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group can be depleted by a second stage of annihilations near the deconfinement temper-

ature. This proceeds via the formation of quarkonia-like states, in which the heavy pair

subsequently annihilates. The size of the quarkonium formation cross section was the sub-

ject of some debate. We estimate this cross section in a simple toy model. The dominant

process can be viewed as a rearrangement of the heavy and light quarks, leading to a

geometric cross section of hadronic size. In contrast, processes in which only the heavy

constituents are involved lead to mass-suppressed cross sections. These results apply to

any scenario with bound states of sizes much larger than their inverse mass, such as U(1)

models with charged particles of different masses, and can be used to construct ultra-heavy

dark-matter models with masses above the näıve unitarity bound. They are also relevant

for the cosmology of any stable colored relic.
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1 Introduction

. . . and in the darkness bind them.

(J.R.R. Tolkien)

Stable “colored” particles, charged under QCD or a hidden confining gauge group,

have been proposed as dark matter (DM) candidates [1–22], and are predicted in various

extensions of the Standard Model [23–25]. Even in the simplest models, the cosmologi-

cal history of colored relics is intriguing, and their present-day abundances have been the

subject of some debate. The relic abundance of a heavy colored particle X is sensitive

to the two inherent scales in the problem: its mass mX and the confinement scale ΛD. If

mX � ΛD, the freeze-out of X proceeds via standard perturbative annihilations at temper-

atures T ∼ mX/30. However, at temperatures T ∼ ΛD, long after the perturbative X–X̄

annihilations have shut off, the X relic abundance may be further reduced by interactions

of hadronized Xs, whose size is set by 1/ΛD.

The annihilation process at T . ΛD was described in a semiclassical approximation

in ref. [24]. At T ∼ ΛD, most of the Xs are in color-singlet heavy-light hadrons, which

we label by HX . An X-hadron HX and an X̄-hadron H̄X experience a residual strong
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interaction whose effective range is ∼ 1/ΛD, much larger than the Compton wavelength

∼ 1/mX , but much smaller than the mean distance between X-hadrons at T ∼ ΛD. X–X̄

annihilation then proceeds via the formation of X–X̄ “quarkonia”, which subsequently de-

excite to the ground state. In the ground state, the X–X̄ distance is of order the Compton

wavelength, and the pair annihilates into light mesons, (dark) photons, or glueballs. In

the following, we use parentheses to denote quarkonium-like states, and refer to the (XX̄)

states as quarkonia.

The cross section for quarkonia formation was argued in ref. [24] to be purely geometric.

This certainly holds for the scattering cross section of two HX hadrons; however, it is less

clear that it holds for the quarkonium production cross section, which requires a significant

modification of the trajectories of the heavy particles. One semiclassical argument for

a mass-suppressed cross section was described in ref. [25]. To form a bound state, the

X and X̄ must lose energy and angular momentum. Classically, one can estimate the

cross section by modeling the energy loss as Larmor radiation. This is proportional to

the acceleration-squared, which scales as Λ4
D/m

2
X . At T ∼ ΛD, the Xs are very slow,

with speed v ∼
√

ΛD/mX . Thus it takes a long time for the hadrons to cross a distance

1/ΛD; however, the total amount of radiation still scales as m
−3/2
X and is suppressed by

the large X mass.

Our goal in this paper is to quantify the cross section for dark quarkonia formation.

This is, of course, a strong-coupling problem, so we will employ two simple toy models in

which the calculation is tractable. As we will see, the results can be readily interpreted to

infer the behavior of the cross section in the case of interest.

We consider a dark SU(N) with two Dirac fermions X and q in the fundamental

representation. We denote the SU(N) confinement scale by ΛD, although much of our

discussion applies to real QCD as well. X is heavy, with mass mX � ΛD, while q is

light, with mq . ΛD. We denote the color-singlet heavy-light mesons by HX ≡ Xq̄ and

H̄X ≡ X̄q. The X and X̄, as well as their hadrons, are stable by virtue of a flavor symmetry.

We examine two prototypical contributions to quarkonia production in HX–H̄X colli-

sions. The first is a radiation process, in which the “brown muck” is merely a spectator. To

isolate the contribution of the heavy Xs, we invoke a dark U(1), under which X is charged

while q is neutral. The heavy fermions X and X̄ emit radiation in order to bind, and the

relevant process is

HX + H̄X → (XX̄) + ϕ [radiation by the Xs]. (1.1)

Here ϕ is the dark photon. Since the photon is emitted by the heavy X, the cross section

for this process can be calculated using non-relativistic QCD (NRQCD) with a simple

potential modeling the SU(N) interaction. We use the Cornell potential, with a cutoff

at a distance of order 1/ΛD to simulate the screening by the brown muck. The resulting

cross section is not geometric, but rather mX -suppressed, in accordance with the simple

semiclassical estimate above.

In the second process, the brown muck plays a key role in the interaction, leading to

a geometric cross section for quarkonium formation. This happens, for example, when the
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radiation is emitted by the brown muck itself, which, as a result, exerts a force on the heavy

X. While we cannot reliably calculate the cross section in this case, we can nonetheless

capture the brown muck dynamics by considering the limit mq > ΛD, in which quarkonium

formation can be thought of as a rearrangement of the heavy and light quarks,

HX + H̄X → (XX̄) + (q̄q) [rearrangement]. (1.2)

The cross section for this process can be calculated in analogy with hydrogen-antihydrogen

rearrangement into protonium and positronium. As we will see, for mq > ΛD, only the

Coulombic states contribute. The result is a geometric cross section, which scales as the

square of the Bohr radius aq = 1/(ᾱDmq). Thus, quarkonium production is effective at

low temperatures not because of confinement per se, but because of the large hierarchy

between aq (the size of HX) and 1/mX (the Compton wavelength). We expect this result

to persist as mq is dialed back below ΛD: the quarkonium cross section will continue to

scale as the size of HX , which, in this case, is 1/Λ2
D.

As we will see, the geometric cross section arises from summing the contributions

of many large (i.e., ∼ aq-sized) X–X̄ bound states, for which the process is exothermic.

These states cannot be dissociated, and will de-excite to the ground state, in which the

X and X̄ annihilate. We will not discuss the cosmology of a specific model in detail, but

merely sketch the essentials, following ref. [24]. Prior to the formation of the HX and H̄X

mesons, the X particles annihilate and freeze out in the early universe with the standard

relic density

Ωann
X h2 ∼ 10−9 GeV−2〈

σann
X v

〉 ∼
(

mX

104 GeV

)2 1

α2
D(mX)

. (1.3)

Following the second stage of annihilations, the HX relic abundance is given by

Ωf
HX
∼
√

ΛD
mX

(
mX

30 TeV

)2

. (1.4)

Some fraction of Xs remain in hadrons containing multiple Xs, such as baryons. The

various final abundances are model dependent and we do not explore them in detail here.

Still, the late re-annihilations give a new mechanism for generating the relic abundance of

dark matter, which is now a function of the two scales mX and ΛD. This opens up many

interesting directions to explore. We discuss some of the implications for cosmology in

section 5. In particular, the models can lead to a long era of matter domination between

mX and ΛD.

Note that the Xs can hadronize with light quarks q, and the potential between them

is screened at large distances. The cosmology of these models is thus somewhat different

from quirky models. The presence of light quarks is important for yet another reason:

even if there are no photons in the theory, energy loss can proceed via the emission of light

pions. In contrast, in models with a pure SU(N) at low energies, the lightest particles are

glueballs, whose mass is ∼ 7ΛD.

The formalism and the results in this paper can be applied more broadly. For example,

it is applicable to any confined heavy relic — be it all the dark matter or a component
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thereof, such as gluinos in split supersymmetry, messengers in gauge-mediated supersym-

metry breaking, and so on.

This paper is structured as follows. The toy model is described in section 2. The

rearrangement calculation and its results are presented in section 3. Section 4 focuses on

the radiation process from the Xs in which the brown muck is a spectator. In section 5, we

consider the dynamics of the X–X̄ bound states generated by these processes and further

implications for cosmology. In the appendix, we collect some useful results on the properties

of the Cornell and linear potentials and their wavefunctions, and discuss the details of the

derivation of the cross section used in section 4.

2 Description of the toy model

The minimal particle content in our models consists of two Dirac fermions, (q, q̄) and

(X, X̄), in the fundamental representation of a dark SU(N). In section 4, we will assume

that X and X̄ are also charged under a U(1) gauge symmetry. To describe the X–X̄

interaction, we turn to models of quarkonium [26, 27]. The Cornell potential interpolates

between the Coulombic QCD potential at small distances and the confining linear potential

with string tension ΛD at large distances:

VCornell(R) = −CαD
R

+ Λ2
DR , (2.1)

where R is the distance between X and X̄, C = (C1 + C2 − C12)/2, and Ci (C12) are the

quadratic Casimirs of the constituents (bound state). Since X is a fundamental of SU(N)

and we require a color-singlet bound state, C = C1 = C2 = (N2 − 1)/(2N). The deep

bound states of the system are then Coulombic, while the shallow states are controlled by

the linear potential.

At large distances, the attractive potential is screened by the brown muck surrounding

X and X̄. In QCD, for example, this distance is roughly the inverse of the string tension

≈ 400 MeV (see, e.g., refs. [28, 29]). In order to capture this screening, the potential is cut

off at a distance Rc,
1

V (R) =


−ᾱD

(
1

R
− 1

Rc

)
+ Λ2

D (R−Rc) + V0 for R < Rc ,

V0 for R ≥ Rc ,
(2.2)

where ᾱD = CαD, and V0 is a constant.2 The cutoff behavior will naturally emerge in the

rearrangement calculation of section 3, where we work in the calculable limit mq & ΛD.

For mq & ΛD, the attractive potential is cut off at distances of order the Bohr radius of

the heavy-light meson,3

aq =
1

ᾱDmq
. (2.3)

1While this option is not pursued here, it may be interesting to use a temperature-dependent cutoff to

qualitatively capture the screening effects of the quark-gluon plasma. These cause large X–X̄ bound states

to “dissolve” at finite temperatures [29–31].
2The choice of the constant V0 is of course a matter of convenience, and we will in fact choose different

constants in the rearrangement and radiation calculations.
3In this expression, ᾱD should be evaluated at the energy scale of the inverse Bohr radius.
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Thus, for mq sufficiently large, the problem reduces to a purely Coulombic potential, and

we can calculate the cross section in analogy with hydrogen-antihydrogen rearrangement

into protonium and positronium.

In section 4, we will calculate quarkonia formation via radiation by the Xs. Here the

linear part of the potential is important, and the cutoff Rc is introduced by hand. As we

will describe, the choice of Rc will be motivated by a comparison with the masses of B and

D mesons in the Standard Model.

We note that, in QCD, the string tension in the confined phase and the dimensional

transmutation scale from the running of the QCD gauge coupling are approximately the

same [29, 32, 33], whereas the deconfinement temperature is about a factor of two lower [34].

We will not be concerned with the lightest glueball state because its mass is a factor of

about seven larger than the string tension [35].

3 The rearrangement process

At temperatures below ΛD, the heavy Xs are mostly found in HX (Xq̄) and H̄X (X̄q)

mesons. These mesons can further deplete through HX–H̄X scattering into (XX̄) quarko-

nia plus light hadrons. For mq < ΛD, the calculation of the cross section for this process

requires the full machinery of perturbative NRQCD [36] and is extremely difficult; we will

limit ourselves to the case mq & ΛD. This puts us firmly in the non-relativistic limit, in

which quarkonium production can be thought of as rearrangement of the four partons,

HX + H̄X → (XX̄) + (qq̄). (3.1)

For mX � mq, the wavefunctions of the system can be calculated in the Born-Oppenheimer

approximation, as in hydrogen-antihydrogen rearrangement into protonium and positron-

ium [37–39]. We will closely follow this calculation, applying it to the near-threshold

energies of interest.

If the semiclassical arguments in ref. [24] are correct, the cross section is expected to

be geometric when the temperature is comparable to the binding energy of HX , with no

mX suppression. We verify this in the following calculation.

3.1 Setup

As discussed above, for mq sufficiently larger than ΛD, only the Coulombic (XX̄) states

contribute. We will later comment on the validity of this approach as mq is taken below ΛD.

The full interacting Hamiltonian of our system is written as the sum

Htot = Hfree +Hint , (3.2)

where

Hfree = − 1

mX
∇2
R −

1

2mq
∇2
rq −

1

2mq
∇2
rq̄ ,

Hint = VXX̄ (R) + Vqq̄ (|rq − rq̄|) +Htr , (3.3)

Htr = VqX̄ (|rq +R/2|) + Vq̄X (|rq̄ −R/2|)− Vq̄X̄ (|rq̄ +R/2|)− VqX (|rq −R/2|) .
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Figure 1. Coordinate system used in the calculation of the rearrangement process.

Here R is the vector from X̄ to X and rq, rq̄ are the positions of q, q̄ relative to the X–X̄

center-of-mass (CM), respectively, as shown in figure 1. The potentials VqX̄ , Vq̄X , VqX , Vq̄X̄ ,

Vqq̄, and VXX̄ are the usual Coulomb potentials (with the relevant sign for same/opposite

color quarks taken into account in eq. (3.3)):

V (r) = − ᾱD
r
. (3.4)

Since we assume that X–X̄ are in a color-singlet configuration, this factor is the same for

the six potentials.

The calculation of the rearrangement cross section involves a subtlety well known to

nuclear physicists: the asymptotic in and out states are not eigenstates of the same free

Hamiltonian, but rather eigenstates of two different interacting Hamiltonians. This is

different from conventional non-relativistic scattering where limt→±∞Htot = Hfree. In our

case, the infinite past Hamiltonian is

Hin ≡ lim
t→−∞

Htot = Hfree + VqX̄ (|rq +R/2|) + Vq̄X (|rq̄ −R/2|) , (3.5)

while the infinite future Hamiltonian is

Hout ≡ lim
t→∞
Htot = Hfree + VXX̄ (R) + Vqq̄ (|rq − rq̄|) . (3.6)

The scattering cross section is then calculated in the multi-channel formalism. By solving

the Lippmann-Schwinger equation for multi-channel scattering (see, e.g., ref. [40]), we get

the simple formula for the cross section:

dσ

dΩ
= (2π)2kf

ki
mXmq|M|2 , (3.7)

where kf and ki are the momenta of the final and initial states in the CM frame (see below)

and the transition matrix element is

M = 2π 〈Ψf (R, rq, rq̄) |Htr |Ψi(R, rq, rq̄)〉 , (3.8)

where Ψf ,Ψi are the final- and initial-state wavefunctions and Htr = Htot −Hout, as can

be seen from eqs. (3.3) and (3.6). Note that in this representation of the cross section, the

outgoing states Ψf are eigenstates of Hout, while the incoming states Ψi are eigenstates of

the full Hamiltonian Htot. Below, we discuss these states in more detail.

– 6 –
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3.2 The incoming and outgoing wavefunctions

We wish to express our incoming and outgoing wavefunctions in the factorized form

Ψ(R, rq, rq̄) = ψXX̄(R)ψqq̄(R; rq, rq̄) . (3.9)

In the final state this factorization is exact, since the outgoing X-onium and q-onium are

asymptotically non-interacting. In other words:

Hout = HXX̄ +Hqq̄ , (3.10)

with

HXX̄ = − 1

mX
∇2
R + VXX̄ (R) ,

Hqq̄ = − 1

2mq
∇2
rq −

1

2mq
∇2
rq̄ + Vqq̄ (|rq − rq̄|) . (3.11)

The final state therefore trivially factorizes as the product of a plane wave for the outgoing

(qq̄) and the Coulomb bound states ψXX̄nlm(R) (an eigenstate of HXX̄) and ψqq̄100(rq, rq̄) (an

eigenstate of Hqq̄). For concreteness, we assume that the final-state q-onium is in its ground

state and the (XX̄) is static.

In contrast with the outgoing state, the incoming state is an eigenstate of the full

Hamiltonian Htot, so we näıvely do not expect it to factorize as in eq. (3.9). However,

we can use the Born-Oppenheimer approximation to express the incoming wavefunction in

this factorized form,

Ψi(R, rq, rq̄) = ψXX̄i (R)ψqq̄i (R; rq, rq̄) . (3.12)

Since we are in the limit mX � mq, this is a very good approximation: at any given X–X̄

distance R, q and q̄ will quickly adjust their configuration, and their wavefunction ψqq̄i
can therefore be calculated by integrating out X and X̄ and treating them as sources for

the light quarks. This gives the energy and wavefunction of the light quarks for a fixed

separation R between the heavy Xs as solutions to the eigenvalue problem

[Htot −HXX̄ ]ψqq̄i = VBO(R)ψqq̄i . (3.13)

Substituting this back into the full Schrödinger equation and neglecting derivatives of ψqq̄i
with respect to the X–X̄ coordinates, one obtains the equation for the X–X̄ wavefunction,[

− 1

2mX
∇2
R + VXX̄(R) + VBO(R)

]
ψXX̄i = Ei ψ

XX̄
i . (3.14)

The effective potential for the X–X̄ system is then

Vin(R) = VXX̄(R) + VBO(R) (3.15)

with

VBO(R) =
〈
ψqq̄i

∣∣Htot −HXX̄
∣∣ψqq̄i 〉 . (3.16)
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-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

R/aq

V
in
[
α
D
2
m
q
]

Vin(R)

-αD/R-1/4 αD
2 mq

Figure 2. The incoming effective potential Vin in units of ᾱ2
Dmq for the X–X̄ system in the

Born-Oppenheimer approximation (blue solid), as a function of X–X̄ separation in units of the

Bohr radius aq = 1/(ᾱDmq). Also shown is the Coulomb potential for the (XX̄) quarkonium (red

dashed).

VBO(R) should interpolate between twice the binding energy of HX , 2Eb ≡ ᾱ2
Dmq, at

large R, and the q-onium binding energy, −ᾱ2
Dmq/4, at small R. Unlike in molecules,

for which the Coulombic repulsion of the nuclei must be overcome, here the two heavy

particles attract each other, so we do not expect a significant potential barrier. These

näıve expectations are borne out in the calculation of ref. [41]. Since VBO(R) does not

depend on the initial energy of the system or on the mass mX , we can extract VBO(R)

from ref. [41]. We plot Vin in figure 2: as expected, the effects of the light quarks captured

in VBO(R) set in for R of order aq. Their main effect is to screen the X–X̄ interaction at

large R; in practice, this happens for R ∼ 2aq.

Since Vin(R) approaches a constant at large R, the X–X̄ wavefunction at large dis-

tances (R ≥ 4aq) is the standard free-particle solution,

Ψi(R, rq, rq̄)
R≥4aq−−−−→

∑
l

il
√

2l + 1 eiδl [cos δl jl(kiR)− sin δl nl(kiR)]Yl0(θR)ψqq̄i (R; rq, rq̄) .

(3.17)

The wavefunctions for R ≤ 4aq are found numerically, while their normalization is fixed

by matching to eq. (3.17) at R = 4aq. Some examples for the incoming and outgoing

wavefunctions are given in figure 3.

3.3 The matrix element for rearrangement

Using the factorized incoming and outgoing wavefunctions, the transition matrix ele-

ment eq. (3.8) can be written in position space as

M =

∫
d3RψXX̄∗f (R)ψXX̄i (R)T (R) , (3.18)
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mX =104 , ℓ=0 , Ei=0.2Eb

mX =105, ℓ=0, Ei=0.2Eb

mX =105, ℓ=25 , Ei=0.2Eb

mX =105, ℓ=0 , Ei=2×10
-8Eb

0 1 2 3 4

-1.0

-0.5

0.0

0.5

R/aq

ψ
X_
X

Incoming: mX =105, ℓ=0 , Ei=0.2Eb

Outgoing: mX =105, ℓ=0, n=24

0 1 2 3 4
-1.5

-1.0

-0.5

0.0

0.5

1.0

R/aq

ψ
X_
X

Figure 3. Examples of incoming wavefunctions with various mX , Ei, l (top) and a comparison of

an incoming and outgoing wavefunction (bottom). mX is given in units of the inverse Bohr radius

ᾱDmq and Eb = 1
2 ᾱ

2
Dmq is the HX binding energy.

where

T (R) =

∫
d3rq d

3rq̄ ψ
qq̄∗
f (rq, rq̄)Htr ψ

qq̄
i (R; rq, rq̄) . (3.19)

We will assume that the angular part of T (R) is constant. This is justified when the (qq̄)

is in the ground state, and in the short-distance approximation for the plane wave of the

(qq̄) relative to the (XX̄). The second condition is broken when k2
f becomes large enough,

where we expect an O(1) correction. We neglect this correction in this work, since we are

mostly interested in the parametric behavior of this process.

It is easy to see that T (R) is appreciable only for R of order aq. For R� aq, this can

be seen by substituting Htr = VBO(R)−Hqq̄ in eq. (3.19). ψqq̄f is an eigenfunction of Hqq̄,
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so one is left with the overlap integral of ψqq̄f and the asymptotic ψqq̄i at large R. These

solve the same Hamiltonian with different eigenvalues: the former is a bound state and the

latter is a continuum state. For small R, the initial- and final-state wavefunctions in the

integrand do overlap, but Htr tends to zero.

The full calculation of T (R) is complicated. In fact, the Born-Oppenheimer approx-

imation breaks down for R . 0.74aq, where the q and q̄ are no longer bound to their

respective X (see, e.g., ref. [39]). Still, we can use this approximation to get a rough

estimate of the cross section. In particular, T (R) is independent of the mass mX in the

Born-Oppenheimer approximation, so we can extract T (R) from ref. [39].4 The result in

the relevant range (R ∼ aq) can be parametrized as

T (R) =


β

[
Ef +

1

4
ᾱ2
Dmq − VBO(R)

]
for R > 0.74aq ,

0 for R ≤ 0.74aq ,

(3.20)

where Ef is the kinetic energy in the final state and β is an O(1) factor determined by

matching to the hydrogen-antihydrogen results. Evidently, T (R) depends on the binding

energy of the (XX̄) quarkonium, EXX̄b , since Ef = Ei + EXX̄b − 3
4 ᾱ

2
Dmq.

3.4 Rearrangement results

We calculate the cross section of eq. (3.7) for different masses mX and incoming kinetic

energies Ei, keeping aq fixed. In the approximation we use (see section 3.3), the angular

part of the overlap integral is translated into a selection rule lXX̄ = li ≡ l. The breakdown

of the cross section into partial waves — or (XX̄) angular momenta — is given in figure 4

for high incoming kinetic energy Ei = 0.6Eb and ᾱD = 1/137. We see that it vanishes

above some maximal l, which corresponds to the classical angular momentum

lmax ∼ kiaq =
√
EimXaq ∼

√
EimX/mq . (3.21)

It is also interesting to examine the branching fraction σnl/σl for some initial partial

wave to form an (XX̄) quarkonium of definite binding energy. In figure 5 (left panel), we

show this branching fraction for l = 0, 14, as a function of the final kinetic energy for two

values of the initial kinetic energy Ei/Eb = 0.6, 0.06.

We see that quarkonium formation by rearrangement is an exothermic process: the

kinetic energy in the final state does not vanish even when the initial momentum is taken

to zero. Therefore the inverse process shuts off at low energies . Eb. Furthermore, only

quarkonia with binding energies around Eb are produced at T ∼ Eb. The cross sections

drop to zero for large final-state energies corresponding to (XX̄) binding energies above Eb.

Thus, deep Coulombic bound states with binding energies EXX̄b ∼ ᾱ2
DmX are not formed

in the rearrangement process. Correspondingly, the bound states produced are large, with

size ∼ aq. This behavior is clearly exhibited in figure 5 (right panel), where we show the

cross section as a function of the mean quarkonium radius RXX̄ .

4The mX dependence will enter through higher-order corrections in the effective theory, and will be

suppressed by some fractional power of mX . Here we are only interested in the leading result.
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the final state.

The total cross section for an initial energy of order the HX binding energy is plotted

in figure 6 (blue line) as a function of mX . Indeed, the cross section is geometric, σ ∼ a2
q ,

and is independent of mX to a very good approximation. It is interesting to compare the

partial-wave contributions with the unitarity bound,

σl ≤ (2l + 1)
4π

k2
i

. (3.22)

We therefore also plot in this figure several individual partial-wave contributions normalized

by 2l + 1 (green lines), compared to 4π/k2
i (red dashed line). Clearly, for initial-state

energies close to the binding energy of HX , the cross section for each partial wave lies close

to the unitarity bound. Summing over all the partial waves up to lmax,

σ =

lmax∑
l=1

σl ∼
4π

k2
i

lmax∑
l=1

(2l + 1) ∼ 4π

k2
i

l2max ∼ 4πa2
q . (3.23)
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Thus the total cross section is geometric, and scales with the area of the HX bound state.

In the low-temperature limit, we have checked that only s-wave processes are non-vanishing

and the cross section scales as

σ ∼ 1

ki
aq , (3.24)

as demonstrated in refs. [37, 39].

The above results apply to pure U(1) models. In the context of an SU(N), we have

explicitly seen that for mq above ΛD, the light quarks truncate the X–X̄ attraction for

R & aq via VBO, long before the linear potential sets in. This justifies neglecting the linear

potential in the rearrangement calculation.

We can now turn to the limit of interest, mq below ΛD. As we have seen above, the

cross section scales with the size of the HX bound state, aq � 1/mX , thanks to the large

number of partial waves contributing. This behavior is not special to the purely Coulombic

case. In fact, the Coulombic contribution gives a conservative estimate of the cross section

generated by the Cornell potential. Thus we expect a geometric cross section for mq below

ΛD, with the Bohr radius aq replaced by 1/ΛD.

The X–X̄ bound states produced via rearrangement at T ∼ Eb are of size ∼ aq, much

larger than the Compton wavelength of X. However, since the process is exothermic, these

X–X̄ bound states cannot be dissociated at T . Eb. In the case at hand, since there are

light pions (or mesons) in the theory, nothing impedes the relaxation of these states to the

ground state, in which the X–X̄ pair annihilates.

4 The radiation process: spectator brown muck

In the rearrangement process described above, the brown muck plays a central role. It is

instructive to contrast this with a process in which the brown muck is merely a spectator.

As we will see, in this case, the cross section scales with mX .
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To isolate the dynamics of the heavy quarks, we take X to be charged under a dark

U(1), while the light quarks are neutral. The relevant bound states are large, of size

∼ 1/ΛD, and are described by the linear part of the Cornell potential. To calculate (XX̄)

quarkonium production for T . ΛD, we can therefore neglect the Coulombic part of the

potential. This is also consistent with previous studies showing that, for pure U(1) models

with no light charged particles, (XX̄) bound-state formation gives only mild modifications

of the X relic abundance [42, 43]. For bound-state formation to deplete the X abundance

by orders of magnitude, a new scale is required. In the radiation process considered here,

the new scale is ΛD.

The radiative quarkonium production process is then

HX + H̄X → (XX̄) + ϕ , (4.1)

where ϕ is a (dark) photon that couples only to X; however, our results below apply more

generally to other light particles which can be emitted by X. Unlike in the previous section,

here the light quarks q are relativistic.

We will follow the field-theoretic formalism for computing bound-state formation cross

sections with long-range interactions detailed in ref. [44]. Alternatively, these results can

be obtained using the standard non-relativistic QM approach for calculating transition

amplitudes, treating the photon as a classical field [45, 46].

The first step is to derive the spectrum and two-particle wavefunctions that describe

the bound and scattering states of the X–X̄ system. While the light quarks do not actively

participate in the radiation process, they screen the heavy Xs at large distances. This is

captured by the cutoff Rc in the potential of eq. (2.2), and leads to a continuum of HX–H̄X

states with energies above the open HX–H̄X -production threshold. Roughly speaking, the

hadron mass is given by the sum of the heavy constituent masses, with each light quark or

gluon contributing about ΛD to the mass. More precisely,

mHX
= mX + κΛD

ΛD +O(Λ2
D/m

2
X) , (4.2)

where κΛD
is an O(1) constant [47]. The spectrum of bottom and charm mesons in QCD

suggests κΛD
ΛD ∼ 600 MeV, with ΛD ∼ 400 MeV, so in the following, we set κΛD

= 1.5.

To estimate the cutoff Rc, we use the fact that the maximal HX binding energy, Emax
b ,

coincides with the onset of the continuum,

2mX + Emax
b = 2mHX

. (4.3)

Since the maximal bound state energy of the linear potential is

Emax
b = Λ2

DRc +
l(l + 1)

mXR2
c

∼ Λ2
DRc , (4.4)

we set the cutoff to

Rc =
2κΛD

ΛD
=

3

ΛD
. (4.5)
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In summary, the potential we consider is

V (R) =

{
Λ2
D (R−Rc) for R < Rc ,

0 for R ≥ Rc ,
(4.6)

with Rc given by eq. (4.5) and V0 of eq. (2.2) chosen as zero for convenience. Defining

R0 ≡
(

ΛD
mX

)1/3 1

ΛD
, E0 ≡

(
ΛD
mX

)1/3

ΛD , (4.7)

which are the characteristic splittings in energy and size between successive states, the

radial part of the wavefunction, χln, solves

− χ′′ln(x) + V l
eff(x)χln(x) = εlnχln(x) , (4.8)

where x = R/R0, εln = Eln/E0, and

V l
eff(x) =

l(l + 1)

x2
+ x− xc (4.9)

with xc = Rc/R0.

Using the semiclassical approximation, we can estimate the maximal angular momen-

tum lmax of the bound states and the energy εmin of the lowest bound state with a given

l. The lowest energy bound state for each l classically corresponds to a minimum of the

effective potential; the position xlmin and the energy V l
eff(xlmin) of the minimum must satisfy

xlmin < xc and V l
eff(xlmin) < 0, which result in

lmax '
√

4x3
c

27
, εmin ' 3

(
l

2

)2/3

− xc . (4.10)

In appendix A.1, we collect some results for the effective potential and radial wavefunctions

for various choices of the parameters.

4.1 Radiation results

The cross section for HX + H̄X → (XX̄)lmn + ϕ in the CM frame of the initial state is

given by

vrel
dσk→lmn
dΩ

=
|Pϕ|

128π2m3
X

|Mk→lmn|2 , (4.11)

where Pϕ is the three-momentum of the radiated light state and, assuming that ϕ is

massless,

|Pϕ| = Ek − Eln , (4.12)

where Ek is the kinetic energy of the initial state. We calculate this cross section in

appendix A. It is useful to write the cross section in terms of dimensionless quantities as

vrel σkẑ→ln =

l∑
m=−l

vrel σkẑ→lmn =
2e2
X

m2
X

(
ΛD
mX

)2/3

Jk,ln , (4.13)
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Figure 7. Jk,ln as a function of εln for xc = 15 and εk = 0.25. The lines correspond to different

values of l.

where eX is the U(1) charge of X, εk = Ek/E0,

Jk,ln = (εk − εln)3
[
(l + 1) |Ik,l+1→ln|2 + l |Ik,l−1→ln|2

]
, (4.14)

and I is the radial wavefunction overlap integral

Ik,l±1→ln =

∫
dxxχ∗ln(x)χk,l±1(x) . (4.15)

We plot Jk,ln for several values of l in figure 7, fixing mX/ΛD = 125 and the initial kinetic

energy Ek/ΛD = 0.05. As expected, the large, shallow bound states give the largest

contributions.

The total thermally-averaged cross section 〈vrelσ〉 (see appendix A.3) is shown as a

function of the temperature in figure 8 (left panel) for several choices of mX . We also show

〈σ〉 for the same parameters (right panel). The cross section is clearly dependent on mX ,

and decreases as X becomes heavier. In fact, for T & 0.1ΛD, the scaling is well described

by 〈vrelσ〉 ∝ m−2
X and 〈σ〉 ∝ (m3

XΛD)−1/2, which agrees with the semiclassical estimate

in section 1. Thus, for the high mass region of interest mX � ΛD, this contribution is

negligible compared to processes mediated by the brown muck, such as the rearrangement

process. We expect this qualitative behavior to persist regardless of the spin of the radiated

particles.

5 Implications for cosmology

We have found that, at temperatures below the confinement scale ΛD, (XX̄) bound states

are formed with a geometric cross section, with no mX suppression. These bound states

are of size ∼ 1/ΛD, but since the process is exothermic, they cannot be dissociated, and

eventually de-excite to the ground state, in which the X–X̄ pair annihilates. The rate for

this de-excitation process depends mainly on the light degrees of freedom. For the large

(XX̄) bound states produced, the level splittings are of order (ΛD/mX)1/3ΛD, so we need

massless photons or light pions in order to have allowed transitions (as in the models we
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Figure 8. Results of thermally-averaged radiative quarkonium production cross section 〈σv〉 (left

panel) and 〈σ〉 (right panel) as a function of temperature for different values of mX/ΛD.

considered here). In the case where the DM is charged under real QCD, the rate should

be sizable, so we expect any (XX̄) bound states to quickly decay to light particles.5

As a result, the abundance of HX hadrons is depleted by this second stage of annihi-

lations, down to [24]

Ωf
HX
∼
√

ΛD
mX

(
mX

30 TeV

)2

, (5.1)

which can be much smaller than the relic density from perturbative X–X̄ annihilations

earlier in the thermal history.

There are, however, various different hadronic states (in addition to HX) in which X

can survive [1]. These include other types of single-X hadrons such as baryonic XqN−1

hadrons, double-X states such as baryonic XXqN−2, and up to purely heavy baryons XN .

Thus, in general, our simple toy model can produce multi-component DM with different

masses and relic abundances.

We leave a detailed investigation of the parameter space of the models for future study,

but note a few qualitative features.6 The cross section for producing double-X states should

be comparable to the quarkonium cross section we calculated, albeit smaller by O(1) factors

because of the smaller binding energies in this case. However, for N > 2, the double-X

hadrons contain some light quark(s), so their size is 1/ΛD. They can therefore interact

quite efficiently with hadrons containing X̄ to form bound states containing both X and

X̄, where X–X̄ pairs can quickly annihilate. Meanwhile, they can also interact with HX

hadrons and form triple-X hadrons, and this chain may go on until pure-X (or pure-X̄)

baryons are formed. All these processes should have geometric cross sections. The pure-X

baryons eventually de-excite to the ground state, the size of which is much smaller than

1/ΛD. Their interactions with other hadrons therefore shut off. As a result, the Xs inside

the baryons remain as stable relics, while the other Xs may effectively be annihilated.

A systematic analysis necessitates solving the Boltzmann equation with these dynamics,

5In models with no light degrees of freedom, as in the case of an adjoint X with no light quarks [6], the

lightest degrees of freedom are glueballs of mass ∼ 7ΛD, and this rate is suppressed by powers of ᾱl
D.

6Many of the relevant processes were described in ref. [1] for TeV-mass colored relics.
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which is beyond the scope of this work. However, it is safe to assume that a sizable fraction

of the original Xs can be preserved in a variety of stable hadronic relics.

For DM charged under real QCD, heavy-light hadrons, with size 1/ΛD, are subject

to stringent constraints, but they are efficiently depleted at T . ΛD as we have shown.

In contrast, the relic abundance of X3 baryons may be just somewhat smaller than the

original X relic abundance. Thus the fundamental Xs we considered here may give a

different realization of colored DM [21], but whether the models are viable requires a more

detailed analysis. Note that the scenario considered in ref. [21], namely a heavy Dirac

adjoint X, is non-generic, in that two Xs can form a stable singlet with no additional

light quarks.

In summary, the simple models considered here typically give rise to several compo-

nents of DM composites of different masses. For certain choices of mX and ΛD, these can

exhibit self-interactions, transitions between different excited states, and, depending on

the coupling to the Standard Model, modified direct and indirect detection cross sections.

In some variants of these models, the DM abundance can be significantly depleted at ΛD,

leading to a long era of matter domination between mX and ΛD.

6 Conclusions

In this paper we have considered the cosmological dynamics of bound states that are much

larger than their inverse mass, taking as an example Xq̄ mesons in a confining theory where

X is much heavier than q and the confinement scale. We calculated the cross section for

quarkonium production from heavy-light meson scattering. The cross section is geometric,

and scales with the area of the incident heavy-light mesons. The relic density of heavy-light

X-mesons is therefore efficiently diluted with rates much higher than the s-wave unitarity

bound due to the participation of many partial waves in the process. We also find that

the process is mainly mediated by the effective interaction of the light quarks. In contrast,

processes in which only the heavy constituents participate have mass-suppressed rates. It

is amusing to note that if the lifetime of B-mesons were longer, such processes could be

experimentally measured.
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A Cross section for bound-state formation in the radiation process

In this section we summarize the calculation of the bound-state formation cross section via

radiation discussed in section 4. We also collect here some useful results on the spectrum

and wavefunctions of the Cornell and linear potential.

A.1 Eigenstates of the Cornell potential

We model the X–X̄ attractive interaction by the cutoff Cornell potential of eq. (2.2), with

the cutoff given in eq. (4.5) and V0 = 0.

The bound states (XX̄) are characterized by three integers (l,m, n), where l labels

the angular momentum, m labels the angular momentum along the z-axis, and n ≥ 1. An

HX–H̄X scattering state is approximated by an X–X̄ unbound state, which is characterized

by the X–X̄ relative momentum k, with energy Ek ≈ k2/mX , where k = |k|. The reduced

mass of both the bound and scattering states is approximately mX/2.

The bound-state wavefunctions can be written as

ψlm,n(R0x) =
1

R
3/2
0

χln(x)

x
Ylm(Ωx) , (A.1)

where the dimensionless coordinate x is defined below eq. (4.8). The scattering-state wave-

functions can be expanded as

φk(R0x) =

∞∑
l=0

(2l + 1)φk,l(R0x) =

∞∑
l=0

(2l + 1)
χkl(x)

x
Pl(k̂ · x̂) . (A.2)

For k along ẑ this simplifies to

φkẑ,l(R0x) =

√
4π

2l + 1

χkl(x)

x
Y 0
l (Ωx) . (A.3)

The radial wavefunctions χln(x) and χkl(x) solve

− χ′′ln (kl)(x) + V l
eff(x)χln (kl)(x) = εln (k)χln (kl)(x) , (A.4)

where

V l
eff(x) =

l(l + 1)

x2
+ V (x)

=
l(l + 1)

x2
+

[
−aD

(
1

x
− 1

xc

)
+ (x− xc)

]
Θ(xc − x) .

(A.5)

– 18 –



J
H
E
P
0
6
(
2
0
1
8
)
1
3
5

0 5 10 15 20

-20

-10

0

10

(a) aD = 7

0 5 10 15 20

-20

-10

0

10

(b) aD = 0 (linear)

Figure 9. The effective potential Veff(x) with xc = 15 (mX ' 125ΛD), for three values of l. In the

left figure, aD = 7, which corresponds to ᾱD = 0.3, while aD = 0 in the right figure. The largest

l in each figure corresponds to the upper-bound on l of the bound states. Note that the plots for

l = 0 correspond to V (x) in eq. (A.5).
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Figure 10. The energy spectrum of bound states. We also show, for the linear potential, the

semiclassical results in eq. (A.8) as the small dots.

Note that this dimensionless problem has only two parameters: xc and the effective

Coulomb strength aD ≡ (mX/ΛD)2/3ᾱD. The radial wavefunctions are zero at the ori-

gin, χln (kl)(0) = 0, and satisfy the normalization conditions∫ ∞
0

χln(x)χ∗ln′(x)dx = δnn′ ,

∫ ∞
0

χkl(x)χ∗k′l(x)dx =
π

2k2
δ(k − k′) , (A.6)

so that 〈ψlm,n|ψl′m′,n′〉 = δll′δmm′δnn′ and 〈φk|φk′〉 = (2π)3δ(3)(k − k′).
Figure 9 shows Veff(x) in eq. (A.5) for xc = 15 with aD = 7 (left) and aD = 0 (right).

Because of the cutoff, the angular momentum quantum number l of bound states has an

upper bound lmax given in eq. (4.10). This is confirmed in the numerical results.7

The bound-state energy levels are shown in figure 10 for a cutoff Cornell (left) and

linear (right) potentials. In ref. [48], the semiclassical approximation is used to obtain the

7In fact, as one can see in figure 9, the effective potential for very large l may have a minimum with

Veff(x0) ≥ 0, and it produces wavefunctions with ε > 0 which are mostly confined to the region x < xc.
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energy levels of the eigenstates of central potentials. Following their discussion, the energy

levels under the linear potential are given by

Eln − V (0) ≈
[

3

2
π

(
n+

l

2
− 1

4

)]2/3

E0 , (A.7)

or in our notation, since V (0) = −RcΛ2
D = −xcE0,

εln ≈
[

3

2
π

(
n+

l

2
− 1

4

)]2/3

− xc . (A.8)

We reproduce this result in figure 10b. For a Cornell potential (figure 10a), deep states are

governed by the Coulomb force and therefore obey the well-known Coulombic energy levels

εln ≈ −
a2
D

4N2
− xc , (A.9)

where the principal quantum number N is given by n+l. For shallower states, the Coulomb

force is negligible and the linear potential governs the spectrum.8

We show some examples of bound-state and scattering-state wavefunctions that solve

eq. (A.4) with the cutoff linear potential (eq. (A.5) with aD = 0) in the top and bottom rows

of figure 11, respectively. The bound state with (l, n) = (5, 10) is found to be the shallowest

bound state, but it should be emphasized that this is an accident due to the cutoff being just

above the energy of this state. In general, shallower states with smaller l have wavefunctions

that tend to penetrate beyond x > xc. For the scattering states, wavefunctions of states

with larger ε and smaller l have penetrate further into the region x < xc.

A.2 Bound-state formation cross section in the dipole approximation

We calculate the matrix element for the bound-state formation by a vector-mediated

interaction,

HX + H̄X → (XX̄)lm,n + ϕ (A.10)

with the X–ϕ interaction given by

L 3 |(∂µ − ieXϕµ)X|2 . (A.11)

We follow the approach and notation in refs. [44, 49]. From now on, we focus on the linear

potential and set aD = 0 because, as we will see, the radiative bound-state formation

process favors shallow bound states, for which the Coulomb force is negligible.

The bound-state formation cross section is given by [44]

(vrelσ)BSF
k =

∑
l,m,n

(vrelσ)BSF
k→lm,n =

∑
l,m,n

∫
dΩPϕ

4π

|Pϕ|
32πm3

X

∑
pol.

|ε ·Mk→lm,n|2 (A.12)

8The average size 〈x〉 of bound states is given by the virial theorem as ε + xc = −aD/(2 〈x〉) for a

Coulombic bound states, i.e., if the effect of the linear term is negligible, and ε + xc = 3 〈x〉 /2 for bound

states in the linear regime.
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Figure 11. Wavefunctions obtained from solving eqs. (A.4)–(A.5) with xc = 15, aD = 0.

Top: χln(x) for bound states. The left figure contains smaller l (0,1) while the right figure has

intermediate and high l (5, 18, 19 = lmax), where (l, n) = (5, 10) is the highest-energy bound state.

Bottom: χkl(x) for scattering states. The left figure displays the partial waves of the scattering

states with ε = 0.25 (Ek = 0.05ΛD), while the right figure shows those with ε = 7.5 (Ek = 1.5ΛD).

in the CM frame, where k, Pϕ, and ε are the relative momentum of the initial state, the

momentum of the radiated light state ϕ, and its polarization vector, respectively, and

vrel '
|k|

mX/2
, |Pϕ| = Ek − Eln ; (A.13)

Ek is kinetic energy of the initial scattering state. The matrix element is

Mj
k→lm,n = −4eX

√
mX

∫
d3p

(2π)3
pjψ̃∗lm,n(p)

[
φ̃k

(
p+

Pϕ
2

)
+ φ̃k

(
p− Pϕ

2

)]
, (A.14)

where φ̃k(p) and ψ̃lm,n(p) are the momentum-space equivalents of eqs. (A.1)–(A.2).

It is convenient to expand the matrix element in partial waves (cf. eq. (A.2)):

Mj
k→lm,n =

∞∑
l′=0

(2l′ + 1)Mj
k,l′→lm,n ,

Mj
k,l′→lm,n = −4eX

√
mX

∫
d3p

(2π)3
pjψ̃∗lm,n(p)

[
φ̃k,l′

(
p+

Pϕ
2

)
+ φ̃k,l′

(
p− Pϕ

2

)]
= 8ieX

√
mX

∫
d3r d3r′ ψ∗lm,n(r)φk,l′(r

′) cos

(
Pϕ
2
· r′
)

∂

∂rj
δ(3)(r − r′) .
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After partial integration, the derivative acts on ψ∗lm,n(r), and the integral over d3r′ is trivial

using the delta function. Dotting with the polarization vector and performing another

partial integration (the derivative of the cosine is zero as ε · Pϕ = 0) yields

ε ·Mk,l′→lm,n = 4ieX
√
mX

∫
d3r cos

(
Pϕ
2
· r
)
ε ·
[
ψ∗lm,n∇φk,l′ − φk,l′∇ψ∗lm,n

]
, (A.15)

where ψ∗lm,n and φk,l′ are functions of r. The quantity in brackets above appears in the

difference of the Schrödinger equations for the scattering- and bound-state wavefunctions,

− 1

mX
∇ · (ψ∗lm,n∇φk,l′ − φk,l′∇ψ∗lm,n) = (Ek − Enl)ψ∗lm,nφk,l′ . (A.16)

Using the identity9 ∫
d3r (∇ · F ) r = −

∫
d3r F (∇ · r) = −

∫
d3r F (A.17)

with F = ψ∗lm,n∇φk,l′ − φk,l′∇ψ∗lm,n and substituting into eq. (A.15), we obtain10

ε ·Mk,l′→lm,n = 4ieX
√
mX

∫
d3r (ε · r)

[
mX(Ek − Eln)ψ∗lm,nφk,l′ cos

(
Pϕ
2
· r
)

+
Pϕ
2
· (ψ∗lm,n∇φk,l′ − φk,l′∇ψ∗lm,n) sin

(
Pϕ
2
· r
)]

.

(A.18)

We are interested in temperatures T . ΛD for which Pϕ � mX , and thus

ε ·Mk,l′→lm,n ' 4ieX

√
m3
X(Ek − Eln)

∫
d3r (ε · r)ψ∗lm,nφk,l′ cos

(
Pϕ
2
· r
)
. (A.19)

Also, we can evaluate Pϕ · r/2 as

Pϕ
2
· r ≤ |Pϕ|r

2
=
|Ek − Eln|r

2
= κΛD

|Ek − Eln|
ΛD

r

Rc
. (A.20)

Note that as the integrand contains a bound-state wavefunction, the integral has support

only for r . Rc. Also, for T � ΛD, the overlaps of the bound and scattering states are

larger for shallower bound states. Combining these, we can approximate Pϕ · r/2 � 1 in

order to employ the dipole approximation cos(Pϕ · r/2) → 1, which simplifies the cross

section to

(vrelσ)BSF
k →

∑
l,m,n

∫
dΩPϕ

4π

|Pϕ|
32πm3

X

∑
pol.

∣∣∣∣∣∑
l′

(2l′ + 1)4ieX

√
m3
X(Ek − Eln)ε · Ik,l′→lm,n

∣∣∣∣∣
2

=
∑
l,m,n

∫
dΩPϕ

4π

e2
X(Ek − Eln)3

2π

∑
pol.

∣∣∣∣∣∑
l′

(2l′ + 1)ε · Ik,l′→lm,n

∣∣∣∣∣
2

, (A.21)

9By assumption, F satisfies appropriate fall-off behavior at large |r| so the boundary term is negligible.
10This is the form of the matrix element in refs. [45, 46]; both employ the dipole approximation and the

Hamiltonian formulation.
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where the integral of the wavefunctions is defined as

Ijk,l′→lm,n =

∫
d3r rj ψ∗lm,n φk,l′ . (A.22)

Next, we express the integral in the basis ra = (r+, r0, r−) defined by

r± =
−1√

2

(
±r1 + ir2

)
= r

√
4π

3
Y ±1

1 (Ωr) , r0 = r

√
4π

3
Y 0

1 (Ωr) . (A.23)

Taking the z-axis parallel to k̂, substituting eq. (A.1) and eq. (A.3) for the wavefunctions

in eq. (A.22), we obtain

Iak,l′→lm,n =
4πR

5/2
0√

3(2l′ + 1)
Ikl′→ln

∫
dΩxY

0
l′ (Ωx)Y a

1 (Ωx)Y m∗
l (Ωx)

= (−1)m
√

4π(2l + 1)R
5/2
0 Ikl′→ln

(
l′ 1 l

0 0 0

)(
l′ 1 l

0 a −m

)
, (A.24)

Ikl′→ln =

∫
dxxχ∗ln(x)χkl′(x) , (A.25)

where we have expressed the integral over solid angle of three spherical harmonics in terms

of Wigner 3j-symbols∫
dΩY m1

l1
Y m2
l2

Y m3
l3

=

[
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

]1/2
(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
. (A.26)

These symbols give the selection rules l′ = |l ± 1| and m = a, so that |m| ≤ 1.

With these results, the sum over m, l′, and polarizations in eq. (A.21) evaluates to11

l∑
m=−l

∑
pol.

∣∣∣∣∣∑
l′

(2l′ + 1)ε · Ik,l′→lm,n

∣∣∣∣∣
2

=

l∑
m=−l

1∑
a=−1

∣∣(2l + 3)Imk,l+1→lm,n + (2l − 1)Imk,l−1→lm,n
∣∣2 δam

=

1∑
m=−1

∣∣(2l + 3)Imk,l+1→lm,n + (2l − 1)Imk,l−1→lm,n
∣∣2

= 4πR5
0

[
(l + 1) |Ik,l+1→ln|2 + l |Ik,l−1→ln|2

]
. (A.27)

Inserting this into the cross section in eq. (A.21) and trivially performing the dΩPϕ yields

(vrelσ)BSF
k = 2e2

XR
5
0

∑
l,n

(Ek − Eln)3
[
(l + 1) |Ik,l+1→ln|2 + l |Ik,l−1→ln|2

]
=

2e2
X

m2
X

(
ΛD
mX

)2/3∑
l,n

Jk,ln , (A.28)

with Jk,ln defined in eq. (4.14).

11Note that Iakẑ,l−1→lm,n is always zero if l = 0.
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A.3 Thermally-averaged cross section

Here we briefly describe the procedure to calculate the thermally-averaged cross section,

〈vrelσ〉 (β), as a function of the inverse temperature β = T−1. As in the previous discussion,

we denote the momenta of the initial particles as k1, k2.

As we are interested in T � mX , the kinetic distributions of HX and H̄X are given by

the Maxwell-Boltzmann distribution,

fMB(p) =

(
2πβ

m

)3/2

exp

(
−β|p|

2

2mX

)
, (A.29)

which is normalized so that
∫ d3p

(2π)3 fMB(p) = 1. With this distribution, the thermally-

averaged cross section is given by

〈vrelσ〉 (β) =

∫
d3k1

(2π)3

d3k2

(2π)3
fMB(k1)fMB(k2)(vrelσ)BSF

k

=

(
2πβ

mX

)3 ∫ d3K

(2π)3

d3k

(2π)3
exp

(
−β(|K/2|2 + |k|2)

mX

)
(vrelσ)BSF

k

=

√
16β3

πm3
X

∫
dk k2 e−βk

2/mX (vrelσ)BSF
k , (A.30)

where, as before, K = k1 +k2 and k = (k1−k2)/2. We have neglected the dependence of

the (non-relativistic) cross section (vrelσ)BSF
k on K since |K| � |k|.

Combining the previous result and also including the final-state effect of ϕ, we obtain

〈vrelσ〉 (β) =
2e2
X

m2
X

(
ΛD
mX

)2/3 ∫
dk w(k;β)

∑
l,n

Jk,ln
1− exp [−β(Ek − Eln)]

, (A.31)

where we define

w(k;β) =

√
16β3

πm3
X

k2 e−βk
2/mX ,

∫
w(k;β)dk = 1 . (A.32)
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