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1 Introduction

The AdS/CFT correspondence for the case of AdS3 is an interesting toy model that has the

potential to allow for quantitative tests of the duality even in the stringy regime. Indeed,

unlike the higher dimensional cousins, strings on AdS3 with pure NS-NS flux have an

exactly solvable worldsheet description in terms of a WZW model based on sl(2,R) [1–3].

In a similar vein, the dual CFT is a 2-dimensional conformal field theory for whose analysis

also powerful tools exist. This opens the possibility that one may be able to identify an

exact dual pair for which both sides of the duality are exactly solvable. Recently, very good

evidence has been presented that this is indeed possible: it was shown in [4], following [5]

(see also [6]), that the pure NS-NS background of AdS3×S3×T4 with minimal flux (k = 1)

through AdS3 (and S3) has exactly the same spacetime spectrum as the symmetric orbifold

theory of T4 in the large N limit. It was furthermore shown in [7] that also the algebraic

structures, i.e. the operator algebra of the chiral fields, agree between the two descriptions.

This gives very strong credence to the idea that these two descriptions are indeed exactly

dual to one another.

Given the success of this correspondence, one may ask whether there are other examples

of this kind. In this paper we show that a similar result holds for string theory on AdS3 ×
S3 × S3 × S1 with pure NS-NS flux: for the minimal value of the flux through one of the

two S3, say k+ = 1, the spacetime spectrum of string theory is equivalent to the symmetric

orbifold of Sκ (in the large N limit), where κ is related to the flux through the other
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S3, κ = k− − 1. (Here Sκ denotes the supersymmetric WZW-model on S3 × S1.) More

specifically, we check this statement on the level of the spectrum (or partition function), and

we also confirm that we reproduce the correct spacetime algebra from the worldsheet via

a DDF construction following [8, 9]. In particular, this gives in a sense a direct derivation

of the proposed dual CFT of [10], see also [11, 12] for earlier attempts.

While the general philosophy of the approach is quite similar to what was done in [4, 7],

there are a number of technical difficulties one has to overcome. First, the relevant hy-

brid formalism (that we employ to make sense of the theory with k+ = 1) had not been

developed before, and we sketch its derivation. It involves the WZW model based on the

superalgebra d(2, 1;α), whose structure is somewhat more complicated than psu(1, 1|2)

that was relevant for the case of T4 [4]. In particular, we need to work out the fusion

rules and the characters from first principles. We also make a guess about the structure of

the indecomposable representations (whose structure is again somewhat more complicated

than for the case of psu(1, 1|2)1). Finally, we show that, following [7], the analysis can also

be done for k± > 1, in which case the resulting dual CFT is the symmetric orbifold of large

N = 4 Liouville theory.

The paper is organised as follows. We begin by explaining our conventions for the

description of string theory on AdS3 × S3 × S3 × S1 in the RNS formalism in section 2. In

section 3 we explain how to rewrite these degrees of freedom in a hybrid-like formalism;

the resulting theory then involves the WZW model on the superalgebra d(2, 1;α), together

with a free boson, two pairs of topologically twisted fermions and some ghosts, see eq. (3.6).

In section 4 we then study the representation theory of d(2, 1;α), and specialise to the case

k+ = 1 in section 5. We explain the structure of the representations, study their fusion

rules, and then make a proposal for the full worldsheet theory. The physical state condition

is then studied in section 6; we also explain there how the spacetime BPS states (and in

particular the moduli) arise from the worldsheet perspective. In section 7 we then study the

algebraic structure of the spacetime theory from the worldsheet, following [7], and establish

the result for general values of the flux. We end in section 8 with some discussion of our

result. There are a large number of appendices to which some of the technical material

has been relegated. In particular, we explain in appendix B the Wakimoto representation

of d(2, 1;α)k; we derive the characters of d(2, 1;α) at level k+ = 1 as well as their modular

properties in appendix D; we explain the free field realisation of d(2, 1;α) for k+ = k− = 1 in

appendix E; and we study the indecomposable nature of the representations in appendix F.

2 The worldsheet theory

In the RNS-formalism, the worldsheet theory is described by the WZW-model

sl(2,R)
(1)
k ⊕ su(2)

(1)
k+
⊕ su(2)

(1)
k− ⊕ u(1)(1) , (2.1)

together with the usual superconformal ghost system. Here, g
(1)
k denotes the N = 1

superconformal affine algebra of g at level k. Criticality of the background requires the

three levels to be related according to

1

k
=

1

k+
+

1

k−
. (2.2)
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As is well known, the fermions of this algebra can be decoupled, leading to

sl(2,R)
(1)
k
∼= sl(2,R)k+2 ⊕ 3 free fermions , (2.3)

su(2)
(1)
k±
∼= su(2)k±−2 ⊕ 3 free fermions . (2.4)

We shall denote the decoupled currents by J a and K (±)a with levels k + 2 and k± − 2,

respectively. Here, a ∈ {+,−, 3} is an adjoint index of sl(2,R) or su(2). Similarly, we

denote the corresponding fermionic partners as ψa and χ(±)a. Finally, the free boson of

the S1 will be denoted by ∂Φ and the corresponding fermion by λ. The relevant commu-

tation relations are spelled out in appendix A. The N = 1 superconformal currents on the

worldsheet are defined by

T (z) =
1

k

(
−J 3J 3 + 1

2

(
J +J − + J −J +

)
+ ψ3∂ψ3 − 1

2

(
ψ+∂ψ− + ψ−∂ψ+

))
+

1

k+

(
K (+)3K (+)3 + 1

2

(
K (+)+K (+)− + K (+)−K (+)+

)
− χ(+)3∂χ(+)3 − 1

2

(
χ(+)+∂χ(+)− + χ(+)−∂χ(+)+

))
+

1

k−

(
K (−)3K (−)3 + 1

2

(
K (−)+K (−)− + K (−)−K (−)+

))
− χ(−)3∂χ(−)3 − 1

2

(
χ(−)+∂χ(−)− + χ(−)−∂χ(−)+

))
+

1

2
(∂Φ∂Φ)− 1

2

(
λ∂λ

)
, (2.5)

G(z) = −1

k

(
−J 3ψ3 + 1

2

(
J +ψ− + J −ψ+

)
− 1

k (ψ3ψ+ψ−)
)

− 1

k+

(
K (+)3χ(+)3 + 1

2

(
K (+)+χ(+)− + K (+)−χ(+)+

)
+ 1

k+
(χ(+)3χ(+)+χ(+)−)

)
− 1

k−

(
K (−)3χ(−)3 + 1

2

(
K (−)+χ(−)− + K (−)−χ(−)+

)
+ 1

k− (χ(−)3χ(−)+χ(−)−)
)

+
1

2

(
∂Φλ

)
. (2.6)

The N = 1 superconformal structure on the worldsheet allows us to define the BRST

charge as

QBRST =

∮
dz
(
c
(
T + 1

2Tgh

)
+ γ
(
G+ 1

2Ggh

))
. (2.7)

Here, T gh and Ggh are the N = 1 generators of the superconformal ghost system; this

consists of a bc system with λ = 2 and a βγ system with λ = 3
2 , whose OPE’s we take to

be (see also [7])

b(z)c(w) ∼ 1

z − w
, β(z)γ(w) ∼ − 1

z − w
. (2.8)

In these conventions, the N = 1 superconformal algebra of the ghost system is then

Tgh(z) = −2b(∂c)− (∂b)c− 3
2 β̂(∂γ̂)− 1

2(∂β̂)γ̂ , (2.9)

Ggh(z) = (∂β̂)c+ 3
2 β̂(∂c)− 1

2bγ̂ , (2.10)

which realises the N = 1 superconformal algebra with central charge c = −15.

– 3 –
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2.1 Bosonisation

In order to relate this description to the hybrid formalism it is convenient to bosonise the

fermions as

∂H1(z) =
1

k
(ψ+ψ−)(z) , ∂H2(z) =

1

k+
(χ(+)+χ(+)−)(z) , (2.11a)

∂H3(z) =
2√
kk+

(ψ3χ(+)3)(z) , ∂H4(z) =
1

k−
(χ(−)+χ(−)−)(z) , (2.11b)

∂H5(z) = i

√
2

k−
(λχ(−)3)(z) . (2.11c)

This bosonisation scheme reduces to that of [7] in the limit γ → 1, in which the geometry

degenerates to AdS3 × S3 × T4. The bosons are normalised as

∂Hi(z)∂Hj(w) ∼ δij
(z − w)2

. (2.12)

We also choose the same bosonisation of the superconformal ghost system (the βγ system)

as there, i.e. we write

β(z) = e−φ(z)+χ(z)∂χ(z) , γ = eφ(z)−χ(z) , (2.13)

where the two bosons φ(z) and χ(z) have background charge Qφ = 2 and Qχ = −1,

respectively, and OPEs

φ(z)φ(w) ∼ − log(z − w) , χ(z)χ(w) ∼ log(z − w) . (2.14)

The energy-momentum tensor for the free-field representation then takes the form

T = T φ + Tχ , (2.15)

T φ = −1
2(∂φ)2 + ∂2φ , (2.16)

Tχ = 1
2(∂χ)2 + 1

2∂
2χ . (2.17)

Finally, the picture charge is defined as

Qpic =

∮
dz
(
∂χ− ∂φ

)
. (2.18)

3 The hybrid formalism

Next we want to rewrite these degrees of freedom in a way that makes spacetime super-

symmetry manifest. This can be done by passing to a d(2, 1;α)k WZW-model, thereby

leading to the natural analogue of the ‘hybrid formalism’ for this background; as far as we

are aware, the hybrid formalism for AdS3 × S3 × S3 × S1 has not been developed before.

– 4 –
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3.1 Defining free field variables

We start by defining the vertex operators, cf. [7]

pαβ = e
1
2

(αH1+βH2+αβH3+H4+H5−φ) , (3.1a)

θαβ = e
1
2

(αH1+βH2−αβH3−H4−H5+φ) , (3.1b)

which obey the free field OPEs

pαβ(z)θγδ(w) ∼ εαγεβδ

z − w
. (3.2)

We have suppressed the cocycle factors in the expressions. These fields have conformal

weight 1 and 0, and picture numbers (−1
2) and (1

2), respectively. The indices α, β ∈ {+,−}
are spinor indices of sl(2,R)k ⊕ su(2)k+ . Note that we have explicitly broken the second

su(2) symmetry: pαβ carries charge +1
2 under su(2)k− , while that of θαβ is −1

2 .

In the case of AdS3 × S3 × T4, one can construct out of these fields the affine algebra

psu(1, 1|2)k. Analogously, as we shall now explain, we can define a d(2, 1;α)k affine algebra

in our case (and it will be part of the hybrid formulation). To start with, we define

Sαβ+ = pαβ − k+

2(k+ + k−)
(J (−)+θαβ) , (3.3)

which define half of the supercurrents in d(2, 1;α)k. They are also part of the Wakimoto

construction of d(2, 1;α)k that is described in detail in appendix B, see eq. (B.7).

3.2 Remaining fields

In order to construct the remaining fields of the hybrid formalism (and complete the con-

struction of d(2, 1;α)k) we now recall that the bosonic generators of d(2, 1;α)k form the Lie

algebra sl(2,R)k⊕su(2)k+⊕su(2)k− . The original boson ∂Φ corresponding to S1 commutes

with d(2, 1;α)k, and can be directly added to the theory. (It is naturally defined in the

(0)-picture.) This accounts for all bosonic degrees of freedom. Furthermore, we have not

used the bc ghosts in our reformulation and they simply continue to be also part of the

hybrid description.

As regards the fermions, we can define four more fermions which commute with the

pαβ ’s as well as with the θαβ ’s. As in [7], they are given by

eH4−φ+χ , eH5−φ+χ , e−H4+φ−χ , e−H5+φ−χ , (3.4)

where we have also made use of the boson χ that was introduced in the bosonisation of

the superconformal ghosts, see eq. (2.13). The conformal weights of the first two fermions

is one, while that of the last two fermions is zero; thus they define 2 pairs of topologically

twisted fermions (i.e. two bc systems of conformal weight 1 and 0). Finally, we replace the

other boson φ from the bosonisation of the superconformal ghosts by the combination

ρ = 2φ−H4 −H5 − χ , (3.5)

– 5 –
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that commutes with all the above fields, and defines the new ghost field of the hybrid

formalism. As in [7] one then checks that the central charge of all of these fields is equal

to zero, i.e. that we have accounted for all degrees of freedom. Thus, we have reassembled

the RNS degrees of freedom as

d(2, 1;α)k ⊕ u(1)⊕ 2 pairs of topologically twisted fermions from eq. (3.4)

⊕ bc and ρ ghosts .
(3.6)

While this construction is fairly parallel to the case of T4, there is one important

difference: the su(2)k− currents that appear in d(2, 1;α)k, see eqs. (B.8), (B.9) and (B.10a),

do not correspond to the correct spacetime supersymmetry currents. One can repair this

by redefining the generators of d(2, 1;α)k as

K̃(−)3 := K(−)3 + ∂φ− ∂H5 , (3.7)

K̃(−)− := K(−)− − 2(∂φ− ∂H5)γ̂ , (3.8)

S̃αβ− := Sαβ− +
k+

k− + k−
(∂φ− ∂H5)θαβ , (3.9)

without changing the commutation relations of d(2, 1;α)k. Here, γ̂ is the free field appearing

in the Wakimoto representation of sl(2,R)k−−2, see appendix B for details. However,

this redefined d(2, 1;α)k algebra does not commute any longer with the remaining free

fermions (3.4).

We should mention that we can also express the physical state conditions in terms

of these new variables, which entails rewriting the BRST operator (2.7). The explicit

expressions are quite complicated (as already in the T4 case [13, 14]) but since we will not

need them for our purposes, we have not written them out explicitly.

4 Representations of d(2, 1;α)

For the following, it is important to understand representations of d(2, 1;α) in detail. The

bosonic subalgebra of d(2, 1;α) is sl(2,R)⊕su(2)⊕su(2). While the representations of su(2)

that appear are the familiar finite-dimensional spin ` representations, the representations

of sl(2,R) that are relevant are either discrete lowest (or highest) weight representations

that we denote by D j
+ (or D j

− in the case of lowest weight); the other class of sl(2,R)

representations that appear are the continuous representations that are neither highest nor

lowest weight and that will be denoted by C j
λ . In either case, j determines the value of the

quadratic Casimir of sl(2,R)

C = −J3
0J

3
0 +

1

2

(
J+

0 J
−
0 + J−0 J

+
0

)
, (4.1)

as C = −j(j − 1), and in the case of the continuous representations λ ∈ R/Z denotes the

fractional part of the J3
0 -eigenvalues. Since the Casimir C is invariant under j → 1 − j,

we may assume without loss of generality that Re(j) ≥ 1/2. More details about our

conventions can be found in [4, 7].

– 6 –
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4.1 Long representations

Next we want to understand the structure of the representations of d(2, 1;α). The fermionic

generators of d(2, 1;α) form a Clifford algebra, and the representations of d(2, 1;α) are thus

generated from an irreducible representation of the bosonic subalgebra sl(2,R) ⊕ su(2) ⊕
su(2) by the action of these fermionic modes. We shall mainly focus on the case where the

representation with respect to sl(2,R) is a continuous representation,1 and we shall label

the representations of su(2) by their dimension m±. A generic (long) multiplet decomposes

then with respect to the bosonic subalgebra as

(C
j− 1

2

λ+ 1
2

,m+,m−)

(C j
λ ,m

+ ± 1,m− ± 1)

(C
j+ 1

2

λ+ 1
2

,m+ ± 2,m−) 2 · (C j+ 1
2

λ+ 1
2

,m+,m−) (C
j+ 1

2

λ+ 1
2

,m+,m− ± 2)

(C j+1
λ ,m+ ± 1,m− ± 1)

(C
j+ 3

2

λ+ 1
2

,m+,m−)

. (4.2)

For small m±, additional shortenings occur; for example if m+ = 1 — this case will be

important below — the representation shortens to

(C
j− 1

2

λ+ 1
2

,1,m−)

(C j
λ ,2,m

− ± 1)

(C
j+ 1

2

λ+ 1
2

,3,m−) (C
j+ 1

2

λ+ 1
2

,1,m−) (C
j+ 1

2

λ+ 1
2

,1,m− ± 2)

(C j+1
λ ,2,m− ± 1)

(C
j+ 3

2

λ+ 1
2

,1,m−)

. (4.3)

However, even in this case, the multiplet still contains a representation with m+ ≥ 3.

In the following we shall mainly be interested in the d(2, 1;α) representations that can

appear as (Virasoro) highest weights of an affine d(2, 1;α) representation at k+ = 1. Then,

because of the usual representation theory of su(2)1, see also the analogous discussion in [4],

only d(2, 1;α) representations with m+ ≤ 2 are allowed. The above argument therefore

shows that only ‘short’ representations of d(2, 1;α) are then possible.

4.2 Short representations

We have analysed systematically the (short) representations with m+ ≤ 2. The analysis

is fairly parallel to the case discussed in detail in [4], and up to relabelling, the only

representations with this property have the form

(C j
λ ,2,m)

(C
j− 1

2

λ+ 1
2

,1,m + 1) (C
j+ 1

2

λ+ 1
2

,1,m− 1) ,
(4.4)

where j (with Re(j) ≥ 1/2) will be determined momentarily. Note that if the multiplet

was a discrete multiplet (i.e. if the continuous representations C j
λ were replaced by the

1The situation for the discrete representations is essentially identical.
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discrete representations D j
+), we could easily determine the relevant shortening condition:

it requires that the lowest weight state, i.e. the state in (D
j−1/2
+ ,1,m + 1) is BPS, and

hence saturates the familiar BPS bound [12, 15], which in the above parametrisation (see

also [16, 19]) takes the form

j = (1− γ)
(
`+ 1

2

)
+ 1

2 . (4.5)

Here we have defined γ = α
1+α , and expressed the su(2)-representation via its spin,

m = 2`+ 1.

The same result is also true in the continuous case, as we shall now explain. One way

of seeing this is to decompose the d(2, 1;α)-Casimir into its bosonic and its fermionic pieces

Cd(2,1;α) = Cd(2,1;α)
bos + Cd(2,1;α)

ferm , (4.6)

Cd(2,1;α)
bos = Csl(2,R) + γCsu(2)+ + (1− γ)Csu(2)− , (4.7)

Cd(2,1;α)
ferm = −1

2
εαµεβνεγρS

αβγ
0 Sµνρ0 . (4.8)

The fermionic Casimir can be computed explicitly on the representations of the bosonic

subalgebra with the result2

Cd(2,1;α)
ferm

∣∣∣(
C jλ ,2,m

) = −γ , Cd(2,1;α)
ferm

∣∣∣(
C
j− 1

2

λ+1
2

,1,m+1
) = −(1− γ)(2`+ 1) . (4.9)

On these two representations of the bosonic subalgebra, the full d(2, 1;α) Casimir therefore

takes the values

Cd(2,1;α)
∣∣∣
(C jλ ,2,m)

= −j(j − 1) +
3γ

4
+ (1− γ)`(`+ 1)− γ , (4.10)

Cd(2,1;α)
∣∣∣
(C

j− 1
2

λ ,1,m+1)
= −

(
j − 1

2

)(
j − 3

2

)
+ (1− γ)

(
`+ 1

2

)(
`+ 3

2

)
− (1− γ)(2`+ 1) . (4.11)

Demanding the two expressions to be equal reproduces then (4.5), in which case the Casimir

simplifies to

Cd(2,1;α) = γ(1− γ)
(
`+ 1

2

)2
. (4.12)

We should mention that for the minimal value of ` = 0, the third term in (4.4) is absent,

i.e. the representation is ultrashort, and takes the form

(C j
λ ,2,1)⊕ (C

j− 1
2

λ+ 1
2

,1,2) (4.13)

with j = 1− γ
2 .

In the limit γ → 1, d(2, 1;α) degenerates to psu(1, 1|2) and the second su(2) becomes

an outer automorphism. Then the short representation reduces as

(C j
λ ,2,m)

(C
j+ 1

2

λ+ 1
2

,1,m + 1) (C
j− 1

2

λ+ 1
2

,1,m− 1)

γ→1−→ m×
(

(C
1
2
λ ,2)⊕ 2 · (C 0

λ+ 1
2

,1)

)
. (4.14)

2One can also work this out on the third representation (C
j+ 1

2
λ ,1,m− 1), but the analysis is more

complicated in that case.
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The expression in the bracket on the right hand side is the short representation of psu(1, 1|2)

that was discussed in [4]. Similarly, the shortening condition (4.5) just becomes j = 1
2 in

this limit, again in agreement with [4].

The continuous representations C j
λ of sl(2,R) are indecomposable for j=λ and 1−j=λ,

i.e. for λ = ±j (modZ). The same property carries, of course, also through to the d(2, 1;α)

representations. For the above short representations this becomes

λ = ±j = ±λ` , λ` = (1− γ)(`+ 1
2) + 1

2 . (4.15)

In each case, there is a discrete subrepresentation, and we can define the continuous rep-

resentation such that the discrete subrepresentation is either highest of lowest weight.

Altogether there are therefore four cases.

In addition there is another degeneration that occurs if the Casimir of a sl(2,R) repre-

sentation vanishes, since it contains then the trivial representation as a subrepresentation.

There are two ways in which this may occur in (4.4). First, we can formally set m = 0, in

which case we just keep the left-hand-factor

(C 0
λ+ 1

2

,1,1) , (4.16)

where we have used that m = 0 leads to ` = −1
2 and hence to j = 1

2 in (4.5). This then

contains the trivial representation for λ = 1
2 . The other case arises for

m =
1

1− γ
∈ Z≥0 , (4.17)

since then (4.5) leads to j = 1. (This is obviously only possible provided that (1 − γ)−1 is

an integer.) In this case the middle representation in (4.4) can contain the trivial sl(2,R)

representation, and then the two other terms will be absent. Thus, we conclude that also(
C 1
λ ,2,m =

1

1− γ

)
(4.18)

is a consistent multiplet. Note that there is no analogue of this in the limit γ → 1.

5 The d(2, 1;α) WZW-model at k+ = 1

In the following we shall concentrate on the WZW-model based on d(2, 1;α) with k+ = 1.

We shall set k− = κ+ 1 with κ ∈ Z≥0, as this will be convenient below. With this choice

of parameters, we then have

k = γ =
κ+ 1

κ+ 2
so that (1− γ) =

1

κ+ 2
, (5.1)

see (2.2).
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5.1 The affine short representations

As we have explained in the previous section, the only allowed ground state representations

are the short continuous representations of d(2, 1;α) of eq. (4.4). We will denote the

resulting affine representations by F `
λ, where ` = 2m + 1. Since the su(2)k− ground state

representations must have spin less or equal to 1
2k
−, ` is allowed to take only the values

` ∈ {0, 1
2 , . . . ,

κ
2}— note that the multiplet (4.4) also contains a representation with m + 1.

This bound was noted in the discrete case already in [15].

As we have explained above, the ground state representations of F `
λ become indecom-

posable for λ = ±λ` (4.15) and the same is, of course, also true for the affine representations.

We shall denote the corresponding discrete subrepresentations by

G `
>,± ⊂ F `

λ`
, G `

<,± ⊂ F `
−λ` , (5.2)

where ± refers to whether the representation is lowest weight (+), i.e. runs to the right, or

whether it is highest weight (−), i.e. runs to the left. Note that for γ 6= 0, 1, the parameter

λ` 6∈ 1
2Z, and hence λ` and −λ` never differ by an integer (and hence never define the same

representation).

The other representations that will be relevant for us is the vacuum representation

L of d(2, 1;α)κ — this is the affine representation based on the trivial representation of

d(2, 1;α) — as well as the representation L ′, whose ground state representation is (4.18).

Note that, because of (5.1), (1− γ)−1 = κ+ 2 is an integer, and hence this representation

exists for all κ. As we shall see below, see eq. (5.5c), L ′ arises naturally by applying the

joint spectral flow in the two affine su(2)’s to the vacuum representation.

Thus, up to now, we have the following irreducible modules of d(2, 1;α)k for k+ = 1

F `
λ , G `

<,± , G `
>,± , L , L ′ , (5.3)

where ` runs over ` ∈ {0, 1
2 , . . . ,

κ
2} and λ ∈ R/Z with λ 6= ±λ`.

5.2 Spectral flow

For the following it will be important that d(2, 1;α)k possesses a spectral flow automorphism

σ. On the bosonic subalgebra sl(2,R)k ⊕ su(2)k+ ⊕ su(2)k− , we define it to act by a

simultaneous spectral flow on sl(2,R)k ⊕ su(2)k+ ,

σw(J3
m) = J3

m + kw
2 δm,0 , (5.4a)

σw(J±m) = J±m∓w , (5.4b)

σw(K(+)3
m ) = K(+)3

m + k+w
2 δm,0 , (5.4c)

σw(K(+)±
m ) = K

(+)±
m±w , (5.4d)

σw(K(−)a
m ) = K(−)a

m , (5.4e)

σw(Sαβγm ) = Sαβγ
m+ 1

2
w(β−α)

. (5.4f)

In particular, this spectral flow keeps the supercharges integer moded. As we will see

below, see also [1], these spectrally flowed representations will have to be included in order
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to get a well-defined worldsheet theory; we therefore need to extend (5.3) by their spectrally

flowed images.

We should mention that we have made an artificial choice in flowing in su(2)k+ , and not

in su(2)k− . This is reflected by the existence of another spectral flow ρ, which flows simul-

taneously in the two su(2)’s. This spectral flow does not generate any new representations,

and it satisfies ρ2 = 1.3

Since spectral flow maps representations to representations, there are in fact a number

of identifications. In particular, we have

ρ(F `
λ) = F

κ
2
−`

λ+ 1
2

, ρ(G `
>,±) = G

κ
2
−`

<,± , ρ(L ) = L ′ , (5.5a)

σ(L ) ∼= G 0
<,+ , σ−1(L ) ∼= G 0

>,− , (5.5b)

σ(L ′) ∼= G
κ
2
>,+ , σ−1(L ′) ∼= G

κ
2
<,− , (5.5c)

σ(G
`+ 1

2
>,− ) ∼= G `

>,+ , σ−1(G
`+ 1

2
<,+ ) ∼= G `

<,− . (5.5d)

Finally, as in the case studied in [4], the CFT is actually logarithmic, and one also needs

to consider indecomposable representations. We have already seen that for λ = ±λ` the

module F `
λ becomes indecomposable and contains a discrete subrepresentation. As it turns

out — this is typical for logarithmic CFTs — F `
λ itself does not appear in the spectrum

of the theory, but it is instead part of an even larger indecomposable module. While

these indecomposable modules lead to many technical complications, most of our results

are largely unaffected by this subtlety, see also [14, 17]. We have therefore relegated the

analysis of these indecomposable representations to appendix F.

5.3 The fusion rules

Next we want to describe the fusion rules of the model. For the case of psu(1, 1|2)1 that

was discussed in [4], there exists a free field realisation from which the fusion rules can be

deduced. We are not aware of such a free-field representation in the present case, except

for κ = 0; this free-field realisation for κ = 0 is discussed in appendix E.

We therefore have to resort to other methods. In particular, we can use a continuum

version of the Verlinde formula to determine the typical fusion rules, i.e. those that do

not involve indecomposable representations.4 The calculation is somewhat lengthy, see

appendix D, but it leads to the simple result

F `1
λ1
×F `2

λ2
∼=

κ
2⊕

`3=0

N `3
`1`2

(
σ
(
F `3
λ1+λ2− γ2

)
⊕F

`3+ 1
2

λ1+λ2+ 1
2

⊕F
`3− 1

2

λ1+λ2+ 1
2

⊕σ−1
(
F `3
λ1+λ2+ γ

2

))
. (5.6)

Here, N `3
`1`2

are the su(2)κ fusion rules, and, by definition, F
− 1

2
λ and F

κ+1
2

λ are considered

to be zero. Since the Verlinde formula is blind to indecomposability issues, it is conceivable

that some modules on the right hand side are actually part of a bigger indecomposable

3This is to say, ρ2 is an inner automorphism that maps each representation to itself. However, ρ2 does

not act trivially on the individual states.
4For the case of psu(1, 1|2)1, this was also done in [4].
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module. In fact, if λ1 + λ2 + 1
2 = ±λ`3± 1

2
for some `3, then we expect indecomposable

modules to appear. While it is difficult to derive this for general κ, we can use our knowledge

from the free-field realisation at κ = 0, see appendix E, and from the psu(1, 1|2)1 analysis

(which arises for κ→∞) to make a reasonable guess for the indecomposable structure in

general. This is also described in appendix F.

As in [4], the fusion rules are compatible with spectral flow,

σw1
(
F `1
λ1

)
× σw2

(
F `2
λ2

) ∼= σw1+w2
(
F `1
λ1
×F `2

λ2

)
, (5.7)

and they reduce to the ones for psu(1, 1|2)1 in the limit κ → ∞. In that limit, su(2)κ+1

becomes an outer automorphism, and we therefore get from (5.6)

F 0
λ1 ×F 0

λ2
∼= σ

(
F 0
λ1+λ2+ 1

2

)
⊕F

1
2

λ1+λ2+ 1
2

⊕ σ−1
(
F 0
λ1+λ2+ 1

2

)
(5.8)

∼= σ
(
F 0
λ1+λ2+ 1

2

)
⊕ 2 ·F 0

λ1+λ2+ 1
2

⊕ σ−1
(
F 0
λ1+λ2+ 1

2

)
, (5.9)

where the isomorphism breaks the outer automorphism su(2); this then reproduces

eq. (4.17) of [4]. As a second cross-check, we notice that they reduce, for κ = 0, to

F 0
λ1 ×F 0

λ2
∼= σ

(
F 0
λ1+λ2− 1

4

)
⊕ σ−1

(
F 0
λ1+λ2+ 1

4

)
, (5.10)

thereby reproducing the special case derived in appendix E from the free field realisation.

5.4 The Hilbert space and modular invariance

With these preparations at hand, we can now write down the complete worldsheet spec-

trum. It takes the form

H =
⊕
w∈Z

κ
2⊕

`=0, ¯̀=0

M`¯̀ ⊕
∫

[0,1)

dλ σw
(
F `
λ

)
⊗ σw

(
F `
λ

)
, (5.11)

where M`¯̀ is any su(2)κ modular invariant. In appendix D, we determine the S-matrix for

the modular transformations of the characters, see eq. (D.42)

S(w,λ,`),(w′,λ′,`′) = −i sgn(Re(τ)) e
2πi
(
w′λ+wλ′− ww′

2(κ+2)

)
S
su(2)
``′ , (5.12)

where S
su(2)
``′ is the standard modular S-matrix of su(2)κ. The S-matrix in (5.12) is formally

unitary, and hence the spectrum (5.11) is (formally) modular invariant. This is true for

any modular invariant of su(2)κ, since the S-matrix is of tensor product form, i.e. the `-

dependence only appears in su(2)κ S-matrix, which factors out from the rest, see eq. (5.12).

In writing down (5.11) we have ignored the subtlety that the fusion rules require us to

consider also some indecomposable modules. There is a general recipe for how to deal with

this issue that was already explained in some detail in [4]; we have sketched some aspects

of this in appendix F.
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In appendix D, we have also derived the characters of the spectrally flowed represen-

tation σw
(
F `
λ

)
, which take the form

ch
[
σw
(
F `
λ

)]
(t, u, v; τ) = q

w2

4(κ+2)x
κ+1

2(κ+2)
w
y
w
2

×
∑
n∈Z

e2πi(λ+ 1
2

)n δ(t− wτ − n)
ϑ2

(
t+u+v

2 ; τ
)
ϑ2

(
t+u−v

2 ; τ
)

η(τ)4
χ(`)
κ (v; τ) . (5.13)

Here, u, v and t are the chemical potentials of su(2)1, su(2)κ+1, and sl(2,R)k, respectively,

which we write as

q = e2πiτ , x = e2πit , y = e2πiu , z = e2πiv . (5.14)

We have also included a (−1)F factor in the character, and χ
(`)
κ (v; τ) is the su(2)κ affine

character, for more details see appendix D.3. At this point, the appearance of su(2)κ is

somewhat mysterious, since we started out with su(2)1 ⊕ su(2)κ+1 ⊂ d(2, 1;α)k. However,

its appearance is very natural from a spacetime perspective since the dual theory is ex-

pected [10] to be the symmetric orbifold of Sκ, which also contains a su(2)κ algebra; this

will be explained in more detail in section 6.

We should also draw attention to the delta function which appears in the character.

As in the case discussed in [4], it means that the character localises on solutions which map

the worldsheet torus (with modular parameter τ) holomorphically to the boundary torus

(with modular parameter t). This is the hallmark of a topological string theory and hence

suggests that also AdS3 × S3 × S3 becomes essentially topological at k+ = 1.

6 Physical states in string theory

Now we are ready to compute the full string theory spectrum of our theory. As we shall

see, it will turn out to equal the partition function of the symmetric orbifold of Sκ, nicely

confirming the prediction of [10], see also [9]. Here Sκ is the N = 1 supersymmetric

WZW-model on S3 × S1 (with κ units of flux through the S3), which exhibits in fact large

N = (4, 4) supersymmetry.

6.1 The theory Sκ and its symmetric orbifold

Let us begin by reviewing briefly the Sκ theory [10, 12, 18]. The Sκ theory is defined by

su(2)
(1)
κ+2 ⊕ u(1)(1) ∼= su(2)κ ⊕ u(1)⊕ 4 free fermions , (6.1)

and possesses large N = (4, 4) superconformal symmetry whose R-symmetry group is

su(2)κ+1⊕su(2)1⊕u(1). Some background material about the large N = 4 superconformal

algebra can be found in [12, 16, 19].

For the comparison with the worldsheet answer, we will need the partition function of

the Sκ theory, which is explicitly given (in the NS sector) as

ZNS
Sκ (u, v; t) =

∣∣∣∣∣ϑ3

(
u+v

2 ; t
)
ϑ3

(
u−v

2 ; t
)

η(t)3

∣∣∣∣∣
2

Zsu(2)κ(v; t) Θ(τ) . (6.2)
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Here, Θ(τ) is the momentum-winding sum of the free boson, u and v are the chemical

potentials for su(2)κ+1 and su(2)1, respectively,5 while t is the modular parameter, and

Zsu(2)κ(v; t) =

κ∑
`=0

M`¯̀χ
(`)
κ (v; t)χ

(`)
κ (v; t) (6.3)

is the partition function of su(2)κ. The central charge of this theory equals

c =
6(κ+ 1)

κ+ 2
, (6.4)

and the formula in the R-sector is obtained upon replacing ϑ3 by ϑ2.

Given the partition function of the seed theory, it is straightforward to work out the

partition function of the N -fold symmetric product [10, 20, 21], and the partition function

of the single particle states equals

ZSymN (Sκ)(u, v; t) = x−
Nc
24 x̄−

Nc
24

(
N∑

w=1 odd

x
cw
24 x̄

cw
24 ZNS′

Sκ
(
u, v; tw

)
+

N∑
w=1 even

x
cw
24 x̄

cw
24 ZR′

Sκ
(
u, v; tw

))
. (6.5)

Here ′ denotes the orbifold projection, which ensures that only states with h − h̄ ∈ Z are

kept (resp. h− h̄ ∈ Z+ 1
2 for fermions in the NS-sector). Since we are interested in the large

N limit, we will strip off the prefactor x−
Nc
24 x̄−

Nc
24 ; in the holographic setting, it corresponds

to the divergent vacuum contribution.

6.2 Adding the remaining matter and ghost fields

Now we want to reproduce this answer from our worldsheet description. Recall that the

complete worldsheet theory has in addition to d(2, 1;α)k an additional u(1) current, four

topologically twisted fermions, as well as the bc and ρ ghost system, see eq. (3.6). The

additional fields are all free, so it is a trivial matter to compute their partition functions.

For the free bosons describing S1, we have

ZS1(τ) =
Θ(τ)

|η(τ)|2
, (6.6)

where Θ(τ) is the momentum-winding sum. We have already accounted for eight fermions

on the worldsheet (since we constructed d(2, 1;α) out of 8 fermions). So there should

not be any additional fermionic contributions to the partition function, and indeed the

ρ ghost cancels the four topologically twisted fermions, as was discussed in [4]. Finally,

the bosonic ghosts remove two neutral oscillators. Thus the full partition function of the

worldsheet theory is simply obtained by multiplying the partition function of d(2, 1;α)k
with Θ(τ) · |η(τ)|2.

5To keep the notation simple, we have not introduced a chemical potential for the u(1) factor. It is

straightforward to include it and in fact the analysis of this paper carries through directly.
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6.3 The mass shell condition

Finally, we need to impose the mass shell condition on the worldsheet, i.e. we need to

demand that L0 = 0. For this it is convenient to rewrite the delta function in (5.13) as an

infinite sum — this is in fact how the delta function was obtained in the first place — so

that the character reads

ch
[
σw
(
F `
λ

)]
(t, u, v; τ) = q

w2

4(κ+2)x
κ+1

2(κ+2)
w
y
w
2

×
∑

m∈Z+λ+ 1
2

xmq−mw
ϑ2

(
t+u+v

2 ; τ
)
ϑ2

(
t+u−v

2 ; τ
)

η(τ)4
χ(`)
κ (v; τ) . (6.7)

Imposing the mass shell condition now amounts to solving

w2

4(κ+ 2)
−mw + hosc = 0 ⇒ m =

w

4(κ+ 2)
+
hosc

w
, (6.8)

where hosc is the conformal weight coming from the oscillator part (i.e. the theta-functions,

the eta-functions and the affine su(2)κ character). Thus one term in the infinite sum of (6.7)

is picked out, for a specific choice of λ (which is thereby also fixed). We correspondingly

solve the mass shell condition for the right-movers. Since λ is the same for both left- and

right-movers, this imposes the additional condition

hosc − h̄osc ≡ 0 mod w . (6.9)

In terms of the character, imposing the two mass shall conditions can thus be implemented

by removing the infinite sum, replacing τ → t
w , including the appropriate prefactor (coming

from the first term in (6.8)), and imposing the constraint (6.9). Using the theta-function

identities

ϑ2

(
t+u±v

2 ; tw
)

= x−
w
8 y−

w
4 z∓

w
4

{
ϑ2

(
u±v

2 ; tw
)
, w even ,

ϑ3

(
u±v

2 ; tw
)
, w odd .

(6.10)

the partition function of the physical spectrum can thus be written as

Zstring(u, v; t) =

∞∑
w=1 odd

x
cw
24 x̄

cw
24 ZNS′

Sκ
(
u, v; tw

)
+

∞∑
w=1 even

x
cw
24 x̄

cw
24 ZR′

Sκ
(
u, v; tw

)
, (6.11)

where c is given by (6.4). This then agrees precisely with the large N limit of (6.5). We

note in passing that this works for any modular invariant of su(2)κ.

We should mention that we have restricted the calculation here to the w ≥ 1 sector.

It is easy to see that there are no physical states in the w = 0 sector, while the states from

the w ≤ −1 sector have the interpretation of out-states in the dual CFT [3, 4], and hence

should not be included in the partition function.
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6.4 The BPS spectrum

It is instructive to understand how the BPS spectrum arises from the worldsheet. Recall

that the single-particle BPS spectrum of the symmetric orbifold of Sκ is [10, 12]6

cN
12⊕
`=0

[h = `, `+ = `, `− = `, u = 0]⊗ [h = `, `+ = `, `− = `, u = 0] . (6.12)

Here, [h = hBPS(`+, `−, u), `+, `−, u] denotes a large N = 4 BPS multiplet in the represen-

tation (`+, `−, u) of the R-symmetry algebra su(2)⊕ su(2)⊕ u(1). This BPS spectrum also

agrees with the supergravity BPS spectrum for AdS3 × S3 × S3 × S1 [19, 22].

The different states in eq. (6.12) arise as follows. There is a BPS representation in

every w-twisted sector, provided that w 6∈ (κ+ 2)Z. In order to describe it, we write

w = m(κ+ 2) + 2`+ 1 (6.13)

for some m ∈ Z and ` ∈ {0, 1
2 , . . . ,

κ
2}; this is possible since w is not divisible by (κ + 2).

Then we consider the (2`+m(κ+1),m)-fold spectral flow of the ground state representation

of spin (0, `) of su(2)1⊕su(2)κ+1. This gives a state in the w twisted sector which is indeed

BPS. It was furthermore shown in [10] that all BPS states arise in this manner.

This structure can be directly translated to the worldsheet: BPS states come from the

representations

σm(κ+2)+2`+1
(
F `
λ`

)
(m even) , and σm(κ+2)+2`+1

(
F

κ
2
−`
−λκ

2−`

)
(m odd) . (6.14)

To see this, we first recall that the m-fold spectral flow on su(2)κ maps the spin-` represen-

tation back to itself if m is even, and to κ
2−` if m is odd; the resulting state therefore sits in

the correct representation of su(2)κ+1. This leaves us with determining the λ-parameters,

which can be computed by requiring that the sl(2,R) weights agree with the BPS bound

up to an integer. We see that we obtain precisely the values at which the modules become

indecomposable. (Strictly speaking, we should therefore replace F `
λ`

by its indecomposable

analogue T
`+ 1

2
> and F

κ
2
−`
−λκ

2−`
by T

κ+1
2
−`

< , see appendix F for more details). The fact that

BPS states live in indecomposable representations is typical for supergroup theories [14, 17].

Finally, we discuss the moduli of the theory. Moduli of large N = 4 theories are

superconformal descendants of (`+, `−, u) = (1
2 ,

1
2 , 0) BPS states [12]. These can come

from the vacuum representation or the large N = 4 BPS representation labelled by [h =
1
2 , `

+ = 1
2 , `
− = 1

2 , u = 0]. These states in turn come from the worldsheet representations

σ(F 0
λ0) ∼ L ⊕ σ(G 0

>,+) , (6.15)

σ2(F
1/2
λ1/2

) ∼ σ(G 0
>,+)⊕ σ2(G

1/2
>,+) . (6.16)

The module L contains a single physical state, namely the vacuum itself, which corre-

sponds to the spacetime vacuum. The actual moduli therefore come from the represen-

tation σ(G 0
>,+) which indeed appears twice. This reflects the situation in the dual CFT,

6There are some additional BPS states in the N -twisted sector, which disappear in the large N limit [10].

We therefore do not consider them here.
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where one of the moduli comes from the untwisted sector and changes the radius of S1,

whereas the other modulus carries one away from the symmetric orbifold point. The two

moduli in the theory are exactly on the same footing, in agreement with the fact that the

geometry of the two-dimensional moduli space is the upper half plane [12].

7 The spacetime DDF operators

In the previous sections we have shown that the spacetime partition function of string

theory on AdS3 × S3 × S3 × S1 coincides with the partition function of the symmetric

orbifold of Sκ if k+ = 1. In this section we want to establish that also the algebraic

structure of the two sides agree, thus extending the analysis of [7] to the present setting.

Moreover, we show that the correspondence can be extended to the case of k+ > 1, in

which case the dual CFT becomes the symmetric orbifold of large N = 4 Liouville theory.

Most of the arguments are very similar to what was done in [7], and we shall therefore be

rather brief.

7.1 Spacetime operators

In [9] the DDF operators generating the large N = 4 superconformal algebra were con-

structed for the background AdS3 × S3 × S3 × S1. The analysis was performed in the RNS

formalism assuming that k± ≥ 2, and it is a priori not clear whether the construction

continues to make sense also for k+ = 1. Using similar arguments as in [7] (where the

corresponding problem was studied for the case of AdS3 × S3 × T4), we have checked that

the DDF operators of [9] are also well-defined for k+ = 1.

Let us denote the large N = 4 spacetime algebra generators (our conventions fol-

low [10]) by

Lm , Gαβr , K(±)a
m , Um , Qαβr , (7.1)

where Lm are the modes of the spacetime energy momentum tensor, Gαβr those of the space-

time supercharges, while K(±)a
m and Um define the R-symmetry generators. In addition,

there are four free fermions that are denoted by Qαβr .

As was explained in [7] — the argument is essentially the same here — the modes

of this algebra can take values in 1
wZ (or 1

w

(
Z + 1

2

)
in the case of fermions). By the

same reasoning as in [7] this then suggests that the spacetime states that arise from the

continuous representations on the worldsheet are in general (i.e. for arbitrary k+ and k−)

described by the symmetric product orbifold of

large N = 4 Liouville theory with (k+, k−) . (7.2)

We shall review the construction of large N = 4 Liouville theory in the following section,

and explain the crucial steps in this derivation in section 7.3. In section 7.4 we will then

demonstrate that large N = 4 Liouville theory reduces, for k+ = 1, to Sκ. Furthermore,

since for k+ = 1 the entire worldsheet spectrum comes from the continuous representations,

this is in fact a complete description of the theory.
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7.2 Large N = 4 Liouville theory

Let us first discuss large N = 4 Liouville theory, which does not seem to be well-known.

We shall first assume k± ≥ 2, and study the case of k+ = 1 in section 7.4. To motivate

the construction of this theory, we consider a free boson coupled to the curvature of the

worldsheet (i.e. with background charge), together with the su(2)k+−2 ⊕ su(2)k−−2 ⊕ u(1)

R-symmetry and 8 free fermions. (This is basically the same field content as for the

worldsheet theory in the RNS formalism, except that the sl(2,R) factor has been replaced

by a boson with screening charge.) It was noticed in [23] that this theory supports large

N = 4 supersymmetry with levels k+ and k− for the two su(2) currents. The free boson

with screening charge Q = (k−1)√
k

leads to a continuous spectrum, whose gap above the

vacuum equals

∆φ =
cφ − 1

24
=

(k − 1)2

4k
. (7.3)

We can combine this with arbitrary su(2)k±−2 and u(1) representations, thus leading to

the general formula for the gap

∆`+,`−,u =
(k − 1)2

4k
+
`+(`+ + 1)

k+
+
`−(`− + 1)

k−
+

u2

k+ + k−
(7.4)

=
(`+ + 1

2)2

k+
+

(`− + 1
2)2

k−
+
k − 2

4
+

u2

k+ + k−
, (7.5)

where we have used (2.2). We should note that, generically, all the BPS representations

lie below this gap since

∆`+,`−,u − hBPS(`+, `−, u) =
k

4

(
1− 2`− + 1

k−
− 2`+ + 1

k+

)2

≥ 0 , (7.6)

where we have used the expression for the BPS bound, see e.g. eq. (A.13) of [10]. The only

BPS states that appear in large N = 4 Liouville theory therefore arise if

2`− + 1

k−
+

2`+ + 1

k+
= 1 . (7.7)

The fact that such solutions exist is related to the fact that also the continuous sector of

the worldsheet theory of AdS3 × S3 × S3 × S1 contributes to the BPS spectrum [10].

The full spectrum of large N = 4 Liouville theory is obtained by taking the diagonal

modular invariant of all of the representations that lie above the gap (and have allowed

su(2)k±−2 and u(1) representations). We should note that in large N = 4 Liouville, each

representation appears precisely once, whereas in the free bosons realisation from above,

each representation appears twice since opposite values of the momentum lead to the same

Virasoro representation.

7.3 The Liouville spectrum from the worldsheet

Next, we want to reproduce this Liouville spectrum directly from the worldsheet. Solving

the mass-shell condition in the spectrally flowed sector leads to

1
4 + p2

k
− wh+

k

4
w2 +

`+(`+ + 1)

k+
+
`−(`− + 1)

k−
+

u2

k+ + k−
+N =

1

2
, (7.8)
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where N is the contribution to the conformal weight from the oscillator part. Solving this

equation for the conformal weight h of the dual CFT yields

h =
k

4w
(w2 − 1) +

∆`+,`−,u

w
+
N

w
+
p2

kw
. (7.9)

This matches exactly the form expected from the symmetric orbifold of large N = 4

Liouville: the first term is the universal ground state energy of the twisted sector, which

equals c
24w (w2−1), where c = 6k is the central charge of the ‘seed theory’, while the second

term describes the gap in the w-cycle twisted sector. Since the modes are 1
w -fractionally

moded in the w-cycle twisted sector, the contribution of N has to be divided by w. Finally,

the term p2

kw leads to a continuum in the spectrum (since p is any real number corresponding

to the momentum of the long string). Furthermore, the representations belonging to p and

−p are identified on the worldsheet — they describe the same sl(2,R) representation —

and appear only once in the spectrum, as appropriate for N = 4 Liouville, see the comment

at the end of the previous section.

In order to conclude from this that the complete spectrum matches we use again a

character argument (as in [7]). To compute the relevant characters, we again make use of

the free-field construction of [23]. Both the worldsheet theory as well as Liouville theory has

8 free fermions (after imposing the physical state conditions on the worldsheet). In addition

also the bosonic degrees of freedom match: the su(2)k+−2⊕ su(2)k−−2⊕ u(1) algebra is the

same on both sides and the sl(2,R)k factor has the character of a free boson after imposing

the physical state conditions. This reproduces the contribution of the Liouville boson.

Thus, we have matched the spectrum as well as the chiral algebras on both sides of the

duality. Since Liouville theory is believed to be uniquely characterised by this data (and

the same should be true for large N = 4 Liouville), this goes a long way towards proving

the duality in this case.

We should stress that the ‘symmetric orbifold of Liouville theory’ contains single-

particle states for which only one copy is in the ground state of Liouville theory, while

the other copies are in the ‘vacuum’ — this is part of the spectrum as determined from

the dual worldsheet analysis. (This is different from the naive definition of the symmetric

orbifold where the ‘vacuum’ would not be allowed for any copy.) As a consequence, the

effective central charge scales as 6N k+k−

k++k− , and the spectrum has the correct density at

large conformal dimension.

7.4 The case of k+ = 1

Upon setting k+ = 1, the construction of N = 4 Liouville theory breaks down since the

level of the corresponding bosonic algebra is −1, which makes the theory non-unitary.

Instead, the superconformal algebra collapses to Sκ, i.e. as chiral algebras we have the

equivalence [24]

Aγ(k+ = 1, k− = κ+ 1) = su(2)κ ⊕ u(1)⊕ 4 free fermions , (7.10)

mirroring exactly what happens on the worldsheet.
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Contrary to the k± ≥ 2 case, the Sκ theory (and hence also Aγ at k+ = 1) contains

only BPS representations. This just follows from the fact that the conformal weight of a

representation with su(2) spin `− and u(1)-charge u is

∆`−,u =
`−(`− + 1)

κ+ 2
+

u2

κ+ 2
= hBPS(0, `−, u) . (7.11)

As a consequence, any large N = (4, 4) theory at k+ = 1 cannot have a continuum (such as

the one that appears in Liouville theory). Furthermore, the above DDF analysis predicts

that the CFT dual of string theory on AdS3 × S3 × S3 × S1 must be a symmetric orbifold,

whose seed theory has large N = 4 superconformal symmetry with levels k± = k±worldsheet.

For k+ = 1, the seed theory must therefore be Sκ, thus inevitably leading to the proposal

of [10] (for k+ = 1).

8 Discussion

In this paper we have found a family of examples that relate a solvable worldsheet theory

describing strings on AdS3 to a solvable family of 2d CFTs. The relevant backgrounds

describe string theory on AdS3×S3×S3×S1 with pure NS-NS flux and minimal flux through

one of the two S3’s, while the dual CFTs are symmetric orbifolds of the so-called Sκ theory,

the simplest conformal field theory with large N = 4 superconformal symmetry [12, 18].

We have shown that the spacetime spectrum of the worldsheet theory agrees precisely with

the dual symmetric orbifold CFT in the large N limit. We have furthermore shown that the

spectrum generating fields on the worldsheet (the DDF operators) obey the same algebra

as those of the symmetric orbifold. This gives strong support to the identification of the

dual CFT that was proposed in [10], see also [9]. Our results are a natural generalisation

of the results obtained for the T4 case in [4, 7].

We have also analysed the situation where the NS-NS flux through both spheres is

bigger than its minimal value (k± > 1), and in this case, our analysis suggests that the

dual CFT is the symmetric orbifold of large N = 4 Liouville theory. In this case the

spectrum of the symmetric orbifold is entirely accounted for in terms of the continuous

representations on the worldsheet, while the role of the spacetimes states that originate

from discrete representations on the worldsheet is less clear.7 Again, this mirrors precisely

what was found for the T4 case in [7].

It is suggestive that, apart from some small technical differences, the analysis (as well

as the resulting picture) that we find here is quite similar to that obtained in the T4

case. This suggests that similar results may also hold for other backgrounds (say with less

supersymmetry), and it would be interesting to explore this. It would also be interesting

to probe these dual pairs in more detail, say, by comparing their 3-point functions, or by

computing 1/N corrections (which should correspond to higher genus corrections from the

worldsheet viewpoint). In any case, we feel that these three dimensional examples will

provide a useful testing ground for various aspects of the AdS/CFT correspondence.

7Note that if one of the levels takes the minimal value, say k+ = 1, then the worldsheet spectrum does

not contain any discrete representations.

– 20 –



J
H
E
P
0
6
(
2
0
1
9
)
0
3
5

Acknowledgments

We thank Andrea Dei, Rajesh Gopakumar, Wei Li and Ida Zadeh for useful discussions.

We would also like to thank the Erwin Schrödinger Institute in Vienna, where this work

was completed, for hospitality. LE is supported by the Swiss National Science Foundation,

and the work of the group is more generally supported by the NCCR SwissMAP which is

also funded by the Swiss National Science Foundation.

A Conventions

A.1 The RNS formalism of strings on AdS3 × S3 × S3 × S1

The bosonic generators on the worldsheet give rise to sl(2,R)k+2⊕ su(2)k+−2⊕ su(2)k−−2,

together with one free boson. Their modes satisfy the commutation relations

[J 3
m,J

3
n ] = −k+2

2 mδm+n,0 , (A.1a)

[J 3
m,J

±
n ] = ±J ±

m+n , (A.1b)

[J +
m ,J

−
n ] = (k + 2)mδm+n,0 − 2 J 3

m+n,0 , (A.1c)

[K (±)3
m ,K (±)3

n ] = k±−2
2 mδm+n,0 , (A.1d)

[K (±)3
m ,K (±)±

n ] = ±K
(±)±
m+n , (A.1e)

[K (±)+
m ,K (±)−

n ] = (k± − 2)mδm+n,0 + 2 K
(±)3
m+n,0 , (A.1f)

[∂Φm, ∂Φn] = mδm+n,0 . (A.1g)

There are moreover ten fermions on the worldsheet, which we denote by ψa, χ(±)a and λ.

We take them to have anticommutation relations

{ψ3
r , ψ

3
s} = −k

2 δr+s,0 , (A.2a)

{ψ+
r , ψ

−
s } = k δr+s,0 , (A.2b)

{χ(±)3
r , χ(±)3

s } = k±

2 δr+s,0 , (A.2c)

{χ(±)+
r , χ(±)−

s } = k± δr+s,0 , (A.2d)

{λr, λs} = δr+s,0 . (A.2e)

Out of the bosonic currents at level k + 2, k+ − 2 and k− − 2 and the free fermions,

one can define ‘supersymmetric’ currents at level k, k+ and k−, respectively

J± = J ± ∓ 2

k
(ψ3ψ±) , (A.3a)

J3 = J 3 +
1

k
(ψ+ψ−) , (A.3b)

K(±)± = K (±)± ± 2

k±
(χ(±)3χ(±)±) , (A.3c)

K(±)3 = K (±)3 +
1

k±
(χ(±)+χ(±)−) , (A.3d)
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whose zero modes correspond to the global (bosonic) generators of the spacetime super-

symmetry algebra. Via picture changing, we can also write them in the canonical (−1)

picture, where they simply read

J± = ψ±e−φ , J3 = ψ3e−φ , K(±)± = χ(±)±e−φ , K(±)3 = χ(±)3e−φ . (A.4)

A.2 The d(2, 1;α)k algebra

We take the affine Kac-Moody algebra to be defined by

[J3
m, J

3
n] = −1

2kmδm+n,0 , (A.5a)

[J3
m, J

±
n ] = ±J±m+n , (A.5b)

[J+
m, J

−
n ] = kmδm+n,0 − 2J3

m+n , (A.5c)

[K(±)3
m ,K(±)3

n ] = 1
2k
±mδm+n,0 , (A.5d)

[K(±)3
m ,K(±)±

n ] = ±K(±)±
m+n , (A.5e)

[K(±)+
m ,K(±)−

n ] = k±mδm+n,0 + 2K
(±)3
m+n , (A.5f)

[Jam, S
αβγ
n ] = 1

2(σa)αµS
µβγ
m+n , (A.5g)

[K(+)a
m , Sαβγn ] = 1

2(σa)βνS
ανγ
m+n , (A.5h)

[K(−)a
m , Sαβγn ] = 1

2(σa)γρS
αβρ
m+n , (A.5i)

{Sαβγm , Sµνρn } = kmεαµεβνεγρδm+n,0 − εβνεγρ(σa)αµJam+n + γεαµεγρ(σa)
βνK

(+)a
m+n

+ (1− γ)εαµεβν(σa)
γρK

(−)a
m+n . (A.5j)

Here, α, β, . . . are spinor indices and take values in {+,−}. On the other hand, a is an

su(2) adjoint index and takes values in {+,−, 3}. It is raised and lowered by the standard

su(2)-invariant form. Explicitly, we have

(σ−)+
− = 2 , (σ3)−− = −1 , (σ3)+

+ = 1 , (σ+)−+ = 2 , (A.6a)

(σ−)−− = 1 , (σ3)−+ = 1 , (σ3)+− = 1 , (σ+)++ = −1 , (A.6b)

(σ−)−− = 2 , (σ3)+− = 1 , (σ3)−+ = 1 , (σ+)++ = −2 . (A.6c)

εαβ is the epsilon symbol with ε+− = 1. Finally, γ, k+ and k− are related to α and k by

γ =
α

1 + α
, k+ =

(α+ 1)k

α
, k− = (α+ 1)k . (A.7)

We note that unitarity requires k+, k− ∈ Z≥0.

B The Wakimoto representation of d(2, 1;α)k

In this appendix, we explain the Wakimoto representation that is used in the derivation of

the hybrid formalism for AdS3 × S3 × S3 × S1 in the main body of the paper.

We start with four pairs of topologically twisted fermions (or bc systems), satisfying

pαβ(z) θγδ(w) ∼ εαγεβδ

z − w
. (B.1)

Furthermore, we also have the bosonic sl(2,R)k+2 ⊕ su(2)k+−2 ⊕ su(2)k−−2 currents J a

and K (±)a.
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B.1 The root system of d(2, 1;α)

To continue systematically, let us recall the basic idea of the Wakimoto representation.

Starting from the root system of a Lie (super)algebra, one first constructs a realisation of

the (nilpotent) positive roots in terms of βγ systems. Then one extends this construction

to the positive Borel subalgebra by introducing as many free bosons as the rank of the Lie

algebra. Finally, the generators for the negative roots are then uniquely fixed by requiring

them to satisfy all the OPEs. This procedure requires the breaking of some symmetries.

For d(2, 1;α)k, a minimal choice is to break the su(2)k− symmetry and keep the rest of the

bosonic subalgebra manifest.

In the context of d(2, 1;α)k, we pick as Cartan subalgebra J3
0 , K

(+)3
0 and K

(−)3
0 , and

take the simply roots to be

α1 = (1, 0, 0) , α2 = (0, 1, 0) , α3 =
(
− 1

2 ,−
1
2 ,

1
2

)
. (B.2)

The first two roots are bosonic, while α3 is fermionic, so this corresponds to the distin-

guished choice of simple roots.8 The step operators corresponding to the positive roots

are then

J+ , K(+)+ , K(−)+ , Sαβ+ , (B.3)

for α, β ∈ {+,−}.

B.2 Constructing the Borel subalgebra

We first explain how to construct Ja and K(+)a. The topologically twisted fermions lead

to the generators of sl(2,R)−2 ⊕ su(2)2

J (f)a =
1

2
ca(σ

a)αγεβδ(p
αβθγδ) , (B.4)

K(f)a =
1

2
εαγ(σa)βδ(p

αβθγδ) , (B.5)

where the different constants were explained in appendix A. We then define

Ja = J a + J (f)a , K(+)a = K (+)a +K(f)(+)a , (B.6)

which can be checked to agree with (A.3a)–(A.3d). Next we introduce a Wakimoto repre-

sentation for su(2)k−−2 in terms of a βγ system9 together with a free boson ∂χ̂, see e.g. [26].

Then the remaining elements of the Borel subalgebra are

Sαβ+ = pαβ − k+

2(k+ + k−)
(θαββ̂) , (B.7)

K(−)+ = β̂ , (B.8)

K(−)3 =

√
k−

2
∂χ̂+ (β̂γ̂) +

1

2
εαγεβδ(p

αβθγδ) , (B.9)

where the explicit form of K(−)3 is obtained by demanding the OPEs of d(2, 1;α)k.

8Recall that in Lie superalgebras, there is no unique choice of simple roots, see e.g. [25].
9In order to distinguish this from the βγ system of the superconformal ghost, see eq. (2.13), we denote

the relevant fields here with a hat.
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B.3 The complete algebra

The remaining fields are much more complicated, but they can be found by a direct com-

putation and are uniquely determined. Explicitly they are given as

K(−)− = −(β̂γ̂γ̂)− k−∂γ̂ −
√

2k−(∂χγ̂)− εαγεβδ(pαβθγδγ̂)

− k+(k+ + 2k−)

2(k+ + k−)2

(
θ++θ+−θ−+θ−−β̂

)
− k+(k− + 1)

2(k+ + k−)
εαγεβδ

(
θαβ∂θγδ

)
+

1

2
ca(σa)αγεβδ

(
θαβθγδ

(
J (+)a + 1

3J
(f)(+)a

))
− k−

2(k+ + k−)
εαγ(σa)βδ

(
θαβθγδ

(
K (+)a + 1

3K
(f)(+)a

))
, (B.10a)

Sαβ− =
k+
√
k−√

2(k+ + k−)

(
θαβ∂χ̂

)
+

k+

2(k+ + k−)

(
θαββ̂γ̂

)
−
(
pαβ γ̂

)
+ ca(σa)

α
γ

(
θγβ

(
J a +

3k+ + 2k−

4(k+ + k−)
J (f)a

))
+ (σa)

β
γ

(
θαγ

(
− k−

k+ + k−
K (+)a +

k+ − 2k−

4(k+ + k−)
K(f)(+)a

))
+
k+(2k− + 1)

2(k+ + k−)
∂θαβ − k+(k+ + 2k−)

12(k+ + k−)2
εγµεδνθ

αγθδµθνβ . (B.10b)

The energy-momentum tensor becomes in terms of the defining fields

T =
1

k

(
−J 3J 3+ 1

2

(
J +J −+J −J +

))
+

1

2
(∂χ̂∂χ̂)+

∂2χ̂√
2k−
−(β̂∂γ̂)

+
1

k+

(
K (+)3K (+)3+ 1

2

(
K (+)+K (+)−+K (+)−K (+)+

))
−εαγεβδ(pαβθγδ) , (B.11)

which is the standard energy-momentum tensor of sl(2,R)k+2 ⊕ su(2)k+−2 ⊕ su(2)k−−2,

together with the four pairs of topologically twisted fermions.

We should note that, in the limit k− →∞, the above formulae lead to the construction

for psu(1, 1|2)k [7, 13, 27, 28].

C The short representation of d(2, 1;α)

In this appendix, we will display the short representation (4.4) explicitly. We will denote

the states that appear by

|m,m+,m−〉 , m ∈ Z + λ , m+ ∈ {−1
2 ,

1
2} , m− ∈ {− `

2 , . . . ,
`
2} , (C.1)

|m, 0,m−,±〉 , m ∈ Z + 1
2 + λ , m− ∈ {− `±1

2 , . . . , `±1
2 } . (C.2)

For the action of the bosonic subalgebra we choose the conventions that for sl(2,R) we have

J3
0 |j,m〉 = m |j,m〉 J±0 |j,m〉 =

(
m± j

)
|j,m± 1〉 , (C.3)

while for the spin ` representation of su(2) we set

K3
0 |`,m〉 = m |`,m〉 , K±0 |`,m〉 = (`∓m) |`,m± 1〉 . (C.4)
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The states are then not unit normalised, but this convention is nevertheless convenient.

The action of the supercharges is

Sαβγ0 |m,m+,m−〉 =
αεβ,2m+

√
2`+ 1

(
−
∣∣m+ α

2 , 0,m− + γ
2 ,+

〉
+
(
m+ αj

)(
γ`−m−

) ∣∣m+ α
2 , 0,m− + γ

2 ,−
〉 )

, (C.5a)

Sαβγ0 |m, 0,m−,+〉 =
α
(
m+ α

(
j − 1

2

)) (
γ
(
`+ 1

2

)
−m−

)
√

2`+ 1

∣∣∣m+ α
2 ,

β
2 ,m− + γ

2

〉
, (C.5b)

Sαβγ0 |m, 0,m−,−〉 =
α√

2`+ 1

∣∣∣m+ α
2 ,

β
2 ,m− + γ

2

〉
. (C.5c)

One can check directly that this defines a representation of d(2, 1;α) (in the conventions

of eqs. (A.5a)–(A.5j)), provided that

j = (1− γ)
(
`+ 1

2

)
+ 1

2 , (C.6)

see eq. (4.5) in the main text.

Note that for ` = 0, the states |m, 0,m−,−〉 are never produced by the action of

the generators, and hence can be decoupled from the multiplet, see eq. (4.13). Similarly,

the states

|m,m+,m−〉 , m ∈ j + Z≥0 , (C.7)

|m, 0,m−,±〉 , m ∈ j ∓ 1
2 + Z≥0 (C.8)

form a subrepresentation, which is the discrete representation on which G>,+ is based, while

the states

|m,m+,m−〉 , m ∈ −j + Z≤0 , (C.9)

|m, 0,m−,±〉 , m ∈ −j ± 1
2 + Z≤0 (C.10)

form the discrete subrepresentation which gives rise to G<,− in the affine algebra. In order

to obtain the other two discrete representations (which give rise to G>,− and G<,+ in the

affine algebra), one has to replace j by 1− j in the continuous representations of sl(2,R).

D Characters and modular properties at k+ = 1

In this appendix, we determine the characters of d(2, 1;α) for k+ = 1. To do so, we exploit

the conformal embedding (which only exists for k+ = 1) [29, 30]

sl(2,R)k ⊕ su(2)1 ⊕ su(2)k− ⊂ d(2, 1;α)k . (D.1)

The modular properties of the characters will allow us to prove modular invariance of the

full spectrum, see eq. (5.11). It will also allow us to compute the fusion rules via the

Verlinde formula. We will use the conventions of the main text, so in particular

k+ = 1 , k− = α = κ+ 1 , k = γ =
κ+ 1

κ+ 2
. (D.2)
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D.1 Admissible su(2) WZW-models

We begin by discussing sl(2,R)k at level k = κ+1
κ+2 . On the level of the algebra (i.e. disregard-

ing the hermitian structure, which does not matter for the calculation of the characters),

this algebra is isomorphic to

su(2)−κ+1
κ+2

. (D.3)

While the level of the su(2) algebra is negative (and hence the model is non-unitary), the

level is what is called admissible, see e.g. [26, 31]. (In the following we will mostly follow

the notation of [32].) To explain what this means we write

− κ+ 1

κ+ 2
+ 2 =

κ+ 3

κ+ 2
=
p

q
, (D.4)

where p = κ+ 3 and q = κ+ 2. Admissibility amounts to the condition that gcd(p, q) = 1

and p ∈ Z≥2, q ∈ Z≥1, all of which are obviously satisfied. The fact that the algebra

is admissible means that the vacuum representation has a null-vector at level (p − 1)q =

(κ + 2)2. This singular vector restricts the representation theory of the admissible su(2)

WZW-model significantly. The admissible irreducible representation of su(2) at this level

are [33], see also [34]

Lr,0 , r ∈ {1, . . . , κ+ 2} , (D.5)

D±r,s , r ∈ {1, . . . , κ+ 2} , s ∈ {1, . . . , κ+ 1} , (D.6)

Er,s,λ , r ∈ {1, . . . , κ+ 2} , s ∈ {1, . . . , κ+ 1} , (D.7)

where λ ∈ [0, 1) encodes the quantisation of the J3
0 -eigenvalue mod Z. We denote the

conformal dimension of the ground states by ∆r,s, where

∆r,s =
((κ+ 2)r − (κ+ 3)s)2 − (κ+ 3)2

4(κ+ 2)(κ+ 3)
, (D.8)

and we have the field identification ∆r,s = ∆κ+3−r,κ+2−s. As a consequence Er,s,λ and

Eκ+3−r,κ+2−s,λ describe the same representation.

The characters of the representation Er,s,λ were determined in [32]

ch[Er,s,λ](t; τ) =
χVir
r,s (τ)

η(τ)2

∑
m∈Z+λ

xm , (D.9)

where x = e2πit is the chemical potential of sl(2,R). Here, χVir
r,s (τ) is the character of the

representation (r, s) of the corresponding Virasoro minimal model of central charge

cVir = 1− 6

(κ+ 2)(κ+ 3)
, (D.10)

which are explicitly [26]10

χVir
r,s (τ) =

q∆Vir
r,s− 1

24
(cVir−1)

η(τ)

∑
`∈Z

(
q`(pq`+qr−ps) − q(p`−r)(q`−s)) . (D.11)

10The modular parameter q = e2πiτ should not be confused with the parameter q of the Virasoro minimal

model.
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The expression in (D.9) is a bit formal because of the infinite sum over m, which converges

nowhere (and will lead to a sum over delta functions as in [4]).

The theory has again a spectral flow symmetry, which we shall denote by σ. It acts

on the representations as [32]

σ(Lr,0) = D+
κ+3−r,κ+1 , (D.12a)

σ−1(Lr,0) = D−κ+3−r,κ+1 , (D.12b)

σ(D−r,s) = D+
κ+3−r,κ+1−s . (D.12c)

Finally, there are short exact sequences analogous to (F.3a)–(F.3d), which read

0 −→ D+
r,s −→ Er,s,λr,s −→ D−κ+3−r,κ+2−s −→ 0 , (D.13a)

0 −→ D−r,s −→ Er,s,−λr,s −→ D+
κ+3−r,κ+2−s −→ 0 , (D.13b)

where

λr,s =
r − 1

2
− κ+ 3

2(κ+ 2)
s . (D.14)

Hence, for λ = ±λr,s, Er,s,λ becomes indecomposable.

D.2 The branching rules of d(2, 1;α = κ+ 1)k into its bosonic subalgebra

After this interlude we now return to the case of d(2, 1;α = κ+ 1)k with k+ = 1. We want

to understand the branching rules of the representations of d(2, 1;α)k under the conformal

embedding (D.1). For the case of the vacuum representation of d(2, 1;α)k (and generic

κ 6= Q), this was worked out in [30]. This result can be generalised to κ ∈ Z≥0, and we find

L ∼=
κ+2⊕
r=0

Lr,0 ⊗M
(1)
r mod 2 ⊗M (κ+1)

r , (D.15)

where M
(κ+1)
2`+1 denotes the spin ` representation of su(2)κ+1 and similarly for the level 1

factor.

By exploiting the spectral flow rules (5.5a)–(5.5d) and (D.12a)–(D.12c) together with

the short exact sequences (F.3a)–(F.3d) and (D.13a)–(D.13b), we can read off from this

the branching rules of all modules,

G `
<,+
∼=

κ+2⊕
r=1

D+
κ+3−r,κ+1−2` ⊗M

(1)
r+2`+1 mod 2 ⊗M (κ+1)

r , (D.16a)

G `
<,−
∼=

κ+2⊕
r=1

D−r,2`+1 ⊗M
(1)
r+2`+1 mod 2 ⊗M (κ+1)

r , (D.16b)

G `
>,+
∼=

κ+2⊕
r=1

D+
r,2`+1 ⊗M

(1)
r+2`+1 mod 2 ⊗M (κ+1)

r , (D.16c)

G `
>,−
∼=

κ+2⊕
r=1

D−κ+3−r,κ+1−2` ⊗M
(1)
r+2`+1 mod 2 ⊗M (κ+1)

r , (D.16d)

F `
λ
∼=

κ+2⊕
r=1

Er,2`+1,λ+`+ r+1
2
⊗M

(1)
r+2`+1 mod 2 ⊗M (κ+1)

r . (D.16e)
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D.3 The characters

Given that we know the characters of the individual factors of the above branchings, it

is now straightforward to compute the complete characters of d(2, 1;α)k for k+ = 1. In

particular, the character of the spin-` representation of su(2)κ is explicitly given as

ch[M
(κ)
2`+1](v; τ) =

Θ
(κ+2)
2`+1 (v; τ)−Θ

(κ+2)
−2`−1(v; τ)

Θ
(2)
1 (v; τ)−Θ

(2)
−1(v; τ)

, (D.17)

where v is the chemical potential of su(2)k− with z = e2πiv, and the theta functions are

explicitly

Θ(k)
m (v; τ) =

∑
n∈Z+m

2k

qkn
2
zkn . (D.18)

We introduce similarly chemical potentials t and u for the subalgebras sl(2,R), and su(2)k+ ,

respectively,11 and define

x = e2πit , y = e2πiu , z = e2πiv , q = e2πiτ , (D.19)

where τ is the modular parameter of the worldsheet. The characters we are interested in are

ch
[
σw
(
F `
λ

)]
(t, u, v; τ) ≡ trσw(F `

λ)

(
xJ

3
0 yK

(+)3
0 zK

(−)3
0 qL0− c

24

)
. (D.20)

Because of the zero-modes, they contain in particular a sum of the form∑
m∈Z+λ

e2πi(t−wτ)m = e2πi(t−wτ)λ
∑
m∈Z

e2πi(t−wτ)m (D.21)

= e2πi(t−wτ)λ
∑
n∈Z

δ(t− n− wτ) (D.22)

=
∑
n∈Z

e2πinλδ(t− n− wτ) . (D.23)

We want to show that the full character can be written as

ch[σw(F `
λ)] = q

w2

4(κ+2)x
κ+1

2(κ+2)
w
y
w
2

∑
n∈Z

e2πi(λ+ 1
2

)nδ(t− n− wτ)

×
ϑ1

(
t+u+v

2 ; τ
)
ϑ1

(
t+u−v

2 ; τ
)

η(τ)4
ch[M

(κ)
2`+1](v; τ) . (D.24)

We should stress that it is, from this perspective, somewhat surprising that on the right-

hand-side an su(2)κ character (rather than an su(2)κ+1 character) appears. We should also

mention that, with the exception of the additional su(2)κ character, this formula is almost

identical to the psu(1, 1|2)1 characters computed in [4].

In order to prove (D.24) it is sufficient to consider the unflowed sector, since the spectral

flow (5.4a)–(5.4f) gives immediately the generalisation to any w. To start with we rewrite

the characters of su(2)1 as

ch[M (1)
m ](u; τ) =

1

η(τ)

∑
n∈Z+m+1

2

qn
2
yn =

1

η(τ)
ϑ

[
m+1

2

0

]
(u; 2τ) , (D.25)

11In particular, t will play the role of the modular parameter in the dual CFT.
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where we have used that su(2)1 is equivalent to a free boson at the self-dual radius. We

also rewrite the Virasoro minimal model characters (D.11) as

χVir
r,s (τ) =

1

η(τ)

∑
`∈Z

(
q

(2`(κ+2)(κ+3)−s(κ+3)+r(κ+2))2

4(κ+2)(κ+3) − q
(2`(κ+2)(κ+3)−s(κ+3)−r(κ+2))2

4(κ+2)(κ+3)

)
(D.26)

=
1

η(τ)

∑
ε=±

ε
∑

m∈Z+ s
2(κ+2)

− εr
2(κ+3)

q(κ+2)(κ+3)m2
. (D.27)

It then follows from a direct computation that

ch[F `
λ](t, u, v; τ) =

κ+2∑
r=1

∑
m∈Z+λ+`+ r+1

2

xmχVir
r,2`+1(τ)ch[M

(1)
r+2`+1 mod 2](u; τ)ch[M

(κ+1)
r ](v; τ)

η(τ)2

=
κ+2∑
r=1

ch[M
(1)
r+2`+1 mod 2](u; τ)

η(τ)3
(
Θ

(2)
1 (v; τ)−Θ

(2)
−1(v; τ)

) ∑
m∈Z+λ+`+ r+1

2

xm

×
∑
ε, η=±

εη
∑

n∈Z+
ηr

2(κ+3)

p∈Z+ 2`+1
2(κ+2)

− εr
2(κ+3)

q(κ+3)n2+(κ+2)(κ+3)p2z(κ+3)n . (D.28)

The expression remains unchanged when extending the sum over r from 1 to 2κ + 6 and

dividing the result by a factor of 2. Next we want to rewrite the sums over n and p by

introducing

a = εηp+ n ∈ Z +
εη(2`+ 1)

2(κ+ 2)
, b = n− εη(κ+ 2)p ∈ Z + `+

r + 1

2
. (D.29)

The determinant of the matrix describing this change of variables is κ + 3, which can

be absorbed by restricting the summation over the 2(κ + 3) values of r to just r = 1, 2.

Thus (D.28) becomes

ch[F `
λ](t, u, v; τ) =

∑
r=1, 2

ch[M
(1)
r+2`+1 mod 2](u; τ)

2η(τ)3
(
Θ

(2)
1 (v; τ)−Θ

(2)
−1(v; τ)

) ∑
m∈Z+λ+`+ r+1

2

xm

×
∑
ε, η=±

εη
∑

a∈Z+
εη(2`+1)
2(κ+2)

b∈Z+`+ r+1
2

q(κ+2)a2+b2z(κ+2)a+b (D.30)

=
∑
r=1, 2

∑
m∈Z+λ+`+ r+1

2

xm
Θ

(κ+2)
2`+1 (v; τ)−Θ

(κ+2)
−2`−1(v; τ)

η(τ)2
(
Θ

(2)
1 (v; τ)−Θ

(2)
−1(v; τ)

)
× ch[M

(1)
r+2`+1 mod 2](u; τ)ch[M

(1)
r+2` mod 2](v; τ) (D.31)

=
ch[M

(κ)
2`+1](v; τ)

η(τ)2

( ∑
m∈Z+λ

xmch[M
(1)
2 ](u; τ)ch[M

(1)
1 ](v; τ)

+
∑

m∈Z+λ+ 1
2

xmch[M
(1)
1 ](u; τ)ch[M

(1)
2 ](v; τ)

)
. (D.32)
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Here, we have first used the fact that the expression only depends on the product εη

and hence we can trivially perform one of the two sums. In the final expression we have

rewritten the result in terms of affine su(2)κ characters.

Next we rewrite the two su(2)1 characters in terms of free fermion characters, i.e. we

use (G.4) and (G.5),

ch[M
(1)
2 ](u; τ)ch[M

(1)
1 ](v; τ) =

ϑ2(u+v
2 ; τ)ϑ2(u−v2 ; τ)− ϑ1(u+v

2 ; τ)ϑ1(u−v2 ; τ)

2 η(τ)2
, (D.33)

ch[M
(1)
1 ](u; τ)ch[M

(1)
2 ](v; τ) =

ϑ2(u+v
2 ; τ)ϑ2(u−v2 ; τ) + ϑ1(u+v

2 ; τ)ϑ1(u−v2 ; τ)

2 η(τ)2
. (D.34)

Thus we finally arrive the result∑
m∈Z+λ

xmch[M
(1)
2 ](u; τ)ch[M

(1)
1 ](v; τ) +

∑
m∈Z+λ+ 1

2

xmch[M
(1)
1 ](u; τ)ch[M

(1)
2 ](v; τ)

=
∑

m∈Z+λ+ 1
2

xm
ϑ2

(
t+u+v

2 ; τ
)
ϑ2

(
t+u−v

2 ; τ
)

η(τ)2
, (D.35)

which reproduces (D.24) upon turning the infinite sum over m into a delta function as

in (D.23).

D.4 Modular properties

Next we want to study the modular behaviour of the characters (D.24). To obtain good

modular properties, we insert a (−1)F in the character, which amounts to the replacement

ϑ2 −→ ϑ1. Moreover, to match the conventions of [4], we include a (−1)w in the character.

This merely defines what state in the representation is counted as being fermionic and which

as bosonic. We have indicated these changes by a tilde in the character. Our calculations

follows [4] and are inspired by [1, 35]. For the S-modular transformation we find

c̃h[σw(F `
λ)](t, u, v; τ)→ e

πi
2τ

(κ+1
κ+2

t2−u2−(κ+1)v2)c̃h[σw(F `
λ)]
(
t
τ ,

u
τ ,

v
τ ;− 1

τ

)
(D.36)

=
sgn(Re(τ))

iτ
e
iπ(t+w)
2(κ+2)τ

(−w+2u(κ+2)+t(2κ+3))
(−1)w

∑
m∈Z

e2πim(λ+ 1
2

)δ
( t+ w −mτ

τ

)

×
ϑ1

(
t+u+v

2 ; τ
)
ϑ1

(
t+u−v

2 ; τ
)

η(τ)4

κ
2∑

`′=0

S
su(2)
``′ χ(`′)

κ (v; τ) (D.37)

= −i sgn(Re(τ))
∑
m∈Z

q
m2

4(κ+2)x
κ+1

2(κ+2)
m
y
m
2 e−

πimw
κ+2 e2πim(λ+ 1

2
)(−1)wδ(t+ w −mτ)

×
ϑ1

(
t+u+v

2 ; τ
)
ϑ1

(
t+u−v

2 ; τ
)

η(τ)4

κ
2∑

`′=0

S
su(2)
``′ χ(`′)

κ (v; τ) . (D.38)

Here the prefactor e
πi
2τ

(κ+1
κ+2

t2−y2−(κ+1)z2) comes from the general transformation properties

of weak Jacobi forms of index −k = −κ+1
κ+2 , k+ = 1 and k− = κ + 1, respectively, see

e.g. [36], and we have used the modular transformations of the theta-functions. We have
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also used the modular properties of the su(2)κ characters. In the final step we have set

t = mτ −w (because of the δ function), and used that both m and w are integers. Finally,

as in [4] we have inserted the formal identity

δ
(
x
τ

)
= τ sgn(Re(τ)) δ(x) , (D.39)

which follows by writing

δ(x) = lim
ε→0

1√
2πε

e−
x2

2ε . (D.40)

Here we have put the branch cut of the square root on the imaginary axis, which is the

reason for the jump in (D.39) at this point. Note that the sign cancels out once we combine

the left-movers with the right-movers.

The expression (D.38) can now be written as

∑
w′∈Z

κ
2∑

`′=0

∫ 1

0
dλ′ S(w,λ,`),(w′,λ′,`′) c̃h[σw

′
(Fλ′)](t, u, v; τ) , (D.41)

with

S(w,λ,`),(w′,λ′,`′) = −i sgn(Re(τ)) e
2πi
(
w′λ+wλ′− πiww′

2(κ+2)

)
S
su(2)
``′ , (D.42)

thus obtaining the S-matrix (5.12). As in [35], it is not independent of τ , but this depen-

dence cancels out in physical calculations. The S-matrix is (formally) unitary, meaning

∑
w′′∈Z

κ
2∑

`′′=0

∫ 1

0
dλ′′ S†(w,λ,`),(w′′,λ′′,`′′)S(w′′,λ′′,`′′),(w′,λ′,`′) = δw,w′ δ(λ− λ′ mod 1)δ`,`′ . (D.43)

Moreover, it is clearly symmetric. These properties suffice to deduce that the diagonal

modular invariant is indeed modular invariant.

D.5 The Verlinde formula

We now use the formal S-matrix to derive the typical fusion rules using a continuum version

of the Verlinde formula; the following derivation is parallel to appendix C.6 of [4]. For this,

we also need the S-matrix element of the vacuum with a continuous representation. It

follows from the exact sequences (F.3a)–(F.3d), together with the identifications under

spectral flow (5.5a)–(5.5d), that we have a resolution of the vacuum module as

· · · −→σ4κ+7−2`
(
F `
−λ`
)
−→·· ·−→σ3κ+7

(
F

κ
2
−λκ

2

)
−→σ3κ+5

(
F

κ
2
λκ

2

)
−→·· ·−→σ2κ+2`+5

(
F `
λ`

)
−→·· ·−→σ2κ+5

(
F 0
λ0

)
−→σ2κ+3

(
F 0
−λ0
)
−→·· ·−→σ2κ+3−2`

(
F `
−λ`
)
−→·· ·−→σκ+3

(
F

κ
2
−λκ

2

)
−→σκ+1

(
F

κ
2
λκ

2

)
−→·· ·−→σ2`+1

(
F `
λ`

)
−→·· ·−→σ

(
F 0
λ0

)
−→L −→ 0 . (D.44)

– 31 –



J
H
E
P
0
6
(
2
0
1
9
)
0
3
5

Thus we can write the vacuum character as

ch[L ](t, u, v; τ) =
∞∑
m=0

κ
2∑
`=0

(−1)2`
(

ch
[
σ2`+2m(κ+2)+1

(
F `
λ`

)]
(t, u, v; τ)

− ch
[
σ2(m+1)(κ+2)−2`−1

(
F `
−λ`
)]

(t, u, v; τ)
)
, (D.45)

and hence find for the S-matrix element of the vacuum and a continuous representation

Svac,(w,λ,`) =
∞∑
m=0

κ
2∑
j=0

(−1)2j
(
S(2j+2m(κ+2)+1,λj ,j),(w,λ,`) − S(2(m+1)(κ+2)−2j−1,−λj ,j),(w,λ,`)

)
.

(D.46)

By using the explicit form of the S-matrix (D.42) together with the su(2)κ S-matrix

S
su(2)
``′ =

√
2

κ+ 2
sin
(π(2`+ 1)(2`′ + 1)

κ+ 2

)
, (D.47)

one finds after some algebra

Svac,(w,λ,`) = −
i(−1)wsgn(Re(τ))S

su(2)
0`

2 cos
(π(2`+1)

κ+2

)
+ 2 cos(2πλ)

. (D.48)

Thus the Verlinde formula becomes

N
(w3,λ3,`3)
(w1,λ1,`1)(w2,λ2,`2) =

∑
w∈Z

κ
2∑
`=0

∫ 1

0
dλ
S(w1,λ1,`1)(w,λ,`)S(w2,λ2,`2)(w,λ,`)S

∗
(w3,λ3,`3)(w,λ,`)

Svac,(w,λ,`)
(D.49)

=
(
δw3,w1+w2+1δ

(
λ3 = λ1 + λ2 − γ

2

)
+ δw3,w1+w2−1δ

(
λ3 = λ1 + λ2 + γ

2

))
N `3
`1`2

+ δw3,w1+w2δ
(
λ3 = λ1 + λ2 + 1

2

)(
N
`3+ 1

2
`1`2

+N
`3− 1

2
`1`2

)
, (D.50)

where, N `3
`1`2

are the su(2)κ rules,

N `3
`1`2

= δZ(`1 + `2 + `3)

{
1 |`1 − `2| ≤ `3 ≤ min(`1 + `2, κ− `1 − `2)

0 otherwise
(D.51)

We take them by definition to be zero if one of the indices does not take values in

{0, 1
2 , . . . ,

κ
2}.

E The free field realization of d(2, 1;α)k at k+ = k− = 1

E.1 The symplectic boson theory

Let us begin by explaining the free field realisation of sl(2,R)1/2 in terms of a single pair

of symplectic bosons. This theory and its fusion rules were analysed in detail in [37–39],

see also [4] for some background explanations.
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The (pair of) symplectic bosons ξαm with α = ±, satisfy the commutation relations

[ξαm, ξ
β
n ] = εαβδm,−n . (E.1)

They give rise to an sl(2,R)1/2 affine algebra by setting

Jam = −1
4ca(σ

a)αβ(ξαξβ)m . (E.2)

Both ξ+
r and ξ−r are spin-1

2 fields and possess therefore NS- and R-sector representations.

The NS-sector highest weight representation is described by

ξαr |0〉 = 0 , r ≥ 1
2 , α ∈ {+,−} , (E.3)

and gives the vacuum representation of the theory. On the other hand, the R-sector

representations of the symplectic boson pair have a zero-mode representation on the states

|m〉 with action

ξ+
0 |m〉 =

√
2 |m+ 1

2〉 , ξ−0 |m〉 =
√

2(m− 1
4) |m− 1

2〉 , (E.4)

so that, in terms of the sl(2,R) generators we have,

J3
0 |m〉 = m |m〉 , Csl(2,R) |m〉 =

3

16
|m〉 . (E.5)

Thus the R-sector representations of the symplectic boson are labelled by λ ∈ R/1
2Z,

describing the eigenvalues of J3
0 mod 1

2Z, see also appendix C.1 of [4]

Each symplectic boson representation decomposes into two sl(2,R)1/2 representations,

since the sl(2,R)1/2 currents are bilinear in the symplectic bosons. The NS-sector represen-

tation decomposes into the two modules K0 and K1, which can be thought of as the vacuum

and vector representation, respectively. Similarly, the R-sector representations decompose

into the representations Eλ and Eλ+1/2, where now λ ∈ R/Z describes the eigenvalues of J3
0

mod Z. At λ = 1
4 , 3

4 , the modules become indecomposable, as can be seen from (E.4). The

relevant modules that are required for the description of the full theory are in fact even

bigger, and involve the indecomposable representations S and S ′ [39], whose composition

series takes the form12

S :

K0

σ2(K1)σ−2(K1)

K0

, S ′ :

K1

σ2(K0)σ−2(K0)

K1

(E.6)

The representation S is closely related to E1/4 and E3/4 since, on the level of the

Grothendieck ring, we have

E1/4 ∼ σ(K0)⊕ σ−1(K1) =⇒ S ∼ σ(E3/4)⊕ σ−1(E1/4) , (E.7)

12Note that, unlike the situation discussed in appendix C.1 of [4], we are considering here these modules

as representations of sl(2,R)1/2, not as representations of the symplectic boson theory.
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while the analogous statement for S ′ is

S ′ ∼ σ(E1/4)⊕ σ−1(E3/4) . (E.8)

Here σ denotes the spectral flow of the symplectic boson theory which acts via

σ(ξαr ) = ξαr−α
2
. (E.9)

The fusion rules of this theory were worked out in [39], and are explicitly

Eλ × Eµ ∼=


σ(Eλ+µ− 1

4
)⊕ σ−1(Eλ+µ+ 1

4
) , λ+ µ 6= 0 ,

S , λ+ µ = 0 ,

S ′ , λ+ µ = 1
2 ,

(E.10a)

Eλ ×S ∼= σ2(Eλ+ 1
2
)⊕ 2 · Eλ ⊕ σ−2(Eλ+ 1

2
) , (E.10b)

Eλ ×S ′ ∼= σ2(Eλ)⊕ 2 · Eλ+ 1
2
⊕ σ−2(Eλ) , (E.10c)

S ×S ∼= S ′ ×S ′ ∼= σ2(S ′)⊕ 2 ·S ⊕ σ−2(S ′) , (E.10d)

S ×S ′ ∼= σ2(S ′)⊕ 2 ·S ⊕ σ−2(S ′) . (E.10e)

E.2 The explicit form of the free field representation

In order to describe the free field realisation of d(2, 1;α)k at k+ = k− = 1, we now combine a

symplectic boson pair with four free fermions, which we take to satisfy the anticommutation

relations

{ψαβr , ψγδs } = εαγεβδδr+s,0 . (E.11)

The generators of d(2, 1;α)k are then given by

Jam = −1

4
ca(σ

a)αβ(ξαξβ)m , (E.12a)

K(+)a
m =

1

4
(σa)αγεβδ(ψ

αβψβδ)m , (E.12b)

K(−)a
m =

1

4
εαγ(σa)βδ(ψ

αβψβδ)m , (E.12c)

Sαβγm =
1√
2

(ξαψβγ)m . (E.12d)

The spectral flow automorphism of d(2, 1;α)k acts on ξαr as in (E.9), while on the fermions

we have

σ(ψαβr ) = ψαβr+α
2
. (E.13)
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E.3 The fusion rules

With this free field realisation at hand, we can evaluate the fusion rules directly in this

case. Using the conformal embedding (D.1), the d(2, 1;α)k representations decompose as

L = (K0,1,1)⊕ (K1,2,2) , (E.14a)

L ′ = (K0,2,2)⊕ (K1,1,1) , (E.14b)

F 0
λ = (Eλ,2,1)⊕ (Eλ+ 1

2
,1,2) , (E.14c)

T
1
2
> = σ−1(S ,1,1)⊕ σ−1(S ′,2,2) , (E.14d)

T
1
2
< = σ−1(S ′,1,1)⊕ σ−1(S ,2,2) , (E.14e)

where we have denoted the su(2)1 representations by the dimension of their ground state

representations. Furthermore, T
1
2
> and T

1
2
< are indecomposable representations that will

be introduced in appendix F. If λ+ µ 6= 0, 1
2 , the fusion rules are then

F 0
λ ×F 0

µ =
(
(Eλ,2,1)⊕ (Eλ+ 1

2
,1,2)

)
× (Eµ,2,1) (E.15)

= σ(Eλ+µ− 1
2
,2,1)⊕ σ−1(Eλ+µ+ 1

4
,2,1)

⊕ σ(Eλ+µ+ 1
4
,1,2)⊕ σ−1(Eλ+µ− 1

4
,1,2)

= σ(Fλ+µ− 1
4
)⊕ σ−1(Fλ+µ+ 1

4
) . (E.16)

The other cases work similarly, and the complete fusion rules are therefore

F 0
λ ×F 0

µ =


σ(Fλ+µ− 1

4
)⊕ σ−1(Fλ+µ+ 1

4
) , λ+ µ 6= 0 ,

σ(T
1
2
> ) , λ+ µ = 0 ,

σ(T
1
2
< ) , λ+ µ = 1

2 ,

(E.17a)

F 0
λ ×T

1
2
> = σ−1(F 0

λ+ 1
2

)⊕ 2σ−1(F 0
λ )⊕ σ−3(F 0

λ+ 1
2

) , (E.17b)

F 0
λ ×T

1
2
< = σ−1(F 0

λ )⊕ 2σ−1(F 0
λ+ 1

2

)⊕ σ−3(F 0
λ ) , (E.17c)

T
1
2
> ×T

1
2
>
∼= T

1
2
< ×T

1
2
<
∼= σ(T

1
2
< )⊕ 2σ−1(T

1
2
> )⊕ σ−3(T

1
2
< ) , (E.17d)

T
1
2
> ×T

1
2
<
∼= σ(T

1
2
> )⊕ 2σ−1(T

1
2
< )⊕ σ−3(T

1
2
> ) . (E.17e)

E.4 The characters

Finally, it is straightforward to compute the characters using this free field realisation.

Let us demonstrate how to do this for ch[F 0
λ ](t, u, v; τ). The symplectic boson R-sector

representation has the character∑
m∈ 1

2
Z+λ

xm

q
1
12
∏∞
n=1(1− x

1
2 qn)(1− x−

1
2 qn)

=
∑

m∈ 1
2
Z+λ

xm

η(τ)2
, (E.18)

where we have used that the chemical potentials of the oscillators can be absorbed into the

zero modes, which allows us to rewrite the denominator in terms of the eta function. For
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the character of sl(2,R)1/2, we have to keep every second state, and thus obtain

ch[Eλ](t; τ) =
∑

m∈Z+λ

xm

η(τ)2
. (E.19)

On the other hand, the character of the four free fermions equals

ch[(2,1)](u, v; τ) =
ϑ2

(
u+v

2 ; τ
)
ϑ2

(
u−v

2 ; τ
)
− ϑ1

(
u+v

2 ; τ
)
ϑ1

(
u−v

2 ; τ
)

2η(τ)2
, (E.20a)

ch[(1,2)](u, v; τ) =
ϑ2

(
u+v

2 ; τ
)
ϑ2

(
u−v

2 ; τ
)

+ ϑ1

(
u+v

2 ; τ
)
ϑ1

(
u−v

2 ; τ
)

2η(τ)2
. (E.20b)

Combining these ingredients according to (E.14c), we finally obtain

ch[F 0
λ ](t, u, v; τ) =

∑
m∈Z+λ+ 1

2

xm

η(τ)4
ϑ2

(
t+u+v

2 ; τ
)
ϑ2

(
t+u−v

2 ; τ
)
, (E.21)

which matches with the general formula (D.24).

F The indecomposable modules

In this appendix, we discuss the atypical modules appearing in the d(2, 1;α)k WZW-model

at k+ = 1. We make an educated guess for their structure, which passes many non-trivial

tests.

F.1 The indecomposable modules

One strategy to determine the possible indecomposable modules is to study the represen-

tations that appear in fusion products. In the typical case we have, see (5.6)

F 0
λ1 ×F `

λ2
∼= σ

(
F `
λ1+λ2− γ2

)
⊕F

`+ 1
2

λ1+λ2+ 1
2

⊕F
`− 1

2

λ1+λ2+ 1
2

⊕ σ−1
(
F `
λ1+λ2+ γ

2

)
. (F.1)

If several modules on the right hand side of the fusion rules become indecomposable, we

expect them to join to form one big indecomposable module. This happens when

λ1 + λ2 + 1
2 ∈

{
± λ`+ 1

2
,±λ`− 1

2

}
, (F.2)

since we have the exact short sequences of modules13

0→ G `
>,+ −→ F `

λ`
−→ G `

>,− → 0 , (F.3a)

0→ G `
>,− −→ F `

λ`
−→ G `

>,+ → 0 , (F.3b)

0→ G `
<,+ −→ F `

−λ` −→ G `
<,− → 0 , (F.3c)

0→ G `
<,− −→ F `

−λ` −→ G `
<,+ → 0 . (F.3d)

13The notation here is a bit cavalier since the modules F `
λ`

that appear as the middle term in the first

two lines have different indecomposable structures (since one contains a discrete highest weight and the

other a discrete lowest weight representation).
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The cases ` = 0 and ` = κ
2 are special, since then two of these values are simultaneously

attained, but some modules are not present. One finds that the following modules can join

up to form bigger indecomposable modules:

T
1
2
> ∼ F 0

λ0 ⊕ σ
−2
(
F 0
−λ0
)
, (F.4a)

T `
> ∼ F

`− 1
2

λ
`− 1

2

⊕ σ−1
(
F `−1
λ`−1

)
, ` ∈

{
1, 3

2 , . . . ,
κ+1

2

}
, (F.4b)

T
κ+1
2

< ∼ F
κ
2
−λκ

2

⊕ σ−2
(
F

κ
2
λκ

2

)
, (F.4c)

T `
< ∼ F

`− 1
2

−λ
`− 1

2

⊕ σ−1
(
F `
−λ`
)
, ` ∈

{
1
2 , 1, . . . ,

κ
2

}
. (F.4d)

In order to describe the precise structures of these indecomposables, we first use the

short exact sequences (F.3a)–(F.3d) to decompose the modules in the Grothendieck ring as

T
1
2
> ∼ G 0

>,+ ⊕ G 0
>,− ⊕ σ−2

(
G 0
<,+

)
⊕ σ−2

(
G 0
<,−
)
, (F.5)

T `
> ∼ G

`− 1
2

>,+ ⊕ G
`− 1

2
>,− ⊕ σ−1

(
G `−1
>,+

)
⊕ σ−1

(
G `−1
>,−
)
, (F.6)

T
κ+1
2

< ∼ G
κ
2
<,+ ⊕ G

κ
2
<,− ⊕ σ−2

(
G
κ
2
>,+

)
⊕ σ−2

(
G
κ
2
>,−
)
, (F.7)

T `
< ∼ G

`− 1
2

<,+ ⊕ G
`− 1

2
<,− ⊕ σ−1

(
G `
<,+

)
⊕ σ−1

(
G `
<,−
)
. (F.8)

Because of the identifications under spectral flow, see eqs. (5.5b)–(5.5d), the right hand

side always contains two isomorphic modules, and hence the indecomposable structure is

T
1
2
> :

G 0
>,−

G 0
>,+σ−2

(
G 0
<,−
)

σ−2
(
G 0
<,+

)
, T `

> :

G
`− 1

2
>,−

G
`− 1

2
>,+

σ−1
(
G `−1
>,−
)

σ−1
(
G `−1
>,+

)
, (F.9a)

T
κ+1
2

< :

G
κ
2
<,−

G
κ
2
<,+σ−2

(
G
κ
2
>,−
)

σ−2
(
G
κ
2
>,+

)
, T `

< :

G
`− 1

2
<,−

G
`− 1

2
<,+

σ−1
(
G `
<,−
)

σ−1
(
G `
<,+

)
. (F.9b)

Here, we have used again composition diagrams to display the indecomposable structure,

see also appendix E. Note that the bottom and top modules are always identical via the

spectral flow identifications.
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F.2 The atypical fusion rules

A heuristic way to determine the fusion rules of these indecomposable representations

consists of writing them in terms of their summands as in (F.4a)–(F.4d). We then apply

the naive generalisations of the typical fusion rules (5.6), and finally reassemble the result,

so that the only representations that appear are the typical representations we considered

before, together with those given in (F.4a)–(F.4d).

Unfortunately, the general formula is rather clumsy, so let us just work out one example

to illustrate the idea. We consider

T
1
2
> ×T

1
2
> ∼

(
F 0
λ0⊕σ

−2
(
F 0
−λ0
))
×
(
F 0
λ0⊕σ

−2
(
F 0
−λ0
))

(F.10)

∼=σ
(
F 0
λ1

)
⊕F

1
2
λ 1

2

⊕σ−1
(
F 0
λ0

)
⊕2σ−1

(
F 0
λ0

)
⊕2σ−2

(
F

1
2
1
2

)
⊕2σ−3

(
F 0
−λ0
)
⊕σ−3

(
F 0
−λ0
)
⊕σ−4

(
F

1
2
−λ 1

2

)
⊕σ−5

(
F 0
−λ1
)

(F.11)

∼T 1
>⊕2σ−1

(
T

1
2
>

)
⊕σ−3

(
T

1
2
<

)
⊕σ
(
F 0
λ1

)
⊕2σ−2

(
F

1
2
1
2

)
⊕σ−5

(
F 0
−λ1
)
. (F.12)

The other cases work similarly, and the resulting products define an associative ring, which

should therefore agree with the fusion ring.

F.3 The atypical Hilbert space

Finally, we discuss the structure of the atypical Hilbert space. Naively, we would construct

an atypical Hilbert space as

Hnaive
atyp =

⊕
w∈Z

κ+1
2⊕

`= 1
2

[
σw
(
T `
>

)
⊗ σw

(
T `
>

)
⊕ σw

(
T `
<

)
⊗ σw

(
T `
<

)]
. (F.13)

While this contains now only modules which close under fusion, there are two problems

with this proposal. First, locality requires that L0− L̄0 acts diagonalisably, since otherwise

the complete correlation functions would be multi-valued. In addition, (F.13) does not

agree with (5.11) on the level of the Grothendieck ring, and hence would not be modular

invariant. As explained in [40, 41], the true Hilbert space is obtained by quotienting out

an ideal I ⊂ Hnaive
atyp from Hnaive

atyp .

To construct this ideal, we note that there are natural long exact sequences

s+←→
s−

σw+1
(
T

1
2
>

) s+←→
s−
· · · s+←→

s−
σw+2`

(
T `
>

) s+←→
s−
· · · s+←→

s−
σw+κ+1

(
T

κ+1
2

>

)
s+←→
s−

σw+κ+3
(
T

κ+1
2

<

) s+←→
s−
· · · s+←→

s−
σw+2(κ+2)+2`

(
T `
<

) s+←→
s−
· · · s+←→

s−
σw+2κ+3

(
T

1
2
<

)
s+←→
s−

σw+2κ+5
(
T

1
2
>

) s+←→
s−
· · · s+←→

s−
σw+2(κ+2)+2`

(
T `
>

) s+←→
s−
· · · s+←→

s−
σw+3κ+5

(
T

κ+1
2

>

)
, (F.14)

where s+ maps to the right and s− to the left. The map s+ maps the two upper right

elements of the composition diagram of (F.9a) or (F.9b) to the two lower left elements

of the next term in the sequence. Similarly s− maps the two upper left elements of the
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composition diagram to the two lower right elements of the previous term in the sequence.

There are in fact 2(κ+ 2) such sequences, that are characterised by w ∈ {0, 1, . . . , 2κ+ 3}.
For each such sequence, let us denote the n-th term in the sequence by σw

(
X n

)
, so that

s± : σw
(
X n

)
−→ σw

(
X n±1

)
(F.15)

for n ∈ Z. Furthermore, we denote the elements of the indecomposable modules by

X n[ε1, ε2], where εi ∈ {0, 1}. [ε1, ε2] = [0, 0] denotes the top element, [ε1, ε2] = [1, 0]

the left element, [ε1, ε2] = [0, 1] the right element and [ε1, ε2] = [1, 1] the bottom element.

We thus have, cf. [4]

s+σ
w
(
X n

)
[ε1, ε2] = σw

(
X n+1

)
[ε1 + 1, ε2] , (F.16)

s−σ
w
(
X n

)
[ε1, ε2] = σw

(
X n−1

)
[ε1, ε2 + 1] . (F.17)

The ideal I by which we have to quotient out is then generated by

I± ≡
2κ+3⊕
w=0

⊕
n∈Z

(
s± ⊗ 1− 1⊗ s∓

)(
σw
(
X n

)
⊗ σw

(
X n±1

))
. (F.18)

This leads to the following identifications in the naive atypical Hilbert space,

σw
(
X n

)
[ε1+1,ε2]⊗σw

(
X n

)
[ε̄1, ε̄2]∼σw

(
X n−1

)
[ε1,ε2]⊗σw

(
X n−1

)
[ε̄1, ε̄2+1] , (F.19)

σw
(
X n

)
[ε1,ε2+1]⊗σw

(
X n

)
[ε̄1, ε̄2]∼σw

(
X n+1

)
[ε1,ε2]⊗σw

(
X n+1

)
[ε̄1+1, ε̄2] . (F.20)

This ‘gauge freedom’ allows us, for example, to set ε1 = ε̄1 = 0, so that(
T `
>

)gauge fixed ∼ F
`− 1

2
λ
`− 1

2

,
(
T `
<

)gauge fixed ∼ F
`− 1

2
−λ

`− 1
2

, ` ∈ {1
2 , 1, . . . ,

κ+1
2 } . (F.21)

Hence, the indecomposable modules become after gauge-fixing the moral analogue of the

continuous representations for λ = ±λ`. The resulting space of states has then essentially

the same form as (5.11), and hence is in particular modular invariant.

G Theta functions

Our conventions for the theta functions follow [42]

ϑ

[
α

β

]
(z;τ)≡

∑
n∈Z

eπi(n+α)2τ+2πi(n+α)(z+β) (G.1)

= e2πiα(z+β)q
α2

2

∞∏
n=1

(
1−qn

)(
1+qn+α− 1

2 e2πi(z+β)
)(

1+qn−α−
1
2 e−2πi(z+β)

)
.

(G.2)

In this language the four Jacobi theta functions are

ϑ1 ≡ ϑ

[
1
2
1
2

]
, ϑ2 ≡ ϑ

[
1
2

0

]
, ϑ3 ≡ ϑ

[
0

0

]
, ϑ4 ≡ ϑ

[
0
1
2

]
, (G.3)
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and we have the identity

ϑ2

(
u+v

2 ; τ)ϑ2

(
u−v

2 ; τ
)

= ϑ2(u; 2τ)ϑ3(v; 2τ) + ϑ3(u; 2τ)ϑ2(v; 2τ) , (G.4)

ϑ1

(
u+v

2 ; τ)ϑ1

(
u−v

2 ; τ
)

= −ϑ2(u; 2τ)ϑ3(v; 2τ) + ϑ3(u; 2τ)ϑ2(v; 2τ) , (G.5)

which comes from the equivalence of four free fermions to su(2)1 ⊕ su(2)1.
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