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as an object of study in its own right. We study conformal blocks for the minimal SL(2, R)

symmetry present in conformal field theories in all dimensions. Unitarity demands that

the Taylor coefficients of the four-point function lie inside a polytope U determined by the

operator spectrum, while crossing demands they lie on a plane X. The conformal bootstrap

is then geometrically interpreted as demanding a non-empty intersection of U∩X. We find

that the conformal blocks enjoy a surprising positive determinant property. This implies

that U is an example of a famous polytope — the cyclic polytope. The face structure of

cyclic polytopes is completely understood. This lets us fully characterize the intersection

U∩X by a simple combinatorial rule, leading to a number of new exact statements about

the spectrum and four-point function in any conformal field theory.
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1 Introduction

Conformal field theories are characterized by a set of operators Oi with dimensions ∆i and

spins si, together with the three-point functions coefficients given by cijk. Polyakov’s

dream [1] of the conformal bootstrap program was to determine the space of allowed

{∆i, si, cijk} from locality and unitarity, via the consistency of the operator product ex-

pansion (OPE) for four-point correlators in two different channels. This puts a quadratic

constraint on the cijk depending on the putative spectrum for ∆i, si, somewhat analogous

to the Jacobi identity for the structure constants of a Lie group. Indeed Polyakov’s vision

was that the conformal bootstrap would lead to a classification of possible conformal field

theories (CFT) mirroring the classification of Lie groups.
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Unlike the older S-matrix bootstrap program — where the constraints from locality

and unitarity on the analytic structure of four-particle scattering amplitudes were not

well-understood (and are indeed still not well-understood to this day) — the conformal

bootstrap poses a completely well-defined mathematical problem. Given some putative

CFT data {∆i, si, cijk}, it is possible to unambiguously check whether it does or does not

define a unitary CFT. The fundamental challenge of determining the space of consistent

CFTs in this way lies in the infinite nature of the problem. The four-point functions

depends continuously on conformal cross-ratios, and we must contend with the infinite

number of operators and the continuous spectrum of dimensions. For instance, if we are

only given operators with dimensions ∆i < 100, say, how can we check whether just this

spectrum of low-lying dimensions is consistent? How can we make definite statements

about them that are completely robust and independent of the details associated with all

the even higher-dimensional operators?

To make progress, it is necessary to render this infinite problem finite in some reliable

way. For instance, instead of dealing with the full four-point function, we can take a

finite approximation to it by considering a truncation of its Taylor expansion to n terms,

around some convenient kinematic point. Schematically this gives us an n-dimensional

vector F, and the conformal bootstrap turns into a well-defined geometry problem in

this n-dimensional space. The modern revival of the conformal bootstrap [2] began by

numerically studying this geometry problem using techniques from linear programming,

and both this numerical approach as well as various analytic avatars of this program had

some spectacular successes over the past decade. See [3–6] for reviews on this subject.

Stimulated by these developments, in this paper we initiate a systematic study of the

geometry associated with the conformal bootstrap. Working with some fixed number n

of Taylor coefficients is analogous to using a microscope with fixed resolution to look at

both the four-point function and the space of CFTs. We would then like to ask: how is

the space of consistent operator dimensions {∆i, si} “carved out” by the bootstrap at this

resolution? Given some set of consistent {∆i, si} at this order, what constraints do we find

on the Taylor coefficients F of the four-point function? And finally, clearly as we increase

the resolution by increasing n, the allowed space of {∆i, si} is further refined. How can we

systematically see this refinement as we increase n one step at a time?

We begin by giving a trivial interpretation of the conformal bootstrap equations using

the language of polytopes in projective space. Given a putative spectrum {∆i, si}, unitar-

ity implies that F must be in the interior of the convex hull U(∆i, si) of a collection of

points associated with the Taylor coefficient of conformal blocks G(∆i, si), while crossing

symmetry implies that F must lie on a fixed hyperplane X depending only on the external

operator dimensions. The bootstrap then demands that the crossing hyperplane X must

intersect the unitarity polytope U. If this intersection is non-trivial, the Taylor coefficients

F must lie inside it, i.e. F ⊂ U ∩X.

In this language, the non-trivial aspect of the problem is to determine what the poly-

tope U (and ultimately the intersection U ∩X) “looks like”. This is a standard challenge

in the study of polytopes. A polytope can be defined as the convex hull of a collection of

points, and this is precisely how it arises in our example. But this definition does not allow
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us to easily check whether some given point F is or isn’t inside the polytope. For this, we

need a dual definition, where the polytope is cut out by giving a collection of inequalities

Wa · F ≥ 0, where a is the index that runs over the boundaries of the polytope.

In general, given a random collection of vertices, the only systematic method for deter-

mining the facets of their convex hull is by exhaustion: simply trying all possible (n− 1)-

tuples of vertices as candidates for a face, and seeing whether the remaining vertices all

lie on the same side of this plane. Thus if the vertices Vi are given as n dimensional vec-

tors, the facet structure is entirely determined by specifying, for all n-tuples {i1, · · · , in},
whether the determinants 〈Vi1 · · ·Vin〉 are positive, negative, or zero. This data is known

as the oriented matroid associated with the configuration of vectors Vi. Of course, for a

random collection of Vi, this method is hopelessly impractical, and linear programming

provides a more effective way of determining the face structure numerically.

From a mathematical point of view, however, it is often possible to do much better

than this, and various infinite classes of polytopes have been studied and “understood”

by mathematicians over the past century. This requires some special structure for the

vertices, which allows the faces of all co-dimensions to be fully understood analytically.

From the point of view of physics, we should not expect geometric problems handed to us

by quantum field theory to be random and unstructured, so it is natural to ask whether

there is something special about the polytopes associated with the conformal bootstrap

problem, reflecting some special structure of the conformal block vectors G(∆i, si), which

allows the face structure of these polytopes to be understood analytically.

One famous class of polytopes that have been “understood” directly generalize convex

polygons in two dimensions, and are known as cyclic polytopes. Here the vertices have a

natural ordering V1,V2, · · · , and the special property they enjoy is that all the ordered

determinants are positive, 〈Vi1 · · ·Vin〉 > 0 for i1 < i2 < . . . < in. The convex hull of

these vertices is known as a cyclic polytope, and the positivity allows a beautiful char-

acterization of their full face structure. This notion of positivity (and the closely related

ideas of the positive Grassmannian) has played a prominent role in the development of

the Amplituhedron [7] approach to the reformulating the physics of scattering amplitudes

starting from primitive combinatoric-geometric ideas of positive geometry. We will see that

precisely this same “positive” structure makes a striking appearance in the geometry of

the conformal bootstrap.

We will work in the simplest possible setting, by exploring the geometry of the confor-

mal bootstrap with the minimal degree of conformal symmetry possible, associated with

the SL(2,R) subgroup corresponding to conformal transformations in d = 1 dimension.

The SL(2,R) conformal blocks are labeled only by the dimension ∆, and so the conformal

block vectors G∆ also only depend on ∆. Note that the ∆’s have a natural ordering from

small to large dimensions. Remarkably, we find, with a small but fascinating caveat, that

the conformal block vectors enjoy the positivity property that 〈G∆1 · · ·G∆n〉 > 0, and thus

the unitarity polytope U is a cyclic polytope!

We will explore the conformal bootstrap from this geometric point of view. As an

illustration of the main ideas, we will fully solve the geometry problem leading to the de-

termination of the intersection U∩X, when keeping up to six terms in the Taylor expansion

– 3 –



J
H
E
P
0
6
(
2
0
1
9
)
1
2
4

of the four-point function, corresponding to a two-dimensional geometry for U ∩X. This

will let us transparently see how the spectrum of consistent operator dimensions is “carved

out” by unitarity and crossing symmetry, and will lead to a number of new, exact results

for the spectrum and four-point functions of any CFT. In particular, the intersection

U ∩X, which bounds the value of the four-point function F, obeys an interesting combi-

natoric rule, and its shape undergoes various intricate “phase transitions” as the spectrum

is continuously varied. We will also sketch the nature of the recursive method that allows

us to “increase resolution” as we keep more terms in the Taylor expansion and consider

higher-dimensional geometries. Looking ahead, we make some preliminary comments on

the more general geometries appropriate to higher-dimensional conformal symmetries.

The positive geometry associated with the conformal bootstrap is relevant to the

physics of conformal field theory, while the positivity seen in the conformal blocks, and

the problem of determining the intersection of cyclic polytopes with the crossing plane,

is mathematically interesting in its own right. We have thus endeavored to present our

results in a self-contained way, not assuming any prior knowledge of either conformal field

theory nor positive geometry, keeping both physicists and mathematician readers in mind.

All the necessary background on polytopes and positivity is included in the main text. In

appendix A, we also give an introduction to conformal blocks, starting with a Lorentzian

integral representation going back to Polyakov’s pioneering paper [1, 8, 9]. The necessary

integrals are trivial to carry out in this representation, leading to a conceptually transparent

and rapid computation for conformal blocks in even dimensions.

2 Conformal bootstrap in one dimension

In this section we set up the physical problem — the conformal bootstrap of four-point

functions in one dimension [10–19]. Unitary 1d CFTs arise in various physical contexts.

For example, the theory on a conformal line defect in a higher dimensional CFT can be

described by a 1d CFT [10] (see also [20]). They can also arise as the boundary theory

of a QFT in a classical AdS2 background [11]. Moreover, since the 1d conformal group

SL(2,R) is a subgroup of the higher-dimensional conformal group, every four-point function

in higher-dimensional CFT can be thought of as a 1d conformal four-point function and

can be decomposed into the SL(2,R) conformal blocks. See appendix A of [15] for a

comprehensive overview of 1d CFTs.

In one dimension, the conformal symmetry is SL(2,R), which acts on the 1d spacetime

coordinate x ∈ R as

x→ x′(x) =
ax+ b

cx+ d
, (2.1)

where a, b, c, d ∈ R with ad − bc = 1. A conformal primary operator φ(x) with scaling

dimension ∆φ transforms as φ(x)→ φ′(x) under SL(2,R), where∣∣∣∣∂x′∂x

∣∣∣∣∆φ

φ′(x′) = φ(x) . (2.2)
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The physical observables in a unitary 1d CFT includes the correlation functions of con-

formal primary operators. The correlation functions transform covariantly under SL(2,R),

obey reflection positivity, and factorize via the operator product expansion (OPE).

Let us consider the four-point function 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 of identical, real con-

formal primary operators φ with scaling dimension ∆φ. We will assume x1 < x2 < x3 < x4

and define the SL(2,R) invariant cross ratio z as

z =
x12x34

x13x24
∈ (0, 1) , (2.3)

where xij = xi − xj . We note that 1 − z = x14x23
x13x24

. The SL(2,R) covariance of the four-

point function implies that, up to an overall factor, it can be written as a function of the

cross ratio

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

|x12|2∆φ |x34|2∆φ
F (z) . (2.4)

Using the OPE between φ(x1) and φ(x2), the four-point function F (z) can be written as a

sum over all the intermediate conformal primary operators Oi in the φ× φ OPE channel

Unitarity : F (z) =
∑
i

piG∆i(z) , pi > 0 , (2.5)

where the SL(2,R) conformal block G∆(z) is [21]

G∆(z) = z∆
2F1(∆,∆, 2∆, z) . (2.6)

Here pi is the three-point function coefficient square between φ, φ,Oi. Unitarity implies

that the pi’s are positive. Hence in a unitary 1d CFT, the four-point function F (z) can be

expanded on the conformal blocks with positive coefficients. In appendix A we review the

derivation of the conformal blocks in general dimensions.

Alternatively, we can use the OPE between φ(x2) and φ(x3) to expand the four-point

function and express the four-point function 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 as in (2.4) and (2.5),

but only with 1↔ 3 exchange. Since the OPE channels are identical in the two expansions,

the coefficients pi’s are the same as well. Comparing the two expansions, we conclude that

Crossing : F (z) =

(
z

1− z

)2∆φ

F (1− z) . (2.7)

This is known as the crossing symmetry of the four-point function. The prefactor
(

z
1−z
)2∆φ

originates from the ratios of prefactors in (2.4) in the two OPE channels.

To summarize, a four-point function F (z) in a unitary 1d CFT satisfies the unitarity

condition (2.5) and the crossing equation (2.7). The central goal in the conformal bootstrap

program is to study the solution space of ∆i and pi.

The simplest analytic examples of the unitary 1d four-point function are the gener-

alized free boson and fermion. The generalized free field theory contains a fundamental

bosonic/fermionic conformal primary operator φ(x), together with a tower of double-trace
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operators that are quadratic in φ. The theory is free in the sense that all correlation

functions in the generalized free field theory are computed by Wick contractions.

The four-point function of φ in the generalized free boson (+) and fermion (−) theory

is simply given by the sum of three different Wick contractions (with signs):

〈φ(x1)φ(x2)φ(x3)φ(x4)〉

= 〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉 ± 〈φ(x1)φ(x3)〉〈φ(x2)φ(x4)〉+ 〈φ(x1)φ(x4)〉〈φ(x2)φ(x3)〉

=
1

(x2
12x

2
34)∆φ

± 1

(x2
13x

2
24)∆φ

+
1

(x2
14x

2
23)∆φ

, (2.8)

which gives

F±(z) = 1± (zz̄)∆φ +

(
zz̄

(1− z)(1− z̄)

)∆φ

. (2.9)

F±(z) manifestly satisfies the crossing symmetry (2.7).

The conformal block decomposition of the generalized free boson four-point function is

F+(z) = 1 +

∞∑
n=0

p+
nG2∆φ+2n(z) , (2.10)

with positive coefficients (see, for example, [10])

p+
n =

(2∆φ)n
22n−1(2n)!(2∆φ + n− 1/2)n

, (2.11)

where (a)b = Γ(a+ b)/Γ(a). The φ× φ OPE channel contains the identity plus an infinite

tower of double-trace operators of the form φ∂2nφ + · · · where the · · · represents other

distributions of the derivative such that the operator is a conformal primary. The scaling

dimensions of these intermediate operators are

∆ = 2∆φ + 2n , n ∈ Z≥0 . (2.12)

On the other hand, the block decomposition of the four-point function in the general-

ized free fermion is

F−(z) = 1 +
∞∑
n=0

p−nG2∆φ+2n+1(z) , (2.13)

where

p−n =
(2∆φ)n(2∆φ)2n+1

4n(2n+ 1)!(2∆φ + n+ 1/2)n
. (2.14)

The intermediate operators in the φ× φ OPE are schematically of the form φ∂2n+1φ+ · · ·
with scaling dimension

∆ = 2∆φ + 2n+ 1 , n ∈ Z≥0 . (2.15)
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Note that in the fermionic theory, φφ vanishes due to Fermi statistics, so the lowest non-

identity dimension operator is φ∂φ with ∆ = 2∆φ + 1. In fact, given the external operator

dimension ∆φ, ∆gap = 2∆φ+1 is the maximum possible gap in a unitary 1d CFT four-point

function [10, 16, 22].

Finding a solution to the conformal bootstrap equations (2.5) and (2.7) is quite chal-

lenging in general. To tame this infinite-dimensional problem in the space of all four-point

functions, let us discretize the problem to start with. For example, we can discretize the

four-point function F (z) by its first 2N + 1 derivatives around z = 1/2:

F (z)→ F =


F 0

F 1

...

F 2N+1

 ∈ P2N+1 , (2.16)

where

F I ≡ 1

I!
∂IzF (z)

∣∣∣
z=1/2

, I = 0, 1, · · · , 2N + 1 . (2.17)

Let us now ask what are the constraints on the (2N+2)-dimensional vector F from unitar-

ity (2.5) and crossing (2.7). Given any solution F to this truncated problem, λF is again

a solution for any real λ. Hence it is convenient to think of F as a vector in P2N+1.

The constraint from crossing symmetry (2.7) is easy to state in the finite-dimensional

problem. Expanding (2.7) around z = 1/2, we have

F 0 + F 1y + F 2y2 + · · · =
(

1 + 2y

1− 2y

)2∆φ [
F 0 − F 1y + F 2y2 + · · ·

]
, (2.18)

where y ≡ z−1/2. Matching the coefficients of powers of y, we obtain N+1 linear relations

(that depend on ∆φ) among the F I ’s. We can use these relations to solve F odd in terms of

F even. For example, when N = 2, we obtain the following 3 linear relations:

F 1 = 4∆φF
0 ,

F 3 =
16

3
(∆φ − 4∆3

φ)F 0 + 4∆φF
2

F 5 =
64

15
∆φ(32∆4

φ − 20∆2
φ + 3)F 0 − 16

3
∆φ(4∆2

φ − 1)F 2 + 4∆φF
4 .

(2.19)

To say it more geometrically, the crossing equation restricts the four-point function F to

lie on an N -dimensional plane, denoted as X[∆φ], in P2N+1. We will call this plane the

crossing plane.

Let us switch gear to the unitarity constraint (2.5). We first Taylor expand the con-

formal block G∆(z) around z = 1/2 to forma a (2N + 2)-dimensional block vector G∆:

G∆(z)→ G∆ =


G0

∆

G1
∆
...

G2N+1
∆

 ∈ P2N+1 . (2.20)
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A

1

2

n

Figure 1. A point ~A inside a polytope is given by a non-negative sum of the vertices ~vi.

The unitarity constraint (2.5) demands the four-point function vector F to lie in the positive

span of the block vectors G∆:

F =
∑
∆

p∆G∆ , (2.21)

with p∆ all positive.

3 Polytopes and positive geometry

Geometric problems of the character of equation (2.21), asking for a vector to be expressible

as a positive linear combination of some fixed set of vectors, are ubiquitous in mathematics

and physics. In this section we give a brief introduction to the elementary ideas of projective

polytopes, which is a useful language for thinking about such problems. A nice reference

for discussing polytopes from this perspective (usually couched in terms of “cones”) can

be found in [23].

To emphasize the generality of the discussion, let’s switch notation, and ask to char-

acterize the space of (d + 1) dimensional vectors A which can be expressed as a positive

linear combination of a given set of vectors Vi:

A =
∑
i

ciVi , where ci > 0 (3.1)

We assume for simplicity that the number of vectors is greater than or equal to (d+ 1), so

that the space of all A’s is top-dimensional. Clearly, for this equation to put any interesting

constraint on the space of allows A’s, all the vectors Vi must lie on the same side of some

hyperplane. If this is not the case, then any vector can be expressed as a linear combination

of the Vi and there are no constraints on A at all. But if the Vi are all the same side of

some hyperplane, A is constrained to lie inside a cone spanned by the Vi. Examples of

“bad” and “good” configurations of vectors in (d+1) = 2 dimensions are shown in figure 2.

It is convenient to think of this cone projectively in the following way. Clearly, the

space of all possible A’s is invariant under A → tA for any (positive) rescaling t > 0.

Similarly, the cone spanned by vectors Vi is exactly the same as that spanned by the

vectors V′i = tiVi for all ti > 0. Thus, the data associated with this problem is naturally

– 8 –
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Bad

Good

Figure 2. The “bad” and “good” configurations.

projective: we can think of the equivalence class of all A ∼ tA. All these vectors are on

the same side of some hyperplane. Thus we can write

Vi = ti

(
1
~Vi

)
, A = t

(
1
~A

)
. (3.2)

where ti > 0, t > 0. Note that we have arranged the top component to be positive for all

the vectors, reflecting the fact that they are on the same side of the hyperplane (1,~0), i.e.

(1,~0) ·A = t > 0. Because of the projective invariance, the data of the problem is given

by ~Vi and we want to determine the space of allowed ~A. Since

∑
i

ciVi =

( ∑
tici∑

i tici
~Vi

)
=

( ∑
i c
′
i∑

i c
′
i
~Vi

)
(3.3)

where c′i = tici are also positive, the space of ~A is given by

~A =

∑
i c
′
i
~Vi∑

i c
′
i

, with c′i > 0 (3.4)

This is a weighted sum of the vectors ~Vi, familiar for instance from the notion of “center

of mass”. This defines the convex hull of the vectors ~Vi, which is a polytope in Rd.
More directly, we can think of the equation A =

∑
i ciVi as a projective polytope in Pd.

This is a special case of the well-known general fact, that any geometric questions in Rd

that do not involve a notion of a metric are more usefully posed in Pd. The description in

Rd manifests the affine symmetries of translations and linear transformations, Td × SL(d),

but these are just a subgroup of the larger group SL(d+ 1) of symmetries that map linear

spaces to linear spaces, which is made manifest in the projective space.

Being explicit with the indices, we denote AI with an upstairs index I = 0, · · · , d to

be a point in the projective space, with the symmetry under AI → LIJA
J . A hyperplane

is denoted by WI with a lower SL(d + 1) index. The Td × SL(d) subgroup of SL(d + 1)

is the one that keeps the hyperplane at infinity — in our notation above the co-vector

(1,~0), fixed, while the full SL(d+1) allows the most general transformations that also move

infinity. Since the projective symmetry is SL(d+1), the only invariant tensor we have is the

– 9 –
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antisymmetric tensor. Any invariant must involve the antisymmetric contraction of (d+ 1)

vectors which we will denote by 〈V1,V2, · · · ,Vd+1〉. This allows us to easily characterize

the notions of “incidence”. For instance, if these d + 1 vectors are coplanar, then this

bracket must vanish. Note that this statement is invariant under arbitrary (positive or not)

rescaling of the vectors. It is also easy to describe linear subspaces of any dimensionality p:

they are simply antisymmetric tensors with either (p+1) upstairs indices or (d+1)−(p+1)

downstairs indices.

There are further advantages of the projective picture. One rather trivial one is that

we don’t need to awkwardly normalize the weights to add up to one, as we do when talking

about the usual convex hull in Rd. But the projective language is most useful for thinking

about the boundary structure of the polytope. Indeed so far we have defined a polytope

by the convex hull of its vertices. It is also possible to define the polytope by a collection

of hyperplanes WaI , the facets, that cut out the polytope by the linear inequalities

A ·Wa = AIWaI > 0 , ∀ a . (3.5)

where the index a labels the facet.

This is useful, since given the convex hull definition, it is not easy to check whether

a given point A is or isn’t inside the polytope. The reason is that the expression A =∑
i ciVi is highly redundant — there are many more ci than the dimensionality of the

space, and hence there is no unique representation of A in this form. All we ask that is

that there is exist some representation for which all the ci are positive, but there are also

(infinitely) many others for which some of the coefficients can be negative. By contrast

the facet definition does allow us to practically check whether or not a given A is in

the polytope — we simply check whether it satisfies all the inequalities defined by the

boundary hyperplanes.

Given the convex hull definition of a polytope, how can we determine the facets?

Let’s see how the projective picture helps us do this in the simplest case of a 2d poly-

gon, where the answer is pictorially obvious: the facets are edges connecting consecutive

vertices (Vi,Vi+1), so WiI = εIJKV
J
i V

K
i+1. To begin with, consider points a, b, c in the

two-dimensional plane, projectively associated with three-vectors a,b, c. We can distin-

guish three situations, where c is on one side on the line (ab), on the line (ab), and on the

other side of (ab), as having 〈a,b, c〉 > 0, 〈a,b, c〉 = 0, 〈a,b, c〉 < 0 respectively. Note that

these signs (and zeros) are invariant under the positive rescaling of all the vectors we allow

for our projective polytopes.

Let’s now discuss how to understand the boundaries of a 2d polygon, which are just

edges specified by the vertices at their end points. But not every pair of points gives rise to

an edge. As shown in figure 3, while the line segment (V1,V2) is an edge of the polygon,

(V2,Vn) is not. What is the condition on a pair of points such that they give rise to an

edge? Since the line segment (V2,Vn) is in the interior of the polygon, there are points

on its either side. It follows that the determinant εI1I2I3A
I1V I2

i1
V I3
i2

can take either sign in

the interior of the polygon, where ε is the three-dimensional Levi-Cevita tensor. Thus, for

– 10 –



J
H
E
P
0
6
(
2
0
1
9
)
1
2
4

A

v1

2

n

v

v

Figure 3. A polygon. While the line segment (VnV2) is not an edge of the polygon, (V1V2) is.

(Vi1 ,Vi2) to be an edge, we must have

〈A,Vi1 ,Vi2〉 ≡ εI1I2I3AI1V I2
i1
V I3
i2

have the same sign , (3.6)

for all A in the interior of the polytope. Since A can be any point in the convex hull of

{Vi}, it follows that (3.6) amounts to

〈Vi,Vi1 ,Vi2〉 have the same sign ∀ i . (3.7)

This straightforwardly generalizes to higher dimensions. In Pd, the facets for the convex

hull of a set of vectors {Vi} are given by the set of d vectors (Vi1 , · · · ,Vid) such that

〈Vi,Vi1 ,Vi2 , · · · ,Vid〉 ≡ εI0···IdV I0
i V I1

i1
· · ·V Id

id
have the same sign, ∀ i . (3.8)

This means that the points Vi1 , · · · ,Vid lie on a facet of the polytope, as

WaI = εII1···IdV
I1
i1
· · ·V Id

id
. (3.9)

Note that in general dimensions, a facet may well have more than d vertices on it. Any

(d+1) vertices Vi1 , · · · ,Vid+1
lying on the same facet will then satisfy 〈Vi1 , · · · ,Vid+1

〉 = 0,

and any d of them will define exactly the same facet WaI projectively (i.e. up to rescaling).

We see that the boundary structure of a polytope, defined as the convex hull of n

points {Vi}ni=1, is fully fixed by specifying the zeroes and signs of all
(
n
d+1

)
brackets

〈Vi1 , · · · ,Vid+1
〉. This is known as the oriented matroid of the configuration of vectors

{Vi}. Thus, to determine the face structure of a polytope, one needs to compute the

signs of the determinants for all possible collections of d+1 vectors. The computational

complexity grows polynomially with n.

The projective language also lets us easily determine the intersection of planes of

various dimensions; we simply write down the various planes as antisymmetric tensors and

contract the indices with the epsilon tensor in the only way possible. For instance, a k-plane

in Pd is defined by k+1 vectors {Z1, · · · ,Zk}. In d dimensions, in general a k-plane (defined

by k+1 vectors) intersects with p-plane (defined by p+1 vectors) on a (p+k−d)-plane. For

example, a 2-plane (Z1, Z2, Z3) intersects a line (Za, Zb) in P3 at the point

Za〈Zb,Z1,Z2,Z3〉 − Zb〈Za,Z1,Z2,Z3〉 . (3.10)
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For general (p, k), the intersection is given as:

Z
[I1
j1
· · ·ZId′ ]jd′

〈Zjd′+1
, · · ·,Zjp+1 ,Zi1 , · · ·,Zik+1

〉

+(−)pZ
[I1
j2
· · ·ZId′ ]jd′+1〈Zjd′+2

, · · ·,Zj1 ,Zi1 , · · ·,Zik+1
〉

+(−)p+1Z
[I1
j3
· · ·ZId′ ]jd′+2〈Zjd′+3

, · · ·,Zj2 ,Zi1 , · · ·,Zik+1
〉+· · · (3.11)

where d′ = p + 1 + k − d. In this paper, we will be interested in the intersection of a

k-plane X, with a d-dimensional polytope with vertices {Vi}. From the above, we see that

it intersects with a (d−k)-face at a point, which is given as

V1〈V2,V3,V4, · · · ,Vd−k,X〉
−V2〈V1,V3,V4, · · · ,Vd−k,X〉+ V3〈V1,V2,V4, · · · ,Vd−k,X〉+ · · · . (3.12)

By definition, this point is in the interior of the polytope if all the coefficients of Vi’s

〈V2,V3,V4, · · · ,Vd−k,X〉,
−〈V1,V3,V4, · · · ,Vd−k,X〉,

〈V1,V2,V4, · · · ,Vd−k,X〉, etc. , (3.13)

have the same sign. Thus if the k-plane X intersects the polytope, we must be able to find

d−k+1 vertices such that the signs of the determinants with X satisfies the above pattern.

Finally, we will often reduce the dimension of the problem by projecting the geometry

through fixed vectors or planes in the problem. The former include the identity block

vector G0 = (1, 0, · · · , 0), the infinity vector G∞ = (0, · · · , 0, 1), and the latter involve the

crossing-plane X. Projecting through G0 means that we are considering

〈0, · · · 〉 = det


1 ∗ ∗ ∗
0 ∗ ∗ ∗
... ∗ ∗ ∗
0 ∗ ∗ ∗

 , (3.14)

where 〈i, · · · 〉 will be a short hand notation for 〈G∆i , · · · 〉. We see that projection through

G0 lops off the first component of each vector, and reducing the dimension by 1. Similarly

for the projection through G∞ we simply lob off the last component, which corresponds to

the geometry of the previous dimension. For the projection through X, we can understand

as implemented by performing some GL(d+1) transformation such that X takes the form

k = 0 :


1

0
...

0

 , k = 1,


1 0

0 1
...

...

0 0

 , etc. (3.15)

Then one considers the geometry defined through the determinant 〈X, · · · 〉. The net effect

is that the first (k+1)-components of all vectors are chopped off, leaving behind a (d−k+1)-

dimensional space.
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4 Cyclic polytopes

As mentioned in section 3, the complexity of computing the convex hull of a set of vectors

grows polynomially with the number of vectors. For our purpose the number of vectors

is associated with the number of conformal primaries, which is infinite. Thus a priori it

would appear that the problem is intractable.

However as alluded to in the introduction, the science of studying polytopes is precisely

about finding situations where the face structure can be fully determined analytically,

which is possible when the data of the oriented matroid — all the zeroes and signs of the

〈Vi1 , · · · ,Vid+1
〉 — have some nice properties. Indeed, in two dimensions, all polytopes

are simply convex polygons. Note that in this case, the vertices have a natural ordering

{V1, · · · ,Vn}, and the oriented matroid is simply that all the 〈Vi1Vi2Vi3〉 > 0 for i1 <

i2 < i3. Observe that since the brackets are antisymmetric, the ordering on vertices was

crucial to make this statement. When this is satisfied, we immediately conclude that the

facets are (ViVi+1)I .

There is a beautiful class of polytopes in any number of dimensions, known as cyclic

polytopes, that directly generalizes this structure for convex polygons. The vertices have

an ordering V1, · · · ,Vn, where n can be arbitrarily large, and obey

〈Vi1 ,Vi2 , · · · ,Vid〉 > 0, ∀ i1 < i2 < · · · < id . (4.1)

Remarkably, this allows us to determine the face structure analytically. To see how this

works, we return to the case of the polygon, but now understand the facets purely alge-

braically without drawing a picture, since pictures will not be available to us in general

dimensions. Recall that in order for (Va,Vb) to be a facet, 〈Vi,Va,Vb〉 must have the

same sign for all i different than a, b. Without loss of generality we can take a < b. Then,

we see that for i < a < b the bracket is positive, as well as for a < b < i, since in this

case we simply pass i through two vectors to arrange it in manifestly positive (increasing)

ordering in the bracket. But if there is any gap between a, b, so that we can have some

i with a < i < b, this bracket will be negative. We conclude that (a, b) can not have a

gap between them, and the so the facets must be of the form (ViVi+1). This argument

generalizes for all even d. For instance as seen in the figure 4, consider the case of d = 4.

Here a putative facet is (VaVbVcVd), but we can easily see that they must pair up into

two consecutive sets (i, i+ 1, j, j + 1) in order for all the brackets to have the same sign.

For odd d there is a slight difference. Consider d = 3. Here it is easy to see that all the

facets must have either the first vector “1′′ or the last vector “n′′; and 〈V1ViVi+1Vj〉 > 0

for all j, and also −〈ViVi+1VnV〉j > 0 for all j (note the extra minus sign).

The reason for the difference between even and odd d is also related to the name

of these objects. Given V1, · · · ,Vn that are “positive” in the sense that all the ordered

brackets are positive, it is natural to look at what happens to this data under the cyclic

shift V1 → V2,V2 → V3, · · · ,Vn → V1. This preserves the ordering of everything

except between n and 1, so all the positive brackets involving n will pick up a factor of

(−1)d+1−1 = (−1)d. Thus, for all the brackets to stay positive, we must have a twisted

cyclic symmetry under which Vn → (−1)dV1. For d even this is an honest cyclic symmetry,

– 13 –



J
H
E
P
0
6
(
2
0
1
9
)
1
2
4

−
a b

++

i i+ 1
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−
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c

d
−
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j

j + 1

−
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++

1
c

−
d+

−n

i i+ 1

++

j

j + 1+
−n

1

Figure 4. Signs of brackets involving the point Vi depend on its position relative to the other

indices. In the top figure we see that for d = 2, the signs can be positive or negative depending

on whether there is a gap between a, b. When there is no gap, the signs are always positive. The

middle figure shows the same phenomenon for d = 4. The bottom figure shows the novelty for odd

d, where V1 and -Vn must appear.

and so cyclic polytopes are really cyclically invariant (starting with the familiar polygon

example in d = 2). But for d odd, cyclic polytopes are not literally cyclically invariant,

and the vertices V1 and Vn play a special role in the boundary structure.

For general d, the facets of the cyclic polytope are

d ∈ odd : {Wa} =

(
V1, Vi1 , Vi1+1, Vi2 , Vi2+1, · · · , Vi d−1

2

, Vi d−1
2

+1

)
⋃

(−1)

(
Vi1 , Vi1+1, Vi2 , Vi2+1, · · · , Vi d−1

2

, Vi d−1
2

+1, Vn

) ,

d ∈ even : {Wa} =

(
Vi1 , Vi1+1, Vi2 , Vi2+1, · · · ,Vi d

2

, Vi d
2

+1

)
. (4.2)

Note in particular that all the vectors Vi are vertices. Thus if (4.1) holds true, the task of

computing the convex hull is already completed! Furthermore, all the lower dimensional

faces simply follows from removing one vertex from the facet at a time.

Cyclic polytopes have a number of extremal properties that make them special amongst

all polytopes. For instance, for a fixed number of vertices in any dimension, cyclic polytopes
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have the maximum number of possible facets, of all dimensionality! Cyclic polytopes

have also made an important appearance in the physics of scattering amplitudes. If we

group the vectors V1, · · · ,Vn into a (d + 1) × n matrix, all the minors of this matrix

are positive — the matrix gives a point in the positive Grassmannian, which has figured

prominently in the study of on-shell diagrams [24] and the Amplituhedron [7]. Indeed, while

for generalNkMHV amplitudes with k > 1, the Amplituhedron represents a Grassmannian

generalization of polytopes, for k = 1 it reduces to the cyclic polytope [25].

There are many natural questions we can ask about general polytopes that cannot be

readily answered, for which the results are instead trivially available in the case of cyclic

polytopes. Let us begin with a particularly simple example. Given any polytope with

vertices (V1, · · · ,Vn), we can choose to look at the convex hull of any subset of these

vertices, to get a new polytope that naturally sits “inside” the old one. In general we

cannot make any predictions for the face structure of the new polytope. However given

a cyclic polytope, if we choose any subset of the vertices (Va1 , · · · ,Vam), we trivially

get another cyclic polytope (with fewer vertices), since all the ordered determinants are

trivially a subset of the old ones and are still positive.

As another example, as we have already discussed, it is often useful to project a space of

interest through some vector. In particular it is often interesting to a take a d-dimensional

polytope and project through one of its vertices V to go down to a (d − 1)-dimensional

polytope. For general polytopes, we cannot easily predict the face structure of the projected

polytope. Indeed, the vertices of the higher dimensional polytope can end up inside the

lower dimensional one. However, again everything can be understood for cyclic polytopes.

Given some d-dimensional cyclic polytope with vertices (V1, · · · ,Vn), if we project through

V1, the projected vertices (V2, · · · ,Vn) form a cyclic polytope in (d−1) dimensions. This

is because the projected minors

〈Va1 , · · · ,Vad〉proj = 〈V1Va1 · · ·Vad〉 (4.3)

are positive when the ai are ordered. The same is similarly true if we project through

the last vertex Vn. Thus, for instance, if we take a d = 3 cyclic polytope and project

through the vertex V1, we are left with a d = 2 cyclic polytope, which is just the polygon

with vertices (V2, · · · ,Vn). In this simple example it is easy to see how the faces of the

“upstairs” polytope project down to those of the projected one. The (two-dimensional)

faces of the upstairs polytope are (1, i, i+ 1) and (i, i+ 1, n); the (one-dimensional) edges

of these are (i, i + 1), together with (1, i), (1, i + 1) and (n, i), (n, i + 1). Of these, after

projection, (i, i+1) end up as the edges of the polygon, (1, i), (1, i+1) get projected down

to the vertices i, i+ 1, while (n, i), (n, i+ 1) end up inside the polygon.

Let us give a few examples of cyclic polytopes in two and three dimensions. For d = 2,

any convex polygon is a cyclic polytope. Indeed, the faces (to be more precise, edges) are

all the adjacent pairs (Vi,Vi+1), as in (4.2).

For d = 3, the polytopes with four (tetrahedron) and five (triangular bipyramid) are

both cyclic (see figure 5). Moving on to polytopes with six vertices, the one in figure 6(a) is

cyclic with the ordering of vertices given there. On the other hand, the square bipyramid

in figure 6(b) is the simplest example of a non-cyclic simplicial polytope. To see this, let
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Figure 5. Both the tetrahedron and the triangular bipyramid are cyclic polytopes.

1

2

3

4 5

6

(a) (b)

Figure 6. Two 3d polytopes with six vertices. (a) Cyclic polytope. (b) Non-cyclic polytope.

us note that in a 3d cyclic polytope with six vertices, the first vertex 1 is on 5 different

faces, i.e. (V1,V2,V3), (V1,V3,V4), (V1,V4,V5), (V1,V5,V6), (V6,V1,V2) according

to (4.2). However, the maximum number of faces that share a vertex is 4 in figure 6(b),

hence the latter cannot be cyclic.

The canonical example for cyclic polytopes in general dimensions is that constructed

from a moment curve. A moment curve is the following algebraic curve in Pd:
1

x

x2

...

xd

 ∈ Pd, x ∈ R . (4.4)

Consider any d+ 1 points Vi = (1, xi, x
2
i , x

3
i , · · · , xdi )T labeled by xi (i = 1, · · · , n) on the

curve. We will order them such that x1 < x2 < · · · < xd+1. We have

〈V1,V2, · · · ,Vd+1〉 =
∏
i<j

(xj − xi) . (4.5)

To see this, we note that the r.h.s. vanishes if xi = xj , and is a polynomial of degree d(d−1)
2

in the xi’s. It follows that as long as we order x1 < x2 < · · · < xn, the determinant

will be positive. Hence, the convex hull of any n points Vi on the moment curve is a

cyclic polytope.
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Another example of cyclic polytope comes from the monomial z∆i with a collection of

∆i’s. This is the contribution to the CFT four-point function from a single operator (not

necessarily primary) of scaling dimension ∆i. Let us first consider the vector generated by

Taylor expanding z∆i around some point z0 > 0:

Vi =



z∆i
0

∆iz
∆i−1
0

∆i(∆i−1)
2 z∆i−2

0

...∏d−1
a=0(∆i−a)

d! z∆i−d
0


. (4.6)

We will often refer to this as the Taylor scheme. Again since 〈V1,V2, · · · ,Vd+1〉 must

vanish whenever ∆i = ∆j , it is straightforward to see that

〈V1,V2, · · · ,Vd+1〉 =

(
d∏
a=1

1

a!

)∏
i<j

(∆j −∆i)z
∑
i ∆i− d(d−1)

2
0 , (4.7)

which is positive for ordered ∆i’s. We conclude that the convex hull of vectors from the

Taylor coefficients of z∆i forms a cyclic polytope. There is in fact a enlightening way of

understanding this positivity. Instead of the Taylor expansion, we will consider the vector

constructed by evaluating z∆i at distinct but ordered zi > 0:

Vi =


z∆i

0

z∆i
1
...

z∆i
d

 , 0 < z0 < z1 < · · · < zd . (4.8)

This will be referred to as the position scheme. We will prove that the determinants of

ordered vectors in the position scheme are also positive. Note that this the positivity in

the position scheme implies that in the Taylor scheme, since we can take the zis arbitrary

close to z0 and the determinants of the two schemes are equivalent.

We will proceed by proving that 〈V1, · · · ,Vd+1〉 in the position scheme (4.8) must

have the same sign for any zi’s with 0 < z0 < z1 < · · · < zd and 0 < ∆1 < ∆2 <

· · · < ∆d+1. The overall sign can be fixed later by considering an arbitrary example. Now

the statement that the determinants (4.8) have the same sign is equivalent to that the

determinant 〈V1, · · · ,Vd+1〉 can never be zero. In other words, for any real ci’s, there is

no solution to

∑
i

ci


z∆i

0

z∆i
1
...

z∆i
d

 = 0 . (4.9)

Said it in yet another way, the function

gd+1(z) = c1z
∆1 + c2z

∆2 + · · ·+ cd+1z
∆d+1 (4.10)
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cannot have d+1 positive roots for any choice of ci’s. We will prove by induction. For

d = 0, this is obviously true because g1(z) = c1z
∆1 does not have any root for z > 0. Let

us assume gn(z) has at most n−1 positive roots for any choice of the ci’s. Now if we further

assume gn+1 has n+1 positive roots for some choices of the ci’s, we will show that this leads

to a contradiction. Since gn+1 has n+1 positive roots so does the product z−∆n+1gn+1(z).

Now take the derivative of this product:(
z−∆n+1gn+1(z)

)′
= c1(∆1 −∆n+1)z∆1 + c2(∆2 −∆n+1)z∆2 + · · ·+ cn(∆n −∆n+1)z∆n .

(4.11)

From calculus (Descartes’ rule of signs) we know that if a smooth function has n+1 positive

roots, then its derivative must have at least n positive roots. However the right hand side

of the above is special case of gn(z), which cannot have n positive roots, and thus a

contradiction. We conclude that gd+1(z) cannot have d+ 1 positive roots for all n, which

implies that 〈V1, · · · ,Vd+1〉 cannot vanish and has a fixed sign. This completes the proof

that the convex hull of vectors in the position scheme of z∆ form a cyclic polytope.

We can phrase our two examples in the following more general way. We are interested

in characterizing functions of two variables F (x, y), such that in some suitable ranges for

x, y, and for any ordered x1 < x2 < · · · < xn and y1 < y2 < · · · < yn, the matrix

MaA = F (xa, yA) has positive determinant det(M) > 0. Such classes of functions are

known as Tchebycheff systems, and were first studied by Tchebycheff in the context of

the theory of interpolating functions. The technique above, using Descartes’ rule of signs,

is one of several interesting approaches to understanding these functions. We refer the

interested reader to the classic text on this subject [26].

In the following section, we will apply similar arguments to the full conformal block in

the Taylor scheme.

5 Positivity of the conformal block

We now return to the block vectors GI∆ (2.20), obtained by Taylor expanding the conformal

block around z = 1
2 . Since the block is positive for 0 < z < 1, we will define the block

vector G∆ projectively by normalizing the first component to be 1, i.e. G0
∆ = 1. We have

G∆ =



1

2∆α

4∆(∆− 1) + 2∆α
8
3∆α(∆2−∆+1)

8
3∆(∆−1)(∆2−∆+3) + 4∆α

16
15

[
∆α(∆2−∆+1)(∆2−∆+6)− 2∆2(∆−1)2

]
...


, (5.1)

where

α ≡ 2F1

(
∆,∆+1, 2∆, 1

2

)
2F1

(
∆,∆, 2∆, 1

2

) . (5.2)
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Figure 7. The red curve is α (5.2) as a function of ∆. The value of α is bounded in a narrow

region with the upper bound given by 3/2 (∆→ 0) and the lower bound given by
√

2 (∆→∞).

The polynomial dependence of the block vector on ∆ and α follows from the Gauss contigu-

ous relation of the hypergeometric function. While α is a non-polynomial function of ∆,

numerically it is approximately a constant. As shown in figure 7, the value of α decreases

monotonically from 3/2 to
√

2 as we vary ∆:

3

2
> α >

√
2, ∆ ∈ [0,∞) . (5.3)

If we approximate α by a constant, the Taylor block vector in (5.1) becomes equivalent

to (1,∆,∆2, · · · ) up to a ∆-independent GL transformation. For example, in the large ∆

limit α→
√

2, and the 3-dimensional block vector approaches

G∆�1 =


1

2
√

2∆

4∆2 − 2(2−
√

2)∆
8
√

2
3 (∆3 −∆2 + ∆)

 . (5.4)

Applying a ∆-independent GL(3) rotation on the last three rows, we can convert it to a

moment curve (4.4): 
1

2
√

2
0 0

√
2−1
4

1
4 0

−1
4

1
4

3
8
√

2

GI∆�1 =


1

∆

∆2

∆3

 . (5.5)

Note that since the GL(3) matrix is a constant matrix, it only changes the determinant by

an overall constant. Thus for large scaling dimensions we see that the block vectors form

a cyclic polytope as discussed in section 3.

Motivated by the large ∆ analysis, we would like to see whether the block vectors (5.1)

in the Taylor scheme give rise to a cyclic polytope for general ∆. We will proceed with
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Figure 8. The plots of the functions g1, g4, and g5.

our analysis iteratively in the dimension of the block vectors as in section 4. Let us first

introduce a shorthand notation that will be used in the rest of this paper:

〈i1, i2, · · · , id+1〉 ≡ εI1I2···Id+1
GI1∆i1

· · ·GId+1

∆id+1
. (5.6)

For d = 1, we would like to show

〈1, 2〉 > 0, ∀∆1 < ∆2 . (5.7)

This is equivalent to the statement that G∆1 and G∆2 can never be linearly dependent.

Following the discussion in section 4, this implies that

c1 + c2G
1
∆ = c1 + 2c2∆α(∆) (5.8)

can not have two positive roots for any cis. Let’s prove the statement by contradiction.

If (5.8) has two positive roots, then the derivative must have at least a positive root. The

derivative of (5.8) is shown in figure 8, where we see that it is never zero for ∆ > 0. Thus

the absence of a positive root for g1 = (G1
∆)′, with ′ = d

d∆ then implies that (5.7) holds.

Now let us move on to d = 2, where we will show

〈1, 2, 3〉 > 0, ∀∆1 < ∆2 < ∆3 . (5.9)

Again this is true so long as the following function does not have three distinct posi-

tive roots:

c1 + c2G
1
∆ + c3G

2
∆ = c1 + 2c2∆α(∆) + c3 (4∆(∆− 1) + 2∆α(∆)) (5.10)

for any choice of the ci’s. We again proceed by showing a contradiction. Assuming (5.10)

has three positive roots for some ci’s, then its first derivative

c2(G1
∆)′ + c3(G2

∆)′ = (G1
∆)′
(
c2 + c3

(G2
∆)′

(G1
∆)′

)
, (5.11)

must have at least two positive roots. Since we have shown that (G1
∆)′ has no positive root,

the second parentheses must have at least two positive roots. Recycling our argument, this

implies that:

g2 ≡
(

(G2
∆)′

(G1
∆)′

)′
, (5.12)
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must have a at least a positive root. However, we have explicitly checked that the above

function is never zero for ∆ > 0, and hence the contradiction. Thus we have shown (5.9).

We can iteratively proceed for higher d. In summary the condition for positivity boils

down to the following conditions for general ∆:

d = 1 : g1 = (G1
∆)′ > 0,

d = 2 : g2 =

(
(G2

∆)′

(G1
∆)′

)′
> 0, (5.13)

d = 3 : g3 =


(

(G3
∆)′

(G1
∆)′

)′
(

(G2
∆)′

(G1
∆)′

)′

′

> 0 ,

d = 4 : g4 =



(

(G4
∆)′

(G1
∆)′

)′
(

(G2
∆)′

(G1
∆)′

)′

′

/


(

(G3
∆)′

(G1
∆)′

)′
(

(G2
∆)′

(G1
∆)′

)′

′
′

> 0, · · · .

We have numerically verified that up to d = 5, these conditions hold true for general ∆ > 0.

On the right of figure 8, we show the plot of the function g1, g4, g5, which is always positive.

Note that the positivity of g5 is enough to guarantee all the lower orders, since (as we will

talk about in more detail below), we can obtain the lower dimensional geometries simply by

projecting through the infinity block, so that positive in d dimensions immediately implies

positivity for lower dimensions. We show the plots for d = 1, d = 4 and d = 5 to illustrate

an interesting trend: for d = 1 the functions are clearly positive. But for d = 4 it gets

“close” to zero for small ∆, while for d = 5 it is monotonically increasing at low ∆ and is

still manifestly positive.

However starting at d = 6, the analogous function g6 does cross zero at very small

∆. This does not by itself prove that some brackets will be negative — the condition we

are using is sufficient but not necessary — and indeed randomly scanning the brackets for

billions of choices of dimensions does not reveal any negativity. However we have managed

to prove that indeed for sufficiently small ∆’s, the brackets can indeed become negative.

However, quite amazingly, the negativity occurs only when all seven block vectors in the

bracket are small, ∆i . 1/10, and the most negative the brackets ever become never exceeds

a magnitude ∼ 10−20!

Let us explain how we know the brackets become negative when all ∆’s are small

enough. We do this by studying the limit ∆ � 1 in more detail. Let us first consider the

block vectors. To keep analytic control, lets first expand the block vectors around z = 0,

z∆
2F1(∆,∆, 2∆, z) = z∆

(
nc∑
i=0

ci(∆)zi +O(znc+1)

)
, (5.14)

where nc is the cut off of the expansion, and now ci(∆) is an analytic function in ∆. Next,

we re-expand the polynomial around z = 1
2 to obtain the approximate block vector in the

Taylor scheme G∆.

Now we compute the determinant using the approximate block vector. The cutoff nc
can be determined by gradually increasing the cutoff until the determinant stabilize. In
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general this requires nc ∼ 50. Since we are interested in the regime where ∆i � 1, we can

further Taylor expand the determinant in ∆i. Then to leading order we have

〈 ~G∆1 ,
~G∆2 , · · · , ~G∆d

〉 = αd
∏
i<j

(∆j −∆i) +O(∆
d(d−1)

2
+1) . (5.15)

The subleading terms can be suppressed by considering arbitrary small ∆is, and the sign

of the determinant is given by αd. For nc = 50, we find the following αd:

α2 = 3, α3 = 10.6137, α4 = 58.5971, α5 = 12.8414, α6 = 689.048, α7 = −951.43 . (5.16)

Note that the values are of order 1. We see that for the 7× 7 determinant we encounter a

negative leading term.

From numerical experimentation at larger d up to d = 20, the pattern appears to be

that all the brackets are positive unless at least 7 of the ∆’s are in this same range of

∆ . 1/10, and again the (negative) minors are always miniscule.

Curiously, while the full conformal blocks are not always positive, the

functions 2F1(∆,∆, 2∆; z) do appear to be positive. Indeed experimentally this appears

to be the case for all hypergeometric functions 2F1(a, b, c = a + b, z) with a, b > 0. State-

ments of positivity of this sort about Hypergeometric functions do not appear to have been

studied by mathematicians.

The tininess of the negative minors and the small dimensions involved means that

the negativity of brackets for small ∆ and large d is irrelevant from any practical point

of view. Nonetheless we find this phenomenon absolutely fascinating. After all we start

with a problem with no parameters whatsoever — indeed the only numbers that show up

are “1” and “2” in the hypergeometric functions — and yet we produce counter-examples

to positivity with exponentially tiny brackets! This is an concrete example of a dream to

generate “exponentially large hierarchies from nothing”. The application of this observation

to inspiring radically new solutions to the cosmological constant and hierarchy problems is

left as an exercise for the interested reader.

6 The unitarity polytope and the crossing plane

To summarize our discussion so far, the bootstrap constraints from unitarity and crossing

symmetry can be phrased as follows. Unitarity requires that the Taylor coefficients of the

four-point function F (z) expanded around z = 1/2 has to lie inside a polytope spanned

by the block vectors (5.1). We will call this polytope the unitarity polytope, denoted as

U[{∆i}]. Crossing symmetry, on the other hand, restricts the Taylor coefficients of F (z)

to lie on a half-dimensional plane X[∆φ] defined in section 2. Here ∆φ is the dimension of

external operators. A consistent CFT four-point function must lie in the region defined by

the intersection of the crossing plane X[∆φ] and the polytope U[{∆i}] as in figure 9.

To solve this intersection problem, we need to know what the facets of U[{∆i}] are.

As discussed section 3, this is a daunting task for general polytopes. Fortunately from

section 4, we see that the convex hull of the block vectors, at least up to d = 5, is a cyclic

polytope, for which all the faces are known. Here d is the number of Taylor coefficients we
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X

U

Figure 9. A four-point function is consistent if it lies on the intersection between the crossing

plane X[∆φ] and the unitarity polytope U[{∆i}].

keep. We will only obtain nontrivial constraints if d is odd, i.e. d = 2N+1, then the crossing

plane X[∆φ] is N -dimensional, and the facets of the unitarity polytope U[{∆i}] are

(0, i1, i1 + 1, i2, i2 + 1, · · · , iN , iN+1)
⋃

(i1, i1 + 1, i2, i2 + 1, · · · , iN , iN+1,∞) , (6.1)

where each entry i represents the block vector G∆i given in (5.1). The lower dimension

faces are obtained from the facets by knocking out one label at a time.

The geometry problem we want to solve is the intersection between an N -dimensional

crossing plane X[∆φ] and a (2N+1)-dimensional unitarity polytope in P2N+1. Generically,

an N -dimensional plane intersects with an (N+1)-dimensional face of the polytope at a

point in 2N+1 dimensions. Such an (N + 1)-dimensional face of the cyclic polytope takes

the form

(i1, i1 + 1, i2, · · · , , iN+1) . (6.2)

From (3.13), the condition that the the crossing plane X[∆φ] intersect the above face in

the unitarity polytope U[{∆i}] is

〈i1 + 1, i2, · · · , , iN+1,X〉 , −〈i1, i2, · · · , , iN+1,X〉 , 〈i1, i1 + 1, i3, · · · , , iN+1,X〉 ,
· · · , (−1)N 〈i1, i1 + 1, i2, · · · , , iN ,X〉 , all have the same sign . (6.3)

Thus, for a four-point function with external operators of dimension ∆φ, a consistent CFT

must contain N + 2 operators in its spectrum such that (6.3) holds.

This picture of positive geometry is very reminiscent of the (tree) Amplituhedron for

(tree) scattering amplitudes of N = 4 SYM [7]. In that case, we have a polytope comprised

of (4+k)-component vectors that are the bosonized super momentum twistors (ZIi ), and

a k-plane Y I
α , with α = 1, · · · , k and I = 1, · · · , 4 + k.1 The Amplituhedron then puts a

1Here k labels the helicity sector. For example, the pure gluon amplitude has 2+k negative helicity

states with k ≥ 0.
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Figure 10. The comparison between the geometry for CFT and the Amplituhedron. In the CFT

case, we have a fixed crossing plane X that intersects with the unitarity polytope. The latter is

determined by the spectrum of the CFT operators. In the Amplituhedron case, we have the polytope

determined by the momentum twistors ZIi held fixed, and we look for k-planes Y, constrained by

positivity/projected winding number conditions.

constraint on the plane Y. In the original formulation, the k−plane Y I
α must be expressible

as Y I
α = CαaZ

I
a , where the k× n matrix C is in the positive Grassmannian G+(k, n), with

all positive minors. For k = 1 the Amplituhedron is simply the cyclic polytope, while for

higher k it defines a generalization of polytopes into the Grassmannian. A more recent

definition of the Amplituhedron is defined by characterizing the geometry obtained by

projecting through Y. The data Za becomes 4-dimensional after the projection, and is

required to have a maximum “winding number”[27]. But in both definitions, the external

data ZIa is thought of as fixed, and we are interested in carving out an allowed space of

k-planes Y by various conditions. then defined as the set of planes Y which are in a general

region where Y intersects the Z-polytope with the prescribed winding number. For the

CFT case discussed in this paper, we instead have the crossing plane X fixed by the external

dimension ∆φ, while the unitarity polytope varies with the spectrum and intersects with

the former. See figure 10.

7 N = 1: three-dimensional polytope

We now begin studying in detail the geometry of the crossing plane intersecting the cyclic

polytope. In the Taylor scheme, we keep the first (2N+1)-th Taylor coefficients of the

four-point function and the conformal block around z = 1
2 . Note that this truncation in N

is similar to the truncation to lower dimensional functionals in [2], in order to start with

weaker bounds and gradually carve out the space of consistent CFTs. The four-point func-
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tion resides on the plane X, which is N -dimensional, and conveniently parameterized as:

F =



F 0

4∆φF
0

F 2

16
3 (∆φ − 4∆3

φ)F 0 + 4∆φF
2

F 4

64
15∆φ(32∆4

φ − 20∆2
φ + 3)F 0 − 16

3 ∆φ(4∆2
φ − 1)F 2 + 4∆φF

4

...


∈ P2N+1 . (7.1)

Here F 0, F 2, F 4, · · · , F 2N parametrize the N -dimensional crossing plane X in P2N+1. Using

the rescaling freedom in P2N+1, we can set F 0 = 1. As we increase N , it suffices to restrict

ourselves to the case of odd-dimensional polytopes. This is because in even dimensions

the intersection problem merely constrains the new parameter F 2N , and we do not learn

anything new compared to the analysis in the previous dimensionality.

With N = 1, we are considering block vectors given by:

G∆ =


1

2α∆

4∆(∆− 1) + 2∆α
8
3α∆(∆2 −∆ + 1)

 , (7.2)

where again α = 2F1(∆,∆ + 1, 2∆, 1/2)/ 2F1(∆,∆, 2∆, 1/2). The unitarity polytope is

a three-dimensional cyclic polytope, positively spanned by the vectors G∆i . The two-

dimensional facets consists of the following two sets:

(0, i, i+ 1) , (i, i+ 1,∞) . (7.3)

Here i represents the vector G∆i , 0 is the identity operator G0 = (1, 0, · · · , 0), and ∞ is

G∞ = (0, 0, · · · , 1). The subscripts i and i+1 label two operators ∆i < ∆i+1 with nothing

in between.

Note that here we assume that the last vertex of the cyclic polytope is at ∆ = ∞,

which is expected for realistic CFT’s. However for the geometry problem, with even a

putative finite spectrum of ∆’s, we can always think of the finite cyclic polytope as living

inside a larger one where we add a final vertex at infinity.

The crossing plane X is one-dimensional, which is represented by a 4 × 2 matrix

X =


F 0 F 2

1 0

4∆φ 0

0 1
16
3 (∆φ − 4∆3

φ) 4∆φ

 . (7.4)

where the two columns are the vectors parameterized by F 0 and F 2. The crossing plane

X intersects with the face (0, i, i+ 1) if and only if (see (6.3))

〈X, i, i+ 1〉, − 〈X, 0, i+ 1〉, 〈X, 0, i〉 , all have the same sign. (7.5)
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Similarly the crossing plane X intersects with the face (i, i+ 1,∞) if and only if

〈X, i, i+ 1〉, − 〈X,∞, i+ 1〉, 〈X,∞, i〉 all have the same sign . (7.6)

Since (7.3) are all the faces of the three-dimensional polytope, the crossing plane intersects

with the polytope iff either one of the two conditions (7.5) and (7.6) is satisfied. Of course

generically if one condition is satisfied the other will not be; the only way X can intersect

U[{∆i}] on both kinds of faces is if it only intersects U[{∆i}] on the edge (i, i+1) common

to both kinds of faces, forcing 〈X, i, i+ 1〉 = 0.

Conditions (7.5) union (7.6) are the sufficient and necessary condition for the bootstrap

problem to have a solution in this dimensionality. To extract useful constraints from these

conditions, it is often useful to derive necessary (but not necessarily sufficient) conditions

by projecting the geometry to lower dimensions. Specifically, we will project our three-

dimensional polytope through one of its vertex to reduce it to a two-dimensional polytope.

The crossing plane, on the other hand, retains its dimensionality and is still a line. We will

discuss the projected problems and derive constraints on the spectrum below.

7.1 Projecting through the identity 0

Let us start by projecting our three-dimensional cyclic polytope through the identity, G0 =

(1, 0, 0, 0), to obtain a two-dimensional cyclic polytope in P2. The crossing plane X, on

the other hand, is still one-dimensional after the projection. In this way we have reduced

the geometric question to asking whether a two-dimensional polygon (or a curve in the

case of continuous spectrum) intersects with a line or not. The edges of the polygons are

(i, i + 1)proj, which descend from (0, i, i + 1) before the projection. We use a subscript to

remind the reader that these are facets of the projected geometry.

In practice, the projection through the identity 0 amounts to the following manipula-

tion on the determinant 〈0,F, i, i+1〉,

det


1 1 1 1

0 4∆φ G1
∆i

G1
∆i+1

0 F 2 G2
∆i

G2
∆i+1

0 16
3 (∆φ−4∆3

φ)+4∆φF
2 G3

∆i
G3

∆i+1

 = det

 4∆φ G1
∆i

G1
∆i+1

F 2 G2
∆i

G2
∆i+1

16
3 (∆φ−4∆3

φ)+4∆φF
2 G3

∆i
G3

∆i+1



→ det


1 1 1

F 2

4∆φ

G2
∆i

G1
∆i

G2
∆i+1

G1
∆i+1

4
3(1−4∆2

φ)+F 2
G3

∆i

G1
∆i

G3
∆i+1

G1
∆i+1

 . (7.7)

In the last step we have rescaled the vectors by their leading positive component

G1
∆i

= 2∆iα.

If the crossing plane and the polytope intersect before the projection, they must again

intersect after the projection, but not vice versa. The condition for the projected crossing

plane to intersect the two-dimensional polygon is

〈X, i〉proj = 〈0,X, i〉 , − 〈X, i+ 1〉proj = −〈0,X, i+ 1〉 have the same sign . (7.8)
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Figure 11. The 2d geometry obtained by projecting through the identity 0. The blue curve is

the block vectors parametrized by y = G3
∆/G

1
∆, x = G2

∆/G
1
∆ as in (7.7). The unitarity polytope is

constructed from the convex hull of points on these curves. The red (∆φ = 0.3) green (∆φ = 0.4)

and orange (∆φ = 0.5) lines are the crossing planes X[∆φ] with various external dimensions,

parametrized as y = 4
3 (1− 4∆2

φ) + F 2, x = F 2

4∆φ
.

This condition is weaker than (7.5) union (7.6) as it only requires the two geometric objects

to intersect after the projection. Indeed, note that our condition keeps only two of those

in (7.5), and none of those in (7.6). The absence of the conditions from (7.6) reflects the

fact that the edges (i,∞) and (i + 1,∞) of the two-dimensional faces (i, i + 1,∞) all end

up inside the two-dimensional polygon after the projection through the identity.

We can immediately say something interesting about the spectrum from (7.8). Ge-

ometrically, the block vectors form a curve, parametrized by ∆, and the crossing plane

is a line. We display the geometry in figure 11. We see that generically the crossing

plane intersects with the block curve at two points. These two points are the solution to

the equation

0 = 〈0,X,∆〉 = 4∆φ

[
G3

∆ − 4∆φG
2
∆ +

4

3
(4∆2

φ − 1)G1
∆

]
=

32

3
∆φ∆

[
−6∆φ(∆− 1) + α(∆2 −∆ + 4∆2

φ − 3∆φ)
]
. (7.9)

Since α = 2F1(∆,∆+1,2∆,1/2)

2F1(∆,∆,2∆,1/2) is a slowly varying function of ∆ (see figure 7), we can effectively

treat it as a constant in a wide range of ∆. From this approximation we see that there

are two roots in ∆ for this equation, denoted as ∆± with ∆+ > ∆−. ∆± are functions of

∆φ. The necessary condition (7.8) tells us that there must be a pair of operator such that
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Figure 12. In order for the unitarity polytope to intersect with the crossing plane, we must

have operators lying between {∆−,∆+}. Case (a) and (b) demonstrates the cases where all the

operators are outside this region, and hence cannot intersect with the crossing line. For case (c) it

does intersects.

either ∆+ or ∆− lies in between. In other words, there must exist at least an operator

with dimension ∆ satisfying

∆− < ∆ < ∆+ . (7.10)

Examples for spectrums allowed and disallowed are shown in figure 12. This statement

in particular implies that the gap in the spectrum between the identity and the lightest

operator has to be smaller than ∆+.

Note that this analysis also gives us constraints on the four-point function for a given

putative spectrum. Consider the part of the spectrum that lies between {∆−,∆+}, and

denote the operator closest to ∆− as ∆min, while that closest to ∆+ as ∆max. The four-

point function X is then bounded by:

〈0,F,∆min−1,∆min〉 > 0 〈0,F,∆max,∆max+1〉 > 0 . (7.11)

We illustrate this in figure 13.

7.2 Projecting through ∞

We can derive another necessary condition by projecting through the infinity vertex

G∞ = (0, · · · , 0, 1). Again after the projection, the polytope is two-dimensional with

edges (i, i+ 1)proj and the crossing plane is an one-dimensional line. The condition for the

two to intersect in the projected geometry is

〈X, i〉proj = 〈X, i,∞〉 , − 〈X, i+ 1〉proj = −〈X, i+ 1,∞〉 have the same sign .

(7.12)
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Figure 13. For a putative spectrum the four point function is bounded by the operators that are

the closest to {∆−,∆+}.

The equation

0 = 〈X,∆,∞〉 = −2α∆ + 4∆φ . (7.13)

The equation has a unique positive solution in ∆, denoted as ∆∗. This implies that

there must be a pair of operators (possibly including the identity) sandwiching ∆∗. This

constraint is always satisfied in a realistic CFT spectrum, since we have an identity operator

to the left of ∆∗, and infinity many operators near infinity.

8 N = 2: five-dimensional polytope

We now consider the five-dimensional polytope, where the block vectors has six components:

G∆ =



1

2∆α

4∆(∆− 1) + 2∆α
8
3∆α(∆2−∆+1)

8
3∆(∆−1)(∆2−∆+3) + 4∆α

16
15

[
∆α(∆2−∆+1)(∆2−∆+6)− 2∆2(∆−1)2

]


. (8.1)

The crossing plane at this order is two dimensional, given by

X =



F 0 F 2 F 4

1 0 0

4∆φ 0 0

0 1 0
16
3 (∆φ − 4∆3

φ) 4∆φ 0

0 0 1
64
15∆φ(32∆4

φ − 20∆2
φ + 3) 16

3 (∆φ − 4∆3
φ) 4∆φ


. (8.2)

and the boundaries are

(0, i, i+1, j, j+1), (i, i+1, j, j+1,∞) . (8.3)
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This implies that a putative spectrum is consistent only if there exists a set of four operators

(i, i+ 1, j, k) that intersects the crossing plane at a point, i.e.

〈X, i, i+1, j〉, −〈X, i+1, j, k〉, 〈X, i, j, k〉, −〈X, i, i+1, k〉, have the same sign . (8.4)

Here j, k could be 0 or ∞.

Following our experience for the three-dimensional polytope, the interesting constraints

arrises when we will view the geometry projected through 0. In this case, we are considering

the cyclic polytope with facets (i, i+1, j, j+1). Since the crossing plane is still two dimen-

sional, and it intersects the polytope if there exists three operators (i, i+1, j) such that

〈X, i, i+1〉, −〈X, i, j〉, 〈X, i+1, j〉 , have the same sign . (8.5)

Note that in the above, since we are projecting through 0, each vector has five component

as the leading piece is removed, and the brackets now correspond to taking the determinant

of 5× 5 matrices.

Now our geometry is four-dimensional. We can reduce the dimensionality by either

projecting through, or projecting on to the two-dimensional crossing plane. Projecting

through the crossing plane indicates that we are looking at the part of the geometry

orthogonal to X. As discussed previously, we can consider a GL(3) transformation acting

on the five component vectors such that the crossing plane X takes the following form

X =


1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

 . (8.6)

Acting on all block vectors with the same GL(3) transformation, the orthogonal directions

are simply the remaining two components. On the other hand, projecting on to the crossing

plane means that we are considering the image of the unitarity polytope on the two-

dimensional plane. In practice the two components of this projection, for points (i, i+1, j),

can be read off from the coefficient of F 2 and F 4 in the following determinant:

〈F, i, i+ 1, j〉 = det


F 2

4∆φ
G̃2

∆i
G̃2

∆i+1
G̃2

∆j

4
3(1− 4∆2

φ) + F 2 G̃3
∆i

G̃3
∆i+1

G̃3
∆j

F 4

4∆φ
G̃4

∆i
G̃4

∆i+1
G̃4

∆j

16
15(32∆4

φ − 20∆2
φ + 3) + 4

3(1− 4∆2
φ)F 2 + F 4 G̃5

∆i
G̃5

∆i+1
G̃5

∆j

 .

(8.7)

where we’ve used the short hand notation G̃I∆ ≡
GI∆
G1

∆
.

The two different projections will give us complementary information. The projection

through X allows us to have a bird’s eye view of all the block vectors, gaining information

on how operators of a consistent spectrum must distribute on the curve of block vectors.

Once the polytope intersect, the projection onto the crossing plane gives us information

with regards to the neighboring operators as well as bounds on the four-point function itself.
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0

Δ-

Δ+

Figure 14. Here we present the 2d plot of the block vectors with its coordinates given by

(〈X, 0,v1, i〉, 〈X, 0,v2, i〉), where v1 = (0, 1, 6, 15, 2,−2) and v2 = (−1,−2,− 1
4 ,

1
3 , 1, 0). The exter-

nal dimension that defines the crossing plane was chosen to be ∆φ = 1.5. Notice that (0,∆−,∆+)

are collinear. The purple dots correspond the position of three operators, labeled (i, i+1, j), that

forms a triangle that incloses the origin 0.

8.1 Projecting through X

We begin with projection through X. Instead of finding the ∆φ-dependent GL(3) trans-

formation that separates the directions orthogonal to the crossing plane, we can compute

the following projection of the block vectors

{〈X, 0,v1,∆〉, 〈X, 0,v2,∆〉} , (8.8)

where v1,v2 are some arbitrarily chosen auxiliary vectors that does not lie on the crossing

plane X. The projected block vector is parametrized by these two coordinates on a two-

dimensional plane. By construction, the crossing plane X and the identity 0 are located

at the origin on this two-dimensional plane. The block vectors (8.1) form a curve, starting

from the origin and parameterized by ∆.

The two points ∆±, defined as the solutions to (7.9), play a special role in this geometry.

In particular, they are collinear with the origin. To see this note that since (7.9) tells us

that 〈X1,X2, 0,∆±〉 = 0, where X1,X2 are the two vectors of the crossing “line” in the

N = 1 problem, this implies that the three-dimensional block vector for ∆± can be spanned

by X1,X2, and the identity. This then tells us that the four-component determinants

〈X1, 0,∆−,∆+〉 = 〈X2, 0,∆−,∆+〉 = 0. Now explicitly expanding the five component

determinant 〈X, 0,∆+,∆−〉, one finds that it can be written as a linear combination of

〈X1, 0,∆−,∆+〉, 〈X2, 0,∆−,∆+〉 and 〈X1,X2, 0,∆±〉, which all vanishes. Thus

〈X, 0,∆+,∆−〉 = 0 . (8.9)
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Figure 15. There are two possible configurations of the spectrum depending on where ∆max lies

with respect to ∆T , which is the point where the line that passes through the origin and tangent to

the curve below ∆−, intersects with the block curve. On the l.h.s. we have ∆max > ∆T , for which

we conclude that either ∆max+1 is between ∆+ and ∆c, or that there is a light operator between

∆a,∆b. On the r.h.s. for ∆max < ∆T we must have ∆max+1 in between ∆+ and ∆a.

Figure 16. Constraints on the first two primary operators (∆1,∆2). The region below the blue

line is allowed. Before the dashed line, ∆1 < ∆− and hence ∆2 must be smaller than ∆+. After the

dashed line ∆− < ∆1, then ∆2 must be below the curve 〈X, 0,∆1,∆2〉 = 0. Finally for ∆1 > ∆+

there are no solutions and is ruled out.

In other words, the line between ∆± must pass through the origin on this two-dimensional

plane. This is illustrated in figure 14 (where the external dimension is chosen to be ∆φ =

1.5), where the two points ∆± are on the opposite sides of the origin. Rather amusingly,

the vertex ∆− is always much closer to the origin compared to ∆+.

The criterion for the consistency of a spectrum is that there exists a set of three

operators such that (8.5) is satisfied, i.e.

〈X, i, i+1〉, 〈X, i+1, j〉, 〈X, j, i〉 have the same sign . (8.10)
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This means that X is on the same side of the boundaries (i, i+1), (i+1, j) and (j, i), i.e.

the origin must be in the convex hull of the three block vectors. In other words, there

have to be three points on the block curve, forming a triangle that encloses the origin. See

figure 14 for an example. Note that since ∆+,∆− are collinear with the origin, this criterion

automatically requires that there is at least one operator between ∆+ and ∆−, which is

the consistency condition from the N = 1 geometry in section 7.

The above criterion imposes global constraints on the spectrum. Let the dimension

of the heaviest operator between ∆± be ∆max. Since ∆± are on the opposite sides of the

origin, we can draw a line that is tangent to the curve before ∆− and passes through the

origin. This line intersects the curve in between ∆±, which we denote as ∆T , as shown in

figure 15.2 Now if ∆max > ∆T , then we have the same conclusion as before, either there

exists a ∆max+1 in between ∆+ and ∆c, or there is a light operator between ∆a and ∆b.

However if ∆max < ∆T , the line between ∆max and the origin only intersects the block

curve above ∆+, i.e. ∆b,c no longer exists. Thus we conclude that we must have ∆max+1

above ∆+ and ∆a.

Finally we consider the constraints for the first two primaries ∆1 and ∆2 in the spec-

trum. For ∆1 < ∆−, we know that ∆2 cannot be greater than ∆+, otherwise there will

be no operators between ∆±. Similarly, the region with ∆1 > ∆+ is also ruled out by

the same argument. For ∆1 between ∆− and ∆+, ∆2 cannot be above the contour plot

of 〈X, 0,∆1,∆2〉 = 0, otherwise there does not exist a triplet of operators ∆i,∆i+1,∆j

satisfying (8.4). Combining all these statements, we carve out the space of consistent 1d

CFT for the first two primaries (∆1,∆2) in figure 16.

8.2 Projecting onto X

As before, we start with the geometry projected through the identity 0. The cross section

of the four-dimensional polytope by the crossing plane X is a two-dimensional polygon.

The polygon gives a bound on the actual values of the four-point function, parametrized

by F 0, F 2, F 4 as in (7.1).

The shape of the polygon is determined by the spectrum through some interesting

combinatorics inherited from the cyclic polytope. The edges of the polygon come from the

facets of the four-dimensional cyclic polytope, which are of the form (i, i + 1, j, j + 1). A

vertex (i, i+1, j), on the other hand, is the intersection of two edges who share exactly three

numbers. See figure 17 for an illustration of this combinatoric rule. A triplet (i, i + 1, j)

is an actual vertex of the polygon if the corresponding facet intersects with the crossing

plane, i.e. if (8.5) is true. To recap,

Edges : (i, i+ 1, j, j + 1) , Vertices : (i, i+ 1, j) . (8.11)

For example, in figure 18 we give two examples of polygons allowed by the above combi-

natoric rule.

We illustrate how the polygon on the crossing plane X changes its shape as we vary the

spectrum in figure 19. The polytopes projected through X and the identity 0 are shown

2Figure 15, and similarly for figure 19, has been deformed from the realistic plot (e.g. figure 14) to make

it more visible.
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(i, i+ 1, j)

(i, i+ 1, j − 1, j)(i, i+ 1, j, j + 1)

...
...

Figure 17. The combinatoric rule of the polygon on X inherited from the cyclic geometry. An

edge is given by four numbers of the form (i, i+ 1, j, j + 1). Two edges intersect at a vertex of the

form (i, i+ 1, j) if they share three numbers.

125 245

256
235

1256 2345

1245

2356

(a)

125 245

256

345

356

1256

2356

3456

2345

1245

(b)

Figure 18. The projection of the cyclic polytope on the two-dimensional crossing plane X is a

polygon. The edges and vertices of the polygon are constrained by the cyclic geometry (8.11). Here

we show two examples allowed by the combinatorics.

on the left. The red curve on the left is the trajectory of the block vector (8.1) as we vary

∆. The number i on the red curve label where the block vector for the i-th operator of

dimension ∆i is located at. In the figure we show the first 5 operators but we assume the

spectrum continues to infinity. As we vary the dimension ∆4 of the fourth operator, we

see that the polygon changes from a triangle to a polygon, and then to a polygon with

infinitely many edges. To make the plot more visible, figure 19 is not drawn to scale.

As a concrete example, the polygon on the crossing plane for the generalized free

fermion is shown in figure 20. The region inside the polygon, which is amazingly thin and

tiny, is the allowed four-point function constrained by the bootstrap equation.

9 Recursive increase of resolution

We have completely investigated the bootstrap geometry problem up to the N = 2 case.

This is the case where the crossing plane X is two-dimensional in P5, or stated non-

projectively, three-dimensional in six dimensions. We have seen how, as we go to the

higher-dimensional problem, our “resolution” on CFT data increases, and we further carve
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1

∞

2

3

4

5…
0

(a)

245 234

124

1245 1234

2345

(b)

1

∞

2

3

4

5…
0

(c)

245 234

145

134

∞14

1245

∞145

∞134

1234

2345

(d)

1

∞

2

3

4

5…
0

(e)

345 234

45∞

134

∞14

45(∞− 1)

457

456

3456

4567

45(∞− 1)∞
... ∞145

∞134

1234

2345

(f)

Figure 19. An illustration of how the polygon on the crossing plane changes its shape as we

deform the spectrum. Left: the polytope projected through the crossing plane and the identity 0

as discussed in section 8.1. The references vectors vi’s are chosen as before. Right: the polygon

from the polytope projected onto the crossing plane X, parametrized by F 2/F 0 and F 4/F 0.

out the space of allowed operator dimensions. In this section we discuss how this recursive

procedure increases resolution more systematically.

As before, it is natural to work with a (2N+2) dimensional space of Taylor coefficients

for the four-point function. The crossing plane X is a half-dimensional (N + 1)-plane in

(2N + 2) dimensions. We project through the X plane as well as the identity block vector
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123

124

125

126

127

⋱

12	∞

∆)= 1/8

0.7034 0.7036 0.7038 0.7040 0.7042 0.7044

1.616

1.618

1.620

1.622

Figure 20. The cyclic polytope projected onto the crossing plane for the free fermion spectrum

∆i = 2∆φ + 2i− 1 (i = 1, 2, · · · ). The dimension ∆φ of the external operator (the fermion field) is

shown in the plot.

G0 to end up with a geometry in (2N + 2) − (N + 1) − 1 = N dimensions. As we have

discussed, the CFT data {∆} is consistent if and only if there are (N + 1) ∆i such that

the simplex with vertices
{

∆i1 , · · · ,∆iN+1

}
contains the origin.

Now, we would like to systematically relate the solution of this problem with some N , to

the one where we increase N → (N+1). We have already highlighted an obvious geometric

relation between the two problems: we know that if we project the (N + 1)-dimensional

geometry through the infinity vertex G∞, then we go back to the N dimensional problem.

This motivates us to incorporate the infinity block into our thinking about the geometry

problem at hand.

Indeed there is a very natural way to do this, using the following trivial but important

piece of basic linear algebra and geometry. Suppose v1, · · · ,vD+1 are (D + 1) vectors in

D dimensions, such that the origin is contained inside the vertices of the simplex defined

by them, i.e. such that c1v1 + · · · cD+1vD+1 = 0 for some ci > 0. Then the claim is that

for an arbitrary vector w, there is some collection of D of the (D + 1) vs, such that the a

positive linear combination of {vi1 , · · · ,viD ,w} also contains the origin.

The proof is trivial. By GL(D) transformations and positive rescalings, we can always

bring the vectors v1, · · · ,vD+1 to the form vi = ei for i = 1, · · · , D, and vD+1 = −(e1 +

· · · + eD). Here the ei are unit vectors with non-vanishing components in the i-th slot,

and we have v1 + · · ·vD + vD+1 = 0. Now, we can expand any w in the basis of ei as

w = w1e1+· · ·wDeD, and let us consider the equation c1v1+· · · cDvD+cD+1vD+1+w = 0,

which implies ci = cD+1 − wi. If all the wi are negative, we simply put cD+1 = 0 and ci =

−wi > 0. If instead some of the wi are positive, let wi∗ be the largest of all the w’s. Then

we can set cD+1 = w∗, and ci∗ = 0, then all the other ci are ci = cD+1−wi = wi∗ −wi > 0.

Thus in all cases, we have found some positive ci for which ci1vi1 + · · · ciDviD + w = 0,

as claimed.

With this simple fact in hand, let us return to our CFT geometry problem, and observe

that being able to find (N+1) vectors
{

∆i1 , · · · ,∆iN+1

}
containing the origin, is completely
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equivalent to demanding that there are just N ∆’s which, together with infinity, contain the

origin. On the one hand, if {∆i1 , · · · ,∆iN ,∞} contains the origin, we have good CFT data

(with ∆iN+1 = ∞). On the other hand, we have just seen that for any set of (N + 1)∆’s

containing the origin, there are N of them for which the set {∆i1 , · · ·∆iN ,∞} contains

the origin.

Thus, the set of legal CFT data in the N dimensional geometry is associated with

solving for the space SN of {∆1, · · · ,∆N} such that {∆1, · · · ,∆N ,∞} contains the origin;

we must then demand that the CFT spectrum contains N operators with dimensions inside

this set SN .

Let us choose some particular {∆1, · · · ,∆N} inside SN . Define TN [∆1, · · · ,∆N ] to be

the set of all ∆N+1’s such that {∆1, · · · ,∆N ,∆N+1} contains the origin. Obviously TN is

not empty since by definition as ∆N+1 → ∞, {∆1, · · · ,∆N ,∞} contains the origin. Note

that the union of SN and TN is a way of labelling every possible simplex that contains the

origin, with N ∆’s such that {∆1, · · · ,∆N ,∞} contains the origin, and the possible ranges

for the ∆N+1 that could along with these N ∆’s.

Now, let’s go up to (N + 1) dimensions. We are now interested in the space SN+1, i.e.

we are looking for some
{

∆′1, · · · ,∆′N ,∆′N+1,∞
}

such that

〈X0∆′1 · · ·∆′N∆′N+1〉 > 0 ,

〈X0∆′1 · · ·∆′N∞〉 < 0 , · · · , 〈X0∆′2 · · ·∆′N+1∞〉 > 0 .
(9.1)

Note that the conditions in the second line simply demand that
{

∆′1, · · · ,∆′N+1

}
is a legal

simplex in the N -dimensional problem, since projecting through G∞ sends us back to the

N dimensional geometry.

Thus, we learn that
{

∆′1, · · · ,∆′N+1

}
must actually be in SN ∪ TN . But importantly,

we have one more constraint on ∆′N+1! We must have that 〈X0∆′1 · · · ,∆′N∆′N+1〉 has the

opposite sign as 〈X0∆′1 · · ·∆′N∞〉. This is crucial. Recall that TN was always non-empty

since ∆N+1 could always go to ∞. But the above condition forbids this. Indeed, ∆′N+1

must be smaller than the largest root in the variable ∆ of the function f [∆; ∆1, · · · ,∆N ] =

〈X0∆1 · · ·∆N∆〉.
So, let us finally define UN [∆1, · · · ,∆N ] to be the set of all ∆’s such that

〈X0∆1 · · ·∆N∆〉 has the opposite sign as 〈X0∆1 · · · ,∆N∞〉. Again, this set UN is mani-

festly bounded from above. The recursive expression relating the set of legal CFT data in

(N + 1) dimensions to the set in N dimensions:

SN+1 = SN ∪ [TN ∩ UN ] (9.2)

Note that TN ∩ UN may be empty, in which case we are ruling out parts of SN that

were consistent in N dimensions but which are seen to be inconsistent with the increased

resolution of the (N + 1)-dimensional problem.

In this way, we can recursively build up the space of allowed ∆’s. In N dimensions we

must have some {∆1, · · · ,∆N} in some specified ranges. Given any allowed {∆1, · · · ,∆N}
in N dimensions, there is some manifestly bounded from above, and possible empty, range

for ∆N+1’s. This manifests the way in which the space of possible operator dimensions is

further carved out as we systematically step to higher and higher dimensions.
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10 Outlook

Our investigations in this paper have only scratched the surface of what appears to be a

rich set of connections between the geometry and combinatorics of total positivity and the

conformal bootstrap program. Even sticking with the d = 1 CFT geometry associated with

the SL(2,R) conformal blocks, there are a number of open avenues for future investigation.

To begin with, we would like to have a much better understanding of the positivity we

have experimentally observed for conformal blocks. In particular, we would like to again

draw attention to the extraordinary “fine-tuning” that arises seemingly out of the platonic

thin-air of conformal blocks: minors of block vectors are almost always positive, except

when 7 or more dimensions are smaller than ∼ 10−1, and the most negative the minors ever

become is about ∼ 10−20! It would be fascinating to better understand this phenomenon

better. And might there be a slightly different basis of conformal blocks for which the

positivity is exact?

The exploration of total positivity properties involving hypergeometric functions is

also interesting from a purely mathematical point of view. The conformal blocks (2.6) are

G∆(z) = z∆
2F1(∆,∆, 2∆; z). Of course, as we discussed the class of function z∆ enjoys our

total positivity properties. Interestingly, the functions 2F1(∆,∆, 2∆; z) also appear to be

totally positive; indeed experimentally this appears to be the case for all hypergeometric

functions 2F1(a, b, c = a + b, z) with a, b > 0, a fact not studied to our knowledge in

the mathematical literature. It would be interesting to find a conceptual proof for this

statement, which might give some inroads into understanding some exact statement about

positivity for the blocks.

Turning to the classification of CFT data, is it possible to more explicitly carry out

the recursive procedure for increasing resolution as more Taylor coefficients are kept? Also,

the intersection of the unitarity polytope and the crossing plane is in general an interesting

polytope, whose facet structure is controlled by the combinatorics of cyclic polytopes, as

we illustrated in our low-dimensional examples. But we worked in the simplest cases of

one and two-dimensional geometries where convex polytopes have a universal shape —

line segments and convex polygons — while higher-dimensional polytopes are much more

interesting and intricate. Is it possible to characterize all the polytope shapes that can

arise in the U ∩X problem in a nice combinatorial way?

Perhaps the most interesting set of questions from both the physical and positive-

geometrical points of view have to do with understanding of the bootstrap problem with

higher-dimensional conformal symmetry. As we have seen, the most obvious notions of

positivity are associated with some ordering: we have block vectors G∆(z), and both the

“parameter” ∆ and the one-dimensional space labelled by z have a natural ordering. The

situation is more interesting in higher dimensions, where we have blocks that depend on

two variables (z, z̄), and two parameters (∆, s) for dimension and spin. Is there a natural

extension of positivity involving this pair of two-dimensional spaces (z, z̄) and (∆, s) in a

non-trivial way? We close by making some preliminary and elementary observations on

this problem, beginning with the bootstrap for d = 2 CFTs.

In two dimensions operators can be labelled by h, h̄ labelled to spin and dimension by

s = h− h̄ ∈ Z and ∆ = h+ h̄. The d = 2 global conformal blocks are simply given as the
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product of d = 1 blocks via G∆,s(z, z̄) = Gh(z)Gh̄(z̄). The four-point function can then be

written as

F (z, z̄) =
∑
h,h̄

ph,h̄Gh(z)Gh̄(z̄) , ph,h̄ ≥ 0 , h− h̄ = s ∈ Z . (10.1)

Note that the non-trivial correlation between h, h̄ is enforced by the requirement that the

spin h− h̄ = s is an integer.

But we can begin with a simpler problem: we consider the same expansion, but relax

the requirement on the spin. Said another way, in the real 2d CFT we can think of the sum

over all (h, h̄) but with ph,h̄ = 0 unless h− h̄ = s is integer, but we can consider the looser

restriction placing no conditions other than the positivity of ph,h̄. Clearly, it is natural to

call this the “direct product” of the geometries associated with the z, z̄ problems in d = 1.

The notion of the “direct product” of polytopes is a natural one, though not much

studied in the mathematical literature. Some general properties can be easily summarized.

Let us consider vertices Xi
a and Y I

A of two projective polytopes P,Q in (N+1) and (M+1)

dimensions. Will be define the direct product polytope (P × Q), living in the (N + 1) ×
(M + 1) direct product space, to be the convex hull of the direct product of the vertices,

as F iI =
∑

a,A paA(Xi
aY

I
A). Now, suppose the facets of P are wi and those of Q are WI .

What can we say about the faces of P ×Q?

Obviously, (wiWI) bound (P × Q), since trivially (wiWI)F
iI ≥ 0. Moreover, (wiWI)

is actually guaranteed to be one of the faces of the (P ×Q). The reason is that we can find

more than (N + 1) × (M + 1) vertices of (P × Q) that lie on (wiWI). Indeed, there are

at least (N + 1) different Xi
a that lie on wi and at least (M + 1) different Y I

A that lie on

WI . So at least these (N + 1)× (M + 1) vertices Xi
aiY

I
AI

lie on (wiWI). Now since (wiWI)

bounds P ×Q and has at least (N + 1)× (M + 1) vertices, it must be a face of (P ×Q).

In general, there may be further faces of (P ×Q) that are not of this form. But with

a little extra work, it is possible to prove the following nice fact. A simplicial polytope is

one where the neighborhood of every vertex locally looks like a simplex, with the smallest

number of faces meeting at the vertex. Then, if P,Q are both simplicial, all the faces of

P × Q are the direct products wiWI of the faces of P,Q. Cyclic polytopes are simplicial,

so we do know the face structure of the loosened geometry problem for 2d CFTs, where we

relax the condition ph,h̄ = 0 for h− h̄ not equal an integer.

It is interesting to see how the real CFT polytope sits inside the direct product poly-

tope. Let the conformal weights of the CFT be (hi, h̄i) with i labeling different global

conformal primaries. Then, the vertices of the direct product polytope are Ghi(z)Ghj (z̄)

for all i, j, but for the CFT polytope we are only keeping the diagonal vertices Ghi(z)Gh̄i(z̄).

Now, of course the faces of the direct product polytope still bound the CFT polytope

we are interested in. But in general, there aren’t enough vertices of the CFT polytope

on these faces for them to correspond to faces of the CFT polytope. In practice, as we

have seen the cyclic polytope constraints are already very restrictive, so even these “looser”

direct product polytopes, that bound the real CFT polytopes,are likely highly constraining

on CFT data.
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This is likely the most we can say directly following from the ideas in this paper,

without addressing the bigger challenge of determining the positive geometry intrinsic to

general CFTs in higher dimensions. Another application of the positive geometry is to

the modular bootstrap of the torus partition function in two-dimensional CFT. There

the analogs of the block vectors are built from the Virasoro characters, which after a GL

transform literally lie on a moment curve. Again in this case all the techniques presented

in the current paper can be directly applied. We leave the direct exploration of these

fascinating problems to future work.
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A Scalar conformal blocks in general dimensions

In this appendix we give a self-contained derivation of conformal blocks in general spacetime

dimension, focusing on the case when all the operators are scalars. We will review a

Lorentzian integral formula for conformal blocks [1, 8, 9] and give a closed form expression

in even dimensions. For simplicity, we will focus on the case when the four external

operators are all scalars and have the same dimension ∆φ. We will also assume that the

intermediate operator is a scalar with dimension ∆. This conformal block will be denoted

as G∆,0(z, z̄) where the cross ratios are defined as

zz̄ =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

. (A.1)

The defining properties of of the conformal blocks are (1) It is conformal invariant. (2)

It is an eigenvector of the quadratic Casimir of the conformal group. (3) For small z, z̄,

G∆,0(z, z̄) goes like (zz̄)∆/2. If we only impose the first two conditions, then the function

Ψ∆,0, defined via the following Euclidean integral

1

|x12|2∆φ |x34|2∆φ
Ψ∆,0(z, z̄)

=
1

|x12|2∆φ−∆|x34|2∆φ−(d−∆)

∫
Rd
ddx5

1

|x15|∆|x25|∆|x35|d−∆|x45|d−∆
(A.2)

will do the job. Here | · | is the Euclidean norm and the integral in x5 is over the whole

Rd. This is usually known as the shadow representation of the conformal partial wave

Ψ∆,0(z, z̄). The latter is not quite the conformal block G∆,0(z, z̄). Rather, Ψ∆,0(z, z̄) is a

linear combination of G∆,0 and Gd−∆,0. The two terms have different monodromy around

z = z̄ = 0, which can be used to extract the conformal block [28].

There is a simple Lorentzian variation of (A.2) that will directly yield a formula that

obeys all three properties. Let xµi ∈ R1,d−1 with i = 1, · · · , 4. We will choose a particular
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Figure 21. The gray area is the integration region for xµ5 in the Lorentzian integral formula (A.3)

for the conformal block.

causal structure such that xµi+1 is in the future lightcone of xµi for i = 1, 2, 3 (see figure 21).

The conformal block then admits the following Lorentzian integral representation [1, 8, 9]

G∆,0(z, z̄) = N |x12|∆
|x34|−d+∆

∫
x3<x5<x4

ddx5
1

|x15|∆|x25|∆|x35|d−∆|x45|d−∆
, (A.3)

where we only integrate x5 in the intersection between the future lightcone of x3 and the

past lightcone of x4, which is a conformally invariant region in Lorentzian signature. Here

| · | is the Lorentzian norm in R1,d−1. N is a normalization constant to be fixed later.

Furthermore, the integral is non-singular as we take x1 → x2, hence the righthand side

above reproduces the correct small z, z̄ behavior.

In the following we will explicitly evaluate the Lorentzian integral in one dimension

and even spacetime dimensions. By conformal invariance, we can choose the four external

points to be at x1 = (t = 0, ~x = 0), x3 = (t = 1, ~x = 0), x4 = (t =∞, ~x = 0) with x2 in the

intersection between the future lightcone of x1 and the past lightcone of x3. The causal

structure is shown in figure 21.

A.1 One dimension

In one dimension, let χ ≡ x5 − x3 = x5 − 1. The Lorentzian integral reduces to

G∆(z) = N z∆

∫ ∞
0

dχ
1

(χ+ 1)∆(χ+ 1− z)∆χ1−∆
. (A.4)

Using the integral representation of the Gauss hypergeometric function

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ ∞
0

du
1

ub−c+1(u+ 1)c−a(u+ 1− z)a
, (A.5)
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we obtain the 1d conformal block (2.6) used throughout the main text of the paper:

G∆(z) = z∆
2F1(∆/2,∆/2,∆, z) . (A.6)

Here we have chosen N to normalize the block to start from z∆ in the small z expansion.

A.2 Two dimensions

Let us parametrize x5 as xµ5 = (t = τ + 1, x1 = ρ) and x2 as xµ2 = (t = T, x1 = X). The

cross ratios are z = T +X and z̄ = T −X. In two dimensions the Lorentzian integral takes

the form

G∆,0(z, z̄) = N (zz̄)
∆
2

∫ ∞
0
dτ

∫ τ

0
dρ

[
1

[(τ+1)2−ρ2]
∆
2 [(τ+1−T )2−(ρ−X)2]

∆
2 [τ2 − ρ2]

d−∆
2

+
1

[(τ + 1)2 − ρ2]
∆
2 [(τ + 1− T )2 − (ρ+X)2]

∆
2 [τ2 − ρ2]

d−∆
2

]
. (A.7)

Let us define u = τ + ρ and v = τ − ρ. We can then write

G∆,0(z, z̄) =
N
2

(zz̄)
∆
2

∫ ∞
0
du

∫ u

0
dv

[
1

[(u+ 1)(v + 1)]
∆
2 [(u+ 1− z)(v + 1− z̄))]

∆
2 (uv)

d−∆
2

+
1

[(u+ 1)(v + 1)]
∆
2 [(u+ 1− z̄)(v + 1− z))]

∆
2 (uv)

d−∆
2

]
. (A.8)

Since the integrand is symmetric in exchanging u with v, we can replace the integration

range as 0 < u < ∞ and 0 < v < ∞ at the price of a factor 1/2. It follows that the the

integral factorizes to products of terms like (A.5), and we reproduce the standard scalar

SL(2,C) conformal block in two dimensions [21, 29–31]:

G∆,0(z, z̄) = (zz̄)
∆
2 2F1(∆/2,∆/2,∆, z) 2F1(∆/2,∆/2,∆, z̄) , (A.9)

where we have chosen the normalization constant N such that the leading term is (zz̄)
∆
2

in the small z, z̄ expansion.

A.3 Even dimensions

Let us parametrize the integration point x5 as xt53 = τ and |~x53| = ρ. The second external

point x2 will be parametrized as xµ2 = (t = T, x1 = X,x⊥ = 0). The cross ratios are

z = T +X and z̄ = T −X. The Lorentzian formula (A.3) is then

G∆,0(z, z̄) = NVd−1(zz̄)
∆
2

∫ ∞
0

dτ

∫ τ

0
ρd−2dρ

∫ π

0
dθ sind−3 θ

× 1

[(τ + 1)2 − ρ2]
∆
2 [(τ + 1− T )2 − (ρ2 − 2ρX cos θ +X2)]

∆
2 [τ2 − ρ2]

d−∆
2

,

(A.10)
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where VD = 2π
D+1

2

Γ(D+1
2

)
is the volume of a D-dimensional sphere. Let us first focus on the

θ integral:

∫ π

0
dθ sind−3 θ

1

[(τ + 1− T )2 − (ρ2 − 2ρX cos θ +X2)]
∆
2

=

d−4
2∑

n=0

(−1)n
(d−4

2

n

)
I2n(∆/2) ,

(A.11)

where we have defined u = τ + ρ and v = τ − ρ and

Im(α) ≡
∫ 1

−1
dy

ym

[(τ + 1− T )2 − (ρ2 − 2ρXy +X2)]α
. (A.12)

Let us compute the integral Im(α). First we note that∫ 1

−1
dy

1

(y +D)α
=

1

α− 1

[
1

(D − 1)α−1
− 1

(D + 1)α−1

]
. (A.13)

It follows that∫ 1

−1
dy

ym

(y +D)α
=

∫ 1

−1
dy

(y +D −D)m

(y +D)α
=

m∑
k=0

(−1)k
(
m

k

)
Dk

∫ 1

−1
dy

1

(y +D)α−m+k

=

m∑
k=0

(−1)k
(
m

k

)
Dk

α−m+ k − 1

[
1

(D − 1)α−m+k−1
− 1

(D + 1)α−m+k−1

]
.

(A.14)

Back to Im(α), we then have

Im(α) =
1

(2ρX)m+1

m∑
k=0

(−1)k
(
m

k

)
1

α−m+ k − 1

[
(τ + 1− T )2 − (ρ2 +X2)

]k
×
[

1

[(u− z̄ + 1)(v − z + 1)]α−m+k−1
− 1

[(u− z + 1)(v − z̄ + 1)]α−m+k−1

]
(A.15)

We would like to write the integrand as a sum of powers of (u− z̄ + 1) and (v − z + 1), so

that the final integral can be done using (A.5). To achieve this, we rewrite

(τ + 1− T )2 − (ρ2 +X2) =
1

2
(u− z̄ + 1)(v − z + 1) +

1

2
(u− z + 1)(v − z̄ + 1) (A.16)

We then have

Im(α) =
1

(2ρX)m+1

m∑
k=0

(−1)k

2k

(
m

k

)
1

α−m+ k − 1

×
k∑
`=0

(
k

`

){
[(u− z + 1)(v − z̄ + 1)]`

[(u−z̄+1)(v−z+1)]α−m−1+`
− [(u− z̄ + 1)(v − z + 1)]`

[(u−z+1)(v−z̄+1)]α−m−1−`

}
(A.17)
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We should further do the binomial expansion in the numerator by writing u − z + 1 =

u− z̄ + 1− (z − z̄) and so on. We therefore arrive at

Im(α) =
1

(2ρX)m+1

m∑
k=0

(−1)k

2k

(
m

k

)
1

α−m+ k − 1
(A.18)

×
k∑
`=0

(
k

`

) ∑̀
p1,p2=0

(−1)p1

(
`

p1

)(
`

p2

)

×
{

(z − z̄)p1+p2

(u− z̄ + 1)α−m−1+p1(v − z + 1)α−m−1+p2
− (z ↔ z̄)

}
.

Note that I2n(α) is an even function in ρ.

Let us now return to the conformal block:

G∆,0(z, z̄) = N Vd−1

2d−1
(zz̄)

∆
2

∫ ∞
0

du

∫ u

0
dv

(u− v)d−2

(u+ 1)
∆
2 (v + 1)

∆
2 u

d−∆
2 v

d−∆
2

×
d−4

2∑
n=0

(−1)n
(d−4

2

n

)
I2n(∆/2) . (A.19)

Since I2n(α) is even under the exchange u↔ v, we can replace the integration range to be

0 < u <∞ and 0 < v <∞ at the price of a factor 1/2:

G∆,0(z, z̄) = N Vd−1

2d
(zz̄)

∆
2

∫ ∞
0

du

∫ ∞
0

dv
(u− v)d−2

(u+ 1)
∆
2 (v + 1)

∆
2 u

d−∆
2 v

d−∆
2

×
d−4

2∑
n=0

(−1)n
(d−4

2

n

)
I2n(∆/2)

= N Vd−1

2d
(zz̄)

∆
2

d−4
2∑

n=0

(−1)n
(d−4

2

n

)
22n+1

(z − z̄)2n+1

2n∑
k=0

(−1)k

2k

(
2n

k

)
1

∆/2− 2n+ k − 1

×
k∑
`=0

(
k

`

) ∑̀
p1,p2=0

(−1)p1

(
`

p1

)(
`

p2

)

×
∫ ∞

0
du

∫ ∞
0

dv

[
(z − z̄)p1+p2(u− v)d−2−2n−1

(u+ 1)
∆
2 (v + 1)

∆
2 u

d−∆
2 v

d−∆
2

× 1

(u− z̄ + 1)∆/2−2n−1+p1(v − z + 1)∆/2−2n−1+p2
− (z ↔ z̄)

]
. (A.20)

The u, v integrals can be done by expanding (u−v)d−2−2n−1 and using (A.5). We therefore

arrive at the following final expression for the even-dimensional scalar conformal block as

– 44 –



J
H
E
P
0
6
(
2
0
1
9
)
1
2
4

a finite sum of the hypergeometric functions:

G∆,0(z, z̄) = N Vd−1

2d
(zz̄)

∆
2

d−4
2∑

n=0

2n∑
k=0

k∑
`=0

∑̀
p1,p2=0

d−3−2n∑
p=0

1

(z − z̄)2n+1
(−1)n+k+p1+p

× 22n+1−k

∆/2− 2n+ k − 1

(d−4
2

n

)(
2n

k

)(
k

`

)(
`

p1

)(
`

p2

)(
d− 3− 2n

p

)
(A.21)

× Γ(−d+∆
2 + 1 + p+ p1)Γ(d+∆

2 − 2− 2n− p)
Γ(∆− 2n− 1 + p1)

× Γ(d+∆
2 − 2n− 2 + p2 − p)Γ(−d+∆

2 + 1 + p)

Γ(∆− 2n− 1 + p2)

×
[
(z− z̄)p1+p2

2F1

(
∆/2−2n−1+p1,

−d+∆

2
+1+p+p1,∆−2n−1+p1, z̄

)
× 2F1

(
∆/2− 2n− 1 + p2,

d+ ∆

2
− 2n− 2 + p2 − p,∆− 2n− 1 + p2, z

)
− (z ↔ z̄)

]
.

Let us fix the overall normalization constant N . To do this, we only need to compute

the integral at z = z̄ = 0:

1

N = Vd

∫ ∞
0

dτ

∫ τ

0
dρ

ρd−2

[(τ + 1)2 − ρ2]∆(τ2 − ρ2)
d−∆

2

=
Vd
2d

d−2∑
k=0

(
d− 2

k

)
(−1)k

∫ ∞
0

du
1

(u+ 1)∆u
d−∆

2
−(d−2)+k

∫ ∞
0

dv
1

(v + 1)∆v
d−∆

2
−k

=
Vd
2d

d−2∑
k=0

(
d− 2

k

)
(−1)k

Γ(−d+∆
2 + k + 1)2Γ(d+∆

2 − k − 1)2

Γ(∆)2
. (A.22)

In four dimensions, d = 4, various sums in (A.21) collapse and we reproduce the

standard scalar conformal block [21, 30, 31]

G∆,0(z, z̄) =
2(∆− 1)

(∆− 2)

(zz̄)
∆
2

z − z̄

×
[

2F1

(
∆

2
− 1,

∆

2
,∆− 1, z

)
2F1

(
∆

2
− 1,

∆

2
− 1,∆− 1, z̄

)
− (z ↔ z̄)

]
=

zz̄

z − z̄

[
z

∆
2 z̄

∆−2
2 2F1

(
∆

2
,

∆

2
,∆, z

)
2F1

(
∆

2
− 1,

∆

2
− 1,∆− 2, z̄

)
−(z ↔ z̄)

]
.

(A.23)

In six dimensions we have also checked that (A.21) agrees numerically with the known

expression in [30].
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