices as in REAP [70] and

SusyTC [71]. A short note on the relation to other conventions can be found in appendix A.

We consider the MSSM extended by right-handed neutrinos as the effective theory

below the GUT scale. The matter content consists of chiral multiplets of the group G321 ≡
SU(3)× SU(2)×U(1). The “fermionic” sector consists of the chiral multiplets

Qi ∼
(

3, 2,+
1

6

)
, Li ∼

(
1, 2,−1

2

)
,

U ci ∼
(

3̄, 1,−2

3

)
, Ec

i ∼
(
1, 1,+1

)
, (2.1)

Dc
i ∼

(
3̄, 1,+

1

3

)
, N c

i ∼
(
1, 1, 0

)
,

where the family index i goes from 1 to 3. The Higgs sector consists of

Hu ∼
(

1, 2,+
1

2

)
, Hd ∼

(
1, 2,−1

2

)
. (2.2)

As mentioned above, we use the RL convention for the Yukawa matrices Yu, Yd, Ye, Yν

in the superpotential W for the MSSM:

WMSSM = −(Yu)ij U
c
i Hu ·Qj + (Yd)ij D

c
i Hd ·Qj

+ (Yν)ij N
c
i Hu · Lj + (Ye)ij E

c
i Hd · Lj +

1

2
(Mν)ij N

c
i N

c
j

+ µHu ·Hd.

(2.3)

The indices i and j are family indices, the SU(2) contractions between doublets are denoted

by a dot and defined by Φ · Ψ ≡ εabΦ
aΨb with ε12 = −ε21 = 1, while the SU(3) indices

are suppressed. Also note that a left-chiral superfield Φc contains the charge conjugated

fermion field ψ†, as well as the conjugated complex scalar field φ̃∗R.

The soft-breaking terms consist of gaugino mass terms, the scalar trilinear A-terms,

the scalar soft-mass terms, and the b-term:

−Lsoft = − 1

2

(
8∑

a=1

M3λ
a
3λ

a
3 +

3∑
b=1

M2λ
b
2λ

b
2 +M1λ1λ1

)
+ h.c.

+ (m2
Q)ij Q̃

†
i Q̃j + (m2

L)ij L̃
†
i L̃j + (m2

u)ij ũ
∗
Ri ũRj + (m2

d)ij d̃
∗
Ri d̃Rj

+ (m2
e)ij ẽ

∗
Ri ẽRj + (m2

ν)ij ν̃
∗
Ri ν̃Rj + (Ae)ij ẽ

∗
RiHd · L̃j

– 6 –
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+ (Aν)ij ν̃
∗
RiHu · L̃j + (Ad)ij d̃

∗
RiHd · Q̃j − (Au)ij ũ

∗
RiHu · Q̃j + h.c.

+m2
Hu |Hu|2 +m2

Hd
|Hd|2 + (b Hu ·Hd + h.c.) . (2.4)

We labeled the SU(3)C , SU(2)L and U(1)Y gauginos by λa3, λb2 and λ1, respectively. The

tildes above the fields indicate the scalar component of the superfield, with the exception

of Hu and Hd, which also indicate scalar parts.

The neutral components of Hu and Hd each acquire an EW breaking VEV:

vu := 〈H0
u〉, vd := 〈H0

d〉, (2.5)

which — motivated by EW symmetry breaking in the SM — are parametrized by

tanβ ≡ vu/vd, v2u + v2d ≡ v2 = (174 GeV)2. (2.6)

This leaves tan β as the only free parameter, and vu, vd ∈ R.

Minimization of the potential

V =
∑
φ

∣∣∣∣∂W∂φ
∣∣∣∣− Lsoft (2.7)

with respect to the electrically neutral components H0
u and H0

d of SU(2) doublets leads to

a (tree-level) vaccum solution

2|µ|2tree =
m2
Hd
−m2

Hu√
1− sin2(2β)

−m2
Hu −m

2
Hd
−m2

Z , (2.8)

btree =
1

2
sin(2β)

(
m2
Hu +m2

Hd
+ 2|µ|2tree

)
. (2.9)

Note that we have solved the vacuum equations for the superpotential parameter |µ|2

and the soft parameter b, while treating the unknown VEVs vu and vd as independent

variables, appearing implicitly via vu/vd = tanβ. In the large tan β regime, we can make

the approximation

|µ|2tree ≈ −m2
Hu −

1

2
m2
Z , (2.10)

implying that a solution to EWSB (at tree level) is possible only if the soft mass parameter

is negative at the energy scale of computation, i.e. m2
Hu

< 0 at the SUSY scale.

After EW symmetry breaking, 3 real scalar degrees of freedom in Hu and Hd become

part of the longitudinal components of the massive gauge bosons W± and Z0 via the Higgs

mechanism, leaving 5 real degrees of freedom to be physical. We label them in the standard

way by h0, H0, A0, H+ and H−, where their superscripts denote their EM charge. The low

mass Higgs at 125 GeV is denoted by h0, while H0 and A0 denote heavier neutral scalars

with even and odd parity P , respectively. We get the following well-known expressions for

their tree-level masses:

m2
A0 = 2|µ|2 +m2

Hu +m2
Hd
, (2.11)

m2
h0 =

1

2
m2
A0 +

1

2
m2
Z −

1

2

√
(m2

A0 −m2
Z)2 + 4m2

Z m
2
A0 sin2(2β), (2.12)

– 7 –
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m2
H0 =

1

2
m2
A0 +

1

2
m2
Z +

1

2

√
(m2

A0 −m2
Z)2 + 4m2

Z m
2
A0 sin2(2β), (2.13)

m2
H± = m2

A0 +m2
W . (2.14)

Considering the regime m2
A0 � m2

Z ,m
2
W leads in leading order to

m2
H0 ≈ m2

A0 (1 + sin2(2β) m2
Z/m

2
A0), (2.15)

showing that all extra Higgs particles H0, A0 and H± are near the scale m2
A0 . The scale of

m2
A0 in turn depends on the vacuum solution for |µ2|; combining eq. (2.11) and (2.8) gives

the tree level value

m2
A0,tree =

m2
Hd
−m2

Hu√
1− sin2(2β)

−m2
Z

= (m2
Hd
−m2

Hu)
tan2 β + 1

tan2 β − 1
−m2

Z . (2.16)

We see that, crucially, the scale m2
A0 depends on the difference m2

Hd
−m2

Hu
of the mass-

square soft parameters. In the large tan β regime, this approximates to

m2
A0,tree ≈ m

2
Hd
−m2

Hu −m
2
Z , (2.17)

so that a non-tachyonic tree-level mass for A0 requires m2
Hd
−m2

Hu
> m2

Z , implying also

m2
Hd

> m2
Hu

as a necessary condition.

We now briefly turn to a discussion of the scale of masses at 1-loop level. The vacuum

solutions at 1-loop become (see [71, 72])

|µ|21-loop =
1

2

(
tan(2β)

(
m̂2
Hu tanβ − m̂2

Hd
cotβ

)
− m̂2

Z

)
, (2.18)

b1-loop =
1

2

(
tan(2β)

(
m̂2
Hu − m̂

2
Hd

)
− m̂2

Z sin(2β)
)
. (2.19)

The hatted quantities, including m̂2
W for later convenience, are defined by

m̂2
Hu := m2

Hu − tu,
m̂2
Hd

:= m2
Hd
− td,

m̂2
Z := m2

Z + Re
[
ΠT
ZZ(m2

Z)
]
,

m̂2
W := m2

W + Re
[
ΠT
WW (m2

W )
]
,

(2.20)

where tu and td are 1-loop tadpole expressions, and ΠT
ZZ and ΠT

WW are the transverse Z

and W -boson 1-loop self-energies. The hatted masses m̂2
Z and m̂2

W are the 1-loop masses

computed in the DR renormalization scheme. Their explicit expressions can be found

in [71] and will not be reproduced here. For a consistent loop calculation, the quantities

in the expressions for 1-loop corrections can be taken to be the parameters at tree-level.

When the quantities in the superpotential of eq. (2.3) are complex, the neutral states

h0, H0 and A0 mix: with the 1-loop correction, the masses may no longer be CP eigenstates.
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We shall not be considering complex phases in the SUSY parameters, so this complication

need not be considered.

Due to the breaking of CP symmetry at next to leading order in the general case,

rather than the mass m2
A0,tree from (2.16), a more convenient quantity to consider is the

mass of the charged Higgses H±, since the charged Higgses H± have no other states to

mix with. The expression at 1-loop order for the mass of H+ is known to be

m2
H+,1-loop =

(
m̂2
Hd
− m̂2

Hu

)
− cos(2β)

− m̂2
Z + m̂2

W + td sin2 β + tu cos2 β − Re [ΠH+H− (mH+)] ,

(2.21)

with ΠH+H− denoting the self-energy of H±, see [71]. Since all the 1-loop corrections have

1/16π2 suppression factors, the dominant contribution determining the overall scale should

come from the term m2
Hd
−m2

Hu
, unless this quantity is unexpectedly small. Note that the

prefactor −1/ cos(2β)→ 1 as tanβ →∞.

We conclude this section by collecting together the stated reasons for the importance

of the quantity m2
Hd
−m2

Hu
. First, EWSB requires m2

Hd
−m2

Hu
> 0 alongside m2

Hu
< 0

to work at tree level. Second, the expression m2
Hd
− m2

Hu
is a good proxy for the mass

scale of the extra Higgs states, at least when m2
Hd
− m2

Hu
� m2

Z and tan β is large. In

eq. (2.21), if the expression m2
Hd
−m2

Hu
is roughly of the same scale as the soft parameters,

the 1-loop contributions are expected to be subdominant due to the 1/16π2 suppression

factor; if m2
Hd
−m2

Hu
is unexpectedly small, loop contributions might be of comparable size

or even dominate.

3 RGE analysis of m2
Hd

−m2
Hu

in t-b-τ unification

As a first step in assessing models with Yukawa unification and SO(10) boundary conditions

for soft parameters, we study the RG running of the quantity m2
Hd
−m2

Hu
. This quantity

must be positive at the SUSY scale, a feature crucial for EWSB, and its magnitude sets the

mass scale of the extra MSSM Higgs states H0, A0 and H±, as was discussed in section 2.

An often cited requirement in the literature for REWSB to occur is a split in the GUT

scale boundary conditions for m2
Hd

and m2
Hu

, see section 1 and references therein. We show

here, however, that such a split is not necessary, since we obtain m2
Hd
−m2

Hu
> 0 at the

SUSY scale regardless. The value of this difference, however, is small compared to the

magnitude of each term, implying low lying extra Higgs states in the MSSM, an effect that

we show to be especially sensitive to t-b unification.

To facilitate the RGE analysis, we make use of simplified RGEs at 1-loop and CMSSM

boundary conditions, as explained in separate subsections below. Note that these simplifi-

cations are specific to this section of the paper and do not change the general conclusions,

confirmed by comprehensive analyses in later sections by use of 2-loop RGEs and SO(10)

motivated boundary conditions. The analysis of the simplified case nevertheless gives valu-

able insights into EWSB and the low spectrum of the extra MSSM Higgses, confirming

that this striking feature can be understood as an RGE effect, and is seen already at

1-loop order.
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3.1 The simplified boundary conditions — CMSSM

In this section we make a slight simplification and consider the CMSSM boundary condi-

tions (see e.g. [73]) as the default scenario, instead of the SO(10) motivated split in the

sfermion and Higgs soft masses to be studied later. We also study how RG running changes

under various deformations of the default CMSSM boundary conditions, obtaining a num-

ber of important conclusions applicable to the more general scenario beyond CMSSM.

More explicitly, we assume the following for the RGE analysis in this section:

• The boundary conditions are set at a high energy: MGUT = 2 · 1016 GeV.

• The MSSM is extended by right-handed neutrinos at a scale MR, with MR ≤MGUT,

below which they are integrated out.

• The boundary conditions of the soft parameters are those of CMSSM:

m2
Hx

∣∣
MGUT

= m2
0, x ∈ {u, d}; (3.1)

m2
x

∣∣
MGUT

= m2
0 1, x ∈ {Q,L, u, d, e, ν}; (3.2)

Mi

∣∣
MGUT

= M1/2, i ∈ {1, 2, 3}; (3.3)

Ax

∣∣
MGUT

= a0 Yx

∣∣
MGUT

, x ∈ {u, d, e, ν}. (3.4)

The RGE boundary conditions for the soft parameters are thus parametrized by the

3 CMSSM parameters m2
0, M1/2 and a0.

• Unification of 3rd family Yukawa couplings at the scale MGUT:

yτ
∣∣
MGUT

= yb
∣∣
MGUT

= yτ
∣∣
MGUT

= yν
∣∣
MGUT

. (3.5)

The above assumptions are a simplified version of the “SO(10) boundary conditions”

with only one soft scalar mass parameter m0 and with universal sfermion soft matrices

(typical leading order pattern in “flavored GUTs” with family symmetry): the constraints

are implied in the unification of all fermion sectors, and t-b-τ unification arises in the simple

case when the Yukawa contribution to the 3rd family of 16F comes from the 16F3 ·16F3 ·10H
operator in SO(10). We note that although the stated class of SO(10) models gives rise

to the MSSM setup described below MGUT, we do not necessarily commit to a particular

SO(10) UV completion. In this context, we would also like to remark that the exact Yukawa

unification will be subject to model-dependent corrections such as e.g. GUT threshold

corrections, which however depend on the details of the UV completion. We will study the

effects of such perturbations of the scenario later in the paper.

3.2 The simplified 1-loop RGE

The complete set of RGEs for the neutrino-extended and softly-broken MSSM are given in

appendix A (also cf. [71]). The full RGEs can be simplified by eliminating some degrees of

freedom which are either numerically irrelevant or unnecessary for our considerations. In

the quark sector, for example, there is little mixing, and the Yukawa matrices in both quark
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sectors as well as the charged lepton sector have hierarchical masses. A good approximation

is therefore to consider only the 3rd family of fermions. Also, we assume family universality

in all sfermion mass matrices at the GUT scale.

To simplify the RGE, we consider the minimal amount of variables consistent with the

above assumptions. It turns out that the following 28 variables in the RGEs are required:

• The 3 gauge couplings g1, g2 and g3.

• The 3 gaugino mass parameters M1, M2, M3.

• 4 Yukawa couplings of the 3rd family yt, yb, yτ , yν .

• The 4 A-term factors au, ad, ae, aν , so that Ax = ax Yx with x ∈ {u, d, e, ν}.

• The 6 × 2 + 2 soft mass parameters: m2
xi , where x ∈ {Q,L, u, d, e, ν} and i ∈ {1, 3}

are independent, and the Higgs mass parameters m2
Hd

and m2
Hu

. The case i = 2

does not have to be studied separately since, in our setup, the i = 2 quantities have

exactly the same running and boundary conditions as those for i = 1.

The resulting simplified 1-loop RGE are presented in appendix B, which contains also

more details on the above variables, cf. eq. (B.1)–(B.5). Making use of the RGEs from

appendix B, the running of the expression m2
Hd
−m2

Hu
is then determined to be

c1
d

dt
(m2

Hd
−m2

Hu)

= 6|yb|2
(
|ad|2 +m2

Hd
+m2

Q3
+m2

d3

)
− 6|yt|2

(
|au|2 +m2

Hu +m2
Q3

+m2
u3

)
+ 2|yτ |2

(
|ae|2 +m2

Hd
+m2

L3
+m2

e3

)
− 2|yν |2

(
|aν |2 +m2

Hu +m2
L3

+m2
ν3

)
− 6

5
g21S,

(3.6)

where c1 is the loop factor and S is a linear combination of soft masses:

c1 := 16π2, (3.7)

S :=m2
Hu −m

2
Hd

+ 2m2
Q1

+m2
Q3
− 2m2

L1
−m2

L3
− 4m2

u1

− 2m2
u3 + 2m2

d1 +m2
d3 + 2m2

e1 +m2
e3 . (3.8)

We see that the first 4 terms of the result in eq. (3.6) are analogous to each other, the

quantities in the terms correspond respectively to the particles b, t, τ and ντ (and their

superpartners). Each term contains the modulus-squared of its Yukawa coupling, and the

factor next to it contains a modulus-squared of the appropriate A-term factor, as well 3

more terms with the soft masses of particles present in the corresponding superpotential

Yukawa term. The b and t terms have an additional numerical factor 3 compared to τ

and ν due to the 3 possible SU(3) colors they can take. Crucially, the terms also come

into the RG beta function with different signs, so it may happen that they cancel. Below

the right-handed neutrino mass scale MR, the ν term vanishes. The boundary conditions
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imply that at exactly MGUT, the last term vanishes due to S = 0, and the b and t terms

cancel each other, and as well as the τ and ν terms, such that we have

(m2
Hd
−m2

Hu)
∣∣
MGUT

=
d

dt
(m2

Hd
−m2

Hu)
∣∣
MGUT

= 0. (3.9)

As already stated, the scale of the masses of the extra MSSM Higgs bosons will be deter-

mined by

(m2
Hd
−m2

Hu)
∣∣
MSUSY

. (3.10)

This same quantity must be positive at low energies also for successful EWSB. It is com-

puted numerically by solving the RGE differential equations of appendix B. We shall

often allude to eq. (3.6) for a better understanding of the numerical results, which we

now consider.

3.3 Numerical RGE results

We now investigate the RGE properties of the system numerically. To do this as explic-

itly as possible, we take an example parameter point, whose neighborhood we study. We

stress that the conclusions of the RGE behavior in this section nevertheless hold generally,

i.e. different example points of Yukawa unification at high energies and consistent with

experimental data at low energies yield the same qualitative conclusions, which we checked

explicitly by considering different parameter points. Furthermore, we identify the under-

lying reasons for certain RG behaviors throughout this section, and the generality (where

applicable) is also confirmed by results in later sections.

We take the following boundary values for the parameters at the scale MGUT = 2.0 ·
1016 GeV:

g1(MGUT) = 0.7044, (3.11)

g2(MGUT) = 0.6965, (3.12)

g3(MGUT) = 0.6980. (3.13)

tanβ = 51, (3.14)

sign(µ) = −1, (3.15)

m2
0(MGUT) = (2400 GeV)2, (3.16)

M1/2(MGUT) = 3700 GeV, (3.17)

a0(MGUT) = −3200 GeV. (3.18)

y0 := yt(MGUT) = yb(MGUT) = yτ (MGUT) = yν(MGUT) = 0.483. (3.19)

MR(MGUT) = 2.0 · 1016 GeV. (3.20)

The gauge coupling g1 is given in the GUT normalization, and MR is the mass of the added

right-handed neutrino. The above values are to be understood as boundary conditions for

the RGE in appendix B. At the scale MR, the right-handed neutrino is integrated out;
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below this threshold, the RGE are corrected by removing all terms containing yν . For

the example point under consideration, we have taken MR = MGUT so that by default

no effects arise due to the right-handed neutrinos, since the yν term with the large 3rd

family neutrino Yukawa coupling is removed already at the GUT scale; its effect is studied

separately below.

The values of the gauge couplings at the GUT scale are taken from the high-energy

data provided by [9], which uses 2-loop RGEs and takes the SUSY scale at 3 TeV; note

that their values are consistent with a typical unified gauge coupling value of ≈ 0.7.

The overall scale of the soft parameters m0, M1/2 and a0 has been taken at the order

of a few TeV, which tends to be the preferred scale for the fits to low energy data, as

will be seen in the next sections. Also, the main effect we are after in this paper is that

the extra MSSM Higgs particles are unexpectedly light compared to the SUSY scale, for

example . 1 TeV; this effect will be obscured if the SUSY scale is also taken to be lighter

than 1 TeV, as used to be popular in past SUSY studies. The few TeV scale for sparticles

is compatible with (as of yet) non-observation of SUSY particles at the LHC.

Note that the chosen point is such that it gives the correct 3rd generation Yukawa

couplings yt, yb and yτ at the scale MZ in the MS scheme,

yt(MZ) = 0.9861, (3.21)

yb(MZ) = 1.63 · 10−2, (3.22)

yτ (MZ) = 1.003 · 10−2, (3.23)

based on the data from [9]. An intuitive qualitative description of how the GUT scale

parameters control the fit of the 3rd family Yukawa parameters is the following:

• The value y0 controls the overall scale of the 3 Yukawa couplings, and needs to have

the value y0 ≈ 0.5.

• The effect of the soft parameters m2
0, M1/2 and a0 is to control the SUSY spectrum,

through which SUSY threshold effects give the correct ratio yτ/yb.

• The quantity tan β controls for the ratio yt/yb (alongside SUSY threshold corrections).

Low energy data demands a large value of tan β ≈ 50, a well-known feature of MSSM

based t-b-τ unification models.

We plot the running under 1-loop RGE from appendix B for the various quantities

of the MSSM, with the boundary conditions at MGUT given by the example parameter

point in eq. (3.11)–(3.20). We shall also investigate the effect of changing one feature of

the boundary conditions at a time, understanding its impact; note that we do not evaluate

the worsening of the fit to low energy data under such a deformation, since we are for

now interested only in the (numerical) effect on the RGE running. We plot quantities in

the range [MSUSY,MGUT]; note that the lower scale is the SUSY scale, since that is the

scale where the sparticle spectrum is computed. This scale is also where a match between

the SM and MSSM theories is performed, and it is taken to be the geometric mean of

the masses of the two stops (computed for our example point using SusyTC [71] to be
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MSUSY = 5901 GeV). While we used a custom computer code for RGE running based on

appendix B for greater control, the results were compared and confirmed with SusyTC

when applicable.

The RGE running of the system, based on the results of the example point, turns out

to have the following properties:

1. Running of gauge and Yukawa couplings, gaugino masses and the A-terms.

The RGE running of the gauge couplings, Yukawa couplings, gaugino mass parame-

ters, as well as the the A-term factors ax from eq. (B.3) is shown in figure 1.

As always in the MSSM, each of the gauge couplings evolves independently from

other quantities (at 1-loop level); the couplings approximately meet at ∼ 0.7, and

their running values are determined; when the renormalization scale µr decreases to

low energies, g3 runs upwards and g1 and g2 run downwards, see eq. (B.6), due to

the signs of MSSM beta coefficients β3 < 0 and β1, β2 > 0 from eq. (A.24).

The running of gaugino mass parameters, according to eq. (B.7), is influenced by

the gauge couplings. It is the differences in gauge couplings which drive the gaugino

mass-parameter differences from a common boundary point M1/2 at MGUT. This

explains why the gluino mass parameter M3 increases when approaching MSUSY,

while M1 and M2 decrease, but all are at a scale of 2 TeV or higher.

The RGEs of the Yukawas have two competing contributions to the beta functions,

cf. (B.9)–(B.11): a positive contribution from the Yukawas themselves, and a negative

contribution from gauge bosons (terms proportional to g2i ). The Yukawa couplings

can then rise or fall with smaller µr, depending on whether the gauge or Yukawa

contributions to the beta function are dominant, respectively.

The 3rd family Yukawa parameters yt and yb rise with lower scale µr essentially due

to the relatively large negative g23 term from the gluons, while yτ stays mostly flat,

since realistic unified values of the gauge couplings of ≈ 0.7 and Yukawa couplings of

≈ 0.5 give the Yukawa and gauge contributions approximately equal. The difference

between the top and bottom Yukawa, on the other hand, is small and is essentially

driven by the |yτ |2 term in β(yb) and the difference in the g21 terms in β(yt) and

β(yb), see eq. (B.9) and (B.10). This ensures a small relative difference yt − yb, with

yt > yb at all energies; the very different values of yt and yb at MZ , as implied by

the different masses of the t and b quarks, must thus come from the MSSM to SM

matching at MSUSY, implying a large tan β of around 50.

The RGEs for the A-term factors are given in eq. (B.16)–(B.18). We can see that the

difference between au and ad is essentially driven by the difference between yt and

yb, as well as the |yτ |2 and g21 terms, which essentially already drive the yt and yb
difference, as discussed earlier. For this reason, there is again only a small deviation

between au and ad. The slope of ae in absolute terms is smaller due to no gluino

related terms, and because of smaller numerical factors in front of the Yukawa terms.
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Figure 1. The RGE running between MSUSY and MGUT for the example point in eq. (3.11)–(3.20)

of the the gauge couplings (top left), gaugino mass parameters (top right),the 3rd family Yukawa

couplings (bottom left), and the A-term proportionality factors (bottom right).

2. Running of soft masses.

The RGE running of all the soft mass parameters for the example point and a nearby

point, where only the top Yukawa yt is changed to the value yt ≡ 1.1 y0 while

yb = yτ ≡ y0, are shown in figure 2. The relevant RGEs for these quantities are

in eq. (B.21)–(B.32). The patterns are easy to understand; we comment on some of

them below.

For m2
Hu

and m2
Hd

, the positive Yukawa term contributions to the β functions dom-

inate, leading to a positive slope and thus the parameters becoming smaller and

eventually negative with smaller µr. The drive to m2
Hu

< 0 at low µr confirms that

the EWSB is radiative. Crucially, the necessary condition for EWSB m2
Hd

> m2
Hu

is

also satisfied at low scales, as will be discussed in more detail later.

The soft mass parameters related to the squarks grow fast with smaller µr due to the

large negative contribution of the gluino related terms g23|M3|2. These terms are not

present in the β function for soft-mass parameters of leptons, so the slepton masses

stay almost flat.

Another general feature of the soft-mass parameter running is that the masses of the

1st and 2nd family of squarks and sleptons (index 1) become larger than those of the
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3rd family (index 3); we are comparing here the soft-mass parameters of particles

of the same flavor, but from different families. The simple reason is the additional

positive terms proportional to squares of Yukawa couplings, which appear only for

3rd family squarks and sleptons (since the 1st and 2nd family Yukawa coupling are

negligible compared to the 3rd family, and they are set to zero in our simple scenario).

We thus have the usual inverted hierarchy in the squark and slepton masses.

We now discuss how the scenario of t-b unification and yt = 1.1 yb compare. We

see that there is little qualitative difference for the values of any one soft parameter

taken on its own. Visually though, major quantitative changes in relative terms can

be spotted when comparing the quantity m2
Hd
− m2

Hu
in the two scenarios, as well

as changes in the quantity m2
u3 − m2

d3
. These changes might be deemed to have

an insignificant effect on the low energy observables. But as shown in the previous

section, the difference m2
Hd
−m2

Hu
turns out to determine the mass scale of the extra

MSSM Higgs bosons. That means that the exactness of t-b unification at the GUT

scale, as demonstrated by the two scenarios in figure 2, has a big impact on the

sparticle spectrum, i.e. on the extra Higgs sector to be precise. This is the major

effect that this paper investigates.

3. Effect of t-b unification on m2
Hd
−m2

Hu
.

We have seen from the RGE of the soft masses in the previous step that t-b unification1

has little qualitative effect on the running of these parameters taken in isolation, but

has a crucial effect on m2
Hd
−m2

Hu
. Figure 3 shows RGE trajectories for m2

Hd
−m2

Hu

under different yt/yb ratio boundary conditions at MGUT, essentially demonstrating

the sensitivity of this quantity to t-b unification. We see that for our example point,

the running expression m2
Hd
− m2

Hu
increases essentially linearly with the yt − yb

difference (at least when relative differences are small), and with a substantial increase

already when yt and yb differ at the percent level. The impact is even more dramatic

when considered in terms of relative increases of m2
Hd
−m2

Hu
: a deviation of a mere

10 % from t-b unification raises the value by a factor 4, and consequently the masses

of the extra MSSM Higgs particles by a factor of 2. Looking at this from a reverse

perspective, when approaching t-b-τ unification from a t-b deformation direction, the

predicted masses of the extra Higgses drop very quickly, typically below 1 TeV.

At MSUSY, the condition m2
Hd
−m2

Hu
> 0 is necessary for (tree-level) EWSB. We can

see in figure 3 that this condition is fulfilled even for exact Yukawa unification (the

yt = yb curve), at least for this particular example point. This shows that there exist

parameter points with exact Yukawa unification and successful EWSB. It is important

to note that a successful EWSB with the m2
Hd

= m2
Hu

GUT boundary condition (and

universal gaugino masses) was not found in some of the prior literature [6, 17, 31, 52,

53] due to extensive use of semi-analytic approximate formulas from e.g. [54], as was

1We took yt = y0, which could at this point be deemed t-τ unification just as well as t-b unification. It

is only a later analysis of deformations in yτ which confirms that it is the t-b split, and not t-τ split, which

is important.
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Figure 2. The RGE running of all soft mass parameters. The two cases are for t-b unification

yt = yb of the example point (1st panel) and for the modified point yt = 1.1 y0 (2nd panel).

discussed in section 1. Part of the pessimism also stemmed from observing that the

slope at MGUT is positive, thus driving the value m2
Hd
−m2

Hu
in the wrong direction

towards negative values; it is only later at low µr that the slope becomes negative

and eventually manages to run the expression back to positive values, an indirect

effect due to the running of other couplings.

Note that we plot the RGE solutions for all curves down to a fixed scale µr = MSUSY,

which was computed for the yt = yb case. This scale is defined as the geometric mean
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−m2

Hu
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sensitivity of the value at MSUSY to the yt coupling: t-b unification significantly lowers the values,

but already a % level mismatch in yt and yb noticably changes the mass parameter difference.

of the stop masses. Strictly speaking, the scale MSUSY shifts slightly with different

ratios yt/yb, so that comparing the running quantity m2
Hd
− m2

Hu
at a fixed scale

is not exactly the same as comparing the mass scales of the extra Higgses. This

shift, however, is negligible, since the quantities determining the stop masses run

logarithmically with µr and change only slightly with the ratio yt/yb, as argued in

the previous analysis step. It is thus justified to compare the running expression for

different curves at a fixed scale MSUSY for qualitative considerations.

4. Contributions to β(m2
Hd
−m2

Hu
).

To understand the effect that t-b-τ unification has on the RGE running, we consider

the various contributions to β(m2
Hd
− m2

Hu
). One can combine the separate RGE

in eq. (B.21) and (B.22) into the β function of eq. (3.6). For our example point,

where the right-handed neutrinos are already integrated out at MGUT, there are 4

terms: terms proportional to |yt|2, |yb|2 and |yτ |2, as well as a term proportional to

S, which is a linear combination of scalar soft masses, see eq. (A.25). We plot these

contributions for the cases yt = yb and yt = 1.1 yb in figure 4.

The results show that in absolute terms the |yt|2 and |yb|2 contributions dominate

over the |yτ |2 one at MGUT, an effect which only increases when running to lower

µr, while the contribution from the S term stays numerically negligible throughout

and will thus be ignored in the following discussion. The larger contributions of the

t and b terms start out due to larger numeric prefactors (due to color) compared to

the τ term. Furthermore, at lower energies the Yukawa couplings yt and yb rise with

smaller scale, while yτ falls, see figure 1. In addition, also the soft masses show the

same trend, see figure 2. Note, however, that these terms in β(m2
Hd
− m2

Hu
) come

with different signs; in particular, the t and b contributions have opposite signs.
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It is thus convenient to compare the difference of the t and b terms (red curve) with

the τ contribution (green curve), see right panels of figure 4. We shall refer to these

two contributions as the t-b and τ contributions, respectively. The t-b contribution

comes into the β function with a negative sign, so whenever the red curve dominates

over the green curve, the beta function value becomes negative, i.e. the RGE running

of m2
Hd
−m2

Hu
has a negative slope. Conversely, when the τ contribution dominates

and the green curve is above the red, the slope is positive. As the figure shows, the

slope is positive at large µr and negative at small µr, which is consistent with figure 3.

At low enough µr the t-b contribution is expected to dominate over the τ contribution

regardless of the starting yt/yb ratio simply due to Yukawa coupling values at those

energies, and that typically the squark soft masses are larger than the corresponding

lepton ones. The ratio yt/yb is crucial, however, for the t-b contribution at energies

near the GUT scale: when yt = yb the t-b contribution starts at zero, while yt/yb > 1

implies a non-vanishing starting value for the RGE.2 This crucially impacts the scale

at which the t-b contribution becomes bigger than the τ one, i.e. when the red and

green curves on the right panels of figure 4 cross. We see that for yt = 1.1yb the

t-b contributions already starts out almost as big as the τ contribution at MGUT,

so the curves intersect above 1014 GeV, while t-b unification delays this until below

1011 GeV. Consequently, with t-b unification the value of m2
Hd
−m2

Hu
will be much

lower, since the rise in its running value is delayed by several orders of magnitude in

the energy scale µr.

This completes our understanding of the effect of t-b unification on m2
Hd
− m2

Hu
.

Yukawa unification delays when the t-b contribution in the beta function rises enough

to dominate over the τ contribution, allowing for the running value of m2
Hd
−m2

Hu

to rise much less by the scale µr = MSUSY. We emphasize that this effect is an

indirect consequence of RG running of all parameters, and can thus be seen only

when solving for the entire system of RGE numerically and evolving it over multiple

orders of magnitude of µr. In simplified analyses, such as studying the local RG

behavior at MGUT by Taylor expansion or taking some running quantities in the

beta function as constant to derive a linear-log semi-analytic approximation [54], not

even the m2
Hd

> m2
Hu

property at low µr is reproduced, let alone the more subtle

effect of the t-b deformation.

5. Effect of b–τ unification on m2
Hd
−m2

Hu
.

An interesting question now is what impact b-τ unification of couplings has on low-

ering the value m2
Hd
−m2

Hu
. It turns out that while t-b unification is crucial for this

effect, b-τ unification is not.

We plot the RGE flow of m2
Hd
−m2

Hu
for different ∆τ := yb−yτ = y0−yτ in figure 6.

The results clearly show that b-τ unification has minimal effect on that quantity at

the SUSY scale. The two sets of trajectories on the plot correspond to the yt = y0

2With a large enough yt/yb ratio, the t-b contribution may in fact already start out larger than the τ

contribution, implying that the slope is always negative.
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Figure 4. The contributions of different terms to β(m2
Hd
−m2

Hu
) (left) and the comparison of the

same contributions in a logplot (right). The plots are drawn for the case yt = yb (above), and a

deviation from that with yt = 1.1 yb (below).

case (red-blue) and the yt = 1.1y0 case (green-cyan); trajectories in the same set differ

in ∆τ from 0 to 0.2, which presents a relative drop in yτ compared to b-τ unification

of more than 40 %, but trajectories in the same set nevertheless cluster together at

MSUSY, despite diverging at first at intermediate energies.

6. Effect of MR on m2
Hd
−m2

Hu
.

We see from figure 5 that the scale of right-handed neutrino MR, associated with

the large 3rd family neutrino Yukawa coupling yν , has a comparatively small effect

on the value of m2
Hd
−m2

Hu
at MSUSY, relative to effect of the t-b deformation. The

discontinuous changes in the slope happen at scales when the right-handed neutrino

is integrated out, i.e. at the scale MR. We conclude that the right-handed neutrinos

do not have a large direct effect on the mass scale of the extra Higgs particles, and

we therefore do not include them in the analyses of sections 3 and 4. It should be

noted though that an indirect effect turns out to be possible, since their presence

shifts the region of parameter space where good fits to low energy data are obtained,

see section 5.

7. SO(10) boundary conditions: replace m0 with m16 and m10.

We investigate whether having a simplified set of CMSSM parameters for the soft

term boundary conditions is crucial for having light extra Higges. A more realistic, yet
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Figure 5. The RGE running of m2
Hd
−m2

Hu
for different deformations of b-τ unifiaction, i.e. values

of yτ = yb −∆τ . There are two sets of trajectories: the red-to-blue trajectories are for yt = yb (t-b

unification), while the green-to-cyan trajectories are for the case yt = 1.1yb. All other quantities

are the same as in the example point (3.11)–(3.20).
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Figure 6. The RGE running of m2
Hd
− m2

Hu
for different values of the right-handed neutrino

mass MR. The set of red-to-blue trajectories are for yt = yb (t-b unification), while the green-to-

cyan trajectories show the case yt = 1.1yb. All other quantities are the same as in the example

point (3.11)–(3.20).

still minimalist, set of soft parameters for an SO(10) GUT theory is one where partial

universality comes due to GUT symmetry. The universal gaugino mass parameter

M1/2 at the GUT scale can in this context be understood as arising from SO(10)

symmetry of the gaugino masses. Similarly, since all SM fermions and right handed

neutrinos come from the representations 16 of SO(10), a universal a0 for different

fermions can be understood in that way. On the other hand, there is no symmetry
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reason why the soft mass parameters of the sfermions should be equal to the soft

mass parameters of the two MSSM Higgs doublets.

We therefore consider a slightly more general case of parametrization for the soft

terms, which we refer to as “SO(10) boundary conditions”. We keep the M1/2 and

a0 parameters, but have two different soft mass parameters m16 and m10 for the

sfermions and Higgses, respectively:

m2
16 1 := m2

Q

∣∣
MGUT

= m2
L

∣∣
MGUT

= m2
u

∣∣
MGUT

= m2
d

∣∣
MGUT

= m2
e

∣∣
MGUT

= m2
ν

∣∣
MGUT

,

(3.24)

m2
10 := m2

Hu

∣∣
MGUT

= m2
Hd

∣∣
MGUT

. (3.25)

The notation for m16 and m10 signifies which SO(10) representation the scalars of

the soft term are part of. It is presumed here that Hu and Hd come from a 10 of

SO(10), which allows for t-b-τ unification with the simple renormalizable 3rd family

Yukawa operator 163 · 163 · 10.

We investigate the effect of such an SO(10) motivated split in the soft mass parameters

in figure 7. We always take m16 ≡ m0, while the deviation ∆m ≡ m10−m0 from the

example parameter point occurs for the Hu and Hd soft masses. The figure shows a

relative decrease or increase of m10 by 1000 GeV (a relative difference of over 40 %)

from m0. We see that the choice of t-b unification or its deformation of 10 % again

dominates over the soft mass split. The soft mass split thus does not qualitatively

change the feature of the spectrum that t-b unification leads to light extra MSSM

Higgses, at least for similar scales of m10 and m16. Quantitatively, however, it can be

seen from the figure that a m10 > m16 split somewhat lowers the m2
Hd
−m2

Hu
value,

while m10 < m16 raises it. For a large enough m10, the value of m2
Hd
− m2

Hu
may

become negative, a problematic regime for EWSB.

We have thus seen that the low masses of the extra Higgses persist even with SO(10)

boundary conditions replacing CMSSM.

8. Split in m2
Hd

and m2
Hu

at the GUT scale.

As a final consideration, we consider how opening up a split in the soft mass param-

eters m2
Hd

and m2
Hu

at the GUT scale influences the value of the running quantity

m2
Hd
−m2

Hu
at the SUSY scale.

The results are shown in figure 8, for splits α in the GUT boundary conditions

specified by mHd = αm0 and mHu = m0, with α changing from no increase (red

trajectory) to 20 % (blue trajectory). Note that separations at the GUT scale more

or less carry over to the SUSY scale, at least if considered at orders of magnitude

level. For example, a (1 TeV)2 gap between m2
Hd

and m2
Hu

in the boundary conditions

at the GUT scale results in a similar gap of a bit less than (1 TeV)2 at the SUSY

scale. This implies that opening up a gap of e.g. m2
Hd
≈ 1.13m2

Hu
at the GUT scale,

as is common in the literature [27–33, 37–40, 44, 45, 51], can erase the effect of low

extra Higgs masses.

– 22 –



J
H
E
P
0
6
(
2
0
2
0
)
0
1
4

Δm = -1 Tev

Δm = 0

Δm = +1 Tev

Δm = -1 Tev

Δm = 0

Δm = +1 Tev

4 5 6 7 8 9 10 11 12 13 14 15 16

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

log10( μr /GeV )

T
e
V

2

Running of mHd

2 -mHu

2 for m16=m0 and m10=m0+Δm for different Δm and yt

yt = 1.1 yb

yt = yb

Figure 7. The RGE running of m2
Hd
−m2

Hu
for different splits ∆m in the soft mass parameters

consistent with SO(10) unification: we take m16 = m0 and m10 = m0+∆m, with m0 of the example

point (3.11)–(3.20). We plot two sets of trajectories: the red-to-blue trajectories are for yt = yb (t-b

unification), while the green-to-cyan trajectories are for the case yt = 1.1yb.
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Figure 8. The RGE running of m2
Hd
−m2

Hu
for different splits α between the initial values of m2

Hd

and m2
Hu

at the GUT scale, where mHu = αm0 and mHd
= m0 and m0 has the value from the

example point (3.11)–(3.20). We see that RGE running to the SUSY scale preserves the initial split

in the mass parameters.

Our results show that the effect of low masses of the extra MSSM Higgses crucially

depends on t-b unification, while b-τ unification and the right-handed neutrino mass scale

MR do not have as large an impact on this effect. The effect persists even if we deform

CMSSM to introduce a split between sfermion and Higgs soft masses, i.e. SO(10) boundary

conditions in eq. (3.24) and (3.25), but can be erased by opening up a further gap between

the Higgs soft masses m2
Hd

and m2
Hu

. On a side note, the results also show that REWSB

can be performed successfully for suitable parameter points.
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The above discussion also makes it clear that unless one studies scenarios of t-b unifi-

cation, usually in the context of t-b-τ unification, this effect will be missed. In particular,

this effect will not be present in any kind of SU(5) SUSY GUT model attempting merely

b-τ unification.

4 The typical mass scales of the extra Higgs particles

In this section, we turn to the broader question of the predicted mass range of the extra

MSSM Higgses when considering the entire region of parameter space that yields good fits

to low energy data.

We established in section 2 that the running difference of soft masses m2
Hd
− m2

Hu

crucially determines the scale of the extra MSSM Higgs particles. A 1-loop RGE analysis

of this quantity was performed in section 3; results showed that with t-b-τ unification and

CMSSM boundary conditions, the difference m2
Hd
−m2

Hu
was indeed smaller than expected

based on the mass scales of the soft parameters. Sensitivity analysis showed that this effect

crucially depends on t-b unification, while considerations such as b-τ unification, the right-

handed neutrino scale MR, and a split in the soft masses of sfermions m16 and Higgses m10

are of secondary concern.

The next step is a more precise calculation going beyond the proxy quantity m2
Hd
−m2

Hu
,

instead considering the masses of the extra Higgs particles directly. We make the following

improvements in the analysis for estimating the Higgs masses as accurately as possible:

1. The RGE running of the softly broken MSSM is performed at 2-loop level.

2. The masses of the extra Higgses are computed at 1-loop instead of tree level.

To perform such improved calculations, we make use of the following tools:

• For 2-loop running, we make use of SusyTC [71] (version 1.2), an extension of the

Mathematica based package REAP [70]. First, boundary conditions are input at

the GUT scale. Then the RG running is performed by use of 2-loop RGEs for the

softly broken MSSM3 from the GUT scale MGUT = 2 · 1016 GeV to the SUSY scale.

The latter is computed dynamically as the geometric mean of the two lightest stop

masses. AtMSUSY, matching of the MSSM and the ordinary SM is performed with the

SusyTC option sign(µ) = −1, and the SUSY spectrum is computed. The sparticle

masses are computed at tree-level, which we deem sufficient for all superpartners

except for the masses of the Higgs sector, the details of which have an important

impact on EW symmetry breaking and the scale of the extra Higgs particles. We

also check for the existence of the EW symmetry-breaking vacuum at 1-loop level.

The SM 2-loop running is then performed between the SUSY scale and the Z-boson

scale MZ = 91.2 GeV.

3SusyTC also includes the superpotential and soft terms for right-handed neutrinos, which are automat-

ically integrated out at the appropriate scale.
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• The MSSM Higgs sector is computed to higher loop order by the program Feyn-

Higgs [74–80], version 2.13.0. The output of SusyTC gives the Higgs masses at tree

level, with the exception of m2
H± given at 1-loop by using eq. (2.21). Using the output

values of SusyTC as input for FeynHiggs, the SM Higgs mass is computed to 2-loop

and the extra Higgs particles’ masses are computed to 1-loop.

• For the computation of EW vacuum stability we make use of Vevacious [81]. We use

SusyTC to produce an SLHA file, amended with values of the MSSM µ and b terms

at tree and loop level, computed from the VIN file of the tree and 1-loop potential for

EW breaking produced by SARAH 4.14.1 [82, 83]. We use the SARAH predefined

model with possible charge breaking via stau VEVs.

We use these tools for improved computations of the t-b-τ unification model, where

we still consider only the 3rd family Yukawa couplings to be non-vanishing as in section 3,

and assume the right-handed neutrinos are integrated out at the GUT scale. The GUT

scale values of the gauge couplings are taken to be those from eq. (3.11)–(3.13). We shall

consider two scenarios of boundary conditions: the CMSSM scenario (5 parameters) and

the SO(10) boundary condition scenario (6 parameters). The input parameters at the GUT

scale are the following:

CMSSM scenario parameters: tan β, y0, M1/2, a0, m0. (4.1)

SO(10) scenario parameters: tan β, y0, M1/2, a0, m16, m10. (4.2)

We take µ < 0 in all cases. The standard notation of CMSSM parameters applies, the

parameter y0 is the t-b-τ unified Yukawa coupling, while m16 and m10 are defined according

to eq. (3.24) and (3.25).

Each parameter point in a scenario allows the computation of the Yukawa couplings at

MZ , the Higgs mass, as well as the SUSY spectrum. The part of the SUSY spectrum that

is of greatest interest to us is the one of the masses of the extra MSSM Higgs particles; we

would like to confirm that due to t-b-τ unification they should indeed be comparatively low.

As a first check, we recompute the example point from eq. (3.11)–(3.20) with improve-

ments of higher loop order. The results for the mass prediction of the CP-odd Higgs A0

are the following:

mA0 = 747 GeV︸ ︷︷ ︸
I

→ 727 GeV︸ ︷︷ ︸
II

→ 514 GeV︸ ︷︷ ︸
III

. (4.3)

The result I corresponds to the tree level mass from eq. (2.11) and 1-loop RGE, the result

II corresponds to tree level mass and 2-loop RGE, while result III is the most accurate

with the 2-loop RGE and 1-loop mass from FeynHiggs. We see that the predicted mass

reduced after every improvement, which we find happens generically. This confirms that

the low MSSM Higgs mass phenomenon persists (and may be further enhanced) even with

the improved loop order in the calculation.

We now turn to a more general study of the parameter space beyond just the example

point. In the subsequent analysis, the 3rd family Yukawa couplings and the SM Higgs mass
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are considered to be observables:

Observables: yt, yb, yτ , mh0 . (4.4)

As a measure of goodness of fit we make use of the χ2 function:

χ2(~x) =
∑
i

(
fi(~x)− yi

)2
σ2i

, (4.5)

where the vector ~x represents the input parameters of the model from either eq. (4.1)

or (4.2), while the index i goes over all observables in eq. (4.4). The yi denote the central

values from the (experimental) data and σi are their corresponding standard deviation

errors, while fi(~x) are the predictions for the i-th observable given the parameter point ~x.

Some observables may be equipped with asymmetric errors σi+ and σi− when fi(~x) > yi
or fi(~x) < yi, respectively.

The experimental values for the Yukawa couplings are considered in the MS scheme.

The central values yi for the 3 Yukawa couplings at the scale MZ are taken from table 1

in [9], with relative errors adjusted upwards to 1 % due to limited precision of our RGE

procedure from MGUT to MZ . The SM Higgs mass central value was taken to be mh =

125.09 GeV [84], with a 3 GeV error due to theoretical uncertainties in the computation.

We show that the prediction of a low extra Higgs mass is a generic feature of t-b-τ

unification rather than of just the example point from the previous section. For this reason

we search for a number of other points in the parameter space of CMSSM, which provide

a good fit of the observables. We do this by a systematic search in the m0-a0 plane of

parameters. For a fixed m0 and a0, we perform a minimization of the χ2 for the other 3

input parameters M1/2, y0 and tan β in eq. (4.1). Remember that these 3 free parameters

are used to fit 4 observables of eq. (4.4), which may not necessarily be possible for an

arbitrary point in the m0-a0 plane. The computation involves a minimization of χ2 for

each point in a 25 × 37 grid and subsequent interpolation between grid points; the points

were taken equidistant and in the range

100 GeV ≤ m0 ≤ 5500 GeV, − 12000 GeV ≤ a0 ≤ 6000 GeV, (4.6)

and include the edge points of these intervals. As we shall see, this range includes the

entire region of admissibly low χ2, at least in the CMSSM context. The relevant results of

this fit are summarized in figures 9, 10 and 11. We analyze them below:

• Figure 9 shows the contours of the minimal attainable χ2 for a point in the m0-a0
plane, with the shaded region excluding points due to vacuum stability, to be dis-

cussed below. Contour regions from blue to white represent points where a reasonable

fit can be obtained: the darkest shade of blue represents almost perfect fits of χ2 < 1,

while the white region represents the edge points where χ2 < 9, such that the devia-

tion in any one observable cannot be more than 3σ. We see that the allowed region

in the m0-a0 plane is compact: the ranges are roughly

m0 < 4 TeV, − 12 TeV < a0 < 5 TeV, (4.7)
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i.e. the regions involve scales of a few TeV. The numeric values of µ at the SUSY

scale are computed to be in the interval (−12 TeV,−2 TeV) for all points.

• The darkly shaded region in figure 9 corresponds to points in the m0-a0 plane for

which χ2 has been minimized, but the vacuum is not sufficiently stable. The threshold

is taken to be at 10× the current age of the universe, but the exponential sensitivity

of the lifetime to the bounce action (see [85–87]) means that one order of magnitude

difference in the threshold does not appreciably change the excluded area. The un-

shaded region thus represents points with the EW vacuum either being metastable

with a sufficiently long lifetime or stable. Note that the instability in the shaded

region does not necessarily exclude all possible points with a given m0 and a0, but

only the one minimizing χ2. Although an improved approach would be to include a

sufficiently long vacuum lifetime as a necessary condition in the minimization of χ2,

this would be much more demanding computationally. Ultimately, the vacuum com-

putation performed here is sufficient to show that most of the low χ2 region consists

of allowed points.

• The minimization of χ2 gives the following ranges for tan β and y0 for all best-fit

points:

48 < tanβ < 55, 0.44 < y0 < 0.50. (4.8)

These two parameters thus have small relative changes for best-fit points with differ-

ent CMSSM soft parameters. The results are compatible with the well-known fact

that t-b-τ unification requires tan β ≈ 50, while the unified coupling is approximately

y0 ≈ 0.5. A more interesting input parameter to track for different best-fit points in

the m0-a0 plane, however, is the gaugino mass parameter M1/2, since this provides

the information for all CMSSM soft parameters of the well-fit points. A contour plot

of the M1/2 values is presented in figure 10; this data represents a 2D surface of best

(3rd family) Yukawa fits in the CMSSM soft-parameter space of m0, M1/2 and a0.

Any good fit of t-b-τ unification in the CMSSM would thus be expected to always lie

in a compact region around the hypersurface: the m0 and a0 values would need to

lie in the region of low χ2, while the M1/2 value would need to lie near the one for

the best-fit point. Results show that M1/2 values of most best-fit points with χ2 < 9

lie in the range between 2.5 TeV and 6 TeV, with the value increasing with increasing

m0 and |a0|.

• Figure 11 shows the predicted mass mA0 (at 1-loop) of the neutral CP-odd MSSM

Higgs A0, which is the main result of interest. Note that CP is not broken at 1-loop,

because our parameters do not have complex phases. We see that all best-fit points

in the allowed region of the m0-a0 plane give a relatively low mass mA0 , roughly in

the range between 150 GeV and 1200 GeV. Important note: the mA0 values are given

only for the best-fit points, so one should be careful not to interpret the figure as a

precise prediction of the CP-odd Higgs mass as a function of only a0 and m0.
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Figure 9. A contour plot of the minimum χ2 for a point with fixed m0 and a0, while tan β, y0
and M1/2 are varied. The darker region inside the black curve represents minimized points with an

EW vacuum lifetime smaller than 10× the age of the universe. In the lighter region outside of the

black curve the vacuum is stable or sufficiently long-lived.

The results show our main premise: the low (or lower than expected scale of the extra

Higgses, i.e. typically < 1 TeV) is a relatively universal feature of t-b-τ unification,

and does not depend on the precise values of the soft parameters. The extra Higgses

are typically by far the lightest MSSM particles in such scenarios. This justifies our

assertion that the example point chosen in section 3 indeed exhibits generic features

in regard to the low Higgs mass.

Note the following important reservation about the results: they merely show the

“naive” predicted mass of the extra Higgs particles in the CMSSM model. Potential

experimental constraints have not been considered in this plot. In fact, as shall be

discussed in the next section, practically the entire region predicted here (assum-

ing exact t-b-τ unification) is under severe stress from ATLAS and CMS searches

of H0 → ττ .

5 Challenges to t-b-τ unification

We have seen in section 4 that the scale of the extra MSSM Higgses is generically expected

to be low in t-b-τ unification. The ultimate reason lies in the RG flow of the quantity

m2
Hd
− m2

Hu
, which was analyzed in section 3, and found to have a relatively small yet

positive value, the latter being important for consistent EWSB. In this section, we analyze

the predictions of t-b-τ further and confront them with experimental data from the LHC.
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represents the one allowed by χ2 < 9 and vacuum stability from figure 9.
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Figure 12. The 1-σ (dark) and 2-σ (light) HPD intervals of the SUSY spectrum in the model with

SO(10) boundary conditions. The lowest lying part of the spectrum are the extra MSSM Higgs

states.

As a first step, we extend the CMSSM scenario to the more general one with SO(10)

boundary conditions, where the parameters consist of those in eq. (4.2), while the χ2 is

again defined with the observables of eq. (4.4). The standard deviations are taken as

follows: the relative errors of the 3rd family Yukawa couplings are taken to be 1 %, while

the error of for the SM Higgs mass is taken to be 2 GeV due to theoretical uncertainties in

the computation.

This time we compute the overall expectations from this setup (with no fixed parameter

values) by computing posterior probability densities of quantities of interest in a Bayesian

approach by use of the Markov Chain Monte Carlo algorithm.

This paragraph contains some technical details of the computation. The MCMC algo-

rithm was performed with 12 parallel chains, each yielding 1.3 · 105 points after discarding

the initial bunch of 104 in the burn-in period. The total number of used data points is thus

1.56 million. Vacuum existence at 1-loop was checked, but not vacuum stability under EM

charge breaking.

The result of interest from the MCMC computation is the SUSY sparticle spectrum,

which turns out to be quite predictive, due to good fits obtained only in a compact region

of parameter space, analogously to section 4. The results are presented in figure 12, where

we draw the 1-σ and 2-σ highest posterior density (HPD) intervals for the masses of the

sparticles. We use the labels g̃ for gluinos, χ̃0
i for neutralinos, χ̃±i for charginos, ũi for

up-type squarks, d̃i for down-type squarks, ẽi for charged sleptons and ν̃i for sneutrinos,

where the index i goes over different ranges for different types of superpartners, but always

corresponds to increasing mass (these are mass eigenstates, so the index i is not directly

related to flavor).
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We make the following comments on the sparticle spectrum results:

• The lowest part of the SUSY spectrum are the extra Higgs particles H0, A0 and

H+. They are expected in the rough range between 500 GeV and 1000 GeV. This

reproduces the results for the case of CMSSM from section 4.

• The next lightest states are the lightest neutralino χ̃0
1 and the lightest charged slepton

ẽ1. We see from the expected ranges that the lightest supersymmetric particle (LSP)

for some points must be the lightest charged slepton (i.e. the stau) instead of the

neutralino. Such points are experimentally problematic, since they would predict a

charged LSP as a dark matter candidate. We performed a second MCMC analysis

with the added constraint that the LSP must be the neutralino; this addition only

minimally changes the quantitative predictions for HPD intervals of the other parts

of the spectrum, so we choose not to include a separate plot.

• The rest of the spectrum is higher than 2 TeV, with gluinos typically at > 5 TeV.

An interesting feature is that the sleptons are expected to have lower masses than

squarks.

The predicted sparticle spectrum is mostly compatible with the LHC data and searches

for these particles, with one notable exception: the extra MSSM Higgs particles. The most

stringent constraint comes from the possible ditau decay of neutral Higgses H0/A0 → ττ .

The general scenario relevant in our case is the so called hMSSM [88], which assumes for all

SUSY particles other than Higgses to be above 1 TeV. It was shown that specifying only

two parameters, tan β and mA0 , is sufficient to uniquely predict other tree-level quantities.

The observed ditau rate is consistent with the SM background, so the non-observation of

H0 or A0 is summarized by upper bounds on tan β for a given mA0 in the mA0-tanβ plane.

The latest ATLAS [68] and CMS [69] results on this, using the dataset with 36 fb−1 of

integrated luminosity at
√
s = 14 TeV, suggest a bound of mA0 & 1.5 TeV at tanβ ≈ 50.

Based on figure 12, the t-b-τ model prediction for the mass of H0 and A0 is clearly in

tension with the experimental bounds, at least for most of the otherwise available parameter

space. In fact, a search among computed MCMC points showed that the extra Higgs masses

in the scenario of SO(10) boundary conditions cannot go much higher than 1200 GeV (since

that would incur a severe χ2 penalty). Comparing the various contributions to χ2 shows

that the tension comes from the SM Higgs mass, which tends to be dragged too high for

high values of the extra Higgses.

This result is consistent with the upper limit for the best fit points in the more con-

strained CMSSM scenario, see figure 11; the additional parameter gained by the split of

m0 to m16 and m10 in the SO(10) boundary conditions thus does not appear to gain

much maneuvering space over CMSSM for increasing the masses of the extra Higgs states.

The CMSSM region in figure 11 with high extra Higgs masses is located at small m0,

i.e. m0 . 500 GeV, while a0 ∼ −5 TeV.

This result indicates that exact t-b-τ unification, at least within the SO(10) boundary

conditions scenario, is under strain exactly because of the low masses of the extra MSSM

Higgses, the very feature pointed out and studied in this paper.
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There are some possibilities, however, how to potentially relax the tension with ex-

periment and allow for higher masses of extra Higges, while keeping the SM Higgs at the

measured value:

1. We have seen that the low mass feature in extra Higgs states is especially sensitive to

t-b unification, cf. figure 11. Even just a few percent deformation in t-b unification can

substantially help with raising the masses of the extra Higgses. Such magnitudes for

the deformation of t-b-τ unification could easily occur either due to GUT threshold

corrections, which depend on the extra states in the SO(10) GUT breaking sector, or

Planck scale suppressed operators, which could break the discrete symmetry respon-

sible for the dominance of the 16i · 16j · 10 operator for the flavor entry i = j = 3.

Although all Yukawa couplings could obtain a threshold correction, we shall study

only the case where yt splits from the others.

2. One expected extension of the MSSM at high energies, especially in the context of

SO(10) GUT, is the extension by right-handed neutrinos. Although this does not

influence the low masses of the extra Higgses directly, cf. figure 6, it may have an

indirect effect due to changing the running of Yukawa couplings at scales near the

GUT scale. We shall investigate this possibility below.

3. Our analysis also assumed the GUT scale to be fixed at 2 · 1016 GeV. Changing the

GUT scale could change the length of running of all the quantities, thus changing

the value of the running quantity m2
Hd
− m2

Hd
. Trying this out numerically in our

setup, we surprisingly found that the fit is helped by lowering and not raising the

GUT scale, which is undesired from the point of view of proton decay. Nevertheless,

this option remains a possibility, especially if one considers modifications of RGE due

to other GUT particles, but we shall not pursue this possibility further in the paper.

4. The location of the MSSM Higgs doublets in SO(10) representations depends on

the GUT breaking sector and details of doublet-triplet splitting. It may happen

that the low mass MSSM doublets Hu and Hd, which are mass eigenstates, are not

aligned with the (flavor) doublet states in 10 of SO(10) due to the presence of other

representations; the coefficients of Hu and Hd in that case may not be the same.

In such a scenario the 3rd family Yukawa coefficients still come from an operator

16 · 16 · 10, but the different coefficients with which Hu and Hd are present in the

doublet states of the 10 spoil t-b-τ unification in the effective MSSM theory below

the GUT scale. Although possible, we do not consider this case further, since the

spoiling of t-b-τ unification can essentially then be of any magnitude and pattern;

what we are really interested in this analysis is keeping the t-b-τ unification pattern

in the MSSM effective theory.

Out of the 4 caveats mentioned, we study now the effect of the first two, which we

deem to be the most relevant for our analysis. The results are presented in figure 13. We

first provide some technical details regarding the computation of this plot and what was

minimized, and then discuss the results.
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Figure 13. The contour lines of minimal χ2 achieved by SO(10) boundary conditions for a fixed

t-b deformation yt/y0 − 1 and fixed scale MR of the right-handed neutrino of the 3rd family. The

χ2 includes the constraint from ditau decays of H0/A0, thus requiring a large mA0 . Larger t-b

deformations substantially help with the fit, and to a smaller degree a lower MR does as well.

Since we are now interested also in the masses of the extra Higgses, we perform the

minimization with more observables in the χ2. For the input we have the SO(10) bound-

ary condition parameters, now also assuming a possible split in t-b and one right-handed

neutrino (the one with the largest Yukawa coupling, i.e. the unified coupling, in the Dirac

mass term) at the scale MR, which may now be below MGUT. The other two Majorana

type masses of the right-handed neutrinos are again set at the GUT scale. The input

parameters are now

Deformation scenario parameters: tan β, y0, yt, M1/2,

a0, m16, m10, MR, (5.1)

where the unified Yukawa coupling now excludes the top coupling yt:

y0 := yb
∣∣
MGUT

= yτ
∣∣
MGUT

= yν
∣∣
MGUT

. (5.2)

As for the χ2, we consider the observables from eq. (4.4), with two additional penalty

terms. The first penalty term is associated to the non-observation of H0/A0 → ττ at the

LHC, and is present only if tan β is too high given the value of mA0 . The expected values

of the tan β upper bound and 1-σ upper error of the constraint (extended to bigger errors

assuming a Gaussian profile) are taken from figure 10b from the ATLAS analysis [68].

The other penalty basically enforces the neutralino to be the LSP, which turns out to be

easily possible.
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We now fix the t-b deformation quantity yt/y0−1 and MR, and perform a minimization

in the other parameters. We do so for each point in a 7 × 7 grid of equidistant points in

the “deformation plane” of yt/y0 − 1 and MR. The results of the minimized χ2 (using

interpolation of the grid results to show contours) is shown in figure 13. The range of t-b

deformations is taken from 0 to 6 %, while the right-handed neutrino scale MR is considered

on a logarithmic axis in the range between 1013 GeV and 1016 GeV. Note: the points were

checked for the existence of the EW vacuum at 1-loop, but not explicitly for vacuum

stability due to too excessive computation time. On the other hand, the points are close

to points which have been checked with Vevacious, and overall in an unproblematic region

with respect to vacuum stability. The numeric value of the µ parameter at the SUSY scale

is in the interval (−10 TeV,−6.7 TeV) for all points. All points in the figure have the extra

MSSM Higgs particles as the lowest lying states at around 1.3-1.5 TeV in the sparticle

spectrum, followed by the neutralino with a mass > 2 TeV.

As stated earlier, the main difficulty is the reconciliation of the SM Higgs mass with

the H0/A0 → ττ constraint on extra Higgs masses. The best fit points all have small m10,

i.e. m10 < 500 GeV, as in the CMSSM case, but the m16-m10 split now allows for a bit

bigger a0 in magnitude without compromising χ2: a0 ∼ −10 TeV.

The results clearly show that the t-b deformation at a few percent level can indeed

greatly reduce the tension (for example the blue region in the plot corresponding to χ2 < 6).

This actually happens in two ways: first, it increases the masses of the extra Higgs particles

and thus mA0 (RGE effect), and second, it allows for a smaller tan β of around 46, which

also relaxes tension, since H0/A0 → ττ constraints are in the form of an upper bound on

tanβ. In addition, figure 13 also shows that the fit is improved by a lower right-handed

neutrino scale, but the effect is sub-dominant compared to the t-b deformation.

Another important result of the minimization in the grid worth stating is also the

following: the best fit points still tend to have the extra Higgs masses at the lower end

of the allowed range. The non-deformed points under tension have the Higgs just above

1300 GeV, while the deformed points not-under tension have those masses up to 1500 GeV.

Though the ditau constraint did not require them to be higher than around 1500 GeV, this

still shows that the deformed points have a preference for lower rather than higher masses

of mA0 . A continuing non-observation of the ditau decay coming from H0/A0 neutral

MSSM Higgses at the LHC would thus put the other points under increasing strain as well,

requiring an ever larger t-b deformation.

6 Conclusions

We considered in this paper t-b-τ Yukawa unification in the context of SO(10) SUSY GUTs

with µ < 0. The µ < 0 is the preferred sign for Yukawa unification, since it provides the

SUSY threshold corrections to the b quark in the correct direction. Below the GUT scale,

a good effective description is a softly broken MSSM possibly extended by right-handed

neutrinos (if they are not yet integrated out). The boundary condition for the soft parame-

ters at the GUT scale are assumed to be CMSSM-like, except for an additional split of the

scalar soft mass parameter m0 into sfermion masses m16 and the mass parameter m10 of
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the Higgs doublets Hu and Hd, since these two soft mass parameters involve particles from

different SO(10) representations. In particular, the features most important for comparison

with the existing literature are exact Yukawa unification as opposed to quasi-unification,

m2
Hd

= m2
Hu

at the GUT scale, µ < 0, and universal gaugino masses.

We consider the above scenario to be the vanilla setup for Yukawa unification in SO(10),

yet this has remained a largely unexplored possibility in the literature, where one or more

of our stated assumptions are violated in an important way. The reason for that was

a pessimistic outlook on the possibility of REWSB, based on approximate semi-analytic

solutions of RGEs. In contrast, we show in this paper that REWSB is in fact possible to

achieve by solving the full set of RGEs numerically.

The quantity of interest for successful EWSB is m2
Hd
−m2

Hu
, which must be positive

at the SUSY scale. In the large tan β regime needed for Yukawa unification, this same

quantity determines also the mass scale of the extra MSSM Higgs particles H0, A0 and

H± (cf. section 2). We find that the running quantity m2
Hd
−m2

Hu
vanishes at the GUT

scale due to the boundary conditions, first runs to negative values at lower scales, but the

trend then reverses and it results in a positive value at MSUSY. Crucially, this positive

value is smaller than might be expected based on the scale of the soft parameters, typically

below TeV (when assuming exact t-b-τ Yukawa unification at the GUT scale). This yields

a SUSY mass spectrum with the characteristic feature that the extra Higgs states are the

lowest lying sparticle states, a feature that we focused on in this paper.

We study in detail the 1-loop RGE running of the quantity m2
Hd
−m2

Hu
in section 3; we

analyze the various contributions to its beta function, as well as determine the sensitivity

to various deformations of boundary conditions. We find that the low mass feature for

the extra MSSM Higgs particles is very sensitive to the exactness of t-b unification, with

a 10 % percent deformation easily raising the scale by a factor of 2. The b-τ unification,

presence of right-handed neutrinos, or a split of a universal scalar soft mass m0 into the

sfermion and Higgs parameters m16 and m10, on the other hand, produce numerically a

far more modest effect. Given the large sensitivity to t-b deformations, we conclude that a

top-down RGE calculation is more suitable to accurately model the extra Higgs masses in

exact t-b-τ unification.

This effect of low extra Higgs masses is ubiquitous in the entire parameter space, at

least where t-b-τ unification leads to realistic Yukawa values at low energies. Most of the

parameter space, both in the CMSSM and in the SO(10) boundary condition scenario,

where a good fit to the 3rd family Yukawa couplings and the SM Higgs mass can be

obtained, favors the extra Higgs masses at less than 1 TeV (for the case of exact t-b-τ

unification), as presented in sections 4 and 5.

These model predictions, however, are in tension with ATLAS and CMS searches of

ditau decays of neutral extra Higgses, i.e. H0/A0 → ττ . The experimental searches result

in upper bounds on tan β as a function of mA0 . Since t-b-τ unification requires a large

tanβ ≈ 50, this suggests the extra Higgses to be above roughly 1.5 TeV. In exact t-b-

τ unification with correct Yukawa predictions at low scales, it is hard to achieve masses

above ∼ 1.3 TeV; the main obstacle turns out to simultaneously obtain heavy extra Higgses

alongside a sufficiently low SM Higgs mass near 125 GeV.
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The tension with experiment can be reduced by relaxing exact t-b-τ unification. As

shown in section 5, a deformation of t-b unification at a level of a few percent can completely

relieve the tension with experiment, both by raising the masses of the extra Higgs particles

and lowering the required tan β. Such a deformation of a few percent could come about from

GUT threshold corrections, especially given the large numbers of particles in the SO(10)

representations in the Higgs sector (which are of course model dependent), or Planck scale

suppressed operators. It should be noted, however, that even deformed t-b-τ unification

prefers lower rather than higher extra Higgs masses.

In summary, we have shown that t-b-τ (quasi-)unification in SO(10) SUSY GUTs with

µ < 0 generically features comparably light extra MSSM Higgs particles. For exact t-b-τ

unification we find a tension with LHC constraints from H0/A0 → ττ , due to predicting

too light masses of the extra MSSM Higgses. The tension can be successfully alleviated

by relaxing the scenario to quasi-unification of Yukawa couplings: a few percent split of

the top Yukawa from the unified value (most importantly from the bottom Yukawa) can

bring the extra Higgs states to sufficiently high values to avoid the present experimental

constraints. Nevertheless, masses of these states close to the present bounds are still

preferred. This implies that a continuing non-observation of the extra MSSM Higgses

would require ever bigger deformation of t-b-τ unification, finally disfavoring the scenario.

Conversely, an observation of an extra Higgs state in the ditau decay channel could be the

first sparticle observation of the t-b-τ unified SO(10) SUSY GUT model, and measuring

a sparticle spectrum with extra Higgses having the lowest masses could be a hint for the

realization of this scenario in nature.
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A General RGE for softly broken MSSM with neutrinos

In this appendix, we present the 1-loop RGE of a softly broken MSSM, which also contains

right-handed neutrinos. Below the mass thresholds of the right-handed neutrinos, they have

to be integrated out of the theory, which essentially removes them from the RGEs [89].These

equations are well known and are presented here merely for completeness; the MSSM

equations can be found in [70, 71, 90]. The equations assume the convention of REAP [70]

and SusyTC [71], which in particular is an RL convention for the Yukawa matrices and the

trilinear couplings, and which is used throughout this paper. In table 1 the convention for

the quantities in WMSSM and Lsoft (cf. eq. (2.3) and (2.4)) in this paper and in SusyTC is

compared to the ones in Martin’s Supersymmetry Primer [73] and in SUSY Les Houches

Accord (SLHA) 2 [91]. We use t = log µr, where µr is the renormalization scale. Also,

the hypercharge coupling g1 of U(1)Y is in the GUT normalization, related to the SM-

normalized U(1)Y coupling g by g21 = 5/3 g2.
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paper SusyTC SUSY Primer SLHA 2

Y +Y −y +YT

µ +µ +µ +µ

M +M −M +M

m2 +m2 +m2 +m2

A +T −a +TT

m2
Hu/d

+m2
Hu/d

+m2
Hu/d

+m2
Hu/d

b +m2
3 +b +m2

3

Table 1. Comparison of the labels and conventions chosen in this paper for the quantities present

in WMSSM in eq. (2.3) and Lsoft in eq. (2.4), with the conventions used by SusyTC, Martin’s

Supersymmetry Primer and SLHA 2. All labels and family indices are neglected and right-handed

neutrinos are not considered. The convention in this paper corresponds to the one in SusyTC.

SusyTC and the SUSY Primer adhere to the RL convention for the Yukawa matrices and the

trilinear couplings, SLHA 2 employs the LR convention.

The multiple family RGEs are the following:

c1
d

dt
gi =βig

3
i , (A.1)

c1
d

dt
Mi = 2βig

2
iMi , (A.2)

c1
d

dt
µ =µ

(
Tr(3YuY

†
u + 3YdY

†
d + YeY

†
e + YνY

†
ν)− 3

5
g21 − 3g22

)
, (A.3)

c1
d

dt
Yu = Yu

(
3Tr(YuY

†
u)1 + Tr(YνY

†
ν) + 3Y†uYu

+ Y†dYd − 1

(
13

15
g21 + 3g22 +

16

3
g23

))
, (A.4)

c1
d

dt
Yd = Yd

(
3Tr(YdY

†
d)1 + Tr(YeY

†
e)1 + 3Y†dYd

+ Y†uYu − 1

(
7

15
g21 + 3g22 +

16

3
g23

))
, (A.5)

c1
d

dt
Ye = Ye

(
3Tr(YdY

†
d)1 + Tr(YeY

†
e)1 + 3Y†eYe + Y†νYν − 1

(
9

5
g21 + 3g22

))
,

(A.6)

c1
d

dt
Yν = Yν

(
3Tr(YuY

†
u)1 + Tr(YνY

†
ν)1 + 3Y†νYν + Y†eYe − 1

(
3

5
g21 + 3g22

))
,

(A.7)

c1
d

dt
Mν = 2 (YνY

†
ν) Mν + 2 Mν (YνY

†
ν)T , (A.8)

c1
d

dt
Au = Yu (4Y†uAu + 2Y†dAd) + Au (5Y†uYu + Y†dYd)

+ Yu

(
6Tr(AuY

†
u) + 2Tr(AνY

†
ν) +

26

15
g21M1 + 6g22M2 +

32

3
g23M3

)
+ Au

(
3Tr(YuY

†
u) + Tr(YνY

†
ν)− 13

15
g21 − 3g22 −

16

3
g23

)
, (A.9)
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c1
d

dt
Ad = Yd (4Y†dAd + 2Y†uAu) + Ad (5Y†dYd + Y†uYu)

+ Yd

(
6Tr(AdY

†
d) + 2Tr(AeY

†
e) +

14

15
g21M1 + 6g22M2 +

32

3
g23M3

)
+ Ad

(
3Tr(YdY

†
d) + Tr(YeY

†
e)−

7

15
g21 − 3g22 −

16

3
g23

)
, (A.10)

c1
d

dt
Ae = Ye (4Y†eAe + 2Y†νAν) + Ae (5Y†eYe + Y†νYν)

+ Ye

(
6Tr(AdY

†
d) + 2Tr(AeY

†
e) +

18

5
g21M1 + 6g22M2

)
+ Ae

(
3Tr(YdY

†
d) + Tr(YeY

†
e)−

9

5
g21 − 3g22

)
, (A.11)

c1
d

dt
Aν = Yν (4Y†νAν + 2Y†eAe) + Aν (5Y†νYν + Y†eYe)

+ Yν

(
6Tr(AuY

†
u) + 2Tr(AνY

†
ν) +

6

5
g21M1 + 6g22M2

)
+ Aν

(
3Tr(YuY

†
u) + Tr(YνY

†
ν)− 3

5
g21 − 3g22

)
, (A.12)

c1
d

dt
B =B

(
Tr(3YuY

†
u + 3YdY

†
d + YeY

†
e + YνY

†
ν)− 3

5
g21 − 3g22

)
(A.13)

+ µ

(
Tr(6AuY

†
u+6AdY

†
d+2AeY

†
e+2AνY

†
ν) +

6

5
g21M1+6g22M2

)
, (A.14)

c1
d

dt
m2
Hu = 6Tr

(
(m2

Hu1 + m2
Q)Y†uYu + Y†um

2
uYu + A†uAu

)
+ 2Tr

(
(m2

Hu1 + m2
L)Y†νYν + Y†νm

2
νYν + A†νAν

)
− 6

5
g21|M1|2 − 6g22|M2|2 +

3

5
g21S , (A.15)

c1
d

dt
m2
Hd

= 6Tr
(
(m2

Hd
1 + m2

Q)Y†dYd + Y†dm
2
dYd + A†dAd

)
+ 2Tr

(
(m2

Hd
1 + m2

L)Y†eYe + Y†em
2
eYe + A†eAe

)
− 6

5
g21|M1|2 − 6g22|M2|2 −

3

5
g21S , (A.16)

c1
d

dt
m2
Q = (m2

Q + 2m2
Hu1)Y†uYu + (m2

Q + 2m2
Hd

1)Y†dYd + (Y†uYu + Y†dYd)m
2
Q

+ 2Y†um
2
uYu + 2Y†dm

2
dYd + 2A†uAu + 2A†dAd

+ 1

(
− 2

15
g21|M1|2 − 6g22|M2|2 −

32

3
g23|M3|2 +

1

5
g21S

)
, (A.17)

c1
d

dt
m2
L = (m2

L + 2m2
Hu1)Y†νYν + (m2

L + 2m2
Hd

1)Y†eYe + (Y†νYν + Y†eYe)m
2
L

+ 2Y†νm
2
νYν + 2Y†em

2
eYe + 2A†νAν + 2A†eAe

+ 1

(
−6

5
g21|M1|2 − 6g22|M2|2 −

3

5
g21S

)
, (A.18)
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c1
d

dt
m2
u = (2m2

u + 4m2
Hu1)YuY

†
u + 4Yum

2
QY†u + 2YuY

†
um

2
u + 4AuA

†
u

+ 1

(
−32

15
g21|M1|2 −

32

3
g23|M3|2 −

4

5
g21S

)
, (A.19)

c1
d

dt
m2
d = (2m2

d + 4m2
Hd

1)YdY
†
d + 4Ydm

2
QY†d + 2YdY

†
dm

2
d + 4AdA

†
d

+ 1

(
− 8

15
g21|M1|2 −

32

3
g23|M3|2 +

2

5
g21S

)
, (A.20)

c1
d

dt
m2
e = (2m2

e + 4m2
Hd

1)YeY
†
e + 4Yem

2
LY†e + 2YeY

†
em

2
e + 4AeA

†
e

+ 1

(
−24

5
g21|M1|2 +

6

5
g21S

)
, (A.21)

c1
d

dt
m2
ν = (2m2

ν + 4m2
Hu1)YνY

†
ν + 4Yνm

2
LY†ν + 2YνY

†
νm

2
ν + 4AνA

†
ν . (A.22)

The loop factor c1 is defined as

c1 = 16π2, (A.23)

the values of the βi coefficients are

β1 =
33

5
, β2 = 1, β3 = (−3) , (A.24)

and the quantity S is defined as the following combination of soft scalar mass parameters:

S := m2
Hu −m

2
Hd

+ Tr(m2
Q −m2

L − 2m2
u + m2

d + m2
e) . (A.25)

B Approximate RGE with 3rd family Yukawa couplings

In this appendix a simple approximation for the RGEs of the MSSM quantities (including

right-handed neutrinos) is presented, which is self-consistent under RG running. Under

the assumption that in each Yukawa matrix the (3, 3)-entry dominates, all other entries

are set to zero. Furthermore, the trilinear couplings are taken proportional to the Yukawa

matrices. In order to have no extra flavor violation in the SUSY sector, the soft mass

matrices are chosen diagonal, where soft masses of the first two families are identical.

Taking these considerations together, the setup below presents the minimal set of self-

consistent RGE equations, which simplifies the full set and captures the dominant effects

of the running.

The ansatz is

Yu =

0 0 0

0 0 0

0 0 yt

 , Yd =

0 0 0

0 0 0

0 0 yb

 ,

Ye =

0 0 0

0 0 0

0 0 yτ

 , Yν =

0 0 0

0 0 0

0 0 yν

 , (B.1)
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Mν =

Mν1 0 0

0 Mν2 0

0 0 Mν3

 , (B.2)

Au = au Yu , Ad = ad Yd ,

Ae = ae Ye , Aν = aν Yν . (B.3)

m2
Q =

m2
Q1

m2
Q1

m2
Q3

 , m2
L =

m2
L1

m2
L1

m2
L3

 , m2
u =

m2
u1

m2
u1

m2
u3

 , (B.4)

m2
d =

m2
d1

m2
d1

m2
d3

 , m2
e =

m2
e1

m2
e1

m2
e3

 , m2
ν =

m2
ν1

m2
ν1

m2
ν3

 . (B.5)

Using this ansatz for the Yukawa couplings, the trilinear couplings and the soft masses,

the RGEs from appendix A are simplified and now read as follows:

c1
d

dt
gi =βig

3
i , (B.6)

c1
d

dt
Mi = 2βig

2
iMi , (B.7)

c1
d

dt
µ =µ

(
|yν |2 + |yτ |2 + 3|yb|2 + 3|yt|2 −

3g21
5
− 3g22

)
, (B.8)

c1
d

dt
yt = yt

(
6|yt|2 + |yb|2 + |yν |2 −

13

15
g21 − 3g22 −

16

3
g23

)
, (B.9)

c1
d

dt
yb = yb

(
6|yb|2 + |yt|2 + |yτ |2 −

7

15
g21 − 3g22 −

16

3
g23

)
, (B.10)

c1
d

dt
yτ = yτ

(
3|yb|2 + 4|yτ |2 + |yν |2 −

9

5
g21 − 3g22

)
, (B.11)

c1
d

dt
yν = yτ

(
3|yt|2 + 4|yν |2 + |yτ |2 −

3

5
g21 − 3g22

)
, (B.12)

c1
d

dt
Mν1 = 0, (B.13)

c1
d

dt
Mν2 = 0, (B.14)

c1
d

dt
Mν3 = 4Mν3 |yν |2 , (B.15)

c1
d

dt
au = 2ad|yb|2 + 12au|yt|2 + 2aν |yν |2 +

26

15
g21M1 + 6g22M2 +

32

3
g23M3 , (B.16)

c1
d

dt
ad = 12ad|yb|2 + 2ae|yτ |2 + 2au|yt|2 +

14

15
g21M1 + 6g22M2 +

32

3
g23M3 , (B.17)

c1
d

dt
ae = 6ad|yb|2 + 8ae|yτ |2 + 2aν |yν |2 +

18

5
g21M1 + 6g22M2 , (B.18)

c1
d

dt
aν = 6au|yt|2 + 2ae|yτ |2 + 8aν |yν |2 +

6

5
g21M1 + 6g22M2 , (B.19)
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c1
d

dt
B = 3|yb|2(2adµ+B) + |yτ |2(2aeµ+B) + 3|yt|2(2auµ+B) + |yν |2(2aνµ+B)

− 3

5
B
(
g21 + 5g22

)
+

6

5
µ
(
g21M1 + 5g22M2

)
, (B.20)

c1
d

dt
m2
Hu = 6|yt|2

(
|au|2 +m2

Hu +m2
Q3

+m2
u3

)
+ 2|yν |2

(
|aν |2 +m2

Hu +m2
L3

+m2
ν3

)
− 6

5
g21|M1|2 − 6g22|M2|2 +

3

5
g21S , (B.21)

c1
d

dt
m2
Hd

= 6|yb|2
(
|ad|2 +m2

Hd
+m2

Q3
+m2

d3

)
− 6

5
g21|M1|2 − 6g22|M2|2 −

3

5
g21S

+ 2|yτ |2
(
|ae|2 +m2

Hd
+m2

L3
+m2

e3

)
, (B.22)

c1
d

dt
m2
Q1

=
1

15

(
−2g21|M1|2 − 90g22|M2|2 − 160g23|M3|2 + 3g21S

)
, (B.23)

c1
d

dt
m2
Q3

= c1
d

dt
m2
Q1

+ 2
(
|yb|2

(
|ad|2 +m2

d3 +m2
Hd

+m2
Q3

)
+ |yt|2

(
|au|2 +m2

Hu +m2
Q3

+m2
u3

) )
, (B.24)

c1
d

dt
m2
L1

= − 3

5
g21
(
2|M1|2 + S

)
− 6g22|M2|2, (B.25)

c1
d

dt
m2
L3

= c1
d

dt
m2
L1

+ 2
(
|yτ |2

(
|ae|2 +m2

e3 +m2
Hd

+m2
L3

)
+ |yν |2

(
|aν |2 +m2

Hu +m2
L3

+m2
ν3

) )
, (B.26)

c1
d

dt
m2
u1 = − 4

15

(
g21
(
8|M1|2 + 3S

)
+ 40g23|M3|2

)
, (B.27)

c1
d

dt
m2
u3 = c1

d

dt
m2
u1 + 4|yt|2

(
|au|2 +m2

Hu +m2
Q3

+m2
u3

)
, (B.28)

c1
d

dt
m2
d1 =

2

15

(
g21
(
3S − 4|M1|2

)
− 80g23|M3|2

)
, (B.29)

c1
d

dt
m2
d3 = c1

d

dt
m2
d1 + 4|yb|2

(
|ad|2 +m2

d3 +m2
Hd

+m2
Q3

)
, (B.30)

c1
d

dt
m2
e1 =

6

5
g21
(
S − 4|M1|2

)
, (B.31)

c1
d

dt
m2
e3 = c1

d

dt
m2
e1 + 4|yτ |2

(
|ae|2 +m2

e3 +m2
Hd

+m2
L3

)
, (B.32)

c1
d

dt
m2
ν1 = 0 , (B.33)

c1
d

dt
m2
ν3 = 4|yν |2

(
|aν |2 +m2

Hu +m2
L3

+m2
ν3

)
. (B.34)

We also have

S =m2
Hu −m

2
Hd

+ 2m2
Q1

+m2
Q3
− 2m2

L1
−m2

L3
− 4m2

u1 − 2m2
u3 + 2m2

d1

+m2
d3 + 2m2

e1 +m2
e3 . (B.35)

Note that the a-factors are defined via Ax = axYx, so their RGE have to be derived

accordingly, e.g.

d

dt
(auyt) =

d

dt
(au)yt + au

d

dt
(yt) , (B.36)
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implying

d

dt
au = (1/yt)

(
d

dt
(auyt)− au

d

dt
(yt)

)
. (B.37)

For the Majorana neutrino mass associated to the large 3rd family neutrino Yukawa

coupling, we assume the value Mν3 = MR at the scale MR, implying that this heavy

neutrino is integrated out at the scale MR. The Mν3 does not appear in the RGE of any

other quantity.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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