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1 Introduction

Four dimensional theories with eight supercharges represent an extremely important class

of QFT models, since many properties can be computed exactly and they display many

interesting connections with other models in diverse dimensions and with geometry. Shortly

after the discovery of the Seiberg-Witten solution [1, 2] several examples of nonlagrangian

theories1 were found (see e.g. [3–6]). In the past twenty years many other examples of

1By this we mean that the structure of the Coulomb Branch (e.g. the presence of Coulomb Branch

operators of fractional dimension) is not compatible with that of any gauge theory.
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nonlagrangian theories were found and more recently the class S construction [7] provided

a general framework to study a vast landscape of nonlagrangian theories.

Recently in [8–10] (see also [11] for a complementary approach) it was realized that the

nonlagrangian class of N = 2 theories is actually smaller than what we thought, if we relax

the assumption that the gauge theory description has manifest extended supersymmetry:

the authors noticed that if we consider an N = 2 lagrangian SCFT with a global symmetry

G, couple a chiral multiplet transforming in the adjoint representation to the G moment

map and turn on for it a nilpotent vev, sometimes supersymmetry enhances in the IR. This

construction always features the decoupling of operators which hit the unitarity bound and

the resulting IR fixed point is actually a N = 2 SCFT plus decoupled chiral multiplets.

The procedure can actually be improved to obtain a lagrangian description of the

strongly-coupled SCFT alone, without any decoupled sector [12] and this is crucial to

recover supersymmetry enhancement in lower dimension by compactification of the la-

grangian theory [13, 14]. The construction works as follows: we start by applying the

method proposed by Maruyoshi and Song and identify the set of chiral operators Oi which

violate the unitarity bound in the IR with a run of a-maximization [15]. Then, we in-

troduce by hand chiral multiplets βOi and turn on the superpotential terms W = βOiOi.
The F-terms for βOi set to zero in the chiral ring the “offending” operators. The resulting

theory is not affected by unitarity bound violations and flows directly in the IR to the

model with enhanced supersymmetry. We will refer to this construction as susy enhancing

RG flow or susy enhancing procedure.

The main tool used in [8–10] is a-maximization, which allows to identify the R-

symmetry of the infrared fixed point. For some theories and only for some choice of the

nilpotent vev the R-charges in the infrared are rational and in this case the resulting fixed

points can almost always be identified with known strongly-coupled N = 2 SCFTs. This

procedure works only in very special cases without a recognizable pattern and at present

we do not have a general criterion saying when one should expect supersymmetry enhance-

ment (see however [16], which discusses the necessary and the sufficient conditions for

supersymmetry enhancement at the level of the superconformal index) and even when this

happens, it is not clear how to identify the IR SCFT in advance without going through the

details of the a-maximization computation. The purpose of this note is to make progress

in this direction by proposing a uniform and more systematic approach to the study of

susy enhancing RG flows. Our basic observation is that the geometric engineering setup is

a convenient framework to formulate this question.

Our construction goes as follows: we start by considering the set of class S generalized

Argyres-Douglas theories defined by compactification of the 6d N = (2, 0) theory of type

J = ADE on a sphere with one irregular puncture. These were classified in [17] and in the

same paper it was observed that these models can be described in the context of geometric

engineering2 by compactifying Type IIB on a hypersurface singularity in C4. For given

2The methods used in this paper allow to describe in Type IIB a subset of class S theories on a punctured

sphere. For example, in the AN case it is known that one can have three classes of irregular punctures [18].

In the present work we will discuss only theories with Type I and Type II irregular punctures (in the

notation of [18]). It would be important to understand how to incorporate Type III punctures as well.
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J , the theories we obtain in this way are labelled by two integers b and k which specify

the choice of irregular puncture: b can take two or three different values depending on the

specific Lie algebra considered and k is an arbitrary positive integer. The resulting models

were dubbed Jb(k) in [17].

In the same spirit of [19, 20], we can obtain from Jb(k) models a large class of theories

with (at least) J global symmetry by considering the same hypersurfaces in C3×C∗ rather

than C4. The resulting theories are labelled by the same data (b and k) and they also have

a class S realization: the UV curve is again the sphere with one irregular puncture and a

full regular puncture of type J . We call these models Db
k(J) theories since they constitute

a generalization of Dk(J) theories studied in [20].3 Since these theories have a nonabelian

global symmetry, we can consider the susy enhancing RG flow for them.

In this note we conjecture that for all the models in this class supersymmetry always

enhances in the infrared upon turning on a principal nilpotent vev for the J global symme-

try and the IR fixed point of the resulting RG flow turns out to have a very simple geometric

description in Type IIB: it is the Jb(k) theory described by the same quasi-homogeneous

equation as the parent UV theory, but in C4 rather than C3 × C∗. Overall, the net effect

of the RG flow is simply to change the ambient space by introducing the C3 hyperplane

at the origin. Remarkably, this construction allows to recover all known RG flows with

supersymmetry enhancement and in particular captures all examples of “lagrangians for

nonlagrangian theories”: these are simply recovered by focusing on the subclass of la-

grangian Db
k(J) theories. Furthermore, our geometric setup provides infinitely many new

nonlagrangian examples, as we will explain later. We provide evidence for our conjecture

by observing that the a-maximization analysis is perfectly consistent with the above claim.

Another interesting feature of this approach is to remove the ambiguity in the choice

of nilpotent vev which is part of the data defining the procedure developped in [8–10]: for a

given theory only some special choices of nilpotent vev induce supersymmetry enhancement

and at present there is no known characterization of these “distinguished” nilpotent orbits.

This information is automatically captured by our geometric setup, in the sense that in

general a single N = 2 SCFT has multiple realizations in the Db
k(J) class and the manifest

global symmetry J is only a subgroup of the full symmetry group of the theory. Therefore,

a principal nilpotent vev for J corresponds in general to a non principal nilpotent vev for

the full global symmetry of the theory. We find that uniformly considering only the J

principal nilpotent vev for Db
k(J) theories we nevertheless recover all the RG flows with

supersymmetry enhancement identified in [10]. In other words, in our geometric setup we

do not miss RG flows displaying supersymmetry enhancement by focusing on principal

nilpotent vevs only.

Further insight on these RG flows is provided by combining our observation with the

class S realization of the models considered in the present paper: starting from a Db
k(J)

model the IR fixed points of the susy enhancing RG flow can also be realized by closing

completely the full puncture (i.e. giving a nilpotent vev to the moment map) of another

3I would like to mention the fact that, although these theories generalize the Dk(J) class, all of them

can be obtained starting from Dk(J) theories and turning on a relevant N = 2 preserving deformation.
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Db
k(J) theory (with different b) and consequently we find an infrared duality between

the susy enhancing RG flow and a manifestly N = 2 preserving RG flow (in this case a

higgsing). This result has interesting consequences, for example it allows to extract a simple

relation between the Seiberg-Witten data (meaning curve and differential) of the UV and

IR theories. Another interesting outcome is a relation at the level of the corresponding 2d

chiral algebras [21], at least for Db
k(J) models whose global symmetry is exactly J with no

further enhancement. All these relations between UV and IR theories are not manifest in

other approaches, since the RG flow breaks extended supersymmetry at intermediate scales

and the above quantities are defined only for N = 2 theories. In this sense our duality is

instrumental in deriving them.

The paper is organized as follows: in section 2 we review the geometric engineering

setup for generalized Argyres-Douglas theories and discuss the properties of Db
k(J) theo-

ries. We compute several quantities which are needed in later sections and in section 2.3

we formulate precisely our duality statement, the key observation of the present work, and

discuss general properties of the susy enhancing RG flows. These are derived from the a-

maximization analysis which is by now standard and we review it in detail in the appendix.

Section 3 is devoted to the discussion of Db
k(J) theories for low values of k and also those

with J = SU(2). We identify their Seiberg-Witten (SW) curves for J = A,D and then we

proceed with the analysis of the lagrangian subclass, which coincides precisely with all the

quiver theories discussed in [8–10, 14, 22]. The main outcomes of our construction and the

applications of our duality are discussed in section 4, which constitutes the main part of the

present paper: we first check that all the RG flows with supersymmetry enhancement found

so far in the literature fit in our framework and provide several other examples of susy en-

hancing RG flows. We explain how to relate SW curves of UV and IR fixed points of the susy

enhancing RG flow and comment on their relation at the level of chiral algebras. Finally, in

section 5 we summarize our findings and discuss possible future directions of investigation.

The counting of mass parameters for Db
k(J) theories is presented in the appendix.

2 N = 2 SCFT’s from Type IIB and statement of the result

In this section we discuss class S SCFTs obtained by compactifying the N = (2, 0) theory

on a sphere with one irregular puncture or one irregular puncture and a full puncture and

their Type IIB realization. Since several quantities of simply-laced algebras enter in our

analysis, we report them here for convenience of the reader:

Algebra Rank Coxeter Number Dimension Degree of Casimir invariants

AN−1 N − 1 N N2 − 1 2, 3, . . . , N

DN N 2N − 2 N(2N − 1) 2, 4, . . . , 2N − 2;N

E6 6 12 78 2, 5, 6, 8, 9, 12

E7 7 18 133 2, 6, 8, 10, 12, 14, 18

E8 8 30 248 2, 8, 12, 14, 18, 20, 24, 30

(2.1)
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2.1 Class S theories on the sphere with one irregular puncture and geometric

engineering

As we have mentioned in the introduction, by compactifying the N = (2, 0) six dimensional

theory of type J on a sphere with one irregular puncture one can get a large class of N = 2

superconformal theories in four dimensions, which were classified in [17]. Following the

notation of [23], we call the resulting models Jb(k), where b and k are integers parametrizing

the choice of irregular puncture. These theories can also be realized in the context of

geometric engineering by compactifying Type IIB string theory on a three-fold hypersurface

singularity in C4 W (x1, x2, x3, z) = 0. The set of relevant geometries is given in [17] and

we list them here for convenience:

J Singularity b

AN−1 x21 + x22 + xN3 + zk = 0 N

x21 + x22 + xN3 + x3z
k = 0 N − 1

DN x21 + xN−12 + x2x
2
3 + zk = 0 2N − 2

x21 + xN−12 + x2x
2
3 + x3z

k = 0 N

E6 x21 + x32 + x43 + zk = 0 12

x21 + x32 + x43 + x3z
k = 0 9

x21 + x32 + x43 + x2z
k = 0 8

E7 x21 + x32 + x2x
3
3 + zk = 0 18

x21 + x32 + x2x
3
3 + x3z

k = 0 14

E8 x21 + x32 + x53 + zk = 0 30

x21 + x32 + x53 + x3z
k = 0 24

x21 + x32 + x53 + x2z
k = 0 20

(2.2)

Notice that when b = h(J) (the (dual) Coxeter number of J) the singularities listed

above are precisely those defining the (Ak−1, J) theories discussed in [24]. One further

piece of information we need is the holomorphic three-form, which for the present class of

theories can be written in the form

Ω =
dz
∏
i dxi

dW
. (2.3)

Since the integral of Ω measures the mass of BPS particles, we should require Ω to have

dimension one and this fact can be used to extract the scaling dimension of the various

coordinates and hence the dimension of Coulomb branch (CB) operators as well, which

appear as complex deformation parameters in the geometric engineering setup. One way

to identify them is to consider the polynomial ring generated by the variables xi and

z modulo the ideal IW generated by the polynomials ∂W
∂xi

and ∂W
∂z . The set of allowed

complex deformations is given by the quotient algebra [25]

AW = C[x1, x2, x3, z]/IW . (2.4)
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From the geometric engineering setup one can also extract the c central charge of Jb(k)

theories [23]:

AN−1
(N−1)(k−1)(N+k+Nk)

12N+12k (b = N) (Nk−N+1)(N+k+Nk−1)
12(N+k−1) (b = N − 1)

DN
N(k−1)(2kN+2N−k−2)

12(2N−2+k) (b = 2N − 2) (2Nk−N−2k)(2Nk+N−k)
12N+12k (b = N)

E6
(k−1)(13k+12)

2k+24 (b = 12) (4k−3)(13k+9)
6k+54 (b = 9)

(3k−2)(13k+8)
4k+32 (b = 8)

E7
7(k−1)(19k+18)

12(k+18) (b = 18) (9k−7)(19k+14)
12(k+14) (b = 14)

E8
2(k−1)(31k+30)

3k+90 (b = 30) (5k−4)(31k+24)
6(k+24) (b = 24)

(3k−2)(31k+20)
3(k+20) (b = 20)

(2.5)

Actually, the numbers appearing in the above table coincide with the c central charge of

Jb(k) theories only when the theory has no global symmetries (and accordingly no mass

parameters, which correspond to deformation parameters of dimension one). We point

out that whenever this constraint is not satisfied, formula (2.5) should be “adjusted” by

subtracting GF
12 , where GF is the number of mass parameters (or equivalently the rank

of the global symmetry of the theory). The counting of mass parameters is performed in

the appendix.

In order to understand the origin of the last statement, we need to go back to the

derivation of (2.5) proposed in [26]. The analysis builds on the result of [27]

c =
R(B)

3
+
r

6
+

h

12
, (2.6)

where h is the number of free hypermultiplets (in our case h = 0),4 r is the dimension of

the Coulomb Branch and R(B) is the scaling dimension of the discriminant of the Seiberg-

Witten (SW) curve divided by four. It was argued in [26] that for this class of models

R(B) =
1

4
µD(umax), (2.7)

where µ = 2r+GF (the Milnor number) is the rank of the charge lattice (or equivalently the

number of nodes of the underlying BPS quiver [24]) and D(umax) is the scaling dimension

of the CB operator with largest dimension. It can be shown that for Jb(k) theories

D(umax) =
kh(J)

k + b
,

so (2.6) becomes

c =
µ

12

(
kh(J)

k + b
+ 1

)
− GF

12
. (2.8)

4This was argued in section 2.4 of [26] exploiting the fact that at generic points of the Coulomb Branch

(i.e. in the deformed singularity) the only nontrivial homology groups in the geometry are H0 and H3,

therefore only vector multiplets (arising from the RR four-form C4) and no massless hypermultiplets are

generated in the compactification of Type IIB.
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Plugging in the formula

µ =
r(J)

b
(kh(J)− b), (2.9)

one finds precisely the values appearing in (2.5) minus GF
12 .

Once we know c, the central charge a can be extracted from the scaling dimension of

CB operators exploiting the relation [27]

8a− 4c =
∑
i

(2D(ui)− 1). (2.10)

2.2 SCFT’s with A,D,E global symmetry from Type IIB string theory

Starting from the above list of three-fold singularities (or N = 2 SCFT’s), we can construct

another class of SCFT’s labelled by the same data, such that the Lie group J actually

corresponds to (in general a subgroup of) the global symmetry of the theory. These can be

defined by compactifying Type IIB on the singularities listed above with the modification

z → ez,

so that we are now dealing with a hypersurface singularity in C3 × C∗. The holomorphic

three-form is always given by (2.3). By working in terms of the C∗ variable t = ez, we can

bring the geometry back to the form (2.2) (with z replaced by t) but indeed the theories

are not the same. One quick way to see this is to notice that the Calabi-Yau structure is

different: in the coordinates (t, xi) the holomorphic three-form reads

Ω =
dt
∏
i dxi

tdW

and we clearly see that the assignment of scaling dimensions for the various coordinates is

now completely different. In particular, requiring Ω to have dimension one results in an

assignment of scaling dimension for the coordinates xi which does not depend on k and b.

The result is reported in the following table:

x1 x2 x3

AN−1
N
2

N
2 1

DN N − 1 2 N − 2

E6 6 4 3

E7 9 6 4

E8 15 10 6

(2.11)

We can also easily derive the dimension of the coordinate t and the singularity W :

D(t) =
b

k
; D(W ) = h(J). (2.12)

The complex structure deformations corresponding to CB operators can be identified from

the quotient algebra (2.4). There are two differences with respect to the Jb(k) class one

should take into account:
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1. the ideal IW is now generated by ∂W
∂xi

and t∂W∂t (so for e.g. J = SU(N) and b = N

terms proportional to tk−1 are now allowed).

2. Versal deformations of the ADE singularity (which do not depend on t) are interpreted

as the Casimir invariants of the J mass matrix. These do not correspond to CB

operators but are rather interpreted as mass parameters.

Taking this into account we clearly see that the CB operator of maximal dimension (the

corresponding term is δW = ut) has dimension

D(u) = h(J)− b

k
. (2.13)

We will call these theories Db
k(J) and when b = h(J) these coincide with Dk(J) theories

studied in [19, 20] so we will refer to them with this name below.

Let’s now pause to notice that the scaling dimensions of the coordinates xi, t for Db
k(J)

theories and xi, z for Jb(k) theories are closely related: the dimension of xi, z can be

obtained from (2.11) and (2.12) simply by multiplying everything by k
k+b . It is easy to see

that with this assignment the three-form Ω in (2.3) has dimension one. This observation

will be useful below.

For Db
k(J) theories µ ≡ 2r +GF is equal to

µ = k
r(J)h(J)

b
, (2.14)

where r(J) denotes the rank of the group J . Notice that b (see table (2.2)) is always a

divisor of r(J)h(J). Since the theory always has at least global symmetry J , it is convenient

to rewrite the rank of the global symmetry GF as r(J) + n, where n is the number of the

remaining mass parameters if any. The value of n is computed in the appendix. Using

now (2.6) and (2.7), we conclude that the c central charge of Db
k(J) theories is

c =
r(J)

12b
(kh(J)− b)(h(J) + 1)− n

12
. (2.15)

Setting n = 0 and replacing k with k + b (we will comment below on the reasons under-

lying this shift), (2.15) reproduces the value for the c central charge of (Jb(k), F ) theories

tabulated in [23]. Once we know c, the a central charge can be computed using (2.10).

There is a simple field theoretic connection between Jb(k) and Db
k(J) which will be

rather important in the present paper: as we explained before, Db
k(J) theories have global

symmetry J , so there is a corresponding moment map and by giving a (principal) nilpotent

vev to it5 we break spontaneously the J global symmetry. By turning on this vev we initiate

an RG flow which lands (for k > b) precisely on the Jb(k) class. More explicitly, the UV

and IR fixed points of the above mentioned RG flow are

Db
k+b(J)→ Jb(k) ∀k > 0.

5This statement refers to the case k > b.
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This fact has a natural class S interpretation if we notice that all Db
k(J) theories with

k > b can also be realized by compactifying the 6d N = (2, 0) theory of type J on a

sphere with one irregular puncture (the same irregular puncture which engineers the model

Jb(k − b)) and a regular full puncture. Equivalently, we have for every k > 0 the relation

Db
k+b(J) = (Jb(k), F ) in the notation of [23] (this explains the shift in k mentioned before).

From this perspective the RG flow described above just corresponds to removing the full

puncture.6 This description is allowed but less suited for the case k ≤ b, since closing the

full puncture in this case involves subtleties. We would like to remark that the models we

get for k small often have a class S realization based on a 6d theory of lower rank. The

lagrangian subclass we will discuss in the next section is a clear example.

In [23] some properties of (Jb(k), F ) theories were discussed. In particular, it was

conjectured that the flavor central charge of the J global symmetry is equal to the U(1)R
charge of the CB operator of largest dimension. For all Db

k(J) theories this is equal to

(see (2.13))

2h(J)− 2
b

k
,

which is precisely the answer proposed in [23]. A simple trick to guess this value for

the flavor central charge is the following: the Calabi-Yau geometry corresponding to a J

vectormultiplet coupled to Db
k(J) can be uniformely written in the following form

W (xi, t) +
Λb1

t
= 0, (2.16)

where Λ is a constant which is physically interpreted as the dynamically-generated scale

of the gauge theory and b1 is the one loop coefficient of the beta function. This is in turn

equal to 2h(J)−β where β is the contribution to the beta function from the Db
k(J) theory

(and indeed this is half the flavor central charge). By formally imposing that all the terms

have the same “dimension” and assigning dimension one to Λ we find the value of b1:
7

from (2.12) we immediately conclude

b1 = h(J) +
b

k
→ β = h(J)− b

k
. (2.17)

For Dk(J) theories the above formula reduces to

h(J)
k − 1

k

6This operation is usually called closure of the puncture in the literature.
7A more rigorous derivation, from which our “heuristic argument” is derived, is obtained adapting the

computation performed in section 2 of [28]: our CY geometry is given by an ADE singularity fibered over

the cylinder parametrized by z. We can now introduce a scale a and deform the ADE singularity imposing

on the corresponding Casimirs wi the relation wi ∼ adi (di denotes the degree of the Casimir). The mass of

the ADE W-bosons is obtained integrating Ω on the two-cycles of the ADE singularity Ci and over a cycle

wrapping once around the cylinder. The mass of a monopole is given instead by the integral of Ω over Ci

and a “radial” cycle on the cylinder interpolating between the regions at small and large |z| where the cycles

Ci shrink. The ratio of these masses gives the gauge coupling, which in turn gives the beta function of the

ADE gauge theory when we differentiate with respect to a. Following this procedure we recover (2.17).
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which is the correct value found in [19]. We will not attempt to derive (2.17) from the

4d/2d correspondence of [24] as was done in detail in [20] for Dk(J) theories, although it

should be possible given the Type IIB origin of our models. It would be important to fill

in this gap.

2.3 An infrared duality for the susy enhancing RG flow

We now have all the ingredients we need to state the main claim of this note: starting

from any Db
k(J) theory (for every choice of J , b and k > 0), the susy enhancing RG flow

triggered by a principal nilpotent vev for the symmetry group J leads to supersymmetry

enhancement in the infrared and the IR fixed point is the Jk(b) theory, which can also

be obtained, as explained above, by closing the J full puncture of Db
k+b(J). We are thus

proposing an infrared duality: in one duality frame the RG flow is manifestly N = 2

preserving (the closure of a puncture is actually a Higgs branch flow) whereas on the other

side supersymmetry enhances only at long distances.8

We have a slightly different perspective on the above duality exploiting the fact that

there is an N = 2 preserving RG flow from Db
k+b(J) to Db

k(J). Geometrically this can be

described by a suitable deformation of the Db
k+b(J) geometry. For k < b2 this is interpreted

as giving an expectation value to a CB operator (therefore we are moving on the Coulomb

branch) and for k > b2 it is interpreted as a relevant deformation of the prepotential. As

a result, if we first perform this deformation and then activate the susy enhancing RG

flow, we flow in the IR to the same theory we land on by closing the J full puncture. We

thus actually get two different descriptions of the same RG flow; one is manifestly N = 2

preserving whereas the other involves two steps.

In the rest of the paper we will give evidence for this claim. We would like to men-

tion that a special case of our duality (basically the above statement for the Dk(SU(N))

class) was already noticed in [9]: more precisely, the authors observed that (IN,k, F ) =

Dk+NSU(N) theories flow to IN,k+N = (AN−1, AN+k−1) theories in the IR when applying

the Maruyoshi-Song procedure. In the present work we add the observation that IN,k+N
theories can also be obtained by closing the full puncture of (IN,k+N , F ) = Dk+2N (SU(N)).

We can represent pictorially our duality statement with the following diagram:

J b(k)

Db
k(J) Db

k+b(J)

Closure of the J full puncture (N =2 SUSY manifest)Susy enhancing RG flow

8Notice that in both cases we are breaking the global symmetry J spontaneously, which implies the

presence of Goldstone multiplets (equal in number on both sides of the duality) besides the interacting

N = 2 theory.
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This statement implies that the susy enhancing RG flow has a surprisingly simple de-

scription in the context of geometric engineering: as we have seen the UV theory is ob-

tained compactifying Type IIB string theory on the CY threefold defined by the equation

W (x1, x2, x3, t) = 0 (with W as in (2.2)) in C3 × C∗ whereas the IR fixed point is de-

scribed by the same equation in C4. Therefore, the net effect of the RG flow is simply to

turn the ambient space into C4, changing the normalization of the holomorphic three-form

as follows:

ΩUV =

∏
i dxidt

tdW
−→ ΩIR =

∏
i dxidt

dW
. (2.18)

This fact will be exploited later to relate the SW curves of the UV and IR theories.

In the next section we will find that some of the Db
k(J) theories are lagrangian and

our claim includes, as a special case, all known examples of “lagrangian UV completions”

of AD-like theories. Moreover, our infrared duality provides a natural relation between the

SW curves of the UV and IR fixed points of the susy enhancing RG flow and allows to

relate the corresponding chiral algebras.

We would now like to make the following remark: as we will see in the next section, all

Db
k(J) theories with k > b are not lagrangian.9 In particular, Db

k+b(J) is not lagrangian for

any k, regardless of whether Db
k(J) is lagrangian or not. We therefore conclude that our

duality establishes the infrared equivalence of the susy enhancing RG flow for a lagrangian

theory with the higgsing (closure of the puncture) of a nonlagrangian model.

The above duality can be checked to be perfectly consistent with the a-maximization

analysis, which we review in the appendix. The most important equation is (A.14), which

relates scaling dimensions at the UV and IR fixed points of the susy enhancing RG flow.

We can immediately derive from it some general features of the susy enhancing RG flow:

• For k > b none of the singlets Mi violate the unitarity and they all become CB

operators of the IR fixed point SCFT. Conversely, for k ≤ b (hence for all lagrangian

examples) there is at least one singlet (the one with R-charge 2 + 2ε) which violates

the unitarity bound.

• We find that the number of operators which violate the unitarity bound and should

be flipped is always equal to r(J). Combining this with the fact that the “candidate”

CB operators of the IR SCFT are either CB operators of the Db
k(J) theory or the

singlets Mi (and we always have r(J) of them), we conclude that the UV and IR

SCFT’s always have the same rank. This conclusion also follows by comparing the

Milnor numbers of the two theories (2.9), (2.14) and exploiting the fact that the

rank of the global symmetry group of Db
k(J) is equal to that of Jb(k) plus r(J) (see

the appendix).

The fact that the susy enhancing RG flow preserves the rank of the SCFT has not been

pointed out in the literature and field-theoretically is far from being obvious. We do not

9In this paragraph by nonlagrangian we mean that there is no “conventional” N = 2 lagrangian de-

scription, i.e. there is no point on the conformal manifold in which the matter content is given just by free

hypermultiplets and vector multiplets.
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have an a priori derivation of this statement however, we would like to observe that if

a proof can be found, this would nicely explain why there are no known examples of

supersymmetry enhancement when the UV theory has non simply-laced global symmetry.

To illustrate our point, let us consider the case of a principal nilpotent vev for the

USp(2N−4) global symmetry of SO(N) SQCD (these models where discussed in [10], with

the conclusion that supersymmetry does not enhance): in this case there are r(SO(N))−1

singlets whose dimension is higher than that of all the r(SO(N)) Coulomb branch operators

plus others with lower dimension. In particular, there is always a singlet which is degenerate

with the CB operator of highest dimension (for example in the case N = 6 the CB operators

in the UV have dimension 2,3,4 and the singlets 2,4,6,8). As a result, if all the CB operators

decouple along the RG flow, we are left in the IR with at most r(SO(N))−1 singlets (which

is of course strictly less than the rank of the UV theory), otherwise we end up with at least

r(SO(N)) + 1 CB operators in the IR. In any case we conclude a priori that the rank of

the theory cannot be preserved along the RG flow. In conclusion, proving that the rank

has to be preserved whenever supersymmetry enhances would explain why these models do

not work. More general nilpotent vevs and linear quivers ending with a SO gauge group

coupled to fundamentals can be analyzed in the same way with identical conclusions.

3 Seiberg-Witten curves and the lagrangian subclass

3.1 Extracting the SW curve

In this section we will discuss the SW curves of Db
k(J) theories.10 This is a special case of

the well-known problem of extracting the Seiberg-Witten curve from the “Seiberg-Witten

geometry” (meaning the Calabi-Yau space on which we compactify the Type IIB theory).

Answering this question can be hard (see for example [29] which discusses this problem for

E6 SYM theory) and at present we do not have a general satisfactory answer. However,

using techniques already available in the literature, we can extract rather easily the Seiberg-

Witten curves for Db
k(J) theories at least for classical Lie groups (J = AN−1 or J = DN ).

This was already done in [20] for the case b = h(J). The exceptional case can be handled

using the method proposed in [28] (which elaborates on the results of [29]), however we

find it simpler to use directly the CY geometry to study this case.

The case J = AN−1 is the simplest since the variables x1,2 enter quadratically in (2.2)

and it suffices to drop them to extract the curve.11 As a result we find for b = N

(setting t = ez)

xN + tk = 0; λSW = x
dt

t
, (3.1)

and for b = N − 1

xN + xtk = 0; λSW = x
dt

t
. (3.2)

10The SW curves of Jb(k) theories are discussed in [17].
11This statement is best understood in the context of the 4d/2d correspondence proposed in [24], which

relates the SCFT’s engineered by the Calabi-Yau singularities (2.2) to N = (2, 2) LG models. The variables

xi and z are interpreted as 2d chiral multiplets and the singularity is the superpotential of the theory. In this

context quadratic terms make the corresponding chiral multiplets massive hence they can be integrated out.
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Notice that these curves are the same as those describing AbN−1(k) theories. The difference

between the two classes is the normalization of the SW differential, which for AbN−1(k)

theories is simply xdt (this observation will play an important role in the next section).

The curves for the deformed theories can be easily extracted by turning on in the CY

geometry all the deformations in the quotient algebra (2.4). In this case this results in

turning on all subleading terms of the form uijx
itj . Notice that terms with i = N − 1

can be removed by shifting x, those with j = 0 describe the SU(N) mass Casimirs and for

b = N − 1 also the term u0kt
k represents a mass parameter.

The case J = DN is slightly more complicated, since now only x1 appears quadratically

and can be integrated out (in the same sense as in the SU(N) case discussed before). This

however can be circumvented, as explained in [30], by introducing an auxiliary variable λ

and perturbing the singularity (2.2) with the term x3λ. Now x3 is massive and can be

integrated out.

In the case of Dk(SO(2N)) theories this procedure leads to

x21 + xN−12 + x2x
2
3 + tk − x3λ −→ xN−12 − λ2

x2
+ tk. (3.3)

If we now multiply everything by x2 and consider the change of variable x2 = x2 we get

the final expression for the curve

x2N − λ2 + x2tk = 0; λSW = x
dt

t
, (3.4)

where we included also the SW differential. Let us now comment about the physical

interpretation of the parameter λ. As we have already explained, the Dk(SO(2N)) theories

have SO(2N) global symmetry so we can turn on the corresponding mass terms. This

operation results in a deformation of the SW curve and the corresponding parameters

represent the Casimir invariants of the SO(2N) mass matrix. The distinctive feature of

mass parameters is the fact that they appear as residues for the SW differential and this is

precisely what happens when we turn on λ: the SW differential in (3.4) has a simple pole

at t = 0 and the residue is proportional to λ1/N , hence we can interpret λ as the degree N

Casimir of SO(2N). We then conclude that the curve describing the undeformed SCFT is

x2N + x2tk = 0; λSW = x
dt

t
. (3.5)

This formula also appears in [20]. Again, by going through the above steps keeping all the

complex structure deformations turned on, we can extract the deformed curve which reads

x2N + x2tk + x2
∑
i,j

uijx
2itj + P (t)2 = 0. (3.6)

In this formula i ≥ 0 and indeed j < k. P (t) is a polynomial in t of degree (at least)12

bk/2c (b. . .c denotes the integer part). The N Casimirs of SO(2N) are identified with the

12For k > N−1 the degree of P (t) may be larger than k/2. The corresponding parameters have dimension

smaller than one and are interpreted as coupling constants associated with relevant deformations. Turning

them on results in a deformation of the prepotential.

– 13 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
6

N − 1 parameters ui0 and the constant term in P (t). For k even also the term of degree

k/2 in P (t) describes a mass deformation.

Let us now repeat the above procedure for the DN
k (SO(2N)) class. Adding again λ

and perturbing the singularity we find

x21 + xN−12 + x2x
2
3 + x3t

k − x3λ.

Going through the same steps as before we conclude that the SW curve describing the

undeformed theory is

x2N + t2k = 0; λSW = x
dt

t
. (3.7)

Again we have set λ = 0 since keeping it finite introduces a pole for the SW differential.

The deformed curve reads

x2N + x2
∑
i,j

uijx
2itj + (tk + Pk−1(t))

2 = 0 , (3.8)

where i ≥ 0 and j < 2k. As in the previous case, ui0 parameters and the constant term in

Pk−1(t) are identified with the flavor Casimirs.

3.2 Case study and the lagrangian class

Let us now discuss the Db
k(J) models for small values of k to get an intuition about what

kind of theories we get and then we will proceed with the analysis of the lagrangian subclass.

We will concentrate on the cases b 6= h(J) since Dk(J) theories have already been discussed

in detail in [20].

In [20] it was noticed that D1(J) theories are trivial for every choice of J . Let us now

consider the other cases with k = 1. The SW curve of DN−1
1 (SU(N)) theories with the

SU(N) symmetry gauged is

xN + xt+
1

t
= 0; λSW = x

dt

t
.

This curve is well known to describe SU(N) SQCD with one flavor, so we conclude that

DN−1
1 (SU(N)) just describes N free hypermultiplets. For k = 2 the SW curve is xN+xt2 =

0 and if we multiply everything by x and trade the variable t for t′ = tx, the curve becomes

xN+1+ t′2 = 0 and the SW differential retains the canonical form xdt′/t′ up to exact terms.

These are the SW data of D2(SU(N + 1)).

The theories DN
1 (SO(2N)) are nontrivial and interacting: starting from the curve

x2N + t2 = 0, with the redefinition t = t′x2 and dividing everything by x2 we get the SW

curve of the D2(SO(2N − 2)) theory therefore we identify the two families. In conclusion,

for N even the theory is USp(N −2) SQCD with N fundamental hypermultiplets, whereas

for N odd we find a nonlagrangian theory. The case N = 5, whose manifest symmetry in

this setup is SO(10) × U(1), corresponds to D2(SO(8)), which was identified in [20] with

the E6 Minahan-Nemeschansky theory [31].
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Let’s now consider exceptional theories with k = 1. As already explained, the case

b = J is trivial so we are left with five nontrivial models we will now analyze:13

• The theory D9
1(E6) has a one dimensional Coulomb branch generated by an operator

of dimension 3 (corresponding to the deformation u3t) and no mass parameters except

the Casimirs of E6. The only theory with E6 global symmetry and a Coulomb branch

of this form is the E6 Minahan-Nemeschansky theory.

• D8
1(E6) has one Coulomb branch coordinate (the deformation is u4t) of dimension four

and one mass parameter. We conclude that the theory has (at least) U(1)×E6 global

symmetry and a CB operator of dimension 4, so we identify it with E7 Minahan-

Nemeschansky theory [33].

• D14
1 (E7) has again only one CB operator (the deformation is u4t) of dimension four

and E7 global symmetry, so we are led to identify it with E7 Minahan-Nemeschansky

theory.

• The Coulomb branch operator of D24
1 (E8) (which still has rank one) has dimension

6 (the deformation is u6t) therefore we identify it with E8 Minahan-Nemeschansky

theory [33].

• Finally, D20
1 (E8) has two Coulomb branch operators of dimension 4 and 10 respec-

tively (the corresponding deformations are u4x3t and u10t). Since we do not find

any mass parameter except the E8 Casimirs we conclude that the global symmetry

is exactly E8. Using the technology of the previous section we find that the flavor

central charge is 20, the a and c central charges are a = 101/12 and c = 31/3. This

model arises in the E7 tinkertoys classification [34] as one factor inside trinions cor-

responding to product SCFTs.14 We find that upon turning on a principal nilpotent

vev for the E8 global symmetry this model flows in the IR to A4 AD theory. This is

a new prediction of our construction.

Notice that the value of the flavor central charge for Db
k(J) theories (2.17) and also the a, c

central charges are perfectly consistent with all the identifications proposed above.

We would now like to comment about the J = SU(2) case. It is known that Dk(SU(2))

is equivalent (A1, Dk) theory; what about the b = 1 case? As we have seen before, the

D1
k(SU(2)) model is described by the SW curve x2 + xtk = 0. Modulo a shift of x which

does not affect the differential (always up to exact terms) the curve can be brought to the

form x2 + t2k = 0, which is just the SW curve for D2k(SU(2)) = (A1, D2k). Again the

values of a, c and the flavor central charge are consistent with this claim. We thus simply

get a subclass of Dk(SU(2)) theories.

Let us now move to the lagrangian subclass. We start by noticing that there are no

lagrangian theories for J = EN : this was already established for Dk(EN ) theories in [20]

and the same argument used there rules out lagrangian theories in the other cases as well.

13Three of these models are also discussed in [32].
14I would like to thank Jacques Distler for pointing this out.
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The contribution β of Db
k(J) theories to the J beta function is always less than h(J)

(see (2.17)), so none of the J = E8 theories can be lagrangian since all matter fields in a

nontrivial representation of E8 contribute at least 2h(J). In the E7 and E6 cases the only

allowed matter fields compatible with the above constraint are half-hypermultiplets in the

56 of E7 and full hypermultiplets in the 27 of E6. In both cases the contribution to the

beta function is 6. From table (2.2) it is easy to see that there are no values of k and

b 6= h(J) such that (2.17) is a multiple of 6.

Let us now consider the more interesting case of classical Lie groups (J = AN−1 and

J = DN ). One obvious lagrangian subclass is DN−1
1 (SU(N)) which just describes N free

hypermultiplets.15 A more interesting lagrangian subclass is provided by Dk(J) theories.

This was already discussed in [20] so we will simply state the result:

• For J = SU(N) the model is lagrangian iff N is a multiple of k and in this case the

theory is the following linear quiver of special unitary groups:

SU(n)− SU(2n)− SU(3n)− · · · − SU(N − n)− N (3.9)

The quiver terminates with N fundamentals of SU(N − n) (n = N/k).

• For J = SO(2N) the theory is lagrangian only if N = nk+1 for an arbitrary positive

integer n. These models correspond to linear quivers of alternating SO/USp gauge

groups with half-hypermultiplets in the bifundamental representation. There are two

cases depending on the parity of k. For k odd the theory is

SO(2n+ 2)−USp(4n)− · · · − USp(2N − 2n− 2)− N (3.10)

and for k even we have

1 −USp(2n)− SO(4n+ 2)− · · · − USp(2N − 2n− 2)− N (3.11)

Let’s now consider the remaining cases: DN−1
k (SU(N)) and DN

k (SO(2N)). For

DN−1
k (SU(N)) theories the contribution to the SU(N) beta function is β = N − N−1

k .

Of course the theory can be lagrangian only if β is an integer, which demands N = kn+ 1.

In this case the Coulomb branch spectrum and Seiberg-Witten curves discussed before

agree with those of the following linear quiver (see [35]):

1 − SU(n+ 1)− SU(2n+ 1)− · · · − SU(N − n)− N (3.12)

so we are led to identify DN−1
k (SU(N = kn+ 1)) with the above linear quiver.

15Indeed this class of theories does not display any interesting dynamics, however it can be considered

an example of supersymmetry enhancement in its own right: when we couple the chiral multiplet in the

adjoint of SU(N) and give it a vev, N − 1 hypermultiplets become massive and only one of them survives

at low energy. This is the IR fixed point. Our geometric setup is perfectly consistent with this conclusion:

the CY we associate with the IR theory is

x2
1 + x2

2 + xN
3 + x3z = 0.

With the redefinition z′ = z + xN−1
3 this becomes

x2
1 + x2

2 + x3z
′ = 0

which is known to describe a single hypermultiplet.

– 16 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
6

In the case of DN
k (SO(2N)) theories β = 2N − 2− N

k and the model can be lagrangian

only if β is an even integer, implying N = 2nk for some positive integer n. We claim that

this class of models coincides with the following family of linear quivers (the number of

gauge groups is 2k − 1):

USp(2n− 2)− SO(4n)− · · · − SO(2N − 4n)−USp(2N − 2n− 2)− N (3.13)

Indeed the SW curve found in [36] for this quiver is identical to (3.8).

4 Comparison with the literature, new examples of susy enhancement,

SW curves and chiral algebras

4.1 Recovering all lagrangians for nonlagrangian theories

Having identified the lagrangian subclass, we can now notice that the lagrangian theories for

which the Maruyoshi-Song procedure is known to “work” (meaning that supersymmetry

enhances in the infrared) are precisely those listed in section 3.2 (with the exception of

the DN−1
1 (SU(N)) free theories)! Let us then check that the duality we are proposing is

consistent with the results available in the literature:

• According to our duality the quiver theory Dk(SU(nk)) flows under the MS procedure

to the SUnknk (k) theory, which is the same as (Ank−1, Ak−1) theory. This is precisely

the answer found in [14, 22]. In the special case k = 2 we recover the observation

of [9] that conformal SU(n) SQCD flows in the IR to the A2n−1 AD theory when we

turn on a principal nilpotent vev.

• The prediction of the duality is that the two ortho-simplectic quivers corresponding

to the Dk(SO(2nk + 2)) theory with k even or odd flows in the IR to the SO(2nk +

2)2nk+2(k) theory, which coincides with the (Ak−1, Dnk+1) theory. Indeed this is the

answer found in [22]. As a special case we recover for k = 2 the statement that

under a next-to-maximal nilpotent vev USp(2n) conformal SQCD flows to the D2n+1

theory [10].

• The next prediction is that the unitary quiver Dkn
k (SU(kn+1)) flows in the IR to the

model SU(kn+ 1)kn(k) which is the same as the (Ik,kn, S) theory. This was checked

at the level of central charges in [22] and also at the level of the 3d mirror in [14].

For k = 2 this reduces to the statement that under a next-to-maximal nilpotent vev

SU(n) conformal SQCD flows to the D2n theory [10].

• Finally, we have the quiver D2nk
k (SO(4nk)) which was also discussed in [22]. Our

duality predicts that the IR fixed point is the SO(4nk)2nk(k) theory. One can readily

check using the technology reviewed in this paper that the Coulomb Branch and

the a, c central charges of the IR SCFT match perfectly those of the SO(4nk)2nk(k)

theory. For k = 1 we find the lagrangian UV completion of (A1, A2n−2) theories

studied in [9]. Further specializing to the case n = 2 we recover the result of [8].
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4.2 Non principal nilpotent vevs and new examples of susy enhancing

RG flows

In [10] the authors found several examples of theories which exhibit supersymmetry en-

hancement in the IR upon turning on a non principal nilpotent vev. As was stated in the

introduction, our claim is that in our geometric framework focusing on principal nilpo-

tent vevs is not restrictive and we recover anyway all the susy enhancing RG flows. This

effectively makes the choice of nilpotent vev, which is part of the defining data of the

Maruyoshi-Song construction, redundant as long as one is interested in susy enhancing RG

flows only. Let us then check that the results of [10] are reproduced by our procedure.

The discussion of the previous subsection already includes some examples: it is

known that in the case of SU(N) SQCD with 2N flavors there are two choices of nilpo-

tent vevs (principal and subregular) which lead to supersymmetry enhancement in the

IR. Accordingly, we have two different realizations of conformal SU(N) SQCD in our

class: D2(SU(2N)) and D2N−2
2 (SU(2N − 1)). Considering the principal nilpotent vev for

SU(2N − 1), which is the manifest global symmetry J in the second realization, is just

equivalent to considering the subregular nilpotent vev for the full SU(2N) global symme-

try, so in this sense we do not miss the subregular case in our setup. Analogously, the two

possible choices of nilpotent vev for USp(2N) conformal SQCD, whose global symmetry

is SO(4N + 4), correspond to two different realizations of this theory in the Db
k(J) class:

D2N+2
1 (SO(4N + 4)) and D2(SO(4N + 2)).

Another simple example is D4 AD theory, which has SU(3) global symmetry and flows

to N = 2 SCFTs under both choices of nilpotent vev (principal and minimal). Again,

this is reproduced by focusing on the principal nilpotent vev for the manifest symmetry in

the geometric description: D4 AD theory is equivalent to either D2(SU(3)) or D1
2(SU(2)).

More in general, it was pointed out in section 3.2 that D2(SU(N + 1)) and DN−1
2 (SU(N))

are equivalent, although the full SU(N + 1) global symmetry of the theory is not manifest

in the geometric setup. Our duality then predicts that D2(SU(N + 1)) ' (IN+1,1−N , F )

exhibits susy enhancement under both principal and subregular nilpotent vevs and the

IR fixed points are respectively AN and DN+1 AD theories. This is in perfect agreement

with the findings of [10]. All other choices of nilpotent vev do not lead to supersymmetry

enhancement.

Finally, the case of E6 Minahan-Nemeschansky theory is particularly interesting: in [10]

the authors examined all possible nilpotent vevs and concluded that the scaling dimension

of operators at the IR fixed point are always irrational except in three cases which exhibit

supersymmetry enhancements. In these distinguished cases the SU(2) group defining the

nilpotent orbit is embedded in a SO(8) or SO(10) subgroup of E6 (the third case is just

the principal nilpotent orbit which has no commutant). As we have seen in the previous

section, E6 Minahan-Nemeschansky theory appears three times in the Db
k(J) class: it is

equivalent to D2(SO(8)), D5
1(SO(10)) and D9

1(E6). Depending on the specific realization

only a subgroup of the E6 symmetry is explicit (precisely the three subgroups mentioned

before). According to our duality, by turning on a principal nilpotent vev for the J sub-

group we recover N = 2 supersymmetry in the infrared. The predicted IR fixed points
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are respectively SO(8)6(2) = (A1, D4), SO(10)5(1) = (A1, D3) and E9
6(1) = (A1, A2) (these

equivalences can be easily derived from the geometric engineering setup discussed before).

These models coincide precisely with those found in [10]. It is very satisfactory to see that

our framework automatically selects all the nilpotent orbits of E6 which lead to supersym-

metry enhancement. This fact strongly suggests this is the right framework to understand

the susy enhancing RG flow. We would also like to notice that in section 3.2 we found real-

izations of E7 and E8 Minahan-Nemeschansky theories with full manifest global symmetry:

E14
1 (E7) and E24

1 (E8). The corresponding IR fixed points are in both cases equivalent to

A2 AD theory in agreement with the findings of [9]. We also find a second realization of E7

Minahan-Nemeschansky (D8
1(E6)) in which the manifest global symmetry is E6. This tells

us the theory exhibits enhanced supersymmetry under a non principal nilpotent vev and the

IR fixed point is E8
6(1), which can be shown to be equivalent to A3 AD theory using the ge-

ometric engineering technology reviewed above. This RG flow has not been noticed before.

As we have just seen, all the RG flows with supersymmetry enhancement discussed

in [8–10, 14, 22] fit in our framework and our construction predicts a new (non lagrangian)

example involving E7 Minahan-Nemeschansky theory. This is just one out of infinitely

many new such flows: all the flows involving Db
k(EN ) theories with k > 1 and non la-

grangian Db
k(SO(2N)), DN−1

k (SU(N)) models have not been discussed before and represent

a prediction of our construction. Below we will describe in detail other examples.

In [10] it was found that when the nilpotent vev leaves a subgroup of the global

symmetry unbroken, usually there is no SUSY enhancement in the IR. Sometimes this

can be “remedied” by gauging the surviving global symmetry. For instance, if we consider

E8 MN theory and turn on a principal nilpotent vev for a E6 subgroup with commutant

SU(3) (inside E8) we get irrational R-charges at the IR fixed point. However, if we gauge

this SU(3),16 the conclusion changes and the theory flows in the IR to E6 AD theory. This

fits perfectly in our setup: D2(E6) is precisely an SU(3) gauging of E8 MN.

One further example is provided by D24
2 (E8). This model has CB operators of dimen-

sion (2, 6, 6, 8, 12, 18), βE8 = 18 and central charges a = 111
4 , c = 31. Since the spectrum

includes a dimension 2 CB operator, we know there is an exactly marginal coupling [37].

We identify this with the gauge coupling of a G2 vectormultiplet. Our proposal implies

that the “matter sector” of D24
2 (E8) is a rank four theory with CB operators of dimension

(6, 8, 12, 18). The flavor symmetry is E8 × G2 and the G2 flavor central charge has to

be 4h∨(G2) = 16 for the gauging to be conformal. We can also compute a and c cen-

tral charges just by subtracting the contribution of dim(G2) = 14 vectormultiplets. This

leads to a = 149
6 and c = 86

3 . Indeed a theory with exactly these properties is already

known [34]:17 it is the (T 2 compactification of) (E8, G2) conformal matter [40]. This also

arises as a trinion in the E7 tinkertoys classification. The corresponding IR fixed point un-

der the susy enhancing RG flow is the Q12 model discussed in [41]. If instead we consider

the susy enhancing RG flow for the E8 symmetry of the (4d) (E8, G2) conformal matter

alone, we find that the infrared scaling dimensions are irrational.

16The embedding index of the E6 subgroup is one, hence the gauging is conformal.
17The value of the central charges can be found following the procedure of [38] from the anomaly poly-

nomial of the six dimensional theory [39].
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4.3 Seiberg-Witten curves and the susy enhancing RG flow

There are at least two interesting outcomes of our construction. The first is a direct way

to relate the SW data (curve and differential) of the UV and IR fixed points of the susy

enhancing RG flow (at least in the J = A,D cases, which anyway include all lagrangian

UV completions of AD theories). Our observation is a direct consequence of the fact that

Db
k(J) theories (UV fixed point) and Jb(k) theories (IR fixed point) are described by the

same hypersurface W (x1,2,3, t) = 0 (in C3 × C∗ and C4 respectively) and the holomorphic

three-forms are respectively (see (2.18))
∏
i dxidt/(tdW ) and

∏
i dxidt/dW .

The procedure is rather simple to state: for every Db
k(J) theory consider the SW

curve and differential, which has the canonical form xdt/t. The curve describing the IR

fixed point is the same, and the correct SW differential is obtained just by dropping the

denominator (hence it has the simple form xdt). The only subtlety is that the set of allowed

deformations (i.e. CB coordinates and mass parameters) of the singular curve changes, so

the singular curves always agree but the fully deformed curves may differ. This issue can be

handled by going back to the CY geometry (2.2) and identifying all allowed deformations,

which are encoded in the quotient algebra AW as explained in the previous sections. A

small caveat is that sometimes the presentation of the SW curve for the IR theory provided

by our algorithm is not the conventional one.

Let us see some examples to illustrate the procedure. The SW curve of Dk(SU(N))

theories is xN+tk = 0. The same curve but with SW differential xdt describes (AN−1, Ak−1)

theories, which are precisely the resulting IR fixed points under the susy enhancing RG flow.

Similarly, the family of curves xN + xtk = 0 describes DN−1
k (SU(N)) theories if the SW

differential is xdt/t. On the other hand, when λSW = xdt these correspond to the models

one gets by compactifying the AN−1 N = (2, 0) theory on a sphere with one irregular

puncture of type II, in the notation of [18]. As was pointed out in the same paper, these

are equivalent to (Ik,N−1, S) theories. This statement can be readily checked by writing

the curve in the standard class S form, where x is now interpreted as the coordinate

parametrizing the UV curve and t the coordinate on the fiber of the cotangent bundle.

A slightly more involved example is given by DN
1 (SO(2N)) theories, which flow under

the MS flow to AN−2 AD theories. For N = 2n their SW curve takes the form

x2N +
N−1∑
i=1

mix
2i + x2Pn−1(x

2)t+ (t+m)2 = 0 λSW = x
dt

t
, (4.1)

where Pn−1 is a generic polynomial of degree n − 1. We derived this formula from (3.8),

keeping all complex structure deformations turned on. According to our claim, by replacing

the SW differential with xdt we get the SW data associated with the IR fixed point (in this

case AN−2 AD theory). At first sight the curve (4.1) does not look like the more familiar

expression

y2 = xN−1 +

N−3∑
i=0

uix
i λSW = ydx, (4.2)

but a change of variables relates the two: start from (4.1) with SW differential xdt = −tdx
and redefine t′ = t+m. Up to exact terms the SW differential retains the canonical form
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t′dx,18 and the parameter m drops out from the curve since it can be reabsorbed with a re-

definition of themi parameters. With the further redefinition t̃ = −t′−(x2Pn−1(x
2))/2 (4.1)

becomes

t̃2 + x2QN−1(x
2) = 0 λSW = t̃dx,

where QN−1 is a generic polynomial of degree N−1. Introduce now y = t̃/x so that the SW

differential becomes yd(x2)/2. If we now divide the curve by x2 and set x′ = x2, we find

that (4.1) reduces precisely to (4.2) modulo shifting x′. The case N = 2n+ 1 is analogous.

4.4 Comments about chiral algebras

The second implication is a connection at the level of chiral algebras [21], at least for Db
k(J)

theories whose global symmetry is exactly J , without any enhancement (these include some

of the lagrangian theories discussed before, specifically the linear quivers (3.10) and (3.13))

It was conjectured in [23] that the chiral algebra for this class of models is given by the

affine Kac-Moody (AKM) algebra of type J at level −β = b
k −h(J) (denoted also as Ĵ−β).

Since the susy enhancing procedure breaks extended supersymmetry, it is not obvious how

to describe the RG flow at the level of chiral algebras. In this sense our duality comes to

the rescue since the problem can be circumvented by looking at the dual frame, which is

manifestly N = 2 preserving. First of all we go from Db
k(J) to the UV fixed point of the

dual RG flow, the Db
k+b(J) theory, whose chiral algebra is again (assuming the conjecture

of [23]) AKM of type J but now with level b
k+b − h(J).

Notice that the rank of the global symmetry r(GF ) of Db
k(J) theories for given J

depends only on b and on k(modb) (see table 1 in the appendix). In particular, r(GF )

is the same for Db
k(J) and Db

k+b(J) theories. This property is essential for our argument

because the chiral algebra is AKM only when the rank of the global symmetry is r(J)

and the shift in k dictated by our duality does not take us out of this subclass. The IR

fixed point is then obtained by closing the full puncture and this procedure corresponds

to quantum Drinfel’d-Sokolov (qDS) reduction at the level of chiral algebras (see [21]).

Combining the two operations, we conclude that the net effect of the susy enhancing RG

flow is the following: we should shift the level of the AKM algebra as stated above and

then perform qDS reduction.

This picture needs to be refined for Db
k(J) theories with enhanced global symme-

try (the simplest examples are D2n(SU(2)) = (A1, D2n) theories and the unitary quiv-

ers (3.9), (3.12)), since the chiral algebra is no longer AKM: in this case there are extra

Higgs chiral ring generators which always correspond to strong generators of the chiral

algebra [21] (see [42] for the relation between chiral algebras and the Higgs Branch of the

underlying N = 2 theory), so we conclude that for this class of theories the affine algebra

of type J at level −h(J)+ b
k can only be a subalgebra (this is indeed the case for conformal

SU(N) SQCD [21] and for D2n AD theories [43]). Because of this fact, it is not obvious

how to relate the chiral algebras of Db
k(J) and Db

k+b(J) theories in general. Understanding

18Notice that in the UV theory this shift would change the location of the pole for the SW differential so

is not as harmless as in this case.
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the Higgs branch of these models would be for sure helpful to shed light on this problem,

but we leave this for future research.

In some special cases the problem can be circumvented as follows: many Db
k(J) theories

admit several class S realizations and sometimes this can be exploited to identify the

corresponding chiral algebra as in [32]. Let us discuss the case of D2n Argyres-Douglas

theories to illustrate this point: the observation of [32] is that these models can be obtained

starting from Dn(SU(n+1)) and turning on a nilpotent vev for the SU(n+1) moment map

with a Jordan block of size n − 1 (labelled by the partition (n − 1, 1, 1)). With a further

nilpotent vev for the surviving SU(2) symmetry we flow to A2n−3 AD theory. More directly,

we get A2n−3 AD by turning on the nilpotent vev labelled by the partition (n− 1, 2). The

key observation now is that the global symmetry of Dn(SU(n + 1)) is exactly SU(n + 1)

with no enhancement, so the corresponding chiral algebra is SU(n+ 1) AKM at level 1−n2

n .

We can then obtain the chiral algebras associated with D2n and A2n−3 via qDS reduction,

in agreement with [43]. Notice that for n = 2 we recover the known result that the chiral

algebra of D4 AD is ŜU(3)− 3
2

(see [44–46]). Exploiting this observation we see immediately

that a possible extension of our costruction to D2n theories (so we have a precise map for

all Db
k(SU(2)) theories) is the following: consider SU(n + 1) AKM at level 1−n2

n (whose

(n−1, 1, 1),19 qDS reduction gives the chiral algebra of D2n AD), increase n by one unit and

then perform qDS reduction associated with the nilpotent orbit labelled by the partition

(n, 2). Presumably a construction along these lines works in several other cases.

5 Concluding remarks

In this paper we have given evidence that geometric engineering in Type IIB is the right

framework to study susy enhancing RG flows. This realization allows to identify immedi-

ately the IR fixed point, without need to perform a-maximization, and provides a simple

relation between the SW geometry of UV and IR fixed points. All known examples of

supersymmetry enhancement (in particular lagrangian theories) fit in our framework and

in this paper we find several new nonlagrangian examples from our duality. This approach

represents a more systematic treatment of susy enhancing RG flows and provides the (so

far) missing pattern underlying the various examples discussed in the literature. The anal-

ysis is also simplified due to the fact that this setup directly singles out the “distinguished”

choices of nilpotent vevs which lead to supersymmetry enhancement in the infrared, ef-

fectively making this extra input unnecessary. This is due to the existence of multiple

geometric realizations of the same superconformal theory.

A key point is the extremely simple relation between the geometric descriptions of

the UV and IR fixed points: the two theories are simply defined compactifying Type IIB

on hypersurfaces described by the same equation in C3 × C∗ and C4 respectively. This

simplicity makes some general properties of the RG flow more manifest. This fact remains

an empirical observation in the present work and it would be interesting to understand

better its origin. In particular, it would be important to understand how to describe in

19We use the partition labelling the nilpotent orbit to specify the qDS reduction we need.
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Type IIB the N = 1 deformation we have discussed and achieve a geometric description of

the whole RG flow.

The geometric relation between UV and IR theories can also be formulated in the class

S language, although it becomes more involved in that setup: the UV theory is described

by a sphere with one irregular puncture and a full regular puncture. The IR theory is then

obtained by closing the regular puncture and increasing the order of the pole of the Hitchin

field at the irregular puncture by one unit. This link with the class S construction suggests

some natural generalizations of our work: one could try for example to incorporate irregular

punctures of Type III (in the notation of [18]), which provide already in the J = AN case

a large class of models which do not fit in our framework (see for instance [37, 47]), or

twisted irregular punctures.

There are several other directions worth exploring: first of all it would be important to

prove our duality (we mean deriving it from known infrared dualities). This would explain

why Argyres-Douglas theories appear when we apply the susy enhancing procedure to N =

2 gauge theories. Another interesting generalization is to find lagrangian UV completions

for Db
k(J) theories. This would enlarge significantly the lanscape of UV lagrangians for

strongly-coupled N = 2 theories. Their existence is not unreasonable since we already have

some examples: all Dn AD theories are in the Db
k(J) class and a UV lagrangian completion

for those is known. Finally, an interesting observation is that the susy enhancing RG flows

always preserve the dimension of the Coulomb branch. As we have remarked in section 2.3,

this feature has interesting implications and deserves further attention. In particular, it

would be important to achieve a field-theoretic derivation of it. We hope to come back to

these points in the near future.
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A RG flows, a-maximization and higgsing

In this section we explain how to compute central charges and scaling dimensions of chiral

operators at the IR fixed point of the RG flows we consider in this paper. We consider first

the susy enhancing RG flow following the analysis given in [48] (see also [49]) and then the

closure of the full puncture, which is discussed in detail in [50].

A.1 Susy enhancing RG flow

The R-symmetry at the infrared fixed point can be determined as follows: first of all we

exploit the fact that every N = 2 superconformal theory has two canonical U(1) global

symmetries (the U(1)R group RN=2 and the cartan of the SU(2)R symmetry I3). If the

theory has global symmetry J , when we add a chiral multiplet M transforming in the
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adjoint of J and give it a principal nilpotent vev, we should also consider the Cartan ρ(σ3)

of the SU(2) embedding labelling the nilpotent orbit (our convention is 〈M〉 = ρ(σ+)).

Out of these three U(1)’s one combination is broken by the vev and we assume the U(1)

R-symmetry of the IR fixed point is a combination of the surviving two, which we can

parametrize as follows:

Rε =
1 + ε

2
RN=2 + (1− ε)I3 − (1 + ε)ρ(σ3). (A.1)

The value of ε can be determined via a-maximization applying the following procedure.

We start by computing the trial central charges

a(ε) =
3

32
(3TrR3

ε − TrRε); c(ε) = a(ε)− TrRε

16
. (A.2)

Plugging in (A.1) we find the expression

a(ε) =
3

32

[
3

8
(1 + ε)3TrR3

N=2 +
9 + 9ε

2
[(1− ε)2TrRN=2I

2
3 − (1 + ε)2Iρβ]− 1 + ε

2
TrRN=2

]
,

(A.3)

c(ε) = a(ε)− 1 + ε

32
TrRN=2. (A.4)

In (A.3) β denotes the J flavor central charge divided by two (see (2.17)) and Iρ is the

embedding index of the U(1) group generated by ρ(σ3) inside J . For the principal nilpotent

orbit of a simply-laced group (which is the only case we need in the present paper) the

embedding index is [51]

Iρ =
h(J)Dim(J)

6
, (A.5)

where Dim(J) is the dimension of the group J . Using now the well-known formulas for

N = 2 SCFT’s

TrR3
N=2 = TrRN=2 = 48(a− c); TrRN=2I

2
3 = 4a− 2c. (A.6)

(all other ’t Hooft anomalies are trivial) we can rewrite the trial central charges in terms

of β, Iρ and the a,c central charges of the Db
k(J) theory.

When we turn on the vev, some components (precisely Dim(J) − r(J) of them) of

the chiral multiplet M decouple and are identified with the Goldstone multiplets of the

spontaneous symmetry breaking. Consequently, in order to extract the central charges of

the interacting sector of the IR fixed point, we need to add the contribution from the gauge

singlets Mi which do not decouple from the theory. These have trial R-charge Ci(J)(1+ ε),

where Ci(J) denote the degree of the Casimir invariants of J . Their contribution to the

trial a and c central charges is:

• For J = SU(N)

a′ =
3

128
(N − 1)(N + ε(N + 2))(6ε2 − 2 + 3N2(1 + ε)2 + 3N(ε2 − 1)), (A.7)

c′ = a′ − N2 −N
32

− εN
2 +N − 2

32
. (A.8)
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• For J = SO(2N)

a′ =
3

32
N(N − 1 +Nε)(8 + 6N2(1 + ε)2 + 6ε(2 + ε)− 3N(1 + ε)(5 + 3ε)), (A.9)

c′ = a′ − 1

16
(N2 −N +N2ε). (A.10)

• For J = E6

a′ =
9

16
(6 + 7ε)(197 + 3ε(144 + 79ε)); c′ = a′ − 1

8
(18 + 21ε). (A.11)

• For J = E7

a′ =
21

16
(9 + 10ε)(229 + 6ε(81 + 43ε)); c′ = a′ − 1

16
(63 + 70ε). (A.12)

• For J = E8

a′ =
3

2
(15 + 16ε)(652 + 3ε(450 + 233ε)); c′ = a′ − 1

2
(15 + 16ε). (A.13)

By examining a large number of examples we find that, once all the operators violating

the unitarity bound are decoupled (or flipped according to our prescription), the trial a

central charge is maximized at

ε = − k + 3b

3k + 3b
. (A.14)

Notice that the singlet of R-charge h(J)(1 + ε) becomes in the IR the CB operator with

largest scaling dimension. Using (A.14) we find that its dimension is h(J)k
k+b , which agrees

precisely with the result found in section 2 for the model Jb(k).

A.2 Closure of the full puncture

If instead we are interested in higgsing the theory by turning on a principal nilpotent vev

for the J moment map µ (again our convention for the vev is 〈µ〉 = ρ(σ+)), the trial

R-charge can be written as follows (the notation is identical to the susy enhancing case):

Rε =
1 + ε

2
RN=2 + (1− ε)I3 − (1− ε)ρ(σ3). (A.15)

The trial central charges then read

a(ε) =
3

32

[
3

8
(1+ε)3TrR3

N=2+
9

2
(1+ε)(1−ε)2

[
TrRN=2I

2
3−Iρβ

]
− 1+ε

2
TrRN=2

]
, (A.16)

c(ε) = a(ε)− 1+ε

32
TrRN=2. (A.17)

In order to isolate the information about the interacting sector, we should now subtract

by hand the contribution from the Goldstone multiplets (see [50]). In order to explain

how this is done, we should remind the reader that the J moment map (which indeed

transforms in the adjoint representation) decomposes into the direct sum of r(J) irreducible
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representations of the SU(2) subgroup labelling the principal nilpotent orbit and their spin

is equal to the set of exponents Ei(J) (degree of the Casimir invariants minus one) of the

Lie algebra. All the components of the moment map except the lowest weight state of each

SU(2) irrep are Goldstone multiplets (see section 2.4 of [50]) and there are Dim(J)− r(J)

of them, exactly as in the susy enhancing case. Their charge under (A.15) is

(1 + n− Ei(J))(1− ε) 0 ≤ n ≤ 2Ei(J)− 1. (A.18)

Plugging this inside (A.2) we find the contribution from Goldstone multiplets to the

trial central charges:

• For J = SU(N)

ã = − 3

128
N(N − 1)(1 + ε)(−2 + 3(N − 1)N(ε− 1)2 + 6ε), (A.19)

c̃ = ã+
N(N − 1)

32
(1 + ε). (A.20)

• For J = SO(2N)

ã = − 3

32
(N − 1)N(1 + ε)(8− 15N(ε− 1)2 + 6N2(ε− 1)2 + 3ε(3ε− 5)), (A.21)

c̃ = ã+
N(N − 1)

16
(1 + ε). (A.22)

• For J = E6

ã = −27

8
(1 + ε)(197 + 3ε(66ε− 131)); c̃ = ã+

9

4
(1 + ε). (A.23)

• For J = E7

ã = −189

32
(1 + ε)(458− 915ε+ 459ε2); c̃ = ã+

63

16
(1 + ε). (A.24)

• For J = E8

ã = −45

4
(1 + ε)(1304 + 3ε(435ε− 869)); c̃ = ã+

15

2
(1 + ε). (A.25)

We can now notice that ã always has a minimum at ε = −1
3 . Analogously, the derivative

of (A.16) vanishes at ε = −1
3 so we conclude that the same will be true for the trial central

charge of (the interacting sector of) the IR fixed point, which is just given by (A.16) minus

ã. The second derivative at ε = −1
3 reads20 (as before Ci(J) denote the degree of the

Casimir invariants)∑
i

(
9

4
Ci(J)3 − 27

16
Ci(J)2

)
− 9

32
Dim(J)(3h(J)2 + 2). (A.26)

One can check using the formulas reported in section 2 that this quantity is always negative

for Db
k(J) theories with k > b. We therefore conclude that the trial a central charge is

always maximized at ε = −1
3 for k > b.

20Notice that this formula is valid for any N = 2 SCFT with ADE global symmetry.
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Theory Number of mass parameters

Db
k(SU(N)) GCD(b, k)− b+N − 1

Dk(SO(2N)) GCD(2N−2,k)+2
2 for 2N−2

GCD(2N−2,k) odd; 1 for k and 2N−2
GCD(2N−2,k) even; 0 for k odd

DN
k (SO(2N)) GCD(N, k) for N

GCD(N,k) odd; 0 otherwise

Dk(E6) 6 for k = 0(mod12); 2 for k = 3, 6, 9(mod12); 0 for k 6= 0(mod3)

D9
k(E6) 6 for k = 0(mod9); 0 otherwise

D8
k(E6) 6 for k = 0(mod8); 2 for k = 4(mod8); 1 for k 6= 0(mod4)

Db
k(E7) 7 for k = 0(modb); 1 for k even and k 6= 0(modb); 0 for k odd

Db
k(E8) 8 for k = 0(modb); 0 otherwise

Table 1. Number of mass parameters of Db
k(J) theories excluding the J Casimirs.

B Counting mass parameters

The purpose of this section is to count mass parameters for Db
k(J) theories (besides the

Casimirs of the J global symmetry). These appear as complex structure deformations of

dimension one. As a byproduct, we will relate this to the counting of mass parameters for

Jb(k) theories.

Before proceeding with the case-by-case analysis, let us summarize our findings in

table 1.

Notice in particular that for fixed J the number of mass parameters just depends on b

and the value of k modulo b. The rank of the global symmetry group is always r(J) plus

the number written in the above table.

B.1 Db
k(SU(N)) theories

When b = N the allowed deformations are monomials of the form uijx
itj with 0 < j < k

and i < N − 1. We are interested in counting terms such that D(uij) = 1. Since the

dimension of x is one, the problem is equivalent to determine the values of j such that tj

has integer dimension. This leads to the equation

N

k
j = n

for some positive integer n. Since j < k, there are solutions only when GCD(N, k) 6= 1.

The allowed values of j are the multiples of k̃ = k/GCD(N, k) smaller than k and there

are exactly GCD(N, k)− 1 of them.

The case b = N−1 is very similar. The set of allowed deformations is the same as before

with the addition of the term utk. Since the dimension of u is always one, we conclude

that the global symmetry is always at least SU(N) × U(1) in this class of models. Other

mass parameters are found again by imposing that tj (with j < k) has integer dimension:

N − 1

k
j = n.
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Following the same argument given before we find GCD(N −1, k)−1 solutions, for a total

of GCD(N − 1, k) mass parameters. The final formula valid for all Db
k(SU(N)) theories

is then

GCD(b, k)− b+N − 1 (B.1)

B.2 Db
k(SO(2N)) theories

In the case b = 2N − 2 the SW curve with all deformations turned on is

x2N + x2tk +
∑
i,j

uijx
2itj + P (t)2 = 0,

where P (t) is a polynomial in t of degree bk/2c (b. . . c denotes the integer part). We are

interested only in terms with i, j > 0. Notice that when k is even, the polynomial P (t)

has exactly degree k/2 and consequently the curve includes the term u2tk. Since x has

dimension one, u is always a mass parameter and consequently the global symmetry of the

theory can be just SO(2N) (with no enhancement) only for k odd. Similarly to the SU(N)

case, other mass parameters can be identified by demanding that D(tj) is an odd integer.

This imposes the constraint
2N − 2

k
j = 2n+ 1

for some nonnegative integer n. This equation has solutions only when Ñ = 2N −
2/GCD(2N − 2, k) is odd, which in particular implies that GCD(2N − 2, k) (and con-

sequently k as well) is even. The number of solutions is equal to the number of integers

j < k of the form (2m + 1)k̃ (where k̃ = k/GCD(2N − 2, k)) and there are precisely

GCD(2N − 2, k)/2 of them. In summary, when k is odd the symmetry is exactly SO(2N),

when both k and Ñ are even there is one mass parameter, when Ñ is odd there are

GCD(2N − 2, k)/2 + 1 mass parameters.

In the case b = N the SW curve reads

x2N + t2k +
∑
i,j

uijx
2itj + Pk−1(t)

2 = 0,

where Pk−1(t) is a polynomial of degree k− 1 in t. i and j are strictly positive and j < 2k.

First of all we notice that among the coefficients of Pk−1(t) there are no mass parameters

unless k is a multiple of N (if this is the case, there is exactly one parameter of dimension

one): this follows from the fact that all the terms appearing in Pk−1(t) have dimension N

and the dimension of t is N/k. In order to count uij ’s of dimension one we should impose

the constraint
N

k
j = 2n− 1

for some nonnegative integer n<N . This equation of course implies that Ñ=N/GCD(N,k)

is odd. All in all, we find a total of GCD(N, k) mass parameters whenever Ñ is odd and

zero otherwise.

In conclusion, for J = SO(2N) we find that whenever b/GCD(b, k) is odd the number

of mass parameters can be expressed in terms of GCD(b, k). If this constraint is not

satisfied, we find a single mass parameter for b = 2N − 2 and k even and zero otherwise.
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B.3 Db
k(E6) theories

In the exceptional case it is more convenient to use the Type IIB geometry. For J = E6

and b = 12 the Calabi-Yau geometry is

x21 + x32 + x43 + tk = 0

and the allowed deformations are

uijlx
i
2x
j
3t
l i = 0, 1; j = 0, 1, 2; l < k

For l = 0 these represent the Casimir invariants of the E6 global symmetry and have

dimension 2,5,6,8,9 and 12 respectively. We then immediately conclude that the dimension

of uijlt
l is always equal to the degree of one of the E6 Casimirs. Since uijl (with l > 0) is

a mass parameter if and only if it has dimension one, we conclude that the dimension of

tl has to be equal to one of the exponents of E6 (degree of the Casimirs minus one). We

should therefore find all integers l such that

12

k
l = 1, 4, 5, 7, 8, 11.

Clearly there are 6 solutions when k = 0(mod12), 2 when k = 0(mod3) but k 6= 0(mod12)

and zero otherwise.

For b = 9 the allowed deformations are

uijlx
i
2x
j
3t
l i = 0, 1; j = 0, 1, 2, 3; l < k.

The parameter u is a CB operator of dimension three and clearly does not contribute to

the counting. The new ingredient with respect to the previous case is the presence of the

terms u03lx
3
3t
l. The dimension of u03l is

D(u03l) = 3− 9l

k

and there is exactly one value of l such that u03l is a mass parameter if and only if

k = 0(mod9). The analysis for the other terms is analogous to the b = 12 case and we

have the equation
9

k
l = 1, 4, 5, 7, 8, 11

and clearly there are no solutions if k 6= 0(mod9). If k is a multiple of 9 we find five

solutions. In conclusion we find 6 mass parameters when k = 0(mod9) and zero otherwise.

Finally, for b = 8 we have the deformations

uijlx
i
2x
j
3t
l i = 0, 1, 2; j = 0, 1, 2; l < k.

The case i < 2 is analogous to those discussed previously and leads to the equation

8

k
l = 1, 4, 5, 7, 8, 11
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which has four solutions when k = 0(mod8), one when k = 4(mod8) and zero otherwise.

The remaining cases are u20lx
2
2t
l and u21lx

2
2x3t

l. u210 is a mass parameter for any k and

u20l has dimension one for

l =
3k

8

which is clearly an integer only when k = 0(mod8). We conclude that there are 6 mass

parameters for k = 0(mod8), 2 when k = 4(mod8) and 1 otherwise.

B.4 Db
k(E7) theories

The case b = 18 is very similar to the case b = 12 of the previous section: we should find all

integers l < k such that the dimension of tl is an exponent of E7.This leads to the equation

18

k
l = 1, 5, 7, 9, 11, 13, 17

which has 7 solutions when k = 0(mod18), 1 solution when k is even but is not a multiple

of 18 and zero otherwise.

For b = 14 the allowed deformations are of the form

uijlx
i
2x
j
3t
l i = 0, 1, 2; j = 0, 1, 2; l < k.

The parameters u12l have dimension

D(u12l) = 4− 14

k
l

and provide exactly one mass parameter when k is a multiple of 14. All other uijl param-

eters are present also in the case b = 18 and according to the usual argument correspond

to mass parameters if
14

k
l = 1, 5, 7, 9, 11, 13, 17.

There are no solutions for k odd, one solution if k is even but is not a multiple of 14 and 6

for k = 0(mod14). Overall we find 7 mass parameters when k is a multiple of 14, 1 when

it is even but k 6= 0(mod14) and zero otherwise.

B.5 Db
k(E8) theories

Finally, let’s consider the J = E8 case. For b = 30 we have the equation

30

k
l = 1, 7, 11, 13, 17, 19, 23, 29

which has 8 solutions when k = 0(mod30) and zero otherwise.

In the case b = 24 we have the deformations ulx
4
3t
l, which provide one mass parameter

when k = 0(mod24), besides those which are there also in the b = 30 case:

uijlx
i
2x
j
3t
l i = 0, 1; j = 0, 1, 2, 3; l < k.

These correspond to mass parameters if the following condition is satisfied:

24

k
l = 1, 7, 11, 13, 17, 19, 23, 29.
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There are 7 solutions when k = 0(mod24) and zero otherwise. In total we find 8 mass

parameters when k is a multiple of 24.

For b = 20 we have again the deformations

uijlx
i
2x
j
3t
l i = 0, 1; j = 0, 1, 2, 3; l < k

which lead to mass parameters when

20

k
l = 1, 7, 11, 13, 17, 19, 23, 29.

There are 6 solutions when k is a multiple of 20. We also find the terms

ujlx
2
2x
j
3z
l j = 0, 1; l < k

and the equations determining the existence of mass parameters is

20

k
l = 3, 9

which leads to two extra solutions, for a total of 8, when k is a multiple of 20. There are

no solutions if k is not a multiple of 20.

B.6 Counting mass parameters for Jb(k) theories

As we have seen, for Db
k(J) theories mass parameters (besides the Casimirs of J) arise in

the geometric setup as deformation terms of the form ui,j,lx
i
2x
j
3t
l with l > 0. As we have

noticed in section 2.2, the scaling dimensions of the coordinates xi, z for Jb(k) theories

can be obtained by multiplying (2.11), (2.12) by k
k+b . We therefore conclude that the

parameter ui,j,l appearing in the deformation term ui,j,lx
i
2x
j
3z
l has dimension k

k+b , whenever

the corresponding parameter for Db
k(J) theories has dimension one. Since the dimension

of z is always b
k+b , we immediately find that ui,j,l−1 for Jb(k) theory has dimension exactly

one and hence is a mass parameter. At this stage a useful observation is the following: if

xi2x
j
3t
l is not set to zero by the relations generating the ideal IW for Db

k(J) theories (which

include the relation t∂W/∂t = 0), then xi2x
j
3z
l−1 will not be in the ideal for Jb(k) theories

(which is generated by the relation ∂W/∂z = 0; the other relations are identical to those

of Db
k(J) with t replaced by z). This allows us to conclude that ui,j,l, with l > 0, is a mass

parameter for Db
k(J) theory if and only if ui,j,l−1 is a mass parameter for Jb(k). Using

this observation it is now easy to count mass parameters for Jb(k) theories: their number

is equal to that appearing in table 1 for Db
k(J) theories. In particular, we can notice that

the constraint on k so that Jb(k) theories have no mass parameters (given in [23]) is equal

to the corresponding constraint appearing in table 1, i.e. the requirement that the global

symmetry is exactly J with no enhancement.
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