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1 Introduction

There is very strong evidence that the universe was once in a radiation dominated era

followed by a matter dominated era. Today the universe is dominated by vacuum energy

density and we are entering an inflationary era where the scale factor a(t) ∝ eH0t, with H0

near the Hubble constant today. It is widely believed that at very early times there was

another inflationary era where the energy density was dominated by false vacuum energy

giving rise to a Robertson Walker scale factor with time dependence a(t) ∝ eHt, where H

is the Hubble constant during that inflationary era [1–6]. After more than about 60 e-folds,

this inflationary era ends and the universe reheats to a radiation dominated (Robertson

Walker) Universe. If this is the case then the horizon and flatness problems can be solved

and in addition there is an attractive mechanism based on quantum fluctuations for gen-

erating density perturbations with wavelengths that were once outside the horizon [7–11]

(see ref. [12] for a review of inflation). It has been argued that it requires tuning to enter

the inflationary era [13, 14] (see however [15]) and furthermore that there are issues with
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its predictability [16–18] (see also [19, 20] for a recent discussion of these issues). Nev-

ertheless, because of the simplicity of the dynamics of the inflationary universe paradigm

and the ability within it to do explicit calculations of the properties of the cosmological

energy density perturbations [7–11] and primordial gravitational waves [21–25], it seems

worth studying particular inflationary models in some detail.

The simplest inflationary model is standard slow roll inflation with only a single real

scalar field, the inflaton φ(x). It is conventional to work in a gauge where fluctuations in the

inflaton field about the classical slow roll solution φ0(t) vanish. Then using the Stückelberg

trick the curvature fluctuations that are constant outside the horizon and become the

density perturbations when they reenter the horizon (in the radiation and matter dominated

eras) arise from quantum correlations in the Goldstone mode π(x) calculated during the de-

Sitter inflationary era.1 In this model non gaussianities in cosmological density correlations

arise because of connected higher point correlations of π, but they are very small [27].

Larger non-gaussianities can be achieved if there are other fields with masses around or

less than the inflationary Hubble constant,2 that couple to π (see ref. [30] for a review). In

quasi-single field inflation these extra fields do not directly influence the classical evolution

of the inflaton field but impact the cosmological density perturbations since they couple to

the inflaton as “virtual particles” and hence affect the correlations of π [31]. To simplify

matters we will assume an approximate shift symmetry on the inflaton field, φ(x)→ φ(x)+c

(where c is a constant) that is only broken by the potential, Vφ, for φ. Furthermore, we

assume an unbroken discrete symmetry, φ(x) → −φ(x). The simplest quasi-single field

model introduced by Chen and Wang [30] has a single additional (beyond the inflaton) real

scalar field S. The Lagrange density in this model contains an unusual kinetic mixing of

the form µπ̇S .

This model has been extensively studied in the perturbative region3 where µ/H �
1 [31–40]. In the non-perturbative region where µ/H � 1, an elegant effective field theory

formulation has been derived by Baumann and Green [40], and by Gwyn, Palma, Sakellar-

iadou, and Sypsas [41]. The curvature perturbation power spectrum and a contribution to

its bispectrum have been calculated using this formulation. It has been studied numericaly

in [42] for other regions of the parameter space.

Throughout this paper we treat µ as a constant independent of time. There has been

a study of the case where µ changes suddenly with time, becoming large momentarily [43].

In this paper we focus on the region of parameter space where (µ/H)2 +(m/H)2 > 9/4

and m/H ∼ O(1) or less (recall m is the mass term for S). In this region, non-gaussianities

have an interesting oscillatory behavior [35]. We use numerical non-perturbative methods

similar to those developed in [42] and the effective field theory for large µ/H to study the

model in this region of parameter space. We study how large µ/H must be for the effective

field theory method to be quantitatively correct. In addition we derive the nS , r plot for

1The effective field theory formulation for inflation [26] provides an elegant method to compute correla-

tions of π in a model independent fashion.
2There are other ways to have large non-gaussianities. For example, DBI inflation [28]. For an early

example of another type, see [29].
3By perturbation theory we mean a series expansion in µ/H.
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the model with inflaton potential Vφ = m2
φφ

2/2 and derive the limit on µ/H and the S

potential parameter V ′′′S from Planck limits on non-gaussianity.

In section 2 we discuss the Lagrange density of the model we use in detail. Section 3

reviews quantization of the free part of the Lagrange density in flat space-time. Even this

theory is non-trivial because of the unusual Lorentz non-invariant kinetic mixing between

the Goldstone field π and the excitations of the massive scalar S. The massless mode has

an unusual energy momentum relation that, for momentum in the range m� q � µ, has

a non-relativistic flavor, Eq = q2/µ [40]. The other mode is heavy with a mass
√
µ2 +m2.

The fact that this mode’s mass does not go to zero as m → 0 is what regularizes the

divergences that occur at m = 0 when one treats µ perturbatively.

Quantization of the free field theory in de-Sitter space-time is discussed in section 4.

In de-Sitter space-time a mode’s physical momentum q evolves with time. At early times

modes have wavelengths much less than the horizon 1/H but at later times the wavelengths

get red-shifted outside the horizon. The mode functions are calculated non-perturbatively

by numerically solving the differential equations they satisfy in the region of parameter

space, (µ/H)2 + (m/H)2 > 9/4 and m/H ∼ O(1) or less. Quantum fluctuations in the

field S fall off rapidly for wavelengths outside the horizon and it is the quantum fluctuations

in the field π that determine the curvature and density fluctuations just as in standard slow

roll single field inflation. Nevertheless, these quantum fluctuations are influenced by π’s

couplings to S.

In section 4 we analyze (in the non-perturbative regime) the curvature perturbation

power spectrum in this model focusing on the transition between the perturbative regime

and the regime where the effective theory applies.

Section 5 derives the nS , r plot in this theory for the simple inflaton potential Vφ =

m2
φφ

2/2.

Non-gaussianities are discussed in section 6. We calculate the bispectrum in the equi-

lateral and squeezed configurations in the non-perturbative region numerically. In the large

µ/H region we show that the numerical results agree with the results from the effective

theory. We derive the constraints on µ/H and the S potential parameter V ′′′S from Planck

limits on non-gaussianity.

In section 7 we review the derivation of the effective field theory for large µ/H and the

derivation of the power spectrum using it. We then compute the bispectrum in this effective

field theory including a contribution from the potential for S that was not previously

presented in the literature.

Our conclusions are summarized in section 8.

2 The model

The simplest quasi-single field inflation model has a real scalar inflaton field φ that interacts

with another real scalar field S. We impose a φ→ −φ symmetry and an approximate shift

symmetry φ → φ + c, where c is a constant. The shift symmetry is only broken by the

inflaton potential Vφ(φ). The Lagrangian we use has the form

L = Lφ + LS + Lint (2.1)
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where

Lφ =
1

2
gµν∂µφ∂νφ− Vφ(φ), LS =

1

2
gµν∂µS∂νS − VS(S) (2.2)

Interactions between the inflaton φ and the massive field S first occur at dimension 5 and

if we neglect operators with dimension higher than this the interaction Lagrangian is

Lint =
1

Λ
gµν∂µφ∂νφS. (2.3)

One natural choice for the mass scale Λ is the Planck mass. This higher dimensional

operator would then arise from the transition from the theory of quantum gravity to a

quantum field theory. In this case the non-gaussianities are very small. However, another

possibility is that there is physics at a scale Λ that is large compared to the Hubble constant

during inflation but well below the Planck scale. Integrating out this physics can give rise

to such an operator.

We work in a gauge where the inflaton field is only a function of time, φ(x) = φ0(t)

and take the background metric to have the form, ds2 = dt2 − a(t)2dx2, with the scale

factor a(t) = eHt. The Goldstone boson associated with the time translation invariance

breaking by the classical evolution φ0(t) is denoted by π(x). The curvature perturbation

is proportional to this field, ζ = −Hπ. We expand S about a background classical value

S(x) = S0 +s(x) and assume that the background solution S0 is independent of time. This

assumption is consistent with the dynamical equations of evolution for the fields provided

we neglect second time derivatives of φ0(t). With those assumptions φ0(t) and S0 satisfy,(
1 +

2S0

Λ

)
3Hφ̇0 +

dVφ(φ0)

dφ0
= 0, (2.4)

and
φ̇2

0

Λ
− dVS(S0)

dS0
= 0. (2.5)

The dynamics for the fluctuations π(x) and s(x) are controlled by the Lagrange density,

L = L0 + Lint (2.6)

where the free part of the Lagrange density for the fields π and s is,

L0 =
1

2
φ̇2

0

(
1 +

2S0

Λ

)(
π̇2 − 1

a2
∇π · ∇π

)
+

1

2

(
ṡ2 − 1

a2
∇s · ∇s−m2s2

)
+

2

Λ
φ̇2

0π̇s (2.7)

where m2 = V ′′(S0). Throughout this paper we assume that the mass parameter m for

the additional scalar s is of order the Hubble constant during inflation or smaller.

The interaction part of the Lagrange density is

Lint =
φ̇2

0

Λ

(
π̇2 − 1

a2
∇π · ∇π

)
s+

(
π̇ +

π̇2

2

)
ṡ2 − 1

3!
V ′′′S (S0)s3 − 1

4!
V ′′′′S (S0)s4 + . . . (2.8)

It is convenient to introduce a rescaled π that has a properly normalized kinetic term,

π̃ =

√
φ̇2

0(1 + 2S0/Λ)π = | ˙̃φ0|π (2.9)
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where,

φ̃0 =
√

(1 + 2S0/Λ)φ0. (2.10)

In terms of these rescaled fields the gravitational curvature perturbation becomes,

ζ = −(H/| ˙̃φ0|)π̃. (2.11)

The free and interacting Lagrange densities, after introducing a redefined scale Λ̃ = (1 +

2S0/Λ)Λ, are

L0 =
1

2

(
˙̃π

2 − 1

a2
∇π̃ · ∇π̃

)
+

1

2

(
ṡ2 − 1

a2
∇s · ∇s−m2s2

)
+ µ ˙̃πs (2.12)

and

Lint =
1

Λ̃

(
˙̃π

2 − 1

a2
∇π̃ · ∇π̃

)
s− 1

3!
V ′′′S (S0)s3 + . . . . (2.13)

In eq. (2.12) we have introduced

µ = 2
˙̃
φ0/Λ̃. (2.14)

and in eq. (2.13) only explicitly kept those terms that play a role in the calculations

performed in this paper. In the following sections we will drop the tilde on the Goldstone

field π̃ to simplify the notation. Moreover, we adopt sign conventions for φ and S so that

φ̇0 and µ are positive.

As mentioned in the introduction the purpose of this paper is to study this model in

the region of parameter space where (µ2 + m2)1/2/H > 3/2 and m ∼ O(H) or smaller.

Some of this region, i.e. where µ/H is small or very large have been previously studied.

We will compare with those results to find out how small and how large µ/H has to be for

the approximate methods used in those regions to be accurate.

First let’s imagine that S0 = 0. This can always be arranged by tuning the linear term

in the potential VS(S) to cancel the linear term in S from the 1/Λ interaction term. Then

µ/H = (2φ̇0/H
2)(H/Λ). The measured power spectrum for the curvature perturbations

implies that φ̇0/H
2 is very large so even for small H/Λ one can achieve large values for µ/H.

Next we allow a non zero S0 but simplify the potential so it contains no terms with more

than two powers of S, explicitly VS = V ′SS +m2S2/2. In this case µ/H can be written as,

µ

H
=

2φ̇0/ΛH[
1 + 2

(φ̇0/ΛH)2−V ′S/H2Λ

m2/H2

]1/2
. (2.15)

Therefore, without tuning the tadpole in VS to cancel φ̇2
0S/Λ, it is not possible to have the

mass parameter m of order the Hubble constant (or smaller) and µ/H large. Nonetheless

it seems worth studying this region of parameter space since there are some novel features

that arise there.

Naive dimensional analysis suggests that higher dimension operators that couple

derivatives of φ to a single S are smaller than the dimension 5 operator we kept pro-

vided φ̇0/Λ
2 = (µ/H)2(H2/φ̇0) < 1. The higher powers of S will be small if in addition

– 5 –
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S0/Λ < 1. Since the measured amplitude of the density perturbations implies that H2/φ̇0

is quite small the ratio µ/H can be large in the region of parameter space where the op-

erator expansion in powers of 1/Λ is justified. Indeed, comparing the calculated power

spectrum at large µ/H given in (4.13) with it’s measured value, the upper limit for µ/H

for power counting in the 1/Λ expansion to be valid is µ/H . 300. Of course, this is just

a naturalness constraint and can be violated without the model being inconsistent.

3 Free field theory in flat space-time

In this section we review, for pedagogical reasons, quantization in flat space-time of the

free field theory with Lagrange density in eq. (2.12). The results presented here have, by

in large, been noted previously in [40, 41].

Dropping the tildes and setting a(t) = 1 the Lagrange density in eq. (2.12) becomes,

L0 =
1

2

(
π̇2 −∇π · ∇π

)
+

1

2

(
ṡ2 −∇s · ∇s−m2s2

)
+ µπ̇s. (3.1)

This corresponds to normal kinetic terms for two real scalar fields but with an unusual

Lorentz non-invariant kinetic mixing. The Lagrange density has the shift symmetry π →
π + c for the Goldstone field π.

The classical equations of motion for the fields π and s are,

π̈ −∇2π + µṡ = 0 (3.2)

and

s̈−∇2s+m2s− µπ̇ = 0 (3.3)

Quantization proceeds by expanding the fields in modes,

π(x, t) =

∫
d3q

(2π)3

(
a(1)(q)π(1)

q (t)eiq·x + a(2)(q)π(2)
q (t)eiq·x + h.c.

)
(3.4)

and

s(x, t) =

∫
d3q

(2π)3

(
a(1)(q)s(1)

q (t)eiq·x + a(2)(q)s(2)
q (t)eiq·x + h.c.

)
(3.5)

The annihilation operators a(1,2)(q) and creation operators a(1,2)(q)† satisfy the usual com-

mutation relations.4 The time dependence of the mode functions π
(1,2)
q (t) and s

(1,2)
q (t) are

determined by solving the classical equations of motion and their normalization is fixed

by the canonical commutation relations of the fields with their canonical momenta. A

difference from the usual case where there is no Lorentz non-invariant mixing is that the

canonical momentum for the field π is not π̇ but rather π̇+µs. So π̇ and ṡ don’t commute

at equal time but rather satisfy [π̇(x, t), ṡ(x′, t)] = −iµδ3(x− x′).

4More explicitly the non-zero commutators are: [a(1)(q), a(1)(q′)†] = (2π)3δ3(q − q′) and

[a(2)(q), a(2)(q′)†] = (2π)3δ3(q− q′).
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The time dependence of the modes has the usual exponential form π
(1,2)
q (t) ∝

exp(−iE(1,2)
q t), s

(1,2)
q (t) ∝ exp(−iE(1,2)

q t) . The dispersion relations for the energies is

determined by solving the classical equations of motion. This yields,

E(1,2)
q =

[
q2 +

m2 + µ2

2
± 1

2

(
(m2 + µ2)2 + 4q2µ2

)1/2]1/2

, (3.6)

which is a massless mode that we label by (1) corresponding to the minus sign and a

massive mode that we label by (2) corresponding to the plus sign. The mass of mode

(2) is
√
m2 + µ2. Because this mode remains massive even when m = 0 there will be no

divergences in our calculations in de-Sitter space.

We now focus on the large mixing region of parameter space, µ� q,m. As discussed

in the literature [40] the dispersion relations of the two modes can be written as

E(1)
q '

q
√
q2 +m2

µ
, E(2)

q ' µ. (3.7)

The (1) mode is massless but for q much larger than m the energy grows not linearly with

q but rather quadratically (like a non relativistic particle). The other mode is massive with

mass µ. For very small momentum, q � m, the massive scalar s only contains the massive

(2) mode, i.e., |s(1)
q (t)/s

(2)
q (t)| → 0 as q → 0. On the other hand the Goldstone field π

contains equal amounts of the (1) and (2) modes.

The infrared, q → 0, behavior of the mode function s
(1,2)
q changes in the special case

that m = 0. Then integrating-by-parts, the kinetic mixing term in eq. (3.1) can be recast

as −µπṡ, and so it is clear that there is also a shift symmetry in s. For m = 0 the scalar

field s also contains equal amounts of the two modes.

Since for large µ the second mode is heavy it is appropriate for the physics at low

momentum q � µ to integrate it out from the theory and write an effective Lagrange

density in terms of a single massless field. For the light mode a time derivative gives

factors of 1/µ and (for m 6= 0) at very large µ the s field contains only a small amount of

that massless mode. Hence (3.3) implies that,

s '
(

µ

m2 −∇2

)
π̇ (3.8)

Putting this into the Lagrange density in eq. (3.1) and dropping terms suppressed by powers

of 1/µ (recall a time derivative on π is suppressed by 1/µ) yields the effective Lagrange

density for the massless mode,

Leff =
1

2

(
µ2

m2 −∇2

)
π̇2 − 1

2
∇π · ∇π (3.9)

which yields the dispersion relation for the massless mode given in eq. (3.7).

In the next section we perform the quantization in curved de-Sitter space-time (with

Hubble constant H). Then the physics of the massless (1) mode should be similar to that

in flat space-time when the momentum and energy for that mode are large compared to

– 7 –
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H i.e., q > H and E
(1)
q > H. In the flat space-time large µ discussion we assumed q < µ.

The energy condition E
(1)
q > H implies q must also satisfy q >

√
µH in order for our

de-Sitter space-time computations to resemble the flat space-time large µ case discussed in

this subsection.

4 Free field theory in de-Sitter space time

Introducing conformal time, τ = −e−Ht/H, and including the measure factor
√
−g in the

Lagrange density so that the action is equal to
∫
d3xdτL we have

L0 =
1

2H2τ2

(
(∂τπ)2 −∇π · ∇π + (∂τs)

2 − m2

H2τ2
s2 −∇s · ∇s− 2µ

Hτ
s∂τπ

)
. (4.1)

As in flat space we expand the quantum fields in terms of creation and annihilation oper-

ators. Introducing η = kτ we write,

π(x, τ) =

∫
d3k

(2π)3

(
a(1)(k)π

(1)
k (η)eik·x + a(2)(k)π

(2)
k (η)eik·x + h.c.

)
(4.2)

and

s(x, τ) =

∫
d3k

(2π)3

(
a(1)(k)s

(1)
k (η)eik·x + a(2)(k)s

(2)
k (η)eik·x + h.c.

)
(4.3)

The mode functions obey the classical equations of motion,

π′′k −
2π′k
η

+ πk −
µ

H

(
s′k
η
− 3sk

η2

)
= 0 (4.4)

and

s′′k −
2s′k
η

+

(
1 +

m2

H2η2

)
sk +

µ

H

π′k
η

= 0 , (4.5)

where a “ ′ ” represents an η derivative.

4.1 Numerical results

In the mode expansion for the fields s and π, k is the magnitude of the comoving wavevector.

The physical wavevector has magnitude q = k/a = −Hη. Hence the condition that a mode

have wavelength well within the de-Sitter horizon 1/H is q/H � 1 which is equivalent to

−η � 1. At fixed k as time evolves a mode goes from physical wavelength well within the

horizon to outside the horizon.

In the region well within the horizon, −η � µ/H and −η � 1, the differential equa-

tions (4.4) and (4.5) simplify to

π′′k + πk = 0 ,

s′′k + sk = 0 . (4.6)

Here we suppressed the superscripts (1, 2) that label mode type. The leading behavior of

the mode functions is

πk ∼ sk ∼ e−iη (4.7)

– 8 –
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Figure 1. The correction of the power spectrum of curvature perturbation ∆Pζ in units of

(H4/φ̇20)(1/2k3) due to the mixing with the new field s. The red, blue, green, orange and ma-

genta curves are for m = 0, 0.5H,H, 1.5H and 2H. The black dashed curve shows the result from

the effective theory and the colored dashed lines are perturbation theory.

and so it is convenient to represent the general solution in the region deeply inside the

horizon as

πk = Ake
−iη , sk = Bke

−iη . (4.8)

A and B are functions of η with |A′/A|, |B′/B| � 1. Substituting πk and sk back into (4.4)

and (4.5) and keeping only the leading order terms in η−1 we find

2A′k −
2A

η
− µ

Hη
Bk = 0

2B′k −
2B

η
+

µ

Hη
Ak = 0 (4.9)

which gives

Ak ∝ (−η)1± iµ
2H , Bk = ±iAk . (4.10)

Therefore, in this region the canonically normalized form of πk and sk can be written as

π
(1,2)
k =

H√
4k3

e−iη(−η)1± iµ
2H , s

(1,2)
k = ±iπ(1,2)

k , (4.11)

where the factor H/
√

4k3 is determined by the canonical commutation relations.

Eq. (4.11) is used to determine the initial conditions π
(1,2)
k (η0) , s

(1,2)
k (η0) and π

′(1,2)
k (η0),

s
′(1,2)
k (η0) at a value of η0 that is large in magnitude. The differential equations in (4.4)

and (4.5) can then be solved numerically and used to determine the power spectrum for

the curvature perturbation in this model.

The correction to the power spectrum ∆Pζ is defined by, ∆Pζ = Pζ − P
(0)
ζ , where

P(0)
ζ (k) =

H4

φ̇2
0

1

2k3
, (4.12)
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is the power spectrum of the curvature perturbation in usual slow roll single field inflation.

∆Pζ is shown in figure 1. In the region of µ� H ∆Pζ goes like µ2 which agrees with the

perturbative calculation [31]. In the region where µ is larger than about 10H the power

spectrum Pζ grows as µ1/2 and can be approximated by,

Pζ(k) = C
( µ
H

)1/2
P(0)
ζ (k) , (4.13)

where

C =
16π

Γ2(−1/4)
' 2.09. (4.14)

Corrections to eqs. (4.13) and (4.14) become negligible as µ→∞. The power spectrum in

the large µ/H limit was calculated using the large µ/H effective field theory in [41]. For

completeness we briefly review that calculation in section 7.

As shown in ref. [31], the perturbative result diverges in the limit of m→ 0. From the

red curve shown in figure 1 we can see that the curvature perturbation is well defined at

m = 0. Perturbation theory can be very misleading at modest values of m/H and values of

µ/H not very much larger than unity. For example for m = 0.5H and µ = 1.5H it gives a

value for ∆Pζ (in the units used for figure 1) equal to 310 while our numerical result is 6.2.

For the curvature perturbations one calculates the power spectrum of the π field as

−η → 0. However the power spectra for the fields can be calculated at any η. For

µ/H > 1 the power spectrum for the s field Ps(k) falls off rapidly as −η falls below unity.

The numerical results of the power spectrum of the s field Ps(k) in units of H2/2k3 as a

function of η for a few values of µ and m are shown in figure 2. One can see that all the

curves decrease with −η and become small as −η falls below unity. In the usual single field

inflation model Pπ goes to unity in units of H2/2k3 as −η → 0. In this model of quasi-single

field inflation, as shown in figure 2 for the µ = 10H, m = 2H case the asymptotic value of

Pπ is much larger than unity. This is due to the change in the dispersion relation of the π

field and can be understood using the large µ/H effective theory. From figure 2 we see that

the asymptotic value of Pπ for the case µ = 1.2H,m = 0.9H is also much larger than 1.

4.2 Qualitative analysis

We can understand qualitatively the shape of the mode functions analytically. In the region

well outside the horizon, −η � 1, eqs. (4.4) and (4.5) can be simplified to

−π′′k +
2π′k
η
− µ

H

(
3sk
η2
−
s′k
η

)
= 0

−s′′k +
2s′k
η
− m2sk
H2η2

− µ

H

π′k
η

= 0 (4.15)

which is invariant under the transformation

πk → λ2πk , sk → λ2sk , η → λη . (4.16)

Therefore, the general form of the solution can be written as

πk = Qk(−η)α , sk = Rk(−η)α . (4.17)
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Figure 2. Power spectrum of the π and s fields in the unit of H2/2k3. The solid, dotted, and

dashed curves are for (µ/H,m/H) = (10, 2), (1, 2) and (1.2, 0.9), respectively.

Putting this back into the differential equations gives equations for the power α and the

coefficients Qk and Rk

(α2 − 3α)Qk +
µ

H
(3− α)Rk = 0 ,

µ

H
αQk +

(
α2 − 3α+

m2

H2

)
Rk = 0 . (4.18)

To have nontrivial solutions for Qk and Rk requires

α(α− 3)

[
α2 − 3α+

m2 + µ2

H2

]
= 0 . (4.19)

There are four solutions to this equation

α1 = 0 , α2 = 3 , α± =
3

2
±
(

9

4
− m2 + µ2

H2

)1/2

. (4.20)

For the region of parameter space we focus on, α± are complex, which can have observa-

tional consequences for the non-gaussianities [35].

For large values of µ/H the infrared behavior of the mode functions π
(1,2)
k and s

(1,2)
k

match directly onto the solutions in eq. (4.20). This is shown in figure 3 using m = 2H

and µ = 10H. The α1 = 0 mode is constant outside the horizon. The α2 = 3 behavior

vanishes outside the horizon and can be thought of as a subdominant contribution to the

massless mode. The α± solutions correspond to the mode functions for a free scalar field

with mass equal to (m2 + µ2)1/2. They play an important role in the calculation of non-

gaussianities. For m = 2H and µ = 10H the behavior of this mode is shown by the blue

dot-dashed curves in figure 3. One can see that it oscillates logarithmically with frequency

(m2 + µ2)1/2, and decreases with a power of 3/2 for small −η. To get the curves shown in

figure 3 we solve the differential equations (4.4) and (4.5) with the initial conditions (4.11).

The π(2) mode shown in the left panel of figure 3 eventually goes to a constant as −η gets
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π(1)
 ∼ η0

s(1) ∼ η2

π(2), s(2) ∼ (-η)3/2
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Figure 3. Left: absolute values of the field values with m = 2H and µ = 10H. The solid black

and the dashed red curves are for the π and s mode with the index α = 0. The dot-dashed blue

curve illustrates the π and s modes whose dominant small −η behavior comes from the index

α = 3/2 ± (9/4 − (m2 + µ2)/H2)1/2. Right: showing the absolute value of the real parts of each

mode corresponding to the ones in the left panel.

smaller. Similarly, the absolute value of the s(1) mode eventually goes like (−η)3/2 for very

small −η.

In this paragraph we focus on the α1 = 0 solution. Putting α1 = 0 back eq. (4.18) we

find that Rk = 0. Since there is no shift symmetry in the s field it should not contain the

massless mode in the far infrared. We can get the leading behavior of the sk mode function

outside the horizon by putting πk = Qk back into the exact differential equation (4.4).

This gives the first order inhomogeneous differential equation

−Qk =
µ

H

(
3sk
η2
−
s′k
η

)
(4.21)

with general solution

sk = −QkHη
2

µ
. (4.22)

This behavior is shown by the red dashed curves in figure 3.

4.3 The large µ/H region

In this subsection we focus on some properties of the solutions for the mode functions that

only apply for very large µ/H. We find that the curvature perturbation goes to a constant

when −η < (µ/H)1/2 instead of the usual condition that it be outside the horizon, i.e.,

−η < 1. This is illustrated in figure 4 which shows the numerical results for the power

spectrum of Pπ as a function of η.

Examining eq. (4.5), in the region −η < (µ/H)1/2 it is clear that the last term on the

left hand side is the largest. Neglecting the other terms the solution in this region satisfies

π′ = 0 , (4.23)

which implies that πk is constant and sk is proportional to η2, as in eq. (4.22).
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μ
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1/2

C μ
H

1/2
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���

-η

P
π

Figure 4. Numerical result of Pπ(k) as a function of η in the unit of H2/(2k3) for m = 0 and

µ = 100H. For comparison in blue we show the result for standard single field inflation.

In the region (µ/H)1/2 < −η < µ/H one can show that the differential equations for

the mode functions are solved approximately by

πk ∝ (−η)3/2 exp

[
iHη2

2µ

]
, sk ∝ (−η)3/2 exp

[
iHη2

2µ

]
. (4.24)

The physical wavevector of a mode with comoving wavevector k is

q = ka−1 = −kHτ . (4.25)

Therefore the change of the phase of these solutions within a small time period ∆η can be

written as

∆phase =
η0∆ηH

µ
= −q

2

µ
∆t , (4.26)

where ∆t = a∆τ has been used. This agrees with the dispersion relation in flat space

given in eq. (3.7) for the massless mode. From figure 4, one can see that it is in this

region the solution for µ� H starts to deviate from the standard slow roll solution, which

corresponds to µ = 0 in the model we are studying. This is because in this region the

solutions in de-Sitter space should resemble those in flat space and the light mode has a

flat space dispersion relation Eq = q2/µ which is quite different from a single massless field

with dispersion relation Eq = q.

Putting the solution we have found back into the differential equations (4.4) and (4.5),

one can see that the terms

− π′′k +
2π′k
η

and − s′′k +
2s′k
η

(4.27)

are suppressed, which means that the terms

(∂τπ)2 and (∂τs)
2 (4.28)

in the Lagrange density (4.1) can be neglected. After neglecting these two terms, there are

no terms in (4.1) that contain time derivatives of s. This indicates that s has become a
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Lagrange multiplier and can be replaced in the Lagrange density using its classical equation

of motion to express it in terms of π. This amounts to summing the tree graphs that

contain virtual s propogators and is the origin of the effective theory approach developed

in refs. [40] and [41] for the behavior of π in this region. We will briefly review the basic

setup for this effective field theory and use it to calculate the two- and three-point functions

of the curvature perturbation in the large µ/H limit in section 7.

5 Impact on observables

The dimensionless power spectrum is defined as [44]

∆2
ζ(k) =

k3

2π2
Pζ(k) =

H4

(2π)2φ̇2
0

f(µ/H,m/H) = 2.12× 10−9 , (5.1)

where f is a function of the µ and m. f − 1 is shown in figure 1 as a function of µ/H for

fixed values of m. The above power spectrum relies on the assumption that the tadpole

cancellation in (2.5) is possible at all times. However, S will develop a time-dependent

vaccuum expectation value due to the evolution of φ0. We will show later in this section

that this remains negligible in m2
φφ

2 inflation, which we consider here.

In terms of the slow roll parameter

ε0 =
φ̇2

0

2H2M2
pl

(5.2)

∆2
ζ(k) can be written as

∆2
ζ(k) =

H2

8π2ε0M2
pl

f

(√
8ε0Mpl

Λ
,
m

H

)
. (5.3)

The tilt of the power spectrum is defined as

nS − 1 ≡
d log ∆2

ζ

d log k
, (5.4)

and can be written as

nS − 1 =
d log ∆2

ζ

d log k
=
d log ∆2

ζ

dN
× dN

d log k
, (5.5)

where N is the number of e-folds between when the modes of interest exit the horizon and

inflation ends. From eq. (5.1) we have

d log ∆2
ζ

dN
= 2

d logH

dN
− d log ε0

dN
+

(
∂ log f

∂ log µ̂

d log µ̂

d log ε0

d log ε0
dN

+
∂ log f

∂ log m̂

d log m̂

d logH

d logH

dN

)
= −4ε0 + 2η0 + (ε0 − η0)

∂ log f

∂ log µ̂
+ ε0

∂ log f

∂ log m̂
(5.6)
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Figure 5. Impact on the scalar spectrum index nS and the tensor-to-scalar ratio r for the φ2

inflation model with µ from 0 to 100H and m from 0 to 6H, and (µ2 +m2)1/2 > 3H/2. The blue

and red regions are for Ncmb = 50 and 60 respectively. The dotted, dashed and solid curves are

for m fixed to be 0, 3H/2 and 6H respectively. The gray regions are the one-sigma and two-sigma

constraints from the combination of the Planck data and the BICEP2/Keck data [45].

where the standard results of slow roll inflation have been used [12], and η0 is the other

slow roll parameter defined as −φ̈0/(Hφ̇0). µ̂ and m̂ are defined as

µ̂ ≡ µ

H
, m̂ ≡ m

H
. (5.7)

Up to leading order in the slow roll parameters we have that,

d log k

dN
= 1 (5.8)

Therefore at leading order in slow roll parameters

nS − 1 = −4ε0 + 2η0 + (ε0 − η0)
∂ log f

∂ log µ̂
+ ε0

∂ log f

∂ log m̂
. (5.9)

Another important observable is the tensor-scalar ratio. Since the gravitational wave

production is only related to the structure of the de-Sitter metric, the dimensionless tensor

spectrum can still be written as

∆2
t =

2

π2

H2

M2
pl

. (5.10)

Then the tensor-scalar ratio can be written

r =
∆2
t (k)

∆2
ζ(k)

= 16ε0 × f−1(µ̂, m̂) . (5.11)

5.1 m2
φφ

2 inflation

Here we use the model where the inflaton potential Vφ = m2
φφ

2/2 as an example to discuss

the effect of large µ/H on the observables. In this simple model, we have

φcmb = 2
√
NcmbMpl ' 15Mpl . (5.12)
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Figure 6. Constraints on the m − µ parameter space from the combination of the Planck data

and the BICEP/Keck data [45], where the blue curves are for NCMB = 50 and the red curves

NCMB = 60. The regions above the curves are allowed.

and

ε0 ' 2

(
Mpl

φcmb

)2

' 1

2Ncmb
, η0 ' O

(
N−2

cmb

)
, (5.13)

where Ncmb is the number of e-folds between when CMB scale leaves the horizon and when

slow roll inflation ends.

The nS , r plot for this model is shown in figure 5. The dotted regions are for µ from 0 to

100H and m from 0 to 6H with (µ/H)2 + (m/H)2 > 9/4. On these curves as µ increases r

decreases, so the uppermost point of the curves corresponds to standard slow roll inflation.

The constraints on the m − µ parameter space for NCMB = 50 and 60 are also shown in

figure 6 where the regions below the curves are excluded. Clearly larger values of µ improve

the agreement of the model’s predictions with the measured value of nS and the bound on r.

5.2 Time-dependent S background

We now justify that the time-dependent vaccuum expectation value of S/Λ remains small

and evolves slowly enough in m2
φφ

2 inflation that it can be ignored in the above computation

of the tilt and tensor-scalar ratio.

Denote the background vevs of the inflaton and isocurvaton fields as φ = φ0(t) and

S = S0(t). The Lagrangian describing the vevs is

L =
1

2
φ̇2

0

(
1 +

2S0

Λ

)
+

1

2
Ṡ2

0 +
1

2
m2
φφ

2
0 +

1

2
m2S2

0 + V ′SS0 (5.14)

From this Lagrangian, it is straightforward to compute the coupled equations of motion for

φ0 and S0, as well as the Friedmann equation. From these equations, one can determine
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the slow roll parameters:

ε ≡ − Ḣ

H2
=

1

2H2M2
pl

(
φ̇2

0

(
1 +

2S0

Λ

)
+ Ṡ2

0

)
(5.15)

η ≡ ε− 1

2

d log ε

dN
= − φ̈0

Hφ̇0

− 1

2
∂N

(
1 +

2S0

Λ
+
Ṡ2

0

φ̇2
0

)
(5.16)

Moreover, from the equation of motion for S0, we find up to slow roll suppressed corrections

Ṡ0

ΛH
' −1

2

(
2φ̇0

Λm

)2(
− φ̈0

Hφ̇0

)
(5.17)

Note that the first term in parentheses is essentially (µ/m)2, and the second term is η0.

Then to estimate the size of Ṡ0/ΛH, it will be necessary to determine the size of η0 in this

theory. From (5.16) and (5.17), we can express:

η ' η0

(
1 +

1

2

( µ
m

)2
)

(5.18)

In terms of the slow roll parameters, the Friedmann equation can be written:

(3− ε)H2M2
pl =

1

2
m2
φφ

2
0 (5.19)

where we have assumed that φ drives inflation, i.e. the potential for φ0 dominates over

the potential for S0. Taking derivatives of the above equation, we find the following two

expressions:

− φ̇0

Hφ0
= ε

(
1− η/3
1− ε/3

)
(5.20)

2η − η0 =
ε

3

(
ε− η

1− ε/3

)
+
d log(1− η/3)

dN
(5.21)

This second equation can be written using (5.18):

η

(
1 +

( µ
m

)2
1
2 +

( µ
m

)2
)
' ε

3

(
ε− η

1− ε/3

)
+
d log(1− η/3)

dN
(5.22)

From (5.20), one can show that to leading order, we still have ε ' (2Ncmb)−1. On the

other hand, by solving (5.22) perturbatively in ε and η, one can show that the leading

contribution to η goes like N−2
cmb [47]:

η ' 1

12N2
cmb

(
1
2 +

( µ
m

)2
1 +

( µ
m

)2
)

(5.23)

We can determine η0 using (5.18) and (5.23). Then (5.17) becomes

Ṡ0

ΛH
' − 1

24N2
cmb

µ2

m2 + µ2
(5.24)
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Since Ṡ0/ΛH � ε, the evolution of S0 will not significantly affect the tilt. Moreover, as

long as S0 = 0 at some point early on in inflation, S0/Λ will still be very small during CMB

mode crossings. Accordingly, S0/Λ will not significantly affect the tensor-scalar ratio.

It is worth noting that η = O(N−2
cmb) is specific to m2

φφ
2 inflation, and not general. In

general, η goes like N−1
cmb, and the time-dependence of S0 becomes equally important as

the ε terms in computing the tilt. In computing these effects, it is important to recognize

that for nonzero S0, the power spectrum gets normalized slightly differently:

Pζ(k) =
H4

2φ̇2
0(1 + 2S0/Λ)k3

f(µ/H,m/H) (5.25)

and µ is defined as

µ =
2φ̇0

Λ (1 + 2S0/Λ)1/2
(5.26)

Using these facts, it is straightforward to compute the tilt once Ṡ0/ΛH is computed from

the equations of motion.

6 Non-gaussianities

In this section we calculate the dependence of the inflaton three-point function as a function

of µ and m. The small µ/H behavior of the bispectrum was first studied in [31]. The

effective field theory for large µ/H was used to compute the contribution from the ∂π∂πs

interaction to the bispectrum [40, 41]. Here we use the numerical mode functions to extend

the analysis to other values of µ.

The curvature perturbation bispectrum Bζ(k1,k2,k3) is defined by

〈ζ(x1, 0)ζ(x2, 0)ζ(x3, 0)〉 =

∫
d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
ei(k1·x1+k2·x2+k3·x3)

×Bζ(k1,k2,k3)(2π)3δ3(k1 + k2 + k3) (6.1)

and we can define Bπ(k1,k2,k3) analogously. They can be computed using the in-in

formalism [48] using the interaction Lagrangian in eq. (2.13).

In this section we focus mostly on the O(V ′′′S ) term (where V ′′′S ≡ V ′′′S (S0)) which, for

V ′′′S ∼ O(H), typically dominates over the contribution from the ∂π∂πs term. We express

the O(V ′′′S ) contribution to the bispectrum in terms of the mode functions discussed earlier.

Evaluating the correlator in the far future τ = 0, we find

Bπ(k1,k2,k3) = −2V ′′′S H
−4Im

[∫ 0

−∞

dτ

τ4

3∏
i=1

(
π

(1)∗
ki

(0)s
(1)
ki

(kiτ) + π
(2)∗
ki

(0)s
(2)
ki

(kiτ)
)]

.

(6.2)

Equation (6.2) is true for all values of ki, however we are mostly interested in its behavior in

the so-called equilateral and squeezed limits. In the equilateral limit, the external momenta

all have equal magnitude ki ≡ k. In this case, the integral’s dependence on k can be factored
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out of the integral by rescaling the integration variable from τ to η = kτ :5

Bequil
π (k) = −2V ′′′S H

−4k3Im

[∫ 0

−∞

dη

η4

(
π

(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)3
]

(6.3)

We can compute this integral numerically using the numeric mode functions, but there

are a couple of subtleties in its evaluation that need to be addressed. The integrand in (6.3)

is highly oscillatory at large τ . For m/H and µ/H values of order one or larger, the

magnitude of these oscillations does not decay quickly and it becomes difficult to perform

the numerical integrations by brute force. We can alleviate this problem by Wick rotating

the integral, thereby transforming the rapid oscillations into exponential decay.

Before Wick rotating it is convenient to factor out the oscillatory behavior from the

mode functions. The large τ limit given in eq. (4.8) suggests that we should extract

the oscillatory behavior by factorizing the mode functions as π
(i)
k (η) = A

(i)
k (η)e−iη and

s
(i)
k (η) = B

(i)
k (η)e−iη. Plugging this factorization into Bequil

π (k) gives

Bequil
π (k) = −2V ′′′S H

−4k3Im

[∫ 0

−∞

dη

η4
e−3iη

(
π

(1)∗
k (0)B

(1)
k (η) + π

(2)∗
k (0)B

(2)
k (η)

)3
]

= −2V ′′′S H
−4k3Re

[∫ 0

−∞

dx

x4
e3x
(
π

(1)∗
k (0)B

(1)
k (ix) + π

(2)∗
k (0)B

(2)
k (ix)

)3
]
. (6.4)

In the second line we used Cauchy’s theorem to rotate the region of integration from the

real to the imaginary axis and changed the integration variable from η to x = −iη.

The numerical solutions found previously for A
(i)
k (η) and B

(i)
k (η) are functions of the

real variable η and cannot be integrated along the imaginary axis. However, we can an-

alytically continue them to the imaginary axis by Wick rotating the original mode equa-

tions (4.4) and (4.5) (see [42]). After factoring out the oscillatory behavior and changing

variables to x = −iη, we find that the analytically continued functions A
(i)
k and B

(i)
k obey

x2A′′k(ix) + (2x2 − 2x)A′k(ix)− 2xAk(ix)− µ

H
xB′k(ix) + (3− x)

µ

H
Bk(ix) = 0 (6.5)

x2B′′k(ix) + (2x2 − 2x)B′k(ix) +

(
m2

H2
− 2x

)
Bk(ix) +

µ

H
xA′k(ix) +

µ

H
xAk(ix) = 0 (6.6)

where a prime denotes a derivative with respect to x and we have dropped the superscripts

for simplicity. The solutions should asymptote at large −x to6

A
(1)
k (ix) =

H

2k3/2
(−ix)1+iµ/2H A

(2)
k (ix) =

H

2k3/2
(−ix)1−iµ/2H

B
(1)
k (ix) =

iH

2k3/2
(−ix)1+iµ/2H B

(2)
k (ix) =

−iH
2k3/2

(−ix)1−iµ/2H . (6.7)

These solutions and their derivatives with respect to x give the initial conditions for nu-

merical integration of the differential equations for Ak and Bk. Note that A
(i)
k and B

(i)
k

contain an overall factor of k−3/2. Moreover, π
(i)
k and s

(i)
k have the same k-dependent

normalization. This implies that Bequil
ζ (k)/Pequil

ζ (k)2 is k-independent.

5By, Bequil
π (k), we mean Bπ evaluated in the equilateral configuration where the three wavevectors have

the same magnitude k.
6If we hadn’t first extracted the oscillatory factor, an exponentially suppressed factor would have ap-

peared in (6.7) that would have made the boundary conditions too small to solve (6.5) numerically.
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Figure 7. The scaled equilateral three-point function due to the s∂π∂π interaction,

Bequil
ζ (k)/Pζ(k)2 as a function of µ/H. Several values of m are plotted: m = 0, 0.5H, H,

1.5H, and 2H, and there is also a black dashed line representing the result computed in the large

µ/H effective theory.

Figure 8. The scaled equilateral three-point function due to the s3 interaction, Bequil
ζ (k)/Pζ(k)2

as a function of µ/H. Several values of m are plotted: m = 0, 0.5H, H, 1.5H, and 2H, and there

is also a black dashed line representing the result computed in the large µ/H effective theory.

In figures 7 and 8, we plot the contributions to the scaled equilateral three-point func-

tions Bequil
ζ (k)/(Pζ(k))2 due to the ∂π∂πs and s3 interaction terms respectively.7 Moreover,

we have superimposed a dotted line which corresponds to the prediction of the effective field

theory appropriate for large µ/H (which will be discussed in detail in section 7). Of course,

the numerical results converge to the effective field theory results in the large µ/H limit.

However, the effective field theory is only a good approximation of these non-gaussianities

for µ & 10H. This further suggests that there is a substantial portion of the parameter

7For brevity we have not described in any detail the calculation of the contribution due to the s∂π∂π

term in this section.
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Figure 9. Upper bounds on |V ′′′
S | as a function of µ/H. These bounds are imposed by experimental

bounds on f equilNL . Bounds are plotted for m = 0, 0.5H, H, 1.5H, and 2H. There is also a bound

computed from the large µ/H effective theory, shown in the figure as a black dashed line.

space in µ that is described neither by the large µ/H effective theory description nor the

small µ/H perturbative description.

The Planck collaboration has derived constraints on the magnitude of the bispectrum

of the curvature perturbations using various models/templates for its dependence on the

wavevectors [46]. These are usually expressed in terms of the quantity fNL. Although the

model we are discussing is different from the equilateral model/template used to derive the

constraint f equil
NL = 4 ± 43 by the Planck collaboration in ref. [46], we use this constraint

to estimate a bound on V ′′′S . Furthermore we estimate f equil
NL using just the equilateral

configuration where the three wavevectors have the same magnitude taking,

f equil
NL ' 5

18
×
Bequil
ζ (k)

(Pζ(k))2
. (6.8)

To determine upper bounds for V ′′′S we assume that each interaction s3 and s∂π∂π is

separately constrained by f equil
NL and thus ignore any possible tuning between the two terms

that may make these bounds weaker. Figure 9 shows the 2σ upper bounds for a variety of

s masses, as well as the upper bound predicted in the large µ/H effective theory.

The squeezed limit of (6.2) occurs when k1 ≈ k2 ≡ k � k3. In this limit, define the

ratio c ≡ k3/k, where c� 1, and introduce the notation Bsq
π (k, c) for Bπ. We again rescale

the integration variable to η = kτ to find

Bsq
π (k, c) = −2V ′′′S H

−4k3Im

[ ∫ 0

−∞

dη

η4

(
π

(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2

×
(
π

(1)∗
ck (0)s

(1)
ck (cη) + π

(2)∗
ck (0)s

(2)
ck (cη)

)]
= −2V ′′′S H

−4k3c−3Im

[ ∫ 0

−∞

dη

η4

(
π

(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2

×
(
π

(1)∗
k (0)s

(1)
k (cη) + π

(2)∗
k (0)s

(2)
k (cη)

)]
(6.9)
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Figure 10. The coefficients of the cosine term in equation (6.12) for m = 0, 0.5H, H, and 1.5H.

Figure 11. In the squeezed limit, the three-point function logarithmically oscillates as a function

of c. This behavior is illustrated for µ = 2H and m = 0, 0.5H, H, 1.5H, and 2H. The solid lines

show the exact behavior as a function of c (i.e. using equation (6.9)) whereas the dotted lines show

the approximate behavior to quadratic order in c (i.e. using equation (6.10)).

We can analyze the leading behavior of (6.9) in c by replacing s
(i)
k (cη) with the first few

terms of its power series expansion (see section 4.2) b
(i)
− (−cη)α− + b

(i)
+ (−cη)α+ + b

(i)
2 (−cη)2:

Bsq
π (k, c) = −2V ′′′S H

−4k3c−3Im

[ ∫ 0

−∞

dη

η4

(
π

(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2

×
(
β−(−cη)α− + β+(−cη)α+ + β2(−cη)2 + . . .

) ]
= V ′′′S H

−4k3c−3Im
[
cα−λ−(µ,m) + cα+λ+(µ,m) + c2λ2(µ,m)

]
(6.10)

where β− = π
(1)∗
k (0)b

(1)
− + π

(2)∗
k (0)b

(2)
− , β+ = π

(1)∗
k (0)b

(1)
+ + π

(2)∗
k (0)b

(2)
+ , β2 = π

(1)∗
k (0)b

(1)
2 +
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π
(2)∗
k (0)b

(2)
2 and

λ−(µ,m) = −2β−

∫ 0

−∞

dη

η4

(
π

(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2
(−η)α−

λ+(µ,m) = −2β+

∫ 0

−∞

dη

η4

(
π

(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2
(−η)α+

λ2(µ,m) = −2β2

∫ 0

−∞

dη

η4

(
π

(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2
(−η)2. (6.11)

We can compute β−, β+, and β2 by fitting the numerical mode functions s
(i)
k (η) to their

power series expansions at small −η and extracting b
(i)
± , b

(i)
2 from the fits. The integrals

in (6.11) can be computed using the same Wick rotation technique used to compute Bequil
π .

Then, rearranging (6.10) gives

Bsq
π = V ′′′S H

−4k3c−3/2 (6.12)

×
(

Im [λ+ + λ−] cos (log(c)Im [α+]) + Re [λ+ − λ−] sin (log(c)Im [α+]) + c1/2Im [λ2]
)

We plot Im [λ+ + λ−] in figure 10. The sine term is usually smaller and so we have not

displayed it in a figure. Equation (6.12) shows that the squeezed limit of the three-point

function oscillates logarithmically as a function of c. This behavior is illustrated in figure 11.

Note that the dependence of Im [α+] =
√
m2/H2 + µ2/H2 − 9/4 on µ has an important

effect on the oscillations. This impacts the two point function of biased objects, see for

example [49].

The oscillatory terms in eq. (6.12) are enhanced by a factor of c−1/2, but are suppressed

in the large µ/H limit.

7 Calculating non-gaussianity in the effective theory

7.1 Brief review of the effective theory for large µ/H

In this subsection we begin with a brief review the effective theory approach to the case

when µ/H is large. In terms of π and s the Lagrange density is

L =
1

2H2τ2

[
(∂τπ)2 − (∇π)2 + (∂τs)

2 − (∇s)2 − m2

H2

s2

τ2
− 2µ

Hτ
s∂τπ

]
+

1

H2τ2

s

Λ

[
(∂τπ)2 − (∇π)2

]
− 1

H4τ4

V ′′′S s
3

3!
(7.1)

As discussed in section 3, in flat space-time with large mixing µ there is a very massive

mode and a massless mode. When µ� H and k/a < µ, one may integrate out the heavy

mode to get an effective theory just involving π which can be used to calculate curvature

perturbations. As discussed in section 4, for that purpose the (∂τs)
2 and (∂τπ)2 terms in

eq. (7.1) can be neglected. Since we assume m ∼ O(H) or smaller m can also be neglected

in eq. (7.1). With these approximations the equation of motion for s becomes

0 =
δL
δs

=
1

H2τ2

[
∇2s− µ∂τπ

Hτ
− 1

Λ
(∇π)2 −

V ′′′S s
2

2H2τ2

]
. (7.2)
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Up the second order in π, the solution for s is

s =
µ

Hτ

1

∇2
∂τπ +

1

Λ

1

∇2
(∇π)2 +

V ′′′S
2H2τ2

µ2

H2τ2

1

∇2

[
1

∇2
∂τπ

]2

(7.3)

Putting this solution back into eq. (7.1), the quadratic and cubic terms of the effective

Lagrangian of π can be written as

L(2)
eff = − 1

2H2τ2

[
(∇π)2 +

µ2

H2τ2
(∂τπ)∇−2∂τπ

]
(7.4)

and

L(3)
eff = −µ

Λ

1

H3τ3

[
∇−2∂τπ

] [
(∇π)2

]
− µ3

H7τ7

V ′′′S
3!

[
∇−2∂τπ

]3
. (7.5)

Quantizing the free field part of this effective theory we write for the field operator,

π(x, τ) =

∫
d3k

(2π)3

(
a(k)πk(η)eik·x + a†(k)πk(η)∗e−ik·x

)
. (7.6)

The mode function πk(η) satisfies the classical equation of motion,

µ2

H2

d

dη

(
1

η4

dπk
dη

)
+
πk
η2

= 0 . (7.7)

which can be solved analytically for the mode function πk(η). The normalization of πk(η)

is determined by the canonical commutation relations. This yields,

πk(η) =

(
2π2µ

H

)1/4
H

(2k3)1/2

(
η2H

2µ

)5/4

H
(1)
5/4

(
η2H

2µ

)
. (7.8)

The power spectrum of the curvature perturbation is

Pζ =
H2

φ̇2
0

|πk(η)|2
|η|�
√
µ/H

=
H4

φ̇2
0

(
1

2k3

)[
16π

Γ2(−1/4)

( µ
H

)1/2
]
. (7.9)

This result was originally derived in refs. [40, 41].

The plot of Pζ as a function of µ/H was shown in figure 1. The result from the effective

theory is shown by the black dashed line. One can see that for µ > 10H the result from

the effective theory agrees with the numerical result.

7.2 Non-gaussianity of equilateral configuration

The three-point function Bζ(k1,k2,k3) of the curvature perturbation is defined in (6.1).

Following standard steps and using the explicit expression of πk in (7.8) for the equilateral

configuration (|k1| = |k2| = |k3| = k), we have

Bequil
ζ (k) = −6µ

Λ

H6

φ̇3
0k

6

25/4π3

Γ3(−1/4)
B1 −

V ′′′S
H

H6

φ̇3
0k

6

29/4π3

Γ3(−1/4)
B2 , (7.10)
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where

B1 = Re

∫ ∞
0

dxx5/4
[
H

(1)
5/4(x)

]3
' −0.94

B2 = Re

∫ ∞
0

dxx−5/2

[
d

dx

(
x5/4H

(1)
5/4(x)

)]3

' −0.09. (7.11)

As previously discussed we take

f equil
NL ' 5

18
×
Bequil
ζ (k)

(Pζ(k))2
= −5

3
× 2−23/4πΓ(−1/4)

[
B1

µ

H
+

2

3
B2
V ′′′S
µ

φ̇0

H2

]

' −0.45× µ

H
− 0.03×

V ′′′S
µ

φ̇0

H2
. (7.12)

The factor φ̇0/H can be calculated in terms of the density perturbation and µ/H us-

ing (5.1). Using the measured value of ∆ζ we have that

f equil
NL ' −0.45× µ

H
− 140×

V ′′′S
H

(
H

µ

)3/4

. (7.13)

In addition, using the Planck data, the 2σ constraint on µ is estimated to be8

µ/H < 200 . (7.14)

7.3 Non-gaussianity of squeezed configuration

For the squeezed configuration we consider k = k1 ' k2 � k3 = ck. Taking the contribution

from the 1/Λ term in the interaction Lagrange density we have

Bsq
ζ (k, c) = −4H6

φ̇3
0

µ

Λ

1

c3k6

π329/4

Γ3(−1/4)
(B3 + B4) , (7.15)

where

B3 = Re

∫ ∞
0

dx x[H
(1)
5/4(x)]2

d

dy

[
y5/4H

(1)
5/4(y)

]∣∣∣∣
y→c2x

(7.16)

B4 = Re

∫ ∞
0

dx xH
(1)
1/4(x)H

(1)
5/4(x)

[
c2y5/4H

(1)
5/4(y)

]∣∣∣
y→c2x

. (7.17)

Note that H
(1)
5/4(x) and H

(1)
1/4(x) oscillate rapidly when x > 1. Therefore, the integral is

mainly supported in the region x < 1, which means c2x� 1. Around y = 0 we have

y5/4H
(1)
5/4(y) = −25/4i

π
Γ(5/4)− 25/4i

π
Γ(5/4)y2 + higher orders , (7.18)

which implies that

d

dy

[
y5/4H

(1)
5/4(y)

]∣∣∣∣
y→c2x

= −29/4ic2

π
Γ(5/4)x+ higher orders . (7.19)

8Here we have neglected the V ′′′S term. It is of course possible that there are cancelations between the

contribution proportional to µ and that proportional to V ′′′ which would relax the bound on µ.
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For c � 1, B3 and B4 go like c2 and we have that in the squeezed limit Bsq
ζ ∼ c−1.

Even though this contribution is enhanced by a power of 1/c, it is still suppressed com-

pared to what local non-gaussianity would give which is proportional to Pζ(k1)Pζ(k2) +

Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1) ∼ c−3. This c−1 behavior in the squeezed limit is also seen

in equilateral non-Gaussianity.

For the contribution proportional to V ′′′S we find

Bsq
ζ (k, c) = −

V ′′′S
H

H6

φ̇3
0

1

c3k6

π329/4

Γ3(−1/4)
B5 , (7.20)

where in this case

B5 = Re

∫ ∞
0

dx
[
H

(1)
1/4(x)

]2

d(y5/4H
(1)
5/4(y))

dy

∣∣∣∣∣∣
y→c2x

(7.21)

Therefore, the V ′′′S interaction also gives a c−1 contribution to Bsq
ζ .

8 Concluding remarks

We studied a simple quasi-single field inflation model where the inflaton couples to another

scalar field S. The model contains an unusual mixing term between the inflaton and the

new scalar characterized by a dimensionful parameter µ. It has been extensively studied

in the literature using perturbation theory in the region where the parameter µ/H is small

and using an effective field theory approach in the region of large µ/H. It has also been

studied using numerical methods in other regions of parameter space. When the mass

parameter m of the additional scalar field is zero perturbation theory diverges.

We numerically calculated the power spectrum and the bispectrum of the curvature

perturbations when µ and the mass m satisfy (µ/H)2 + (m/H)2 > 9/4 with m ∼ O(H) or

smaller. In much of this region, perturbation theory and the effective field theory approach

are not applicable. We found that typically the effective field theory approach is valid

for µ/H > 10. The numerical approach is non-perturbative in µ/H and there are no

divergences at m = 0. This occurs because the heavy mode has mass
√
m2 + µ2 which

does not vanish as m→ 0.

In the case where the inflaton potential is m2
φφ

2/2, we derived constraints on the

parameters m and µ from nS and r for Ncmb = 50 and Ncmb = 60. Larger values of µ

make this inflaton potential more compatible with the data.

We computed the contributions from the ∂π∂πs and the s3 interactions to the equi-

lateral limit of the bispectrum of the curvature perturbations numerically and compared

it with the results from the effective theory. Using these results and the Planck bounds on

fNL we derived upper bounds on V ′′′S and µ.

We also analyzed the squeezed limit of the bispectrum, showing that in this model it is

much smaller than for local non-gaussianity. The contribution to the squeezed bispectrum

proportional to V ′′′S exhibits interesting oscillatory behavior as a function of the ratio of
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the small momenta to the larger one.9 We noted that the oscillation wavelength has µ

dependence that is not evident in perturbation theory. This behavior could potentially be

observed in future experiments.

For small µ and m, there are potentially interesting observational consequences of the

behavior of the four point function on the wavevectors that characterize its shape. We will

present results on this in a further publication.
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