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1 Introduction

The Higgs potential is currently the least explored part of the Standard Model (SM), mea-

surements of the Higgs boson self-coupling(s) may therefore offer surprises. Although the

Higgs boson couplings to vector bosons and third generation fermions are increasingly well

measured [1–5], constraints on the trilinear coupling λ are relatively weak due to the small

Higgs boson pair production cross sections [6, 7]. Nonetheless, measurements of double

Higgs production in gluon fusion, combining various decay channels, have led to impressive

experimental results already [8–11], the most stringent constraints on the trilinear cou-

pling being −5 ≤ κλ ≤ 12.1 at 95% confidence level [10], based on the assumption that

all other couplings have SM values. Individual limits on κλ based on EFT benchmarks

representing a certain combination of BSM couplings which leads to characteristic kine-

matic distributions [12–14] have also been extracted [8, 9]. Therefore, the determination

of the trilinear coupling has entered a level of precision where the assumption that the full

NLO QCD corrections do not vary much with κλ, which has been used in the experimental

analysis so far, needs to be revised. The variations of the K-factors with κλ are mild in

the mt → ∞ limit, where NLO [15, 16] and NNLO [17] corrections have been calculated

within an effective Lagrangian framework. However, it will be shown in this paper that

the NLO K-factor varies by about 35% as κλ is varied between −1 and 5 once the full top

quark mass dependence is taken into account.

The question of how large or small κλ can be from a theory point of view is not easy

to answer in a model independent way. Recent work based on rather general concepts like

vacuum stability and perturbative unitarity suggests that |κλ| . 4 for a New Physics scale

in the few TeV range [18–21]. More specific models can lead to more stringent bounds,

see e.g. refs. [22–25]. Recent phenomenological studies about the precision that could be

reached for the trilinear coupling at the (HL-)LHC and future hadron colliders can be

found for example in refs. [26–36].
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Higgs boson pair production in gluon fusion in the SM has been calculated at leading

order in refs. [37–39]. The NLO QCD corrections with full top quark mass dependence

became available more recently [40–42]. The NLO results of refs. [40, 41] have been supple-

mented by soft-gluon resummation at small transverse momenta of the Higgs boson pair [43]

and by parton shower effects [44, 45]. Before the full NLO QCD corrections became avail-

able, the mt → ∞ limit, sometimes also called Higgs Effective Field Theory (HEFT)

approximation, has been used in several forms of approximations. In this limit, the NLO

corrections were first calculated in ref. [46] using the so-called “Born-improved HEFT”

approximation, which involves rescaling the NLO results in the mt → ∞ limit by a fac-

tor BFT/BHEFT, where BFT denotes the LO matrix element squared in the full theory.

In ref. [47] an approximation called “FTapprox”, was introduced, which contains the real

radiation matrix elements with full top quark mass dependence, while the virtual part is

calculated in the Born-improved HEFT approximation.

The NNLO QCD corrections in the mt → ∞ limit have been computed in refs. [48–

51]. These results have been improved in various ways: they have been supplemented

by an expansion in 1/m2
t in [52], and soft gluon resummation has been performed at

NNLO+NNLL level in [53]. The calculation of ref. [51] has been combined with results

including the top quark mass dependence as far as available in ref. [54], and the latter has

been supplemented by soft gluon resummation in ref. [55].

The scale uncertainties at NLO are still at the 10% level, while they are decreased to

about 5% when including the NNLO corrections. The uncertainties due to the chosen top

mass scheme have been assessed in ref. [42], where the full NLO corrections, including the

possibility to switch between pole mass and MS mass, have been presented.

Analytic approximations for the top quark mass dependence of the two-loop amplitudes

in the NLO calculation have been studied in refs. [56–59] and complete analytic results in

the high energy limit have been presented in ref. [60]. The formalism of an expansion for

large top quark mass has been applied recently to calculate partial real-radiation corrections

to Higgs boson pair production at NNLO in QCD [61].

In this work we study the dependence of total cross sections and differential distribu-

tions on the trilinear Higgs boson coupling, assuming that the BSM-induced deviations in

the other couplings are at the (sub-)percent level. The study is based on results at NLO

QCD with full top quark mass dependence for Higgs boson pair production in gluon fusion

described in refs. [40, 41]. While it is unlikely that New Physics alters just the Higgs boson

self-couplings but leaves the Higgs couplings to vector bosons and fermions unchanged, it

can be assumed that the deviations of the measured Higgs couplings from their SM values

are so small that they have escaped detection at the current level of precision, for recent

overviews see e.g. refs. [26, 62–64].

Measuring Higgs boson pair production is a direct way to access the trilinear Higgs

coupling. The trilinear and quartic couplings can also be constrained in an indirect way,

through measurements of processes which are sensitive to the Higgs boson self-couplings

via electroweak corrections [28, 65–77]. Such processes offer important complementary

information, however they are more susceptible to other BSM couplings entering the loop

corrections at the same level, and therefore the limits on κλ extracted this way may be more
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model dependent than the ones extracted from the direct production of Higgs boson pairs.

For Higgs Boson pair production, due to the destructive interference in the squared

amplitude between contributions containing λ and those without the Higgs boson self-

coupling (corresponding to triangle- and box diagrams, respectively, at LO), small changes

in λ modify the interference pattern and can therefore have a substantial effect on the total

cross section and differential distributions.

In order to obtain a fully-fledged NLO generator which also offers the possibility of

parton showering, we have implemented our calculation in the POWHEG-BOX [78–80], building

on the SM code presented in ref. [44].

The dependence of the K-factors on the value of λ (and other BSM couplings) is

stronger than the mt → ∞ limit may suggest, as shown in ref. [14]. This is particularly

true for differential K-factors. For example, in the boosted regime, which is sometimes used

by the experiments when reconstructing the H → bb̄ decay channel, Higgs bosons with a

large-pT are involved. At large-pT the top quark loops are resolved and the mt → ∞
limit is invalid. The top quark mass corrections in the large mhh or phT regime are of the

order of 20–30% or higher, and increase with larger centre-of-mass energy (e.g.
√
s = 27

(HE-LHC) or 100 TeV (FCC-hh)), these corrections clearly exceed the scale uncertainties

and therefore have to be taken into account.

The purpose of this paper is twofold: based on our differential results, we discuss how

the deviations from the SM, resulting from non-SM λ values, can be identified based on the

distributions for the Higgs boson pair invariant mass and Higgs boson transverse momen-

tum distributions. In addition, we present the updated public code POWHEG-BOX-V2/ggHH,

where the user can choose the value of the trilinear coupling as an input parameter. We also

explain how variations of the top-Higgs Yukawa coupling can be studied using this code.

Further, we compare the fixed order results to results obtained by matching the NLO cal-

culation to a parton shower. In particular, we compare results from the Pythia 8.2 [81]

and Herwig 7.1 [82] parton showers and assess the parton-shower related uncertainties.

This paper is organised as follows. In section 2 we briefly describe the calculation and

give instructions for the usage of the program within the POWHEG-BOX. Section 3 contains

the discussion of our results, focusing in the first part on variations of κλ and in the second

part on differences between showered results. We present our conclusions in section 4.

2 Overview of the calculation

The calculation builds on the one presented in ref. [44] and therefore will be described only

briefly here.

The leading order amplitude in the full theory and all the amplitudes in the mt →∞
limit were implemented analytically, whereas the one-loop real radiation contribution and

the two-loop virtual amplitudes in the full SM rely on numerical or semi-numerical codes.

The real radiation matrix elements in the full SM were implemented using the interface [83]

between GoSam [84, 85] and the POWHEG-BOX [78–80], modified accordingly to compute

the real corrections to the loop-induced Born amplitude. At run time the amplitudes were

computed using Ninja [86], golem95C [87, 88] and OneLOop [89] for the evaluation of the
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scalar one-loop integrals. The stability of the amplitudes in the collinear limits has been

improved by a better detection of instabilities in the real radiation and the use of the scalar

four-point function from VBFNLO [90, 91].

For the virtual corrections, containing two-loop amplitudes, we have used the results of

the calculation presented in refs. [40, 41], which used also Reduze 2 [92] and SecDec 3 [93].

The values for the Higgs boson and top quark masses have been set to mh = 125 GeV

and mt = 173 GeV, such that the two-loop amplitudes are only functions of two inde-

pendent variables, the parton-level Mandelstam invariants ŝ and t̂. We have constructed

a grid in these variables, based on 5291 pre-computed phase-space points, together with

an interpolation framework, such that an external program can call the virtual two-loop

amplitude at any phase space point without having to do costly two-loop integrations. We

used the same setup for the grid as described in ref. [44] and extended it in the following

way: we can write the squared matrix element as a polynomial of degree two in λ,

Mλ ≡ |Mλ|2 = A+B λ+ C λ2 . (2.1)

Therefore it is sufficient to know the amplitude at three different values of λ in order to

reconstruct the full λ-dependence. Choosing λ = −1, 0, 1 we obtain

A = M0 , B = (M1 −M−1)/2 , C = (M1 +M−1)/2−M0 . (2.2)

In practice we used the representation

Mλ = M0 (1− λ2) +
M1

2
(λ+ λ2) +

M−1

2
(−λ+ λ2) (2.3)

in order to get a more straightforward uncertainty estimate.

In fact, to any order in QCD, we can separate the matrix element into a piece that

depends only on the top quark Yukawa coupling yt (“box diagrams”) and a piece that

depends on the Higgs boson trilinear self-coupling λ (“triangle diagrams”):

M = y2tMB + ytλMT . (2.4)

The squared amplitude at each order can then be written as

|M|2 = y4t

[
MBM∗

B +
λ

yt
(MBM∗

T +MTM∗
B) +

λ2

y2t
MTM∗

T

]
. (2.5)

The above parametrisation makes it clear that the dependence of the cross section on both

the Yukawa coupling and the Higgs boson self-coupling can be reconstructed from only the

3 terms present in eq. (2.1). Of course this pattern changes once electroweak corrections,

part of which have been calculated recently [28, 67], are included.

In order to allow for comparisons and cross checks, we implemented both the mt →∞
limit as well as the amplitudes with full mt-dependence at NLO. This allows to run the

code in four different modes by changing the flag mtdep in the POWHEG-BOX run card. The

possible choices are the following:
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mtdep=0: computation using basic HEFT: all amplitudes are computed in the mt → ∞
limit.

mtdep=1: computation using Born-improved HEFT. In this approximation the NLO part

is computed in the mt →∞ limit and reweighted pointwise in the phase-space by the

ratio of the LO matrix element with full mass dependence to the LO matrix element

in HEFT.

mtdep=2: computation in the approximation FTapprox. In this approximation the matrix

elements for the Born and the real radiation contributions are computed with full

top quark mass dependence, whereas the virtual part is computed as in the Born-

improved HEFT case.

mtdep=3: computation with full top quark mass dependence.

Detailed instructions on how to run the code can be found in the file manual-BOX-HH.pdf

in the folder ggHH/Docs of the program.

When mtdep=3 is selected, the result of the virtual matrix element is based on a grid

of pre-sampled phase-space points as described above. The phase-space points present in

the grid are distributed such that they optimally sample the Standard Model (SM) Born

matrix element. The same set of points is used regardless of the value of λ selected. Due to

the finite number of points present in the grid, there is an associated statistical uncertainty

which amounts to 0.1% on the total cross section at 14 TeV for λ = λSM. However, for

λ 6= λSM the virtual matrix element can differ significantly in shape from the SM prediction,

as is apparent from examining the mhh and phT distributions for different values of the Higgs

boson self coupling. The uncertainty associated with the use of the grid is therefore larger

for non-SM values of λ. The uncertainty increases as λ is decreased below the SM value

reaching 0.6% on the total cross section at 14 TeV for κλ = −1. Increasing λ above the SM

value, we obtain an uncertainty of 3% on the total cross section at 14 TeV for κλ = 3 and

κλ = 5. Furthermore, for differential distributions the total uncertainty is not distributed

uniformly in each bin but instead increases when the shape of the matrix element most

differs from the SM prediction. Focusing on the invariant mass distribution, amongst the

values of the Higgs boson self-coupling considered here, the largest uncertainty is obtained

for the smallest values of mhh and κλ = 3. The uncertainty reaches 6% for the lowest bin

when a 40 GeV bin width is used.

3 Total and differential cross sections at non-SM trilinear couplings

The results were obtained using the PDF4LHC15 nlo 30 pdfas [94–97] parton distribution

functions interfaced to our code via LHAPDF [98], along with the corresponding value

for αs. The masses of the Higgs boson and the top quark have been fixed, as in the

virtual amplitude, to mh = 125 GeV, mt = 173 GeV and their widths have been set to

zero. The top quark mass in renormalised in the on-shell scheme. Jets are clustered

with the anti-kT algorithm [99] as implemented in the fastjet package [100, 101], with

jet radius R = 0.4 and a minimum transverse momentum pjetT,min = 20 GeV. The scale
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λBSM/λSM σNLO@13TeV [fb] σNLO@14TeV [fb] σNLO@27TeV [fb] K-factor@14TeV

−1 116.71+16.4%
−14.3% 136.91+16.4%

−13.9% 504.9+14.1%
−11.8% 1.86

0 62.51+15.8%
−13.7% 73.64+15.4%

−13.4% 275.29+13.2%
−11.3% 1.79

1 27.84+11.6%
−12.9% 32.88+13.5%

−12.5% 127.7+11.5%
−10.4% 1.66

2 12.42+13.1%
−12.0% 14.75+12.0%

−11.8% 59.10+10.2%
−9.7% 1.56

2.4 11.65+13.9%
−12.7% 13.79+13.5%

−12.5% 53.67+11.4%
−10.3% 1.65

3 16.28+16.2%
−15.3% 19.07+17.1%

−14.1% 69.84+14.6%
−12.1% 1.90

5 81.74+20.0%
−15.6% 95.22+19.7%

−11.5% 330.61+17.4%
−13.6% 2.14

Table 1. Total cross sections for Higgs boson pair production at full NLO QCD. The given

uncertainties are scale uncertainties.

1.6

1.7

1.8

1.9

2

2.1

2.2

−5 0 5 10

K
−
fa
ct
or

κλ

Figure 1. Variation of the NLO K-factor with the trilinear coupling at
√
s = 14 TeV.

uncertainties are estimated by varying the factorisation/renormalisation scales µF , µR. The

scale variation bands represent scale variations around the central scale µ0 = mhh/2, with

µR = µF = c µ0, where c ∈ {0.5, 1, 2}. For the case λ = λSM we checked that the

bands obtained from these variations coincide with the bands resulting from 7-point scale

variations. The PDF uncertainties have been studied in [64] and found to be in general

considerably smaller than the scale uncertainties.

3.1 Total cross sections at different values of the trilinear coupling

In table 1 we list total cross sections at 13, 14 and 27 TeV for various values of the trilinear

Higgs coupling λ. Table 1 also shows that the K-factors vary substantially as functions of

the trilinear coupling. This fact is illustrated in figure 1, showing that the K-factor takes

values between 1.56 and 2.15 if the trilinear coupling is varied between −5 ≤ κλ ≤ 12.

3.2 Differential cross sections

In figure 2 we show the mhh distribution for various values of κλ = λBSM/λSM. The ratio

plots show the ratio to the result with λSM. A characteristic dip develops in the mhh dis-

tribution around κλ = 2.4, which is the value of maximal destructive interference between

diagrams containing the trilinear coupling (triangle-type contributions) and “background”
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Figure 2. Higgs boson pair invariant mass distributions for various values of κλ at
√
s = 14 TeV.

The uncertainty bands are from scale variations as described in the text.
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Figure 3. Higgs boson transverse momentum distributions for various values of κλ at
√
s = 14 TeV.

diagrams (box-type contributions). Therefore we provide results for a denser spacing of κλ
values around this point.

In figure 3 we show the transverse momentum distributions phT of one (any) Higgs

boson for different κλ values. The dip for κλ ∼ 2.4 is still present, however much less

pronounced than in the mhh distribution.

Figure 4 demonstrates the effect of variations of the top quark Yukawa coupling yt on

the mhh and phT distributions, where κλ is fixed to the SM value. Using eq. (2.5), it is

apparent that yt variations can be obtained from appropriate κλ variations with the same

code. For example, σ(yt = 1.2, κλ = 1) = (1.2)4 σ(yt = 1, κλ = 1/1.2).

3.3 Discussion of parton shower related uncertainties

In this section we show distributions for NLO results matched to a parton shower, focusing

mostly on the transverse momentum of the Higgs boson pair. For this distribution NLO

is the first non-trivial order, and therefore it is particularly sensitive to differences in

the treatment of radiation by the parton shower. We compare the Pythia 8.2 [81] and

Herwig 7.1 [82] parton showers, applied directly to the POWHEG Les Houches events (LHE).
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Figure 4. Higgs boson pair invariant mass distributions, and distributions of the transverse

momentum of one (any) Higgs boson for non-SM values of the top quark Yukawa coupling yt at√
s = 14 TeV, including scale uncertainties.
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Figure 5. The transverse momentum of one (any) Higgs boson and the R-separation between the

two Higgs bosons are shown for the fixed-order NLO calculation and three shower setups, in the

κλ = 1 case.

In the Herwig case, we also compare the default shower (the angular-ordered q̃-shower) with

the dipole shower. In addition, we assess the uncertainties stemming from the matching and

show results where the Herwig shower scale parameter HardScale is varied. For all shower

algorithms considered, the default tune of the corresponding version is used. Multiple-

parton interactions (MPI) and hadronisation are switched off. The hdamp parameter in

POWHEG is set to hdamp = 250 GeV.

In general, observables that are inclusive in the additional radiation, like the transverse

momentum of one (any) Higgs boson, phT , show little sensitivity to the details of the parton

showering, as can be seen from figure 5(a), showing the fixed-order NLO prediction, as

well as the Pythia 8.2 (PP8) and both Herwig 7.1 showers (angular-ordered PH7-q̃, and

PH7-dipole). In contrast, figure 5(b) displays the distribution of the distance ∆Rhh =√
(η1 − η2)2 + (Φ1 − Φ2)2 between the two Higgs bosons. There, the Sudakov exponent

and the parton shower effectively resum the fixed-order prediction in the region where the

two Higgs bosons are close to a back-to-back configuration, and the parton shower increases

the fixed-order real radiation contribution in the region ∆Rhh < π.
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Figure 6. Transverse momentum of the Higgs boson pair for the fixed-order NLO calculation and

all three shower setups at 14 TeV for (a) κλ = 1, (b) κλ = 2.4.

In figures 6(a) and 6(b), the transverse momentum phhT of the Higgs boson pair system

is shown for the fixed-order and parton-showered predictions, at κλ = 1 and κλ = 2.4. In

all cases, the Pythia and Herwig showers agree very well in the small-phhT range, but start

to deviate already at phhT ∼ 100 GeV. While both Herwig showers give very similar results

and reproduce the fixed-order calculation at high-phhT , the Pythia shower produces much

harder additional radiation and the ratio to the fixed-order result plateaus at ∼ 2.0 over

the remaining range. We should mention that rather large differences between Pythia 8.2

and Herwig 7.1 showers matched to POWHEG also have been found studying top quark

pair production [102]. The origin of the large NLO parton shower matching uncertainties

affecting certain observables in Higgs boson pair production have previously been studied

in literature [45]. For the SM result, the excess at large phhT produced when using POWHEG

with Pythia 8.2 was found to be due to additional hard sub-leading jets generated purely

by the shower [103].

With the Herwig default shower, systematic uncertainties can be estimated by varying

the maximal transverse momentum allowed for shower emissions, by changing the so-called

hard scale µQ. We apply a factor cQ = {0.5, 2.0} on the central hard shower scale, sep-

arately for all variations of the factorisation/renormalisation scales µR,F . Figure 7 shows

the phhT and ∆Rhh distributions as examples of the SM case, κλ = 1, and underlines their

sensitivity to changes in the shower hard scale. Quantitatively, the hard scale variations

inflate the sole factorisation/renormalisation scale uncertainties by a factor of two in the re-

gions where the Herwig 7.1 and Pythia 8.2 showers were in disagreement (see figures 5(b)

and 6). If the envelope of all scale variations, including the hard shower scale, was to

be taken as a theoretical systematic uncertainty, the resulting uncertainty would be of

the order of 50% in these bins. It would be enlightening to further study parton shower

(and non-perturbative) effects, in the particular context of Higgs boson pair production at

NLO, as well as for loop-induced colour singlet production in general, and try to reduce

discrepancies among the different algorithms.
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Figure 7. Higgs boson pair transverse momentum and R-separation for variations of the Herwig

q̃-shower hard scale.

4 Conclusions

We have presented results for Higgs boson pair production in gluon fusion at full NLO

QCD for non-standard values of the trilinear Higgs boson coupling λ. We have also shown

how results with a modified top quark Yukawa coupling can be produced with the same

code. We have demonstrated that the dependence of both the total and the differential

K-factors on the value of λ is stronger than the mt →∞ limit may suggest. The total cross

section is a quadratic polynomial in λ, with a minimum around κλ ≈ 2.4, which is present

both at LO and NLO with full top quark mass dependence, stemming from destructive

interference of diagrams with and without a trilinear Higgs coupling. The mhh distribution

shows a dip around this minimum, which is to lesser extent also visible in the transverse

momentum distribution of one of the Higgs bosons. We have assumed in our study that

modifications of the Higgs couplings to other particles are small and can be increasingly

well constrained by other processes. Nonetheless, it should be kept in mind that a dip in

the mhh distribution could also originate from other effective couplings, for example an

effective tt̄HH coupling, while κλ = 1 [14].

We have also combined our NLO QCD results with the Pythia 8.2 and Herwig 7.1

parton showers. In the Herwig 7.1 case we employed both the default shower (the angular-

ordered q̃-shower) and the dipole shower. We observed that for distributions particularly

sensitive to the additional radiation, the parton showers exhibit a somewhat different be-

haviour. While both Herwig 7.1 showers generate comparable results and perform as ex-

pected in the NLO regime, the Pythia 8.2 shower produces harder radiation, for example

in the tail of the phhT distribution. Varying the shower hard scale in Herwig 7.1 on top of

µR, µF variations leads to uncertainty bands which approximately cover these differences.

However, the parton shower uncertainties can then become sizeable and even surpass the

fixed-order scale uncertainties.

The POWHEG version of the code for Higgs boson pair production including the possi-

bility to vary the trilinear coupling and the top quark Yukawa coupling is publicly avail-

able in the POWHEG-BOX-V2 package at the website http://powhegbox.mib.infn.it, in the

User-Processes-V2/ggHH/ directory.
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