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There are tensionless strings whenever two M5 branes coincide or whenever an M5 brane

approaches the M9 plane. These systems do not admit a low-energy Lagrangian descrip-

tion so new techniques are desirable to shed light on the physics of these phenomena. The

6-dimensional N = (1, 0) world-volume theory on the M5 branes is composed of massless

vector, tensor, and hyper multiplets, and has two branches of the vacuum moduli space

where either the scalar fields in the tensor or hyper multiplets receive vacuum expectation

values. Focusing on the Higgs branch of the low-energy theory, previous works suggest

the conjecture that a new Higgs branch arises whenever a BPS-string becomes tension-

less. Consequently, a single theory admits a multitude of Higgs branches depending on the

types of tensionless strings in the spectrum. The two main phenomena discrete gauging

and small E8 instanton transition can be treated in a concise and effective manner by

means of Coulomb branches of 3-dimensional N = 4 gauge theories. In this paper, a for-

malism is introduced that allows to derive a novel object from a brane configuration, called

the magnetic quiver. The main features are as follows: (i) the 3d Coulomb branch of the

magnetic quiver yields the Higgs branch of the 6d system, (ii) all discrete gauging and E8

instanton transitions have an explicit brane realisation, and (iii) exceptional symmetries

arise directly from brane configurations. The formalism facilitates the description of Higgs

branches at finite and infinite gauge coupling as spaces of dressed monopole operators.
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1 Introduction

The world-volume theories of M5 branes have led to interesting 6-dimensional theories.

A stack of coincident M5 branes gives rise to world-volume theories with N = (2, 0) su-

persymmetry, which more generally admit an ADE classification [1, 2]. A larger class of

6-dimensional supersymmetric theories has N = (1, 0) and their anomalies have been stud-

ied in works like [3–5]. An example are the Type IIA constructions with D6-D8-NS5 branes

of [6–8]. These brane constructions hinted at the existence of non-trivial conformal fixed-

points at the origin of the tensor branch, i.e. when all NS5 branes coincide. Subsequently,

a classification of 6-dimensional superconformal field theories has been proposed in [9, 10].

Although these are local quantum field theories, no Lagrangian description is known and

tensionless strings contribute to the low-energy degrees of freedom.

The degrees of freedom of 6-dimensionalN = (1, 0) supersymmetric theory are given by

vector multiplets, hypermultiplets, and tensor multiplets as well as other massless degrees

of freedom which arise due to tensionless strings [11]. Among others, the gravitational

anomaly cancellation [12] for such a theory requires [13, 14]

#{hypers}+ 29#{tensors} −#{vectors} = constant . (1.1)

In 6d theories the gauge coupling is a dynamical object as it is inversely related to a

scalar field of a tensor multiplet which simultaneously serves as tension of a BPS string.

At a generic point of the tensor branch, the 6d N = (1, 0) theory may admit a low-

energy effective description as all gauge couplings are finite. The corresponding Higgs

branch at finite coupling is understood as a hyper-Kähler quotient due to the amount of

supersymmetry [15]. At non-generic points of the tensor branch, the 6-dimensional theory

is generically strongly coupled and a description of the corresponding Higgs branch is not

straightforward. Since some BPS strings become tensionless whenever a gauge coupling is

tuned to infinity, new massless degrees of freedom are expected to contribute to the Higgs

branch such that it is still a hyper-Kähler space of larger dimension, but not a hyper-Kähler

quotient any more. Since these theories are non-Lagrangian, an alternative approach is

desirable to investigate Higgs branches at infinite coupling. Fortunately, another physical
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construction of hyper-Kähler singularities is known: the Coulomb branch of a 3-dimensional

N = 4 gauge theory. In fact, Coulomb branches have already been utilised to describe Higgs

branches of 4-dimensional Argyres-Douglas theories [16], 5-dimensional gauge theories [17–

19], and 6-dimensional gauge theories [20–22] at infinite coupling.

The focus of this paper lies on a particular class of 6d N = (1, 0) supersymmetric

gauge theories obtained from the world-volume theories of multiple M5 branes near an M9

plane on an A-type ALE singularity. This class has already been studied in some detail.

As discussed in [11], a system of multiple M5 branes on an ALE singularity C2/Γ, where

Γ ⊂ SU(2) is a (discrete) ADE subgroup, undergoes a phase transition at the fixed point of

the ALE space with new massless tensor multiplets appearing for D and E-type, but not

for A-type singularities. The jumps in Higgs branch dimension at a generic point and the

origin of the tensor branch for these theories has been computed in [23]. The inclusion of

the end-of-the-world M9 plane with its global E8 symmetry leads to the possibility of the

small E8 instanton transition [24], see also [6, 25–27]. In particular, the Higgs branches

exhibit an intimate relationship with the E8 instanton moduli space on the A-type ALE

space [20], see also [10, 11, 28–30].

The common feature of all the phenomena is the appearence of tensionless strings.

Previous works indicate the following conjecture:

Conjecture 1 Whenever a BPS-string becomes tensionless there is a singularity on the

tensor branch and the associated massless degrees of freedom give rise to a new, finitely

generated Higgs branch.

The multitude of Higgs branches can be understood as phases Pi of the theory in the sense

that the inverse gauge couplings and, hence, the scalar fields in the tensor multiplets serve

as order parameters. Whenever at least one order parameter approaches zero, the Higgs

branch changes discontinuously either due to a gauging of a discrete group or due to a

jump in dimension induced by the small E8 instanton transition.1

Here for a given phase Pi of the 6d N = (1, 0) theory, the emphasis lies on a systematic

derivation of an associated magnetic quiver Q(Pi) such that their data considered as 3d

N = 4 Coulomb branch does correctly describe the 6d N = (1, 0) Higgs branch at the

point Pi of the tensor branch, i.e.

H6d (phase Pi) = C3d
(
magnetic
quiver Q(Pi)

)
. (1.2)

Since there are no gauge degrees of freedom on the M5 brane there is the challenge to read

off the low-energy gauge dynamics. It is useful to consider the dual Type IIA or Type I′

description [6, 7] such that 6d N = (1, 0) gauge dynamics can be deduced from the brane

system involving D6, D8 and NS5 branes, possibly in the presence of orientifolds. The

latter is known to be T-dual to the Type IIB construction [31] of 3d N = 4 theories via

D3-D5-NS5 brane configurations.

The key tool to establish the objective (1.2) is to find a generalisation of the electric

and magnetic theories within the Type IIB D3-D5-NS5 brane configurations of 3d N = 4

1More phenomena show up in cases where the ALE singularity is not of A-type.
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theories. The derivation of the magnetic quiver for the different phases of the 6d theory

can be summarised in the following two steps:

(i) Change to the phase of the D6-D8-NS5 brane system where all D6s are suspended

between D8 branes. This is analogous to the magnetic phase in D3-D5-NS5 brane

system, where the D3 branes are in between D5 branes and the D1 branes are the

fundamental objects.

(ii) Deduce the magnetic quiver from this phase of the brane system by suspending D4

branes, which are the higher-dimensional analogous of the D-string.

As as consequence, this procedure establishes a description of 6d N = (1, 0) Higgs branches

as space of dressed monopole operators as originally proposed in 3d N = 4 Coulomb branch

set-up [32]. The analysis of the phases as well as the transitions between the different

phases requires many of the 3d Coulomb branch techniques that have been developed re-

cently. Starting from the realisation of the Coulomb branch as a space of dressed monopole

operators and its description via the Hilbert series [32], useful techniques include: Kraft-

Procesi transitions and transverse slices [21, 33, 34], quiver subtraction [35], and discrete

quotients [22, 36, 37].

It is worth pointing out that the Hilbert series is not an invariant quantity of the

theory, in the sense that it varies between finite and infinite gauge coupling. In other

words, the (Higgs branch) Hilbert series is not constant along the tensor branch. However,

precisely this fact allows to utilise the Hilbert series as a tool to analyse the Higgs branch of

vacuum moduli spaces as they vary along the tensor branch, see Conjecture 1. This has to

be contrasted with quantities which are invariant under the choice of vacuum, i.e. constant

along the tensor branch, because these would be insensitive to the different phases of the

Higgs branch.

The outline of the remainder is as follows: after introducing the set-up, the concept

of electric and magnetic quiver is explained in section 2 alongside with two paramount

examples. Thereafter, in section 3 the embedding of Zk ↪→ E8 is recalled and the cases

of multiple M5 branes near an M9 plane on a C2/Zk singularity are elaborated on for

k = 1, 2, 3, 4. The general case is presented in section 3.6. An observation regarding the

discrete 6d Theta-angle is discussed in section 3.7. A conclusion and outlook is provided

in section 4. Moreover, appendix A provides details of background material.

2 Magnetic quivers

2.1 Set-up

Consider M5 branes and an M9 plane as well as an Ak−1 ALE singularity stretching the

space-time dimensions as indicated in table 1. The singularity at the origin of C2/Zk is

localized in directions x7, x8, x9, and x10, and spans directions x0, x1, . . . , x6. Therefore,

it is represented as a horizontal line that ends on M9 in the diagram below. The M-theory
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M-theory x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

M5 × × × × × ×
M9 × × × × × × × × × ×

C2/Zk × × × × × × ×
Type IIA x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×
O8−, D8 × × × × × × × × ×

D6 × × × × × × ×
F1 × ×
D4 × × × × ×

Table 1. Upper part: occupation of space-time directions by M5, M9, and Ak−1 singularity in

M-theory. Lower part: occupation of space-time directions by NS5, O8−, D8, and D6 in Type IIA.

The fundamental string F1 and the D4 branes are virtual objects which are used to read off the

electric and magnetic quivers.

picture can be presented as

Ak−1 ×

×

× ×

×
M5

M9
x6

x7,8,9,10

(2.1)

The corresponding description in Type IIA is obtained by an identification as follows: the

NS5 originates from the M5 which is point-like in the x10 direction. The E8 end-of-the world

9-plane M9 gives rise to an O8− orientifold together with 8 D8s on top of it. Lastly, the

Ak−1 ALE space C2/Zk in M-theory provides a local description of k coincident D6 branes

in Type IIA on flat space. In particular, the directions x7, x8, . . . , x10 in which the singular

origin of the ALE singularity is localised become in the three directions transverse to the

D6s and the direction of the M-theory circle. The corresponding Type IIA diagram is:

Ak−1 ×

×

× ×

×
M5

M9
x6

x7,8,9,10

(2.2)

Note that the D6 branes have been assigned different boundary conditions along the x6

direction. This is an essential part of our analysis and will be developed in full detail in

section 3.

As an aside, some theories considered in later sections can admit D6, D8, and NS5

branes and additionally include O8∗planes, which occupy the same space-time dimensions

as the O8−.
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Type IIB x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×
D5 × × × × × ×
D3 × × × ×
F1 × ×
D1 × ×

Table 2. Occupation of space-time directions by NS5, D5, and D3 in Type IIB. The fundamental

string F1 induces the electric theory, while the D-string D1 induces the magnetic theory.

2.2 Electric and magnetic quiver

As a detour, consider the D3-D5-NS5 brane configurations of [31] as summarised in table 2.

A D3 brane suspended between two NS5s gives rise to an electric gauge group with a

vector multiplet, whose gauge coupling is inversely proportional to the distance between

the NS5s; while a D3 between D5 branes leads to an electric hypermultiplet. Consequently,

the electric quiver gauge theory for the low-energy effective theory on the D3 world-volume

is read off from the phase of the brane system in which all D3s are suspended between NS5

branes. In particular, the way fundamental strings can end on the branes gives rise the

low-energy degrees of freedom. On the other hand, the magnetic theory can be considered

equally well: here, the D3s between two D5 branes give rise to a magnetic gauge group with

twisted vector multiplet [38], whose gauge coupling inversely proportional to the distance

between the D5s. The magnetic hypermultiplet or twisted hypermultiplet [38] originates

from D3 branes in between NS5 branes. Taking this a step further, one can apply S-duality

such that D5 and NS5 branes are interchanged, while the D3 branes are invariant. Notably,

the fundamental string is exchanged with the D-string, which is the fundamental object at

large string coupling. Therefore, the degrees of freedom encoded on the magnetic quiver

gauge theory are due to the way D1 branes stretch between D3 and NS5 branes.

Returning to 6-dimensional theories and D6-D8-NS5 brane configurations of [6], one

notices that these are obtained from the D3-D5-NS5 configuration by three T-dualities

along x3, x4, and x5. In the following, two phases of the Type IIA brane setting are

important. Firstly, consider the phase in which all D6s are suspended between NS5s. Then

the conventional 6-dimensional low-energy effective field theory description is read off from

fundamental strings stretching between D6s. The resulting theory can be expressed as

a 6-dimensional quiver gauge theory which is denoted as electric quiver in what follows.

Secondly, consider the phase in which all D6s are suspended between D8s and the NS5s

are moved away from the D6s. In this phase one may suspend D4 branes between the

D6s as well as between D6s and NS5s or NS5s and NS5s. The D4 suspension pattern

is conveniently summarised in a quiver graph which one may call magnetic quiver. The

reason that D4 branes arise can be seen by following the T-dualities from the corresponding

phase in the D3-D5-NS5 configuration where D1 branes give rise to the magnetic quiver

gauge theory. Thus, applying T-dualities along x3, x4, and x5 to D1 branes naturally
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results in D4 branes. Nevertheless, a crucial difference arises in 6d: since the NS5 branes

and the suspended D6 branes share the same world-volume, the NS5s do contribute to the

dynamics. Hence, lead to gauge nodes in the magnetic quiver as opposed to flavour nodes.

The main point of this paper is to argue that by taking the magnetic quiver data as in-

put for the 3-dimensional N = 4 Coulomb branch description in terms of dressed monopole

operators one can capture all phases of the 6-dimensional Higgs branches in a systematic

and concise fashion. Therefore, it is imperative to distinguish the moduli spaces associated

with the two kinds of quivers: the electric quiver data serves as definition of a low-energy

effective 6d N = (1, 0) theory and, in particular, its classical Higgs branch; whereas the

magnetic quiver data defines a Coulomb branch of a 3d N = 4 gauge theory describing

the Higgs branch of the strongly coupled 6d N = (1, 0) theory. Both moduli spaces are

hyper-Kähler singularities (symplectic singularities, see [39]) with certain symmetries, as

recalled in appendix A.

Before considering the M5 branes near the end-of-the world M9 plane on an Ak−1
singularity, it is instructive to understand the two extreme cases: M5 branes on a Ak−1
singularity and M5 branes near an M9 plane.

Notation. In order to distinguish the electric from the magnetic quiver, the following

conventions are used: gauge nodes in the electric quiver are denoted explicitly by the gauge

groups; whereas gauge nodes in the magnetic quiver are only labelled by the ranks ri of

unitary gauge nodes U(ri).

2.3 Discrete gauging: M5 branes on A-type singularity

A system of multiple M5 branes and an Ak−1 singularity can exhibit many phases

D6
NS5 O8−

D8

x6

x7,8,9

(2.3)

depending on whether the M5s are on the singularity or away from it. Restricting to the

phase where all M5s are on the singularity (i.e. they are at the origin of coordinates x7,

x8,x9 and x10), there exist multiple phases describing the positions of the M5 along the x6

direction. In other words, if the M5s are separated or some of them coincide.

Consider n M5 branes on an Ak−1 singularity, in the phase where all M5 are located

at the singularity, but are separated along the x6 direction:

D6
NS5 O8−

D8

x6

x7,8,9

(2.4)

– 6 –
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The Type IIA description yields the following:

Ak−1 ×

×

× ×
×

×
×

M5

x6

x7,8,9,10

(2.5)

where the k indicates that there are k D6 branes stacked together. The electric quiver is

read off from this brane system to be

Ak−1 ×

×

× ×
×

×
×

M5

x6

x7,8,9,10

. (2.6)

Note in particular, that the quiver describes a 6d N = (1, 0) low energy effective field

theory in which all gauge and flavour nodes denote SU(k) groups.

One may move to a different phase of the brane system by, firstly, pulling in D8 branes

from infinity and, secondly, rearranging the brane system such that all D6 branes are

suspended between D8 branes. As a result, one obtains

Ak−1 × × × ×
n M5

x6

x7,8,9,10

(2.7)

As aforementioned, one may now consider the possibility to suspend D4 branes between

the D6 and the NS5 branes. In an interval between two D8s with m D6s in between,

the different ways to connect D4 branes between the D6s naturally furnishes the adjoint

representation of U(m). This is analogous to Chan-Paton factors of an open string end-

ing on D-branes. Hence, this is a 1
4 BPS configuration which induces a magnetic vector

multiplet. Likewise, the D4 branes stretching between two adjacent intervals with m and l

D6 branes furnish the bifundamental representation of U(m)× U(l) such that this 1
4 BPS

system contributes a bifundamental magnetic hypermultiplet.

For lower dimensional settings, like in table 2, this would be the end of the discussion,

but here there are further possibilities. Recall that both the NS5 and the suspended D6

branes have 6-dimensional world volumes; hence, the NS5s contribute to the dynamics too.

More concretely, one may also stretch D4 branes between NS5 branes. Since the NS5 branes

are not subject to boundary conditions on any other brane, they are 1
2 BPS and as such

contribute a magnetic vector multiple together with an adjoint magnetic hypermultiplet.

If there are multiple NS5s in the same interval, but they are separated in x6 direction then

the D4 stretched between the NS5 branes does not contribute massless degrees of freedom.

In that case, each NS5 contributes with a single U(1) gauge node and the corresponding

adjoint hypermultiplet. Furthermore, a D4 stretched between a NS5 and a D6 can only

contribute massless degrees of freedom if they are in the same interval. consequently, a

– 7 –
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single NS5 and stack of m D6 give rise to a bifundamental of U(m)×U(1). Following these

observations results in the magnetic quiver of the form

Ak−1 × × × ×
n M5

x6

x7,8,9,10

(2.8)

Note that there is a bouquet of n separate U(1) nodes at the top, which results from the

n separated NS5 branes.2 If the data underlying the magnetic quiver is understood as

defining a 3d N = 4 quiver gauge theory, then the significance of this construction is

H6d
(
electric
quiver (2.6)

)
= C3d

(
magnetic
quiver (2.8)

)
, (2.9)

as equality of moduli spaces. For consistency one may verify that the symmetries and

dimensions agree, see appendix A; indeed, one finds

GF = SU(k)2 ×U(1)n = GJ and dimH6d = k2 + n− 1 = dim C3d . (2.10)

In fact, the equality (2.9) has been shown to arise in two steps in [22]: firstly, S-duality

or 3d mirror symmetry for the quiver (2.6) where all special unitary nodes are replaced

by unitary nodes. Secondly, employing the concept of implosion [40] on the 3d mirror to

arrive at the magnetic quiver (2.8).

As discussed in [22, 36, 37], the 6d Higgs branch exhibits many more phases. The

phases originate when some M5 branes become coincident along the x6 direction. Clearly,

there exists no 6d low-energy effective quiver description as the distance between two

neighbouring NS5 branes determines the inverse gauge coupling of the corresponding gauge

group. Therefore, there exists no electric quiver for any of these strongly coupled phases.

In contrast, the magnetic phase can be readily applied to this setting. Suppose that from

the n M5 branes ni (i = 1, . . . , l such that
∑l

i=1 ni = n) of these coincide at x6i , then the

corresponding brane picture becomes

D6

k k k k k

n NS5

x6

x7,8,9

(2.11)

To determine the magnetic quiver for this brane system, one has to apply the above

considerations to D4 branes stretched between coincident NS5 branes. Since a stack of

m coincident NS5 branes is a 1
2 BPS configuration, there are two contributions: firstly, a

magnetic vector multiplet for a U(m) gauge node; secondly, a magnetic hypermultiplet in

the adjoint representation of U(m), which is denoted by a loop attached to the gauge node.

2Since the attention is directed towards the Coulomb branch, the neutral adjoint hypermultiplet from

any single NS5 brane is neglected.
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From the brane configuration, the magnetic vector multiplet is associated with the motion

in x7, x8, x9 direction, while motions in x6 direction give rise to the additional magnetic

hypermultiplet. In other words, from the 3d N = 4 perspective each stack of ni NS5 branes

contributes an U(ni) together with an adjoint-valued hyper multiplet. Equipped with these

rules, the magnetic quiver associated to the brane configuration (2.11) is read off to be

D6

k k k k k

n NS5

x6

x7,8,9

(2.12)

Some comments are in order. Firstly, the magnetic quiver prescription provides a system-

atic description of all the (weakly and strongly coupled) phases of the 6d Higgs branches.

The underlying 3d Coulomb branch quiver has already been discussed in [22, 36, 37]. Sec-

ondly, the novel perspective in the present paper is the brane realisation of these magnetic

quivers via suspended D4s. Thirdly, the use of branes makes the discrete gauging relation

between the various Higgs branches manifest. In more detail, the conjecture of [22] asserts

that the 6d Higgs branches corresponding to (2.8) and (2.12) are related via gauging of

discrete permutation groups. The Type IIA picture in phase (2.7) exhibits an Sn symmetry

due to the indistinguishable nature of the NS5s. When the NS5 branes are coincident as

in (2.11) the discrete
∏

i Sni group is gauged.

2.4 Small E8 instanton transition: M5 branes near M9 plane

The other extreme is a system of M5 branes near an M9 plane which do also exhibit various

phases

SU
(k)

SU
(k)

. . .

SU
(k)

k k

n− 1

(2.13)

depending on whether the M5 branes are outside the M9 or inside. Here, C2 is conveniently

treated as C2/Z1, i.e. the A0 singularity. Correspondingly, in the Type IIA picture there

is a single D6 brane.

Single M5. Consider a single M5 near an M9. The phase where the M5 is outside the

M9 has the following brane system:

SU
(k)

SU
(k)

. . .

SU
(k)

k k

n− 1

(2.14)
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It can be described in Type IIA as follows:3

· · ·

· · ·

· · ·...
...

...

k D8 k D8

n NS5

x6

x7,8,9

(2.15)

⇔ electric quiver: · · ·

· · ·

· · ·...
...

...

k D8 k D8

n NS5

x6

x7,8,9

Note that there is no choice of boundary condition involved. Since there is only one D6

and all eight D8 are strictly speaking on top of the O8− orientifold, one may connect the

D6 to any of the D8s. In addition, the brane system in (2.15) only displays one side of

the entire brane content as all the mirror objects outside the O8− behave identical to their

counterparts. That being said, note that the depicted NS5s are technically half NS5 branes.

Similar to above, one can move to the phase of the brane system where all D6s are

suspended between D8s by pulling one D8 from infinity, one obtains

1 2
· · ·

k−1 k k−1
· · ·

2 1

1 . . .

n

1 (2.16)

⇔ magnetic quiver:

1 2
· · ·

k−1 k k−1
· · ·

2 1

1 . . .

n

1

Note again that one U(1) gauge node originates from the D6 suspended between two D8s,

while the other U(1) stems from the NS5 (once again the neutral hypermultiplet that also

corresponds to the NS5 has been omitted in the depiction of the magnetic quiver, since

it does not contribute to the 3d Coulomb branch). The relation between the electric and

magnetic quiver is given in terms of their associated moduli spaces

H6d
(
electric
quiver (2.15)

)
= C3d

(
magnetic
quiver (2.16)

)
= C2 = H . (2.17)

3In the remaining brane diagrams we will omit the labels for the different branes. The brane diagrams

are either M-theory or Type IIA diagrams and follow the conventions established in diagrams (2.1) and (2.2)

respectively.
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However, there is another phase of the 6d system which is reached when the M5

approaches the M9 plane. In Type IIA the half NS5 can be moved towards the O8−

through the D8s via a transition with brane creation [8, section 3.2]. As first step, one

moves the half NS5 behind the last D8 and takes care of brane creation as follows:

· · ·

...
n1

· · ·
...

nl

· · ·...
...

...

k k

x6

x7,8,9

(2.18)

Next, one merges the half NS5 on the orientifold with its mirror image, then splits

them along the O8− such that these are free to move vertically. All the newly created D6s

become unfrozen and are now free to move along the vertical directions as well. Recalling

that a D6 stretched between a D8 and its mirror image does not lead to a massless BPS

state, the D6s in the last two segments closest to the O8− need to be rearranged as follows:

· · ·

...
n1

· · ·
...

nl

· · ·...
...

...

k k

x6

x7,8,9

(2.19)

In the last brane system the 8 D6s in the interval between the rightmost D8 and the O8−

have been connected with their mirror images. From this, one can read off the magnetic

quiver using the rules established before

1 2

. . .

k−1 k k−1

. . .

2 1

n1 . . . nl
(2.20)

This result deserves some comments. Firstly, the bifurcation in the magnetic quiver is a

direct consequence of the brane picture (2.19). In more detail, there is a stack of three D6s

between the 7th and 8th D8s starting from the left, as well as a stack of four D6s between

the 8th and the 7th D8s, but these D6s go all the way through the O8−. By the previous

arguments, the stack of three and four D6 give rise to an U(3) and an U(4) magnetic

vector multiplets, respectively, which are both connected via magnetic bifundamental hy-

permultiplets to the U(6) gauge node from the stack of six D6s in between the 6th and 7th

D8s. Secondly, the U(2) node at the very right of the quiver results from the two half NS5
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branes that can move freely along the O8−. The setting is similar to the discrete gauging

argument of (2.11): the two half NS5 branes on the O8− are coincident with the difference

that the magnetic adjoint hypermultiplet is frozen due to the orientifold projection; we

would like to relate this effect also to the fact that the NS5s on the O8− cannot move

in the x6 direction. The resulting U(2) magnetic gauge node is connected via a magnetic

bifundamental hypermultiplet due to D4 branes stretching between the stack of four D6s

and the stuck NS5 branes. Thirdly, treating the magnetic quiver from (2.16) and (2.20)

as 3d N = 4 Coulomb branch quiver, one observes that the difference in dimension is 29

and the symmetry of (2.20) is enhanced to E8 in contrast to (2.16). This effect is known

as small E8 instanton transition, as discussed in [21].

It is important for later discussion that the same quiver can be read off from a different

(but also maximal) subdivision of the D6s of the brane system

1 2

. . .

k−1 k k−1

. . .

2 1

n1 . . . nl
(2.21)

from which one would read off

A0 × × × × ×M5
M9

x6

x7,8,9,10

(2.22)

i.e. the difference between (2.19) and (2.21) is that the gauge nodes after the bifurcation

are interchanged. Moreover, the two half NS5 branes on the O8− have each a D6 ending

on them. These D6s do not contribute any degrees of freedom as they are frozen between

a D8 and a NS5. However, the NS5s still contribute the gauge degrees as these are free to

move along the O8−.

The point to appreciate here is that the prescription of magnetic quiver is capable to

produce a quiver that contains an affine E8 Dynkin diagram in its balanced set of nodes.

Therefore, the moduli naturally has an E8 symmetry. Again, the relevant 3d N = 4

Coulomb branch quiver has been proposed before [21], but the proposal of this paper

provides an explicit brane realisation.

Remark. The two brane configurations (2.19) and (2.21) deserve to be commented on.

At first glance, there are two different brane systems in which the numbers of freely moving

D6 branes are identical. The corresponding magnetic quivers differ only by an exchange of

(4′)–(2′) and (3′) legs, using the Dynkin labels of the affine E8 Dynkin diagram. Therefore,

the Coulomb branches of (2.19) and (2.21) are isomorphic.

It is not clear whether these two brane systems do hint on a geometric phenomenon.

One possibility might be moduli spaces which are the union of two cones, as observed in 4d

N = 2 SU(2) gauge theory with 2 flavours [41], in 3d N = 4 USp(2n) gauge theory with
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2n flavours [42], or in 5d SQCD [19]. However, the remainder of this paper consists of a

detailed study of the brane configurations of type (2.19) since they provide novel insights on

many of the physical features already presented in [20–22]. The possibility of a geometric

significance of the two configurations (2.19) and (2.21) is interesting, but further analysis

is required and postponed to future work.

Multiple M5 branes on A0. One can readily repeat the analysis for multiple M5s near

an M9. There are multiple phases that can be realised: M5s outside can either be coincident

or separated along the x6 direction, while one may also move M5s into the M9. Suppose

there are n M5 in total from which n0 moved inside the M9 and from the remaining M5s

there are ni coincident at position x6i , for i = 1, . . . , l. Of course
∑l

i=0 ni = n. The relevant

magnetic quiver can be extracted from the previous arguments: each M5 that moves inside

the M9 creates branes in the pattern of (2.19). Moreover, the coincident branes outside

the M9 affect the brane picture as in (2.11) for k = 1. Hence, the magnetic quiver reads

A0 × × × × ×M5
M9

x6

x7,8,9,10

(2.23)

Again, the symmetry contains and E8 factor which is recognised by the pattern of balanced

nodes. Consequently, the magnetic quivers provide a systematic description for all (weakly

and strongly coupled) phases of the 6d Higgs branch.

2.5 Derivation rules

Following the discussion of sections 2.3–2.4, the procedure for deriving the magnetic quiver

can be formalised by a few rules.

Conjecture 2 (Magnetic quiver) For a D6-D8-NS5 brane system, cf. table 1, in which

all D6 branes are suspended between D8 branes, the massless BPS states, deduced from

stretching virtual D4 branes, arise from the following configurations:

(i) Stack of m D6 branes suspended between two D8s in a finite x6 interval: the vertical

motion along the x7, x8, x9 directions gives rise to a U(m) magnetic vector multiplet

due to D4s stretched between them.

A0 ×M5
M9

x6

x7,8,9,10

(2.24)

(ii) Stacks of m D6 and l D6 branes in adjacent D8 intervals along the x6 direction: the D4

branes suspended between D6s of different intervals induce a magnetic bifundamental
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hypermultiplet of U(m)×U(l).

A0 ×M5
M9

x6

x7,8,9,10

(2.25)

(iii) Stack of m NS5 branes at coincident x6 position: the vertical motion along the x7,

x8, x9 directions gives rise to a U(m) magnetic vector multiplet due to D4s stretched

between. If the NS5s are free to move along the x6 direction, there is an additional

hypermultiplet in the adjoint representation of U(m) (this is in contrast to the NS5s

being stacked at the O8− plane, where there is no adjoint hypermultiplet in the mag-

netic quiver).

(2.26)

(iv) Stacks of l D6 and m NS5 branes between two D8 in a finite x6 interval: the vertical

distance in the x7, x8, x9 directions leads to a magnetic bifundamental hypermultiplet

of U(l)×U(m).

1 1
(2.27)

The massless degrees of freedom can be encoded in a quiver diagram in the familiar way.

2.6 Phases and their geometry

The two fundamental cases of section 2.3 and 2.4 are sufficient to treat all cases of n M5

branes near an M9 plane on C2/Zk, provided the embeddings Zk ↪→ E8 are known, see

section 3.1. Before proceeding to the general case, some remarks are in order.

Firstly, two Higgs branches H6d
1,2 which are related via discrete gauging of a discrete Sl

permutation group satisfy

H6d
1 = C3d1 = C3d2 /Sl = H6d

2 /Sl ⇒ R(H6d
1 ) ⊂ R(H6d

2 ) , (2.28)

where R denotes the associated chiral rings. Note both moduli spaces have the same

dimension as only a discrete group has been gauged in the electric theory or quotient by

in the magnetic theory [22, 36, 37]. However, the inclusion holds only on the space of

functions or, equivalently, the space of protected operators.

Secondly, two Higgs branches H6d
1,2 which are related via a small E8 instanton transition

satisfy the following quiver subtraction relation on their magnetic quivers

H6d
i = C3d

(
magnetic
quiver Qi

)
, i = 1, 2 , OE8

min = C3d (QE8) (2.29)

⇒ Q1 − Q2 = QE8 , . (2.30)
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Note in particular that H6d
2 ⊂ H6d

1 and that the transverse slice of H6d
2 inside H6d

1 is given

by the closure of the minimal nilpotent orbit OE8

min of E8. As simplest example, consider

the quivers (2.16), (2.20) and perform the quiver subtraction [21, 35] as follows:

−
1 1

=

(2.31)

such that

H6d
1 = C3d

(
magnetic
quiver (2.16)

)
= H ⊂ H6d

2 = C3d
(
magnetic
quiver (2.20)

)
= H×OE8

min (2.32)

and the transverse slice OE8

min becomes apparent in this example.

This highlights and clarifies the interplay between the size of the U(1)-bouquet and the

E8 transition, because it originates from motions of NS5 branes in the brane configuration.

Moreover, all phase transitions that were originally derived from the brane setting can be

equally well understood from operations on the magnetic quivers.

3 Multiple M5 branes near an M9 plane on Ak−1 singularity

After establishing the usefulness of magnetic quivers and the phase of the Type IIA brane

setup in which all D6s are suspended between D8 branes, the generic case of M5 branes

near an M9 plane on a C2/Zk singularity can be approached. The arising difficulty is the

need to specify the embedding of Zk into the E8 symmetry of the end-of-the-world M9 or,

put differently, to assign boundary conditions of the D6 on the D8 branes in the Type IIA

or Type I′ set-up.

3.1 Embedding of Zk into E8

Following [10, 43], the embedding of Zk ↪→ E8 can be labelled by non-negative integer

fluxes (
m′3

m1 m2 m3 m4 m5 m6 m
′
4 m

′
2

)
. (3.1)

Using the Dynkin labels ai of affine E8

1

1

, (3.2)
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the fluxes determine the order k of the Ak−1 singularity via

k =
6∑

i=1

aimi +
∑

i=2,3,4

a′im
′
i , (3.3)

such that ai = i and a′i = i. The particular choice of embedding has an immediate physical

consequence on the 6d theory: the commutant of the image of Zk inside E8 is isomorphic

to the global symmetry. In fact, the commutant can be read off from the affine E8 Dynkin

diagram by deleting the nodes that take non-trivial flux (3.1).

Most of the considerations will be within the Type IIA framework; hence, it is useful to

reformulate the embeddings Zk ↪→ E8 via partitions ~λ = (λ1, . . . , λ9) which determine the

boundary conditions of the k D6 ending on the 8 D8 branes on top of the O8− orientifold.

The following choice is useful:

mi = λi − λi+1 , for i = 1, . . . , 6 and

m′3 = λ7 + λ8 , m′4 = λ7 − λ8 , m′2 = λ8 − λ9 .
(3.4)

Note that this parametrisation suggests that mi together with m′3 and m′4 form the simple

roots of SO(16), which is natural since there are 8 D8 present. Similarly, the mi together

with m′4 and m′2 furnish the simple roots of SU(9). Alternatively, one can think in terms

of linking numbers li for the i-th D8 branes, which are defined as

li := #{D6 ending from the left} −#{D6 ending from the right}+ #{NS5 to the right}
(3.5)

such that li = λi for all i. As a comment, if the λi are such that only the first eight

linking numbers are non-negative, then Type IIA with 8 D8 branes is the useful setting. If,

however, all nine linking numbers are non-negative then Type I′ with 9 D8 branes becomes

convenient.

Given the embedding Zk ↪→ E8, one can now consider the first few cases and finally

present the general result.

3.2 Case k = 1

There is only one possibility: m1 = 1 and all other fluxes (3.1) vanish. The linking numbers

are (1, 07) and the Type IIA setting has already been discussed in section 2.4.

3.3 Case k = 2

There exist three possibilities, cf. [20, section 5.1]:

m1 = 2 , m2 = 1 , or m′2 = 1 , (3.6)

which will be discussed in turn below. The details of the discrete gauging phase transitions

or small E8 instanton transition will not be spelled out, as these are straight forward

operations on the brane picture that manifest themselves either as local operations on the

associated bouquet or as inverse operations of quiver subtraction.
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3.3.1 Symmetry SU(2)× E8 — case m1 = 2

The linking numbers read l = (2, 07) and the Type IIA brane system is given by

(3.7)

1

1

(3.8)

which gives rise to the electric quiver

⇒ . (3.9)

The last step is needed as there is no U(1) gauge symmetry in 6 dimensions. The resulting

6d quiver gauge theory has flavour symmetry and Higgs branch dimension given by

GF = (SO(4))2 ×USp(2)n−3 ∼= SU(2)n+1 and dimH6d = n+ 2 . (3.10)

Likewise, one may change to the brane system in which all D6s are suspended between D8

branes and reads off the magnetic quiver

(3.11)

⇔

where the topological symmetry and Coulomb branch dimension of the magnetic quiver

are

GJ = SU(2)n+1 and dim C3d = n+ 2 . (3.12)

The electric and magnetic quiver for the weakly coupled phase are related via their asso-

ciated moduli spaces: H6d(electric quiver) = C3d(magnetic quiver).
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3.3.2 Symmetry SU(2)× (E7 ×U(1)) — case m2 = 1

The linking numbers read l = (12, 06) and the Type IIA brane system is given by

1 1 2 3 4 5 6 4 2

3

(3.13a)

1 1 2 3 4 5 6 4 2

3

(3.13b)

from which one can read off the electric quiver

, (3.14)

with flavour symmetry and Higgs branch dimension

GF = SO(4)2 ×USp(2)n−2 ∼= SU(2)n+2 and dimH6d = n+ 3 . (3.15)

Likewise, one may change to the phase of the brane system which yields the magnetic

quiver

⇔

1 1 2 3 4 5 6

4

2

3
(3.16)

where the topological symmetry and Coulomb branch dimension read

GJ = SU(2)n+2 and dim C3d = n+ 3 . (3.17)

Again, the electric and magnetic quiver for the weakly coupled phase are related via

H6d(electric quiver) = C3d(magnetic quiver).

3.3.3 Symmetry SU(2)× SO(16) — case m′2 = 1

The linking numbers read l = (08) and the Type IIA brane system is given by

1 1 2 3 4 5 6

4

2

3

(3.18)
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which gives rise to the electric quiver

1 n0 2n0 3n0 4n0 5n0 6n0 4n0 2n0

3n0

n1 . . . nl , (3.19)

with flavour symmetry and Higgs branch dimension

GF = SO(4)×USp(2)n−1 × SO(16) ∼= SU(2)n+1 × SO(16) and dimH6d = n+ 16 .

(3.20)

Note that the theory is anomaly free as USp(Nc) is equipped with Nf = Nc + 8 flavours.

As before, one may change to the following phase of the brane system

1 n0 2n0 3n0 4n0 5n0 6n0 4n0 2n0

3n0

n1 . . . nl (3.21)

which yields the magnetic quiver

...
m D6

magnetic quiver

m

D8

. (3.22)

The dimensions and symmetries of the magnetic quiver are

GJ = SU(2)n+1 × SO(16) and dim C3d = n+ 16 . (3.23)

3.4 Case k = 3

There exist five possibilities to embed Z3 into E8:

m1 = 3 , m1 = 1, m2 = 1 , m1 = 1, m′2 = 1 , m3 = 1 , or m′3 = 1 .

(3.24)

This will be discussed in detail below. Again, discrete gauging or small E8 instanton

transitions will not be elaborated on. The focus is put on deriving the associated magnetic

quiver for the electric quiver using the rules of Conjecture 2.
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3.4.1 Symmetry SU(3)× E8 — case m1 = 3

The linking numbers read l = (3, 07) and the Type IIA brane system is given by

...
m D6

magnetic quiver

m

D8

(3.25a)

D8

...
m D6 ...

l D6

magnetic quiver

m l
(3.25b)

which gives rise to the electric quiver

D8

...
m D6 ...

l D6

magnetic quiver

m l
(3.26)

⇒ ...
m NS5

magnetic quiver

m

D8

,

wherein the last step is necessary as there are no U(1) gauge nodes in 6d. The flavour

symmetry and Higgs branch dimension of the electric quiver are

GF = SU(3)×U(1)n and dimH6d = n+ 5 . (3.27)

Changing the brane system to the phase were D6s are suspended between D8 branes leads

to the magnetic quiver

...
m NS5

magnetic quiver

m

D8

(3.28)

⇔
...

m NS5

...
l D6

magnetic quiver

l

m

D8

.
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The Coulomb branch dimension and symmetries are

GJ = SU(3)×U(1)n and dim C3d = n+ 5 . (3.29)

3.4.2 Symmetry SU(3)× (U(1)× E7) — case m1 = m2 = 1

The linking numbers read l = (2, 1, 06) and the Type IIA brane system is given by

...
m NS5

...
l D6

magnetic quiver

l

m

D8

(3.30a)

1 1 2 3 4 5 6 4 2

3

(3.30b)

which gives rise to the electric quiver

1

1

, (3.31)

with flavour symmetry and Higgs branch dimension

GF = SU(3)×U(1)n+1 and dimH6d = n+ 6 . (3.32)

Passing to the brane system for the magnetic quiver, one obtains

1 2 3 4 5 6 4 2

3

⇔
1 2 3 4 5 6 4 2

3
(3.33)

and the dimensions and symmetries of the magnetic quiver are

GJ = SU(3)×U(1)n+1 and dim C3d = n+ 6 . (3.34)
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3.4.3 Symmetry SU(3)× (SU(3)× E6) — case m3 = 1

The linking numbers read l = (13, 05) and the Type IIA brane system is given by

1 2 3 4 5 6 4 2

3
(3.35a)

(3.35b)

which gives rise to the electric quiver

, (3.36)

with flavour symmetry and Higgs branch dimension

GF = SU(3)2 ×U(1)n and dimH6d = n+ 8 . (3.37)

To derive the magnetic quiver, one passes to the following phase of the brane system:

⇔ (3.38)

where the dimensions and symmetries are

GJ = SU(3)2 ×U(1)n and dim C3d = n+ 8 . (3.39)

– 22 –



J
H
E
P
0
6
(
2
0
1
9
)
0
7
1

3.4.4 Symmetry SU(3)× (U(1)× SO(14)) — case m1 = m′2 = 1

The linking numbers read l = (1, 07) and the Type IIA brane system is given by

SU
(2)

. . .

SU
(2)

U
(1)

2

1

n− 2

(3.40a)

SU
(2)

. . .

SU
(2)

2

2

n− 2

(3.40b)

which gives rise to the electric quiver

SU
(2)

. . .

SU
(2)

U
(1)

2

1

n− 2

, (3.41)

with flavour symmetry and Higgs branch dimension

GF = SU(3)×U(1)n+1 × SO(14) and dimH6d = n+ 19 . (3.42)

Note that the theory is anomaly free as USp(Nc) is equipped with Nf = Nc + 8 flavours.

Changing to the brane system for the magnetic quiver results in

SU
(2)

. . .

SU
(2)

2

2

n− 2

(3.43)

. . .

(3.44)
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and the symmetry and Coulomb branch dimension are

GJ = SU(3)×U(1)n+1 × SO(14) and dim C3d = n+ 19 . (3.45)

3.4.5 Symmetry SU(3)× SU(9) — case m′3 = 1

The linking numbers read l = (12
8
) and the Type IIA brane system is given by

1 2

1 . . .

n

1 (3.46)

Here, the linking number of 1
2 has been realised by a stuck half NS5 on the orientifold.

This gives rise to the following electric quiver:

. . .

. (3.47)

Here, the anti-symmetric loop at the last gauge node is necessary for anomaly cancellation;

this is a clear consequence of the brane picture, cf. [6, section 2.1]. Nonetheless, for SU(3)

one has Λ2[1, 0] = [0, 1] ∼= [1, 0]. Consequently, the quiver is equivalent to

1 2

1 . . .

n

1 , (3.48)

with flavour symmetry and Higgs branch dimension

GF = SU(3)×U(1)n+1 × SU(9) and dimH6d = n+ 27 . (3.49)

As usual, one may change to the phase of the brane system for the magnetic quiver

(3.50a)

which can be rearranged by connecting the D6s in the interval between the last D8 and

the O8− with their mirror images. In addition, one D6 will be stretched between the stuck

half NS5 and the last D8 such that the brane system becomes

(3.50b)
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and the magnetic quiver reads

(3.50c)

with Coulomb branch dimension and symmetry given by

GJ = SU(3)×U(1)n+1 × SU(9) and dim C3d = n+ 27 . (3.51)

3.5 Case k = 4

For the A3 singularity C2/Z4, there exist ten possibilities for the embedding Z4 ↪→ E8,

cf. [20, section 5.3]:

m1 = 4 , m1 = 2, m2 = 1 , m1 = 2, m′2 = 1 , m2 = 1, m′2 = 1 , m2 = 2 ,

m′2 = 2, m1 = 1, m3 = 1 , m1 = 1, m′3 = 1 , m4 = 1 , or m′4 = 1 . (3.52)

As before, the brane systems and the electric as well as magnetic quivers will be provided.

Since discrete gauging and E8 transitions are straightforwardly derived from the discussion

above, these transitions will not be detailed any further. It is sufficient to specify the

derivation of the magnetic quiver in the weakly coupled phase by means of Conjecture 2.

3.5.1 Symmetry SU(4)× E8 — case m1 = 4

The linking numbers are l = (4, 07) such that the brane system reads

(3.53a)

SU
(2)

. . .

SU
(2)

SU
(2)

2

2

n− 2

(3.53b)

with associated electric quiver

SU
(2)

. . .

SU
(2)

SU
(2)

2

2

n− 2

⇒

. . .

, (3.54)
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as there is no U(1) gauge symmetry in 6d. The flavour symmetry and Higgs branch

dimension become

GF = SU(4)×U(1)n and dimH6d = n+ 9 . (3.55)

The phase of the brane system for the magnetic quiver is derived as

1 2 1

1 . . .

n

1 ⇔

. . .

(3.56)

and the symmetry and Coulomb branch dimension are

GJ = SU(4)×U(1)n and dim C3d = n+ 9 . (3.57)

3.5.2 Symmetry SU(4)× (U(1)× E7) — case m1 = 2,m2 = 1

The linking numbers are l = (3, 1, 06) such that the Type IIA brane system becomes

1 2 1

1 . . .

n

1 (3.58a)

(3.58b)

and the electric quiver is read off to be

, (3.59)

with flavour symmetry and Higgs branch dimension

GF = SU(4)×U(1)n+1 and dimH6d = n+ 10 . (3.60)

Passing to the phase of the brane system for the magnetic quiver yields

SU
(2)

. . .

SU
(2)

SU
(2)

U
Sp(2)

2

SO(16)

n− 1

⇔
SU
(2)

. . .

SU
(2)

SU
(2)

U
Sp(2)

2

SO(16)

n− 1

(3.61)

and symmetry and Coulomb branch dimension are as follows

GJ = SU(4)×U(1)n+1 and dim C3d = n+ 10 . (3.62)
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3.5.3 Symmetry SU(4)× (U(1)× SO(14)) — case m1 = 2,m′2 = 1

Here, the linking numbers are l = (2, 07) such that the brane system looks like

. . .

(3.63a)

. . .

(3.63b)

with corresponding electric quiver

1 2 2 2 2 2 2 2 1

1

1 . . .

n

1 , (3.64)

which has flavour symmetry and Higgs branch dimension

GF = SU(4)×U(1)n+1 × SO(14) and dimH6d = n+ 23 . (3.65)

Note that the 6d theory is anomaly free as USp(Nc) is equipped with Nf = Nc+8 flavours.

Next, the phase of the brane system that allows to deduce the magnetic quiver reads

1 2 2 2 2 2 2 2 1

1

1 . . .

n

1 (3.66)

(3.67)

and Coulomb branch dimension and symmetry are

GJ = SU(4)×U(1)n+1 × SO(14) and dim C3d = n+ 23 . (3.68)
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3.5.4 Symmetry SU(4)× (U(1)× SU(2)× SO(12)) — case m2 = m′2 = 1

One computes to linking numbers to be l = (12, 06) such that the brane picture becomes

(3.69a)

(3.69b)

such that the electric quiver reads

, (3.70)

with flavour symmetry and Higgs branch dimension

GF = SU(4)×U(1)n+1 × SU(2)× SO(12) and dimH6d = n+ 24 . (3.71)

Note that the 6d theory is anomaly free as USp(Nc) is equipped with Nf = Nc+8 flavours.

Passing to the brane system for the magnetic quiver yields

SU
(3)

. . .

SU
(3)

SU
(2)

U
(1)

3

1

n− 3

(3.72)

SU
(3)

. . .

SU
(3)

SU
(2)

3

1 1

n− 3

(3.73)

where the Coulomb branch dimension and symmetry are

GJ = SU(4)×U(1)n+1 × SU(2)× SO(12) and dim C3d = n+ 24 . (3.74)
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3.5.5 Symmetry SU(4)× (SU(2)× E7) — case m2 = 2

The linking numbers l = (22, 06) imply the following brane system:

SU
(3)

. . .

SU
(3)

SU
(2)

U
(1)

3

1

n− 3

(3.75a)

SU
(3)

. . .

SU
(3)

SU
(2)

3

1 1

n− 3

(3.75b)

such that the electric quiver reads

. . .

, (3.76)

which has flavour symmetry and Higgs branch dimension

GF = SU(4)×U(1)n × SU(2) and dimH6d = n+ 11 . (3.77)

Passing to the phase of the brane system for the magnetic quiver results in

1 2 3

1 . . .

n

1 ⇔

. . .

(3.78)

where the Coulomb branch dimension and symmetry are

GJ = SU(4)×U(1)n × SU(2) and dim C3d = n+ 11 . (3.79)

3.5.6 Symmetry SU(4)× SO(16) — case m′2 = 2

For linking numbers l = (08) the corresponding brane system becomes

1 2 3

1 . . .

n

1 (3.80)
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and the electric quiver reads

, (3.81)

with flavour symmetry and Higgs branch dimension

GF = SU(4)×U(1)n × SO(16) and dimH6d = n+ 37 . (3.82)

Note that the 6d theory is anomaly free as USp(Nc) is equipped with Nf = Nc+8 flavours.

Next, changing to the brane system for the magnetic quiver results in

(3.83)

(3.84)

where the Coulomb branch dimension and symmetry are

GJ = SU(4)×U(1)n × SO(16) and dim C3d = n+ 37 . (3.85)

3.5.7 Symmetry SU(4)× (U(1)× SU(2)× E6) — case m1 = m3 = 1

Here, the linking numbers read l = (2, 12, 05) and imply the following system

(3.86a)

SU
(3)

. . .

SU
(3)

SU
(2)

3

1 1

n− 2

(3.86b)

with associated electric quiver

SU
(3)

. . .

SU
(3)

SU
(2)

3

1 1

n− 2

(3.87)
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which has flavour symmetry and Higgs branch dimension

GF = SU(4)×U(1)n+1 × SU(2) and dimH6d = n+ 12 . (3.88)

Changing the phase of the brane system to be able to read off the magnetic quiver results

in
. . .

⇔

1 2 3 1

1 . . .

n

1 (3.89)

where Coulomb branch dimension and symmetry are

GJ = SU(4)×U(1)n+1 × SU(2) and dim C3d = n+ 12 . (3.90)

3.5.8 Symmetry SU(4)× (U(1)× SU(8)) — case m1 = m′3 = 1

In this case, the linking numbers are l = (32 ,
1
2

7
) and the Type IIA brane realisation becomes

. . .

(3.91)

As before, the linking number of 1
2 has been realised by a stuck half NS5 on the orientifold.

The brane system allows to derive the electric quiver

1 2 3 1

1 . . .

n

1 . (3.92)

Here, the anti-symmetric loop at the last gauge node is necessary for anomaly cancella-

tion in 6 dimensions, but clearly follows from the brane construction, cf. [6, section 2.1].

Nonetheless, for SU(3) one has Λ2[1, 0] = [0, 1] ∼= [1, 0]. Consequently, the electric quiver

is equivalent to

, (3.93)

with flavour symmetry and Higgs branch dimension

GF = SU(4)×U(1)n+2 × SU(8) and dimH6d = n+ 31 . (3.94)

Passing to the brane system for the magnetic quiver proceeds as

(3.95a)
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such that the magnetic quiver is read off to be

(3.95b)

and the Coulomb branch dimension and symmetry are

GJ = SU(4)×U(1)n+2 × SU(8) and dim C3d = n+ 31 . (3.96)

3.5.9 Symmetry SU(4)× (SU(4)× SO(10)) — case m4 = 1

One computes the linking numbers as l = (14, 04) such that the brane configuration becomes

(3.97a)

SU
(3)

. . .

SU
(3)

SU
(3)

3

3

n− 1

(3.97b)

and the electric quiver reads

SU
(3)

. . .

SU
(3)

SU
(3)

3

3

n− 1

, (3.98)

with flavour symmetry and Higgs branch dimension

GF = SU(4)2 ×U(1)n and dimH6d = n+ 15 . (3.99)

Proceeding to the brane system for magnetic quiver leads to

. . .

⇔

1 2 3 2 1

1 . . .

n

1 (3.100)

and Coulomb branch dimension and symmetry are

GJ = SU(4)2 ×U(1)n and dim C3d = n+ 15 . (3.101)
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3.5.10 Symmetry SU(4)× (SU(8)× SU(2)) — case m′4 = 1

The linking numbers read l = (12
7
,−1

2), and we observe that λ8 is negative, which can be

realised in a Type IIA brane configuration as follows:

. . .

(3.102)

Here, the linking number of 1
2 has been realised by a stuck half NS5 on the orientifold.

However, one may perform a transition with brane creation / annihilation by pushing the

8th D8 through the orientifold and the stuck half NS5. Then the mirror of the original D8

appears, but has no D6 ending on it, i.e. the brane configuration becomes

1 2 3 2 1

1 . . .

n

1 (3.103)

The linking numbers of this configuration are l′ = (12
8
), but the system is equivalent to the

original. The corresponding electric quiver reads

, (3.104)

with flavour symmetry and Higgs branch dimension

GF = SU(4)×U(1)n+1 × SU(8)× SU(2) and dimH6d = n+ 38 . (3.105)

Here, the anti-symmetric loop at the last gauge node is necessary for anomaly cancella-

tion, but is clearly derived from the brane system, cf. [6, section 2.1]. The corresponding

hypermultiplet in the second anti-symmetric representation of SU(4), which is a real rep-

resentation, contributes a USp(2) ∼= SU(2) flavour symmetry. Passing to the brane system

for the magnetic quiver yields

(3.106a)

(3.106b)
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and the Coulomb branch dimension and symmetry are

GJ = SU(4)×U(1)n+1 × SU(8)× SU(2) and dim C3d = n+ 38 . (3.107)

As a remark, pulling up the stuck NS5 on the O8− orientifold and reconnecting the D6

branes with their mirrors reduces the system the m′2 = 2 configuration. On the field theory

side, one Higgses the anti-symmetric hypermultipet of the SU(4) such that the gauge group

is broken to USp(4).

3.6 General case

Having discussed multiple examples, one can approach the general construction. From the

examples considered, a case study of the linking numbers seems the best way to proceed.

To begin with, inverting the relations (3.4) yields

λi = mi + λi+1 =
6∑

j=i

mj + λ7 , i = 1, . . . , 6 (3.108)

λ7 =
1

2
(m′3 +m′4) , λ8 =

1

2
(m′3 −m′4) , λ9 =

1

2
(m′3 −m′4 − 2m′2) ,

from which one observes

(i) λ1 ≥ λ2 ≥ . . . ≥ λ6 ≥ λ7 ≥ 0,

(ii) λ7 ≥ λ8 ≥ λ9, but λ8 and / or λ9 may become negative,

(iii) either λi ∈ Z for all i = 1, . . . , 9 or λi ∈ Z + 1
2 for all i = 1, . . . , 9.

For reasons that become clear later, define the following quantities

p := min

{
bm
′
3 +m′4

2
c, bm

′
2 +m′3 + 2m′4

3
c
}

= min

{
bλ7c, bλ7 −

1

3
λ9c
}
, r := λ7 − p .

(3.109)

Therefore, as long as λ9 ≤ 0 it follows that p = bλ7c and r is either zero or a half.

Consequently, the discussion is split in several cases, cf. [20],

(1) For m′4 ≥ m′3,m′4 ±m′3 = even it follows

λ1 ≥ . . . ≥ λ7 ≥ 0 ≥ λ8 ≥ λ9 ∈ Z , p = λ7, r = 0 . (3.110)

(2) For m′4 ≥ m′3,m′4 ±m′3 = odd one finds

λ1 ≥ . . . ≥ λ7 ≥ 0 ≥ λ8 ≥ λ9 ∈ Z +
1

2
, p = bλ7c , r =

1

2
. (3.111)

(3) For m′3 ≥ m′4,m′3 −m′4 ≤ 2m′2,m
′
3 ±m′4 = even one has

λ1 ≥ . . . ≥ λ7 ≥ λ8 ≥ 0 ≥ λ9 ∈ Z , p = λ7 , r = 0 . (3.112)

(4) For m′3 ≥ m′4,m′3 −m′4 ≤ 2m′2,m
′
3 ±m′4 = odd one obtains

λ1 ≥ . . . ≥ λ7 ≥ λ8 ≥ 0 ≥ λ9 ∈ Z +
1

2
, p = bλ7c, r =

1

2
. (3.113)

(5) For m′3 ≥ m′4,m′3 −m′4 ≥ 2m′2 it follows

λ1 ≥ . . . ≥ λ7 ≥ λ8 ≥ λ9 ≥ 0 , p = bλ7 −
1

3
λ9c . (3.114)
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Strategy. For cases (1)–(4), one may employ the known Type IIA constructions [6–8]

with non-vanishing cosmological constant that yield 6-dimensional N = (1, 0) theories.

The numbers 2p and 2r are interpreted as total number of stuck half NS5 branes on

the O8−. The difference is that the 2p NS5 can leave the O8− in pairs, while the 2r NS5

cannot. Note that 2r can be larger than one due to the cosmological constant outside

the orientifold plane. These numbers are determined from the brane picture by charge

conservation, in the sense that the RR-charge and cosmological constant determine how

many D6 branes are in each interval. The number of stuck NS5 branes is then determined

by the linking numbers.

The remaining case (5) can be treated by Type I′ constructions [44–46] which includes

an O8∗ instead of an O8− orientifold, see also [29]. The arguments imply that there are two

ways to split a single D8 from out of a system of coincident O8− and D8. Firstly, the stack

of O8− and D8 can turn into a separate O8− and D8. Secondly, a stack of O8− and D8 can

emanate a additional D8 while tuning into a stack of coincident O8∗ and D8. The latter

can then be separated as usual such that there are a single O8∗ and two separate D8s.

In all cases, once the brane configuration is known for the electric theory, one can

straightforwardly apply the rules of Conjecture 2 to derive the associated magnetic quiver.

3.6.1 m′4 ≥ m′3,m
′
4 ±m′3 = even

Electric quiver. Construct a Type IIA brane realisation for the linking number (3.110)

and interpret 2p as the number half NS5 branes that are stuck on the O8− orientifold.

(3.115)

From the linking numbers (3.110) one readily computes

kj =
6∑

j=i

mi , j = 1, . . . , 6 , k7 = 0 , k8 = m′4 , k0 = 2m′2 + 3m′3 + 4m′4 ,

p =
1

2
(m′3 +m′4) . (3.116)

However, one may perform a brane transition of the last D8 through the O8− to obtain a

brane configuration with non-negative linking numbers only. In other words, pushing the

D8 with linking number λ8 ≤ 0 through the O8− the mirror D8 reappears with linking

number |λ8|. The effects of brane creation and annihilation modify (3.115) to

SU
(3)

. . .

SU
(3)

SU
(3)

U
Sp(2)

3

1 SO(14)

n− 1

(3.117)
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Such that the linking numbers of the D8 become (λ1, . . . , λ7, |λ8|), which are ordered and

non-negative integer numbers. A computation shows:

k′8 = 2p− k8 = m′3 +m′4 −m′4 = m′3 . (3.118)

Next, one may remove the 2p stuck half NS5 branes from the O8− pairwise, i.e. there will

be p pairs. This leads to

SU
(3)

. . .

SU
(3)

SU
(3)

U
Sp(2)

3

1 SO(14)

n− 1

(3.119)

The tail of the resulting electric quiver looks like

. . .

. (3.120)

Magnetic quiver. Moreover, the brane picture (3.117) allows to change to the phase

where all D6s are suspended between D8s in order to read off the magnetic quiver. The

brane picture in this phase becomes

1 2 3 2 2 2 2 2 2 1

1

1 . . .

n

1 . (3.121)

From the linking numbers (3.110) or (3.116) one computes the number of D6 branes to be

dj =

6−j∑
i=1

imi+j + k0 , for j = 1, . . . , 6 , (3.122a)

a = m′2 +m′3 + 2m′4 , b = m′2 + 2m′3 + 2m′4 . (3.122b)

In particular, note that k0 = a+b and a+m′3 = b, which allows to rearrange the D6 branes

in the last two segments compared to (3.117). Hence, the magnetic quiver becomes

. . .

(3.123)

and it is apparent that one can perform p additional small E8 instanton transitions.
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This additional E8 transitions should not come as a surprise, because the brane

phase (3.121) corresponds to the original brane configuration (3.117). The electric quiver,

however, is associated to the brane configuration (3.119) in which the additional p NS5

branes have been pulled off the orientifold. Inspecting the linking numbers in (3.119)

shows that the p new half NS5 branes need to be moved to the left of all eight D8 of

the M9 system such that the D6 branes can be suspended between D8 branes only. For-

tunately, this is nothing else than the brane transition associated to the E8 transition

displayed in (2.19) and (2.21). Hence, one arrives at the following magnetic quiver

1 2 3 2 2 2 2 2 2 1

1

1 . . .

n

1 (3.124)

with unitary nodes of rank

gj =

6−j∑
i=1

i mi+j + 2m′2 +m′4 +
6− j

2
(m′3 +m′4) , for j = 1, . . . , 6 (3.125a)

g7 = m′2 , g8 = m′2 +
1

2
(m′4 −m′3) . (3.125b)

Note that all ranks are non-negative integers by definition of the considered case. As a

special case, consider mi = 0 for all i = 1, . . . , 6 as well as m′3 = m′4 = 0 then one recognises

the SO(16) Dynkin diagram from the balanced nodes of the quiver. Finally, the important

result is

H6d
(
electric
quiver (3.120)

)
= C3d

(
magnetic
quiver (3.124)

)
. (3.126)

3.6.2 m′4 ≥ m′3,m
′
4 ±m′3 = odd

Electric quiver. Construct a Type IIA brane realisation for the linking number (3.111)

and interpret 2p+ 1 as the number half NS5 branes that are stuck on the O8− orientifold.

The half-integer character of the linking numbers is a consequence of the odd number of

half NS5 branes on the orientifold. Then much of the analysis from (3.115) and (3.117)

carries over, with the suitable replacement of 2p to 2p+1. (Note that p = 1
2(m′3 +m′4−1).)

Hence, the negative linking number of the 8th D8 can be traded for its positive version

via pushing the 8th D8 (and its mirror) through the orientifold and the stuck NS5. As a

consequence, one can again remove 2p of the stuck half NS5 branes from the O8−, but one

half NS5 inevitably remains on the orientifold. This leads to the brane picture

(3.127)
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The tail of the resulting electric quiver looks like

(3.128)

Magnetic quiver. Analogously to the previous case, above brane picture (3.127) allows

to change to the phase where all D6 are suspended between D8 in order to read off the

magnetic quiver. The brane picture in this phase becomes a small adaptation of (3.121),

i.e.

SU
(3)

. . .

SU
(3)

SU
(3)

SU
(3)

3

8

A

n− 1

(3.129)

From the linking numbers (3.111) one computes the number of D6s to be as in (3.122). As

before, relations k0 = a + b and a + m′3 = b allow to rearrange the D6 branes in the last

two segments compared to (3.127). Hence, the magnetic quiver becomes

SU
(3)

. . .

SU
(3)

SU
(3)

SU
(3)

3

8

A

n− 1

(3.130)

and it is apparent that one can perform p additional small E8 instanton transitions. Again,

this quiver results from the magnetic brane configuration given by (3.129). In order to

obtain the magnetic quiver for the electric quiver (3.128) with brane configuration (3.127),

one needs to reverse the p additional E8 instanton transitions. The resulting magnetic

quiver looks as follows:

SU
(3)

· · ·
SU
(3)

SU
(3)

SU
(3)

3

9

n− 1

(3.131)
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with unitary nodes of rank

gj =

6−j∑
i=1

i mi+j + 2m′2 +m′4 +
6− j

2
(m′3 +m′4 − 1) + 3 , for j = 1, . . . , 6 , (3.132a)

g7 = m′2 + 2 , g8 = m′2 + 1 +
1

2
(m′4 −m′3 + 1) . (3.132b)

All ranks are non-negative integers by definition of the considered case. Finally, the im-

portant result is

H6d
(
electric
quiver (3.128)

)
= C3d

(
magnetic
quiver (3.131)

)
. (3.133)

3.6.3 m′3 ≥ m′4,m
′
3 −m′4 ≤ 2m′2,m

′
3 ±m′4 = even

Electric quiver. Construct a Type IIA brane realisation for the linking number (3.112)

and interpret 2p as the number half NS5 branes that are stuck on the O8− orientifold.

SU
(3)

· · ·
SU
(3)

SU
(3)

SU
(3)

3

9

n− 1

(3.134)

From the linking numbers (3.112) one readily computes the number of D6s to be as

in (3.116). Next, one may remove the 2p stuck half NS5 branes from the O8− pairwise, i.e.

there will be p pairs. This leads to

. . .

(3.135)

with a0 = 2m′2 − (m′3 −m′4). The tail of the resulting electric quiver becomes

. . .

(3.136)

Magnetic quiver. Next, the brane configuration (3.134) allows to change to the phase

where all D6 are suspended between D8 in order to derive the magnetic quiver. The brane

configuration in this phase becomes

. . .

(3.137)
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From the linking numbers (3.112) one computes the number of D6 to be as in (3.122).

Here, the relations k0 = 2a + m′3 and 2p = m′3 + m′4 allow to rearrange the D6 branes in

the last two segments compared to (3.134). Thus, the magnetic quiver becomes

. . .

(3.138)

and it is apparent that one can perform p additional small E8 instanton transitions.

The possibility of p additional small instanton transition is the unsurprising indication

that (3.137) is not the magnetic phase of (3.134). As before, to obtain the magnetic quiver

associated to the electric quiver (3.136) one needs to reverse the p E8 transitions. The

result is readily obtained as

1 2 3 3 3 3 3 3 3 2 1

1

1 . . .

n

1 (3.139)

where the ranks of the unitary nodes are idential to (3.125). Note that all ranks are

non-negative integer by definition of the considered case. Finally, the important result is

H6d
(
electric
quiver (3.136)

)
= C3d

(
magnetic
quiver (3.139)

)
. (3.140)

3.6.4 m′3 ≥ m′4,m
′
3 −m′4 ≤ 2m′2,m

′
3 ±m′4 = odd

Electric quiver. Construct a Type IIA brane realisation for the linking number (3.113)

and interpret 2p+ 1 as the number half NS5 branes that are stuck on the O8− orientifold.

The half-integer character of the linking numbers is a consequence of the odd number of

half NS5 branes on the orientifold. Then much of the analysis from (3.134) carries over,

with the suitable replacement of 2p to 2p + 1. (Note that p = 1
2(m′3 + m′4 − 1).) As a

consequence, one can again remove 2p of the stuck half NS5 branes from the O8−, but one

half NS5 inevitably remains on the orientifold. This leads to the brane picture

1 2 3 3 3 3 3 3 3 2 1

1

1 . . .

n

1 (3.141)

with a0 = 2m′2 − (m′3 −m′4) + 4. The tail of the resulting electric quiver looks as follows:

(3.142)
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Magnetic quiver. Next, the brane picture (3.141) allows to change to the phase where

all D6 are suspended between D8 in order to read off the magnetic quiver. The brane

configuration in this phase becomes an adaptation of (3.137)

(3.143)

From the linking nunbers (3.113) one computes the number of D6 to be as in (3.122). Here,

the relations k0 = 2a+m′3 and 2p = m′3 +m′4 allow to rearrange the D6 branes in the last

two segments compared to (3.141). Hence, the magnetic quiver becomes

(3.144)

and it is apparent that one can perform p additional small E8 instanton transitions. Revers-

ing the p small instanton transition reveals the magnetic quiver associated to the electric

quiver (3.142). A straightforward computations yields

(3.145)

and the ranks of the unitary nodes are given by (3.132). All ranks are non-negative integers

by definition of the considered case. Finally, the important result is

H6d
(
electric
quiver (3.142)

)
= C3d

(
magnetic
quiver (3.145)

)
. (3.146)

3.6.5 m′3 ≥ m′4,m
′
3 −m′4 ≥ 2m′2

Electric quiver. For convenience of computing the quiver, one works with 9 D8 branes

and one O8∗ plane. Moreover, choose the parametrisation

m′3 −m′4 − 2m′2 ≡ 3x+ l , for x ∈ N>0 , l ∈ {0, 1, 2} , (3.147)

such that

p = m′2 +m′4 + x , r =
1

2
(x+ l) . (3.148)

Then the Type I′ brane set-up becomes

SU
(4)

. . .

SU
(4)

SU
(3)

SU
(2)

U
(1)

4

1

n− 4

(3.149)
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where the dotted vertical line denotes the O8∗ plane. From the linking numbers (3.114)

one computes

k9 = λ7 − λ9 = m′2 +m′4 , k8 = λ7 − λ8 = m′4 , k7 = λ7 − λ7 = 0 , (3.150a)

ki = λi − λ7 =

6∑
j=i

mi , i = 1, . . . , 6 , k0 =
∑

i=2,3,4

a′im
′
i . (3.150b)

As in the cases above, one can remove p pairs of half NS5 from the O8∗ and obtains

SU
(4)

. . .

SU
(4)

SU
(3)

SU
(2)

4

1 1

n− 4

(3.151)

The numbers h1, h2, h3 of D6 spanned between neighbouring NS5 branes can be computed

to

h1 = k0 − 7k8 = 2m′2 + 3(m′3 −m′4) ≥ 0 , (3.152a)

h2 = h1 − 8(k9 − k8) = 3(m′3 −m′4 − 2m′2) = 9x+ 3l ≥ 0 , (3.152b)

h3 = 3l . (3.152c)

Therefore, the tail of the electric quiver looks like [28, 30]

l = 0 :
SU
(4)

. . .

SU
(4)

SU
(3)

SU
(2)

U
(1)

4

1

n− 4

(3.153a)

l = 1 :
SU
(4)

. . .

SU
(4)

SU
(3)

SU
(2)

4

1 1

n− 4

(3.153b)

l = 2 :

. . .

(3.153c)

Note that the extra matter content is both required by anomaly cancellation and it is

consistent with the brane configuration, see [46].
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Magnetic quiver. As in the cases of sections 3.6.1–3.6.4, the strategy is to first derive

the magnetic quiver for the phase where the 2p NS5 branes are stuck at the orientifold and

then to compute the quiver corresponding to the electric quiver by reversing p additional

small E8 instanton transitions. To begin with, one may try to deduce the magnetic quiver

from a phase of the brane system in which all D6 are suspended between D8 branes.

1 2 3 4

1 . . .

n

1 (3.154)

where the di are as in (3.122). Next, one can change to a different parameter region [44] in

the brane configuration (3.154) in which the 9th D8 merges again with the O8∗ such that

the magnetic quiver can be read off from the following Type IIA configuration:

. . .

(3.155)

such that the magnetic quiver becomes

1 2 3 4

1 . . .

n

1 (3.156)

and it is apparent that one can perform p additional small E8 instanton transitions. As

before, to derive the magnetic quiver associated to the electric quiver (3.153) one needs to

reverse p E8 transitions, which results in

(3.157)

with unitary gauge node ranks given by

gj =

6−j∑
i=1

i mi+j + (9− j)x+ (8− j)m′2 + (7− j)m′4 + 3l , for j = 1, . . . , 6 , (3.158a)

g7 = m′2 + 2l + 2x , g8 = l , 2r = x+ l . (3.158b)

Then the statement becomes

H6d
(
electric
quiver (3.153)

)
= C3d

(
magnetic
quiver (3.157)

)
. (3.159)
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3.7 Observations

After establishing the general case in section 3.6, there are some observations to be ad-

dressed. To begin with, consider the similarities between the λi ∈ Z cases:

(i) The electric quiver for λ′1 ≥ . . . ≥ λ′7 ≥ 0 ≥ λ′8 ≥ λ′9 in (3.120)

(ii) The electric quiver for λ1 ≥ . . . ≥ λ7 ≥ λ8 ≥ 0 ≥ λ9 in (3.136)

Note in particular that the final gauge node is symplectic for both configurations. Similarly,

one may inspect the λi ∈ Z + 1
2 cases:

(i) The 6d quiver for λ′1 ≥ . . . ≥ λ′7 ≥ 0 ≥ λ′8 ≥ λ′9 in (3.128)

(ii) The 6d quiver for λ1 ≥ . . . ≥ λ7 ≥ λ8 ≥ 0 ≥ λ9 in (3.142)

Here, the common feature is the special unitary gauge node with the antisymmetric hyper.

The immediate question is whether these electric quivers can coincide, and if so, what does

this imply for the magnetic quiver.

3.7.1 6d Theta angle

The objective is to analyse flux configurations which yield identical electric quivers. For

this consider two families of fluxes

(A) ({mi}6i=1,m
′
2,m

′
3,m

′
4) such that λ1 ≥ . . . ≥ λ7 ≥ λ8 ≥ 0 ≥ λ9 ∈ Z, cf. section 3.6.3

(B) ({Mi}6i=1,M
′
2,M

′
3,M

′
4) such that λ′1 ≥ . . . ≥ λ′7 ≥ 0 ≥ λ′8 ≥ λ′9 ∈ Z, cf. section 3.6.1

such that

λi =λ′i , ∀i= 1, . . . ,7 , λ8 =−λ′8 , k=

6∑
i=1

aimi+
∑

i=2,3,4

a′im
′
i =

6∑
i=1

aiMi+
∑

i=2,3,4

a′iM
′
i ,

(3.160)

which, by the consideration of section 3.6, implies that the electric quiver theories are

identical. One straightforwardly solves (3.160) and obtains

Mi =mi , ∀i= 1, . . . ,6 , M ′3 =m′4 , M ′4 =m′3 , M ′2 =−1

2
(m′3−m′4−2m′2) =−λ9≥ 0 .

(3.161)

Since λi ∈ Z, M ′2 ∈ N is well-defined. In particular, this map (mi,m
′
j) 7→ (Mi,M

′
j) provides

an identification between the electric quivers of (3.136) (with (mi,m
′
j)) and (3.120) (with

(Mi,M
′
j)). Moreover, this map yields two different magnetic quivers for each phase of the

corresponding 6d system. Here, the magnetic quivers for two phases are illustrated. To

begin with, consider the magnetic quivers obtained from (3.123) by specifying the fluxes as

in (3.122). Recall, this represents to phase in which the p additional NS5 branes are still

within the orientifold. One obtains

(3.162)
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for I ∈ {A,B} and with

dAi = dBi , ∀i = 1, . . . 6 , 2pA = m′3 +m′4 = 2pB , (3.163a)

aA = m′2 +m′3 + 2m′4 , bA = m′2 + 2m′3 + 2m′4 , (3.163b)

aB = m′2 +
3

2

(
m′3 +m′4

)
, bB = m′2 +

3

2
m′3 +

5

2
m′4 . (3.163c)

Hence, aB−aA = 1
2 (m′3 −m′4) = bA−bB ≥ 0, and really only a and b do change. Similarly,

the magnetic quivers (3.124) or (3.139) associated to the electric quiver read as follows:

(3.164)

for I ∈ {A,B} and with

gAi = gBi , ∀i = 1, . . . 6 , 2pA = m′3 +m′4 = 2pB , (3.165a)

gA7 = m′2 , gA8 = m′2 +
1

2
(m′4 −m′3) , (3.165b)

gB7 = m′2 +
1

2

(
m′4 −m′3

)
, gB8 = m′2 . (3.165c)

In this phase, the difference in the magnetic quiver is particularly visible as only the node

g7 and g8 are interchanged.

As a remark, since the derivation has employed linear algebra, the solution found

is unique. Therefore, there is a one-to-one correspondences between the theories of sec-

tion 3.6.1 and section 3.6.3. Hence, a (physical) explanation is desirable. In [20, section 5.4]

two 1-parameter families of fluxes have been considered that correspond to the same elec-

tric quiver, but different magnetic quivers. The discussed cases are a subset of the general

solution (3.161). According to [20, section 3.3], the different resulting magnetic quivers are

due to different embeddings of SU(2N + 8) into USp(2N). In detail, the tail of the electric

quivers (3.120), (3.136) is a USp(2N) gauge node connected to a SU(2N + 8) node. A

USp(2N) gauge group with 2n half-hypers in the fundamental representation has a classi-

cally enhanced flavour symmetry of O(2n), which is reduced to SO(2n) by the action of the

parity inside O(2n). Consequently, the link (in the quiver diagram) between the SU(2N+8)

node and the USp(2N) requires a choice of embedding SU(2N + 8) ↪→ SO(4N + 16). In

other words, the choice which so(4N + 16) spinor node contributes to su(2N + 8). It

follows that the two choices are related by the parity in O(4N + 16). The different em-

beddings are a manifestation of the non-trivial discrete 6d theta angle for USp(2N) due to

π5(USp(2N)) = Z2, see [47].

3.7.2 Comments

Analogously, one could consider the two families of fluxes

(A) ({mi}6i=1,m
′
2,m

′
3,m

′
4) such that λ1 ≥ . . . ≥ λ7 ≥ λ8 > 0 > λ9 ∈ Z+ 1

2 , cf. section 3.6.2

(B) ({Mi}6i=1,M
′
2,M

′
3,M

′
4) such that λ′1 ≥ . . . ≥ λ′7 > 0 > λ′8 ≥ λ′9 ∈ Z+ 1

2 , cf. section 3.6.4
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such that (3.160) holds again. However, the solution to these equations

mB
i = mA

i ∀i , m′B3 = m′A3 , m′B4 = m′A4 +
1

4
(m′A3 −m′

A
4 ) , m′B2 = m′A2 −

1

2
(m′A3 −m′

A
4 )

(3.166)

never yields integer fluxes, as m′A3 ± m′A4 = odd by construction. Therefore, it is not

possible to obtain the same electric quivers from both scenarios.

3.8 From finite coupling to infinite coupling

For n M5 branes with a chosen embedding Zk ↪→ E8, the magnetic quivers for the finite

coupling phase have been derived in section 3.6. The Higgs branches for any singular loci

on the tensor branch can be computed straightforwardly by the techniques presented in

section 2. Generically, the number of Higgs branch phases is rather large, but one can

restrict to contrasting the two extreme phases: finite coupling, i.e. generic point of the

tensor branch, versus infinite coupling, i.e. origin of the tensor branch.

In table 3, the two phases are summarised with their respective electric and magnetic

description. For the weakly coupled phase, the Type IIA / Type I′ brane configuration

provides a conventional low-energy effective description and the Higgs branch is a classical

hyper-Kähler quotient. The corresponding magnetic quiver is composed of three charac-

teristic parts:

(i) A tail of length k from the C2/Zk ALE space.

(ii) An affine E8-type Dynkin part, where the ranks are determined by the fluxes of the

chosen embedding.

(iii) A U(1)-bouquet of size (n+p), where n denotes the number of M5s and p is determined

by the fluxes too.

In contrast, at the UV-fixed point one has the 6d SCFT with non-local contributions from

tensionless strings and a Higgs branch description from this is unknown. However, the

magnetic phase of the brane configuration allows to derive an magnetic quiver, whose

Coulomb branch readily describes the Higgs branch at infinite coupling. In particular, the

changes to the magnetic quiver are simple additions of (n+p) affine E8 Dynkin quivers, due

to the nature of the E8 instanton transition discussed in section 2.4. In [20, section 4.3],

the magnetic quivers for the 6d SCFTs have been conjectured and the Coulomb branches

have been argued to be related to the E8 instanton moduli space on C2/Zk. In this paper,

the magnetic quivers are derived quantities and the Higgs branch over every singular locus

of the tensor branch can be described in this fashion.

4 Conclusion

The physics of multiple M5 branes near an M9 plane on an A-type ALE singularity C2/Zk

is very rich and it is encapsulated in a large family of 6-dimensional N = (1, 0) supersym-

metric gauge theories. For a given embedding Zk ↪→ E8, a system of n M5 branes exhibits

a multitude of phases which are connected via three principal transitions:

(i) An M5 outside the M9 can either be on the singularity or away from it.
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Finite coupling: generic point on tensor branch

electric

phase

H6d
finite
=

classical
hK-quotient

→ 6d N = (1, 0) quiver gauge theory determined by fluxes (mi,m
′
j)

magnetic

phase SU
(4)

. . .

SU
(4)

SU
(3)

SU
(2)

4

1 1

n− 3

H6d
finite
=

3d N = 4
Coulomb branch

SU
(4)

. . .

SU
(4)

SU
(3)

SU
(2)

4

1 1

n− 3

{g1,...,g8,r,p}
determined by
fluxes (mi,m

′
j)

Infinite coupling: origin of tensor branch

electric

phase

. . .

H6d
∞ = ???

→ 6d N = (1, 0) SCFT determined by fluxes (mi,m
′
j)

magnetic

phase

1 2 3 4 1

1 . . .

n

1 H6d
∞
=

3d N = 4
Coulomb branch

. . . {g1,...,g8,r,p}
determined by
fluxes (mi,m

′
j)

cf. (3.125),
(3.132),

or (3.158)

Table 3. Contrasting the electric and magnetic description of the Higgs branch on a generic point

and the origin of the tensor branch. The diagrams are schematics for the general cases discussed

in section 3.6. A given embedding Zk ↪→ E8, labeled by fluxed (mi,m
′
j) determines the brane

configurations and the resulting magnetic quivers.
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(ii) Two M5s outside the M9 can be separated or coincident, which leads to discrete

gauging in the 6d theory.

(iii) An M5 can move into the M9, which is the small E8 instanton transition.

Among the phases Pi where all M5s are on the singularity, there is only one phase which

admits a weakly coupled electric quiver description. This leads to a conventional 6-

dimensional N = (1, 0) quiver gauge theory whose classical Higgs branch is a hyper-Kähler

quotient. However, as put forward in Conjecture 1, there are many more Higgs branches

at singular points of the tensor branch.

As demonstrated in this paper, any phase of the 6-dimensional N = (1, 0) theory can

be systematically captured by an associated magnetic quiver. Each quiver is derived from

the phase of the Type IIA or Type I′ in which all D6 branes are suspended between D8

branes. This can be understood in analogy to the magnetic quiver of the 3-dimensional

N = 4 quiver gauge theories. Consequently, it is the suspension pattern of D4 branes in the

D6-D8-NS5 configuration that dictates the form of the magnetic quiver. The derivations

rules for the magnetic quiver can be summarised as in Conjecture 2. The significance of

the magnetic quiver Q(Pi) for a phase Pi is

H6d (phase Pi) = C3d
(
magnetic
quiver Q(Pi)

)
(4.1)

where the 6d Higgs branch for Pi does not admit any electric quiver description in any of

the strongly coupled phases. However, every Higgs branch H6d(Pi) admits a description

as space of dressed monopole operators.

The magnetic quivers and their associated brane configurations provide physical ex-

planations for effects in 6d N = (1, 0) theories. On the one hand, the discrete gauging

effects and their manifestation as discrete Sn-quotients on the magnetic quiver are under-

stood by the physics of n indistinguishable 1
2 BPS objects. On the other hand, the small

E8 instanton transition implies that an E8 global symmetry has to arise. Given that it is

notoriously difficult to generate exceptional symmetries in brane systems, it is remarkable

that magnetic quivers easily accommodate for this. In particular, it provides a Type IIA

brane realisation for the closure of the minimal nilpotent orbit of E8.

The multitude of Higgs branch phases has a structure reminiscent to Hasse diagrams of

nilpotent orbit closures, due to inclusion relations as for instance shown in section 2.6. The

structure of the Hasse-type phase diagram can be analysed by transverse slices, obtained

for instance by quiver subtraction [35].

Moreover, the formalism presented in this paper facilitates the understanding of Higgs

branches of theories with 8 supercharges at finite and infinite gauge coupling as spaces

of dressed monopole operators. The standard lore of Higgs branches with 8 supercharges

being hyper-Kähler quotients only applies for finite gauge coupling. At infinite coupling

the Higgs branches are no longer hyper-Kähler quotients, but can be described as hyper-

Kähler spaces via Coulomb branches of 3d N = 4 gauge theories. This provides a uniform

and systematic approach to all Higgs branch phases.

Outlook. An open questions remains regarding the two brane configurations (2.19)

and (2.21) describing the Higgs branch after a single E8 instanton transition. The analysis
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presented in here is inconclusive whether this observation hints on a new geometric feature

of the small instanton transition. It might very well be that it is a simple rearrangement

of the D6 branes. This should be addressed in future work.

The arguments presented allow to speculate about 4 and 5-dimensional gauge theories

with 8 supercharges. In fact, starting from the D3-D5-NS5 configuration in Type IIB one

may consider either of the following two settings:

(i) One T-duality to obtain a D4-D6-NS5 configuration in Type IIA, which yields 4-

dimensional N = 2 world-volume theory. Turning to the magnetic phase where the

D4 branes are suspended between the D6 branes would induce a magnetic quiver

derived from the way D2 branes are suspended.

(ii) Two T-dualities to arrive at a D5-D7-NS5 configuration of Type IIB with an 5-

dimensional N = 1 world-volume theory. Here, the magnetic phase is reached when

all 5-branes are suspended between 7-branes and the magnetic quiver encodes the

suspension patter of D3 branes. This viewpoint has recently been employed in [19]

for the description of 5d N = 1 SQCD.

Again, these magnetic descriptions have multiple advantages: firstly, they are applicable

even when some (or all) gauge couplings of the electric quiver are tuned to infinity. Sec-

ondly, the 4d or 5d Higgs branches at infinite gauge coupling are described as spaces of

dressed monopole operators. Thirdly, the magnetic quivers allow to derive dimensions and

symmetries of the Higgs branches at infinite coupling via the understanding of 3d N = 4

Coulomb branches.
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A Symmetries

A crucial consistence check is provided by checking that the symmetries and dimensions

of the 6d Higgs branches and 3d Coulomb branches match. Here, the symmetries of the

hyper-Kähler moduli spaces are recalled.

A.1 6d Higgs branches

The hyper multiplets transform as ⊕InIRI under the gauge group ⊗IGI , where nI denotes

multiplicities. The resulting flavour symmetry GF depends on the representation RI as

follows:

(i) If RI is a complex representation, then the flavour symmetry contains a U(nI) factor.

(ii) If RI is a real representation, then the flavour symmetry is enhanced to USp(2nI).

(iii) If RI is a pseudoreal representation, then the flavour symmetry is enhanced to

SO(2nI).

As already remarked in [22], most of the appearing U(1) factors are not global symmetries

in the 6d field theory as they are anomalous. Nevertheless, these U(1) factors are isometries

or, more generally, symmetries of the Higgs branch moduli space. Therefore, it is legitimate

to use the U(1) gradings along the Higgs branch.

A.2 3d Coulomb branches

If the gauge group G of a 3d N = 4 gauge theory contains abelian factors then Coulomb

branches exhibit a topological symmetry GUV
J = U(1)#{U(1) in G}. This UV symmetry may

be enhanced in the IR to GIR
J such that GUV

J is a maximal torus of GIR
J . For quiver gauge

theories, the Coulomb branch symmetry can be read off from the quiver as follows

(i) The subset of balanced gauge nodes forms the Dynkin diagram of the non-abelian

part of GIR
J .

(ii) The number of unbalanced gauge nodes minus one provides the number of U(1) factors

inside GIR
J .

Recall that a unitary gauge node is balanced if the number of flavours equals twice the

rank. Note that in some cases the Coulomb branch symmetry read following the previous

procedure might be enhanced to a bigger group GIR
enh, such that GIR

J ⊂ GIR
enh. Hence, this

procedure provides a minimum amount of symmetry for the Coulomb branch.
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