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1 Introduction

Despite the lack of new physics (NP) signals in direct searches at colliders, there are hints

of physics beyond the Standard Model (SM) in a few anomalies in the flavour sector,

with observables in tension with the SM predictions. In particular, tree-level semileptonic

B decays unexpectedly point to violation of lepton flavour universality (LFU), since the

measured ratios R(D(∗)) =
B(B → D(∗)τ ν̄τ )

B(B → D(∗)`ν̄`)
reveal an anomalous deviation of semitauonic

B modes with respect to µ and e ones. The HFLAV averages [1] of BaBar [2, 3], Belle [4–6]

and LHCb [7] Collaboration measurements,

R(D) = 0.403± 0.040± 0.024 , R(D∗) = 0.310± 0.015± 0.008 , (1.1)

compared to the first SM predictions R(D) = 0.296 ± 0.016, R(D∗) = 0.252 ± 0.003 [8]

and to the updated ones R(D) = 0.300± 0.008 [9] and R(D∗) = 0.260± 0.008 [10],1 show

a deviation at a global 3.9σ level. In the case of R(D∗), the recent Belle result R(D∗) =

0.270± 0.035(stat)±0.028
0.025 (syst) [13] reduces the average in (1.1). The LHCb measurement

R(J/ψ) =
B(B+

c → J/ψτ+ντ )

B(B+
c → J/ψµ+νµ)

= 0.71 ± 0.17(stat) ± 0.18(syst) [14] is also slightly above

the range of existing predictions within SM, but for this mode the theoretical error still

needs to be precisely assessed [15]. In SM the couplings of charged leptons to gauge bosons

1Further recent SM calculations of R(D∗) can be found in [11, 12].
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are lepton-flavour independent, and LFU is only broken by the Yukawa interaction, hence,

evidences of LFU violation in b-hadron semileptonic modes signal physics beyond SM.

There are other puzzles affecting semileptonic heavy meson decays, in particular the

tension between the determinations of the CKM matrix elements |Vcb| and |Vub| from

inclusive and exclusive B modes. Focusing on |Vcb|, precise determinations are obtained

from the exclusive B → D∗`ν̄` and B → D`ν̄` decays and from the inclusive B → Xc`ν̄`
mode. In B → D∗ the procedure to determine |Vcb| is based on the extrapolation of the

dilepton invariant mass spectrum up to the maximum value, using as an input hadronic

form factors at this kinematical point computed by lattice QCD. The FLAG averages

|Vcb|D
∗

excl = (39.27± 0.56th± 0.49exp)× 10−3 and |Vcb|Dexcl = (40.85± 0.98)× 10−3 [9] have to

be compared to |Vcb|incl = (42.46± 0.88)× 10−3 obtained in the kinetic scheme [1].

Considering the two sets of anomalies, the past viewpoint was to invoke NP in the ratios

R(D(∗)), and to attribute the inclusive/exclusive tensions in |Vcb| and |Vub| to some under-

lying assumptions, namely the uncertainty in the quark-hadron duality ansatz adopted for

the inclusive measurement. Recent studies for |Vcb| have focused, instead, on the errors

involved in the analysis of the B → D∗`ν̄` spectrum at the maximum dilepton invari-

ant mass. The procedure usually adopted in the experimental determinations was based

on the Caprini-Lellouch-Neubert (CLN) parametrization of the B → D∗ form factors [16],

which uses heavy quark (HQ) symmetry relations with the inclusion of radiative and 1/mQ

corrections. On the other hand, the deconvoluted fully differential B̄0 → D∗+`−ν̄` decay

distribution measured by Belle [17] has been fitted adopting the Boyd-Grinstein-Lebed

(BGL) parametrization of the form factors [18–20], resulting in a value for |Vcb| compati-

ble with the inclusive one [11, 21, 22]. Although the outcome refers to a single data set,

the question has been raised if the form factor parametrization provides a solution of the

|Vcb| anomaly.

The idea that a common explanation could be found for the R(D(∗)) and |Vcb| anoma-

lies, invoking NP, has also been put forward [23]. As an example, adding a tensor operator

to the SM effective b→ c semileptonic Hamiltonian, weighted by a complex lepton-flavour

dependent parameter ε`T , it has been shown that a difference of ετT with respect to εµ,eT could

account for the R(D(∗)) anomaly, considering ετT 6= 0 and εµT = εeT = 0 [24]. Relaxing the lat-

ter assumption, inclusive and exclusive B semileptonic decays with µ and e have been scru-

tinized showing that, for εµT 6= 0 and εeT 6= 0, it is also possible to pin down a region in the pa-

rameter space (Re(ε`T ), Im(ε`T ), |Vcb|) where the inclusive B(B− → X0
c `
−ν̄`) and exclusive

B(B− → D(∗)0`−ν̄`) branching fractions, as well as the spectrum dB(B− → D∗0`−ν̄`)/dq
2

close to maximum q2 are recovered [23].

Here we reconsider the two issues, the role of the form factor parametrization and the

possibility of non SM effects. We focus on B → D∗`ν̄` in the case of both light µ, e and

heavy τ lepton, with the D∗ decaying to Dπ or Dγ. The latter mode is particularly relevant

for Bs → D∗s transitions. We express the fully differential decay rate in B̄ → D∗(Dπ)`−ν̄`
and B̄ → D∗(Dγ)`−ν̄` in terms of angular coefficient functions, and show how the analysis

of the two modes may shed light on the form factor parametrization. We also reconsider the

NP model in [23, 24] and study the modified angular coefficients, proposing a set of sensitive

observables. Other investigations focusing on the angular distributions have been carried
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out in [25–34]. In particular, differential distributions including subsequent τ decay have

been studied in [28, 30, 32, 33]. A tensor structure appears, for example, in the effective

Hamiltonian of leptoquark models, in variants of which it is possible to accommodate a

few B anomalies [35–37]. Attempts for a combined explanation of the anomalies in NP

frameworks can be found in [38], while the role of ew corrections has been studied in [39].

A comment is in order, concerning the differences between the modes with light and

τ leptons. The final state with τ necessarily contains at least one neutrino, making the

full reconstruction of τ kinematics challenging. BaBar, Belle and the first LHCb studies of

semileptonic B decays to τ exploited τ decay to light leptons, with a final state involving

two neutrinos. For this reason, the amplitude τ → νX, with X = `ν has been coherently

included in analyses as, e.g., in [30]. An interesting path has been followed in the recent

LHCb study which exploits three-prong τ decay to the visible π+π−π+ final state [40].

The topology of this mode allows the precise reconstruction of the τ decay vertex well

separated from the B vertex due to the τ lifetime. This improves the discrimination from

the background and, due to the presence of a single neutrino in the final state, would allow

the determination of the complete kinematics of the decay (up to two two-fold ambiguities).

However, τ decays with both three prong π+π−π+ and four prong π+π−π+π0 pions enter

in the signal, and these two modes are treated on the basis of their known reconstruction

efficiencies, so that the measurement of the kinematic variables in semitauonic B decays

still represents an experimental challenge.

This is the plan of the paper. After having set the stage for the calculation, in section 3

we discuss the fully angular distributions and the properties of the angular coefficient

functions. Results in SM are presented in section 4, where the effects of the form factor

parametrization, in particular CLN vs BGL, are investigated. In section 5 we compare

the angular coefficients in SM and in the NP model with the tensor operator. A set of

observables is considered in section 6, and ratios useful to test LFU are scrutinized. Our

conclusions are presented in the last section.

2 Setting the stage

We consider B̄(pB) → D∗(pD∗ , ε)`
−(k1)ν̄`(k2), where B̄ → D∗ denotes either B̄0 → D∗+

or B− → D∗0, followed by the decay D∗(pD∗ , ε)→ D(pD)F (pF ) with F = π or γ. For the

kinematics we adopt the convention for angles and momenta as in figure 1, with lepton-pair

momentum q = k1 + k2 = pB − pD∗ . In the derivation, we extend to NP the procedure

in [41, 42] for F = π, considering also the case F = γ.

The amplitude of the process

ATOT(B̄ → D∗(→ DF )`−ν̄`) = A(B̄ → D∗`−ν̄`)
i

p2
D∗ −m2

D∗ + imD∗Γ(D∗)
A(D∗ → DF )

(2.1)

involves three factors. To describe B̄ → D∗`−ν̄` we focus on the effective Hamiltonian

Heff =
GF√

2
Vcb

[
c̄γµ(1− γ5)b ¯̀γµ(1− γ5)ν` + ε`T c̄σµν(1− γ5)b ¯̀σµν(1− γ5)ν`

]
+ h.c. , (2.2)
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consisting in the Standard Model term and in a new physics term with a tensor operator

weighted by a lepton-flavour dependent complex parameter ε`T .2 This allows to write

A(B̄ → D∗`−ν̄`) =
GF√

2
Vcb

[
HSM
µ LSMµ + ε`TH

NP
µν L

NPµν
]

(2.3)

in terms of the quark current matrix elements

HSM
µ (m) = 〈D∗(pD∗ , ε(m))|c̄γµ(1− γ5)b|B̄(pB)〉 = ε∗α(m)T SM

µα (2.4)

HNP
µν (m) = 〈D∗(pD∗ , ε(m))|c̄σµν(1− γ5)b|B̄(pB)〉 = ε∗α(m)TNP

µνα (2.5)

and of the lepton currents

LSMµ = ¯̀γµ(1− γ5)ν` (2.6)

LNPµν = ¯̀σµν(1− γ5)ν`. (2.7)

In (2.4) and (2.5) the index m of the D∗ polarization vector ε runs over m = ±, 0. In

the lepton-pair rest-frame (LRF), with the D∗ three-momentum along the positive z-axis,

one has:

pB = (EB, 0, 0, |~pD∗ |) , pD∗ = (ED∗ , 0, 0, |~pD∗ |) , q = (
√
q2, 0, 0, 0) ,

ε± =
1√
2

(0, 1,∓i, 0) , ε0 =
1

mD∗
(|~pD∗ |, 0, 0, ED∗) , (2.8)

with |~pD∗ | =
λ1/2(m2

B,m
2
D∗ , q

2)

2
√
q2

and ED∗ =
m2
B −m2

D∗ − q2

2
√
q2

, λ being the triangular func-

tion. The orientation of the lepton momenta is fixed by the angles θ and φ as in figure 1,

so that

k1 = (k0
1, |~k1| sin θ cosφ, |~k1| sin θ sinφ, |~k1| cos θ)

k2 = (k0
2,−|~k1| sin θ cosφ,−|~k1| sin θ sinφ,−|~k1| cos θ) . (2.9)

In terms of the D∗ polarization indices one can write

|A(B̄ → D∗`−ν̄`)(m,n)|2 =
G2
F

2
|Vcb|2

[
HSM(m,n) +HNP(m,n) +HINT(m,n)

]
, (2.10)

where

HSM(m,n) = HSM
µ (m)(HSM)†µ′(n)LSMµµ′ , (2.11)

HNP(m,n) = |εT |2
[
HNP
µν (m)(HNP)†µ′ν′(n)LNPµνµ′ν′

]
, (2.12)

HINT(m,n) = εTH
SM
µ (m)(HNP)†µ′ν′(n)LINTµµ′ν′

1 + ε∗TH
NP
µν (m)(HSM)†µ′(n)LINTµνµ′

2 ,

(2.13)

2We only consider the tensor operator, although other operators could be produced by ew

renormalization-group evolution [43].
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Figure 1. Kinematics of B̄ → D∗(→ DF )`−ν̄`.

in terms of the quantities in (2.4), (2.5) and

LSMµµ′ = LSMµ(LSMµ′)† ,

LNPµνµ′ν′ = LNPµν(LNPµ′ν′)†

LINTµµ′ν′

1 = LSMµ(LNPµ′ν′)† (2.14)

LINTµνµ′

2 = LNPµν(LSMµ′)† .

As for the D∗ propagator, the narrow-width approximation can be used for the state

produced nearly on-shell [44],

1

(p2
D∗ −m2

D∗) +m2
D∗Γ(D∗)2

=
π

mD∗Γ(D∗)
δ(p2

D∗ −m2
D∗) . (2.15)

On the other hand, the D∗ → DF amplitude can be written as

A(D∗ → DF ) = gD∗DF (ε ·Q) (2.16)

where Q = pD for F = π, and Qβ = i εαβστη
∗αpσD∗p

τ
D for F = γ, with η the photon

polarization vector. One can get rid of the coupling gD∗DF considering

Γ(D∗ → DF ) = g2
D∗DF

|~pD|
24πm4

D∗

[
(pD∗ ·Q)2 −Q2m2

D∗
]
, (2.17)

with |~pD| =
λ1/2(m2

D∗ ,m
2
D,m

2
F )

2mD∗
the D three-momentum in the D∗ rest frame (D∗RF).

In particular, one has
[
(pD∗ ·Q)2 −Q2m2

D∗
]

= m2
D∗ |~pD|2 for F = π and 2m4

D∗ |~pD|2 for

F = γ. Specifying the D∗ polarization indices, one can write

|A(D∗ → DF )|2(m,n) = Γ(D∗ → DF )
24πm2

D∗

|~pD|3
FF (m,n), (2.18)
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with

FF (m,n) = cF [ε(m) ·Q] [ε(n) ·Q]† (2.19)

and the constant cπ = 1 for F = π, and cγ = 1/(2m2
D∗) for F = γ. The (3 × 3) FF (m,n)

matrices in (2.19) involve the angle θV :

Fπ =
|~pD|2

2

 sin2 θV sin2 θV
1√
2

sin 2θV

sin2 θV sin2 θV
1√
2

sin 2θV
1√
2

sin 2θV
1√
2

sin 2θV 2 cos2 θV

 (2.20)

Fγ =
|~pD|2

4


3+cos 2θV

2 − sin2 θV − 1√
2

sin 2θV

− sin2 θV
3+cos 2θV

2 − 1√
2

sin 2θV

− 1√
2

sin 2θV − 1√
2

sin 2θV 2 sin2 θV

 . (2.21)

Collecting the various terms in eq. (2.1) we obtain

|ATOT(B̄ → D∗(→ DF )`−ν̄`)|2 = G2
F |Vcb|2

12π2mD∗

|~pD|3
B(D∗ → DF )δ(p2

D∗ −m2
D∗) (2.22)

×
{
Tr
[
(HSM)T · FF

]
+ Tr

[
(HNP)T · FF

]
+ Tr

[
(HINT)T · FF

]}
,

where the trace is carried out over the indices (m,n), ordered as (1, 2, 3) = (+,−, 0), and

T meaning the transpose. The expression of the fully differential decay distribution can be

worked out considering the four-body phase-space recalled in appendix A:

d4Γ(B̄ → D∗(→ DF )`−ν̄`)

dq2 d cos θ dφ d cos θV
=

3G2
F |Vcb|2B(D∗ → DF )

128(2π)4m2
B

|~pD∗ |BRF
|~pD|2D∗RF

(
1−

m2
`

q2

)
(2.23)

×
{
Tr
[
(HSM)T · FF

]
+ Tr

[
(HNP)T · FF

]
+ Tr

[
(HINT)T · FF

]}
.

The hadronic matrix elements (2.4), (2.5) can be parametrized in terms of form factors.

We use the definition

〈D∗(pD∗ , ε)|c̄γµ(1− γ5)b|B̄(pB)〉 = − 2V (q2)

mB +mD∗
iεµναβε

∗νpαBp
β
D∗

−
{

(mB +mD∗)

[
ε∗µ −

(ε∗ · q)
q2

qµ

]
A1(q2)

− (ε∗ · q)
mB +mD∗

[
(pB + pD∗)µ −

m2
B −m2

D∗

q2
qµ

]
A2(q2)

+ (ε∗ · q)2mD∗

q2
qµA0(q2)

}
(2.24)

(with the condition A0(0) =
mB +mD∗

2mD∗
A1(0)− mB −mD∗

2mD∗
A2(0)) and

〈D∗(pD∗ , ε)|c̄σµν(1−γ5)b|B̄(pB)〉=T0(q2)
ε∗ ·q

(mB+mD∗)2
εµναβp

α
Bp

β
D∗+T1(q2)εµναβp

α
Bε
∗β

+T2(q2)εµναβp
α
D∗ε
∗β

+i

[
T3(q2)(ε∗µpBν−ε∗νpBµ)+T4(q2)(ε∗µpD∗ν−ε∗νpD∗µ)

+T5(q2)
ε∗ ·q

(mB+mD∗)2
(pBµpD∗ν−pBνpD∗µ)

]
. (2.25)
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We also define T̃0 = T0 − T5, T̃1 = T1 + T3 and T̃2 = T2 + T4. In appendix B we describe

other matrix element parametrizations. In SM one can relate the helicity amplitudes for

the D∗ polarization states to the polarizations of the virtual W (q, ε̄). In the LRF one writes

ε̄± =
1√
2

(0, 1,±i, 0) , ε̄0 = (0, 0, 0, 1) , ε̄t = (1, 0, 0, 0) . (2.26)

This allows to define the amplitudes

Hm = ε̄∗µm ε
∗α
m Tµα (m = 0,±)

Ht = ε̄∗µt ε
∗α
0 Tµα (m = t) , (2.27)

which can be expressed in terms of the form factors in (2.24):

H0 =
(mB +mD∗)

2(m2
B −m2

D∗ − q2)A1(q2)− λ(m2
B, m

2
D∗ , q

2)A2(q2)

2mD∗(mB +mD∗)
√
q2

H± =
(mB +mD∗)

2A1(q2)∓
√
λ(m2

B, m
2
D∗ , q

2)V (q2)

mB +mD∗
(2.28)

Ht = −

√
λ(m2

B, m
2
D∗ , q

2)√
q2

A0(q2) .

All the entries in HSM(m,n) can be written in terms of H±, H0 and Ht.

3 Angular decomposition of the fully differential decay distribution

The fully differential decay distribution for the chain process B̄ → D∗(→ DF )`−ν̄`, with

F = π and F = γ, can be worked out in terms of the angles in figure 1. For F = π it can

be expressed as3

d4Γ(B̄→D∗(→Dπ)`−ν̄`)

dq2 dcosθdφdcosθV
=Nπ|~pD∗ |

(
1−

m2
`

q2

)2{
Iπ1s sin2 θV +Iπ1c cos2 θV

+
(
Iπ2s sin2 θV +Iπ2c cos2 θV

)
cos2θ

+Iπ3 sin2 θV sin2 θ cos2φ+Iπ4 sin2θV sin2θ cosφ (3.1)

+Iπ5 sin2θV sinθ cosφ+
(
Iπ6s sin2 θV +Iπ6c cos2 θV

)
cosθ

+Iπ7 sin2θV sinθ sinφ
}
,

with NF =
3G2

F |Vcb|2B(D∗ → DF )

128(2π)4m2
B

. For F = γ we adopt the decomposition

d4Γ(B̄→D∗(→Dγ)`−ν̄`)

dq2 dcosθdφdcosθV
=Nγ |~pD∗ |

(
1−

m2
`

q2

)2{
Iγ1s sin2 θV +Iγ1c (3+cos2θV )

+(Iγ2s sin2 θV +Iγ2c (3+cos2θV ))cos2θ

+Iγ3 sin2 θV sin2 θ cos2φ+Iγ4 sin2θV sin2θ cosφ (3.2)

+Iγ5 sin2θV sinθ cosφ+(Iγ6s sin2 θV +Iγ6c (3+cos2θV ))cosθ

+Iγ7 sin2θV sinθ sinφ
}
.

3In principle, other two structures I8 sin 2θV sin 2θ sinφ+ I9 sin
2 θV sin2 θ sin 2φ could be present in these

decompositions. We do not include them, since they are absent in SM and in the NP model considered here.
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In the Standard Model the coefficients of the angular terms are related to the helicity

amplitudes (2.28):

Iπ1s =
1

2
(H2

+ +H2
−)(m2

` + 3q2) , Iπ1c = 2(2m2
`H

2
t +H2

0 (m2
` + q2)) ,

Iπ2s =
1

2
(H2

+ +H2
−)(q2 −m2

` ) , Iπ2c = 2H2
0 (m2

` − q2) ,

Iπ3 = 2H+H−(m2
` − q2) , Iπ4 = H0(H+ +H−)(m2

` − q2) ,

Iπ5 = −2(H+ +H−)Htm
2
` − 2H0(H+ −H−)q2 , (3.3)

Iπ6s = 2(H2
+ −H2

−)q2 , Iπ6c = −8H0Htm
2
` ,

Iπ7 = 0 ,

and

Iγ1s = 2m2
`H

2
t +H2

0 (m2
` + q2) , Iγ1c =

1

8
(H2

+ +H2
−)(m2

` + 3q2) ,

Iγ2s = H2
0 (m2

` − q2) , Iγ2c =
1

8
(H2

+ +H2
−)(q2 −m2

` ) ,

Iγ3 = −H+H−(m2
` − q2) , Iγ4 = −1

2
H0(H+ +H−)(m2

` − q2) ,

Iγ5 = (H+ +H−)Htm
2
` +H0(H+ −H−)q2 , (3.4)

Iγ6s = −4H0Htm
2
` , Iγ6c =

1

2
(H2

+ −H2
−)q2 ,

Iγ7 = 0 .

Hence, the coefficients in Dπ and Dγ angular distributions obey the relations, for all q2,

Iπ1s
4Iγ1c

=
Iπ1c
2Iγ1s

=
Iπ2s
4Iγ2c

=
Iπ2c
2Iγ2s

=
Iπ6s
4Iγ6c

=
Iπ6c
2Iγ6s

= − Iπ3
2Iγ3

= − Iπ4
2Iγ4

= − Iπ5
2Iγ5

= 1 . (3.5)

Integrated distributions are written in terms of the angular coefficients. In particular, the

q2 distributions read:

dΓ

dq2

∣∣∣
F=π

= Nπ|~pD∗ |
(

1−
m2
`

q2

)2
8

9
π (6Iπ1s + 3Iπ1c − 2Iπ2s − Iπ2c) , (3.6)

dΓ

dq2

∣∣∣
F=γ

= Nγ |~pD∗ |
(

1−
m2
`

q2

)2
16

9
π (3Iγ1s + 12Iγ1c − I

γ
2s − 4Iγ2c) . (3.7)

The angular coefficients encode information on the form factors, and vice-versa. Their fit

from the experimental fully differential decay distribution allows to reconstruct the form

factors, with a possible comparison of measurements to theory determinations. Considering
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the Dπ mode one has

A1(q2) =
1

4(mB +mD∗)

{√
4Iπ1s

m2
` + 3q2

− Iπ6s
q2

+

√
4Iπ1s

m2
` + 3q2

+
Iπ6s
q2

}
,

A2(q2) =
(mB +mD∗)

4λ(m2
B, m

2
D∗ , q

2)

{
(m2

B −m2
D∗ − q2)

[√
4Iπ1s

m2
` + 3q2

− Iπ6s
q2

+

√
4Iπ1s

m2
` + 3q2

+
Iπ6s
q2

]

− 4
√

2mD∗
√
q2

√
− Iπ2c
q2 −m2

`

}
,

V (q2) =
(mB +mD∗)

4λ1/2(m2
B, m

2
D∗ , q

2)

{√
4Iπ1s

m2
` + 3q2

− Iπ6s
q2
−

√
4Iπ1s

m2
` + 3q2

+
Iπ6s
q2

}
, (3.8)

A0(q2) =
1

2

√
q2

λ1/2(m2
B, m

2
D∗ , q

2)

√
(q2 −m2

` ) I
π
1c + (q2 +m2

` ) I
π
2c

m2
` (q

2 −m2
` )

.

Analogously, from the Dγ mode one has

A1(q2) =
1

2(mB +mD∗)

{√
4Iγ1c

m2
` + 3q2

− Iγ6c
q2

+

√
4Iγ1c

m2
` + 3q2

+
Iγ6c
q2

}
,

A2(q2) =
(mB +mD∗)

2λ(m2
B, m

2
D∗ , q

2)

{
(m2

B −m2
D∗ − q2)

[√
4Iγ1c

m2
` + 3q2

− Iγ6c
q2

+

√
4Iγ1c

m2
` + 3q2

+
Iγ6c
q2

]

− 4mD∗
√
q2

√
− Iγ2s
q2 −m2

`

}
,

V (q2) =
(mB +mD∗)

2λ1/2(m2
B, m

2
D∗ , q

2)

{√
4Iγ1c

m2
` + 3q2

− Iγ6c
q2
−

√
4Iγ1c

m2
` + 3q2

+
Iγ6c
q2

}
, (3.9)

A0(q2) =
1√
2

√
q2

λ1/2(m2
B, m

2
D∗ , q

2)

√
(q2 −m2

` ) I
γ
1s + (q2 +m2

` ) I
γ
2s

m2
` (q

2 −m2
` )

.

Such relations require precise signs for the angular coefficient functions and for a few of

their combinations.

Considering the tensor operator in the effective Hamiltonian (2.2), the fully differential

decay distribution can still be written as in eqs. (3.1), (3.2), with the coefficients Ii replaced

by Ii + |εT |2INP
i + 2Re(εT )IINT

i for i = 1, . . . 6, and by Ii + |εT |2INP
i + 2Im(εT )IINT

i for

i = 7. With the definitions

HNP
+ =

1

2
√
q2

{[
m2
B −m2

D∗ + λ1/2(m2
B,m

2
D∗ , q

2)
]

(T̃1 + T̃2) + q2(T̃1 − T̃2)
}

HNP
− =

1

2
√
q2

{[
m2
B −m2

D∗ − λ1/2(m2
B,m

2
D∗ , q

2)
]

(T̃1 + T̃2) + q2(T̃1 − T̃2)
}

(3.10)

HNP
L = 2

{
λ(m2

B,m
2
D∗ , q

2)

mD∗(mB +mD∗)2
T̃0 + 2

m2
B +m2

D∗ − q2

mD∗
T̃1 + 4mD∗ T̃2

}
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one has:

INP,π
1s = 2[(HNP

+ )2 + (HNP
− )2](3m2

` + q2), INP,π
1c =

1

8
(q2 +m2

` )(H
NP
L )2,

INP,π
2s = 2[(HNP

+ )2 + (HNP
− )2](m2

` − q2), INP,π
2c =

1

8
(q2 −m2

` )(H
NP
L )2,

INP,π
3 = 8HNP

+ HNP
− (q2 −m2

` ), INP,π
4 =

1

2
(q2 −m2

` )H
NP
L [HNP

+ +HNP
− ],

INP,π
5 = −m2

`H
NP
L [HNP

+ −HNP
− ], (3.11)

INP,π
6s = 8m2

` [(H
NP
+ )2 − (HNP

− )2], INP,π
6c = 0,

INP,π
7 = 0,

and

INP,γ
1s =

1

16
(HNP

L )2(q2 +m2
` ), INP,γ

1c =
1

2
[(HNP

+ )2 + (HNP
− )2](3m2

` + q2),

INP,γ
2s =

1

16
(q2 −m2

` )(H
NP
L )2, INP,γ

2c = −1

2
[(HNP

+ )2 + (HNP
− )2](q2 −m2

` ),

INP,γ
3 = −4HNP

+ HNP
− (q2 −m2

` ), INP,γ
4 = −1

4
(q2 −m2

` )H
NP
L [HNP

+ +HNP
− ],

INP,γ
5 =

1

2
m2
`H

NP
L [HNP

+ −HNP
− ], (3.12)

INP,γ
6s = 0, INP,γ

6c = 2m2
` [(H

NP
+ )2 − (HNP

− )2],

INP,γ
7 = 0.

The interference terms are given by

IINT,π
1s = −4

√
q2m`(H

NP
+ H+ +HNP

− H−), IINT,π
1c = −

√
q2m`H0H

NP
L ,

IINT,π
2s = 0, IINT,π

2c = 0,

IINT,π
3 = 0, IINT,π

4 = 0,

IINT,π
5 =

1

4

√
q2m`

[
HNP
L (H+ −H−) + 8H0(HNP

+ −HNP
− ) + 8Ht(H

NP
+ +HNP

− )
]
, (3.13)

IINT,π
6s = −4

√
q2m`(H

NP
+ H+ −HNP

− H−), IINT,π
6c =

√
q2m`H

NP
L Ht,

IINT,π
7 =

1

4

√
q2m`

[
HNP
L (H+ +H−)− 8H0(HNP

+ +HNP
− )− 8Ht(H

NP
+ −HNP

− )
]
,

and

IINT,γ
1s = −1

2

√
q2m`H0H

NP
L , IINT,γ

1c = −m`

√
q2(HNP

+ H+ +HNP
− H−),

IINT,γ
2s = 0, IINT,γ

2c = 0,

IINT,γ
3 = 0, IINT,γ

4 = 0,

IINT,γ
5 =

1

8
m`

√
q2
[
−HNP

L (H+ −H−)− 8H0(HNP
+ −HNP

− )− 8Ht(H
NP
+ +HNP

− )
]
, (3.14)

IINT,γ
6s =

1

2
m`

√
q2HtH

NP
L , IINT,γ

6c = −
√
q2m`(H

NP
+ H+ −HNP

− H−),

IINT,γ
7 =

1

8

√
q2m`

[
−HNP

L (H+ +H−) + 8H0(HNP
+ +HNP

− ) + 8Ht(H
NP
+ −HNP

− )
]
.

The relations (3.5) continue to hold.
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4 Standard Model: scrutinizing CLN vs BGL parametrization

Understanding the role of the form factor parametrization of the B → D∗ hadronic matrix

element is important before the formulation of any strategy to disentangle possible NP

effects. The angular distributions can help identifying observables less sensitive to the form

factor parametrization, hence more suitable to uncover deviations from SM. Observables

displaying a pronounced dependence on such parametrization can help in studying the

impact of form factors.

The parametrizations based on the heavy quark limit make use of the relations among

the form factors in HQ, in particular the connection, at the leading order in the 1/mQ ex-

pansion, of all the form factors to the single Isgur-Wise function ξ(w), with w =
m2

B+m2
D∗−q

2

2mBmD∗

the product of B and D(∗) four-velocities. ξ(w) is normalized to unity at zero recoil w = 1.

In the CLN formulation the relations are improved including perturbative αs and power

1/mb, 1/mc corrections [16]. In terms of the function hA1(w) defined in appendix B, which

coincides with A1(q2) modulo a w-dependent coefficient, one can write

V (w) =
R1(w)

R∗
hA1(w)

A1(w) =
w + 1

2
R∗hA1(w)

A2(w) =
R2(w)

R∗
hA1(w) (4.1)

A0(w) =
R0(w)

R∗
hA1(w)

with R∗ =
2
√
mBmD∗

mB +mD∗
. In this approach, hA1(w), R1(w), R2(w) and R0(w) are expanded

for w → 1, fixing the series coefficients using dispersive bounds [16]:

hA1(w) = hA1(1)
[
1− 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3

]
R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2

R2(w) = R2(1) + 0.11(w − 1)− 0.06(w − 1)2

R0(w) = R0(1)− 0.11(w − 1) + 0.01(w − 1)2 , (4.2)

with the conformal variable z defined as z =

√
w + 1−

√
2

√
w + 1 +

√
2

. In the HQ limit the predictions

RHQ1 (1) = 1.27 , RHQ2 (1) = 0.80 , RHQ0 (1) = 1.25 (4.3)

are obtained [12, 16]. However, in the experimental analyses making use of this

parametrization, not only the slope ρ2, but also the ratios R1(1) and R2(1) are fitted

parameters, while hA1(1) is taken from lattice QCD calculations. R0(1) is involved in the

case of τ lepton, and no experimental result is available. The parameters fitted by Belle

Collaboration [17], that we use in our analysis, are collected in table 1. We use the last

relation in (4.1), together with the expressions (B.4) in appendix B, to obtain R0(1).

– 11 –



J
H
E
P
0
6
(
2
0
1
8
)
0
8
2

|Vcb| × 103 ρ2 R1(1) R2(1)

37.4± 1.3 1.03± 0.13 1.38± 0.07 0.87± 0.10

Table 1. CLN parameters fitted by Belle Collaboration [17].

In the BGL formulation, recalled in appendix B, the form factors are expressed as

functions of the conformal variable z. After having included outer functions [45] and

subtracted the contribution of bc̄ states, the form factors are expressed as power series of z,

with the coefficients determined by a fit to the experimental data [18–20]. The number of

parameters for each form factor is larger than in CLN; on the other hand, no information

from the HQ limit is used. In our analysis we use the parameters in [21], obtained fitting the

same data set in [17], in the case where input from light-cone QCD sum rules is included.

In the absence of results from the fits, also in this case we use the HQ relations to obtain

R0, as in [10].

A point emphasized in [10, 21, 22] is that, although the Belle data in [17] can be well

reproduced using both parametrizations, the high q2 bins are better described by BGL,

with a value of |Vcb| larger than using CLN and closer to the inclusive |Vcb| determination.

Moreover, these Belle data seem to suggest deviations from HQ symmetry and tensions

with preliminary lattice results for the ratio R1 [46], as noticed comparing the data to fits

using BGL or various versions of CLN parametrization [47].

In principle, the angular coefficient functions inferred from the fully differential distri-

bution can be used to reconstruct the form factors. In particular, for the ratios R1(w) and

R2(w) one has:

R1(w) =
8q2mBmD∗(1 + w)

(m2
` + 3q2)λ1/2(m2

B,m
2
D∗ , q

2)

1

Iπ6s

[√
(Iπ1s)

2 −
(
m2
` + 3q2

q2

)2
(Iπ6s)

2

16
− Iπ1s

]
, (4.4)

R2(w) =
2mBmD∗(1 + w)

λ(m2
B,m

2
D∗ , q

2)

[
(m2

B − q2 −m2
D∗) (4.5)

+ 2
√

2mD∗q
2

√
− q2

q2 −m2
`

Iπ2c
1

Iπ6s

(√
4Iπ1s

m2
` + 3q2

− Iπ6s
q2
−

√
4Iπ1s

m2
` + 3q2

+
Iπ6s
q2

)]
.

This is interesting, since a difference between the CLN and BGL parametrizations emerges

in these ratios [10, 21, 47].

We now investigate the angular coefficient functions obtained with CLN and BGL,

using their respective set of parameters. The results are collected in figure 2. We use as

an input the lattice QCD value hA1(1) = 0.906± 0.013 [48] times the ew correction factor

ηW = 1.0066 [49, 50]. We also show the results obtained in the HQ limit using eq. (4.3).

The functions Iπ1s, I
π
2s, I

π
3 , Iπ4 , and Iγ1c, I

γ
2c, I

γ
3 , Iγ4 are largely insensitive to the form

factor parametrization. On the contrary, Iπ1c, I
π
2c, I

π
6s, and Iγ1s, I

γ
2s, I

γ
6c are more dependent.

The coefficients Iπ6c, I
γ
6s are proportional to the lepton mass, hence they are small compared

to the others for ` = µ. The indication is that the first set of coefficients is more suitable

to pin down deviations from SM. In particular, I
π(γ)
7 vanishes in SM, therefore it is able
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Figure 2. Angular coefficients in the fully differential decay distribution eq. (3.1) for ` = µ in SM.

The coefficients in (3.2) are obtained using the relations (3.5). The darker regions correspond to the

CLN parametrization with parameters in table 1, the lighter regions to the BGL parametrization

described in appendix B. The dashed lines are the HQ predictions.

to signal a NP effect: indeed, in the model with the tensor operator Im(ε`T ) can be non-

vanishing, as well as I
π(γ)
7 .

The second set of angular coefficient functions can be used to better evaluate the

form factor parametrization. The results in BGL display larger uncertainties, and are

systematically larger (smaller) than in CLN in Iπ2c, I
π
6s (Iπ1c, I

π
5 ). An overlap region spanned

by the two parametrizations always exists, and the HQ result is closer to the CLN outcome,

sometimes at the limits. An analogous trend is found for the ` = τ mode, in the angular

coefficient functions displayed in figure 3. Comparing Iπ1c and Iπ2c for ` = µ and τ , one finds

that the uncertainties are smaller in the case of the heavier lepton. Due to the difficulties

discussed in the Introduction, the possibility of accessing the various Ii in the case of τ

is very challenging. In particular, the reconstruction of the angle θ is not possible when

the τ is reconstructed in decays to final states with multiple neutrinos. However, the

reconstruction in visible 3-prong decays opens new interesting perspectives from this point

of view, although with the caveat concerning the control of the π+π+π−π0 contribution

discussed in the Introduction. Moreover, a set of integrated observables can be considered,

with particular attention of those depending on the angle θV .

The complementarity of the modes with D∗ decaying to Dπ or to Dγ emerges from

figures 4 and 5, obtained using the CLN parametrization. For F = π the events are mainly

– 13 –
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Figure 3. Angular coefficients in the fully differential decay distribution eq. (3.1) for ` = τ in SM.

The coefficients in (3.2) are obtained using (3.5). Color code as in figure 2.

at the limits of the cos θV region, as shown both by the density plots in figure 4 and by

the projections in figure 5. In the case of the photon, the most populated region is for

cos θV ' 0. This should be taken into account in the analysis of Bs → D∗+s `−ν̄, where the

final state is dominated by the Dsγ mode.

5 Angular coefficient functions in the NP model

In the case of the effective Hamiltonian with the tensor operator the angular coefficient

functions are modified. To discuss the changes with respect to SM we need to fix a range

for the couplings εµT and ετT . In [24] ετT was constrained by R(D) and R(D∗), assuming

εµT = εeT = 0. In [23] the latter assumption was relaxed, εµT 6= 0 and εeT 6= 0, to reproduce

B̄ → Xc`
−ν̄` and B̄ → D(∗)`−ν̄` data in a common range of |Vcb|. We now consider these

constraints, but since the ranges for εµT and εeT turn out to be almost coincident, we only

distinguish εµT and ετT . We adopt the CLN parametrization, employing the HQ relations

(including O(αs) and O(1/mQ) corrections [12], as reported in appendix B) to determine

the form factors Ti in (2.25), since the BGL parametrization for such functions has not

been developed.

We use the range of values of εµT selected in [23], restricted to reproduce |Vcb| obtained

by the Belle’s fit in table 1 (within 2σ). In this range we compute R(D) and R(D∗)

– 14 –
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Figure 4. SM scatter plots of the double differential distributions in w and cos θV , with B̃ =

B/B(D∗ → DF ), using the CLN parametrization. The upper and lower plots refer to ` = µ and

` = τ modes, respectively, the left and right column to F = π and F = γ.

using the averages in eq. (1.1) at 1σ as constraints. For R(D) we use lattice QCD form

factors [51]. The obtained ranges for εµT and ετT are displayed in figure 6. The regions can

be restricted imposing χ2 =
(
R(D)−R(D)exp

∆R(D)exp

)2
+
(
R(D∗)−R(D∗)exp

∆R(D∗)exp

)2
≤ 1.0. In this region we

select the point corresponding to the minimum |ε̃µT |, the black dot in figure 6, together with

the corresponding value for ετT , with numerical values (Re(ε̃µT ), Im(ε̃µT )) = (0.115, −0.005)

and (Re(ε̃τT ), Im(ε̃τT )) = (−0.067, 0). This is a benchmark point used to describe the

sensitivity of the angular observables and the pattern of correlated deviations from SM in

this scenario. In correspondence to this value, the fraction of longitudinally polarized D∗

measured by Belle in [52] is reproduced, considering the various uncertainties, while the

fraction of tranversely polarized D∗ in the maximum recoil region turns out to deviate by

more than 2σ in the last two bins of w. Indeed, this distribution is found to be SM-like: in

SM for massless leptons the D∗ is fully longitudinally polarized at q2 = 0. Compatibility

with data in this kinematical region would be obtained for Re(εµT ) ≤ 0.05, in agreement

with the findings in [34]. However, the purpose of our analysis is not to obtain the best fit

of the NP coupling, a task deferred to different studies based on the full knowledge of the
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Figure 5. SM distributions in cos θV using CLN, with B̃ = B/B(D∗ → DF ). The upper and lower

plots refer to ` = µ and ` = τ , respectively, the left and right column to F = π and F = γ.

Figure 6. Parameter space of εµT (left) and ετT (right), determined using R(D) and R(D∗) in (1.1)

(lighter regions). The darker regions correspond to χ2 < 1.0. In εµT the shaded gray region results

using the Belle measurement of Reµ [17]. The black dots are the values ε̃`T defined in the text, used

as benchmark points.

data sets with their systematics, but to provide the overview on how the various observables

coherently deviate from SM in this scenario. It should be remarked that in the selected

parameter region, for εµT = εeT , the ratio Reµ =
B(B̄0 → D∗+e−ν̄e)

B(B̄0 → D∗+µ−ν̄µ)
= 1.04±0.05±0.01 [17]

is reproduced: in figure 6, the shaded gray region is constrained by Reµ.

We compute the angular coefficients Ii using the parameters εµT , ετT in the low χ2 region

in figure 6, with the results shown in figures 7 and 8 for ` = µ and ` = τ . Comparing

the results in SM, the impact of NP is to modify the size of the coefficients, in several
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Figure 7. Angular coefficients in the fully differential decay distribution eq. (3.1) for ` = µ, with

the tensor operator in the effective Hamiltonian and coupling εµT in the low χ2 region displayed in

figure 6.

cases mainly near the maximum recoil point w → wmax, as noticed in [34]. Iπ2s (Iγ2c), always

positive in SM, has a zero in NP. I7 is displayed in figure 9; it is proportional to the lepton

mass, hence it is small in the muon case, but it can be different from zero if ε`T has non-zero

imaginary part.

6 Scrutinizing deviations from SM

Starting from the set of angular coefficient functions, several observables can be constructed

to scrutinize SM and possible anomalies. A few observables are independent of the D∗

decay mode.

• The q2-dependent forward-backward (FB) lepton asymmetry is defined as

AFB(q2) =

[∫ 1

0
dcos θ

d2Γ

dq2dcos θ
−
∫ 0

−1
dcos θ

d2Γ

dq2dcos θ

] / dΓ

dq2
. (6.1)

It can be expressed in terms of the coefficient functions:

AFB(q2) =
3(Iπ6c + 2Iπ6s)

6Iπ1c + 12Iπ1s − 2Iπ2c − 4Iπ2s
=

3(Iγ6s + 4Iγ6c)

6Iγ1s + 24Iγ1c − 2Iγ2s − 8Iγ2c
, (6.2)
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Figure 8. Angular coefficients in the fully differential decay distribution eq. (3.1) for ` = τ , with

the tensor operator in the effective Hamiltonian and coupling ετT in the low χ2 region displayed in

figure 6.

Figure 9. Coefficient I7 in eq. (3.1) for ` = µ and (left), and ` = τ (right). The coefficients εµT
and ετT are varied in the low χ2 region displayed in figure 6. I7 does not vanish when the tensor

operator is included in the effective Hamiltonian.
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and in SM in terms of the helicity amplitudes

AFB(q2)|SM =
3q2

(
H2

+ −H2
−
)
− 6m2

`H0Ht

2m2
`

(
H2

0 + 3H2
t +H2

+ +H2
−
)

+ 4q2
(
H2

0 +H2
+ +H2

−
) . (6.3)

• The transverse forward-backward (TFB) asymmetry is the FB asymmetry for trans-

versely polarized D∗. In SM it is expressed in terms of the helicity amplitudes

ATFB(q2)|SM =
3q2

(
H2

+ −H2
−
)

2(m2
` + 2q2)

(
H2

+ +H2
−
) . (6.4)

ATFB only depends on the form factor ratio R1, hence it is useful to check the HQ

prediction for such a quantity [53].

• D∗ polarization asymmetry. Defining the distributions dΓL(T )/dq
2 for longitudinally

(L) and transversely (T) polarized D∗, a polarization asymmetry can be defined:

dAD
∗

pol(q
2)

dq2
= 2

dΓL
dq2

/dΓT
dq2
− 1 . (6.5)

A combination regular at w → wmax is

ÃD
∗

pol(q
2) =

dAD
∗

pol(q
2)

dq2

1 +
dAD

∗
pol(q

2)

dq2

. (6.6)

In SM this quantity is expressed in terms of the helicity amplitudes:

ÃD
∗

pol(q
2)|SM = 1−

(m2
` + 2q2)

(
H2

+ +H2
−
)

6m2
`H

2
t + 2(m2

` + 2q2)H2
0

. (6.7)

In figure 10 we depict the SM results for these observables and the NP ones obtained at

the benchmark point ε̃µT and ε̃τT . The SM results are systematically modified in NP; in

particular, a zero appears in AFB(w) when ` = τ [24]. ÃD
∗

pol shows a high sensitivity to the

tensor structure for w → wmax, in particular in the case ` = µ, as noticed in [34], since in

SM, for m` → 0, D∗ is fully longitudinally polarized at this kinematical point.

An observable different when the final state involves a pion F = π or a photon F = γ

is the

• cos θV -dependent forward-backward asymmetry, defined as

AFB(cosθV ) =

[∫ 1
0 dcos θ

d2Γ

dcosθV dcos θ
−
∫ 0

−1
dcos θ

d2Γ

dcosθV dcos θ

]
dΓ

dcosθV

. (6.8)
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Figure 10. Observables defined in eq. (6.1) (left column), (6.4) (middle) and (6.6) (right). The

upper and lower plots refer to ` = µ and ` = τ , respectively. The solid curves correspond to SM,

the dashed ones to NP at the benchmark point ε̃`T .

Figure 11 shows the result in SM compared to NP for ε̃`T . The deviation from SM is largest

for cos θV ' 0 in the case of pion, and for cos θV ' ±1 when F = γ.

The sensitivity of the angular distributions to the D∗ polarization can be studied con-

sidering the triple differential distributions obtained from (3.1) and (3.2) after integration

in the angle φ. When D∗ is longitudinally polarized one has

d3ΓL
dq2dcosθV dcosθ

∣∣∣
F=π

=Nπ|~pD∗ |
(

1−
m2
`

q2

)2

2π [Iπ1c+I
π
2c cos2θ+Iπ6c cosθ] cosθ2

V (6.9)

d3ΓL
dq2dcosθV dcosθ

∣∣∣
F=γ

=Nγ |~pD∗ |
(

1−
m2
`

q2

)2

2π [Iγ1s+I
γ
2s cos2θ+Iγ6s cosθ] sinθ2

V , (6.10)

and for transversely polarized D∗ (summing over the two transverse polarizations)

d3ΓT
dq2d cos θV d cos θ

∣∣∣
F=π

= Nπ|~pD∗ |
(

1−
m2
`

q2

)2

2π [Iπ1s + Iπ2s cos 2θ + Iπ6s cos θ] sin θ2
V

(6.11)

d3ΓT
dq2d cos θV d cos θ

∣∣∣
F=γ

= Nγ |~pD∗ |
(

1−
m2
`

q2

)2

2π [Iγ1c + Iγ2c cos 2θ + Iγ6c cos θ] (3 + cos 2θV ).

(6.12)

Double differential D∗ polarization fractions can be defined:

FL(θ, θV ) =
1

Γ(B̄ → D∗(DF )`−ν̄`)

∫ q2max

q2min

dq2 d3ΓL
dq2d cos θV d cos θ

(6.13)

FT (θ, θV ) =
1

Γ(B̄ → D∗(DF )`−ν̄`)

∫ q2max

q2min

dq2 d3ΓT
dq2d cos θV d cos θ

. (6.14)

These quantities keep the same angular dependence as in (6.9)–(6.12). In particular, they

are simmetric under cos θV → − cos θV , but they have no definite behavior when cos θ →
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Figure 11. cos θV -dependent forward-backward asymmetry defined in (6.8). The upper and lower

plots refer to ` = µ and ` = τ , respectively, the left and right column to F = π and F = γ. The

solid curves correspond to SM, the dashed ones to NP at the benchmark point ε̃`T .

− cos θ, since the first two terms are invariant under this transformation, while the last

one changes sign. In FL this term involves the angular coefficient Iπ6c (Iγ6s) proportional

to the lepton mass: therefore, the distribution is expected to be nearly symmetric when

cos θ → − cos θ in the muon case, not for τ . For SM this is shown in figure 12. The

analogous plots for FT are shown in figure 13.

When F = π, the direction cos θV = 0, cos θ = −1 selects the transverse D∗ polar-

ization, while for cos θV = ±1, cos θ = 0 D∗ is longitudinally polarized. For F = γ, FL
has a maximum at cos θV = 0, cos θ = 0, while FT is largest at cos θV = ±1, cos θ =

−1. The sensitivity to NP can be visualized integrating the double differential distri-

butions in cos θ or in cos θV . At the benchmark point, integrating over cos θ we obtain

FL,T (θV ) =
∫ 1
−1 d cos θ FL,T (θ, θV ) in figures 14 and 15. Integrating in cos θV , the distri-

butions FL,T (θ) =
∫ 1
−1 d cos θV FL,T (θ, θV ) coincide for F = π and F = γ: they are shown

in figure 16 in SM and NP case.

The observables for ` = µ are more sensitive to NP: in the case of FL(θV ) the deviation

is larger for cos θV ' ±1 for F = π, and for cos θV ' 0 for F = γ. Highest sensitivity to

NP is in the function FT (θ), which can probe the sign of the angular coefficient Iπ2s (Iγ2c)

through its concavity. Indeed, the sign of the second derivative of FT (θ) with respect to

cos θ depends on the sign of this coefficient, that is positive in SM but could have a different

sign in other scenarios. Indeed, comparing figures 7 and 2 one sees that NP can produce a

sign reversal for this coefficient.
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Figure 12. SM distributions FL(θ, θV ) defined in eq. (6.13). Upper and lower plots refer to ` = µ

and ` = τ , respectively, the left and right column to F = π and F = γ.

Figure 13. SM distributions FT (θ, θV ) defined in eq. (6.14). Upper and lower plots refer to ` = µ

and ` = τ , respectively, the left and right column to F = π and F = γ.
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Figure 14. Distribution FL(θV ). The upper and lower plots refer to ` = µ and ` = τ , the left and

right column to F = π and F = γ. The continuous lines show the SM result, the dashed lines the

NP result at the benchmark point ε̃`T .

Tests of LFU. The angular coefficient functions in the fully differential distribution

provide LFU tests. This is interesting, considering that after integration over the angles

only four coefficients contribute to the decay rate, therefore only those are probed by ratios

of branching fractions.

Information from the fully differential decay rate can be exploited defining

Ĩi =
(

1− m2
`

q2

)2
|~pD∗ |BRF Ii, and the ratios

R`1 `2i =

∫ wmax(`1)
w=1 (Ĩπi (w))`1dw∫ wmax(`2)
w=1 (Ĩπi (w))`2dw

(6.15)

for `1`2 = τ µ, τ e, µ e. The SM predictions for these ratios, using CLN, are collected in

table 2. The errors reflect the form factor uncertainties. Since Iπ6c is proportional to the

lepton mass squared, the ratios Rπ6c are much larger than the others. Analogous ratios

in the case of photon can be defined using (3.5). The same quantities predicted in the

NP scenario are collected in table 3. In the case of the ratios Rµ ei , assuming εµT = εeT , a

deviation with respect to the SM result would signal NP but not LFU violation.

Although the measurement of these ratios is challenging, the high statistics foreseen,

e.g., at Belle II is promising [54]. For ratios involving the τ lepton, the use of the τ

reconstruction through the three-prong decays, as done at LHCb, can result in improved

signal-to-background ratio and in a higher statistical significance [40].
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Figure 15. Distribution FT (θV ). The upper and lower plots refer to the case ` = µ and ` = τ , the

left and right column to F = π and F = γ. Color codes as in figure 14.

`1 = τ , `2 = µ `1 = τ , `2 = e `1 = µ , `2 = e

Rπ1s 0.263± 0.006 0.262± 0.005 0.9957± 0.0001

Rπ1c 0.28± 0.02 0.28± 0.02 1.008± 0.004

Rπ2s 0.134± 0.003 0.133± 0.003 0.9923± 0.0002

Rπ2c 0.079± 0.005 0.077± 0.005 0.975± 0.002

Rπ3 0.153± 0.004 0.152± 0.004 0.9932± 0.0002

Rπ4 0.112± 0.004 0.111± 0.004 0.9891± 0.0004

Rπ5 0.30± 0.02 0.30± 0.02 0.999± 0.001

Rπ6s 0.197± 0.004 0.196± 0.004 0.9943± 0.0001

Rπ6c 5.90± 0.45 76000± 7000 12900± 200

Table 2. SM predictions for the ratios in eq. (6.15) using CLN.
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Figure 16. Distributions FL(θ) (left) and FT (θ) (right). Upper and lower plots refer to ` = µ and

` = τ , respectively. Color codes as in figure 14.

`1 = τ , `2 = µ `1 = τ , `2 = e `1 = µ , `2 = e

Rπ1s 0.32± 0.01 0.304± 0.008 0.957± 0.002

Rπ1c 0.36± 0.03 0.34± 0.02 0.956± 0.003

Rπ2s 0.37± 0.02 0.38± 0.02 1.04± 0.01

Rπ2c 0.082± 0.006 0.080± 0.006 0.973± 0.002

Rπ3 0.183± 0.005 0.182± 0.005 0.9932± 0.0002

Rπ4 0.131± 0.005 0.130± 0.005 0.9890± 0.0004

Rπ5 0.35± 0.03 0.33± 0.03 0.96± 0.01

Rπ6s 0.150± 0.006 0.152± 0.006 1.012± 0.003

Rπ6c −11.6± 1.5 −944± 40 81.2± 9.1

Rπ7 0 0 184± 2

Table 3. Ratios (6.15) in the NP scenario with the tensor operator, using CLN and at the bench-

mark point ε̃`T .
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7 Conclusions

To understand the experimental results on semileptonic B decays, the R(D(∗)) anomaly

and the tension in the exclusive vs inclusive |Vcb| determinations, it is mandatory to control

the uncertainties in the SM predictions and to explore all possible ways in which deviations

can be observed. Considering the angular coefficient functions in the fully differential decay

distribution in B̄ → D∗`−ν̄`, with D∗ decaying either as D∗ → Dπ or as D∗ → Dγ, we have

studied several observables able to discern effects of the form factor parametrization and

to identify the cases with minimal sensitivity to hadronic uncertainties, useful to pin down

deviations. As a testing example, we have considered a NP model with a tensor operator.

Comparing the results obtained using the CLN and the BGL parametrization, we have

identified the angular coefficients less sensitive to the parametrization. We have worked out

relations allowing to extract the form factors from measured angular coefficients. Moreover,

the relations between the angular coefficients for D∗ decaying to π and to γ can be used

as tests, exploiting the complementary of the two modes.

Considering the SM extension, we have shown that some angular coefficients, absent in

the SM, can be found in NP. A number of observables display peculiar features in the NP

model, e.g. the q2-dependent forward-backward asymmetry for τ , and the θV -dependent

forward-backward asymmetry both for ` = µ and for ` = τ . The D∗ transverse polarization

fraction FT (θ) for ` = µ is sensitive to the sign of one of the angular coefficients, different

in SM and NP. Finally, ratios to probe LFU and show possible violations have been

constructed. Although the measurement of several observables is challenging, in particular

in the τ mode, the forthcoming analyses at LHCb and Belle II are surely encouraging and

provide exciting perspectives for SM tests and NP searches.

Acknowledgments

We thank C. Bozzi and M. Rotondo for discussions, and M. Jung and D. Straub for

comments. This study has been carried out within the INFN project (Iniziativa Specifica)

QFT-HEP.

A Four-body phase-space

We remind that the four-body phase-space integration can be carried out using the iden-

tities

dΠ4 =
1

2mB
[dk1][dk2][dpD][dpF ](2π)4δ4(pB − pD − pF − k1 − k2)

=
(2π)4

2mB

{
d4qd4pD∗δ

4(pB − q − pD∗)
}

×
{

[dk1][dk2]δ4(q − k1 − k2)
}
×
{

[dpD][dpF ]δ4(pD∗ − pD − pF )
}

=
(2π)4

2mB
dΠ

(q,pD∗ )
2 × dΠ

(k1,k2)
2 × dΠ

(pD,pF )
2 , (A.1)
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using the notation [dp] =
d3p

(2π)32p0
. dΠ

(k1,k2)
2 and dΠ

(pD,pF )
2 are the two-body phase-spaces

dΠ
(k1,k2)
2 =

1

(2π)6

1

4
√
q2
|~k1|LRF dΩL (A.2)

dΠ
(pD,pF )
2 =

1

(2π)6

1

4
√
p2
D∗

|~pD|D∗RF dΩD . (A.3)

In (A.2), |~k1|LRF =
q2 −m2

`

2
√
q2

is the lepton three-momentum in the lepton-pair rest-frame,

and dΩL = d cos θdφ. In (A.3), |~pD|D∗RF is the D three-momentum in the D∗ rest-frame,

and dΩD = (2π)d cos θV , with θV the angle between the D momentum in the D∗ rest-frame

and the z axis; the integration over the azimuthal angle in this frame is trivial. dΠ
(q,pD∗ )
2

can be evaluated exploiting the narrow width approximation (2.22):

dΠ
(q,pD∗ )
2 δ(p2

D∗ −m2
D∗) =

π

mB
|~pD∗ |BRF dq2 , (A.4)

where |~pD∗ |BRF is the D∗ three-momentum in the B rest-frame.

B Hadronic matrix element parametrizations

In the CLN parametrization [16] the B̄ → D∗ matrix elements are written as

〈D∗(v′, ε)|c̄γµb|B̄(v)〉 =
√
mBmD∗i hV (w)εµναβε

∗νv′αvβ , (B.1)

〈D∗(v′, ε)|c̄γµγ5b|B̄(v)〉 =
√
mBmD∗

[
hA1(w)(w + 1)ε∗µ −

[
hA2(w)vµ + hA3(w)v′µ

]
(ε∗ · v)

]
,

〈D∗(v′, ε)|c̄σµνb|B̄(v)〉 = −
√
mBmD∗εµναβ

[
hT1(w)ε∗α(v + v′)β + hT2(w)ε∗α(v − v′)β

+ hT3(w)vαv′β(ε∗ · v)
]
,

with v and v′ the B and D∗ four-velocities and w = v ·v′. The factor
√
mBmD∗ accounts for

the mass-dependent normalization of the states (in [16] the mass-independent normalization

is adopted). This parametrization is related to the one in (2.24)–(2.25) through

V (q2) =
mB+mD∗

2
√
mBmD∗

hV (w)

A1(q2) =
√
mBmD∗

w+1

mB+mD∗
hA1(w)

A2(q2) =
mB+mD∗

2
√
mBmD∗

[
hA3(w)+

mD∗

mB
hA2(w)

]
(B.2)

A0(q2) =
1

2
√
mBmD∗

[mB(w+1)hA1(w)−(mB−mD∗w)hA2(w)−(mBw−mD∗)hA3(w)] ,
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and

T0(q2) = −(mB +mD∗)
2

mBmD∗

√
mD∗

mB
hT3(w)

T1(q2) =

√
mD∗

mB
(hT1(w) + hT2(w)) (B.3)

T2(q2) =

√
mB

mD∗
(hT1(w)− hT2(w)) ,

with q2 = m2
B + m2

D∗ − 2mBmD∗w. The form factors T3, T4, T5 in (2.25) are related

to T0, T1, T2 by the identity: σµν γ5 =
i

2
εµναβσ

αβ . The relations of the form factors

in (B.1) to the Isgur-Wise function, hV (w) = hA1(w) = hA3(w) = hT1(w) = ξ(w) and

hA2 = hT2 = hT3 = 0 hold in the HQ limit. Such relations can be improved including

radiative αs and power
1

mb
,

1

mc
corrections. In the case of the functions in (B.2) they have

been worked out in [16, 53]:

hV (w) = [C1 + εc(L2 − L5) + εb(L1 − L4)] ξ(w)

hA1(w) =

[
C5

1 + εc

(
L2 −

w − 1

w + 1
L5

)
+ εb

(
L1 −

w − 1

w + 1
L4

)]
ξ(w)

hA2(w) =
[
C5

2 + εc(L3 + L6)
]
ξ(w) (B.4)

hA3(w) =
[
C5

1 + C5
3 + εc(L2 − L3 − L5 + L6) + εb(L1 − L4)

]
ξ(w) .

The coefficients Ci incorporate the radiative corrections. Li account for O(1/mQ) correc-

tions in the HQ expansion, and their numerical values have been obtained using QCD sum

rule determinations of the subleading form factors [53]. Their expressions can be found

in the original papers [16, 53], and are collected in the appendix of [24]. The analogous

relations for the form factors in (B.3) have been worked out in [12]:

hT1(w) =
[
C̃1 + εcL2 + εbL1

]
ξ(w)

hT2(w) =
[
C̃2 + εcL5 − εbL4

]
ξ(w) (B.5)

hT3(w) =
[
C̃3 + εc(L6 − L3)

]
ξ(w)

where C̃i incorporate the radiative corrections. Among the Ci and C̃i, the set C5
2 , C̃2 and

C̃3 starts at O(αs). We refer to [12] for the expressions of the parameters in (B.5).

The BGL parametrization uses the form factors g, f , a+ and a−:

〈D∗(p′, ε)|c̄γµb|B̄(p)〉 = i εµναβε
∗νp′αpβg ,

〈D∗(v′, ε)|c̄γµγ5b|B̄(v)〉 = ε∗µ f + (ε∗ · p)
[
(p+ p′)µa+ + (p− p′µ)a−

]
, (B.6)
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so that

g(w) =
hV (w)
√
mBmD∗

f(w) =
√
mBmD∗(1 + w)hA1(w)

a+(w) = − mD∗

2
√
mBmD∗

(
hA3(w)

mD∗
+
hA2(w)

mB

)
(B.7)

a−(w) =
mD∗

2
√
mBmD∗

(
hA3(w)

mD∗
− hA2(w)

mB

)
.

The expressions of the helicity amplitudes are:

H0 =
F1(w)√

q2

H± = f(w)∓mBmD∗

√
w2 − 1 g(w) , (B.8)

with

F1(w) =
√
mBmD∗(1+w) [(mBw−mD∗)hA1(w)−mD∗(w−1)hA2(w)−mB(w−1)hA3(w)] .

In the BGL approach, the observation is used that the W production amplitude of B̄D̄∗ is

related to the B̄ → D∗ form factors by analytic continuation from the semileptonic region

m2
` ≤ t ≤ t− to the region t+ ≤ t, with t± = (mB±mD∗)

2 [18–20]. In the production region,

constraints can be imposed using perturbative QCD, including quark and gluon condensate

corrections. Then, analyticity is exploited. The form factors are written as functions of the

conformal variable z in the form: f(z) =
1

Pf (z)φf (z)

N∑
n=0

anz
n. The Blatsche factors Pf (z)

account for the t < (mB + mD∗)
2 poles associated with on-shell production of c̄b bound

states, while φf (z) are outer functions from phase-space integration. The coefficients an

satisfy unitarity bounds of the type
N∑
n=0
|an|2 ≤ 1. For B → D∗, three coefficients an, with

n = 0, 1, 2, have been fitted for each form factor g, f and F1 [21], and unitarity bounds

have been imposed [10]. The masses of the c̄b lowest-lying bound states with suitable JP

quantum numbers are taken from constituent quark models. The resulting values of the

parameters are reported in [21]: they are used in our analysis.
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