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1 Introduction

In the last 20 years considerable progress has been made on the holographic description of

anti-de Sitter space [1–3]. An important open question concerns the reconstruction of

the bulk spacetime from the boundary theory. In addition, little is known about the

microscopic theories for more general spacetimes, such as Minkowski or de Sitter space.

One of the general lessons from the AdS/CFT correspondence is the concept of holo-

graphic renormalization [4–9]. If one moves the holographic boundary into the bulk one

introduces a UV cut-off in the conformal field theory. Going further into the bulk increases

the cut-off length scale and reduces the number of microscopic degrees of freedom of the

holographic theory. This holographic RG description of AdS spacetimes works well near

the boundary at scales large compared to the curvature radius. The microscopic theory is,
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however, not so well understood if the boundary reaches the AdS scale and breaks down at

sub-AdS scales. Here the curvature radius of AdS is irrelevant, and the geometry becomes

approximately that of flat space.

A crucial hint about the microscopic theory for non-AdS geometries comes from the

holographic principle, motivated by the Bekenstein-Hawking entropy formula [10, 11]:

S =
A

4G
. (1.1)

The holographic principle states that the maximal number of microscopic degrees of free-

dom associated to a spacelike region is proportional to the area A of its boundary in Planck-

ian units [12–15]. However, an important indication that the microscopic holographic de-

scriptions for super-AdS scales and those for sub-AdS scale and dS and Minkowski space-

times are qualitatively different is given by the properties of black holes in these geometries:

large AdS black holes are known to have a positive specific heat, whereas the specific heat

of black holes in sub-AdS, flat or dS is negative. A complete understanding of this feature

from a microscopic holographic perspective is still lacking, which is illustrative of our poor

understanding of holography for non-AdS spacetimes.

In this paper we will make modest steps towards answering some of these questions.

Our strategy is to follow the same line of reasoning as in the original paper [16], which

clarified the holographic nature of the AdS/CFT correspondence by showing that it obeys

all the general properties which are expected to hold in a microscopic theory that satis-

fies the holographic principle. In their work Susskind and Witten established the UV-IR

correspondence that is underlying AdS/CFT by relating the UV cut-off of the microscopic

theory to the IR cut-off in the bulk. They furthermore showed that the number of degrees

of freedom of the cut-off CFT is proportional to the area of the holographic surface in

Planckian units. They also pointed out that if the temperature of the CFT approaches

the cut-off scale all the microscopic degrees of freedom become excited and produce a state

whose entropy is given by the Bekenstein-Hawking entropy for a black hole horizon which

coincides with the holographic boundary.

Following this same logic we focus on general features of the holographic theory for

sub-AdS geometries and Minkowski and de Sitter space, such as the number of microscopic

degrees of freedom and the typical energy that is required to excite these degrees of free-

dom. We will assume that these non-AdS geometries are also described by an underlying

microscopic quantum theory, that obeys the general principles of holography. A logical

assumption is that the number of microscopic degrees of freedom of the cut-off boundary

theory for general spacetimes is also determined by the area of the holographic boundary in

Planckian units. Here, by a ‘cut-off boundary’ we mean a holographic screen located inside

the spacetime at a finite distance from its ‘center’. In this paper we will for definiteness

and simplicity only consider spherically symmetric spacetimes, so that we can choose the

center at the origin. Our main cases of interest are empty (A)dS and Minkowksi space,

but we will also study Schwarzschild geometries.

In addition to the number of degrees of freedom we are interested in the excitation

energy per degree of freedom. In sub-AdS, flat and de Sitter space we find that this
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excitation energy decreases with the distance from the center. One of our main conclusions

is that the UV-IR correspondence, familiar from AdS/CFT, is inverted in these spacetimes:

long distances (=IR) in the bulk correspond to low energies (=IR) in the microscopic theory.

And contrary to AdS/CFT the number of degrees of freedom increases towards the IR of

the microscopic theory. Hence, we are dealing with a holographic quantum theory whose

typical excitation energy decreases if the number of degrees of freedom increases. This fact

is directly related to the negative specific heat of black holes.

Our aim is to find an explanation of this counter-intuitive feature of the microscopic

theory. For this purpose we employ a conformal map between three non-AdS geometries

and spacetimes of the form AdS3×Sq. This conformal map relates general features of

the microscopic theories on holographic screens in both spacetimes, and allows us to iden-

tify the mechanism responsible for the inversion of the energy-distance relation compared

to AdS/CFT. We find that it is a familiar mechanism, often invoked in the microscopic

description of black holes [17–19], known as the ‘long string phenomenon’. This mecha-

nism operates on large symmetric product CFTs, and identifies a twisted sector consisting

of ‘long strings’ whose typical excitation energy is considerably smaller than that of the

untwisted sector. Our conclusion is that this same long string mechanism reduces the exci-

tation energy at large distances in the bulk and towards the IR of the microscopic theory,

and therefore explains the negative specific heat of non-AdS black holes. Furthermore, it

clarifies the value of the vacuum energy of (A)dS, which, contrary to most expectations,

differs from its natural value set by the Planck scale.

The outline of the paper is as follows. In section 2 we use lessons from AdS/CFT

to give a geometric definition of the number of holographic degrees of freedom and their

excitation energy. In section 3 we present a conjecture relating the microscopic theories for

two Weyl equivalent spacetimes and describe the conformal map from sub-AdS, Minkowski

and de Sitter space to AdS3×Sq type geometries. Section 4 describes the long string

mechanism and its relevance for non-AdS holography. Finally, in section 5 we discuss the

negative specific heat of black holes and vacuum energy of (A)dS spacetimes.

2 Lessons from the AdS/CFT correspondence

In this paper we are interested in obtaining a better understanding of the microscopic

description of spacetime. For definiteness we consider d-dimensional static, spherically

symmetric spacetimes with a metric of the form

ds2 = −f(R)dt2 +
dR2

f(R)
+R2dΩ2

d−2 , (2.1)

where dΩd−2 is the line element on a (d− 2)-dimensional unit sphere. This class of metrics

allows us to study (anti-)de Sitter space, flat space and (A)dS-Schwarzschild solutions. In

these geometries we consider a (d−2)-surface S located at a finite radius R, corresponding

to the boundary of a spacelike ball-shaped region B centered around the origin. We will call

S the ‘holographic screen’ or ‘holographic surface’. We will study general features of the

microscopic description of these spacetimes, where we imagine that the quantum theory
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lives on the holographic screen S. We will start with discussing the familiar case of anti-de

Sitter space, where we have a good qualitative understanding of the holographic theory,

on boundaries at a finite radius R.

2.1 General features of the microscopic holographic theory

Our first goal is to present a number of general features of the holographic description of

asymptotically AdS spacetimes in a way that is generalizable to other spacetimes. Moti-

vated by [16], we focus on the following aspects of the microscopic holographic description:1

C = number of UV degrees of freedom of the holographic theory

ε = excitation energy per UV degree of freedom

N = total energy measured in terms of the cut-off energy ε.

More precisely, by ε we mean the total energy of the maximally excited state divided by the

number of UV degrees of freedom. Below we will give a definition of each of these quantities

purely in terms of the geometry in the neighbourhood of the holographic surface. We will

motivate and verify these definitions for the case of AdS/CFT, but afterwards we will apply

those same definitions to other geometric situations.

The number of degrees of freedom C is in the case of AdS/CFT directly related to the

central charge of the CFT. According to the holographic dictionary the central charge c of

a CFT dual to Einstein gravity is given by [20]

c

12
=

A(L)

16πGd
with A(L) = Ωd−2L

d−2 , (2.2)

where L is the AdS radius and Gd is Newton’s constant in d dimensions. The central charge

c is defined in terms of the normalization of the 2-point function of the stress tensor [21]. It

measures the number of field theoretic degrees of freedom of the CFT. The central charge

c is normalized so that it coincides with the standard central charge in 2d CFT. In three

dimensions it reduces to the Brown-Henneaux formula [22].

The number of degrees of freedom of the microscopic theory that lives on a holographic

screen S at radius R is given by

C =
c

12

(
R

L

)d−2
=

A(R)

16πGd
with A(R) = Ωd−2R

d−2 . (2.3)

This result can be interpreted as follows. We imagine that the CFT lives on R × Sd−2,
where the radius of the sphere is given by L and R corresponds to the time t. The sphere

is now partitioned in cells of size δ, where the lattice cut-off is related to the radius R

through the UV-IR correspondence via δ = L2/R. Hence the number of cells on the sphere

is given by: (L/δ)d−2 = (R/L)d−2. Further, the factor c/12 counts the number of quantum

mechanical degrees of freedom contained in each cell. This simple argument due to [16]

holds in any number of dimensions for generic holographic CFTs.

1The quantities C and 1/ε correspond to Ndof and δ in [16].
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The second quantity ε determines the energy that is required to excite one UV degree

of freedom and is inversely related to the UV regulator δ in the boundary theory: ε ∼ 1/δ.

Before determining its precise value, let us first discuss the third quantity N . The total

energy of a CFT state is through the operator-state correspondence determined by the

scaling dimension ∆ of the corresponding operator. The holographic dictionary relates the

dimension ∆ to the mass of the dual field in the bulk: for large scaling dimensions ∆ � d

the relationship is ∆ ∼ ML. Hence ∆ counts the energy in terms of the IR cut-off scale

1/L. The quantity N can be viewed as the UV analogue of ∆: it counts the energy E in

terms of the UV cut-off ε

E = N ε . (2.4)

Here E represents the energy of the microscopic theory The excitation number N is linearly

related to the conformal dimension, where the linear coefficient is given by the ratio of the

IR and UV energy scales.

By increasing the energy E one starts to excite more degrees of freedom in the mi-

croscopic theory and eventually all UV degrees of freedom are excited on the holographic

surface at radius R. This corresponds to the creation of a black hole of size R. We will

choose to normalize ε so that for a black hole we precisely have N = C. The asymptotic

form of the AdS-Schwarzschild metric is given by (2.1) with blackening factor2

f(R) =
R2

L2
− 16πGdE

(d− 2)Ωd−2Rd−3
. (2.5)

It is now easy to deduce the normalization of ε for which N = C when f(R) = 0. We find

that for super-AdS scales the excitation energy ε of the UV degrees of freedom equals

ε = (d− 2)
R

L2
for R� L . (2.6)

As we will discuss in section 2.3, all the three quantities, C, N and ε can be defined

geometrically, where the latter two make use of an appropriately chosen reference metric.

Before discussing these geometric definitions, let us first consider the specific example of

AdS3/CFT2, where our definitions will become more transparent. This case will also be of

crucial importance to our study of holography in other spacetimes.

2.2 An example: AdS3/CFT2

To illustrate the meaning of the various quantities introduced in the previous section, let us

consider the AdS3/CFT2 correspondence. In particular we will further clarify the relation

between C and N , on the one hand, and the central charge c and scaling dimensions ∆ of

the 2d CFT, on the other hand. The metric for a static asymptotically AdS3 spacetime

can be written as

ds2 =

(
r2

L2
− ∆− c/12

c/12

)
dt2 +

(
r2

L2
− ∆− c/12

c/12

)−1
dr2 + r2dφ2 , (2.7)

2Here we consider large black holes with horizon size Rh � L, so that we can ignore the constant term

in f(R). We will include this term later in section 5 and discuss its microscopic interpretation.
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where c and ∆ are the central charge and the scaling dimension in the dual 2d CFT. ∆ = 0

corresponds to empty AdS; ∆ ≤ c/12 is dual to a conical defect in AdS3; and for ∆ ≥ c/12

the metric represents a BTZ black hole [23]. The holographic dictionary between AdS3

and CFT2 is well understood and states that (see [24] for a review)

central charge:
c

12
=

2πL

16πG3
,

scaling dimension: ∆− c

12
= EL .

(2.8)

The first equation is just the Brown-Henneaux formula, and the second equation is the

standard relation between the energy on the cylinder and the scaling dimension ∆. The

energy E corresponds to the ADM energy of the bulk spacetime. The holographic quantities

C and N for AdS3 are easily determined from the expressions (2.3) and (2.4)

number of d.o.f.: C =
2πr

16πG3
=

c

12

r

L
,

excitation number: N = E
L2

r
=
(

∆− c

12

) L
r
.

(2.9)

Note that excitation number can be negative, because E is negative for empty AdS and the

conical defect spacetime. The reason for the increase in the number of degrees of freedom

by r/L is that the cut-off CFT at radius r allows each field theoretic degree of freedom to

have r/L modes. Holographic renormalization (or the UV-IR connection) now tells us that

for larger distances in the bulk the modes in the cut-off CFT carry a higher energy, given

by r/L2. This means that at larger distances fewer UV degrees of freedom are excited for

a state with fixed energy. Therefore, the excitation number at a radius r > L decreases by

a factor L/r with respect to the value at the AdS radius.

We see that C and N are rescalings of the central charge and the scaling dimension,

respectively. Since the rescaling is exactly opposite, the Cardy formula in 2d CFT remains

invariant, and can hence also be expressed in terms of C and N

S = 4π
√
CN = 4π

√
c

12

(
∆− c

12

)
. (2.10)

To see that this formula correctly reproduces the Bekenstein-Hawking entropy (1.1) [25]

one can use that the following relations hold at the horizon of the BTZ black hole

∆− c

12
=
r2h
L2

c

12
hence .N = C. (2.11)

Hence our definition of N indeed equals C on the horizon for this 3d situation.

2.3 Geometric definition and generalization to sub-AdS scales

The number of degrees of freedom, UV cut-off energy and excitation number, as defined

above, are general notions that in principle apply to any microscopic theory. A natural

question is whether these concepts can be generalized to the microscopic theories on other

holographic screens than those close to the AdS boundary. Our reason for introducing the
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t

S

Figure 1. A large causal diamond in AdS consisting of the domain of dependence of the ball

bounded by the holographic screen S. The ball and the screen lie in the t = 0 time slice, and are

centered around the origin. The distance of S to the AdS boundary can be characterized by the

time t at which the outward future lightsheet reaches the AdS boundary.

quantities C, N and ε is that they can be defined in terms of the local geometry near the

holographic surface S. In this subsection we will present this geometric definition and verify

that it holds for large holographic screens. Our next step is to postulate that the same

geometric definition holds for other situations, in particular for the microscopic theory that

lives on holographic screens at sub-AdS scales.

Our geometric definition makes use of the causal diamond that can be associated to the

holographic screen. Causal diamonds play an important role in the literature on holography

because of their invariant light-cone structure [14, 15, 26, 27]. Given a spherical holographic

screen S with radius R on a constant time slice of a static spherically symmetric spacetime,

the associated causal diamond consists of the future and past domain of dependence of the

ball-shaped region contained within S. For a large holographic screen in an asymptotically

AdS spacetime, the corresponding causal diamond is depicted in figure 1. As shown in this

figure, the distance to the AdS boundary can be parametrized by the time t at which the

extended lightsheets of the diamond intersect the boundary. The coordinate t corresponds

to the global AdS time and also gives a normalization of the local time coordinate near the

screen S. It is with respect to this time coordinate that we define the energy E.

For holographic screens at sub-AdS scales we will introduce a similar causal diamond.

Except in this situation we define the time coordinate t with respect to the local reference

frame in the origin. For empty AdS this time coordinate is again given by the global AdS

time t. The causal diamond associated to a holographic screen at a small radius R� L is

depicted in figure 2.

Let us consider the rate of change of the number of degrees of freedom C along a null

geodesic on the future horizon of the diamond. The time t can be used as a (non-affine)

parameter along the null geodesic. For metrics of the form (2.1) it is related to the radius R

by dt = ±dR/f(R), where the sign is determined by whether the null geodesic is outgoing

(=plus) or ingoing (=minus). The rate of change with respect to t can thus be positive

or negative depending on whether the time t is measured with respect to the origin or

– 7 –
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t

S

Figure 2. A small causal diamond in AdS consisting of the domain of dependence of the ball

bounded by the holographic screen S. The ball lies in the t = 0 time slice, and is centered around

the origin. The location of S with respect to the origin can be parametrized by the time t at which

the inward future lightsheet arrives at the origin.

infinity, respectively. Our definitions for the excitation number N and excitation energy ε

are chosen such that the following identity holds∣∣∣∣dCdt
∣∣∣∣ = (C − N ) ε , (2.12)

where the absolute value is taken to ensure that ε is positive. This definition is motivated

by the fact that the quantity dC/dt vanishes on the horizon of a black hole, if the horizon

size is equal to R. In this way it follows that on the horizon N = C.
The identity (2.12) is not yet sufficient to fix the values of N and ε. We need to

specify for which geometry the excitation number N is taken to be zero. In other words,

we need to introduce a reference metric that defines the state of zero energy. One could

take this to be the empty AdS geometry. However, to simplify the equations and clarify

the discussions in the subsequent sections we will take a different choice for our reference

geometry. For super-AdS regions the reference metric can be found by only keeping the

leading term for large R in the function f(R). Whereas for sub-AdS regions with R � L

we take the Minkowski metric to be the reference metric. Thus for these two cases the

reference geometry has the form (2.1) where the function f(R) is given by

f0(R) =

{
1 for R� L ,

R2/L2 for R� L .
(2.13)

This geometry defines the state with vanishing energy. We also take it to be the geometry

where N is equal to zero. From (2.12) we thus conclude that the excitation energy is

defined in terms of the reference metric via

ε =

∣∣∣∣ 1C dCdt
∣∣∣∣
0

. (2.14)
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We can now use the fact that in the reference geometry dt = ±dR/f0(R) to compute the

excitation energy explicitly

ε =
f0(R)

C
dC
dR

=

{
(d− 2)/R for R� L ,

(d− 2)R/L2 for R� L .
(2.15)

For small causal diamonds the dependence on R for the excitation energy is quite natural,

because the radius of the holographic screen is effectively the only scale there is. What

is remarkable, though, is that the excitation energy increases when the size of the screen

decreases. This is opposite to the situation at super-AdS scales, because in that case the

excitation energy increases with the size of the screen.

Another way to arrive at this identification is to use the fact that the metric outside

a mass distribution at sub-AdS (R � L) as well as super-AdS scales (R � L) takes the

form (2.1) where the blackening function is given by

f(R) = f0(R)− 16πGdE

(d− 2)Ωd−2Rd−3
. (2.16)

This equation allows us to verify our geometric definition (2.12) of the excitation energy

ε per degree of freedom and excitation number N , and show that it is consistent with the

identity (2.4) that expresses the total excitation energy as E = N ε. Using the fact that

along a null geodesic dt = ±dR/f(R) one can derive the following relation3∣∣∣∣dCdt
∣∣∣∣ =

∣∣∣∣dCdt
∣∣∣∣
0

− E . (2.17)

The first term on the right hand side is the contribution of the reference spacetime with

blackening factor f0(R). By inserting the geometric definition (2.14) for ε and the def-

inition (2.4) of N into the equation above it is easy to check that this reproduces the

relation (2.12). In the following section we will provide further evidence for these relations

for C, N and ε by showing that the super-AdS and sub-AdS regions can be related through

a conformal mapping that preserves the number of degrees of freedom C as well as the

excitation number N .

3 Towards holography for non-AdS spacetimes

We start this section by presenting two related conjectures that allow us to connect the

physical properties of the microscopic theories that live on holographic screens in different

spacetimes. In particular, we argue that the holographic theories for two spacetimes that

are related by a Weyl transformation have identical microscopic properties when the Weyl

factor equals one on the corresponding holographic screens. We will apply this conjecture to

obtain insights into the holographic theories for non-AdS spacetimes by relating them to the

familiar case of AdS holography. We are especially interested in the holographic properties

3A similar observation was made by Brewin [28], who noted that the ADM mass is proportional to the

rate of change of the area of a closed (d− 2)-surface with respect to the geodesic distance.
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of sub-AdS regions, Minkowski and de Sitter space. We will describe a conformal mapping

between AdS space (at super-AdS scale) on the one hand and AdS space (at sub-AdS

scale), dS space or Minkowski space on the other hand. We will use this mapping to derive

a correspondence between the holographic descriptions of these spaces. Specifically, we will

identify the quantities N and C in the two conformally related spacetimes.

Other approaches towards non-AdS holography which also invoke holographic screens

include the early work [29] and more recently the Holographic Space Time framework [26,

27]. A separate line of research has focused on the generalization of the Ryu-Takayanagi

proposal in AdS/CFT [30, 31] to more general spacetimes. In particular, suitable holo-

graphic screens may be used to anchor the bulk extremal surfaces, whose areas are conjec-

tured to provide a measure for the entanglement entropy of the holographic dual theory.

See for example [32–34] for both bulk and boundary computations of this proposal. In ad-

dition, the work of [35–38] uses geometric aspects of carefully defined holographic screens

to both establish and infer properties of the holographic entanglement entropy. In the

conclusion, we will point out how some of the conclusions of these works overlap with

our own.

3.1 A conjecture on the microscopics of conformally related spacetimes

In the previous section we showed that the number of holographic degrees of freedom C is

given by the area of the holographic screen, and hence is purely defined in terms of the

induced metric on S. Our definitions of N and ε, on the other hand, depend in addition

on the geometry of the reference spacetime. Schematically we have

C = C (g,S) , ε = ε (g, g0,S) , N = N (g, g0,S) , (3.1)

where g is the metric of the spacetime under consideration, and g0 is the metric of the

reference spacetime. The presented definitions can in principle be applied to any static,

spherically symmetric spacetime. The goal of this section is to gain insight into the nature

and properties of these holographic degrees of freedom by comparing holographic screens

in different spacetimes with the same local geometry. For this purpose it is important to

note that the quantities C and N are purely expressed in terms of the (reference) metric

on the holographic screen S, without referring to any derivatives. One has for the case of

spherically symmetric spacetimes

C =
1

16πGd

∫
S
Rd−2 dΩd−2 and

N
C = 1− f(R)

f0(R)

∣∣∣
S
, (3.2)

where R is the radius of the spherical holographic screen. Here the second equation follows

from combining (2.12), (2.15) and (2.17).

The fact that C and N can be expressed purely in terms of the metric and not its

derivative, suggests that for holographic screens in two different spacetimes these quantities

are the same if the local metrics on these holographic screens coincide.

Conjecture I. The holographic quantum systems on two holographic screens

S and S̃ in two different spacetime geometries g and g̃, and with reference
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metrics g0 and g̃0, have the same number of (excited) degrees of freedom if the

(reference) metrics are identical on the holographic screens S and S̃:

g|S = g̃|S̃ , g0|S = g̃0|S̃ ⇒ C(g,S) = C(g̃, S̃), N (g, g0,S) = N (g̃, g̃0, S̃) .

The excitation energy ε will in general not be the same. In the specific cases discussed

below, we find that ε is of the same order of magnitude in the two spaces, but in general

differs by a (dimension dependent) constant factor of order unity. This motivates us to add

to the conjecture that, in the specific cases we study, the excitation energies in the dual

quantum systems differ only by an order unity constant: ε(g, g0,S) ∼ ε(g̃, g̃0, S̃).

Our goal is to study the general properties of the microscopic theories that live on not

just one, but a complete family of holographic screens in a given spacetime with metric g.

By a complete family we mean that the holographic screens form a foliation of the entire

spacetime. For a spherically symmetric spacetime one can choose these to be all spherical

holographic screens centered around the origin. A particularly convenient way to find a

mapping for all holographic screens is if the spacetime with metric g is conformally related

to g̃ via a Weyl rescaling

g = Ω2g̃ , (3.3)

in such a way that the holographic screens S inside the spacetime geometry g precisely

correspond to the loci at which the conformal Weyl factor Ω takes a particular value. In

other words, the holographic screens are the constant-Ω slices. We denote this constant

with ΩS , so that S corresponds to the set of points for which Ω = ΩS . We thus have

(Ω− ΩS)|S = 0 (3.4)

The screens S̃ inside the geometry g̃ are mapped onto a family of rescaled screens inside

the rescaled geometries Ω2g̃, where here Ω is taken to be constant on the g̃ geometry. We

will collectively denote the family of these screens by S̃. The conformal map relates the

screen S inside the geometry g to one representative of this family, namely its image in the

geometry Ω2
S g̃. We will use the same notation for the holographic screen S and its image

under the conformal mapping, and reserve the notation S̃ for the family of screens inside

the complete family of rescaled geometries Ω2g̃. In fact, one can view S̃ as the family (or

equivalence class) of rescalings of the representative S. Together the set of all families S̃
forms a foliation of the family of rescaled g̃-geometries, while the spacetime with metric g is

foliated by the particular representative S. In this way the latter spacetime can be viewed

as a ‘diagonal’ inside the family of rescaled geometries Ω2g̃ defined by taking Ω = ΩS . This

situation is illustrated in figure 3.

An additional requirement on the conformal relation between the two spacetimes is

that the reference metrics g0 and g̃0 are related by the conformal transformation

g0 = Ω2g̃0 (3.5)

with the same Weyl factor Ω. In this situation each screen S in the spacetime with metric

g has a corresponding holographic screen in the spacetime with metric Ω2
S g̃ satisfying the
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⌦
⌦ = ⌦S

⌦S0

S̃0 S̃

S0

g-geometry

rescaled
g̃-geometry

Figure 3. The family of rescalings of the geometry g̃ contains the geometry g as a ‘diagonal’

described by the equation Ω = ΩS . A horizontal line corresponds to a constant rescaling of g̃:

ΩS0 g̃. On the holographic screen S0 the two geometries coincide: g|S0 =
(
Ω2
S0 g̃
)
|S0 . By repeating

this process for all values of Ω a foliation of the geometry g is constructed and represented by

the diagonal.

requirements of our first conjecture. Namely, one has

g|S =
(
Ω2g̃

)
|S =

(
Ω2
S g̃
)
|S (3.6)

and a similar relation holds for the reference metrics. The rescaling with ΩS changes the

area of the holographic screen in the g̃ geometry, and hence its number of degrees of freedom

C, so that it precisely matches the number on the screen S in the geometry g.

We are now ready to state our second conjecture

Conjecture II. For two conformally related spacetimes g and g̃ with g = Ω2g̃

the holographic quantum systems on a holographic screen S in the spacetime

with metric g and its image in the spacetime with metric Ω2
S g̃ have the same

number of (excited) degrees of freedom:

g = Ω2g̃ ⇒ C(g,S) = C(Ω2
S g̃,S), N (g, g0,S) = N (Ω2

S g̃,Ω
2
S g̃0,S) .

In the rest of the paper we will postulate that conjecture II is true and apply it to gain in-

sights into the microscopic features of the holographic theories for a number of spacetimes,

including de Sitter and Minkowski space. Since the metrics on the holographic screens S
coincide, one can imagine cutting the two spacetimes with metric g and Ω2

S0 g̃ along the

slice S0 and gluing them to each other along S. In figure 3 this amount to first going along

the diagonal Ω = ΩS and then continue horizontally along Ω = ΩS0 . The resulting metric

will be continuous but not differentiable. Hence, to turn this again into a solution of the

Einstein equations, for instance, one should add a mass density on S, where we assume

that the geometries g and Ω2
S g̃ are both solutions.
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3.2 An example: AdSd × Sp−2 ∼= AdSp × Sd−2

Let us illustrate the general discussion of the previous subsection with an example. In

appendix A we discuss a class of spacetimes that are all conformally related to (locally)

AdS spacetimes. One particular case is the conformal equivalence

AdSd × Sp−2 ∼= AdSp × Sd−2 . (3.7)

The holographic screens S have the geometry of Sd−2 × Sp−2. Hence, the conformal map

exchanges the spheres inside the AdS spacetime with the sphere in the product factor. We

identify the left geometry with g and the right with g̃, and denote the corresponding radii

by R and R̃. The AdS radius and the radius of the spheres are all assumed to be equal to

L. The Weyl factor Ω is a simple function of R or R̃. It is easy to see that

Ω =
R

L
=
L

R̃
(3.8)

since it maps the (d−2)-sphere of radius L onto one of radius R and the (p−2)-sphere

with radius R̃ to one with radius L. This equation is the analogue of (3.4). Note that the

conformal map identifies the holographic screens with radius L inside both AdS-factors.

We now come to an important observation: the conformal map relates sub-AdS scales

on one side to super-AdS scales on the other side. Hence it reverses the UV and IR

of the two spacetimes. In particular holographic screens with R̃ � L are mapped onto

screens with R� L. This means that we can hope to learn more about the nature of the

microscopic holographic theory for holographic screens in a sub-AdS geometry by relating

it to the microscopic theory on the corresponding screens in the geometry with metric Ω2g̃,

which live at super-AdS scales. First let us compare the values of the cut-off energies ε and

ε̃. For the situation with R� L and R̃� L we found in (2.15) that

ε = (d− 2)
1

R
and ε̃ = (p− 2)

R̃

L2
, hence

ε̃

ε
=
p− 2

d− 2
. (3.9)

We have thus verified that the energy cut-offs ε̃ and ε, before and after the conformal

map are of the same order of magnitude, but differ by a dimension dependent factor. The

inversion of the dependence on the radial coordinate is qualitatively explained by the fact

that the conformal mapping reverses the UV and IR of the two AdS geometries.

Next let us compare the central charges of the two CFTs. Since we imposed that the

number of degrees of freedom of the microscopic theories are the same on corresponding

holographic screens, it follows that the central charges of the two sides must be the same

at R = R̃ = L. Namely, for this value of the radius the number of holographic degrees of

freedom is equal to the central charge of the corresponding CFT. Since we keep the value

of the d+p−2 dimensional Newton’s constant Gd+p−2 before and after the conformal map

fixed, one can indeed verify that the central charges c and c̃ agree when the AdS radius is

the same on both sides:

c

12
=

Ωd−2L
d−2

16πGd
=

Ωd−2Ωp−2L
d+p−4

16πGd+p−2
=

Ωp−2L
p−2

16πGp
=
c̃(L)

12
. (3.10)
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Here Gd denotes Newton’s constant on AdSd, while Gp equals Newton’s constant on AdSp.

We indicated that the central charge c̃ is computed for the R = R̃ = L slice. But how does

the number of degrees of freedom change as we move to say R = R0 � L? This leads to

a rescaling of the geometry on the right hand side with Ω0 = R0/L, and hence it changes

the curvature radius of the AdSp geometry and correspondingly the value of the central

charge c̃. Note that the radius of the Sd−2 is rescaled as well and now equals R0: this

affects the relationship between the Newton constants Gd+p−2 and Gp. The radius of the

Sp on the left hand side is unchanged, however, so the relation between Gd+p−2 and Gd is

still the same. In this way one finds that the central charge of the CFT corresponding to

the rescaled AdSp × Sd−2 geometry becomes

c̃(R0)

12
=

Ωp−2R
p−2
0

16πGp
=

Ωd−2Ωp−2R
d+p−4
0

16πGd+p−2
=

Ωd−2R
d−2
0

16πGd

(
R0

L

)p−2
. (3.11)

Thus the effective central charge of the CFT corresponding to the rescaled g̃ geometry

depends on the radius R0. Note that in the left geometry g we are at sub-AdS scales, while

on the right R̃0 = L2/R0 � L. This means that on the right we can use our knowledge

of AdS/CFT to describe the microscopic holographic degrees of freedom. Our conjecture

II states that the general features of the microscopic theories on both sides agree. In this

way we can learn about the microscopic theories at sub-AdS scales.

As shown in appendix A, one can construct more general conformal equivalences that

instead of AdSd contain Minkd or dSd. All these geometries can, after taking the product

with Sp−2, be conformally related to again a product manifold of a locally AdSp geome-

try with a Sd−2. The required conformal mappings may be obtained via an embedding

formalism, as explained in detail in the appendix.

In the rest of the paper we will focus on the particular case p = 3. For this situation

we have even more theoretical control, because of the AdS3/CFT2 connection. Note that

in this case the central charge c̃(R0) in (3.11) grows as Rd−10 and hence as the volume.

Another important reason for choosing p = 3 is that the (p−2)-sphere becomes an S1,

whose size can be reduced by performing a ZN orbifold with large N , while keeping our

knowledge about the microscopic degrees of freedom. The latter construction, as well as

the significance of the volume law for the central charge, will be explained in section 4.

3.3 Towards holography for sub-AdS, Minkowski and de Sitter space

In subsection 3.1 we explained how to foliate a spacetime metric g in holographic screens by

using a family of Weyl rescaled metrics g̃. We will now apply this construction to the cases

of sub-AdSd, Minkd and dSd with a Kaluza-Klein circle, by making use of the following

conformal equivalences (see appendix A)

AdSd × S1 ∼= AdS3 × Sd−2 ,
Minkd × S1 ∼= BTZE=0 × Sd−2 ,

dSd × S1 ∼= BTZ × Sd−2 .
(3.12)

For all these examples, the Weyl factor Ω is given by (3.8). In this and the following

sections we will denote the coordinate radius of AdS3 by r instead of R̃, while we keep R
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as the radius in the spaces on the left hand side of (3.12). Earlier versions of the conformal

map between dSd × S1 and BTZ × Sd−2 appeared in [39, 40].

The conformal equivalences can be verified easily using the explicit metrics. One can

represent the metrics of the spacetimes on the right hand side of (3.12) as

ds̃2 = −
(
r2

L2
− κ
)
dt2 +

(
r2

L2
− κ
)−1

dr2 + r2dφ2 + L2dΩ2
d−2 , (3.13)

with κ = −1, 0 or +1. Here κ = −1 describes pure AdS3 × Sd−2 in global coordinates;

κ = 0 corresponds to the so-called massless BTZ black hole (for which E = 0 and rh = 0);

and κ = +1 represents the metric of a BTZ black hole with horizon radius rh = L.

We now rescale the metric by a factor L2/r2 and subsequently perform the coordinate

transformation R = L2/r:

ds2 = Ω2ds̃2 Ω =
R

L
=
L

r
. (3.14)

This leads to the metrics

ds2 = −
(

1− κR
2

L2

)
dt2 +

(
1− κR

2

L2

)−1
dR2 +R2dΩ2

d−2 + L2dφ2 , (3.15)

with

κ =


−1 for AdSd × S1

0 for Minkd × S1

+1 for dSd × S1

. (3.16)

An important property of these conformal equivalences is that the radius is inverted, i.e.

R = L2/r. The inversion of the radius means, for example, that asymptotic infinity in

AdS3 is mapped to the origin in AdSd, and vice versa. Note also that the horizon of the

BTZ black hole (r = L) is mapped onto the horizon of dSd space (R = L).

On the AdS3/BTZ side the different values of κ correspond to different states in the

dual two-dimensional CFT. One can read off the scaling dimensions by comparing the

metric (3.13) with the asymptotically AdS3 metric (2.7): ∆ = c/12 (1 + κ). Using this, we

rewrite the conformally rescaled metric as

ds2 =
R2

L2

[
−
(
r2

L2
−∆− c/12

c/12

)
dt2+

(
r2

L2
−∆− c/12

c/12

)−1
dr2 + r2dφ2+L2dΩ2

d−2

]
. (3.17)

This metric turns into (3.15) for the following values of the scaling dimension:

∆ = 0 : anti-de Sitter space ,

∆ =
c

12
: Minkowski space ,

∆ =
c

6
: de Sitter space .

(3.18)

The physical implications of these observations will be discussed further below.
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AdSd

AdS3

⇥
S1

⇥
Sd�2

R
=

0r
=

0 R0 ⇥
S1

⇥
Sd�2

BTZ

R0

R
=

0

dSddSd
⇥
S1

R0

R
=

0

r = 0

Minkd
⇥
S1

BTZ

⇥
Sd�2

(E=0)

R
=

0

r h
=
0

R0

Figure 4. The first figure depicts, from left to right, the gluing of the [0, r0] region of Weyl rescaled

AdS3 × Sd−2 to the [0, R0] region of AdSd×S1. The second figure illustrates, from left to right,

the gluing of the [0, r0] region of massless (Weyl rescaled) BTZ × Sd−2 to the [0, R0] region of

Minkd × S1. Finally, the third figure shows the gluing of the [0, r0] region of (Weyl rescaled)

BTZ × Sd−2 to the [0, R0] region of dSd × S1.

To connect to our discussion in the previous section, consider our family of Weyl

rescaled AdS3 spacetimes obtained by taking a constant value of R = R0. The AdSd
slice at R = R0 corresponds to the r = r0 ≡ L2/R0 slice in the Weyl rescaled AdS3

geometry. We now glue the region 0 ≤ r ≤ r0 of the AdS3/BTZ × Sd−2 geometry to

the (A)dSd/Minkd × S1 geometry, as illustrated in figure 4. We take R0 < L, so that

the position at which the spacetimes are glued is at super-AdS3/BTZ and sub-(A)dSd
scales. This allows us to interpret the microscopic description of sub-(A)dSd slices from a

super-AdS3 perspective through our conjecture. For this purpose we just need to give an

interpretation to the metric (3.17) for ` ≤ R0 ≤ L. This will be the main approach that

we employ in section 4.

However, already at this level we will make a couple of general remarks. First of all,

the metric within brackets is a locally AdS3 spacetime. At super-AdS3 scales we can thus

use our knowledge of AdS3/CFT2 to interpret the geometry in terms of a microscopic

theory. As discussed in section 3.2, the rescaling of the metric with the scale factor R2
0/L

2

effectively changes the curvature radius of the spacetime. In the microscopic quantum

system this implies that the central charge of the CFT2 now depends on the radius R0 in

the d-dimensional spacetime. This R0-dependence is given by the p = 3 case of the general

formula (3.11). In fact, the central charge scales with the volume of the ball inside the

holographic surface in AdSd. As we will explain, the number of degrees of freedom still

grows like the area, as it should according to the holographic principle.

Our goal in the remaining sections is to illuminate the nature of the holographic de-

grees of freedom that describe non-AdS spacetimes, by exploiting our conjecture and the

conformal equivalence with the AdS3 spacetimes. In particular we like to explain the ori-

gin of the reversal of the UV-IR correspondence at sub-(A)dS scales. The usual concept of

holographic renormalization takes us from the UV to the IR. In the sub-(A)dS case this
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means we have to start from a small radius and increase the radius as we go from UV to

IR. The holographic principle then tells us that the number of degrees of freedom actually

grows towards the IR. This is a rather unusual property compared with the familiar case

of AdS/CFT, where as one moves from the UV to the IR one is integrating out degrees

of freedom. In the case of sub-AdS or de Sitter holography, our conformal map suggests

that we integrate in degrees of freedom as we move from the UV to the IR (a similar point

of view was proposed in [37, 39]). In the following section, we will describe a mechanism

by which UV holographic degrees of freedom at the center of sub-AdS or de Sitter can be

embedded in the IR holographic degrees of freedom at the (A)dS radius, thus still realizing

the holographic principle.

4 A long string interpretation

In this section we will give a microscopic interpretation of the degrees of freedom of the

holographic quantum system describing the metric (3.17). The identification of the correct

degrees of freedom enables us, through our conjecture II, to make some precise quantitative

and qualitative statements about the holography for sub-AdS scales, Minkowski space and

de Sitter space. It will turn out that the microscopic quantum system underlying the metric

in (3.17) has an interpretation in terms of so-called ‘long strings’. We will constructively

arrive at these long strings as follows. We begin in the UV with a small number of degrees

of freedom described by a seed CFT with a small central charge. As we go to larger

distances we start taking symmetric products of this seed CFT. To arrive at the correct

value of the number of degrees of freedom and excitation energy, we apply a so-called long

string transformation. In this way we are able to build up the non-AdS spacetimes from

small to large distances.

In our construction we make use of three different length scales: a UV scale, an IR

scale and an intermediate scale. These different scales are denoted by:

`: UV scale = short string length

R0: intermediate scale = fractional string length

L: IR scale = long string length

The terminology ‘short’, ‘fractional’ and ‘long’ strings will be further explained below in

our review of the long string phenomenon. We will take R0 and L to be given by integer

multiples of the short string length `

R0 = k` and L = N` . (4.1)

The microscopic holographic theory can be described from different perspectives, and de-

pends on which degrees of freedom one takes as fundamental: the short, the fractional

or the long strings. It turns out that the value of the central charge depends on which

perspective one takes. The metric that was written in section 3.3 will arise in the long

string perspective. However, the short and fractional string perspective will turn out to
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give useful insights as well. In the following we will therefore use the string length as a sub-

script on the central charge to indicate in which perspective we are working. For instance,

the central charge in the fractional string perspective is written as cR0(·), where the value

between brackets is a measure for the size of the symmetric product under consideration.

As we will review in section 4.1, the long string phenomenon relates the central charges

and spectra of these differently sized strings according to

cL(R0) =
k

N
cR0(R0) =

1

N
c`(R0) . (4.2)

The relevance of the fractional string perspective consists of the fact that its central charge

always equals the total number of microscopic degrees of freedom C associated to a holo-

graphic screen at radius R0. Nevertheless, we will argue below that the long string picture

is more fundamental. We will now start with explaining the long string phenomenon and

these formulas in more detail, and we will also discuss aspects of the corresponding dual

AdS3 geometries.

4.1 The long string phenomenon

The long string phenomenon was originally discovered in [18] and developed in detail in [19].

The starting point is a so-called ‘seed CFT’ with central charge c`. Consider now the CFT

that is constructed by taking a (large) symmetric product of the seed CFT, i.e.

CFTM/SM .

This symmetric product CFT has central charge c`(M) = Mc`. Operators in this theory

may now also have twisted boundary conditions in addition to ordinary periodic ones.

The resulting twisted sector, labeled by a conjugacy class of SM , gives rise to long string

CFTs. The word ‘long’ refers to the fact these sectors behave as if they were quantized on

larger circles than the original seed CFT. For instance, the twisted sector that corresponds

to the conjugacy class consisting of M -cycles gives rise to a single long string that is M

times larger than the seed (or short) string. As a result, the spectrum of modes becomes

fractionated because the momenta are quantized on a circle of larger radius. Moreover, the

central charge is reduced since the twisted boundary condition sews together independent

short degrees of freedom into a single long degree of freedom. For consistency, the spectrum

of the long string is subjected to a constraint

P = L0 − L̄0 = 0 mod M.

This implies that the total momentum of a state on the long string should be equal to the

momentum of some state on the short string. However, due to its fractionated spectrum

there are many more states on the long string for any given total momentum. In fact,

in a large symmetric product CFT the dominant contribution to the entropy of a certain

macrostate comes from the longest string sector [18].

In more detail, to project onto a long string sector of size N , one inserts degree N

twist operators in the symmetric product CFT

(σN )M/N |0〉 , (4.3)
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where N is assumed to be a divisor of M . The twist operator σN has conformal dimension

∆` =
c`(M)

12

(
1− 1

N2

)
. (4.4)

The insertion of the twist operators has, as mentioned above, two important effects: it

reduces the number of UV degrees of freedom and furthermore lowers their excitation

energy. The reduction of the number of degrees of freedom is due to the fact that the

spectrum becomes fractionated, which lowers the number of degrees of freedom by a factor

N . The long string phenomenon thus operates as

∆L −
cL(M)

12
= N

(
∆` −

c`(M)

12

)
,

cL(M) =
1

N
c`(M) .

(4.5)

Note that the conformal dimension and the central are rescaled in opposite direction. This

implies in particular that the Cardy formula (2.10) is invariant under the long string trans-

formation (4.5). Since the long string central charge is smaller, the vacuum (or Casimir)

energy in the CFT2 is lifted to a less negative value. Moreover, the state (4.3) in the short

string perspective coincides with the ground state in the long string CFT, as can easily be

verified by inserting (4.4) into (4.5)

∆L = N

(
∆` −

c`(M)

12

)
+
cL(M)

12
= 0 . (4.6)

After having introduced the long and short string perspective, let us go to the intermediate

or fractional string perspective. Instead of applying the long string transformation, one

could also consider an intermediate transformation, replacing N in (4.5) by k <N . This

would only partially resolve the twist operator, which means that there still remains a non-

zero conical deficit. The resulting fractional strings have size R0 = kL/N . In this case, a

twist operator will remain, whose conformal dimension is smaller than (4.4). Its presence

indicates that the fractional string of length R0 does not close onto itself and should be

thought of as a fraction of a long string of length L. The spectrum and central charge of

the fractional string are related to those of the short string by

∆R0 −
cR0(M)

12
= k

(
∆` −

c`(M)

12

)
,

cR0(M) =
1

k
c`(M) .

(4.7)

The dimension of the remaining twist operator is obtained by inserting (4.4) into the

equation above

∆R0 =
cR0(M)

12

(
1− k2

N2

)
. (4.8)

We now turn to the AdS side of this story. The state (4.3) is dual to a conical defect of

order N in AdS3 [41]. The conical defect metric is simply given by the metric for empty

AdS3 with the following identification for the azimuthal angle

φ ≡ φ+ 2π/N , (4.9)
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where N = L/`. For now we take M = N so that L becomes the size of the longest string.

Also, it plays the role of the AdS radius, since the symmetric product central charge is

related to the AdS radius through the Brown-Henneaux formula:

c`(L) =
2L

3G3
.

Here we introduced a slightly different notation for the symmetric product central charge

by replacing M with the corresponding AdS radius. This notation will be used in the rest

of the paper.

We can rewrite the AdS3 metric with conical defect in the following way

ds2 = −
(
r 2

L2
+ 1

)
dt2 +

(
r 2

L2
+ 1

)−1
dr2 + r2dφ2

= N2

[
−
(
r̂ 2

`2
+

1

N2

)
dt2 +

(
r̂ 2

`2
+

1

N2

)−1
dr̂2 + r̂2dφ̂2

]
,

(4.10)

where φ̂ ≡ φ̂+ 2π, and

r̂ = r/N2 and φ̂ = Nφ . (4.11)

This rewriting illustrates the geometric analog of taking an N th symmetric product and

projecting to a long string sector of size N . Indeed, the metric with curvature radius `

can be interpreted as the dual of the seed CFT. The multiplication by N2 scales up the

curvature radius to L, which is the geometric analog of the symmetric product. Moreover,

the 1/N2 term in the gtt and gr̂r̂ components is the analog of the insertion of the twist

operator in the short string perspective. Finally, the coordinate transformation leads us to

the first metric in (4.10) whose covering space is dual to the long string CFT [42].

The analog of (4.10) and (4.11) for a fractional string transformation is given by

ds2 =
N2

k2

[
−
(
r̃ 2

R2
0

+
k2

N2

)
dt2 +

(
r̃ 2

R2
0

+
k2

N2

)−1
dr̃2 + r̃2dφ̃2

]

= N2

[
−
(
r̂ 2

`2
+

1

N2

)
dt2 +

(
r̂ 2

`2
+

1

N2

)−1
dr̂2 + r̂2dφ̂2

]
,

(4.12)

where φ̃ = φ̃+ 2π/k, and

r̂ = r̃/k2 and φ̂ = kφ̃ . (4.13)

The presence of the k2/N2 is the geometric manifestation of the fact that we have not

fully resolved the twist operator. In particular, it indicates that the fractional string does

not close onto itself. Since φ̃ is periodic with 2π/k, a fractional string precisely fits on the

conformal boundary r̃ = R0 in the covering space.

In the next section, we will also be interested in changing the size of the symmetric

product. In particular, instead of multiplying the metric by N2 we will also consider

multiplication by k2. In that case, the conformal factor in front of the first metric in (4.12)

is one. This describes the AdS dual of a single fractional string. This metric and its dual

CFT interpretation will play an important role in our discussion of sub-(A)dSd.
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4.2 Sub-AdS scales

In this section we will put our conjecture II in section 3.1 to use. By employing the long

string mechanism explained in the previous section we will give an interpretation of the

holographic degrees of freedom relevant for sub-AdS scales.

We are interested in the slice R = R0 ≤ L in the AdSd × S1 metric

ds2 = −
(

1 +
R 2

L2

)
dt2 +

(
1 +

R 2

L2

)−1
dR2 +R2dΩ2

d−2 + `2dΦ2 , (4.14)

with Φ ≡ Φ + 2π. In contrast to the metric (3.15), here we have adjusted the size of the

transverse circle to ` � L in order to compactify to AdSd even at sub-AdS scales. In the

AdS3 spacetime this can be achieved by the insertion of a conical defect, as in the first

metric of (4.10). Combining the conformal map of section 3.3 with equation (4.10), we can

rewrite the metric above as

ds2 =
R2

`2

[
−
(
r̂ 2

`2
+

1

N2

)
dt2 +

(
r̂ 2

`2
+

1

N2

)−1
dr̂2 + r̂2dφ̂2 + `2dΩ2

d−2

]
, (4.15)

with φ̂ ≡ φ̂ + 2π. Note that we have made the following identification between the radial

and angular coordinates

R =
`2

r̂
and Φ = φ̂ . (4.16)

For any fixed R = R0 we obtain an equivalence between slices in AdSd × S1 and in a

conformally rescaled AdS3×Sd−2 spacetime with conical defect. We will first consider the

case R = L to provide a CFT2 perspective on the holographic degrees of freedom at the

AdSd scale, and thereafter consider sub-AdSd scales.

Without the conformal factor and the conical defect, the AdS3 × Sd−2 metric with

curvature radius ` is dual to the ground state of a seed CFT with central charge

c`(`)

12
=

2π`

16πG3
=

A(`)

16πGd
, (4.17)

where we used 1/G3 = A(`)/Gd and 1/Gd = 2π`/Gd+1. We imagine c`(`) to be a relatively

small central charge, just large enough to be able to speak of a ‘dual geometry’. Due to the

presence of the transversal sphere, the multiplication of the seed metric by N2 now scales

up the central charge of the seed CFT by a factor Nd−1 if we choose to keep Gd fixed:

c`(L)

12
= Nd−1 c`(`)

12
. (4.18)

As explained in section 4.1, we may interpret this rescaling as taking an Nd−1-fold sym-

metric product of the seed CFT. Additionally, the 1/N2 term in the metric (4.15) signals

the presence of a twist operator in the dual CFT, that puts the system in a long string

sector of the symmetric product CFT. This reduces the central charge of the system and

fractionates the spectrum of the theory, as expressed in (4.5).

Our conjecture relates the holographic quantities in the microscopic dual of AdS3 to

those in the dual of AdSd. There are two apparent problems when we think of the short
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string degrees of freedom in the symmetric product CFT as relevant to AdSd. First,

the symmetric product central charge (4.18) expresses a volume law for the number of

holographic degrees of freedom at R = L. This number should however be related to the

central charge of the CFTd−1 which obeys an area law. Moreover, the excitation energy

required to excite the degrees of freedom at R = L should be of the order 1/L, but the

seed degrees of freedom have an excitation energy of the order ε` ∼ 1/`.

The long string phenomenon precisely resolves both of these problems. First, it reduces

the volume law for the central charge to an area law

cL(L)

12
=

1

N

c`(L)

12
=

A(L)

16πGd
. (4.19)

Simultaneously, the long string phenomenon give rises to a reduced excitation energy

εL =
1

N
ε` =

d− 2

L
. (4.20)

The factor (d − 2) arises in AdSd, as discussed around (3.9). Concluding, the quantum

system dual to the metric (4.15) at R = r = L has cL(L)/12 holographic long string degrees

of freedom, which may be excited with the lowest possible energy εL. This is consistent

with our expectations for the dual quantum system of AdSd at R = L. Since this discussion

only concerns the number of holographic degrees of freedom and their excitation energies,

our conjecture allows us to give a CFT2 interpretation of the AdSd holographic degrees

of freedom.

Next, to gain access to sub-AdSd scales, we will take R = R0 < L. In this case, the

seed metric is multiplied by k2. Analogously to the discussion above, this is interpreted as

taking a kd−1-fold symmetric product of the seed CFT. The central charge of the symmetric

product CFT is
c`(R0)

12
= kd−1

c`(`)

12
. (4.21)

Performing the coordinate transformation (4.13) on the metric (4.15), we obtain the frac-

tional string metric:

ds2 =
R2

R2
0

[
−
(
r̃ 2

R2
0

+
k2

N2

)
dt2 +

(
r̃ 2

R2
0

+
k2

N2

)−1
dr̃2 + r̃2dφ̃2 +R2

0dΩ2
d−2

]
. (4.22)

The metric with curvature radius R0 is dual to fractional strings with central charge

cR0(R0). Fractional strings provide a useful perspective on sub-(A)dS scales, since they

represent the degrees of freedom that are directly related to the holographic quantities

defined in section 2.1. For instance, using (4.7) one quickly verifies that

C =
cR0(R0)

12
. (4.23)

This shows that the fractional strings can be thought of as the sub-AdS analog of the

super-AdS holographic degrees of freedom, as discussed by Susskind and Witten. Indeed,

fractional strings have a larger excitation energy than long strings:

εR0 =
d− 2

R0
. (4.24)
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Figure 5. The degrees of freedom on the holographic screen at radius L consist of single ‘long

strings’. The degrees of freedom on holographic screens at radius R0 = k` with k < N consist of

‘fractional strings’. The total number of long (or fractional) strings is proportional to the area of

the holographic screen at radius L (or R0).

This is the same excitation energy as defined in (2.15) for sub-AdS scales. If we interpret

εR0 as the UV cut-off at sub-AdS scales, then the fractional strings are the corresponding

UV degrees of freedom. Further, the fractional string quantities are related to the number

of excitations by

N = ∆R0 −
cR0(R0)

12
. (4.25)

Similarly to [16] a thermal bath of these fractional strings at temperature εR0 creates a

black hole, and N = C translates then to fractional string quantities as ∆R0 = cR0/6. We

will come back to this in more detail in section 5.1.

Finally, we will discuss the long string perspective on sub-AdS holography. In the long

string picture the spectrum and central charge of the dual CFT are given by

∆L −
cL(R0)

12
=

N

k

(
∆R0 −

cR0(R0)

12

)
,

cL(R0) =
k

N
cR0(R0) .

(4.26)

The factor k/N in cL(R0) expresses the fact that the fractional strings only carry a fraction

of the long string central charge. Comparing with cL(L) we see that the number of long

strings at R = R0 is reduced fromNd−2 to kd−2, of which only the fraction k/N is accessible.

Geometrically one can arrive at the long string perspective by applying the coordinate

transformation (4.11) on the short string metric (4.15). In this long string metric, the

super-AdS3 radial slice r = L2/R0 corresponds to the sub-AdSd slice R = R0. From the

perspective of the long string we may therefore excite more modes. In particular, the lowest

energy excitation on the fractional string corresponds to the higher excited state on the

long string:

εR0 =
N

k
εL. (4.27)
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In this sense, one can think of the excitations on fractional strings as bound states of the

lowest energy excitations on the long strings. This also explains that in the long string

perspective the total number of degrees of freedom is still given by an area law, as opposed

to cL(R0), since we may excite more modes per each of the cL(R0) degrees of freedom.

The explicit realization of the microscopic quantum system helps in understanding

the reversal of the UV-IR correspondence at sub-(A)dS scales. The process of taking

symmetric products and going to a long string sector achieves to integrate in degrees of

freedom while moving to the IR. More precisely, the symmetric product is responsible for

integrating in degrees of freedom, where the order of the symmetric product determines the

precise amount. The (partial) long string phenomenon then reduces the excitation energy,

realizing the step towards the IR.4 Moreover, from the AdSd perspective, it ensures that

the number of degrees of freedom is given by an area law, and hence is in accordance with

the holographic principle.

We conclude this section by giving a master formula for the Weyl rescaled geometries

we consider in this paper, which is a more refined version of (3.17):

ds2 =
R2

L2

−( r2
L2
− ∆L − cL(R)

12
cL(R)
12

)
dt2 +

(
r2

L2
− ∆L − cL(R)

12
cL(R)
12

)−1
dr2 + r2dφ2 + L2dΩ2

d−2

.
(4.28)

Here, φ ≡ φ+ 2π/N as usual and cL(R) can be obtained by combining (4.23) and (4.26):

cL(R)

12
=

Ωd−2R
d−1

16πGdL
=

A(R)

16πGd

R

L
. (4.29)

For sub-AdS, this metric is the long string version of (4.15) and ∆L = 0 accordingly. How-

ever, this formula also captures all the non-AdS geometries we will consider in subsequent

sections, and in addition provides them with a precise microscopic meaning.

4.3 Minkowski space

In this section, we briefly discuss the conformal map between massless BTZ and Minkd.

It allows us to phrase the holographic degrees of freedom relevant for Minkd in terms of

CFT2 language introduced in the previous section. Since we have discussed at length the

conformal map between AdS3 in the presence of a conical defect and sub-AdSd, it is more

convenient to think of the massless BTZ metric as the N →∞ limit of the conical defect

metric. We understand this limit as the L→∞ limit, keeping ` fixed, which on the AdSd
side is of course the limit that leads to Minkowski space.

Explicitly, the R1,d−1 × S1 metric

ds2 = −dt2 + dR2 +R2dΩ2
d−2 + `2dΦ2 (4.30)

is equivalent to the N →∞ limit of the fractional string metric (4.22), i.e.

ds2 =
R2

R2
0

[
− r̃

2

R2
0

dt2 +
R2

0

r̃ 2
dr̃2 + r̃2dφ̃2 +R2

0dΩ2
d−2

]
. (4.31)

4Note that the larger the symmetric product becomes, the further one may move to the IR.
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In particular, at R = r̃ = R0 the fractional string metric is equivalent to the R1,d−1 ×
S1 metric.

Our discussion on sub-AdS has taught us that the fundamental degrees of freedom are

long strings of size L, of which we can only access a fraction at scales R0 < L. In the case

of Minkowski space, the long strings have an infinite length. The infinite twist operator

state in the short (or fractional) string perspective corresponds to the ground state of these

infinitely long strings. Therefore, in CFT2 language Minkowski space can be thought of as

the groundstate on infinitely long strings, which also has a vanishing vacuum (or Casimir)

energy. These two aspects are reflected in the equations:

∆∞ = c∞(R0) = 0.

The vanishing of cL(R0) in the limit L→∞ can be understood from the fact that fractional

strings of finite length carry an infinitely small fraction of the central charge of an infinitely

long string.

At any finite value of R0, the number of modes that can be excited on the long string

is infinite as well, since the excitation energy εL goes to zero in the limit. This balances

cL(R0) in such a way that the total number of degrees of freedom at any radius R0 is still

finite. This is manifested in the fractional string frame, where from (4.26) it follows that

cR0(R0) = A(R0)/16πGd 6= 0 and

∆R0 −
cR0(R0)

12
= 0 . (4.32)

This implies that ∆R0 corresponds to the scaling dimension of an infinite degree twist op-

erator.

Minkowski space can also be arrived at by taking the L→∞ limit of de Sitter space.

As will become clear in the next section, in this case one can understand Minkowski space

from the massless BTZ perspective.

4.4 De Sitter space

In this section, we will argue that the microscopic quantum system relevant for sub-AdSd
holography, as studied in detail in the section 4.2, plays an equally important role in the

microscopic description of the static patch of dSd. In particular, our methods identify the

static patch dSd as an excited state in that quantum system, in contrast to AdS below its

curvature scale which was identified as the groundstate.

As explained in section 3.3, the de Sitter static patch metric times a transversal circle,

ds2 = −
(

1− R2

L2

)
dt2 +

(
1− R2

L2

)−1
dR2 +R2dΩ2

d−2 + `2dΦ2, (4.33)

is Weyl equivalent to a Hawking-Page BTZ black hole times a transversal sphere

ds2 =
R2

L2

[
−
(
r 2

L2
− 1

)
dt2 +

(
r 2

L2
− 1

)−1
dr2 + r2dφ2 + L2dΩ2

d−2

]
, (4.34)
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where again Φ ≡ Φ + 2π and φ ≡ φ + 2π`/L. The master formula (4.28) reproduces the

latter metric when ∆L = cL(R)/6.

Let us start again for R = L. The resulting BTZ metric arises holographically from

an excited state in the CFT with conformal dimension ∆L = cL(L)/6, as can for instance

be verified by the Cardy formula (2.10):

S =
2πL

4G3

`

L
. (4.35)

This is the correct entropy for the Hawking-Page BTZ black hole with a conical defect

of order N [43]. The CFT state can be interpreted as a thermal gas of long strings at

temperature T ∼ 1/L. Hence, the temperature is of the same order as the excitation

energy εL of a long string. Our conjecture now suggests that the microscopic quantum

system at the radial slice R = L in dSd, which coincides with the de Sitter horizon, should

sit in an excited state as well. In fact, we like to interpret this state, similarly as in the

CFT, as consisting of long strings, where each string typically carries only its lowest energy

excitation mode.

In the gluing of dSd × S1 and BTZ × Sd−2, as explained in section 3.3, we identify

the horizon in the former spacetime with the horizon in the latter. The entropy of the de

Sitter space can then be understood as the entropy of the CFT2 state. Using the relations

between Newton’s constants in (4.34) at the radial slice R = L,

1

G3
=
A(L)

Gd+1
,

1

Gd
=

2π`

Gd+1
,

one quickly finds that the BTZ entropy can be rewritten as:

S =
A(L)

4Gd
. (4.36)

Thus, we see that the Bekenstein-Hawking entropy for a d-dimensional de Sitter horizon

can be reproduced from the Cardy formula in two-dimensional CFT.

An important point we should stress here is the reason for why the excitation of the

sub-AdSd degrees of freedom in this case does not produce a Hawking-Page AdSd black

hole. This black hole would indeed have the same entropy as in (4.36), so what is it that

enables us to distinguish them? At the AdS scale, there is in fact nothing that distinguishes

them, so to answer this question we must turn to the microscopic quantum system that

describes sub-AdSd scales. The crucial difference is that the CFT2 state corresponding

to the AdSd black hole has a constant conformal dimension, as we will come back to in

detail in section 5.1. On the other hand, the state corresponding to a sub-dS slice has

R0 dependent conformal dimension ∆L = cL(R0)/6, and therefore has a description in

terms of the long strings in the kd−1-fold symmetric product. This is also clear from the

master formula (4.28). The dependence of the conformal dimension on R0 expresses the

fact that (part of) the excitations corresponding to de Sitter horizon are also present at

sub-dS scales. It is useful to move to a fractional string perspective, where we have:

∆R0 −
cR0(R0)

12
=
R2

0

L2

cR0(R0)

12
. (4.37)
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This formula shows that only a part of the fractional strings at scale R0 are excited, and in

particular do not create a horizon, as should of course be the case for sub-dS. It makes sense

that only a fraction of the fractional strings are excited, since the de Sitter temperature

T ∼ 1/L could only excite the longest strings with their lowest excitations.

As illustrated in figure 4, the geometric perspective on sub-dS scales glues dSd × S1

and BTZ × Sd−2 by replacing the outer region R0 <R < L in de Sitter with the region

rh < r̃ < R0 of the BTZ. The horizon size of this BTZ geometry is smaller than that of

the Hawking-Page black hole. This fact is expressed most clearly by the fractional string

version of (4.34)

ds2 =
R2

R2
0

[
−
(
r̃ 2

R2
0

− R2
0

L2

)
dt2 +

(
r̃ 2

R2
0

− R2
0

L2

)−1
dr̃2 + r̃2dφ̃2 +R2

0dΩ2
d−2

]
, (4.38)

where for R = R0 < L the horizon radius of the BTZ is given by rh = R2
0/L < L. Note

however that, as expected, the temperature of the black hole is not changed:

T ∼ rh
R2

0

=
1

L
.

Since in this case it is not the horizon of the smaller BTZ but the r̃ = R0 > rh slice that

is identified with the de Sitter slice R = R0, one could wonder if the entropy of the BTZ

can still be associated to the slice in de Sitter space. However, in terms of the 2d CFT it

is known that the entropy of a BTZ black hole is also contained in the states that live in

the Hilbert space at higher energies than the black hole temperature [44]. Our conjecture

then indeed suggests that the entropy of the smaller BTZ should also be associated to the

sub-dS slice.

The entropy of the smaller BTZ with the remaining angular deficit φ̃ ≡ φ̃ + 2π`/R0

in (4.38) is given by:

S =
2πR2

0

4G3L

`

R0
=
A(R0)

4Gd

R0

L
, (4.39)

where we used the relation 1/G3 = A(R0)/Gd+1. Hence, we see that the entropy formula

for sub-dSd scales with the volume instead of the area. From the long string perspective,

it is natural why only a fraction (R0/L)d−1 of the total de Sitter entropy arises at sub-dS

scales. As we have discussed, de Sitter space corresponds to an excited state consisting

of long strings at temperature T ∼ 1/L. At sub-dS scales, cL(R0) can be interpreted as

kd−2 fractions of long strings. It makes sense then that at the scale R = R0 only a fraction

of the energy and entropy associated to the long strings is accessible. If we apply the

Cardy formula to the state ∆L(R0) = cL(R0)/6, valid at least as long as kd−1 � N , we

recover (4.39). We rewrite the entropy to make its volume dependence explicit as:

S =
A(R0)

4Gd

R0

L
=
V (R0)

V0
where V0 =

4GdL

d− 1
. (4.40)

Note that this entropy describes a volume law and only at the Hubble scale becomes

the usual Bekenstein-Hawking entropy. It hence seems natural to associate an entropy

density to de Sitter space, which was advocated in [45]. However, the precise microscopic

interpretation of this volume law remains an open question.
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4.5 Super-AdS scales revisited

In the previous sections we have given an interpretation of the microscopic holographic

quantum system for sub-(A)dSd regions and flat space. To gain insight into sub-AdSd
holography we used a conformal map to relate its foliation in holographic screens to the

holographic screens of a family of super-AdS3 screens. At this point, we have gained

enough understanding of sub-AdSd to try to use the conformal map the other way around:

we start with a sub-AdS3 region and map it to a super-AdSd region. Even though the

AdS/CFT correspondence already gives a microscopic description of super-AdSd regions,

we will argue that this sub-AdS3 perspective could still provide useful insights into the

microscopic description of super-AdSd regions.

Let us start with the rescaled AdS3 × Sd−2 metric

ds2 =
R2

0

L2

[
−
(
r 2

L2
+ 1

)
dt2 +

(
r 2

L2
+ 1

)−1
dr2 + r2dφ2 + L2dΩ2

d−2

]
, (4.41)

where the angular coordinate has no deficit: φ ≡ φ + 2π. As should be familiar by now,

this metric at slice r0 = L2/R0 is equivalent to AdSd at R = R0 with a transversal circle

of radius L.5 We again glue the conformally equivalent spacetimes at R = R0 and r = r0,

but now we take R0 > L so that the sub-AdS3 region is mapped to a super-AdSd region.

The central charge for sub-AdSd, as in (4.26), together with the factor R2
0/L

2 in front

of the metric (4.41) imply that the “central charge” associated to super-AdSd is given by

cL(R0)

12
=

2πr0
16πG3

r0
L

(
R0

L

)d−1
=
A(R0)

16πGd

L

R0
for R0 > L . (4.42)

This formula can be interpreted as the central charge of an (R0/L)d−1-fold symmetric

product of r0 sized fractional strings. Note that this is a different quantity than the central

charge of the CFTd−1, given by formula (2.2). Only in three dimensions the two expressions

coincide and they reproduce the Brown-Henneaux formula for the central charge. The

factor L/R0 has an analogous interpretation as R0/L in the central charge at sub-AdS

scales. It expresses the fact that from the CFT2 perspective, the degrees of freedom

relevant at super-AdSd scales are fractions of long strings.

Although cL(R0) scales with Rd−30 , the total number of quantum mechanical degrees of

freedom is larger by a factor R0/L. This is because the number of available modes on the

long strings at energy scale 1/r0 = R0/L
2 is precisely R0/L. As usual, the total amount of

holographic degrees of freedom is reflected most clearly in the fractional string perspective:

N = ∆R0 −
cR0(R0)

12
=

(
∆L −

cL(R0)

12

)
L

R0
,

C =
cR0(R0)

12
=
cL(R0)

12

R0

L
.

(4.43)

Note that we found the same relations in (2.9) for the AdS3/CFT2 correspondence, but

these equations hold for general d and have a rather different interpretation, supplied by

5Since we are now working at super-AdSd scales, we do not have to worry about a small size for the

transversal S1. However, it is perhaps not justified to ignore the transversal sphere at sub-AdS3 scales.
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the sub-AdS3 perspective. The total number of degrees of freedom C is again given by an

area law.

In conclusion, we see that a sub-AdS3 perspective on super-AdSd identifies the de-

grees of freedom of the latter with symmetric products of fractional strings. As we move

outwards in AdSd the fractional string degrees of freedom become shorter and hence their

excitation energy increases. In this way, the sub-AdS3 perspective reproduces the usual

UV-IR correspondence of super-AdSd holography. We will use these results in section 5.1,

when we discuss super-AdSd black holes.

5 Physical implications

As explained above, the long string sector of a symmetric product CFT2 gives a detailed

description of the holographic degrees of freedom relevant for non-AdS spacetimes. We

now turn to a number of physical implications of this microscopic description. First, we

will derive the Bekenstein-Hawking entropy for small and large AdSd black holes from a

Cardy-like formula. Moreover, from the CFT2 point of view we will explain why small

black holes have a negative specific heat capacity and how the Hawking-Page transition

between small and large black holes can be understood. Finally, we will show that our long

string perspective reproduces the value of the vacuum energy for (A)dS spacetimes.

5.1 Black hole entropy and negative specific heat

In this section we will apply our microscopic description to small and large black holes in

AdSd. We start with the case of small black holes, whose horizon size Rh is smaller than

the AdS scale L. For this situation, we consider the metric in the master formula (4.28) for

∆L =
ML

d− 2
. (5.1)

Then, one may check that the AdS-Schwarzschild metric (with a transversal circle) follows

after making performing the usual coordinate transformation R = L2/r and Φ = Nφ:

ds2 =−
(

1+
R2

L2
− 16πGdM

(d−2)Ωd−2Rd−3

)
dt2

+

(
1+

R2

L2
− 16πGdM

(d−2)Ωd−2Rd−3

)−1
dR2+R2dΩ2

d−2+`2dΦ2, (5.2)

where Φ ≡ Φ + 2π. In particular, this implies that the holographic screen at R = R0

in AdS-Schwarzschild is equivalent to the r0 = L2/R0 screen in the metric (4.28) for ∆L

as above.

In contrast to the previous cases, this time we do not have a clear interpretation of the

AdS3 metric for any value of R. This is because for the particular value of ∆L the AdS3

metric between brackets in (4.28) contains an r(d−1)-dependent term. This fact prohibits

an analysis of AdS-Schwarzschild analogous to the previous cases. However, we propose to

overcome this difficulty by considering this metric only at a single constant slice r = rh,
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for which the gtt component is zero. This happens when

∆L −
cL(Rh)

12
=
L2

R2
h

cL(Rh)

12
, (5.3)

where we have used Rh = L2/rh. We now interpret this slice as the horizon of an ordinary

BTZ with horizon radius rh, where we make use of the fact that horizons are locally

indistinguishable [46]. In the AdSd-Schwarzschild metric, this slice becomes of course

precisely the horizon R = Rh of the AdSd black hole.

Using a fractional string phenomenon we can also express the relation above as:

∆Rh −
cRh(Rh)

12
=
cRh(Rh)

12
or N = C . (5.4)

Therefore, from the AdS3 point of view we can think of a black hole with horizon radius Rh
in AdSd as a thermal bath of (Rh/`)

d−2 fractional strings at temperature T ∼ 1/Rh. At

the AdS3 radial slice r = rh these are all available degrees of freedom, so it is very natural

that a black hole arises in the AdSd frame.

The entropy of the AdSd black hole may now be computed from a CFT2 perspective.

Indeed, applying the Cardy formula to the state in (5.3) yields

S = 4π

√
cL(Rh)

6

(
∆L −

cL(Rh)

12

)
=
A(Rh)

4Gd
. (5.5)

The CFT2 perspective tells us that, at the level of counting holographic degrees of freedom

and their excitations, the Bekenstein-Hawking formula is a Cardy formula. This perspective

may explain the appearance of a Virasoro algebra and corresponding Cardy formula found

in [47, 48].

Next we discuss large AdSd black holes, with horizon size Rh > L. For this situation

we use the results from section 4.5, where we related super-AdSd holography to sub-AdS3

physics. By inserting the relations (4.43) for N and C into (3.2) we find the following

metric for sub-AdS3 scales

ds2 =
R2

L2

−(1− r
2

L2

∆L − cL(R)
12

cL(R)
12

)
dt2 +

(
1− r

2

L2

∆L − cL(R)
12

cL(R)
12

)−1
dr2+r2dφ2+L2dΩ2

d−2

 .
(5.6)

This turns into the AdS-Schwarzschild metric if one inserts formula (5.1) for ∆L and

equation (4.42) for cL(R). The horizon equation now becomes

∆L −
cL(Rh)

12
=
R2
h

L2

cL(Rh)

12
. (5.7)

Applying the Cardy formula to this state can easily be seen to reproduce the Bekenstein-

Hawking entropy for a super-AdS black hole. This provides an explanation for the fact

that the Bekenstein-Hawking entropy for AdSd black holes can be written as a Cardy-like

formula for CFTd−1 [49]. Indeed, as for the small black holes discussed above, it shows that

the AdS black hole entropy at this level of discussion is a Cardy formula. This result also
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indicates the potential usefulness of a sub-AdS3 perspective on super-AdSd scales, even

though the latter should be completely accessible by the CFTd−1.

Finally, we comment on the Hawking-Page transition between small and large AdS

black holes [50]. The fact that a super-AdSd black hole has positive specific heat can be

understood from the AdS3 perspective in the following way. As we increase the size Rh
of the AdSd black hole, we are decreasing the radius rh in sub-AdS3. At the same time,

we are adding degrees of freedom since the metric is multiplied by an ever growing factor

(Rh/L)2 > 1. Decreasing rh at sub-AdS scales is in the direction of the UV. In other

words, the excitations have to become of larger energy since they should fit on smaller

strings. Therefore, we see that the black hole heats up as we increase its size, and hence it

has a positive specific heat. Of course, this was already well understood without referring

to AdS3. The positive specific heat namely originates from the fact that the CFTd−1
energy scale is proportional to the AdSd radial coordinate here and the number of degrees

of freedom is proportional to the area of the radial slice.

On the other hand, for sub-AdSd black holes, as we make the horizon size Rh smaller,

we are increasing rh in the super-AdS3 perspective and therefore the black hole heats up.

The decrease in the number of degrees of freedom in AdS3, even though we are moving

outwards to larger rh, is due to the factor (Rh/L)2 < 1 that multiplies the metric. Thus,

the black hole heats up as we make it smaller, which establishes the negative specific heat.

There is no clear CFTd−1 interpretation of this fact, so this is one of the main new insights

from our AdS3 perspective on sub-AdSd scales.

To conclude, the crucial aspect that leads to the negative specific heat is the fact that

the UV-IR correspondence is reversed at sub-AdS scales. Turning this around, one could

have viewed the negative specific heat of small black holes as an important clue for the

reversal of the UV-IR correspondence.

5.2 Vacuum energy of (A)dS

Finally, we give an interpretation of the vacuum energy of (A)dSd spacetime from our

CFT2 perspective. The vacuum energy density of (A)dS is related to the cosmological

constant through ρvac = Λ/8πGd and is hence set by the IR scale. However, from quantum

field theory one expects that the vacuum energy is instead sensitive to the UV cut-off,

for example the Planck scale. In our interpretation, the UV and IR scale correspond,

respectively, to the short and long string length. We will argue below that the long string

phenomenon precisely explains why the vacuum energy is set by the long string scale instead

of the short string scale.

The vacuum energy of d-dimensional (A)dS contained in a spacelike region with volume

V (R) is given by

E(A)dS
vac = ±(d− 1)(d− 2)

16πGdL2
V (R) with V (R) =

Ωd−2R
d−1

d− 1
. (5.8)

The vacuum energy of AdS is negative, whereas that of dS space is positive. This ex-

pression is obtained by multiplying the energy density ρvac = Λ/8πGd associated with the

cosmological constant Λ = −(d− 1)(d− 2)/2L2 with what appears to be the flat volume of
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the spherical region.6 We now want to a give a microscopic interpretation of this formula

in terms of the long strings discussed in the previous section.

In the CFT2 the energy of a quantum state can be computed by multiplying the

excitation number with the excitation energy of a degree of freedom. For long strings,

this reads:

E =

(
∆L −

cL(R)

12

)
εL . (5.9)

The subtraction −cL(R)/12 is due to the negative Casimir energy of the CFT on a circle.

The scaling dimension ∆L, the central charge cL(R) and the excitation energy εL = (d −
2)/L are all labeled by the long string scale L. The vacuum energy of (A)dSd then follows

from the expression above by imposing specific values for the scaling dimension, ∆L =

0 (AdS) and ∆L = cL(R)/6 (dS), i.e.

E(A)dS
vac = ±cL(R)

12
εL . (5.10)

By inserting the values of cL(R) and εL into the formula above one recovers the correct

vacuum energy (5.8). This formula tells us that we can interpret the negative vacuum

energy of AdS as a Casimir energy, which is what it corresponds to in the CFT2. The

vacuum energy of de Sitter space can be attributed to the excitations of the lowest energy

states available in the system: the long strings of size L.

Alternatively, if one assumes the vacuum energy is determined by the UV or short

string degrees of freedom, one would have instead computed:

EUV
vac = ±c`(R)

12
ε` . (5.11)

By inserting the values for the short string central charge (4.21) and the excitation energy

ε` = (d− 2)/`, we find for their vacuum energy:

EUV
vac = ±(d− 1)(d− 2)

16πGd`2
V (R) . (5.12)

This is off by a factor 1/N2 = `2/L2 from the true vacuum energy of (A)dS space. The long

string phenomenon precisely explains why the vacuum energy associated to long strings is

N2 times lower than the vacuum energy associated to short strings. It namely decreases

both the central charge and the energy gap by a factor of N . Thus, the identification of the

long strings as the correct holographic degrees of freedom provides a natural explanation

of the value of the vacuum energy.

6 Conclusion and discussion

In this paper we have proposed a new approach to holography for non-AdS spacetimes, in

particular: AdS below its curvature radius, Minkowski, de Sitter and AdS-Schwarzschild.

6A more accurate explanation of the simple expression for V (R) is that in addition to describing the

proper volume it incorporates the redshift factor.
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Before summarizing our main findings, we comment on the more general lessons for non-

AdS holography. First of all, we would like to make a distinction between holography

as manifested by the AdS/CFT correspondence and holography in general, which is only

constrained by the holographic principle. The original principle states that the number of

degrees of freedom in quantum gravity is bounded by the Bekenstein-Hawking formula. On

the other hand, AdS/CFT is a much stronger statement, in which the holographic degrees

of freedom of quantum gravity are identified as part of a local quantum field theory in

one dimension less. We do expect (and indeed assume) the holographic principle to hold

for more general spacetimes, motivated by the standard black hole arguments [12–14].

However, there are indications that it is unlikely to expect a local quantum field theory

dual to gravity in non-AdS spacetimes.

One can already arrive at this conclusion for sub-AdS scales via the following reasoning.

Let us assume a lattice regularization of the boundary CFT where each lattice site contains

a number of degrees of freedom proportional to the central charge [16]. The fact that the

central charge is related to the area at the AdS radius (cf. equation (2.2)) implies that one is

left with a single lattice site as one holographically renormalizes up to the AdS scale. This

means that the effective theory on a holographic screen at the AdS radius is completely

delocalized, and can be described by a matrix quantum mechanics.7 It is not obvious how

to further renormalize the quantum theory to probe the interior of a single AdS region. One

expects, however, that the degrees of freedom “inside the matrix” should play a role in the

holographic description of sub-AdS regions [16, 52]. The reasoning also shows that one has

to be careful in applying the Ryu-Takayanagi formula to sub-AdS scales, since it typically

assumes a spatial factorization of the holographic Hilbert space. For recent discussions of

this issue, see for instance [38, 42, 53]. It is expected that similar conclusions apply to flat

space holography, which should be described by the L→∞ limit of sub-AdS holography,

and de Sitter static patch holography, which is connected to flat space holography via the

same limit.

Even though a local quantum field theory dual may not exist for non-AdS spacetimes,

we do assume that there exists a dual quantum mechanical theory which can be associated

to a holographic screen. In this paper we have proposed to study some general features of

such quantum mechanical theories for non-AdS geometries. These features are captured

by three quantities associated to a holographic screen at radius R: the number of degrees

of freedom C, the excitation number N and the excitation energy ε. We have given a

more refined interpretation of these quantities in terms of a twisted sector of a symmetric

product CFT2. This is achieved through a conformal map between the non-AdS geometries

and locally AdS3 spacetimes. In the CFT2 language, the holographic degrees of freedom

are interpreted as (fractions of) long strings.

The qualitative picture that arises is as follows. The symmetric product theory intro-

duces a number of short degrees of freedom that scales with the volume of the non-AdS

spacetime. However, the long string phenomenon, by gluing together short degrees of

7The same conclusion is reached when considering the flat space limit of AdS/CFT [51]. In addition, gen-

eralizations of the Ryu-Takayanagi proposal to more general spacetimes suggest a non-local dual description

of flat space and de Sitter space [32–38].
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freedom, reduces the number of degrees of freedom to an area law, consistent with the

Bekenstein-Hawking formula. We have also seen that the degrees of freedom on holo-

graphic screens at distance scales smaller than the (A)dS radius should be thought of as

fractions of long strings. This perspective suggests that the long string degrees of freedom

extend into the bulk, instead of being localized on a holographic screen. This stands in

contrast with the holographic degrees of freedom that describe large AdS regions which,

as suggested by holographic renormalization, are localized on their associated screens.

For all of the non-AdS spacetimes we studied, one of the main conclusions that arises

from our proposal is that the number of degrees of freedom in the microscopic holographic

theory increases towards the IR in the bulk. This follows from the reversal of the UV-IR

relation and the holographic principle. The familiar UV-IR correspondence thus appears

to be a special feature of the holographic description of AdS space at scales larger than

its curvature radius. Our results suggest that in general the UV and IR in the spacetime

geometry and in the microscopic theory are in sync. A similar point of view has appeared

in [39], where the term ‘worldline holography’ was coined (see also the review [54] and

their recent work [55]). This term refers to the fact that the UV observer is placed at the

center of spacetime, instead of at a boundary as in AdS holography. These two observers

are related by the conformal map that inverts the radius and exchanges the UV with IR.

The UV-IR correspondence in AdS/CFT is in line with the Wilsonian intuition for

a quantum field theory and thus explains why the microscopic holographic theory can

be described by a QFT. On the other hand, we have argued that the general features

of non-AdS holography are naturally accommodated for by symmetric products and the

long string phenomenon. Our results then suggest that the holographic dual of non-AdS

spacetimes cannot be described by (Wilsonian) quantum field theories, but should rather

be thought of as quantum mechanical systems that exhibit the long string phenomenon.

An example of such a model is given by matrix quantum mechanics. For instance, in

the BFSS matrix model [56] a long string phenomenon was observed to play a role [57],

inspired by the results of [58]. In particular, the N → ∞ limit of the matrix model

corresponds to a large symmetric product, and in the far IR the long strings are the only

surviving degrees of freedom. We propose that one possible way in which a smaller UV

Hilbert space can be embedded in a larger IR Hilbert space, is to identify the UV degrees

of freedom as excitations on fractional strings and view these excited fractional strings as

bound states of the lowest energy excitations on long strings that live in the far IR.

As we explained, the symmetric products and long string phenomenon also provide

a natural framework to understand the negative specific heat of small AdS black holes.

Moreover, using a sub-AdS3 perspective on super-AdSd scales, we have shown how the

Hawking-Page transition between positive and negative specific heat black holes in AdSd
can be understood in the CFT2 language. Even though the positive specific heat also

follows from the CFTd−1 description [44], the thermal state in a strongly coupled CFTd−1
is by no means a simple object to study. It would be interesting to see whether our sub-

AdS3 perspective and the associated CFT2 language could provide a new avenue to study

strongly coupled higher dimensional CFTs. One result we obtained in this direction is a way

to understand the appearance of a Cardy-like formula in (d−1)-dimensional (holographic)
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CFTs, that describes the entropy of a d-dimensional AdS black hole [47–49]. Namely, our

conformal map relates the AdSd black hole entropy to the entropy of a BTZ black hole,

which can be derived from the Cardy formula.

We should note that the negative specific heat of small AdS5 × S5 black holes has

already been studied from the N = 4 SYM theory in [59]. In this paper, it is argued that a

sub-matrix of the large N matrix could provide a description of such ten-dimensional black

holes, including the negative specific heat. It would be interesting to understand whether

our set-up could be generalized to cover or be embedded in an AdS5 × S5 geometry. As

argued in their paper, the sub-matrix forms an essentially isolated system that consists of

a dense gas of strings. It does not thermalize with its environment, i.e. does not spread

on the S5. Concerning the embedding, our small S1, on which we also have a dense gas of

strings for small AdS black holes, could be the effective geometry seen by such a localized,

confined system on S5.

More generally, an open question is whether the geometries in this paper can be em-

bedded in string or M-theory. A particularly interesting case that we leave for future study

is the MSW string [60]. This string has a near-horizon geometry of the form AdS3 × S2.

Applying our conformal map to a BTZ geometry in this set-up would lead to a dS4 × S1

spacetime. The microscopic quantum description of the latter spacetime could be related

to the D0-D4 quiver quantum mechanics theories studied by [61]. It is plausible that an

extension of Matrix theory to d = 4 requires the inclusion of transversal fivebranes [62] and

precisely leads to such a quiver QM description.

Finally, we have argued that de Sitter space must be regarded as an excited state of the

microscopic holographic quantum system.8 In this sense it is similar to the BTZ spacetime

to which it is conformally equivalent. This explains in particular the fact that the de

Sitter entropy can be recovered from a Cardy formula in two-dimensional CFT. From its

description as a thermal bath of long strings at the Gibbons-Hawking temperature T ∼ 1/L,

we moreover showed that the vacuum energy of de Sitter space can be reproduced from

the energy carried by the long strings.
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A Weyl equivalent spacetimes from an embedding formalism

In this paper we have studied three cases of conformally equivalent spacetimes:

AdSd × S1 ∼= conical AdS3 × Sd−2 ,
Minkd × S1 ∼= massless BTZ × Sd−2 , (A.1)

dSd × S1 ∼= Hawking-Page BTZ × Sd−2 .

The (d + 1)-dimensional spacetimes on the left and right hand side are Weyl equivalent

with the specific conformal factor Ω = L/r = R/L. Notice that the spacetimes on the right

hand side are all discrete quotients of (patches of) pure AdS3. They can be obtained by

orbifolding AdS3 by an elliptic, parabolic and hyperbolic element of the isometry group,

respectively [63]. On the left hand side, the quotient acts on the one-dimensional space.

Since taking the quotients commutes with the Weyl transformation we could also consider

the conformal equivalence of the unquotiented spaces. These are in fact easier to understand

and can be generalized to any dimension p as follows:

AdSd × Sp−2 ∼= AdSp × Sd−2,
Minkd × Rp−2 ∼= Poincaré-AdSp × Sd−2, (A.2)

dSd ×Hp−2 ∼= Rindler-AdSp × Sd−2.

Note that when H1 ∼= R is quotiented by a boost, one obtains the S1 in (A.1). In this

appendix we will explain in detail how the conformal equivalence of these spacetimes can

be understood from the embedding space perspective.

Embedding space formalism. The (p+ d− 2)-dimensional spacetimes above are spe-

cial in the sense that they are conformally flat. Now any D-dimensional conformally flat

spacetime can be embedded in R2,D−2, where the metric signature of the original spacetime

is (−,+, . . . ,+). This can be seen as follows. To begin with, Minkowski spacetime can

be obtained as a section of the light cone through the origin of R2,D−2. The light cone

equation is

X ·X = −X2
−1 −X2

0 +X2
1 + . . .+X2

D = 0. (A.3)

Here XA are the standard flat coordinates on R2,D−2. The embedding space naturally

induces a metric on the light cone section. The Poincaré section X−1 + XD = 1, for

example, leads to the standard metric on Minkowski spacetime. Under the coordinate

transformation, XA = Ω(x)X̃A, the induced metric becomes

ds2 = dX · dX = (ΩdX̃ + X̃dΩ)2 = Ω2dX̃ · dX̃ = Ω2ds̃2 . (A.4)

Here the light cone properties X̃ · dX̃ = 0 and X̃ · X̃ = 0 were used in the third equality.

This means that the induced metrics on two different light cone sections are related by a

Weyl transformation. Thus, any spacetime which is conformally flat can be embedded in

R2,D−2.
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Global AdS. The first class of conformally equivalent spacetimes is given by

AdSd × Sp−2 ∼= AdSp × Sd−2 . (A.5)

Both spacetimes can be obtained as a section of the light cone in the embedding space

R2,p+d−2

−X2
−1 −X2

0 +X2
1 + . . .+X2

p+d−2 = 0 . (A.6)

The scaling symmetry XA → λXA of this equation can be fixed in multiple ways. Each

choice corresponds to a different section of the light cone and realizes a different conformally

flat spacetime. For instance,

−X̃2
−1 − X̃2

0︸ ︷︷ ︸
=−r2−L2

+ X̃2
1 + . . .+ X̃2

p−1︸ ︷︷ ︸
= r2

+ X̃2
p + . . .+ X̃2

p+d−2︸ ︷︷ ︸
= L2

= 0 (A.7)

corresponds to AdSp × Sd−2, where r parametrizes the radial direction in AdSp and L is

the size of the sphere Sd−2. On the other hand,

−X2
−1 −X2

0︸ ︷︷ ︸
=−L2−R2

+X2
1 + . . .+X2

p−1︸ ︷︷ ︸
= L2

+X2
p + . . .+X2

p+d−2︸ ︷︷ ︸
=R2

= 0 (A.8)

leads to AdSd × Sp−2, where R is the radial coordinate in AdSd. It is straightforward to

see that the induced metrics on the two sections are related by the Weyl transformation

ds2(d,p−2) = Ω2ds̃2(p,d−2) with Ω =
L

r
=
R

L
. (A.9)

The explicit expressions for the conformally equivalent metrics are

ds̃2(p,d−2) = −
(
r2

L2
+ 1

)
dt2 +

(
r2

L2
+ 1

)−1
dr2 + r2dΩ2

p−2 + L2dΩ2
d−2 , (A.10)

and

ds2(d,p−2) = −
(

1 +
R2

L2

)
dt2 +

(
1 +

R2

L2

)−1
dR2 +R2dΩ2

d−2 + L2dΩ2
p−2 . (A.11)

Poincaré patch. The second class of Weyl equivalent geometries is

R1,d+p−2 ∼= Poincaré-AdSp × Sd−2 . (A.12)

The Poincaré patch can be understood as a flat foliation of AdSp with leaves R1,p−2. The

choice of coordinates on the light cone (A.6) that leads to the geometry on the right hand

side is

−X̃2
−1 + X̃2

p−1︸ ︷︷ ︸
=− r2

L2 x
µxµ−L2

−X̃2
0 + X̃2

1 + . . .+ X̃2
p−2︸ ︷︷ ︸

= r2

L2 x
µxµ

+ X̃2
p + . . .+ X̃2

p+d−2︸ ︷︷ ︸
= L2

= 0 , (A.13)

where r parametrizes the radial direction in the Poincaré patch and xµ represent flat

coordinates on R1,p−2. The section can also simply be described by X̃−1 + X̃p−1 = L.
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Alternatively, we can fix the scale invariance to obtain R1,d+p−2 through

−X2
−1 +X2

p−1︸ ︷︷ ︸
=−xµxµ−R2

−X2
0 +X2

1 + . . .+X2
p−2︸ ︷︷ ︸

= xµxµ

+X2
p + . . .+X2

p+d−2︸ ︷︷ ︸
=R2

= 0 . (A.14)

Both of these sections are so-called Poincaré sections and the latter one is described by the

equation X−1 + Xp−1 = R. One can easily verify that the induced metrics on these two

sections are related by (A.9), and they explicitly take the form

ds̃2(p,d−2) = − r
2

L2
dt2 +

L2

r2
dr2 +

r2

L2
d~x2p−2 + L2dΩ2

d−2 , (A.15)

and

ds2(d,p−2) = −dt2 + dR2 +R2dΩ2
d−2 + d~x2p−2 . (A.16)

AdS-Rindler patch. The third class is given by

dSd ×Hp−2 ∼= Rindler-AdSp × Sd−2 , (A.17)

where Hp−2 denotes (p − 2)-dimensional hyperbolic space. In this case, we use the fact

that time slices of the AdS-Rindler patch are foliated by hyperbolic space Hp−2. The scale

fixing of the null cone that leads to the geometry on the right hand side is

−X̃2
0 + X̃2

1︸ ︷︷ ︸
=−L2+r2

−X̃2
−1 + X̃2

2 + . . .+ X̃2
p−1︸ ︷︷ ︸

=−r2

+ X̃2
p + . . .+ X̃2

p+d−2︸ ︷︷ ︸
= L2

= 0 , (A.18)

where r parametrizes the radial direction in the Rindler wedge. Furthermore, one can

obtain dSd ×Hp−2 by fixing the coordinates on the light cone as follows

−X2
0 +X2

1︸ ︷︷ ︸
=−R2+L2

−X2
−1 +X2

2 + . . .+X2
p−1︸ ︷︷ ︸

=−L2

+X2
p + . . .+X2

p+d−2︸ ︷︷ ︸
=R2

= 0 . (A.19)

Again, one easily verifies that this implies that the induced metrics on the sections are

Weyl equivalent with conformal factor Ω = L/r = R/L. Explicitly, the induced metrics

are given by

ds̃2(p,d−2) = −
(
r2

L2
− 1

)
dt2 +

(
r2

L2
− 1

)−1
dr2 + r2

(
du2 + sinh2(u)dΩ2

p−3
)

+ L2dΩ2
d−2 ,

(A.20)

and

ds2(d,p−2) = −
(

1− R2

L2

)
dt2 +

(
1− R2

L2

)−1
dR2 +R2dΩ2

d−2 + L2
(
du2 + sinh2(u)dΩ2

p−3
)
.

(A.21)

As mentioned above and used in the main text, in the case that p = 3 we may compactify

H1 by taking a discrete quotient by a boost. On the right hand side, the AdS-Rindler side,

this same identification produces a BTZ black hole.
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