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sation is applicable. At the same time, quantum gravity is expected to resolve those singu-

larities and thus to extend the range of applicability of AdS/CFT also in classically singular

regimes. This paper exemplifies such a computation. We use an effective quantum corrected

Kasner-AdS metric inspired by results from non-perturbative canonical quantum gravity

to compute the 2-point correlator in the geodesic approximation for a negative Kasner ex-

ponent. The correlator derived in the classical gravity approximation has previously been

shown to contain a pole at finite distance as a signature of the singularity. Using the quan-

tum corrected metric, we show explicitly how the pole is resolved and that a new subdomi-

nant long-distance contribution to the correlator emerges, caused by geodesics passing arbi-

trarily close to the resolved classical singularity. In order to compute analytically in this pa-

per, two key simplifications in the quantum corrected metric are necessary. They are lifted

in a companion paper using numerical techniques, leading to the same qualitative results.
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1 Introduction

The classical supergravity approximation is extensively used in the AdS/CFT correspon-

dence [1–3] (see [4] for a textbook) for the simple reason that it allows to perform explicit

computations in many situations. It corresponds to taking the limit of large ’t Hooft cou-

pling and large central charge in the dual field theory, and thus unfortunately not to the

regime that one is mainly interested for experiments. The most interesting regime of fi-

nite ’t Hooft coupling and finite central charge is that of full string theory, where explicit

computations are usually out of reach. In particular, the currently best formulation of

non-perturbative string theory, which is required for such computations, is the AdS/CFT

correspondence itself, i.e. non-perturbative string theory is defined via its dual CFT.

Meanwhile, one generically encounters singularities in the classical supergravity ap-

proximation which can be reached by bulk probes, see e.g. [5, 6] and references therein. In

particular, such singularities can lead to strange behaviour in the dual CFT, such as poles

in the two-point correlator at finite distance [5, 6]. This situation is unsatisfactory, as the

general belief in the field is that singularities should be resolved by quantum gravity effects.1

1For example, notable progress has been made in understanding singularities in the tensionless limit of

string theory which is described by higher-spin theories [7–10].
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In this situation, it is natural to ask how singularities are resolved in other approaches

to quantum gravity. Given a particular quantum corrected metric where the singularity is

resolved, one can use this metric in the AdS/CFT correspondence and study its implications

for the dual field theory. The main conceptual question here is whether such a metric is a

good approximation to what would happen in string theory. Note however that we already

defined non-perturbative string theory via AdS/CFT, so that one can ask in first approx-

imation: “Does the quantum corrected metric give sensible results for the dual CFT?”.

In this paper, we will give a prototype calculation where the answer to this question is

“yes”. We use a quantum corrected metric inspired by results from loop quantum gravity,

where the singularity is resolved and thereby extend the results of [5, 6] obtained at the

classical level. For this metric, we use the geodesic approximation to compute the two-point

correlator of two heavy scalar operators. It turns out that a pole in the correlator which is

present in the classical theory is resolved for the quantum corrected metric. Furthermore,

a new subleading long-distance contribution to the correlator is found, whose functional

dependence on the spatial separation agrees with its standard short-distance behaviour.

Whether these properties of the dual CFT are indeed those of N = 4 super Yang Mills

theory, the conjectured dual of type IIB string theory, remains open. A possible strategy

to answer this question is to resort to lattice simulations, see e.g. [11]. In fact, this route

seems to be the most promising one if one wants to establish whether a given theory of

quantum gravity is a good approximation to string theory.

This paper is organised as follows: we recall results obtained in the classical gravity

approximation in section 2. The main part of the paper is section 3, where the geodesic

equation is solved for the quantum corrected metric and the two-point correlator is ex-

tracted. We provide some comments in section 4 and conclude in section 5.

2 CFT correlators from classical Kasner metrics

In this section, we will recall the results of a recent series of papers [5, 6] on CFT signatures

of cosmological bulk singularities, see also [12–21] for earlier work. In the next section, we

will generalise these results to a 1-parameter family of quantum corrected metrics labelled

by λ ≥ 0, from which the classical result can be obtained in the limit λ→ 0. Further work

generalising [5, 6] to other classical cosmological spacetimes was done in [22].

The setup of [5, 6] is to consider Kasner-AdS bulk spacetimes, which are given by the

metric

ds2
5 =

L2

z2

(
dz2 + ds2

4(t)
)
, ds2

4(t) = −dt2 +
3∑
i=1

t2pidx2
i . (2.1)

The pis obey the vacuum Kasner conditions p1 +p2 +p3 = 1 = p2
1 +p2

2 +p2
3, so that ds2

4 is a

solution to the four-dimensional vacuum Einstein equations without cosmological constant.

ds2
5 solves the five-dimensional vacuum Einstein equations with negative cosmological con-

stant Λ = −10/L2. We will set L = 1 from now on and only restore it in the qualitative

discussion in the comment section 4.

Following the AdS/CFT dictionary, this bulk system is equivalent to N = 4 Super

Yang Mills theory on a Kasner background. In particular, the two-point correlators of
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heavy (m� 1) scalar operators can be computed via the geodesic approximation [23]

〈O(x)O(−x)〉 ∼ exp(−∆Lren), ∆ = d/2 +
√
d2/4 +m2, (2.2)

where Lren is the renormalised length of a spacelike geodesic connecting the boundary

points (t0, x) and (t0,−x). In case of multiple geodesics satisfying given boundary data,

one has to sum over the individual contributions. Complex solutions also have to be taken

into account.

The main motivation of [5, 6] was to study CFT signatures of the bulk singularity.

For this, the bulk geodesics were computed as a function of their turning time t∗. If we

consider the x-separation in a direction where pi < 0, the geodesics are curved towards the

singularity and t∗ < t0 for real solutions, and the other way around for pi > 0. In the limit

t∗ → 0, the geodesic becomes null and its tip approaches the bulk singularity. The CFT

signature of this is a pole in the two-point correlator at the cosmological horizon scale.

This pole signals that the state in the dual field theory description of the Kasner-

AdS metric cannot be normalisable [6]. It was then argued that quantum effects might

smoothen out the pole, however no example or mechanism for this was given. Complex

geodesics were also taken into account and it was found that they need to be included to

ensure smoothness of the two-point correlator. Solutions where the geodesic crossed the

singularity were discarded, as the geodesic approximation is not justified in such a case. For

a direction with pi = −1/4, this means that only one to two out of five possible solutions

to the geodesic equation can be taken into account reliably [5].

3 Improved CFT correlators from quantum gravity

3.1 Motivation for the choice of metric

We have recalled in the previous section that the singularity occurring in the classical

Kasner metric leads to a pole in the two-point correlator of the dual CFT at horizon

scale. It was already discussed in [6] that quantum gravity effects might smoothen out

this pole and render the two-point correlator finite at non-vanishing spatial separation.

In this section, we want to give an explicit example for this. Our strategy is to consider

effective spacetimes emerging from quantum gravity and to continue using the geodesic

approximation therein. This should be justified in a region where the theory behaves

like a classical gravitational theory with higher curvature corrections (see however the

comment section 4). A similar strategy was already used in [24] to show that the covariant

holographic entropy bound [25] can be satisfied in presence of a singularity that has been

resolved by quantum effects.

Since the 5d metric

ds2
5 =

1

z2

(
dz2 + ds2

4(t)
)

(3.1)

is singular only in its four-dimensional part and the 5d-Einstein equations with negative

cosmological constant imply that ds2
4 is Ricci-flat, we can look for a quantum corrected

version of ds2
4 using 4d quantum gravity with vanishing cosmological constant. This means

that we keep the components of the metric in z-direction classical since no Planck regime

– 3 –
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curvatures are associated with them (we take the cosmological constant to be small enough

for this to be true), and only quantise the components orthogonal to the z-direction. A more

subtle but important choice in the quantisation prescription determining the magnitude

of the quantum effects in the 4d/5d interplay is discussed in section 4. The choice in this

matter made here is motivated by allowing for analytic computations in the following, and

is not the most natural one. A companion paper [26] will deal with improved metrics using

numerical techniques. Here, we consider the diagonal 4d-metric

ds2
4 = −dt2 + a(t)2dx2 + . . . , a(t) =

aext

λp
(
t2 + λ2

)p/2
(3.2)

as a quantum corrected Kasner metric, where . . . refers to the other spatial directions

which (may) have different Kasner exponents. aext denotes the (extremal) value that the

scale factor takes at t = 0. λ measures the scale at which quantum gravity effects become

important, i.e. it contains ~. For λ > 0, the classical singularity is resolved. In the double

scaling limit λ → 0 with aext/λ
p = 1, the classical Kasner solution with a(t) = tp is

obtained. The time of bounce (extremal scale factor) has been chosen to be t = 0, but can

be set to any time t0 by the replacement t 7→ t− t0 in all formulas.

Our motivation for this form of the quantum corrected Kasner metric stems from

loop quantum gravity.2 Here, the best studied scenario is spatially flat homogeneous and

isotropic cosmology sourced by a massless scalar field (an equation of state with ω = 1),

where all three Kasner exponents are given by p = 1/3. In this case, (3.2) can be de-

rived as an exact solution of a minisuperspace quantisation [27] (see also [28]), which can

be embedded into a full theory setting [29], including an explicit continuum limit of the

quantum geometry [30]. Several other works also strengthen these results3 and phenomeno-

logical investigations based on them are being undertaken [34–36]. The numerical value of

λ is a quantisation ambiguity in the theory that can be directly related to the choice of

Barbero-Immirzi parameter [37], and is expected to be at the order of the Planck length.

In the general non-isotropic case, no analytic solution is known. Using effective equa-

tions derived from expectation values of the minisuperspace Hamiltonian constraint op-

erator, the quantum dynamics have been investigated numerically in [38]. It was found

that the singularity gets resolved and is replaced by a smooth transition between Kasner

universes. The detailed behaviour of the solutions is more intricate than that of (3.2). In

particular, Kasner exponents may smoothly change during the transition. While positive

Kasner exponents may transition into other positive Kasner exponents, negative exponents

always change into positive ones. This is in stark contrast to (3.2), which features a negative

to negative transition.

In this paper, we still chose to work with (3.2), for the simple reason that it allows for

analytic computations in the following. As said before, we will tackle the issue of Kasner

transitions and a proper setting of the 5d Planck scale in a companion paper [26]. It will

2Similar metrics can in principle be motivated by any modification of general relativity leading to

bouncing solutions.
3A very similar form of the dynamics has been derived also using group field theory [31] and using

improved regularisations in the canonical theory [32]. Similar results have also been reported in [33],

however with the aim to construct a classical gravitational theory with a build-in limiting curvature.
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turn out that the qualitative form of the two-point boundary correlator derived from (3.2) is

insensitive to these changes: its finite distance pole is resolved in all cases in a qualitatively

similar way. Still, even the improved forms of the metrics discussed in [26] will have some

insufficiencies.

Therefore, we see our computation here and in [26] only as a proof of principle that

non-perturbative quantum gravity can give a significant improvement over the classical

gravity approximation in AdS/CFT. Further research aimed at obtaining better effective

metrics is certainly necessary.

3.2 Solution of the geodesic equation

3.2.1 Coordinate parametrisation

The non-vanishing Christoffel symbols computed from (3.2) are

Γtxx = p
a2

ext

λ2p
t
(
t2 + λ2

)−1+p
, Γtzt = −1

z
, (3.3)

Γxxt =
pt

(t2 + λ2)
, Γxzx = −1

z
, (3.4)

Γztt = −1

z
, Γzxx =

a2
ext

λ2p

(
t2 + λ2

)p
z

, Γzzz = −1

z
, (3.5)

as well as Christoffel symbols involving the other spatial directions. In the following, we

will use greek letters α, β, γ, . . . from the beginning of the alphabet to denote tensor indices

in the 5d spacetime, and greek letters µ, ν, ρ, . . . from the middle of the alphabet for 4d

tensor indices for the 4d cosmological spacetime embedded into 5d AdS.

Following [6], it is most convenient to solve the geodesic equation when parametrised

with the time coordinate t. In this case, the geodesic equation is given by

ẍα + Γαβγ ẋ
βẋγ − Γtβγ ẋ

βẋγ ẋα = 0. (3.6)

The equation for the x-component reads

ẍ+
2pt

t2 + λ2
ẋ− pa

2
ext

λ2p
t
(
t2 + λ2

)−1+p
ẋ3 = 0 (3.7)

and is solved by

ẋ(t) = ± 1√
a2

ext
λ2p (t2 + λ2)p + c(t2 + λ2)2p

. (3.8)

Integration w.r.t. t then gives x(t), however no explicit antiderivative seems to be known.

It is convenient to introduce the parameter t∗ satisfying t2∗+λ2 =
a

2/p
ext

|c|1/pλ2 and to abbreviate

τ =
(
t2+λ2

t2∗+λ
2

)
. For t = t∗, we have ẋ−1 = dt

dx = 0, i.e. we are at the turning point of the

geodesic. This also implies that c < 0 for the geodesic to exist. It follows that

ẋ(t) = ± λp

aext

(
t2∗ + λ2

)−p/2 1√
τp (1− τp)

. (3.9)
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We note that τp ≤ 1 both for p > 0 and p < 0, if geodesics for p > 0 are curved away

from the classical singularity (t∗ > t0), while geodesics with p < 0 are curved towards it

(t∗ < t0). We restrict us here to these cases to ensure reality.

The equation for the z-component with the definition v := zż reads

v̇ = 1− ẋ2a
2
ext

λ2p
(t2 + λ2)p + pvẋ2a

2
ext

λ2p
t
(
t2 + λ2

)−1+p

= 1− 1

1− τp
+ pv

t

t2∗ + λ2

1

τ − τ1+p
. (3.10)

This equation can be solved by the “variation of parameters” method, giving

v(t) = z(t)ż(t) = c3
τp/2√
1− τp

− τp/2√
1− τp

∫ t

t∗

dt′
τ ′p/2√
1− τ ′p

(3.11)

Smoothness of the geodesic at the turning point demands dz
dx(t∗) = ż

ẋ(t∗) = 0, which implies

c3 = 0. z(t) can be obtained now by integrating (3.11):

z(t) =

√√√√z(t∗)2 −

(∫ t

t∗

dt′
τ ′p/2√
1− τ ′p

)2

. (3.12)

We see that z(t) < z(t∗) for t 6= t∗, in accordance with the geometric properties of the

geodesic. Furthermore, it can be checked that the geodesic is spacelike as long as t∗ > 0.

There are two non-trivial parameters defining our geodesic: t∗ and z(t∗). They de-

termine the time t0 at which z = 0, i.e. the time at which the geodesic intersects the

boundary, as well as the boundary separation in x-direction. The additional integration

constant appearing in x(t) =
∫ t
dt′ẋ(t′) will be fixed so that x(t∗) = 0. Alternatively, we

may choose to specify t∗ and t0. Then, z(t∗) =
∣∣∣∫ t0t∗ dt′ τ ′p/2√

1−τ ′p

∣∣∣ and the proper separation

of the geodesic endpoints in x-direction is Lbdy = 2 a(t0)
∣∣∣∫ t0t∗ dt′ẋ(t′)

∣∣∣ = 2a(t0)x(t0).

3.2.2 Affine parametrisation for z

While the geodesic equation parametrised w.r.t. the time coordinate t could be solved

completely, it has the drawback that the final result is hard to handle in the context of

holographic renormalisation, i.e. the subtracting its diverging part, see below. In order

to circumvent this problem, we will now derive a solution z(s) parametrised w.r.t. to the

geodesic length s from the affinely parametrised geodesic equation.

The equation for z(s) reads

z′′ − 1

z
t′

2
+
(aext

λp

)2
(
t2 + λ2

)p
z

x′
2 − 1

z
z′

2
= 0. (3.13)

Using gαβ
dxα

ds
dxβ

ds = 1, (3.13) simplifies to

z′′ − 2

z
z′

2
+ z = 0 (3.14)

– 6 –
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and can be solved as

z(s) =
z(t∗)

cosh(s− s0)
. (3.15)

We set s0 = 0 to start counting the proper distance form the turning point of the geodesic.

Explicit solutions x(s) and t(s) are not needed in the following.

3.3 Renormalised geodesic length

Equation (3.15) clearly shows that the length of our geodesics always diverge. We are

therefore in need for a renormalisation procedure. For this, we let the geodesic end not at

z = 0, but at z = ε, and subtract the occurring divergence. In the limit ε→ 0, we have

± s(z = ε) = log (2z(t∗))− log(ε). (3.16)

Subtracting the divergent piece − log(ε) can be understood as the effect of a conformal

transformation that removes the conformal factor 1/z2 in ds2
5 from the boundary metric,

leading to the correct 2-point correlator expression for the boundary metric ds2
4 [23]. This

leaves us with the renormalised geodesic length

Lren = 2 log(2z(t∗)). (3.17)

As a cross-check, we can specialise to p = −1/2 and take the classical limit λ→ 0 to obtain

the result Lren = log (16t∗(1− t∗)) = log (−16c(1 + c)) derived before equation (5.3) of [6].

3.4 Contributions to the two-point correlator from real geodesics

3.4.1 Short distance behaviour

To compute the short distance behaviour, we define ε = t− t∗ and compute for p < 0

z(t∗) =

∫ t0−t∗

0
dε

τp/2√
1− τp

=

∫ t0−t∗

0
dε

(√
t2∗ + λ2

−2pt∗ε
+O(ε1/2)

)

=
√

2

√
t2∗ + λ2

−pt∗
√
t0 − t∗ +O

(
(t0 − t∗)3/2

)
. (3.18)

A similar calculation can be done for x(t0). It follows that

〈O(x)O(−x)〉 x→0∼
(

2x
aext

λp
(t2 + λ2)p/2

)−2∆
= (Lbdy)−2∆ . (3.19)

The same result also follows for p > 0, for which only the integration borders have to be

switched due to t ≤ t∗. We observe that the short distance behaviour remains invariant in

the classical limit, which is in agreement with the results of [6].

3.4.2 Long distance behaviour, p < 0

We note that for t∗ → 0, Lbdy → ∞. Therefore, real geodesics exist for all Lbdy ≥ 0.

Moreover, for large enough Lbdy, the (real) geodesic is unique (see figure 1). At the same

– 7 –
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time, we have z(t∗)→∞ for t∗ → 0. In order to study the long distance behaviour of the

two-point correlator, we need to express z(t∗) in terms of Lbdy for large Lbdy. We compute

lim
t∗→0

2z(t∗)

Lbdy
=

1

(t2 + λ2)p/2
lim
t∗→0

∫ t0
t∗
dt τp/2√

1−τp∫ t0
t∗
dt (t2∗ + λ2)−p/2 1√

τp(1−τp)

=
1

(1 + t2/λ2)p/2
lim
t∗→0

∫ t0
t∗
dt (τp−1)τ−p/2+τ−p/2√

1−τp∫ t0
t∗
dt τ−p/2√

(1−τp)

=
1

(1 + t2/λ2)p/2
lim
t∗→0

1−
∫ t0
t∗
dt
√

1− τpτ−p/2∫ t0
t∗
dt τ−p/2√

(1−τp)


=

1

(1 + t2/λ2)p/2
=

1

a(t)

aext

λp
λp. (3.20)

Insertion into (2.2) gives

〈O(x)O(−x)〉 x→∞∼
(

2x
aext

λp
λp
)−2∆

=

(
λ2

t2 + λ2

)−p∆
(Lbdy)−2∆ . (3.21)

We see that for large distances, the two-point correlator falls off as expected in a standard

conformal field theory, modulo a time dependent constant. The result vanishes in the

classical limit λ→ 0, aext/λ
p = 1. The dependence of the final result on λ is non-analytic

(unless −p∆ ∈ N0 in the expression involving x), which signals that it is unlikely to obtain

it in a perturbative expansion around λ = 0.

We note that for λ > 0, the geodesic does not approach the boundary as t∗ → 0, since

−c→
(
aext
λp

)2 1
λ2p > 0 in this case. c = 0, leading to a null geodesic on the boundary [6], is

only recovered in the classical limit.

3.4.3 Long distance behaviour, p > 0

For the long distance behaviour, we note that both

z(t∗) =

∫ t∗

t0

dt
τp/2√
1− τp

and x(t0) =

∫ t∗

t0

dt
λp

aext

τ−p/2(t2∗ + λ2)−p/2√
1− τp

(3.22)

diverge as t∗ → ∞. Both integrands are finite unless t = t∗, which means that all contri-

butions to the integral until some given value of t = t̃ remain finite. We can choose t̃ large

enough so that the classical limit λ→ 0, aext/λ
p = 1 is an excellent approximation. In this

limit, the integrals can be explicitly performed using computer algebra. We find that

z(t∗)

x(t0)

t∗→∞−−−−→ (1− p)tp∗, z(t∗)
t∗→∞−−−−→

√
πΓ(1

2(3 + 1
p))

(1 + p)Γ(1 + 1
2p)

t∗ (3.23)

It follows that

〈O(x)O(−x)〉 x→∞∼ const(p) (2x)
− 2∆

1−p = const(p)

(
λ2/a

2/p
ext

t2 + λ2

)− p∆
1−p

(Lbdy)
− 2∆

1−p , (3.24)
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Figure 1. z(t∗) is plotted against x(t0) for λ = 1 (thick blue) and λ = 0 (thin red), starting from

t∗ = t0 = 100 at (0, 0). The solid blue line was obtained from numerical computations, while the

dashed blue line shows the asymptotic behaviour for t∗ → 0, which is hard to probe numerically (the

crossover to the blue dashed line is at t∗ = 1.4·10−11t0), but has been computed analytically in equa-

tion (3.20). In the classical limit (red curve), x(t0) approaches half the cosmological horizon scale for

t∗ → 0, in this case 80
√

10 ≈ 253. We note that the same x(t0)-value corresponds to multiple z(t∗)

values, which we have to add in the two-point correlator (in addition to complex solutions). We

also note that the resolved classical pole is still the dominant (smallest z(t∗)) contribution around

its x(t0) value. This behaviour turned out to be generic for several other cases we have tested

whenever t0 � λ. The blue line starts to deviate significantly from the red line around t∗ ≈ 0.4.

confirming the conjecture made in [5] in the context of the classical theory. As noted

already there, this behaviour disagrees with the short distance one. In addition, we also

observe that it disagrees with the real geodesic long distance behaviour for p < 0. The case

p = 1 is special and discussed in [5].

3.4.4 Intermediate distance behaviour

In order to investigate the intermediate distance behaviour of the two-point correlater, we

plot z(t∗) vs. x(t0) for the case aext = 1, p = −1/4, for the two values λ = 1 corresponding

to the quantum theory and λ = 0 corresponding to the classical theory in figure 1 for and

t0 = 100 and figure 2 for t0 = 4. t∗ = t0 corresponds to the point (0, 0), from which on t∗
decreases until it reaches 0.

We first observe that unlike for λ = 0, z(t∗) does not vanish as t∗ → 0, but it diverges

for λ = 1. This shows that the correlator does not blow up except in the short distance

limit t∗ → t0. The pole in the two-point correlator occurring in the classical theory is

therefore resolved. The dual field theory state can therefore be normalisable, unlike in the

classical gravity limit [6].

There still exists a clear signature of the classical pole in the form of a local minimum

of z(t∗) for λ = 1 around t ≈ 0.4. The associated boundary separation is somewhat outside

of the classical horizon scale, where the red curve intersects the x-axis. Taking λ → 0,
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λ = �

λ = �

← �* ≈ �

� � � � ��
�(��)

�

�

�

�

�(�*)

Figure 2. z(t∗) is plotted against x(t0) for λ = 1 (thick blue) and λ = 0 (thin red), starting from

t∗ = t0 = 4 at (0, 0). The characteristic intermediate scale behaviour shown in figure 1 disappears

starting around t0 . 5, i.e. when quantum corrections start to become relevant in the background

spacetime of the CFT. We note that the change of slope of the blue curve, here around x(t0) = 8.5,

still persists.

the value that the curve takes at its local minimum approaches 0, but the characteristic

turnaround behaviour persists except for λ = 0.

We also see that for λ = 1, there exists a regime between the local maximum and

minimum of x(t0), where three real geodesics with the same boundary separation exist.

The two-point correlator is obtained by adding their contributions, in addition to complex

solutions discussed in section 3.5. If t0 becomes close enough to λ, the characteristic

behaviour shown in figure 1 changes, as shown in figure 2.

3.5 Complex geodesics

The importance of including complex geodesics was emphasised in [5, 6]. We will not add

anything new to this topic but merely recall their results and comment on how complex

geodesics influence the above results.

First we note that the long distance contributions of complex geodesics to the two-

point correlator turn out to be ∼ (Lbdy)
− 2∆

1−p for geodesics not crossing the singularity in

the cases that have been studied in the classical setup [5]. Our long range result (3.21) from

quantum corrected real geodesics is thus subdominant to the contributions from complex

classical geodesics. These complex classical geodesics should be good approximations also

in the context of the quantum corrected metric for t0 � λ, since they run in regions of the

spacetime which are well approximated by the classical theory.

We have not investigated other complex geodesics so far. Due to this, we cannot

judge whether our results will be qualitatively affected by inclusion of possible complex

solutions. Already for reasons of continuity, one expects that such additional complex

geodesics should be included.
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4 Comments

A few comments are in order: in loop quantum gravity (and in the same way also in lattice

gauge theory), it is necessary to approximate certain operators that are not well defined on

the Hilbert space by functions of their exponentials, which introduces ambiguities in the

quantisation. In the simplest homogeneous and isotropic case, the so called µ̄-scheme [37]

leads to viable physical results and is also motivated from a full theory point of view by

introducing significant quantum gravity corrections in the operator approximations only

when the Planck curvature is reached [30, 39]. The prime example is to approximate

b ≈ sin(λb)
λ , where b is the trace of the extrinsic curvature in spatially flat homogeneous and

isotropic cosmology, i.e. derived from ds2
4 in (3.1). We have implicitly used this scheme

tailored for 4d quantum gravity also in the 5d case. However, from a purely 5d point of

view, it would be more appropriate to approximate b ≈ sin(zλb/L)
zλ/L , since b contains a Lie

derivative w.r.t. the normal in t-direction, and gtt = −L2/z2, as opposed to −1 in the 4d

case. This leads to an effective λ5d = zλ4d and

a(z, t) =
aext

λp

(
t2 +

z2λ2

L2

)p/2
, (4.1)

where the z-scaling in the first λ was absorbed in aext. Therefore, as one approaches

the boundary, the quantum corrections would become negligible and the CFT background

would be effectively classical. Also, the classical scaling symmetry [5] z → ωz, t →
ωt, xi → ω(1−pi)xi, which is broken for constant λ, holds in this case. Conversely, for a

z-independent λ as in the main part of the paper, quantum effects appear at lower and

lower 5d bulk scales as one approaches the boundary, however in the boundary theory they

appear at the 4d Planck scale.

Naively, evaluating the Christoffel symbols derived from (4.1) at z = 0 suggests that

the singularity in the pole following from the classical computation is recovered even for

the quantum corrected metric, since the null geodesic on the boundary responsible for it

now exists, but this needs to be verified using a limiting procedure as in [6]. In fact, our

companion paper [26] provides strong numerical evidence that this boundary geodesic is

indeed isolated, thus leading to a resolution of the finite distance pole also for (4.1).

In our computations, we have made the simplifying assumption that the geodesic

equation still determines the propagation of test particles on the quantum corrected metric

background. Within LQG, the validity of this assumption has not been established so

far. In particular, recent work on the anomaly freedom of effective constraint algebras [40,

41] suggests that additional significant quantum corrections might be necessary, but no

consensus has been reached so far [42]. Pioneering work on this question in the context of

loop quantum cosmology has been done in [43].

If it can be established from an LQG point of view that propagation happens along

geodesics of the quantum corrected metric, or some other effective metric as discussed

in [43], this of course still doesn’t mean that this would agree with a similar computation

from string theory. Since, however, non-perturbative string theory is best defined via

AdS/CFT, the relevant question to ask is again about the behaviour of the dual CFT. This

– 11 –



J
H
E
P
0
6
(
2
0
1
9
)
0
4
3

suggests to simply check what the different proposals within LQG for field propagation on

quantum geometry backgrounds yield for the dual CFT and to compare it with lattice

simulations thereof.

Recent advances in pushing the Ryu-Takayanagi prescription [44, 45] to the quantum

regime [46, 47] have lead to many interesting insights into AdS/CFT beyond the classical

supergravity approximation. It would be very interesting to compare these to a computa-

tion of minimal surfaces in quantum corrected backgrounds inspired by LQG. This might

also suggest how to connect the present computations to full string theory.

In [48], a possible strategy to relate the large spin expansion in loop quantum gravity

on a fixed graph to the 1/N expansion in AdS/CFT was discussed. In the current paper,

this line of thought is not relevant as our quantum corrected solution can be seen to emerge

from a minisuperspace quantisation, or can be embedded in a full theory context including

a continuum limit in the case pi = 1/3. The value of N2 as determined from the gravity side

is given by the ratio of the AdS radius to the power 8 and the 10d Newton constant. In the

present paper, we considered this ratio to be very large, as otherwise quantum corrections

for the z-coordinate would have to be expected.4 It is unclear to us at the moment to

which extend our use of quantum gravity here can be linked to finite N effects in the dual

CFT. This also prevents us so far from making a comparison to 1/N corrections that have

been computed using perturbative quantum supergravity, see e.g. [50–54].

In [6], it is discussed that for a non-flat boundary metric, one obtains a singularity

at z = ∞. This singularity can be removed by going over to 6 dimensions and slightly

changing the metric. The same argument can be applied also in our case.

5 Conclusion

In this paper, we have explored the holographic signature of a resolved cosmological sin-

gularity using a simple ansatz for the quantum corrected metric inspired by loop quantum

gravity. It turned out that this ansatz gave sensible results for the dual CFT which can be

seen as an improvement over the classical gravity approximation. The main open problem

in this approach are additional complex solutions and their possible qualitative influence

on the results. In addition, our possibility to perform analytic computations so far rests on

using a regularisation tailored for 4d quantum gravity, as discussed in the comment section.

This is unnatural from a 5d point of view as quantum effects appear on increasingly lower

5d scales as one approaches the boundary. This issue is tackled in a companion paper [26].

From a technical point of view, the relation of the results obtained using the geodesic

approximation with the more established and general prescription of taking derivatives of

the on shell action to compute the two-point function [55] should be clarified, in particular

its Lorentzian version [56]. This may also be relevant to understand the fate of the finite

distance pole in the two-point correlator for a 5d metric based on (4.1). We leave this

question to future work.

4It should be noted however that the quantum corrected metrics are not Ricci-flat any more in gen-

eral [49], which might provide a way to link them to finite N effects.
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Conceptually, our results are interesting since they give an example that AdS/CFT

is the proper interface to ask the question of wether string theory, possibly in some limit,

is related to other approaches to quantum gravity, for example loop quantum gravity.

Our current results show that there is no obvious inconsistency. However, to answer this

question reliably (with non-perturbative string theory defined via its dual CFT), we need to

first understand the dual CFT better, for example using lattice methods, which is another

long term goal of us. We hope that our rather naive and basic computation so far can

serve as a basis for further explorations of these questions and stimulate some discussion.

Merging ideas from AdS/CFT and loop quantum gravity has certainly attracted some

interest recently. For a selection of the relevant works, see [48, 57–65].

There are several obvious further directions to explore. Next to embeddings of cos-

mological spacetimes into AdS space, one could also consider black hole spacetimes. Here,

significantly less is known from loop quantum gravity (see [66] for a general expectation),

but a simple ansatz in the spirit of equation (3.2) for the resolved singularity may show an

interesting behaviour in the dual theory. Important guidance for constructing an explicit

solution could be provided by [67]. Numerous AdS/CFT results in the classical gravity

approximation such as [68, 69] already exist and should provide a good starting point.

Also, different bulk probes, such as minimal surfaces, are interesting to study, e.g. starting

from [70]. The problem of generic spacelike singularities may be approached by an appeal

to the BKL conjecture [71], by which the relevance of the present results focussing on a

single homogeneous Kasner patch may extended.
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