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1 Introduction

The use of Monte Carlo (MC) techniques to calculate nontrivial theoretical quantities and

expectations in complex experimental settings is common practice in particle physics. A

MC event is a single representation of what can be detected in data and is typically gen-

erated from a single realization of the underlying physics parameters, ~θg. These events are

often binned in some observable space and compared with the data. Since the generation

process is stochastic, a particular ~θg used for generating the MC can lead to different out-

puts. This stochasticity introduces an uncertainty in the MC distributions. Furthermore,

as production of large MC is often time-consuming, reweighting is used to move from one

hypothesis to another. In reweighting, each MC event is assigned a new weight, w(~θ),

that accounts for the difference between the generation parameters ~θg and the hypothesis

parameters ~θ [1]. It follows that MC uncertainties will be hypothesis dependent; thus, to

do hypothesis testing, it is important to account for them. This is especially important
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for small-signal searches, performed in the small sample limit, where a modified-χ2 may

not be suitable [2]. A Poisson likelihood is a more appropriate statistical description of

event counts [3], but in that case a proper treatment of MC statistical uncertainties is

less straightforward. Solutions to this problem have been discussed in the literature in the

context of frequentist statistics by adding nuisance parameters [4–6], as well as detailed

probabilistic treatment of MC weights [7]. However, [4, 6, 7] add additional time com-

plexity, and [5] does not provide a full exposition on how to incorporate weighted MC.

We present a new treatment that is valid in the large and small limit of the data sample

size, suited for frequentist and Bayesian analyses, based on the Poisson likelihood. Our

likelihood accounts for statistical uncertainties due to MC, allows for arbitrary event-by-

event reweighting, and is computationally efficient. A test statistic based on the proposed

likelihood is found to follow a distribution closer to the asymptotic form expected from

Wilks’ theorem than other likelihoods in the literature. An implementation of the likeli-

hood described in this work can be found in [8].

This paper is organized as follows. In section 2 we briefly review two common treat-

ments available in the literature to account for MC statistical uncertainty. In section 3

we define and discuss our new likelihood. In section 4 we study the performance of the

likelihood through an example and compare it to other likelihoods in the literature. In

section 5 we provide our conclusions. A summary of the likelihoods discussed in the paper,

including our main result, is given in appendix A.

2 The Poisson likelihood and previous work

In order to compare MC with data, events are often binned into distributions across a set of

observables. For simplicity we focus on a single bin. In the absence of cross-bin-correlated

systematic uncertainties the generalization to multiple bins is simply a product over the

likelihood in all bins. This is assumed for the remainder of the paper. It is well known that

the count of independent, rare natural processes can be described by the Poisson likelihood,

given by

L(~θ|k) = Poisson(k;λ(~θ)) =
λ(~θ)ke−λ(~θ)

k!
, (2.1)

where λ(~θ) is the expected bin count for a hypothesis and k is the number of observed

data events. Equation (2.1) requires exact knowledge of the expected bin count, λ(~θ). In

the case of complex experiments it is often not possible to obtain λ(~θ) exactly and MC

techniques are used to estimate the expected distributions. For weighted MC, often a direct

substitution of λ(~θ) by
∑

iwi(
~θ) is used, where wi are the weights of each of the MC events

in the bin. Then eq. (2.1) can be approximated as

LAdHoc(~θ|k) =

(∑
iwi(

~θ)
)k
e−(

∑
i wi(~θ))

k!
. (2.2)

This ad hoc treatment assumes that the MC estimate of the expected bin counts exactly

matches the true expectation rate of the model, neglecting the stochastic nature of MC. In

the case of large MC, eq. (2.2) converges to eq. (2.1) for the hypothesis given by ~θ.
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2.1 The Barlow-Beeston likelihood

To treat MC statistical uncertainties in the small sample limit, a modification of the Pois-

son likelihood was introduced in [4], which is briefly covered below. First, note that the

expectation in a single bin is given by contributions from different physical processes, which

we index by j. Then, the number of expected events can be written as

λ(~θ) =
s∑
j=1

n̄j(~θ), (2.3)

where n̄j is the expected number of MC events from process j that fall in the bin and s is the

total number of relevant processes. Substituting eq. (2.3) into eq. (2.1) gives the Poisson

likelihood for observing k data events. For stochastic models, n̄j is unknown. Instead,

the MC outcome can be modeled as having drawn nj events from a random process that

simulates the physical process. We can approximate nj as being drawn from a Poisson

process with mean n̄j .
1 Profiling on the true number of MC events per process in the bin

results in the Barlow-Beeston (BB) likelihood, given by [4]

LBB(~θ|k) = max
{n̄j}

λ(~θ)ke−λ(~θ)

k!

s∏
j=1

n̄
nj
j e
−n̄j

nj !
, (2.4)

where λ(~θ) is given by eq. (2.3), nj and n̄j are the estimated and true MC counts in the

bin respectively, and {n̄j}sj=1 denotes the s nuisance parameters we have profiled over.

In the above formalism we have produced the MC at the natural rate, but this is

not the case for weighted MC. The prescription for weighted MC is given by replacing

eq. (2.3) with

λ(~θ) =

s∑
j=1

ηj(~θ)n̄j , (2.5)

where ηj(~θ) is a scale factor for process j that accounts for the differences in the MC

generation and the target hypothesis of interest. In this case, the likelihood definition is

still given by eq. (2.4); an explicit formula for s = 1 is given in the appendix. However,

for arbitrary weight distributions per physical process LBB may not be appropriate as it

neglects the variance from a sum of weights [4]. It remains valid only in the case where the

distribution of weights for each process is narrow.

2.2 Uncertainties in the large-sample limit

In the large-sample regime, the Gaussian distribution is an appropriate description of the

observed data. In this limit, the use of Pearson’s χ2 as a test-statistic [9] is common

practice. For a single analysis bin, Pearson’s χ2 is defined as

χ2(~θ) =
(k − λ(~θ))2

λ(~θ)
, (2.6)

1The MC generation is a binomial process where we generate a fixed number of events for each process,

Nj , and accept them into the bin of interest with probability βj(~θ), such that n̄j(~θ) = βj(~θ)Nj . In the limit

of both of rare processes (βj � 1) and large number of generated events (Nj � 1), the total number of

observed events can be approximated as Poisson distributed with mean λ(~θ) =
∑
j βj(

~θ)Nj =
∑
j n̄j(

~θ).
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where we continue to use the approximation λ(~θ) =
∑

iwi(
~θ) and wi are the weights of

each of the MC events. The form of Pearson’s χ2 arises from the fact that the Gaussian

distribution of k is the large-sample limit of a Poisson distribution for which the expected

statistical variance of the observation is given by λ(~θ). Systematic uncertainties, under the

assumption that they follow a Gaussian distribution and are independent between bins,

can be included as

χ2(~θ) =
(k − λ(~θ))2

λ(~θ) + σ2
syst.

. (2.7)

However, this method of incorporating systematic uncertainties tends to overestimate them

in shape-only analyses; see [10] for a recent discussion in the context of reactor neutrino

anomalies. Similarly, one can include uncertainties to account for statistical fluctuations

of the MC in the test-statistic. In doing so, the Gaussian behavior is implicit and the

modified χ2 reads

χ2
mod(~θ) =

(k − λ(~θ))2

λ(~θ) + σ2
syst. + σ2

mc

, (2.8)

where σ2
mc is the MC statistical uncertainty in the bin given by

σ2
mc(

~θ) ≡
m∑
i=1

wi(~θ)
2. (2.9)

Note that this test-statistic definition is not appropriate in the small-sample regime, as the

data is no longer well described by a Gaussian distribution. If one uses a χ2 test-statistic

in the small-sample regime, one ought to calculate the test-statistic distribution properly

to achieve appropriate coverage [11].

3 Generalization of the Poisson likelihood

Ideally we would like to obtain the expected event count for any hypothesis, λ(~θ), however

we are considering problems where this relationship is not known and λ is instead estimated

by MC. The key difference here is that instead of using exact knowledge of λ we want to

perform Bayesian inference to obtain P(λ|~θ) using the MC available. Assuming the weights

are functions of ~θ, we have

LGeneral(~θ|k) =

∫ ∞
0

λke−λ

k!
P
(
λ|~w(~θ)

)
dλ, (3.1)

where the distribution of λ, P
(
λ|~w(~θ)

)
, is inferred from the MC. The likelihood, LAdHoc, in

eq. (2.2) is recovered when P(λ|~w(~θ)) = δ
(
λ−∑iwi(

~θ)
)

, but clearly this is an unrealistic

assumption as it presumes perfect knowledge of the parameter λ(~θ) from a finite number

of realizations. Instead, it is more appropriate to construct P(λ|~w(~θ)) based on the MC

realization. This is given by

P
(
λ|~w(~θ)

)
=

L(λ|~w(~θ))P(λ)∫∞
0 L(λ′|~w(~θ))P(λ′) dλ′

, (3.2)
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where P(λ) is a prior on λ that must be chosen appropriately and L(λ|~w(~θ)) is the likelihood

of λ given ~w(~θ). This is similar to [4, 5], but instead of fitting λ as a nuisance parameter

as in LBB in eq. (2.4), we marginalize over it in eq. (3.1) as informed by the MC weights.

When LGeneral is used under a frequentist approach, the marginalization over λ implies a

hybrid Bayesian-frequentist construction, similar to the treatment of nuisance parameters

described in [12] and employed in [13, 14].

This section is organized as follows. We first derive L(λ|~w(~θ)) assuming identical

weights in section 3.1, then extend it to arbitrary weights in section 3.2. With this in hand,

we calculate an analytic expression for eq. (3.1) using eq. (3.2) under a uniform P(λ) in

section 3.3. In section 3.4 we briefly discuss a family of distributions as possible alternative

priors. In section 3.5 we show that our effective likelihood converges to eq. (2.2) in the

limit of large MC size. Finally, in section 3.6 we provide some intuition on the behavior of

our generalized likelihood. Equation (3.16), along with the definitions of µ and σ2 given

in eq. (3.3), constitute the primary result of this work.

3.1 Derivation of L(λ|~w(~θ)) for identical weights

In this section we derive L(λ|~w(~θ)) for identical weights. We will show that L(λ|~w(~θ)) can

be written in terms of two quantities

µ ≡
m∑
i=1

wi and σ2 ≡
m∑
i=1

w2
i (3.3)

for a bin with m MC events.

For identical weights, w ≡ wi ∀i, the following equalities hold:

µ = wm, σ2 = w2m, w = σ2/µ, and m = µ2/σ2. (3.4)

Assume that m is the outcome of sampling a Poisson-distributed random variable M with

probability mass function

Poisson(M = m; m̄) =
e−m̄m̄m

m!
, (3.5)

where m̄ is the mean of the distribution. Further, assume that the expected number of

data events λ = wm̄ so that m̄ = λ/w. Substituting back into eq. (3.5), we can interpret

Poisson(M = m; m̄) as a likelihood function of λ

L(λ|~w(~θ)) = L(λ|µ, σ) =
e−λµ/σ

2 (
λµ/σ2

)µ2/σ2

(µ2/σ2)!
, (3.6)

as µ and σ fully specify ~w(~θ) for identical weights.

3.2 Extension to arbitrary weights

The derivation above assumed identical weights. For arbitrary weights, µ is an outcome

sampled from a compound Poisson distribution (CPD), which can be approximated by a
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scaled Poisson distribution (SPD) by matching the first and second moments of the two

distributions [15]. In order to make the connection, first rewrite µ and σ2 as

µ = wEffmEff and σ2 = w2
EffmEff , (3.7)

where mEff is the effective number of MC events and wEff the effective weight. From

eq. (3.4) these are given by: mEff = µ2/σ2 and wEff = σ2/µ. Next, assume m̄ = λ/wEff and

L(m̄|mEff) =
e−m̄m̄mEff

Γ(mEff + 1)
, (3.8)

where λ again is the expected number of events in data. Equation (3.8) can be written as

a likelihood function of λ,

L(λ|~w(~θ)) = L(λ|µ, σ) =
e−λµ/σ

2 (
λµ/σ2

)µ2/σ2

Γ(µ2/σ2 + 1)
, (3.9)

which is identical to eq. (3.6) except the denominator is now a gamma function instead of a

factorial. However, since the denominator does not depend on λ it cancels out in eq. (3.2).

To understand this approximation, note that the maximum likelihood in eq. (3.8)

occurs when m̄ = mEff . The first and second moments of the SPD random variable wEffM ,

where M ∼ Poisson(mEff), are given by

E[wEffM ] = wEffmEff (3.10)

= µ,

and

Var[wEffM ] = w2
EffmEff (3.11)

= σ2.

This shows that the SPD, under the maximum likelihood solution for the given MC real-

ization, has first and second moments that match the sample mean, µ, and variance, σ2,

respectively. These are equal to the first and second moments of the CPD as described

in [15]. By assuming that µ is drawn from a SPD, we can treat µ and σ as outcomes

that fix the likelihood function of the underlying scaled expectation λ, analogous to the

case of identical weights. Because both the first and second moments are matched, this

approximation accounts for the variance of the CPD unlike LBB, which only accounts for

the mean. Thus, while LBB is valid only for the case of narrow weight distributions, our

approximation remains valid for broader distributions.

3.3 The effective likelihood

Now that we have an expression for L(λ|~w(~θ)) from the MC, we can proceed to compute

eq. (3.1) under a uniform P(λ). To simplify the notation, let

α =
µ2

σ2
+ 1 and β =

µ

σ2
. (3.12)

– 6 –
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Then, assuming a uniform P(λ) and substituting eq. (3.9) for L(λ|~w(~θ)) in eq. (3.2) we ob-

tain

P(λ|~w(~θ)) = β
e−λβ(λβ)α−1

Γ(α)

=
e−λβλα−1βα

Γ(α)

= G(λ;α, β), (3.13)

where Γ is the gamma function and G the gamma distribution with shape parameter α and

inverse-scale parameter β. Note that in going from eq. (3.9) to eq. (3.13) µ and σ2 go from

random variates for a particular λ to parameters that govern the probability density of λ.

With this choice of L(λ|~w(~θ)) and P(λ), we can rewrite LGeneral from eq. (3.1) as

LEff(~θ|k) =

∫ ∞
0

λke−λ

k!
G(λ;α, β) dλ (3.14)

=
βαΓ (k + α)

k! (1 + β)k+α Γ (α)
(3.15)

=

(
µ

σ2

)µ2

σ2 +1

Γ

(
k +

µ2

σ2
+ 1

)k!

(
1 +

µ

σ2

)k+µ2

σ2 +1

Γ

(
µ2

σ2
+ 1

)−1

, (3.16)

where µ and σ2 depend on ~θ through ~w.

3.4 A family of likelihoods

It is possible to generalize the choice of α and β in eq. (3.12) by choosing a particular form

of P(λ). Since the distribution of interest is a Poisson distribution, a well-motivated choice

of P(λ) is a gamma distribution (the conjugate prior of the Poisson distribution) [16];

also see [7] for a recent discussion. Thus we set P(λ) = G(λ; a, b), where a and b are

the shape and inverse-scale parameters of the gamma distribution, respectively. These

hyper-parameters dictate the distribution of the Poisson parameter λ [17]. In line with our

previous discussion, the gamma distribution prior implies that eq. (3.12) becomes

α =
µ2

σ2
+ a and β =

µ

σ2
+ b. (3.17)

The rest of the likelihood derivation remains the same. This allows the choice of specific

values for a and b to satisfy certain properties. Equation (3.12) is obtained with a = 1 and

b = 0, corresponding to the uniform prior discussed above. Another interesting choice is to

require that the mean and variance of P(λ|µ, σ) match µ and σ2, respectively. This can be

achieved by setting a = b = 0, and we refer to this parameter assignment as LMean. In the

case of identical weights, LMean is equivalent to eq. (20) in [7]. Both choices are improper

priors, as technically they are limiting cases of the gamma distribution. However, we can

use them to obtain proper P(λ|µ, σ) distributions.

– 7 –
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In [7], a convolutional approach is suggested for handling arbitrary weights. We refer

to this likelihood as LG. Each weighted MC event has P(λi|wi) = G(λi; 1, 1/wi), corre-

sponding to the prior P(λi) = G(λi; 0, 0), such that λ =
∑m

i λi. The likelihood LMean is

a good analytic approximation of the more computationally expensive calculation given

in [7] for LG. The latter has time complexity O(k2m) where k and m are the number of

data and MC events in the bin respectively. When assuming uniform priors, the convolu-

tional approach does not recover eq. (3.13) for identical weights, so it cannot be used as a

generalization of LEff.

3.5 Convergence of the effective likelihood

In this section we will show that, if the relative uncertainty of the bin content vanishes as

MC size increases, LEff and LMean both converge to LAdHoc.

For positive weights wi, the relative uncertainty σ/µ is bounded between zero and one.

Uncertainty as large as the estimated quantity, σ/µ = 1, occurs if and only if m = 1. In

the limit that σ/µ goes to zero, eq. (3.13) converges to δ(λ− µ) and LEff and LMean both

go to LAdHoc. We can see this by noting that the shape parameter, α, goes to infinity as

the MC relative uncertainty goes to zero, turning the gamma distribution into a Gaussian

distribution of mean α/β and variance α/β2. This Gaussian converges to δ(λ − µ) in the

limit of vanishing σ/µ. Substituting into eq. (3.1), we recover eq. (2.2), which converges

to eq. (2.1) in the large MC limit.

It remains to be shown that the relative uncertainty of the bin content vanishes as MC

size increases. For identical weights,

lim
m→∞

σidentical

µidentical
= lim

m→∞

1√
m

= 0. (3.18)

For arbitrary weights, the limit can be written in terms of the running average of wi and

w2
i as

lim
m→∞

σ

µ
= lim

m→∞

√
〈w2〉m

〈w〉m
√
m
, (3.19)

where 〈w〉m is the average over wi and 〈w2〉m the average over w2
i for i ≤ m. This shows

that as long as 〈w2〉m does not grow much faster than 〈w〉2m, the limit will converge to

zero. For weight distributions with positive support and finite, non-zero mean, this should

be the case.

3.6 Behavior of the effective likelihood

It is instructive to examine the behavior of LEff for a single bin. It is standard to work with

the log-likelihood l(µ, σ|k) ≡ −2 lnL(µ, σ|k) and we do so here. Figure 1 shows the contour

lines for lEff(µ, σ|k = 100). Since µ and σ are both dependent on the same underlying

parameters, ~θ, a minimization over ~θ can be thought of as a constrained minimization

over µ and σ. This is visualized as the gray region in figure 1, which indicates where µ

and σ are allowed to vary for some physics model.2 Similarly, we can also visualize the

2A general bound for positive weights is σ ≤ µ ≤ σ
√
m which can be seen from their definitions.
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Figure 1. Likelihood contours and accessible region. Contours of constant lEff(µ, σ|k = 100). The

accessible region (gray) illustrates where values of µ and σ may lie for a hypothetical physics model.

A minimization over ~θ can be thought of as a constrained minimization over the accessible region

in µ and σ. Note that as σ increases the contours broaden.

Figure 2. Slices of lEff for two accessible regions. This figure shows lEff(µ, σ|k = 100) minimized

over µ while σ (left) and σ/µ (right) are held fixed. The minimum, µ̂Eff, is shown as the solid

blue line running through the center of the shaded regions. The shaded regions indicate where

lEff(µ, σ|k) − lEff(µ̂Eff, σ|k) < 1. As σ goes to zero, the Poisson best-fit µ̂Poisson = 100 is obtained.

For fixed σ/µ, µ̂Eff deviates from µ̂Poisson as σ/µ increases.

standard Poisson log-likelihood, lPoisson(µ|k = 100), which is simply lEff constrained along

the line σ = 0.

To further illustrate the effect of the accessible region, we minimize lEff over µ for

two possible constraints: fixed σ and fixed σ/µ. In terms of eq. (3.3), a sufficient but not

necessary condition for constant σ/µ with varying µ is equal weights, and a necessary but

– 9 –
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not sufficient condition for constant σ with varying µ is m ≥ 2. For a standard Poisson

likelihood, µ̂Poisson ≡ minµ lPoisson(µ|k) = k. Figure 2 shows µ̂Eff ≡ minµ lEff(µ, σ|k = 100)

as well as the region where lEff(µ, σ|k) − lEff(µ̂, σ|k) < 1 for fixed σ (left) and fixed σ/µ

(right). Note that the shaded regions for fixed σ are calculated without requiring that

µ ≥ σ, which would be the case for eq. (3.3). As σ goes to zero, the Poisson best-fit and

Wilks’ 1σ interval are recovered. As σ or σ/µ increases, the shaded region becomes wider,

as expected. For fixed σ, µ̂Eff does not deviate much from µ̂Poisson, while for fixed σ/µ, µ̂Eff

deviates from µ̂Poisson as σ/µ increases. The shaded regions correspond to the 1σ interval

assuming the approximation from Wilks’ theorem and give a sense of the shape of LEff

projected onto one-dimensional slices.

4 Example and performance

In practice, likelihoods such as those discussed above are used to estimate physical pa-

rameters from data. As discussed in section 1, weighted MC is often used to compute the

likelihood of a particular physical scenario given the observed data. Statements are then

made about the physical scenarios either by maximizing the likelihood or by examining

the posterior distribution assuming some priors. We examine a toy experiment where we

measure the mode, Ω, and normalization, Φ, of a Gaussian-distributed signal against a

steeply falling inverse power-law background. The performance of LEff is evaluated and

compared against other likelihoods.

For our toy experiment, we generate the true energies, Et, of synthetic data events

from a background falling as (Et/100 GeV)−γ
b
t , where γbt = 3.07, and a Gaussian signal

centered at Ωt = 125 GeV with width of σt = 2 GeV and normalization Φt = 5013 for a

fixed number of expected events. Our imaginary detector is sensitive in the 100–160 GeV

range. To simulate the effect of a real detector, the true energy, Et, is smeared by 5%

for background and 3% for signal to obtain event-by-event reconstructed energies, Er.

We generate a total number of MC events, NMC, split evenly between the components.

Generation is performed assuming inverse power-law distributions of (Et/100GeV)−γg for

signal and (Et/100 GeV)−γ
b
g for background. We choose γg = 1 and γbg = 2. Reweighting

of the MC can then be performed as a function of Et and forward-folded onto distributions

in Er over which the events are histogrammed and likelihoods evaluated. A diagram of

the steps described above is shown in figure 3. For all toy experiments, the background

component, (Φb, γb), and the signal width, σ, are kept fixed to their true values. Only the

signal mean, Ω, and normalization, Φ, are treated as free parameters.

4.1 Point estimation

Figure 4 shows the expectation in Et as well as the data and LEff best-fit distributions in

Er. The leftmost panel shows the expectation for both signal and background assuming no

smearing in Et. The three other panels show the smeared, Er, distribution for data (black)

and the best-fit result from LEff for three different MC datasets (orange) of varying MC

size. The smeared shape of the signal peak is clearly visible in data, but not in the smallest

size MC. As the MC increases in size, the best-fit MC can be seen to converge to data.
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MC generation

Signal ∼ PowerLaw(γg)
Background ∼ PowerLaw(γbg)

Detector simulation

Smearing to mimic
detector response.

Reweighting
Reweight MC to a physical

hypothesis ~θ = (Φb, γb,Φ,Ω, σ)

Signal ∼ Gaussian(Ω, σ)
Background ∼ PowerLaw(γb)

Histogram MC
Binned MC expectation.

Synthetic data generation
Produce data according to
~θtrue = (Φb

t , γ
b
t ,Φt,Ωt, σt)

Signal ∼ Gaussian(Ωt, σt)
Background ∼ PowerLaw(γbt )

Detector simulation

Smearing to mimic
detector response.

Histogram Data
Binned synthetic data.

L(~θ)

Figure 3. Diagram of toy experiment steps. The three colored boxes indicate the three steps of

our toy experiment. The left box (almond) summarizes the MC and data generation. The center

box (salmon) indicates the step in which we apply the detector response. The right box (lilac)

summarizes the MC reweighting, data and MC histogramming, and final likelihood evaluation from

the histograms. This final lilac box is repeated for each likelihood evaluation.

Figure 4. Benchmark scenario. Leftmost panel: the underlying distribution that data is drawn

from with background (purple) and total rate (orange). Right three panels: observed data (black),

LEff best-fit MC distributions (orange), and MC uncertainties (orange band), with increasing MC

size from left to right. The background component and signal width are fixed, while the mean

and normalization of the signal peak are fit by maximizing the likelihood with respect to those

parameters.

Likelihood NMC = 104 105 106

LAdHoc (127.0, 6368.0) (124.7, 5655.7) (125.1, 4888.5)

LEff (127.1, 6077.1) (124.7, 5576.0) (125.1, 4889.4)

Table 1. Best-fit parameters. For the toy experiment shown in figure 4, best-fit parameters using

LAdHoc and LEff are shown. The columns in the table are for the different MC sizes. The two

numbers in parenthesis in each entry correspond to Ω and Φ, respectively.
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Figure 5. Coverage properties. True coverage of the Wilks’ confidence interval for two sets of toy

experiments with different MC sizes: 103 events (left) and 106 events (right). The ad hoc Poisson

likelihood severely undercovers. The modified-χ2, LBB, and LMean also undercover for small MC

size. The effective likelihood, LEff, derived in section 3.1 performs best.

The best-fit values for the example shown in figure 4 are given in table 1 for LEff and

LAdHoc. As point estimators, both likelihoods return similar values. This is driven by

the fact that the same underlying MC distribution is used to fit to the data. The effect of

convoluting P(λ|~w(~θ)) with the Poisson distribution mostly serves to broaden the likelihood

space, while preserving the maximum within the constraints described in section 3.6. In

the large MC limit, both likelihoods can be used for unbiased point estimation, provided

that the likelihood space is smooth enough for standard minimization techniques to probe

the global minimum.

4.2 Coverage

Due to the higher computational cost of computing frequentist confidence intervals by

generating pseudodata to estimate the test-statistic (T S) distribution, it is common to use

the approximation given by Wilks’ theorem for the cases where the underlying hypotheses

hold. In the case of small MC, a likelihood description that neglects MC uncertainties may

lead to undercoverage even for a large data sample. In this section, we will use T S = ∆l =

l(~θtrue)− l(~̂θ), where ~θtrue and ~̂θ correspond to the true and best-fit (Ω,Φ), respectively. We

evaluate the coverage properties, computed using the asymptotic approximation given by

Wilks’ theorem, of the two-dimensional fit over (Ω,Φ) for several likelihood constructions.

These include the modified-χ2, LAdHoc, LBB, LMean, and LEff. These five test-statistics

were chosen on the basis of their computation speed and as tests of different approaches

towards the treatment of weighted MC.

Several configurations were tested, all under the assumptions of the toy experiment

described in section 4.1. The MC was generated for two different settings of the total
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number of events: 103 and 106. For each setting, 500 toy experiments were generated, their

best-fits found, and their ∆l evaluated. Each toy experiment was classified as covering ~θtrue

at a specified level p if ∆l < I(p; 2), where I is the inverse of the χ2 cumulative density

function and 2 indicates the number of degrees of freedom.

Figure 5 shows the percentage of times the true parameters were within the confidence

intervals at level p as a function of the estimated coverage percentile for that level. First

note that, as expected, the true coverage is highly dependent on MC size, with higher

MC size leading towards improved agreement. In the case of NMC = 103, LBB, LMean,

modified-χ2, and LAdHoc all undercover to varying degrees of severeness. For NMC = 106,

LAdHoc still undercovers, which is not surprising as it presumes zero MC uncertainty, but

the other likelihoods exhibit good agreement. In this benchmark test, LEff exhibits the

best coverage properties. However, note that using Wilks’ theorem in order to evaluate

confidence intervals implies an asymptotic approximation. In general, this approximation

does not necessarily have to hold and we encourage the reader to always perform their own

coverage tests suitable for their particular experimental setup.

4.3 Posterior distributions

It is also possible to use LEff in a Bayesian approach. Using Bayes’ theorem, the posterior

P(~θ|k) ∝ L(~θ|k)π(~θ), (4.1)

where π(~θ) is a prior on the parameters. As evaluation of the normalization factor can by

challenging, P(~θ|k) can be approximated using a Markov Chain Monte Carlo (MCMC).

For our toy example, we used emcee [18] to sample P(~θ|k) under a uniform box prior for

two different likelihood functions: LEff and LAdHoc. The sampling was performed using

the data and MC sets described in section 4.1.

Figure 6 shows the posterior distributions of Ω and Φ. For each comparison, LEff (blue)

and LAdHoc (orange) were sampled using the same underlying data and MC. We used 20

walkers with 300 burn-in steps followed by 1000 steps as settings for emcee. The left and

center column show the marginal posterior distribution for the mass, Ω, and normalization,

Φ, respectively. The true value is indicated by the dashed, vertical line. The rightmost

column shows the joint posterior distribution with 68% (solid) and 95% (dashed) contours.

The true values are indicated by the star. With LAdHoc, the true value of the parameter is

highly improbable for the lower MC-size cases of the top and middle rows. In contrast, the

posterior evaluated using LEff has increased width due to the reduced MC size. Even for

NMC = 106 (bottom row), the shape of the posterior evaluated using LAdHoc is narrower

than that using LEff. Credible regions estimated using LAdHoc would bias the result.

4.4 Performance

In this section we compare our performance with other treatments available in the literature

in terms of the runtime cost per likelihood evaluation for a single bin. We perform our

tests using a single Intel R© CoreTM i5-8350U CPU @ 1.70GHz running code compiled with

clang version 6.0.0-1ubuntu2. We compute the likelihood CPU-evaluation time for
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Figure 6. Posterior distributions in parameter space. Comparison of P(~θ|k) for LEff (blue) and

LAdHoc (orange). Each horizontal row above uses a different MC set size, with NMC = 104, 105,

and 106 from top to bottom. The left and center column show the marginal posterior distribution

for the mass, Ω, and normalization, Φ, respectively. The true value is indicated by the dashed,

vertical line. The rightmost column shows the joint posterior distribution with 68% (solid) and

95% (dashed) contours. The true values are indicated by the star.

the following likelihoods: LAdHoc, modified-χ2, LG [7], LBB [4], and LEff. For each of

them we consider increasing number of MC events from 102 to 106, increasing number of

background components from 1 to 103, and increasing counts of data events from 101 to

104. Figure 7 shows the behavior of the runtime with respect to these quantities. All

likelihoods have runtime that increases with the number of MC events, as seen in the

leftmost panel of figure 7, as each likelihood must compute the sum of event weights which

incurs an O(m) cost, where m is the number of MC events in the bin. Additionally at
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102 103 104 105 106

Number of Monte Carlo Events

10−7

10−5

10−3

10−1
t[
s]

Number of background
components: 1

Number of data
events: 10

LBB

χ2
mod
LAdHoc
LG
LEff

100 101 102 103

Number of background components

Number of Monte Carlo
events: 10000
Number of data
events: 10

101 102 103 104

Number of data events

Number of Monte Carlo
events: 100
Number of background
components: 1

Figure 7. Likelihood function performance. Average single likelihood evaluation time is shown in

the vertical axis in seconds. Different line colors show different likelihoods. Leftmost panel: the

number of MC events used is shown on the horizontal axis. Center panel: the number of background

components is shown on the horizontal axis. Rightmost panel: the number of data events is show

on the horizontal axis.

low MC sample sizes the modified-χ2 is faster than LEff since LEff requires the evaluation

of more expensive special functions, however at larger MC sample sizes this additional

cost is negligible compared to that of summing the MC weights. In the middle panel

of figure 7 it can be seen that all likelihoods except LBB are constant with respect to the

number of background components as they only depend on summary statistics of the weight

distribution. The Barlow-Beeston likelihood, LBB, incurs an O(bd log d) cost for solving a

single root finding problem per physical component, where b is the number of background

components and d is the number of digits of precision, and therefore is not constant in

runtime with respect to the number of components. However, one key difference between

LBB and LEff is that LEff must compute two summations (the sum of the weights and sum

of the square weights), while LBB needs only to compute a single summation of the MC

weights. The rightmost panel of figure 7 shows the runtime as a function of the number of

data events; for most likelihoods the number of data events, k, enters only in the evaluation

of some special functions which for all practical applications are approximately constant in

runtime. LG evaluates a special function which for these purposes can only be computed

in O(k2m) time, resulting in the dependence on the number of data events. The LAdHoc

treatment is always the fastest, but it does not incorporate MC statistical uncertainties in

any way.

5 Conclusion

The use of MC to estimate expected outcomes of physical processes is nowadays standard

practice. By construction, MC distributions are sample observations and subject to sta-

tistical fluctuations. MC events are also typically weighted to a particular physics model,

and these weights may not be uniform across all events in an observable bin. A direct

comparison of MC distributions to data is typically performed using LAdHoc or χ2, where

the expectation from MC is computed as a sum over weights in a particular observable
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bin. Such likelihoods neglect the intrinsic MC fluctuations and may lead to vastly under-

estimated parameter uncertainties in the case of small MC size. A better approach is to

use a likelihood that accounts for MC statistical uncertainties.

Along with the definitions of µ and σ2 in eq. (3.3), the main result of this work is given

in eq. (3.16). This new LEff is motivated by treating the MC realization as an observation

of a Poisson random variate, computing the likelihood of the expectation using the MC and

marginalizing the Poisson probability of observed data over all possible expectations. It is

an analytic extension of the Poisson likelihood that accounts for MC statistical uncertainty

under a uniform prior, P(λ). By assuming that the number of MC events per bin is the

outcome of sampling a Poisson-distributed random variable, and that the SPD is a good

approximation of the CPD for arbitrary weights, L
(
λ|~w(~θ)

)
can be written in terms of µ

and σ2 as shown in eq. (3.9). This allows us to calculate LEff, given in eq. (3.16), which can

be directly substituted in favor of LAdHoc. Our construction is computationally efficient,

exhibits proper limiting behavior, and has excellent coverage properties. In our tests, it

outperforms other treatments of MC statistical uncertainty.
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A Summary of likelihood formulas

Parameters µ ≡∑m
i=1wi, σ

2 ≡∑m
i=1w

2
i

LAdHoc
µke−µ

k!

χ2
mod

(k−µ)2

µ+σ2

Ls=1
BB max

m̄

{
1

k!m!

(µm̄
m

)k
m̄me−

µm̄
m
−m̄
}

LMean

( µ
σ2

)µ2

σ2 Γ
(
k + µ2

σ2

)[
k!
(
1 + µ

σ2

)k+µ2

σ2 Γ
(
µ2

σ2

)]−1

LEff

( µ
σ2

)µ2

σ2 +1
Γ
(
k + µ2

σ2 + 1
)[
k!
(
1 + µ

σ2

)k+µ2

σ2 +1
Γ
(
µ2

σ2 + 1
)]−1

Table 2. Table of likelihood formulas. The likelihood functions discussed in this paper are given in

each row. They are written in terms of µ and σ, whose explicit formulas are given in the top row,

and the number of observed events, k, in the bin. In the case of LBB we write the likelihood for the

single-process case. Our main result and recommended likelihood, LEff, is given in the last row.
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