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1 Introduction

The range of physical applications of the Calogero and Toda integrable systems is exces-

sively broad. It encompasses the fractional statistics, quantum Hall effect, soliton theory,

matrix models, supersymmetric gauge theories, and black hole physics.

It is known since the work of Ruijsenaars and Schneider [1, 2] that both the Calogero

and Toda models can be viewed as the non-relativistic limit of a more general integrable

system, which enjoys the Poincaré symmetry realized in 1+1 dimensions. In contrast to the

non-relativistic theories, the Ruijsenaars-Schneider systems are described by the equations

of motion which involve particle velocity.

While the non-relativistic Calogero and Toda models received tremendous attention

in the past, their relativistic counterparts appear to be less popular. There are several

reasons to focus on them more intently, though. Firstly, a geometric formulation underly-

ing such systems is still missing. Whereas the non-relativistic models can be consistently

embedded into the null geodesics of a Brinkmann-type metric [3, 4], a similar description

of the Ruijsenaars-Schneider systems seems problematic. For one thing, the Hamiltonian

does not have a conventional quadratic form and the integrals of motion are not poly-

nomial in momenta. For another, even if one is able to rewrite the equations of motion

in the geodesic form [5], one reveals a non-metric connection [6].1 Secondly, although

the thermodynamic limit of the non-relativistic models is well understood (see, e.g., [7, 8]

and references therein), an exhaustive analysis of the relativistic counterparts is still lack-

ing. Thirdly, an important aspect of the studies over the past two decades has been the

construction of supersymmetric extensions (for a review see [9] and references therein).

Yet, supersymmetric generalizations of the relativistic many-body models remain almost

completely unexplored.

1The rational variant of the Ruijsenaars-Schneider model can be linked to a metric connection. Yet, the

geodesic motion actually takes place in a flat space parametrized by special curvilinear coordinates [5].
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An N = 2 supersymmetric extension of the quantum trigonometric Ruijsenaars-

Schneider model was built in [10]. The corresponding eigenfunctions were linked to the

Macdonald superpolynomials. A peculiar feature of the construction is that the fermionic

operators and their adjoints obey the non-standard anticommutation relations, which re-

duce to the conventional ones in the non-relativistic limit only. The Hermitian conjugation

of the fermions is realized in the non-standard fashion as well. In ref. [6], the Hamilto-

nian methods were used to construct N = 2 supersymmetric extensions of the rational and

hyperbolic three-body Ruijsenaars-Schneider models. A variant of the rational Ruijsenaars-

Schneider model enjoying an arbitrary even number of supersymmetries and involving extra

fermionic degrees of freedom was proposed in [11]. It is worth recalling, though, that the

rational model describes a free system in disguise [5].

The goal of this work is to extend our recent analysis in [6] to the case of the relativistic

Toda lattice [2]. By making use of the Hamiltonian on-shell formalism, below we construct

N = 2 supersymmetric extensions of both the periodic and non-periodic relativistic Toda

lattice. In contrast to [6], the extension proves feasible for an arbitrary number of particles.

The work is organized as follows.

In section 2, N = 2 supersymmetric generalizations of the periodic Toda lattice are

built. We start with a positive-definite Hamiltonian and represent it as the sum of squares

of structure functions, which obey a non-linear algebra. N = 2 supersymmetry charges

are introduced in the conventional (cubic) polynomial form, the leading order of which

is related to the structure functions specifying the bosonic Hamiltonian. Imposing the

commutation relations of the N = 2 supersymmetry algebra, we obtain a set of partial

differential equations to fix the bosonic functions entering the fermionic cubic terms in

the supercharges. Two explicit solutions are found which generate consistent N = 2

supersymmetric extensions. It is known that the relativistic Toda lattice admits more than

one Hamiltonian formulation (see, e.g., [12]). We then consider an alternative Hamiltonian

and build two more N = 2 supersymmetric generalizations. In section 3, the analysis is

repeated for the non-periodic Toda lattice revealing four N = 2 extensions. In section 4,

the equations of motion of the relativistic Toda lattice are rewritten in the geodesic form.

It is argued that the corresponding connection fails to be derivable from a metric. Some

final remarks are gathered in the concluding section 5.

Throughout the paper no summation over repeated indices is understood.

2 N = 2 supersymmetric extensions of periodic relativistic Toda lattice

The relativistic Toda lattice is described by the equations of motion [2]

ẍi = ẋi+1ẋiW (xi+1 − xi)− ẋiẋi−1W (xi − xi−1), W (x− y) =
g2ex−y

1 + g2ex−y
, (2.1)

where i = 1, . . . , N and g is a coupling constant. The periodic case is characterized by the

boundary conditions

x0 = xN , xN+1 = x1. (2.2)
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As the first step in constructing an N = 2 supersymmetric extension, one introduces

the momenta pi canonically conjugate to the configuration space variables xi and imposes

the Poisson brackets

{xi, pj} = δi,j , (2.3)

where δi,j designates the Kronecker delta. The boundary conditions (2.2) imply the rela-

tions

{xi+1, pj} = δi+1,j + δi,Nδj,1, {xi−1, pj} = δi−1,j + δi,1δj,N , (2.4)

which are then used to verify that the positive definite Hamiltonian

HB =

N∑
i=1

epi
(
1 + g2exi+1−xi

)
:=

N∑
i=1

λiλi, λi = e
pi
2

√
1 + g2exi+1−xi (2.5)

does reproduce (2.1). The structure functions λi prove to obey the non-linear algebra

{λi, λj} =
1

4
λiλj (W (xi+1 − xi)[δi+1,j + δi,Nδj,1]−W (xj+1 − xj)[δi,j+1 + δi,1δj,N ]) . (2.6)

As the second step, complex fermionic variables ψi, (ψi)
∗ = ψ̄i, i = 1, . . . , N , are

introduced which obey the canonical brackets

{ψi, ψj} = 0, {ψi, ψ̄j} = −iδi,j , {ψ̄i, ψ̄j} = 0. (2.7)

They allow one to build the Hamiltonian and the supersymmetry charges in the polynomial

form [6]

Q =

N∑
i=1

λiψi + i

N∑
i,j,k=1

fijkψiψjψ̄k, Q̄ =

N∑
i=1

λiψ̄i + i

N∑
i,j,k=1

fijkψ̄iψ̄jψk,

H = HB − 2i
N∑

i,j,k=1

(fijk + fkji + fikj)λkψiψ̄j + i
N∑

i,j,k,l,m,n=1

{fijl, fmnk}ψiψjψkψ̄lψ̄mψ̄n

−
N∑

i,j,k,l=1

({λi, fklj} − {λl, fijk}+ fijpfklp − 4fpilfpkj)ψiψjψ̄kψ̄l, (2.8)

where fijk = −fjik are real functions to be fixed below. Finally, one verifies that the

generators (2.8) obey the commutation relations of the N = 2 supersymmetry algebra

{Q,Q} = 0, {Q, Q̄} = −iH, {Q̄, Q̄} = 0 (2.9)

provided the restrictions

{λi, λj}+ 2
N∑
k=1

fijkλk = 0, {λk, fnml}+ 2
N∑
p=1

fknpfpml = 0, {fabc, fmnk} = 0 (2.10)

hold. In the previous formulae the underline/overline mark signifies antisymmetrization of

the respective indices.
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Comparing (2.6) with the leftmost equation in (2.10), one gets

fijk =
1

16
W (xj+1 − xj)[δi,j+1 + δi,1δj,N ][aδi,kλj + (2− a)δj,kλi]

− 1

16
W (xi+1 − xi)[δi+1,j + δi,Nδj,1][(2− a)δi,kλj + aδj,kλi], (2.11)

where a is an arbitrary real constant. The second equation in (2.10) yields

a(2− a) = 0 ⇒ a = 0 or a = 2, (2.12)

while the third equation in (2.10) turns out to be satisfied identically. Note that, in contrast

to the N = 2 supersymmetric Ruijsenaars-Schneider systems studied in [6], the two options

in (2.12) do not seem to be linked to one another by relabeling the (super)particles.

Given the explicit form of fijk in (2.11), (2.12), one can finally verify that the six-

fermion term entering the Hamiltonian (2.8) is equal to zero. The model thus exhibits the

properties of the conventional N = 2 supersymmetric many-body mechanics in which the

supersymmetry charges are at most cubic in the odd variables, while the Hamiltonian is

at most quartic in the fermions.

It is known that the relativistic Toda lattice admits more than one Hamiltonian

formulation (see, e.g., the discussion in [12]). Let us consider an alternative which is

given by

H̃B =

N∑
i=1

e−pi
(
1 + g2exi−xi−1

)
:=

N∑
i=1

λ̃iλ̃i, λ̃i = e−
pi
2

√
1 + g2exi−xi−1 . (2.13)

The structure functions λ̃i satisfy the algebra

{λ̃i, λ̃j} =
1

4
λ̃iλ̃j (W (xi − xi−1)[δi−1,j + δi,1δj,N ]−W (xj − xj−1)[δi,j−1 + δi,Nδj,1]) ,

(2.14)

and, similarly to the analysis above, give rise to the phase space functions

f̃ijk =
1

16
W (xj − xj−1)[δi,j−1 + δi,Nδj,1][aδi,kλ̃j + (2− a)δj,kλ̃i]

− 1

16
W (xi − xi−1)[δi−1,j + δi,1δj,N ][(2− a)δi,kλ̃j + aδj,kλ̃i], (2.15)

which solve the restrictions (2.10), provided

a = 0 or a = 2. (2.16)

These add two more N = 2 models to the list above. At the moment, it is not clear whether

the formulations based upon (λi, fijk) and (λ̃i, f̃ijk) can be connected with one another by

a coordinate transformation.
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3 N = 2 supersymmetric extensions of non-periodic relativistic Toda

lattice

The non-periodic relativistic Toda lattice is obtained by imposing the boundary conditions

x0 =∞, xN+1 = −∞, (3.1)

which bring the equations (2.1) to the form

ẍ1 = ẋ2ẋ1W (x2 − x1),
ẍN = −ẋN ẋN−1W (xN − xN−1),

ẍk = ẋk+1ẋkW (xk+1 − xk)− ẋkẋk−1W (xk − xk−1), (3.2)

where k = 2, . . . , N − 1 and, as before, W (x− y) = g2ex−y

1+g2ex−y .

Like in the preceding case, the Hamiltonian reproducing (3.2) is the sum of squares of

the structure functions λi

HB =

N∑
i=1

λiλi,

λN = e
pN
2

√
1 + g2e−xN , λk = e

pk
2

√
1 + g2exk+1−xk , k = 1, . . . , N − 1, (3.3)

which obey the non-linear algebra

{λi, λj} =
1

4
λiλj [W (xi+1 − xi)δi+1,j −W (xj+1 − xj)δi,j+1] , (3.4)

with i, j = 1, . . . , N . Note that the boundary conditions imply the standard Poisson bracket

{xi, pj} = δi,j and the relations similar to (2.4) do not occur for the case at hand.

The construction of N = 2 supersymmetric extensions proceeds as above. Given λi
in (3.3), it suffices to construct fijk which solve the master equations (2.10). From the

leftmost condition in (2.10) one finds

fijk =
1

16
W (xj+1 − xj)δj+1,i[aδi,kλj + (2− a)δj,kλi]

− 1

16
W (xi+1 − xi)δi+1,j [(2− a)δi,kλj + aδj,kλi], (3.5)

where a is an arbitrary real constant. The second equation in (2.10) reveals two options

a = 0 or a = 2. (3.6)

The last constraint in (2.10) turns out to be satisfied identically. Similarly to the periodic

case, one can verify that the six-fermion term entering the Hamiltonian (2.8) is zero for

fijk displayed in (3.5).

Concluding this section, let us discuss N = 2 supersymmetric extensions associated

with the alternative Hamiltonian formulation based upon

H̃B =
N∑
i=1

λ̃iλ̃i,

λ̃1 = e−
p1
2

√
1 + g2ex1 , λ̃k = e−

pk
2

√
1 + g2exk−xk−1 , k = 2, . . . , N. (3.7)
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In this case the structure functions satisfy

{λ̃i, λ̃j} =
1

4
λ̃iλ̃j (W (xi − xi−1)δi−1,j −W (xj − xj−1)δi,j−1) . (3.8)

They give rise to

f̃ijk =
1

16
W (xj − xj−1)δi,j−1[aδi,kλ̃j + (2− a)δj,kλ̃i]

− 1

16
W (xi − xi−1)δi−1,j [(2− a)δi,kλ̃j + aδj,kλ̃i], (3.9)

which prove to be consistent with eqs. (2.10), provided a = 0 or a = 2. Thus, like in the

preceding case, one reveals four N = 2 models generalizing the non-periodic relativistic

Toda lattice.

4 Geodesic interpretation

As was demonstrated in [5], the rational variant of the Ruijsenaars-Schneider model can

be identified with the geodesic equations in a flat space parametrized by special curvilinear

coordinates. The non-existence of a metric connection associated with the hyperbolic

Ruijsenaars-Schneider systems was proven in [6]. In this section, we carry out a similar

analysis for the relativistic Toda lattice.

We start with the non-periodic case. Rewriting eqs. (3.2) in the form

ẍi +

N∑
j,k=1

Γi
jkẋj ẋk = 0, (4.1)

one obtains the connection coefficients

Γi
jk = −1

2
(δi,jδk,i+1 + δi,kδj,i+1)W (xi+1−xi) +

1

2
(δi,jδk,i−1 + δi,kδj,i−1)W (xi−xi−1). (4.2)

Let us assume that they are derivable from a non-degenerate metric gij

Γi
jk =

N∑
p=1

1

2
gip (∂jgpk + ∂kgpj − ∂pgjk) , (4.3)

where gij designate the inverse metric components. Contracting the last formula with gsi,

permuting the indices (j, s, k)→ (s, k, j), and taking the sum, one gets a coupled set of the

partial differential equations to fix the metric

∂jgsk =
N∑
i=1

(
gsiΓ

i
jk + gkiΓ

i
js

)
= −1

2
gsj [δk,j+1W (xj+1 − xj)− δk,j−1W (xj − xj−1)]

− 1

2
gkj [δs,j+1W (xj+1 − xj)− δs,j−1W (xj − xj−1)]

− 1

2
gsk[δj,k+1W (xk+1 − xk)− δj,k−1W (xk − xk−1)]

− 1

2
gsk[δj,s+1W (xs+1 − xs)− δj,s−1W (xs − xs−1)]. (4.4)
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Consider three equations belonging to the set (4.4)

∂1g11 = 0, ∂2g11 = −W (x2 − x1)(g11 − g12), ∂1g12 = −1

2
W (x2 − x1)(g11 − g12). (4.5)

Computing the derivative of the second equation with respect to x1 and taking into account

the other two, one gets(
∂1W (x2 − x1) +

1

2
W (x2 − x1)2

)
(g11 − g12) = 0 ⇒ g11 = g12. (4.6)

This is because the first factor entering the leftmost equation is nonzero for the non-periodic

relativistic Toda lattice. By repeatedly using the same argument for other components of

the metric tensor, one can demonstrate that they all are equal to one and the same constant,

gij = const, thus yielding a degenerate metric. This contradicts to the earlier assumption

that gij is invertible.

The periodic relativistic Toda lattice is treated likewise. Taking into account the

boundary conditions (2.2), the equations of motion (2.1) can be put into the geodesic form

in which the connection coefficients read

Γ1
jk = −1

2
(δj,1δk,2 + δk,1δj,2)W (x2 − x1) +

1

2
(δj,1δk,N + δk,1δj,N )W (x1 − xN ), (4.7)

Γi
jk = −1

2
(δi,jδk,i+1 + δi,kδj,i+1)W (xi+1 − xi) +

1

2
(δi,jδk,i−1 + δi,kδj,i−1)W (xi − xi−1),

ΓN
jk = −1

2
(δj,1δk,N + δk,1δj,N )W (x1 − xN ) +

1

2
(δj,Nδk,N−1 + δk,Nδj,N−1)W (xN − xN−1),

with i = 2, . . . , N−1, and j, k = 1, . . . , N . Considering triples of equations similar to (4.5),

one can again verify that all components of the metric are equal to one and the same

constant, which contradicts to the assumption that the metric is invertible.

We thus conclude that, similarly to the hyperbolic Ruijsenaars-Schneider systems, the

relativistic Toda models are linked to non-metric connections.

5 Conclusion

To summarize, in this work we have constructed various N = 2 supersymmetric gener-

alizations of the relativistic Toda lattice both for the periodic and non-periodic versions.

In contrast to the hyperbolic Ruijsenaars-Schneider models, for which only the three-body

case has been worked out in full detail [6], the description above is valid for an arbitrary

number of particles. Both the supercharges and the Hamiltonian were shown to have the

conventional polynomial form in the fermionic degrees of freedom. A possible geodesic

interpretation has been discussed. It was demonstrated that, although the equations of

motion of the relativistic Toda lattice can be formally rewritten in the geodesic form, the

resulting connection fails to be a metric connection.

Turning to possible further developments, it would be interesting to extend the present

study to the N = 4 case and to reveal what would be the analog of the Witten-Dijkgraaf-

Verlinde-Verlinde equation. The construction of an off-shell superfield Lagrangian formu-

lation is an interesting open problem. A generic description of supersymmetric mechanics

on spaces endowed with a non-metric connection is a challenge.
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One more important question to study concerns quantization of the N = 2 models.

For the relativistic Toda lattice the conventional strategy is to analyse the spectral problem

associated with the full set of commuting quantum integrals of motion and to attain the

separation of variables (see [13] for the original consideration and [14] for a recent alterna-

tive treatment). Proceeding to N = 2 case, one first has to convert the brackets (2.7) into

those specifying the fermionic creation/annihilation operators and then properly modify

the original bosonic quantum integrals of motion in such a way that they commute with

the N = 2 Hamiltonian in (2.8). This point seems mostly technical. A more severe prob-

lem is to prove that the separation of variables is still feasible. We leave these issues for

further study.
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