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Abstract: We examine light diphoton signals from extended Higgs sectors possessing

(approximate) fermiophobia with Standard Model (SM) fermions as well as custodial sym-

metry. This class of Higgs sectors can be realized in various beyond the SM scenarios and is

able to evade many experimental limits, even at light masses, which are otherwise strongly

constraining. Below the WW threshold, the most robust probes of the neutral component

are di and multi-photon searches. Utilizing the dominant Drell-Yan Higgs pair production

mechanism and combining it with updated LHC diphoton data, we derive robust upper

bounds on the allowed branching ratio for masses between 45 − 160 GeV. Furthermore,

masses . 110 GeV are ruled out if the coupling to photons is dominated by W boson

loops. We then examine two simple ways to evade these bounds via cancellations between

different loop contributions or by introducing decays into an invisible sector. This also

opens up the possibility of future LHC diphoton signals from a light hidden Higgs sec-

tor. As explicit realizations, we consider the Georgi-Machacek (GM) and Supersymmetric

GM (SGM) models which contain custodial (degenerate) Higgs bosons with suppressed

couplings to SM fermions and, in the SGM model, a (neutralino) LSP. We also breifly

examine the recent ∼ 3σ CMS diphoton excess at ∼ 95 GeV.
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1 Introduction

The nature of electroweak symmetry breaking (EWSB) appears to largely have been settled

with the discovery of a 125 GeV scalar at the Large Hadron Collider (LHC) [1, 2] possessing

Standard Model (SM) Higgs boson like properties [3]. However, uncertainties in its coupling

measurements [4–9] still leaves room for extended Higgs sectors which can contribute non-

negligibly to EWSB if they respect the well known ‘custodial’ SU(2)C global symmetry [10],

thus ensuring a tree level ρ parameter equal to one. These custodial Higgs bosons1 can have

degenerate or compressed mass spectra, making them harder to detect due to soft decay

products [11–14]. Furthermore, as emphasized in [15], if they have vanishing couplings to

SM fermions (fermiophobic), and as measurements of the 125 GeV Higgs boson [4] are found

to be more and more SM-like, previous searches which relied on single Higgs production

mechanisms [16–22] become increasingly obsolete. Thus, even for masses well below the

125 GeV Higgs boson, many limits which typically apply to extended Higgs sectors, can be

evaded.2

However, as shown in past [30–35] as well as more recent studies, diphoton [15, 27]

and multiphoton [29] searches can put robust constraints on these light, but otherwise

difficult to detect Higgs bosons. This is especially true when combined with the universal

Drell-Yan Higgs pair production mechanism [15, 36] which dominates for small exotic

Higgs VEV. Utilizing this, we combine Drell-Yan pair production with updated data from

1We utilize the label Higgs boson for the neutral component which obtains a vacuum expectation value

(VEV) as well as the charged components belonging to the same electroweak multiplet.
2Even a charged Higgs boson around or below the W boson mass, which is not possible in the minimal

supersymmetric model (MSSM) [23, 24], is not excluded [25–29].
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(inclusive) LHC diphoton searches [37, 38] to derive robust upper bounds on the allowed

branching ratio for masses between 45 − 160 GeV. We find the branching ratios must be

. 2−50% depending on the mass and custodial representation. Furthermore, if the coupling

to photons are dominated by W boson loops, custodial fermiophobic Higgs bosons are ruled

out below ∼ 110 GeV.

We then explore two simple ways to evade these bounds through cancellations between

different loop contributions to the diphoton effective coupling and/or by introducing an in-

visible decay. This also opens up the possibility of future LHC diphoton signals from a light

exotic Higgs sector. As part of our analysis we briefly explore the recently observed ∼ 3σ

diphoton excess by CMS [38] at ∼ 95 GeV, also examined in recent studies [39–43]. Finally,

we examine two explicit realizations of these light Higgs sectors in the Georgi-Machacek

(GM) and Supersymmetric GM (SGM) models [44] which contain custodial Higgs bosons

with small couplings to SM fermions and, in the SGM model, an invisible (neutralino) LSP.

2 Diphoton limits on custodial fermiophobic Higgs bosons

After briefly reviewing custodial fermiophobic Higgs bosons, following closely the discussion

in [15], we then obtain limits from 8 and 13 TeV LHC inclusive diphoton searches [37, 38] on

the allowed branching ratio into photons in the mass range 45−160 GeV. We also estimate

what size branching ratios are needed to explain the recent ∼ 95 GeV CMS diphoton

excess [38].

2.1 Custodial fermiophobic Higgs sectors

Extended Higgs sectors that include only electroweak doublets with SM like quantum num-

bers automatically preserve custodial symmetry giving ρtree = 1, regardless of whether each

doublet obtains the same VEV or not [45]. However, since these can have tree level couplings

to SM fermions, one is led to consider a ‘fermiophobic’ limit to avoid constraints. This limit

is possible in certain Higgs doublet models such as the Type I two Higgs doublet model

(2HDM) [31, 46–48] or the ‘inert’ 2HDM [49], but not the MSSM [23].

To avoid resorting to highly tuned cancelations, larger electroweak representations

are constrained by ρtree = 1 to come in (N, N̄) representations [45] of the global SU(2)L ⊗
SU(2)R symmetry (under which the SM Higgs is a (2, 2̄)) that breaks down to the custodial

SU(2)C subgroup after EWSB. The various Higgs bosons then decompose under the SU(2)C
as (N, N̄) = 1⊕ 3⊕ 5⊕ . . . with the minimal case N = 3 giving the GM model [50, 51], to

be discussed more below. In contrast to doublets, this requires multiple scalars for a given

SU(2)L representation3 with custodial symmetry ensuring their VEVs are ‘aligned’ at tree

level. The various custodial scalars then exhibit (approximately) degenerate mass spectra

between their neutral and charged components.

Since gauge invariance prevents a tree level coupling between these larger electroweak

representations and SM fermions, any couplings to SM fermions are generated only by

EWSB effects and suppressed by the exotic Higgs VEV and/or small mixing. This leads to

3For special representations satisfying the conditions derived in [45, 52], such as an SU(2)L septet [52, 53]

with hypercharge Y = 2, this can be done with a single electroweak charged scalar.
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scalars which are naturally fermiophobic with respect to SM fermions. These fermiophobic

Higgs bosons have many generic phenomenological features which have been considered for

some time [23, 25, 32, 47, 54–64] and searched for previously at LEP [16–19], Tevatron [20,

21], and LHC [22]. Since there is no coupling to SM fermions, there is no gluon fusion

production available or corresponding decays. Thus, large branching ratios into electroweak

gauge bosons, in particular photons, are a generic feature if they are the lightest new

particle [15]. However, as we explore below, interference effects or if there is an exotic

decay channel available, can dramatically alter this generic picture.

2.2 Pair production and gauge boson decays

Any extension of the SM Higgs sector by electroweak charged scalars which contribute to

EWSB will possess the Drell-Yan Higgs pair production channel qq̄ →W → H0
FH

±
N which

is not present in the SM. We take H0
F to generically represent a neutral fermiophobic Higgs

boson while H±N is in an arbitrary representation of the custodial SU(2)C symmetry labeled

by N which may or may not be in the same representation as H0
F . Although measurements

of the 125 GeV Higgs boson couplings [4] still allow for non-negligible contributions to

EWSB from fermiophobic Higgs sectors, already they constrain them enough that, at low

masses, pair production dominates over single production channels which are suppressed

by small VEVs [15]. We write the WHH vertex as,

VWHH ≡ ig CN (p1 − p2)µ (2.1)

where CN is determined by the SU(2)L representation and p1, p2 are the four momenta of

the incoming and outgoing scalar momenta. When they are in different custodial represen-

tations, there is also a Z mediated neutral Higgs pair production channel.

Since they are present in any custodial Higgs model with electroweak triplet represen-

tations or larger, we focus on the custodial singlet (H1), triplet (H3), and fiveplet (H5)

assuming they come from an electroweak bi-triplet (3, 3̄) which will also be examined in

more detail below in the context of GM-type models. The singlet and triplet could also ap-

pear in multi-Higgs doublet models4 with a fermiophobic limit [23], though in this case the

custodial (degenerate spectra) limit5 is not necessary for ρtree = 1 [45]. However, CDF four

photon searches [36] more strongly constrain cases with a sizable mass splitting between

the neutral and charged components.

In addition to the WHH vertex in eq. (2.1), H0
F will have couplings to WW and ZZ

pairs which are generated during EWSB and which will be proportional to the exotic Higgs

vev [47, 50, 61, 66, 67]. We can parametrize these couplings generically with the following

lagrangian,

L ⊃ sθ
H0
F

v

(
gZm

2
ZZ

µZµ + 2gWm
2
WW

µ+W−µ

)
, (2.2)

4Of course they also appear in the SM where the Higgs boson decomposes as (2, 2̄) = 1 ⊕ 3 under

SU(2)C , where the (approximate) custodial triplet gives the Goldstone bosons which become the longitudinal

components of the W and Z bosons.
5Note that while the MSSM does not contain a fermiophobic limit [23], it does have a custodial limit [65]

with tan β = 1.
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where gZ and gW are fixed by the SU(2)L⊗U(1)Y representation to which H0
F belongs. The

factor of sθ simply parametrizes the ‘VEV mixing angle’ or relative contribution to EWSB

from the exotic Higgs VEV. This ensures that as the exotic Higgs VEV tends to zero

(sθ → 0) the H0
FV V couplings vanish along with all single production channels. Note

we also neglect Higgs mixing, which in the models we consider [66] also goes to zero as

sθ → 0. There may also be Higgs mixing generated during EWSB if there are multiple

scalars in the same custodial representation or from custodial breaking effects at one loop,

but these are neglected so that no Higgs mass mixing angles enter into eq. (2.2). This also

implies that any mixing with the SM-like 125 GeV Higgs boson is small as currently implied

by Higgs couplings measurements [4]. The ratio of the gZ and gW couplings,

λWZ = gW /gZ , (2.3)

is an important quantity [68] and is fixed by custodial symmetry at tree level to be λWZ = 1

or λWZ = −1/2 for a custodial singlet and fiveplet respectively [45]. Note also that the

factor of sθ cancels explicitly in eq. (2.3). While custodial triplets generically have vanishing

tree level couplings [66] to WW and ZZ, the limits on diphoton branching ratios we obtain

only depend on the pair production cross section so we include the triplet case in our

analysis as well. A more dedicated study of these ‘pseudo scalar’ Higgs bosons would also

be interesting.

At one loop the gW couplings in eq. (2.2) will also generate effective couplings to γγ

and Zγ pairs (as well as WW and ZZ) via W boson loops. We parametrize them with the

dimension five effective operators,

L ⊃
H0
F

v

(
cγγ
4
FµνFµν +

cZγ
2
ZµνFµν

)
, (2.4)

where Vµν = ∂µVν − ∂νVµ and we have assumed a CP even scalar. Defining similar ratios,

λV γ = cV γ/ḡZ , (2.5)

where V = Z, γ and we have implicitly absorbed a factor of sθ into ḡZ ≡ (sθgZ). There

are also contributions to the effective couplings in eq. (2.4) from additional charged Higgs

bosons which are necessarily present, but typically subdominant to the W vector boson

loop.

2.3 LHC diphoton limits and 95 GeV excess

Surprisingly, the lone experimental search to utilize the Drell-Yan Higgs pair production

channel and combine it with (multi)photon searches for a light fermiophobic Higgs boson

is a recent CDF analysis of previously collected Tevatron 4γ +X data [36]. However, this

search relies on the decay of the charged Higgs boson to the neutral Higgs being kine-

matically available. Thus, in the limit where the mass splitting between the pair of Higgs

bosons goes to zero, limits from this multiphoton search can be evaded. In models with

custodial symmetry [10] in the Higgs sector, which are motivated by electroweak precision

data, degenerate masses between the neutral and charged Higgs bosons are generated (at
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Figure 1. The dashed colored lines show the allowed branching ratio by 8 TeV ATLAS diphoton

searches [37] with 20.3 fb−1 of data (65−160 GeV) as a function of mass for a custodial fermiophobic

Higgs boson produced dominantly via the Drell-Yan pp → W± → H0
FH

±
N Higgs pair production

channel. The custodial singlet (H0
1 ), triplet (H0

3 ), and fiveplet (H0
5 ) cases are shown with couplings

defined in eq. (2.1). For the range 70−110 GeV, we also show (black dashed) the more recent 13 TeV

CMS low mass diphoton search [38] which has a ∼ 3σ excess at ∼ 95 GeV with 35.9 fb−1 of data.

tree level). This makes the CDF four photon search insensitive to custodial fermiophobic

Higgs bosons.6 As emphasized in [15], diphoton searches have the advantage that, being

more inclusive, are more model independent and can be applied even in the custodial limit

of degenerate masses as well as when MH± < MH0 or if the charged Higgs decays in a way

that is difficult to observe.

Combining updated 8 and 13 TeV low mass diphoton data [37, 38], we can obtain new

robust bounds on the allowed branching ratio into photons for different cases of custodial

fermiophobic Higgs bosons in the mass range 65 − 160 GeV. For the necessary production

channels we have used a modified version of the Madgraph [69] framework developed for

the GM model in [70] to compute cross sections at leading order for an 8 and 13 TeV

LHC. There are O(1) largely model independent k-factors [25, 71] arising from corrections

which are neglected, but this will not qualitatively change our results and can easily be

included in a more precise analysis.

We show in figure 1 the allowed branching ratio (dashed colored lines) by 8 TeV ATLAS

(inclusive) diphoton searches [37] in the range 65− 160 GeV. For the fiveplet in the range

70−110 GeV, we also show (black dashed) the more recent 13 TeV CMS low mass diphoton

search [38] which has a ∼ 3σ excess at ∼ 95 GeV with 35.9 fb−1 of data. We see that

for the fiveplet, with group theory factor C5 =
√

3/2, branching ratios & 2 − 3% are

excluded in the region below the W mass. At masses above 150 GeV, they can be large as

∼ 10%. For a custodial triplet, bounds are a bit weaker due to the smaller group theory

factor C3 = 1/2. In this case branching ratios up to ∼ 5 − 10% are still allowed at low

masses while at high masses they can be as large as ∼ 30%.

6Of course if there are additional Higgs scalars which are in different custodial representations than H0
F ,

additional Higgs pair production mechanisms with non-degenerate masses can become available allowing

for 4γ +X limits to again be applied.
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For the custodial singlet (blue), custodial symmetry restricts the singlet to be pair

produced with a custodial triplet and gives C1 =
√

2/3. In this case a Z boson mediated

channel also opens up which has been included. Generically the triplet has a different

mass than the singlet. For this we consider two cases; one where the singlet and triplet are

degenerate (dotted) and one where we take the triplet to be 100 GeV heavier (dashed). Due

to the additional production channel, we see for the degenerate case better sensitivity than

for the fiveplet, with branching ratios greater than ∼ 1 − 2% ruled out in the low mass

region. When there is a 100 GeV splitting, branching ratios as large as ∼ 15 − 20% are

allowed for the custodial singlet at low masses and furthermore, the weak dependence on

the H0
1 mass. Note this size of mass splitting is just at the edge of the largest splitting

which can be probed by the CDF multiphoton search [36].

We also see in figure 1 the need to extend 13 TeV diphoton searches to cover the

window between 110 GeV and the lower cutoff of 200 GeV for higher mass searches at

13 TeV [72]. As emphasized in [41], extending and optimizing diphoton searches below

65 GeV could also be greatly beneficial as neutral (and charged) Higgs bosons which may

have escaped detection, perhaps all the way down to half of the Z (and W ) mass, are in

principle still possible [25–29]. Note that bounds for the custodial singlet and triplet can

be mapped onto 2HDMs with appropriate rescaling by mixing angles [61, 73].

From figure 1 we can also assess roughly what size branching ratios are needed to

explain the ∼ 3σ diphoton excess at ∼ 95 GeV recently observed by CMS [38] and corre-

sponding to a cross section of O(0.05− 0.1) pb [39]. Assuming production is dominated by

the Drell-Yan mechanism discussed above, this implies that if the excess is due to a cus-

todial fiveplet Higgs boson, ∼ 5% diphoton branching ratios are needed. For the custodial

triplet we find (but do not plot) branching ratios around ∼ 20% are needed. For the two

singlet cases, degenerate and ∆MH = 100 GeV, one needs branching ratios around ∼ 3%

and 30% respectively. How easily these branching ratios can be achieved depends on a

particular model, but are generically achievable for fermiophobic Higgs bosons unlike those

with SM-like Higgs boson branching ratios [30] which are far too small. Once backgrounds

are accounted for, the branching ratio needed is likely smaller, but a rough estimate based

on a conservative upper bound is sufficient for present purposes.

In the low mass region of the diphoton search window considered here, various limits on

charged Higgs bosons from LEP in principle apply, but these can be evaded if the charged

Higgs is fermiophobic [25, 27, 74, 75]. The same is true for indirect constraints such as

b → sγ [76]. For a custodial fiveplet, same sign dilepton searches for a doubly charged

scalar rule out masses below ∼ 76 GeV assuming 100% branching ratio into same sign W

bosons [77] which may or may not hold in specific models [44, 66, 78]. Contributions to

exotic decays of the SM-like Higgs boson [79] and Z boson [80] will be relevant for light

enough masses and deserves further investigation.

Given current constraints on the 125 GeV Higgs boson couplings [4], the bounds ob-

tained in figure 1 are already stronger than those obtained assuming SM-like production

mechanisms [16–22] and will get increasingly so as time goes on without observing a devi-

ation from SM-like Higgs boson couplings. These diphoton searches can be replaced by, or

combined with, inclusive searches in other final states as well as be combined with searches

– 6 –
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Figure 2. The top set of dashed colored lines are the same as in figure 1. The lower colored

dashed lines (neglecting CMS search) are the same as the top, but projected assuming a two orders

of magnitude improvement in sensitivity. The black solid lines indicate contours of the effective

coupling ratio λγγ defined in eq. (2.5). We also indicate the contour corresponding to only the W

loop contribution to the effective coupling.

for the charged components. Because of the universal nature of the Drell-Yan pair produc-

tion channel, this allows for the possibility of a powerful and model independent probe of

extended Higgs sectors. Furthermore, the much larger production cross sections at future

colliders [81] would allow for an especially powerful probe of these potentially hidden exotic

Higgs sectors. We leave an exploration of these interesting possibilities to ongoing work [73].

2.4 Escaping current & future diphoton limits

As discussed, two simple ways to evade these bounds are via cancellations between different

loop contributions to the diphoton decay [34] or by introducing an invisible decay into a

dark sector. Focusing first on the former we again show in figure 2 the allowed branching

ratio into photons as a function of mass in the range 45− 160 GeV. The top set of dashed

colored lines are the same as in figure 1 while the lower colored dashed lines are the same

as the top ones but (naively) projected (neglecting CMS search) assuming a two orders of

magnitude improvement in sensitivity. While this sensitivity is beyond the future reach of

LHC diphoton searches [41, 81], it should be achievable at future high energy colliders [81].

The black solid lines indicate contours of the effective diphoton coupling ratio λγγ
defined in eq. (2.5) (we have also set λγγ = λZγ). As in [15], to compute the diphoton

branching ratio for these contours, we have included decays to γγ, Zγ, WW , and ZZ in

the total decay width for a neutral fermiophobic Higgs boson. To obtain the necessary three

and four body decays we have integrated the analytic expressions for the H0
F → V γ → 2`γ

and H0
F → V V → 4` fully differential decay widths computed and validated in [82–

84]. For the explicit W loop functions which contribute to the effective couplings we use

the parametrization and implementation found in [85]. We also indicate the contour cor-

responding to only the W loop contribution to the effective coupling assuming a custodial

fiveplet with λWZ = −1/2. We find similar contours for the case of a singlet with λWZ = 1.

– 7 –
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We see that, as found in [15], if the W boson loop dominates the effective coupling to

photons, 8 TeV LHC diphoton searches [37] rule out a custodial fermiophobic Higgs boson

below ∼ 110 GeV. This is just at the upper limit of the more recent 13 TeV CMS low mass

diphoton searches [38] in the range 70 − 110 GeV. We also see that if a future collider is

able to improve on current limits by two orders of magnitude, masses up to ∼ 150 GeV can

be ruled out in this scenario. Above these masses, ZZ and WW searches typically become

more powerful due to the diphoton branching ratio becoming too suppressed even for an

enhanced effective coupling [15]. Thus with a future collider, light custodial fermiophobic

Higgs bosons can perhaps be completely ruled out below the diboson thresholds if their

couplings to photons are dominated by W boson loops. We also emphasize that in this

case, the limits are independent of the exotic Higgs VEV as it cancels explicitly in any of

the branching ratios [15].

As can also be seen, for values of the effective coupling ratio λγγ . 10−3 one can

lower the limit from LHC diphoton searches, perhaps even below the lowest end of the

current search window of 65 GeV when λγγ . 10−4. These suppressions require O(1−50%)

level cancelations between the W boson loop and other contributions. Though this implies

a certain level of tuning, it can happen and in particular in models containing doubly

charged particles [27]. This also illustrates the importance of extending diphoton searches

to as low a mass as possible [41] since masses below 65 GeV are not ruled out by Tevatron

four photon searches [36] in the degenerate (custodial) limit. We also see that |λγγ | ∼ 0.001

is needed to explain the 95 GeV excess which requires ∼ 40% level cancelations. When there

is large destructive interference between the different loop contributions to the diphoton

effective coupling, (off-shell) ZZ and WW three and four body decays can be sizable in

the low mass region. Thus also extending ZZ and WW searches [22] as low as possible is

crucial for closing any allowed windows.

Larger values of λV γ & 0.01 are also possible allowing for larger masses to be ex-

cluded. Such large values for this ratio can easily be obtained [15] in the limit sθ � 1

if there exist additional mass scales apart from the Higgs VEVs in the scalar potential

or if the loop particles carry large charges. In this case of enhanced couplings to pho-

tons, the diphoton channel can be sizable all the way up to the WW threshold [15]. The

H0
F → V γ → 2fγ three body decay through an off-shell photon or Z can also be sizable

up to ∼ 130 GeV and should be studied further.

In addition to loop cancelations, a second and more natural way of evading these

constraints is to allow for the possibility of an exotic, and in particular, invisible decay

which suppresses the branching ratio to photons. Below we explore two explicit realizations

of these possibilities for evading diphoton constraints in the GM and SGM models which

contain custodial fermiophobic Higgs bosons and, in the case of the SGM, an invisible LSP.

3 Light signals in the GM and supersymmetric GM model

The GM model [50, 51] is one of the most thoroughly explored examples of an extended

(non-doublet) Higgs sector containing custodial fermiophobic Higgs bosons. This model

has been shown to have a rich phenomenology [51, 86, 87] which has been examined in

– 8 –
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many recent studies [27, 67, 71, 71, 76, 77, 88–96]. In minimal versions [76, 86], there is

no neutral LSP which could open up an invisible decay channel to avoid diphoton con-

straints. In this case, cancellations are needed to suppress the diphoton branching ratio

sufficiently. However, the presence of doubly charged scalars in the model allows for larger

destructive interference with W boson loops which can lead to a suppressed effective cou-

pling to photons. These cancellations have also been shown [27] to open up the possibility

of avoiding stringent LEP diphoton search constraints (when sθ & 0.1) for masses be-

low ∼ 110 GeV. One could also simply add an additional stable neutral particle giving a

potential dark matter candidate [93] and opening up an invisible decay channel.

Supersymmetric models naturally give ways to have an extended Higgs sector with an

invisible sector to decay into. However since there is no fermiophobic limit in the MSSM [23],

a light diphoton signal, such as the 95 GeV CMS excess [38], is likely difficult to recon-

cile, but can perhaps be explained in Type-1 2HDM models [39, 40] (or the ‘natural’

NMSSM [97]). Thus one is led to consider extended MSSM Higgs sectors. Extensions of

the MSSM Higgs sectors have of course been considered many times to alleviate difficulties

in the MSSM with explaining the observed 125 GeV Higgs boson mass without resorting to

heavy stops [98]. We consider one such case in the Supersymmetric Custodial Higgs Triplet

Model (SCTM) [66, 78, 99], constructed to alleviate the MSSM Higgs mass ‘problem’ while

at the same time satisfying constraints from EWPD and other direct searches.

As shown in [44], the SCTM has a low energy limit, which defines the SGM, that gives

rise to the same Higgs boson sector as in the GM model, but also includes the presence

of light fermionic superpartners. The SGM also inherits all of the other attractive features

of the SCTM [66, 78, 99–105]. In the SGM model there is of course the possibility of

cancellations between W boson loops and doubly charged scalars, but now also with doubly

charged fermions. The neutralino sector provides an invisible sector for the scalar Higgs

bosons to potentially decay into and in particular, a light (neutralino) LSP. To explore

this we perform various scans to find regions of parameter space which can escape LHC

diphoton searches in the 45 − 160 GeV mass range. We also briefly examine the recently

observed 95 GeV CMS diphoton excess [38]. First we breifly review the GM and SGM

models, but refer the reader to [44, 76] for details.

3.1 Lightning review of GM & SGM models

In the minimal GM model, on top of the SM Higgs doublet H = (H+, H0)T , one real SU(2)L
triplet scalar with hypercharge Y = 0, φ = (φ+, φ0, φ−)T , and one complex triplet scalar

with Y = 1, χ = (χ++, χ+, χ0)T , are added. In terms of representations of SU(2)L⊗SU(2)R
we have the 2× 2 and 3× 3 matrix fields,

H =

(
H0∗ H+

H− H0

)
, X =

 χ0∗ φ+ χ++

χ− φ0 χ+

χ−− φ− χ0

 , (3.1)

transforming as (2, 2̄) and (3, 3̄), respectively. If EWSB proceeds such that vH ≡ 〈H0〉,
vX ≡ 〈φ0〉 = 〈χ0〉, i.e. the triplet VEVs are aligned, then the SU(2)L ⊗ SU(2)R will be
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broken to the custodial subgroup SU(2)C , which ensures that the ρtree = 1 as in the

SM [45]. The bi-doublet and bi-triplet Higgs fields then decompose under the SU(2)C as

(2, 2̄) = 1⊕ 3 and (3, 3̄) = 1⊕ 3⊕ 5. This global symmetry breaking structure can also

be imbedded into certain composite Higgs models [50, 51, 106].

Using similar conventions to [67], we can write the SU(2)L ⊗ SU(2)R invariant GM

model Higgs potential,

VGM =
µ22
2

Tr[H†H ] +
µ23
2

Tr[X†X ] + λ1Tr[H†H ]2 + λ2Tr[H†H ] Tr[X†X ]

+λ3Tr[X†XX†X ] + λ4Tr[X†X ]2 − λ5Tr[H†τaHτ b ]Tr[X†taXtb ] (3.2)

−M1Tr[H†τaHτ b ](UXU †)ab −M2Tr[X†taXtb ](UX̄U †)ab,

where τi = σi/2 and ti are the two and three dimensional representations respectively of the

SU(2) generators. As shown in [44] and discussed above, the potential in eq. (3.2) can be

‘derived’ from the Higgs potential of the SCTM [66, 78, 99]. However, its supersymmetric

origin leads to the constraints on the quartic couplings [44],

λ1 =
3

4
λ2, λ3 = −λ4, (3.3)

λ5 = −4λ2 + 2
√

2λ2λ4,

reducing the number of quartics from five to two.

Once the electroweak symmetry breaking conditions [66, 67] and constraints in eq. (3.3)

are enforced, we have six free Higgs potential parameters given by,

(λ2, λ4, M1, M2, vH , vX). (3.4)

When the trilinear soft breaking mass parameters are small in the SCTM, such as in the

gauge mediated symmetry breaking scenario [99], there is a one-to-one correspondence

between the six free parameters in eq. (3.4) and the four superpotential parameters plus

Higgs doublet and triplet VEV’s in the SCTM [44]. Thus the SGM can be seen as a weak

scale effective theory given by the GM model, with the constraint in eq. (3.3) applied, plus

custodial fermions at the same scale as the custodial Higgs bosons. As examined in [44],

in the ‘slice’ of parameter space defined by eq. (3.3), the GM model can appear to be very

similar to the SGM model depending on the exact masses of the fermion superpartners. As

in [44], we consider the constrained GM model when comparing to the LHC phenomenology

of the SGM model.

We can also use the constraint from EWSB on the doublet and triplet VEVs which

requires them to satisfy [44],

v2 = 2v2H + 8v2X =
4m2

W

g2
, (3.5)

and leads to an explicit definition for the mixing angle defined in eq. (2.2), sθ ≡
2
√

2 vX/v. Then, using measurements [107] of the Higgs and W boson masses as well as

electroweak gauge couplings to impose v = 246 GeV, mh = 125 GeV, we can eliminate two
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parameters in eq. (3.4). Below we perform various scans in the resulting four dimensional

parameter space.

In the SGM there is of course the presence of the gaugino/higgsino sector coming from

the SCTM [66] which can also be examined in terms of custodial symmetry [44]. Thus like

the scalar Higgs bosons, the higgsinos can be arranged into a custodial singlet and triplet

coming from the (MSSM) electroweak doublets and a custodial singlet, triplet, and fiveplet

coming from the electroweak triplets. Furthermore, the Higgsino masses are determined

by the Higgs potential parameters in eq. (3.4) and thus correlated with the Higgs scalar

masses. There are also the gauginos which we take to be much heavier than the weak scale

higgsinos as in [44]. Over some regions of parameter space, the lightest neutralino can make

a viable thermal dark matter candidate [101].

In general these fermions can be produced in pairs via Drell-Yan, but can be dif-

ficult to detect due to their compressed spectra [12, 13] so are only constrained to be

& 100 GeV and perhaps even as low as ∼ 75 GeV [14]. However, if the custodial fiveplet

is the LSP constraints may be stronger [108]. We do not conduct an in depth study of

the gaugino/higgsino sector here since our focus is exploring its effects on the diphoton

branching ratio of the lightest custodial Higgs boson. A more in depth study examining

LHC searches for gaugino/higgsinos with compressed spectra and combining them with

other experimental constraints on the SGM model is ongoing [73].

3.2 Fiveplet diphoton signals at the LHC

In principle any of the (neutral) custodial scalars in the GM/SGM model can give a light

diphoton signal. However, as discussed, the custodial singlets and triplets coming from the

electroweak doublet and triplets can mix [66]. This induces couplings to SM fermions,

though they are suppressed by EWSB. On the other hand, for the fiveplet, custodial

symmetry prevents the neutral component (H0
5 ) from mixing with other neutral scalars and

in particular with the 125 GeV SM Higgs boson. This allows for the fermiophobic condition

to be maintained without fine tuning [50, 66, 67] or resorting to renormalization conditions

(as needed in two Higgs doublet models [47]). Thus the custodial fiveplet in GM-type models

is a naturally fermiophobic scalar7 which can give rise to light diphoton signals at the LHC.

To explore this we perform various scans over the four dimensional parameter space in

eq. (3.4) after imposing measurements of the SM-like Higgs boson and the electroweak scale

VEV, limiting us to vX ≤ 15 GeV (sθ . 0.1). This is still significantly larger than that

allowed by electroweak precision data [107] for non-custodial electroweak triplets whose

VEV is restricted to sθ . 0.001 [78, 100, 113, 114]. Similarly to [44], we trade in one Higgs

potential parameter to scan over the custodial fiveplet mass, while demanding perturbative

quartic couplings [67] and mass parameters around the weak scale. We assume the fiveplet

is the lightest custodial Higgs boson which leads to m1,m3 & 130 GeV for the singlet

and triplet masses. For the small sθ range in which we work, bounds from direct and

indirect constraints are easily evaded for this mass range [27, 76]. We limit ourselves to

7The physical T -odd scalar in Littlest Higgs Models with T -parity [109–112], which has zero VEV,

resembles the custodial fiveplet with degenerate neutral and charged components. However in this case,

T -parity prevents decay to pairs of photons.
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Figure 3. Top: custodial fiveplet branching ratio into photons in the GM model (blue) and SGM

model (orange) as a function of fiveplet mass. The current bounds from LHC diphoton data [37, 38]

are shown (top dashed curve) as well as a rough future projection of sensitivity (lower dashed curve)

assuming an order of magnitude improvement at a high luminosity LHC [81]. Bottom: same as

top, but as a function of the LSP mass. The black dashed lines indicate a rough estimate of the

potential LHC diphoton search ‘window’.

a leading order (custodial) analysis, but loop corrections to custodial Higgs boson masses

can be large, and sometimes divergent, for heavy masses and large triplet VEVs in (non-

supersymmetric) GM type models [115, 116]. For all of the calculations needed to conduct

our parameter scans we have used the SARAH/SPheno [117–119] package and validated

for a few random points with FeynArts/FormCalc/LoopTools [120, 121].

In our first scan we impose the additional constraint |λ2| = |λ4|, |M1| = |M2| to conduct

a finer two dimensional scan with ∆m5 = 2 GeV in the range 45 ≤ m5 ≤ 160 GeV. Since

it is more computationally intensive, we also conduct a less fine four dimensional scan

in the range 50 ≤ m5 ≤ 160 GeV with ∆m5 = 10 GeV. To explore the 95 GeV CMS

diphoton excess, we also perform a four dimensional scan between 92 ≤ m5 ≤ 98 GeV with

∆m5 = 2 GeV. The results from all three scans are combined into one and shown in figure 3.

On top we show the fiveplet branching ratio into photons in the (constrained) GM

model (blue) and SGM model (orange) as a function of the custodial fiveplet mass. The

current bounds are shown (top dashed curve) from 20 fb−1 of 8 TeV ATLAS diphoton

data [37] between 65 − 70 GeV and 110 − 160 GeV, combined with 35.9 fb−1 of 13 TeV

CMS diphoton data [38] from 70 − 110 GeV. To gain can an idea of future possibilities,

we also show a rough future projection of sensitivity (lower dashed curve) assuming an

order of magnitude improvement at a high luminosity LHC [41, 81]. On bottom we show

the same, but as a function of the LSP mass from 2− 520 GeV and (roughly) indicate the

potential LHC ‘window’ of sensitivity. For the GM model which does not have an LSP, the

points correspond to the same value of Higgs potential parameters (see eq. (3.2)) as in the

SGM model, which in turn determines the (higgsino) LSP mass. Thus the differences in

parameter space are due to the effects from the higgsino sector, both via loop effects and,

when light enough, opening up new decays.

The first thing to note is the power of diphoton searches to rule out much of the pa-

rameter space in both models when Br(H5 → γγ) is O(1) which, as discussed above, is a

– 12 –



J
H
E
P
0
6
(
2
0
1
8
)
1
3
7

generic feature of fermiophobic Higgs bosons [15]. We also see the significantly larger pa-

rameter space in the SGM that is allowed by diphoton searches than for the GM mode. This

is due almost entirely to decays into the light LSP opening up since, in the SGM, the dou-

bly charged scalar and higgsino fiveplets necessarily interfere destructively in the diphoton

loops. Thus, cancelation effects with the W boson loops are generically smaller than even

in the constrained GM model defined by eq. (3.3). We see this in the bottom of figure 3

with the smaller allowed parameter space in the SGM model at larger LSP masses where

suppression of the diphoton branching ratio becomes dominated by interference effects. Of

course, in the general GM model [67] even more parameter space should be available.

We also see (top) that a future high luminosity LHC may be able to rule out much of

the currently allowed parameter space below ∼ 160 GeV after which WW and ZZ searches

typically become more sensitive [15]. In the SGM model, we see the presence of a light

neutralino allows for very suppressed branching ratios, potentially evading even future

LHC diphoton limits for branching ratios . 10−4. In this case, the lightest neutralino must

be a custodial singlet due to constraints on light charged fermions [12–14]. Missing energy

searches for light dark matter [122] then become relevant and a dedicated study of these

interesting possibilities is ongoing [123]. A future high energy collider should probe and

possibly rule out much of the remaining allowed parameter space.

Finally, for the 95 GeV CMS diphoton excess [38] we see (top) with our dense scan

between 92 ≤ m5 ≤ 98 GeV that in both models there are parameter points which can ac-

commodate the excess. At this fiveplet mass, interference effects in both models dominates

the suppression effect when mLSP & 50 GeV, at which point invisible two body decays are

no longer available in the SGM. In the SGM we also see that just at threshold as two body

decays open up, the diphoton branching ratio is suppressed enough to not be ruled out, but

still large enough to explain the excess. In this case a ∼ 95 GeV diphoton signal would imply

a neutralino around 45 − 50 GeV which could be targeted in LHC invisible searches [122,

124]. Once the LSP mass is lighter than this threshold, the branching ratio quickly becomes

highly suppressed as seen in the threshold behavior around 50 GeV in (bottom) figure 3.

4 Conclusions

We have examined potential light diphoton signals at the LHC coming from custodial

fermiophobic Higgs bosons in the mass range 45 − 160 GeV. We have emphasized that

due to their lack of coupling to SM fermions and degenerate mass spectra, they can evade

many of the stringent constraints which typically apply to extended Higgs sectors. However,

when combined with the dominant Drell-Yan Higgs pair production mechanism, diphoton

searches at the LHC can provide robust constraints. We have utilized this with 8 and

13 TeV LHC inclusive diphoton searches [37, 38] to derive new upper bounds on the allowed

diphoton branching ratio in the mass range 65 − 160 GeV.

We found upper limits on branching ratios between ∼ 2 − 50% depending on the

mass and custodial representation (see figure 1). We have also re-derived constraints on

the mass of a light fermiophobic Higgs boson ruling out masses below ∼ 110 GeV if their

coupling to photons is dominated by W boson loops and they do not possess decays to BSM
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particles. Given current constraints on the 125 GeV Higgs boson couplings, these bounds

are already stronger than those obtained assuming SM-like production mechanisms [16–22]

and will only get increasingly so as time goes on without observing a deviation from SM-

like Higgs boson couplings. We have also noted that these limits can be improved upon if

current 13 TeV LHC diphoton searches [38, 72] are updated to cover the currently ‘open’

window between 110−200 GeV. We then examined two simple ways to evade these searches

via loop cancellations and/or decays into an invisible sector.

First we studied what level cancellations would give a suppression of the effective

couplings to photons sufficiently large to escape LHC diphoton limits. We find O(1− 50%)

cancellations between W boson loops and other charged particles are needed. We then

explored two explicit scenarios in the Georgi-Machacek (GM) and supersymmetric GM

(SGM) models which naturally contain custodial fermiophobic Higgs bosons. In the case of

the SGM there is a also a neutralino sector which opens up potential invisible decays that

can drastically suppress the branching ratio into photons. This leads to a significantly larger

allowed parameter space found in the SGM model than in the GM model. A study of the

(custodial) superpartner fermion sector and examining LHC searches for gaugino/higgsinos

with compressed spectra as well as potential dark matter phenomenology is ongoing [123].

Finally, we examined the recently observed 95 GeV CMS diphoton excess, which has

also been explored in various recent studies [40–42]. We have shown that for a custodial

fiveplet Higgs boson, branching ratios ∼ 10% are needed to explain the excess. We found

that this can be achieved with the custodial fiveplet present in the GM and SGM models

if there is sufficient destructive interference between the W boson loop and other (doubly)

charged particles to suppress the diphoton branching ratio. In the case of the SGM, a

∼ 95 GeV diphoton signal may also imply a neutralino around 45− 50 GeV which could be

targeted in LHC invisible searches

Extended Higgs sectors possessing custodial symmetry and fermiophobia with SM

fermions can evade many of the experimental constraints which otherwise apply to extended

Higgs sectors. We encourage LHC experimental searches to utilize the Drell-Yan Higgs

pair production plus diphoton searches emphasized here to shine light on these potentially

hidden extended Higgs sectors.
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